-
Notifications
You must be signed in to change notification settings - Fork 10
/
LeftRightEdges_v01.m
302 lines (270 loc) · 10.3 KB
/
LeftRightEdges_v01.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
%{
* Copyright (C) 2013-2020, The Regents of The University of Michigan.
* All rights reserved.
* This software was developed in the Biped Lab (https://www.biped.solutions/)
* under the direction of Jessy Grizzle, grizzle@umich.edu. This software may
* be available under alternative licensing terms; contact the address above.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
* The views and conclusions contained in the software and documentation are those
* of the authors and should not be interpreted as representing official policies,
* either expressed or implied, of the Regents of The University of Michigan.
*
* AUTHOR: Bruce JK Huang (bjhuang[at]umich.edu) and Jessy Grizzle
* WEBSITE: https://www.brucerobot.com/
%}
function [U,center,LE,RE,LEavg,REavg,LEupper,LElower,REupper,RElower,RingNumbers,NScans,PayLoadClean, PayLoadClean2D, flag_changed] = LeftRightEdges_v01(base_line, pnts, d, ExpNmbr)
% pnts is the pioint cloud structure that Bruce builds up
%U as in [U,S,V] to determined the normal to the pointcloud.
%U(:,3) is the normal to the point cloud
% center is the mean of the pointcould
% center + U*[0;y;z] puts a point back in teh coordinates of the pointcloud
%
%
%LE = ([y;z] corrdinates) x Rings x scans
%RE = ([y;z] corrdinates) x Rings x scans
%LEavg = (2-(y,z) corrdinates) x Rings because the values are averaged
%over all scans
%REavg = (2-(y,z) corrdinates) x Rings because the values are averaged
%over all scans
%Rings is the list of rings in LE and RE
%RingsAvg is the list of rings in LEavg REavg
%
if nargin < 4
ExpNmbr=1;
end
%% Select Scans to use for computing the SVD
%IndScans=[5:10]; % Selected Scans
%IndScans=[40:120]; % Selected Scans
% IndScans=[20:40]; % Selected Scans
IndScans=[1:20]; % Selected Scans
%IndScans=[50:100]; % Selected Scans
%IndScans=[50:150]; % Selected Scans
%
%% Place data in a form where rings and scans are identified
[n1,~,~]=size(pnts);
PayLoad=[];
n1 = IndScans(end);
for i1=1:n1
points = pnts(i1,:,:);
payload = (reshape(points, size(points, 2),[]))';
RingNotZero=find(payload(5,:)>0);
payload=payload(:,RingNotZero);
[~,n3]=size(payload);
payload=[payload;i1*ones(1,n3);ExpNmbr*ones(1,n3)];
% if min(payload(1,:)) > 0
if min(abs(payload(1,:))) > 0
PayLoad=[PayLoad,payload];
end
% payload(1,:) : x
% payload(2,:) : y
% payload(3,:) : z
% payload(4,:) : I
% payload(5,:) : R
% payload(6,:) : scan
% payload(7,:) : ExpNmbr
end
%% Find Rings
FR=min(PayLoad(5,:));
LR=max(PayLoad(5,:));
RingNumbers=[];
for i=FR:LR
K=find(PayLoad(5,:)==i);
if length(K)>0
RingNumbers=[RingNumbers,i];
end
end
if base_line.show_results
current_img_handle = base_line.img_hangles(1);
hold(current_img_handle, 'on');
scatter3(current_img_handle, PayLoad(1,:), PayLoad(2,:), PayLoad(3,:), '.'), view(-90,3)
