-
Notifications
You must be signed in to change notification settings - Fork 1
/
roi2m.py
executable file
·447 lines (370 loc) · 16.6 KB
/
roi2m.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
#! /usr/bin/env python
## ---------------------------------------------------------------- ##
## ROI2M
## ---------------------------------------------------------------- ##
## A file that calculates the onset of experimental events (grouped
## by condition) in the INST study. Event onsets and durations are
## written to text files specific for each experimental block
## ('session' in SPM lingo)
import sys, os
from operator import add
from math import sqrt
## ---------------------------------------------------------------- ##
## This is a list of contrasts vectors (calculated per session)
## ---------------------------------------------------------------- ##
CONTRAST_LIST = [
'ReIP', 'ReXP', 'ReIN', 'ReXN', 'ReR',
'RoIP', 'RoXP', 'RoIN', 'RoXN', 'RoR',
# Factor 1
'Re > Ro', 'Ro > Re',
# Factor 2
'I > X', 'X > I',
# Factor 3
'P > N', 'N > P',
# Factor 1 * Factor 2
'ReI > RoI', 'RoI > ReI', 'ReX > RoX', 'RoX > ReX',
'ReR > RoR', 'RoR > ReR',
# Factor 2 * Factor 3
'IP > XP', 'XP > IP', 'IN > XN', 'XN > IN',
# Factor 1 * Factor 3
'ReP > ReN', 'ReN > ReP', 'RoP > RoN', 'RoN > RoP',
# Factor 1 * Factor 2 * Factor 3
'ReIP > RoIP', 'RoIP > ReIP', 'ReXP > RoXP', 'RoXP > ReXP',
'ReIN > RoIN', 'RoIN > ReIN', 'ReXN > RoXN', 'RoXN > ReXN',
'ReIP > ReXP', 'ReXP > ReIP', 'ReIN > ReXN', 'ReXN > ReIN',
'RoIP > RoXP', 'RoXP > RoIP', 'RoIN > RoXN', 'RoXN > RoIN',
'ReIP > ReIN', 'ReIN > ReIP', 'ReXP > ReXN', 'ReXN > ReXP',
'RoIP > RoIN', 'RoIN > RoIP', 'RoXP > RoXN', 'RoXN > RoXP',
]
CONTRAST_VECTORS = {
# Order: ReIP ReXP ReIN ReXN ReR RoIP RoXP RoIN RoXN RoR
'ReIP' : [1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
'ReXP' : [0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
'ReIN' : [0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
'ReXN' : [0, 0, 0, 1, 0, 0, 0, 0, 0, 0],
'ReR' : [0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
'RoIP' : [0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
'RoXP' : [0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
'RoIN' : [0, 0, 0, 0, 0, 0, 0, 1, 0, 0],
'RoXN' : [0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
'RoR' : [0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
# Factor 1
'Re > Ro' : [1, 1, 1, 1, 1, -1, -1, -1, -1, -1],
'Ro > Re' : [-1, -1, -1, -1, -1, 1, 1, 1, 1, 1],
# Factor 2
'I > X' : [1, -1, 1, -1, 0, 1, -1, 1, -1, 0],
