forked from open-mmlab/mmdetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
yolov3_mobilenetv2_320_300e_coco.py
53 lines (51 loc) · 1.71 KB
/
yolov3_mobilenetv2_320_300e_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
_base_ = ['./yolov3_mobilenetv2_mstrain-416_300e_coco.py']
# yapf:disable
model = dict(
bbox_head=dict(
anchor_generator=dict(
base_sizes=[[(220, 125), (128, 222), (264, 266)],
[(35, 87), (102, 96), (60, 170)],
[(10, 15), (24, 36), (72, 42)]])))
# yapf:enable
# dataset settings
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='Expand',
mean=img_norm_cfg['mean'],
to_rgb=img_norm_cfg['to_rgb'],
ratio_range=(1, 2)),
dict(
type='MinIoURandomCrop',
min_ious=(0.4, 0.5, 0.6, 0.7, 0.8, 0.9),
min_crop_size=0.3),
dict(type='Resize', img_scale=(320, 320), keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='PhotoMetricDistortion'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(320, 320),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img'])
])
]
data = dict(
train=dict(dataset=dict(pipeline=train_pipeline)),
val=dict(pipeline=test_pipeline),
test=dict(pipeline=test_pipeline))