-
Notifications
You must be signed in to change notification settings - Fork 9
/
dimorphite_dl.py
1452 lines (1210 loc) · 55.1 KB
/
dimorphite_dl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright 2020 Jacob D. Durrant
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script identifies and enumerates the possible protonation sites of SMILES
strings.
"""
from __future__ import print_function
import copy
import os
import argparse
import sys
try:
# Python2
from StringIO import StringIO
except ImportError:
# Python3
from io import StringIO
def print_header():
"""Prints out header information."""
# Always let the user know a help file is available.
print("\nFor help, use: python dimorphite_dl.py --help")
# And always report citation information.
print("\nIf you use Dimorphite-DL in your research, please cite:")
print("Ropp PJ, Kaminsky JC, Yablonski S, Durrant JD (2019) Dimorphite-DL: An")
print(
"open-source program for enumerating the ionization states of drug-like small"
)
print("molecules. J Cheminform 11:14. doi:10.1186/s13321-019-0336-9.\n")
try:
import rdkit
from rdkit import Chem
from rdkit.Chem import AllChem
# Disable the unnecessary RDKit warnings
from rdkit import RDLogger
RDLogger.DisableLog("rdApp.*")
except:
msg = "Dimorphite-DL requires RDKit. See https://www.rdkit.org/"
print(msg)
raise Exception(msg)
def main(params=None):
"""The main definition run when you call the script from the commandline.
:param params: The parameters to use. Entirely optional. If absent,
defaults to None, in which case argments will be taken from
those given at the command line.
:param params: dict, optional
:return: Returns a list of the SMILES strings return_as_list parameter is
True. Otherwise, returns None.
"""
parser = ArgParseFuncs.get_args()
args = vars(parser.parse_args())
if not args["silent"]:
print_header()
# Add in any parameters in params.
if params is not None:
for k, v in params.items():
args[k] = v
# If being run from the command line, print out all parameters.
if __name__ == "__main__":
if not args["silent"]:
print("\nPARAMETERS:\n")
for k in sorted(args.keys()):
print(k.rjust(13) + ": " + str(args[k]))
print("")
if args["test"]:
# Run tests.
TestFuncs.test()
else:
# Run protonation
if "output_file" in args and args["output_file"] is not None:
# An output file was specified, so write to that.
with open(args["output_file"], "w") as file:
for protonated_smi in Protonate(args):
file.write(protonated_smi + "\n")
elif "return_as_list" in args and args["return_as_list"] == True:
return list(Protonate(args))
else:
# No output file specified. Just print it to the screen.
for protonated_smi in Protonate(args):
print(protonated_smi)
class MyParser(argparse.ArgumentParser):
"""Overwrite default parse so it displays help file on error. See
https://stackoverflow.com/questions/4042452/display-help-message-with-python-argparse-when-script-is-called-without-any-argu"""
def error(self, message):
"""Overwrites the default error message.
:param message: The default error message.
"""
self.print_help()
msg = "ERROR: %s\n\n" % message
print(msg)
raise Exception(msg)
def print_help(self, file=None):
"""Overwrite the default print_help function
:param file: Output file, defaults to None
"""
print("")
if file is None:
file = sys.stdout
self._print_message(self.format_help(), file)
print(
"""
examples:
python dimorphite_dl.py --smiles_file sample_molecules.smi
python dimorphite_dl.py --smiles "CCC(=O)O" --min_ph -3.0 --max_ph -2.0
python dimorphite_dl.py --smiles "CCCN" --min_ph -3.0 --max_ph -2.0 --output_file output.smi
python dimorphite_dl.py --smiles_file sample_molecules.smi --pka_precision 2.0 --label_states
python dimorphite_dl.py --test"""
)
print("")
class ArgParseFuncs:
"""A namespace for storing functions that are useful for processing
command-line arguments. To keep things organized."""
@staticmethod
def get_args():
"""Gets the arguments from the command line.
:return: A parser object.
"""
parser = MyParser(
description="Dimorphite 1.2.4: Creates models of "
+ "appropriately protonated small moleucles. "
+ "Apache 2.0 License. Copyright 2020 Jacob D. "
+ "Durrant."