'X > I' : [-1, 1, -1, 1, 0, -1, 1, -1, 1, 0],
# Factor 3
'P > N' : [1, 1, -1, -1, 0, 1, 1, -1, -1, 0],
'N > P' : [-1, -1, 1, 1, 0, -1, -1, 1, 1, 0],
# Factor 1, * Factor 2
'ReI > RoI' : [1, 0, 1, 0, 0, -1, 0, -1, 0, 0],
'RoI > ReI' : [-1, 0, -1, 0, 0, 1, 0, 1, 0, 0],
'ReX > RoX' : [0, 1, 0, 1, 0, 0, -1, 0, -1, 0],
'RoX > ReX' : [0, -1, 0, -1, 0, 0, 1, 0, 1, 0],
'ReR > RoR' : [0, 0, 0, 0, 1, 0, 0, 0, 0, -1],
'RoR > ReR' : [0, 0, 0, 0, -1, 0, 0, 0, 0, 1],
# Factor 2 * Factor 3
'IP > XP' : [1, -1, 0, 0, 0, 1, -1, 0, 0, 0],
'XP > IP' : [-1, 1, 0, 0, 0, -1, 1, 0, 0, 0],
'IN > XN' : [0, 0, 1, -1, 0, 0, 0, 1, -1, 0],
'XN > IN' : [0, 0, -1, 1, 0, 0, 0, -1, 1, 0],
# Factor 1, * Factor 3
'ReP > ReN' : [1, 1, -1, -1, 0, 0, 0, 0, 0, 0],
'ReN > ReP' : [-1, -1, 1, 1, 0, 0, 0, 0, 0, 0],
'RoP > RoN' : [0, 0, 0, 0, 0, 1, 1, -1, -1, 0],
'RoN > RoP' : [0, 0, 0, 0, 0, -1, -1, 1, 1, 0],
# Factor 1, * Factor 2 * Factor 3
'ReIP > RoIP' : [1, 0, 0, 0, 0, -1, 0, 0, 0, 0],
'RoIP > ReIP' : [-1, 0, 0, 0, 0, 1, 0, 0, 0, 0],
'ReXP > RoXP' : [0, 1, 0, 0, 0, 0, -1, 0, 0, 0],
'RoXP > ReXP' : [0, -1, 0, 0, 0, 0, 1, 0, 0, 0],
'ReIN > RoIN' : [0, 0, 1, 0, 0, 0, 0, -1, 0, 0],
'RoIN > ReIN' : [0, 0, -1, 0, 0, 0, 0, 1, 0, 0],
'ReXN > RoXN' : [0, 0, 0, 1, 0, 0, 0, 0, -1, 0],
'RoXN > ReXN' : [0, 0, 0, -1, 0, 0, 0, 0, 1, 0],
'ReIP > ReXP' : [1, -1, 0, 0, 0, 0, 0, 0, 0, 0],
'ReXP > ReIP' : [-1, 1, 0, 0, 0, 0, 0, 0, 0, 0],
'ReIN > ReXN' : [0, 0, 1, -1, 0, 0, 0, 0, 0, 0],
'ReXN > ReIN' : [0, 0, -1, 1, 0, 0, 0, 0, 0, 0],
'RoIP > RoXP' : [0, 0, 0, 0, 0, 1, -1, 0, 0, 0],
'RoXP > RoIP' : [0, 0, 0, 0, 0, -1, 1, 0, 0, 0],
'RoIN > RoXN' : [0, 0, 0, 0, 0, 0, 0, 1, -1, 0],
'RoXN > RoIN' : [0, 0, 0, 0, 0, 0, 0, -1, 1, 0],
'ReIP > ReIN' : [1, 0, -1, 0, 0, 0, 0, 0, 0, 0],
'ReIN > ReIP' : [-1, 0, 1, 0, 0, 0, 0, 0, 0, 0],
'ReXP > ReXN' : [0, 1, 0, -1, 0, 0, 0, 0, 0, 0],
'ReXN > ReXP' : [0, -1, 0, 1, 0, 0, 0, 0, 0, 0],
'RoIP > RoIN' : [0, 0, 0, 0, 0, 1, 0, -1, 0, 0],
'RoIN > RoIP' : [0, 0, 0, 0, 0, -1, 0, 1, 0, 0],
'RoXP > RoXN' : [0, 0, 0, 0, 0, 0, 1, 0, -1, 0],
'RoXN > RoXP' : [0, 0, 0, 0, 0, 0, -1, 0, 1, 0],
}
def normalize_contrast_vector(v):
pos = [x for x in v if x > 0]
if len(pos) > 0:
total_pos = float(reduce(add, pos))
neg = [x for x in v if x < 0]
if len(neg) > 0:
total_neg = float(reduce(add, neg))
v2 = []
for x in v:
if x == 0:
v2.append(0)
elif x > 0:
v2.append(round(float(x)/total_pos, 2))
else:
v2.append(-1*round(float(x)/total_neg, 2))
return v2
