forked from yfzhang/vehicle-motion-forecasting
-
Notifications
You must be signed in to change notification settings - Fork 0
/
viz.py
22 lines (20 loc) · 950 Bytes
/
viz.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
import numpy as np
import scipy.io as sio
def overlay(img, future_traj, past_traj):
overlay_img = img.copy()
for p in future_traj:
overlay_img[int(p[0]), int(p[1]), 0] = 255 # red
overlay_img[int(p[0]), int(p[1]), 1] = 255 # green
overlay_img[int(p[0]), int(p[1]), 2] = 255 # blue
for p in past_traj:
overlay_img[int(p[0]), int(p[1]), 0] = 255
overlay_img[int(p[0]), int(p[1]), 1] = 0
overlay_img[int(p[0]), int(p[1]), 2] = 0
return overlay_img
def feat2rgb(feat):
normalization = sio.loadmat('example_data/data_mean_std.mat')
red = (feat[2] * normalization['red_std'] + normalization['red_mean']).astype(np.uint8)
green = (feat[3] * normalization['green_std'] + normalization['green_mean']).astype(np.uint8)
blue = (feat[4] * normalization['blue_std'] + normalization['blue_mean']).astype(np.uint8)
color = np.stack([red, green, blue], axis=2)
return color