)
parser.add_argument(
"--min_ph",
metavar="MIN",
type=float,
default=6.4,
help="minimum pH to consider (default: 6.4)",
)
parser.add_argument(
"--max_ph",
metavar="MAX",
type=float,
default=8.4,
help="maximum pH to consider (default: 8.4)",
)
parser.add_argument(
"--pka_precision",
metavar="PRE",
type=float,
default=1.0,
help="pKa precision factor (number of standard devations, default: 1.0)",
)
parser.add_argument(
"--smiles", metavar="SMI", type=str, help="SMILES string to protonate"
)
parser.add_argument(
"--smiles_file",
metavar="FILE",
type=str,
help="file that contains SMILES strings to protonate",
)
parser.add_argument(
"--output_file",
metavar="FILE",
type=str,
help="output file to write protonated SMILES (optional)",
)
parser.add_argument(
"--max_variants",
metavar="MXV",
type=int,
default=128,
help="limit number of variants per input compound (default: 128)",
)
parser.add_argument(
"--label_states",
action="store_true",
help="label protonated SMILES with target state "
+ '(i.e., "DEPROTONATED", "PROTONATED", or "BOTH").',
)
parser.add_argument(
"--silent",
action="store_true",
help="do not print any messages to the screen",
)
parser.add_argument(
"--test", action="store_true", help="run unit tests (for debugging)"
)
return parser
@staticmethod
def clean_args(args):
"""Cleans and normalizes input parameters
:param args: A dictionary containing the arguments.
:type args: dict
:raises Exception: No SMILES in params.
"""
defaults = {
"min_ph": 6.4,
"max_ph": 8.4,
"pka_precision": 1.0,
"label_states": False,
"test": False,
"max_variants": 128,
}
for key in defaults:
if key not in args:
args[key] = defaults[key]
keys = list(args.keys())
for key in keys:
if args[key] is None:
del args[key]
if not "smiles" in args and not "smiles_file" in args:
msg = "Error: No SMILES in params. Use the -h parameter for help."
print(msg)
raise Exception(msg)
# If the user provides a smiles string, turn it into a file-like StringIO
# object.
if "smiles" in args:
if isinstance(args["smiles"], str):
args["smiles_file"] = StringIO(args["smiles"])
args["smiles_and_data"] = LoadSMIFile(args["smiles_file"], args)
return args
class UtilFuncs:
"""A namespace to store functions for manipulating mol objects. To keep
things organized."""
@staticmethod
def neutralize_mol(mol):
"""All molecules should be neuralized to the extent possible. The user
should not be allowed to specify the valence of the atoms in most cases.
:param rdkit.Chem.rdchem.Mol mol: The rdkit Mol objet to be neutralized.
:return: The neutralized Mol object.
"""
# Get the reaction data
rxn_data = [
[
"[Ov1-1:1]",
"[Ov2+0:1]-[H]",
], # To handle O- bonded to only one atom (add hydrogen).
[
"[#7v4+1:1]-[H]",
"[#7v3+0:1]",
], # To handle N+ bonded to a hydrogen (remove hydrogen).
[
"[Ov2-:1]",
"[Ov2+0:1]",
], # To handle O- bonded to two atoms. Should not be Negative.
[
"[#7v3+1:1]",
"[#7v3+0:1]",
], # To handle N+ bonded to three atoms. Should not be positive.
[
"[#7v2-1:1]",
"[#7+0:1]-[H]",
], # To handle N- Bonded to two atoms. Add hydrogen.
# ['[N:1]=[N+0:2]=[N:3]-[H]', '[N:1]=[N+1:2]=[N+0:3]-[H]'], # To handle bad azide. Must be
# protonated. (Now handled
# elsewhere, before SMILES
# converted to Mol object.)
[
"[H]-[N:1]-[N:2]#[N:3]",
"[N:1]=[N+1:2]=[N:3]-[H]",
] # To handle bad azide. R-N-N#N should
# be R-N=[N+]=N
]
# Add substructures and reactions (initially none)
for i, rxn_datum in enumerate(rxn_data):
rxn_data[i].append(Chem.MolFromSmarts(rxn_datum[0]))
rxn_data[i].append(None)
# Add hydrogens (respects valence, so incomplete).
mol.UpdatePropertyCache(strict=False)
mol = Chem.AddHs(mol)
while True: # Keep going until all these issues have been resolved.
current_rxn = None # The reaction to perform.