## ---------------------------------------------------------------- ##
## This is a list of imaging-related variables
## ---------------------------------------------------------------- ##
TR = 2000.0
OFFSET = 2
DELAY1 = 0
DELAY2 = 0
BLOCK = 0
TRIAL = 0
PRACTICED = 0
ENCODING_ONSET = 0
ENCODING_RT = 0
EXECUTION_ONSET = 0
EXECUTION_RT = 0
RECALL_PROBE_ONSET = 0
RECALL_PROBE_RT = 0
RECALL_PROBE_ACC = 0
ROTATION_PROBE_ONSET = 0
ROTATION_PROBE_RT = 0
ROTATION_PROBE_ACC = 0
OPERATOR1 = 0
class Trial:
"""
An abstract class representing a RITL trail---three phases
(Encoding, Execution, Response), with associated Onsets and
Durations (ie. RTs), followed by randomly-varying Delays.
"""
def __init__(self, tokens):
"""Initializes and catches eventual errors"""
self.ok = True
try:
self.Create(tokens)
except ValueError:
print "ValueError: %s" % tokens
self.ok = False
except IndexError:
print "IndexError: %s" % tokens
self.ok = False
def Create(self, tokens):
"""Performs the necessary initialization"""
self.delay1 = int(tokens[DELAY1])
self.delay2 = int(tokens[DELAY2])
self.block = int(tokens[BLOCK])
#self.trial = int(tokens[TRIAL])
self.practiced = tokens[PRACTICED]
self.encodingOnset = int(tokens[ENCODING_ONSET])
self.encodingRt = int(tokens[ENCODING_RT])
self.executionOnset = int(tokens[EXECUTION_ONSET])
self.executionRt = int(tokens[EXECUTION_RT])
self.type = tokens[OPERATOR1]
# In ROI, there are two types of probes: Recalls
# and Rotations. They need to be considered
# separately.
if self.type == "RECALL":
self.probeAcc = int(tokens[RECALL_PROBE_ACC])
self.probeRt = int(tokens[RECALL_PROBE_RT])
self.probeOnset = int(tokens[RECALL_PROBE_ONSET])
elif self.type == "ROTATE":
self.probeAcc = int(tokens[ROTATION_PROBE_ACC])
self.probeRt = int(tokens[ROTATION_PROBE_RT])
self.probeOnset = int(tokens[ROTATION_PROBE_ONSET])
else:
# If type != RECALL | ROTATE, then we have a serious
# problem and cannot proceed
print("Incorrect trial type: %s" % self.type)
sys.exit(0)
# Shortcut for accuracy
self.acc = self.probeAcc
self.blockBegin = 0
# In case of RTs that are 0s, one needs to apply
# a correction. In particular, one needs to estimate
# the correct duration of each phase.
if self.encodingRt == 0:
d = self.executionOnset - self.encodingOnset - self.delay1 - 2000
self.encodingRt = d
if self.executionRt == 0:
d = self.probeOnset - self.executionOnset - self.delay2 - 1000
self.executionRt = d
# If, after the correction, we have negative RTs, that means
# that we are dealing with aborted trials. They need to be
# removed.
if self.executionRt <= 0 or self.encodingRt <= 0:
