forked from open-mmlab/mmdetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ld_r18_gflv1_r101_fpn_coco_1x.py
62 lines (61 loc) · 2.07 KB
/
ld_r18_gflv1_r101_fpn_coco_1x.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
_base_ = [
'../_base_/datasets/coco_detection.py',
'../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
]
teacher_ckpt = 'https://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_r101_fpn_mstrain_2x_coco/gfl_r101_fpn_mstrain_2x_coco_20200629_200126-dd12f847.pth' # noqa
model = dict(
type='KnowledgeDistillationSingleStageDetector',
teacher_config='configs/gfl/gfl_r101_fpn_mstrain_2x_coco.py',
teacher_ckpt=teacher_ckpt,
backbone=dict(
type='ResNet',
depth=18,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=True),
norm_eval=True,
style='pytorch',
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet18')),
neck=dict(
type='FPN',
in_channels=[64, 128, 256, 512],
out_channels=256,
start_level=1,
add_extra_convs='on_output',
num_outs=5),
bbox_head=dict(
type='LDHead',
num_classes=80,
in_channels=256,
stacked_convs=4,
feat_channels=256,
anchor_generator=dict(
type='AnchorGenerator',
ratios=[1.0],
octave_base_scale=8,
scales_per_octave=1,
strides=[8, 16, 32, 64, 128]),
loss_cls=dict(
type='QualityFocalLoss',
use_sigmoid=True,
beta=2.0,
loss_weight=1.0),
loss_dfl=dict(type='DistributionFocalLoss', loss_weight=0.25),
loss_ld=dict(
type='KnowledgeDistillationKLDivLoss', loss_weight=0.25, T=10),
reg_max=16,
loss_bbox=dict(type='GIoULoss', loss_weight=2.0)),
# training and testing settings
train_cfg=dict(
assigner=dict(type='ATSSAssigner', topk=9),
allowed_border=-1,
pos_weight=-1,
debug=False),
test_cfg=dict(
nms_pre=1000,
min_bbox_size=0,
score_thr=0.05,
nms=dict(type='nms', iou_threshold=0.6),
max_per_img=100))
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)