axis(current_img_handle,'equal')
xlabel(current_img_handle, 'x')
ylabel(current_img_handle, 'y')
zlabel(current_img_handle, 'z')
title(current_img_handle, 'Original Data')
hold(current_img_handle, 'off');
set(get(current_img_handle, 'parent'),'visible','on');% show the current axes
end
%% Clean Data
meanData=mean(PayLoad(1:3,:),2);
error=abs(PayLoad(1:3,:)-meanData);
distance=sum(error,1);
K=find(distance < d*1.025);
PayLoadClean=PayLoad(:,K);
meanClean=mean(PayLoadClean(1:3,:),2);
if base_line.L1_cleanup
opt.H_TL.rpy_init = [45 2 3];
opt.H_TL.T_init = [2, 0, 0];
opt.H_TL.H_init = eye(4);
opt.H_TL.method = "Constraint Customize";
opt.H_TL.UseCentroid = 1;
[~, ~, clean_up_indices, ~] = cleanLiDARTargetWithOneDataSetWithIndices(PayLoadClean, d/sqrt(2), opt.H_TL);
PayLoadClean=PayLoad(:, clean_up_indices);
end
% Check for entire rings being removed
FirstRing=min(PayLoadClean(5,:));
LastRing=max(PayLoadClean(5,:));
RingNumbers=[FirstRing:1:LastRing];
NRings=length(RingNumbers);
if base_line.show_results
current_img_handle = base_line.img_hangles(2);
hold(current_img_handle, 'on');
scatter3(current_img_handle, PayLoadClean(1,:), PayLoadClean(2,:), PayLoadClean(3,:), '.'), view(current_img_handle, -90,3)
set(get(current_img_handle, 'parent'),'visible','on');% show the current axes
axis(current_img_handle,'equal')
xlabel(current_img_handle, 'x')
ylabel(current_img_handle, 'y')
zlabel(current_img_handle,'z')
title(current_img_handle, 'Cleaned Up Data')
hold(current_img_handle, 'off');
end
%% Build a projection to a plane that will be used to find Edge Data
K=find( and(( PayLoadClean(6,:) > IndScans(1) ),( PayLoadClean(6,:) < IndScans(end)) ));
XYZ=PayLoadClean(1:3,K);
meanXYZ=mean(XYZ,2);
[Uc,Sc,Vc]=svd(XYZ-meanXYZ);
[Uc,Vc] = FixSignsRotation(Uc,Vc);
%Sc(:,1:3),Uc
if abs(Uc(2,1)) > abs(Uc(3,1))
Ind2D=[1,2];
flag_changed = 0;
else
Ind2D=[2,1];
flag_changed = 1;
end
% Ind2D
NScans=max(PayLoadClean(6,:))- min(PayLoadClean(6,:));
% Uc; is used for the projection;
%% Project to a plane, find ring lines and the edges of the target edges
Data=PayLoadClean(1:3,:);
temp=Uc'*(Data-mean(Data,2));
PayLoadClean2D=temp(Ind2D,:); %Project out the distance component
if base_line.show_results
current_img_handle = base_line.img_hangles(3);
hold(current_img_handle, 'on');
scatter(current_img_handle, PayLoadClean2D(1,:), PayLoadClean2D(2,:), '.b')
set(get(current_img_handle, 'parent'),'visible','on');% show the current axes
view(current_img_handle, -180, 90)
axis(current_img_handle, 'equal')
xlabel(current_img_handle, 'x')
ylabel(current_img_handle, 'y')
title(current_img_handle, 'Projected 2D points')
% hold(current_img_handle, 'off');
end
% loop over with target shaped as a diamond
LE=10*ones(2,NRings,NScans); RE=LE; i=0;
for j=1:NRings
J=find(PayLoadClean(5,:)==RingNumbers(j));
NJ=length(J);
if NJ > 0
DataCenteredRotated=PayLoadClean(:,J);DataCenteredRotated(1:3,:)=Uc'*(DataCenteredRotated(1:3,:)-meanClean);
i=i+1;
else
% j,i
% RingNumbers(j)
% disp('WTF ?')