current_rxn_str = None
for i, rxn_datum in enumerate(rxn_data):
(
reactant_smarts,
product_smarts,
substruct_match_mol,
rxn_placeholder,
) = rxn_datum
if mol.HasSubstructMatch(substruct_match_mol):
if rxn_placeholder is None:
current_rxn_str = reactant_smarts + ">>" + product_smarts
current_rxn = AllChem.ReactionFromSmarts(current_rxn_str)
rxn_data[i][3] = current_rxn # Update the placeholder.
else:
current_rxn = rxn_data[i][3]
break
# Perform the reaction if necessary
if current_rxn is None: # No reaction left, so break out of while loop.
break
else:
mol = current_rxn.RunReactants((mol,))[0][0]
mol.UpdatePropertyCache(strict=False) # Update valences
# The mols have been altered from the reactions described above, we
# need to resanitize them. Make sure aromatic rings are shown as such
# This catches all RDKit Errors. without the catchError and
# sanitizeOps the Chem.SanitizeMol can crash the program.
sanitize_string = Chem.SanitizeMol(
mol,
sanitizeOps=rdkit.Chem.rdmolops.SanitizeFlags.SANITIZE_ALL,
catchErrors=True,
)
return mol if sanitize_string.name == "SANITIZE_NONE" else None
@staticmethod
def convert_smiles_str_to_mol(smiles_str):
"""Given a SMILES string, check that it is actually a string and not a
None. Then try to convert it to an RDKit Mol Object.
:param string smiles_str: The SMILES string.
:return: A rdkit.Chem.rdchem.Mol object, or None if it is the wrong type or
if it fails to convert to a Mol Obj
"""
# Check that there are no type errors, ie Nones or non-string A
# non-string type will cause RDKit to hard crash
if smiles_str is None or type(smiles_str) is not str:
return None
# Try to fix azides here. They are just tricky to deal with.
smiles_str = smiles_str.replace("N=N=N", "N=[N+]=N")
smiles_str = smiles_str.replace("NN#N", "N=[N+]=N")
# Now convert to a mol object. Note the trick that is necessary to
# capture RDKit error/warning messages. See
# https://stackoverflow.com/questions/24277488/in-python-how-to-capture-the-stdout-from-a-c-shared-library-to-a-variable
stderr_fileno = sys.stderr.fileno()
stderr_save = os.dup(stderr_fileno)
stderr_pipe = os.pipe()
os.dup2(stderr_pipe[1], stderr_fileno)
os.close(stderr_pipe[1])
mol = Chem.MolFromSmiles(smiles_str)
os.close(stderr_fileno)
os.close(stderr_pipe[0])
os.dup2(stderr_save, stderr_fileno)
os.close(stderr_save)
# Check that there are None type errors Chem.MolFromSmiles has
# sanitize on which means if there is even a small error in the SMILES
# (kekulize, nitrogen charge...) then mol=None. ie.
# Chem.MolFromSmiles("C[N]=[N]=[N]") = None this is an example of an
# nitrogen charge error. It is cased in a try statement to be overly
# cautious.
return None if mol is None else mol
@staticmethod
def eprint(*args, **kwargs):
"""Error messages should be printed to STDERR. See
https://stackoverflow.com/questions/5574702/how-to-print-to-stderr-in-python"""
print(*args, file=sys.stderr, **kwargs)
class LoadSMIFile(object):
"""A generator class for loading in the SMILES strings from a file, one at
a time."""
def __init__(self, filename, args):
"""Initializes this class.
:param filename: The filename or file object (i.e., StringIO).
:type filename: str or StringIO
"""
self.args = args
if type(filename) is str:
# It's a filename
self.f = open(filename, "r")
else:
# It's a file object (i.e., StringIO)
self.f = filename
def __iter__(self):
"""Returns this generator object.
:return: This generator object.
:rtype: LoadSMIFile
"""
return self
def __next__(self):
"""Ensure Python3 compatibility.
:return: A dict, where the "smiles" key contains the canonical SMILES
string and the "data" key contains the remaining information
(e.g., the molecule name).
:rtype: dict
"""
return self.next()
def next(self):
"""Get the data associated with the next line.
:raises StopIteration: If there are no more lines left iin the file.