print "*** Excluding trial %s --- out of time ***" % self
# The current probe RT belongs to the previous trial,
# so it must be overwritten.
self.executionRt = -1 # Override (in case only Encoding was detected)
self.probeRt = -1 # Override
self.probeAcc = 0
self.acc = 0
self.onsets = {'Encoding' : self.encodingOnset,
'Execution' : self.executionOnset,
'Probe' : self.probeOnset}
self.rts = {'Encoding' : self.encodingRt,
'Execution' : self.executionRt,
'Probe' : self.probeRt}
def RelativeTime(self, val):
"Time since the beginning of the block"
return (float(val) - float(self.blockBegin))/1000.0
def __str__(self):
return "<ROI:%d/ (%.2f), P:%s>" % (self.block, self.RelativeTime(self.encodingOnset), self.practiced)
def __repr__(self):
return self.__str__()
def Parse(filename):
"""Parses a Table-format logfile"""
global DELAY1
global DELAY2
global BLOCK
global TRIAL
global PRACTICED
global ENCODING_ONSET
global ENCODING_RT
global EXECUTION_ONSET
global EXECUTION_RT
global RECALL_PROBE_ONSET
global RECALL_PROBE_RT
global RECALL_PROBE_ACC
global ROTATION_PROBE_ONSET
global ROTATION_PROBE_RT
global ROTATION_PROBE_ACC
global OPERATOR1
fin = open(filename, 'rU')
subject = filename.split('.')[0].split('-')[5]
lines = fin.readlines()
tokens = [x.split('\t') for x in lines]
tokens = [[y.strip() for y in x] for x in tokens]
colNames = tokens[0]
rows = tokens[1:]
DELAY1 = colNames.index("Delay1[Trial]")
DELAY2 = colNames.index("Delay2[Trial]")
BLOCK = colNames.index("BlockNum")
#TRIAL = colNames.index("Trials")
PRACTICED = colNames.index("Practiced")
ENCODING_ONSET = colNames.index("Encoding.OnsetTime")
ENCODING_RT = colNames.index("Encoding.RT")
EXECUTION_ONSET = colNames.index("Execution.OnsetTime")
EXECUTION_RT = colNames.index("Execution.RT")
RECALL_PROBE_ONSET = colNames.index("RecallProbe.OnsetTime")
RECALL_PROBE_RT = colNames.index("RecallProbe.RT")
RECALL_PROBE_ACC = colNames.index("RecallProbe.ACC")
ROTATION_PROBE_ONSET = colNames.index("RotationProbe.OnsetTime")
ROTATION_PROBE_RT = colNames.index("RotationProbe.RT")
ROTATION_PROBE_ACC = colNames.index("RotationProbe.ACC")
OPERATOR1 = colNames.index("Operator1[Trial]")
trials = [Trial(r) for r in rows]
trials = [t for t in trials if t.ok] # Excludes warmup trials
FIRST_TRIALS = []
previous = None
for t in trials:
if previous == None or t.block != previous.block:
FIRST_TRIALS.append(t)
previous = t
#FIRST_TRIALS = [t for t in trials if (t.trial % 10) == 1]
#print FIRST_TRIALS
for f in FIRST_TRIALS:
subset = [t for t in trials if t.block == f.block]
for s in subset:
s.blockBegin = f.encodingOnset - (OFFSET * TR)
BLOCKS = set(t.block for t in trials)
BLOCKS = list(BLOCKS)
BLOCKS.sort()
print BLOCKS
P = {'Yes' : 'Practiced', 'No' : 'Novel'}
CV = {} # The subject's contrast vectors
for c in CONTRAST_LIST:
CV[c]=[]
fout = open("s%s_sessions.m" % subject, 'w')
fcon = open("s%s_contrasts.txt" % subject, 'w')
I = 0 # Total of i counters
for b in BLOCKS:
subset = [t for t in trials if t.block == b]
correct = [s for s in subset if s.acc == 1]
errors = [s for s in subset if s.acc == 0]
print("Block %s, errors %d" % (b, len(errors)))
description = ""
i = 1 # counter for cell entries in matlab file
