-
Notifications
You must be signed in to change notification settings - Fork 13
/
PartitionDownscaledResults.py
57 lines (47 loc) · 2.17 KB
/
PartitionDownscaledResults.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
# -*- coding: utf-8 -*-
"""
Created on Wed Jan 31 12:19:11 2024
@author: mweber
"""
# Import libraries
import pandas as pd
# Read in lookup table for COMIDs and Hydroregions
lookupdir = 'O:/PRIV/CPHEA/PESD/COR/CORFILES/Geospatial_Library_Projects/StreamCat/'
COMID_VPU = pd.read_csv(lookupdir + 'COMID_HydroRegion.csv')
COMID_VPU.head()
COMID_VPU['VPU'].replace({4: '04', 5: '05', 6: '06', 7: '07', 8: '08',
11: '11', 12: '12', 13: '13', 14: '14', 15: '15',
16: '16', 17: '17', 18: '18'}, inplace=True)
# array of unique VPUs
VPU = COMID_VPU['VPU'].unique()
# Nutrient file
#nut_dir = 'O:/PRIV/CPHEA/PESD/COR/CORFILES/Geospatial_Library_Projects/StreamCat/NutrientInventory/Inputs/'
# nut_dir = 'E:/WorkingData/To_Be_Flow_Accumulated/'
# nut = pd.read_csv(nut_dir + 'ClimTerms_2012_10.csv')
nut_dir = 'O:/PRIV/CPHEA/PESD/COR/CORFILES/Geospatial_Library_Projects/AmaliaHandler/'
nut = pd.read_csv(nut_dir + 'ToBeFlowAccumulated_update.csv')
cat_area = pd.read_csv('O:/PRIV/CPHEA/PESD/COR/CORFILES/Geospatial_Library_Projects/StreamCat/NutrientInventory/Inputs/COMID_Scaled_AgVars.csv')
cat_area = cat_area[['COMID','CatAreaSqKm']]
cat_area.head()
# add VPU using lookup table
nut = pd.merge(nut, COMID_VPU, how='left', left_on=['COMID'], right_on=['COMID'])
nut = pd.merge(nut, cat_area, how='left', left_on=['COMID'], right_on=['COMID'])
# nut = nut.drop('Unnamed: 0', axis=1)
# nut = nut.drop('...1', axis=1)
list(nut)
# select columns - this part we can modify to iterate through columns
nut.columns = nut.columns.str.replace('_Cat','')
cols = [i for i in nut.columns if i not in ["COMID", "VPU", "CatAreaSqKm"]]
for col in cols:
final = nut[['COMID', col, 'CatAreaSqKm', 'VPU']]
final = final.rename(columns={col: 'CatSum'})
final['CatCount'] = final['CatAreaSqKm']
final['CatSum'] = final['CatSum'] * final['CatCount']
final['CatPctFull'] = 100
final = final[['COMID', 'CatAreaSqKm', 'CatCount', 'CatSum', 'CatPctFull', 'VPU']]
for i in VPU:
print(i)
df = final[final['VPU'] == i]
df = df.drop(columns=['VPU'])
df.to_csv(nut_dir + '/Allocation_and_Accumulation/' + col + '_' + str(i) + '.csv',
index=False)