:return: A dict, where the "smiles" key contains the canonical SMILES
string and the "data" key contains the remaining information
(e.g., the molecule name).
:rtype: dict
"""
line = self.f.readline()
if line == "":
# EOF
self.f.close()
raise StopIteration()
return
# Divide line into smi and data
splits = line.split()
if len(splits) != 0:
# Generate mol object
smiles_str = splits[0]
# Convert from SMILES string to RDKIT Mol. This series of tests is
# to make sure the SMILES string is properly formed and to get it
# into a canonical form. Filter if failed.
mol = UtilFuncs.convert_smiles_str_to_mol(smiles_str)
if mol is None:
if "silent" in self.args and not self.args["silent"]:
UtilFuncs.eprint(
"WARNING: Skipping poorly formed SMILES string: " + line
)
return self.next()
# Handle nuetralizing the molecules. Filter if failed.
mol = UtilFuncs.neutralize_mol(mol)
if mol is None:
if "silent" in self.args and not self.args["silent"]:
UtilFuncs.eprint(
"WARNING: Skipping poorly formed SMILES string: " + line
)
return self.next()
# Remove the hydrogens.
try:
mol = Chem.RemoveHs(mol)
except:
if "silent" in self.args and not self.args["silent"]:
UtilFuncs.eprint(
"WARNING: Skipping poorly formed SMILES string: " + line
)
return self.next()
if mol is None:
if "silent" in self.args and not self.args["silent"]:
UtilFuncs.eprint(
"WARNING: Skipping poorly formed SMILES string: " + line
)
return self.next()
# Regenerate the smiles string (to standardize).
new_mol_string = Chem.MolToSmiles(mol, isomericSmiles=True)
return {"smiles": new_mol_string, "data": splits[1:]}
else:
# Blank line? Go to next one.
return self.next()
class Protonate(object):
"""A generator class for protonating SMILES strings, one at a time."""
def __init__(self, args):
"""Initialize the generator.
:param args: A dictionary containing the arguments.
:type args: dict
"""
# Make the args an object variable variable.
self.args = args
# A list to store the protonated SMILES strings associated with a
# single input model.
self.cur_prot_SMI = []
# Clean and normalize the args
self.args = ArgParseFuncs.clean_args(args)
# Make sure functions in ProtSubstructFuncs have access to the args.
ProtSubstructFuncs.args = args
# Load the substructures that can be protonated.
self.subs = ProtSubstructFuncs.load_protonation_substructs_calc_state_for_ph(
self.args["min_ph"], self.args["max_ph"], self.args["pka_precision"]
)
def __iter__(self):
"""Returns this generator object.
:return: This generator object.
:rtype: Protonate
"""
return self
def __next__(self):
"""Ensure Python3 compatibility.
:return: A dict, where the "smiles" key contains the canonical SMILES
string and the "data" key contains the remaining information
(e.g., the molecule name).
:rtype: dict
"""
return self.next()
def next(self):
"""Return the next protonated SMILES string.
:raises StopIteration: If there are no more lines left iin the file.
:return: A dict, where the "smiles" key contains the canonical SMILES
string and the "data" key contains the remaining information
(e.g., the molecule name).
:rtype: dict
"""
# If there are any SMILES strings in self.cur_prot_SMI, just return
# the first one and update the list to include only the remaining.
if len(self.cur_prot_SMI) > 0:
first, self.cur_prot_SMI = self.cur_prot_SMI[0], self.cur_prot_SMI[1:]
return first
# self.cur_prot_SMI is empty, so try to add more to it.
# Get the next SMILES string from the input file.
try:
smile_and_datum = self.args["smiles_and_data"].next()
except StopIteration:
# There are no more input smiles strings...
raise StopIteration()
# Keep track of the original smiles string for reporting, starting the
# protonation process, etc.
orig_smi = smile_and_datum["smiles"]
# Dimorphite-DL may protonate some sites in ways that produce invalid
# SMILES. We need to keep track of all smiles so we can "rewind" to
# the last valid one, should things go south.
properly_formed_smi_found = [orig_smi]
# Everything on SMILES line but the SMILES string itself (e.g., the
# molecule name).
data = smile_and_datum["data"]
# Collect the data associated with this smiles (e.g., the molecule
# name).
tag = " ".join(data)
