-
Notifications
You must be signed in to change notification settings - Fork 2
/
utils.py
executable file
·42 lines (36 loc) · 1.38 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import torch
import torch.nn as nn
from torch.autograd import Variable
import torch.nn.functional as F
import matplotlib.pyplot as plt
def truncated_normal_(tensor, mean=0, std=1):
size = tensor.shape
tmp = tensor.new_empty(size + (4,)).normal_()
valid = (tmp < 2) & (tmp > -2)
ind = valid.max(-1, keepdim=True)[1]
tensor.data.copy_(tmp.gather(-1, ind).squeeze(-1))
tensor.data.mul_(std).add_(mean)
def init_weights(m):
if type(m) == nn.Conv2d or type(m) == nn.ConvTranspose2d:
nn.init.kaiming_normal_(m.weight, mode='fan_in', nonlinearity='relu')
#nn.init.normal_(m.weight, std=0.001)
#nn.init.normal_(m.bias, std=0.001)
truncated_normal_(m.bias, mean=0, std=0.001)
def init_weights_orthogonal_normal(m):
if type(m) == nn.Conv2d or type(m) == nn.ConvTranspose2d:
nn.init.orthogonal_(m.weight)
truncated_normal_(m.bias, mean=0, std=0.001)
#nn.init.normal_(m.bias, std=0.001)
def l2_regularisation(m):
l2_reg = None
for W in m.parameters():
if l2_reg is None:
l2_reg = W.norm(2)
else:
l2_reg = l2_reg + W.norm(2)
return l2_reg
def save_mask_prediction_example(mask, pred, iter):
plt.imshow(pred[0,:,:],cmap='Greys')
plt.savefig('images/'+str(iter)+"_prediction.png")
plt.imshow(mask[0,:,:],cmap='Greys')
plt.savefig('images/'+str(iter)+"_mask.png")