j = 0 # counter for condition entries in contrast files
for optype in ['RECALL', 'ROTATE']:
# Encoding and Execution, divided by Practice (Yes/No)
# ------------------------------------------------------------
for practice in ['Yes', 'No']:
for phase in ['Encoding', 'Execution']: #, 'Probe']:
appropriate = [c for c in correct
if c.practiced == practice and
c.type == optype]
if len(appropriate) > 0:
description += "names{%d}='%s/%s/%s';\n" % (i, optype.lower(), phase, P[practice])
onsets = "%s" % [a.RelativeTime(a.onsets[phase]) for a in appropriate]
durations = "%s" % [a.rts[phase]/1000.0 for a in appropriate]
description += "onsets{%d}=%s;\n" % (i, onsets.replace(";", ""))
description += "durations{%d}=%s;\n" % (i, durations.replace(";", ""))
i += 1
for c in CONTRAST_LIST:
#CV[c] += [len(appropriate)*CONTRAST_VECTORS[c][j]]
CV[c] += [CONTRAST_VECTORS[c][j]]
# No matter what, the contrast counter needs to be updated
j += 1
# Probes, altogether (assumes no effect of practice)
# ------------------------------------------------------------
appropriate = [c for c in correct if c.type == optype]
if len(appropriate) > 0:
description += "names{%d}='%s/Probe';\n" % (i, optype.lower())
onsets = "%s" % [c.RelativeTime(c.onsets['Probe']) for c in appropriate]
durations = "%s" % [c.rts['Probe']/1000.0 for c in appropriate]
description += "onsets{%d}=%s;\n" % (i, onsets.replace(";", ""))
description += "durations{%d}=%s;\n" % (i, durations.replace(";", ""))
for c in CONTRAST_LIST:
#CV[c] += [len(appropriate)*CONTRAST_VECTORS[c][j]]
CV[c] += [CONTRAST_VECTORS[c][j]]
#print "Condition: %s,Probe, value %d, index %d, total index %d " % (optype, len(appropriate), j, len(CV[CONTRAST_LIST[0]]))
i += 1
j += 1
# Error trials
# ------------------------------------------------------------
# Note that, in the new design of the experiment, there might
# be encoding errors only, or encoding/execution errors only,
# because trials are aborted if one phases times out.
#
if len(errors) > 0:
print "Errors, block %d" % b
for phase in ['Encoding', 'Execution', 'Probe']:
O = [e.RelativeTime(e.onsets[phase]) for e in errors if e.onsets[phase]>0 and e.rts[phase]>0]
D = [e.rts[phase]/1000.0 for e in errors if e.onsets[phase]>0 and e.rts[phase]>0]
if len(D) > 0:
print "\tWriting errors for blockj %d" % b
onsets = "%s" % O
durations = "%s" % D
description += "names{%d}='%s/Error';\n" % (i, phase)
description += "onsets{%d}=%s;\n" % (i, onsets.replace(";", ""))
description += "durations{%d}=%s;\n" % (i, durations.replace(";", ""))
i += 1
print "Adding error to CV: %d ->" % len(CV[CONTRAST_LIST[0]]),
for c in CONTRAST_LIST:
CV[c] += [0]
print len(CV[CONTRAST_LIST[0]])
#j+=1
I += i
fout.write("names=cell(1,%d);\n" % (i-1))
fout.write("onsets=cell(1,%d);\n" % (i-1))
fout.write("durations=cell(1,%d);\n" % (i-1))
fout.write(description)
fout.write("save('session%d.mat', 'names', 'onsets', 'durations');\n" % b)
fout.flush()
fout.close()
for c in CONTRAST_LIST:
#print(c, len(CV[c]), I)
v = "%s" % normalize_contrast_vector(CV[c])
v = v.replace(",", "")
fcon.write("%s : %s\n" % (c, v))
fcon.close()
if __name__ == "__main__":
filename=sys.argv[1]
Parse(filename)