# sites is a list of (atom index, "PROTONATED|DEPROTONATED|BOTH",
# reaction name, mol). Note that the second entry indicates what state
# the site SHOULD be in (not the one it IS in per the SMILES string).
# It's calculated based on the probablistic distributions obtained
# during training.
(
sites,
mol_used_to_idx_sites,
) = ProtSubstructFuncs.get_prot_sites_and_target_states(orig_smi, self.subs)
new_mols = [mol_used_to_idx_sites]
if len(sites) > 0:
for site in sites:
# Make a new smiles with the correct protonation state. Note that
# new_smis is a growing list. This is how multiple protonation
# sites are handled.
new_mols = ProtSubstructFuncs.protonate_site(new_mols, site)
if len(new_mols) > self.args["max_variants"]:
new_mols = new_mols[: self.args["max_variants"]]
if "silent" in self.args and not self.args["silent"]:
UtilFuncs.eprint(
"WARNING: Limited number of variants to "
+ str(self.args["max_variants"])
+ ": "
+ orig_smi
)
# Go through each of these new molecules and add them to the
# properly_formed_smi_found, in case you generate a poorly
# formed SMILES in the future and have to "rewind."
properly_formed_smi_found += [Chem.MolToSmiles(m) for m in new_mols]
else:
# Deprotonate the mols (because protonate_site never called to do
# it).
mol_used_to_idx_sites = Chem.RemoveHs(mol_used_to_idx_sites)
new_mols = [mol_used_to_idx_sites]
# Go through each of these new molecules and add them to the
# properly_formed_smi_found, in case you generate a poorly formed
# SMILES in the future and have to "rewind."
properly_formed_smi_found.append(Chem.MolToSmiles(mol_used_to_idx_sites))
# In some cases, the script might generate redundant molecules.
# Phosphonates, when the pH is between the two pKa values and the
# stdev value is big enough, for example, will generate two identical
# BOTH states. Let's remove this redundancy.
new_smis = list(
set(
[
Chem.MolToSmiles(m, isomericSmiles=True, canonical=True)
for m in new_mols
]
)
)
# Sometimes Dimorphite-DL generates molecules that aren't actually
# possible. Simply convert these to mol objects to eliminate the bad
# ones (that are None).
new_smis = [
s for s in new_smis if UtilFuncs.convert_smiles_str_to_mol(s) is not None
]
# If there are no smi left, return the input one at the very least.
# All generated forms have apparently been judged
# inappropriate/malformed.
if len(new_smis) == 0:
properly_formed_smi_found.reverse()
for smi in properly_formed_smi_found:
if UtilFuncs.convert_smiles_str_to_mol(smi) is not None:
new_smis = [smi]
break
# If the user wants to see the target states, add those to the ends of
# each line.
if self.args["label_states"]:
states = "\t".join([x[1] for x in sites])
new_lines = [x + "\t" + tag + "\t" + states for x in new_smis]
else:
new_lines = [x + "\t" + tag for x in new_smis]
self.cur_prot_SMI = new_lines
return self.next()
class ProtSubstructFuncs:
"""A namespace to store functions for loading the substructures that can
be protonated. To keep things organized."""
args = {}
@staticmethod
def load_substructre_smarts_file():
"""Loads the substructure smarts file. Similar to just using readlines,
except it filters out comments (lines that start with "#").
:return: A list of the lines in the site_substructures.smarts file,
except blank lines and lines that start with "#"
"""
pwd = os.path.dirname(os.path.realpath(__file__))
site_structures_file = "{}/{}".format(pwd, "site_substructures.smarts")
lines = [
l
for l in open(site_structures_file, "r")
if l.strip() != "" and not l.startswith("#")
]
return lines
@staticmethod
def load_protonation_substructs_calc_state_for_ph(
min_ph=6.4, max_ph=8.4, pka_std_range=1
):
"""A pre-calculated list of R-groups with protonation sites, with their
likely pKa bins.
:param float min_ph: The lower bound on the pH range, defaults to 6.4.
:param float max_ph: The upper bound on the pH range, defaults to 8.4.
:param pka_std_range: Basically the precision (stdev from predicted pKa to
consider), defaults to 1.
:return: A dict of the protonation substructions for the specified pH
range.