break
end
% Code to find the edges of the target
for k = 1:NScans
K=find(DataCenteredRotated(6,:)==k);
if length(K)>0
[L,IL]=max(DataCenteredRotated(Ind2D(1),K));
LE(:,i,k)=DataCenteredRotated(Ind2D,K(IL(1))); %LeftEdge(i,1+j-FirstRing,:)=LE;
[R,IR]=min(DataCenteredRotated(Ind2D(1),K));
RE(:,i,k)=DataCenteredRotated(Ind2D,K(IR(1))); %RightEdge(i,1+j-FirstRing,:)=RE;
else
% i,j,k;
% disp('Problem with Missing Ring Data')
end
end
end
Iend=i;
%find the rings for the various parts of the diamond
LEavg=zeros(2,Iend);
for i=1:Iend
LEtemp=squeeze(LE(:,i,:));
I=find( (LEtemp(1,:)~= 10) & (LEtemp(2,:)~= 10) );
LEtemp=LEtemp(:,I);
LEavg(:,i)=mean(LEtemp,2);
REtemp=squeeze(RE(:,i,:));
REtemp=REtemp(:,I);
REavg(:,i)=mean(REtemp,2);
end
U=Uc;
center=meanClean;
% %Pick out Rings for LE and RE
[ymin,iRing]=min(REavg(1,:));
RElower=RE(:,1:iRing,:);
REupper=RE(:,iRing:end,:);
[ymax,iRing]=max(LEavg(1,:));
I=find(RingNumbers<= iRing);
LElower=LE(:,1:iRing,:);
I=find(RingNumbers >= iRing);
LEupper=LE(:,iRing:end,:);
% [ymin,iRing]=min(REavg(1,:));
% RElower=RE(:,1:iRing,:);
% none_ten = find((RElower(1,:)~= 10) & (RElower(2,:)~= 10));
% RElower=RElower(:,none_ten);
%
% REupper=RE(:,iRing:end,:);
% none_ten = find((REupper(1,:)~= 10) & (REupper(2,:)~= 10));
% REupper=REupper(:,none_ten);
%
% % none_ten = find((REupper(1,:)~= 10) & (REupper(2,:)~= 10));
% [ymax,iRing]=max(LEavg(1,:));
% I=find(RingNumbers<= iRing);
% LElower=LE(:,1:iRing,:);
% none_ten = find((LElower(1,:)~= 10) & (LElower(2,:)~= 10));
% LElower=LElower(:,none_ten);
%
% I=find(RingNumbers >= iRing);
% LEupper=LE(:,iRing:end,:);
% none_ten = find((LEupper(1,:)~= 10) & (LEupper(2,:)~= 10));
% LEupper=LEupper(:,none_ten);
if base_line.show_results
current_img_handle = base_line.img_hangles(3);
plot(current_img_handle, PayLoadClean2D(1,:), PayLoadClean2D(2,:), '.k')
hold(current_img_handle, 'on')
scatter(current_img_handle, LEupper(1, :), LEupper(2, :), 'ro', 'filled')
scatter(current_img_handle, LElower(1, :), LElower(2, :), 'go', 'filled')
scatter(current_img_handle, REupper(1, :), REupper(2, :), 'bo', 'filled')
scatter(current_img_handle, RElower(1, :), RElower(2, :), 'mo', 'filled')
% scatter(current_img_handle, edge1(1, :), edge1(2, :), 'ro', 'filled')
% scatter(current_img_handle, edge2(1, :), edge2(2, :), 'go', 'filled')
% scatter(current_img_handle, edge3(1, :), edge3(2, :), 'bo', 'filled')
% scatter(current_img_handle, edge4(1, :), edge4(2, :), 'mo', 'filled')
set(get(current_img_handle, 'parent'),'visible','on');
view(current_img_handle, -180, 90)
axis(current_img_handle,'equal');
xlabel(current_img_handle, 'x')
ylabel(current_img_handle, 'y')
title(current_img_handle, 'Edge points')
hold(current_img_handle, 'off');
end
end
function [U,V] = FixSignsRotation(U,V)
%Fix the signs
Temp=abs(U);
[junk,I]=max(Temp,[],1);
%[sign(U(I(1),1)),sign(U(I(2),2)),sign(U(I(3),3))]
Signs=diag([sign(U(I(1),1)),sign(U(I(2),2)),sign(U(I(3),3))]);
U=U*Signs;
V(:,1:3)=V(:,1:3)*Signs;
end