forked from mvrl/weakly-supervised-image-fusion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
config.py
39 lines (27 loc) · 1.59 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
# This file contains configuration for training and evaluation
from easydict import EasyDict as edict
cfg = edict()
## MODEL
cfg.model = edict()
# at this momenet, just passing the name here, not using
cfg.model.name = 'net_Unet'
## DATA
cfg.data = edict()
cfg.data.name = 'Four_Berlin_realClouds_random_occ' # real clouds at random locations plus occlusions
#'berlin4x4' # clean Berlin images and labels. Each big image is split in 4 images
cfg.data.splits = (4, 4)
cfg.data.image_size_full = (2208, 2208) #read this portion for uniform size and to be divisible by 16
cfg.data.num_images = 4 # how many cloudy and occluded images to generate
cfg.data.area_fraction = 0.5 # what portion of the image should have clouds or occlusions
cfg.data.root_dir = 'C:/Usman/Datasets/Image_Fusion' #Usman's machine
## Training details
cfg.train = edict()
cfg.train.mode = 'train' # training mode ('test'|'train')
cfg.train.batch_size = 5 # batch size
cfg.train.shuffle = True # shuffle training samples
cfg.train.num_epochs = 20 # number of training epochs ...
cfg.train.num_workers = 5 # workers for data loading
cfg.train.learning_rate = 1e-4 # initial learning rate for adam.
cfg.train.learning_rate_decay = 4.0*1e-5 # initial learning rate for adam.
cfg.train.out_dir = './outputs/1_imgs_4_50' # Set the name of directory. Trained model will be saved here and
# evaluation code will save results in this directory