"""
subs = []
for line in ProtSubstructFuncs.load_substructre_smarts_file():
line = line.strip()
sub = {}
if line is not "":
splits = line.split()
sub["name"] = splits[0]
sub["smart"] = splits[1]
sub["mol"] = Chem.MolFromSmarts(sub["smart"])
pka_ranges = [splits[i : i + 3] for i in range(2, len(splits) - 1, 3)]
prot = []
for pka_range in pka_ranges:
site = pka_range[0]
std = float(pka_range[2]) * pka_std_range
mean = float(pka_range[1])
protonation_state = ProtSubstructFuncs.define_protonation_state(
mean, std, min_ph, max_ph
)
prot.append([site, protonation_state])
sub["prot_states_for_pH"] = prot
subs.append(sub)
return subs
@staticmethod
def define_protonation_state(mean, std, min_ph, max_ph):
"""Updates the substructure definitions to include the protonation state
based on the user-given pH range. The size of the pKa range is also based
on the number of standard deviations to be considered by the user param.
:param float mean: The mean pKa.
:param float std: The precision (stdev).
:param float min_ph: The min pH of the range.
:param float max_ph: The max pH of the range.
:return: A string describing the protonation state.
"""
min_pka = mean - std
max_pka = mean + std
# This needs to be reassigned, and 'ERROR' should never make it past
# the next set of checks.
if min_pka <= max_ph and min_ph <= max_pka:
protonation_state = "BOTH"
elif mean > max_ph:
protonation_state = "PROTONATED"
else:
protonation_state = "DEPROTONATED"
return protonation_state
@staticmethod
def get_prot_sites_and_target_states(smi, subs):
"""For a single molecule, find all possible matches in the protonation
R-group list, subs. Items that are higher on the list will be matched
first, to the exclusion of later items.
:param string smi: A SMILES string.
:param list subs: Substructure information.
:return: A list of protonation sites (atom index), pKa bin.
('PROTONATED', 'BOTH', or 'DEPROTONATED'), and reaction name.
Also, the mol object that was used to generate the atom index.
"""
# Convert the Smiles string (smi) to an RDKit Mol Obj
mol_used_to_idx_sites = UtilFuncs.convert_smiles_str_to_mol(smi)
# Check Conversion worked
if mol_used_to_idx_sites is None:
UtilFuncs.eprint("ERROR: ", smi)
return []
# Try to Add hydrogens. if failed return []
try:
mol_used_to_idx_sites = Chem.AddHs(mol_used_to_idx_sites)
except:
UtilFuncs.eprint("ERROR: ", smi)
return []
# Check adding Hs worked
if mol_used_to_idx_sites is None:
UtilFuncs.eprint("ERROR: ", smi)
return []
ProtectUnprotectFuncs.unprotect_molecule(mol_used_to_idx_sites)
protonation_sites = []
for item in subs:
smart = item["mol"]
if mol_used_to_idx_sites.HasSubstructMatch(smart):
matches = ProtectUnprotectFuncs.get_unprotected_matches(
mol_used_to_idx_sites, smart
)
prot = item["prot_states_for_pH"]
for match in matches:
# We want to move the site from being relative to the
# substructure, to the index on the main molecule.
for site in prot:
proton = int(site[0])
category = site[1]
new_site = (match[proton], category, item["name"])
if not new_site in protonation_sites:
# Because sites must be unique.
protonation_sites.append(new_site)
ProtectUnprotectFuncs.protect_molecule(mol_used_to_idx_sites, match)
return protonation_sites, mol_used_to_idx_sites
@staticmethod
def protonate_site(mols, site):
"""Given a list of molecule objects, we protonate the site.
:param list mols: The list of molecule objects.
:param tuple site: Information about the protonation site.
(idx, target_prot_state, prot_site_name)
:return: A list of the appropriately protonated molecule objects.
"""
# Decouple the atom index and its target protonation state from the
# site tuple
idx, target_prot_state, prot_site_name = site
state_to_charge = {"DEPROTONATED": [-1], "PROTONATED": [0], "BOTH": [-1, 0]}
charges = state_to_charge[target_prot_state]
# Now make the actual smiles match the target protonation state.
output_mols = ProtSubstructFuncs.set_protonation_charge(
mols, idx, charges, prot_site_name
)
return output_mols
@staticmethod
def set_protonation_charge(mols, idx, charges, prot_site_name):
"""Sets the atomic charge on a particular site for a set of SMILES.
