forked from open-mmlab/mmdetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
retinanet_effb3_fpn_crop896_8x4_1x_coco.py
94 lines (91 loc) · 2.95 KB
/
retinanet_effb3_fpn_crop896_8x4_1x_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
_base_ = [
'../_base_/models/retinanet_r50_fpn.py',
'../_base_/datasets/coco_detection.py', '../_base_/default_runtime.py'
]
cudnn_benchmark = True
norm_cfg = dict(type='BN', requires_grad=True)
checkpoint = 'https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b3_3rdparty_8xb32-aa_in1k_20220119-5b4887a0.pth' # noqa
model = dict(
backbone=dict(
_delete_=True,
type='EfficientNet',
arch='b3',
drop_path_rate=0.2,
out_indices=(3, 4, 5),
frozen_stages=0,
norm_cfg=dict(
type='SyncBN', requires_grad=True, eps=1e-3, momentum=0.01),
norm_eval=False,
init_cfg=dict(
type='Pretrained', prefix='backbone', checkpoint=checkpoint)),
neck=dict(
in_channels=[48, 136, 384],
start_level=0,
out_channels=256,
relu_before_extra_convs=True,
no_norm_on_lateral=True,
norm_cfg=norm_cfg),
bbox_head=dict(type='RetinaSepBNHead', num_ins=5, norm_cfg=norm_cfg),
# training and testing settings
train_cfg=dict(assigner=dict(neg_iou_thr=0.5)))
# dataset settings
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
img_size = (896, 896)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='Resize',
img_scale=img_size,
ratio_range=(0.8, 1.2),
keep_ratio=True),
dict(type='RandomCrop', crop_size=img_size),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size=img_size),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=img_size,
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size=img_size),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data = dict(
samples_per_gpu=4,
workers_per_gpu=4,
train=dict(pipeline=train_pipeline),
val=dict(pipeline=test_pipeline),
test=dict(pipeline=test_pipeline))
# optimizer
optimizer_config = dict(grad_clip=None)
optimizer = dict(
type='SGD',
lr=0.04,
momentum=0.9,
weight_decay=0.0001,
paramwise_cfg=dict(norm_decay_mult=0, bypass_duplicate=True))
# learning policy
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=1000,
warmup_ratio=0.1,
step=[8, 11])
# runtime settings
runner = dict(type='EpochBasedRunner', max_epochs=12)
# NOTE: `auto_scale_lr` is for automatically scaling LR,
# USER SHOULD NOT CHANGE ITS VALUES.
# base_batch_size = (8 GPUs) x (4 samples per GPU)
auto_scale_lr = dict(base_batch_size=32)