:param list mols: A list of the input molecule
objects.
:param int idx: The index of the atom to consider.
:param list charges: A list of the charges (ints) to
assign at this site.
:param string prot_site_name: The name of the protonation site.
:return: A list of the processed (protonated/deprotonated) molecule
objects.
"""
# Sets up the output list and the Nitrogen charge
output = []
for charge in charges:
# The charge for Nitrogens is 1 higher than others (i.e.,
# protonated state is positively charged).
nitrogen_charge = charge + 1
# But there are a few nitrogen moieties where the acidic group is
# the neutral one. Amides are a good example. I gave some thought
# re. how to best flag these. I decided that those
# nitrogen-containing moieties where the acidic group is neutral
# (rather than positively charged) will have "*" in the name.
if "*" in prot_site_name:
nitrogen_charge = nitrogen_charge - 1 # Undo what was done previously.
for mol in mols:
# Make a copy of the molecule.
mol_copy = copy.deepcopy(mol)
# Remove hydrogen atoms.
try:
mol_copy = Chem.RemoveHs(mol_copy)
except:
if "silent" in ProtSubstructFuncs.args and not ProtSubstructFuncs.args["silent"]:
UtilFuncs.eprint(
"WARNING: Skipping poorly formed SMILES string: "
+ Chem.MolToSmiles(mol_copy)
)
continue
atom = mol_copy.GetAtomWithIdx(idx)
explicit_bond_order_total = sum(
[b.GetBondTypeAsDouble() for b in atom.GetBonds()]
)
# Assign the protonation charge, with special care for
# nitrogens
element = atom.GetAtomicNum()
if element == 7:
atom.SetFormalCharge(nitrogen_charge)
# Need to figure out how many hydrogens to add.
if nitrogen_charge == 1 and explicit_bond_order_total == 1:
atom.SetNumExplicitHs(3)
elif nitrogen_charge == 1 and explicit_bond_order_total == 2:
atom.SetNumExplicitHs(2)
elif nitrogen_charge == 1 and explicit_bond_order_total == 3:
atom.SetNumExplicitHs(1)
elif nitrogen_charge == 0 and explicit_bond_order_total == 1:
atom.SetNumExplicitHs(2)
elif nitrogen_charge == 0 and explicit_bond_order_total == 2:
atom.SetNumExplicitHs(1)
elif nitrogen_charge == -1 and explicit_bond_order_total == 2:
atom.SetNumExplicitHs(0)
elif nitrogen_charge == -1 and explicit_bond_order_total == 1:
atom.SetNumExplicitHs(1)
#### JDD
else:
atom.SetFormalCharge(charge)
if element == 8 or element == 16: # O and S
if charge == 0 and explicit_bond_order_total == 1:
atom.SetNumExplicitHs(1)
elif charge == -1 and explicit_bond_order_total == 1:
atom.SetNumExplicitHs(0)
# Deprotonating protonated aromatic nitrogen gives [nH-]. Change this
# to [n-].
if "[nH-]" in Chem.MolToSmiles(mol_copy):
atom.SetNumExplicitHs(0)
mol_copy.UpdatePropertyCache(strict=False)
# prod.UpdatePropertyCache(strict=False)
output.append(mol_copy)
return output
class ProtectUnprotectFuncs:
"""A namespace for storing functions that are useful for protecting and
unprotecting molecules. To keep things organized. We need to identify and
mark groups that have been matched with a substructure."""
@staticmethod
def unprotect_molecule(mol):
"""Sets the protected property on all atoms to 0. This also creates the
property for new molecules.
:param rdkit.Chem.rdchem.Mol mol: The rdkit Mol object.
:type mol: The rdkit Mol object with atoms unprotected.
"""
for atom in mol.GetAtoms():
atom.SetProp("_protected", "0")
@staticmethod
def protect_molecule(mol, match):
"""Given a 'match', a list of molecules idx's, we set the protected status
of each atom to 1. This will prevent any matches using that atom in the
future.
:param rdkit.Chem.rdchem.Mol mol: The rdkit Mol object to protect.
:param list match: A list of molecule idx's.
"""
for idx in match:
atom = mol.GetAtomWithIdx(idx)