-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkcrl_demo.py
367 lines (291 loc) · 16.6 KB
/
kcrl_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
import os
import logging
import platform
import random
import numpy as np
import pandas as pd
from pytz import timezone
from datetime import datetime
import matplotlib.pyplot as plt
import tensorflow as tf
from data_loader import DataGenerator_read_data
from models import Actor
from rewards import get_Reward
from helpers.config_graph import get_config, print_config
from helpers.dir_utils import create_dir
from helpers.log_helper import LogHelper
from helpers.tf_utils import set_seed
from helpers.analyze_utils import convert_graph_int_to_adj_mat, graph_prunned_by_coef, \
count_accuracy, graph_prunned_by_coef_2nd
#from helpers.cam_with_pruning_cam import pruning_cam
from helpers.lambda_utils import BIC_lambdas
# Configure matplotlib for plotting
import matplotlib
matplotlib.use('Agg')
def main():
# Setup for output directory and logging
output_dir = 'output/{}'.format(datetime.now(timezone('Asia/Hong_Kong')).strftime('%Y-%m-%d_%H-%M-%S-%f')[:-3])
create_dir(output_dir)
LogHelper.setup(log_path='{}/training.log'.format(output_dir),
level_str='INFO')
_logger = logging.getLogger(__name__)
_logger.info('Python version is {}'.format(platform.python_version()))
_logger.info('Current commit of code: ___')
# Get running configuration
config, _ = get_config()
# Input parameters, these can be modified as per the dataset used
config.max_length = 8 # This is the total number of nodes in the graph
config.data_size = 1000 # Sample size
config.score_type = 'BIC'
config.reg_type = 'LR'
config.read_data = True
config.transpose = False
config.data_path = 'D:\Asia_Dataset' # Give the path of your dataset here
config.lambda_flag_default = True
config.nb_epoch = 10000
config.input_dimension = 64
config.lambda_iter_num = 1000
config.save_model_path = '{}/model'.format(output_dir)
# config.restore_model_path = '{}/model'.format(output_dir)
config.summary_dir = '{}/summary'.format(output_dir)
config.plot_dir = '{}/plot'.format(output_dir)
config.graph_dir = '{}/graph'.format(output_dir)
# Create directory
create_dir(config.summary_dir)
create_dir(config.summary_dir)
create_dir(config.plot_dir)
create_dir(config.graph_dir)
# Reproducibility
set_seed(config.seed)
# Log the configuration parameters
_logger.info('Configuration parameters: {}'.format(vars(config))) # Use vars to convert config to dict for logging
if config.read_data:
file_path = '{}/data.npy'.format(config.data_path)
solution_path = '{}/DAG.npy'.format(config.data_path)
training_set = DataGenerator_read_data(file_path, solution_path, config.normalize, config.transpose)
else:
raise ValueError("Only support importing data from existing files")
# Set penalty weights, here lambda1 and lambda2 are acyclicity penalty weigths
# While lambda3 is the penalty weight for prior knowledge constraint
score_type = config.score_type
reg_type = config.reg_type
if config.lambda_flag_default:
sl, su, strue = BIC_lambdas(training_set.inputdata, None, None, training_set.true_graph.T, reg_type, score_type)
lambda1 = 0
lambda1_upper = 5
lambda1_update_add = 1
lambda2 = 1/(10**(np.round(config.max_length/3)))
lambda2_upper = 0.01
lambda2_update_mul = 10
lambda3 = 0
lambda3_upper = 1
lambda3_update_add = 0.1
lambda_iter_num = config.lambda_iter_num
# test initialized score
_logger.info('Original sl: {}, su: {}, strue: {}'.format(sl, su, strue))
_logger.info('Transfomed sl: {}, su: {}, lambda2: {}, true: {}'.format(sl, su, lambda2,
(strue-sl)/(su-sl)*lambda1_upper))
else:
# test choices for the case with manually provided bounds
# not fully tested
sl = config.score_lower
su = config.score_upper
if config.score_bd_tight:
lambda1 = 2
lambda1_upper = 2
else:
lambda1 = 0
lambda1_upper = 5
lambda1_update_add = 1
lambda2 = 1/(10**(np.round(config.max_length/3)))
lambda2_upper = 0.01
lambda2_update_mul = config.lambda2_update
lambda3 = 0
lambda3_upper = 1
lambda3_update_add = 0.1
lambda_iter_num = config.lambda_iter_num
# actor
actor = Actor(config)
callreward = get_Reward(actor.batch_size, config.max_length, actor.input_dimension, training_set.inputdata,
sl, su, lambda1_upper, score_type, reg_type, config.l1_graph_reg, False)
_logger.info('Finished creating training dataset, actor model and reward class')
# Saver to save & restore all the variables.
variables_to_save = [v for v in tf.global_variables() if 'Adam' not in v.name]
saver = tf.train.Saver(var_list=variables_to_save, keep_checkpoint_every_n_hours=1.0)
_logger.info('Starting session...')
sess_config = tf.ConfigProto(log_device_placement=False)
sess_config.gpu_options.allow_growth = True
with tf.Session(config=sess_config) as sess:
# Run initialize op
sess.run(tf.global_variables_initializer())
# Test tensor shape
_logger.info('Shape of actor.input: {}'.format(sess.run(tf.shape(actor.input_))))
# _logger.info('training_set.true_graph: {}'.format(training_set.true_graph))
# _logger.info('training_set.b: {}'.format(training_set.b))
# Initialize useful variables
rewards_avg_baseline = []
rewards_batches = []
reward_max_per_batch = []
lambda1s = []
lambda2s = []
lambda3s = []
graphss = []
probsss = []
max_rewards = []
max_reward = float('-inf')
image_count = 0
image_count2= 0
accuracy_res = []
accuracy_res_pruned = []
max_reward_score_cyc = (lambda1_upper+1, 0, 0)
# Incorporation of existing information.
# Prior knowledge set formation for a graph with 8 nodes (8 x 8 adjacency matrix).
# It can be changed for a graph with any number of nodes.
# Here prior knowledge: there is a directed edge from node 2-->6 and from 3-->4. No edge exists between nodes 5 to 1 and 7 to 6.
# In this code, the generated graph adjacency matrix by the encoder-decoder is transposed.
# Hence for accurate comparison, the prior knowledge set is also transposed.
# Any number of prior edges can be used as per the experimental requirement.
true_g = np.ones((8, 8))*2
a= np.int32(true_g)
a[6][2]=1
a[4][3]=1
a[1][5]=0
a[6][7]=0
# Summary writer
writer = tf.summary.FileWriter(config.summary_dir, sess.graph)
_logger.info('Starting training.')
for i in (range(1, config.nb_epoch + 1)):
if config.verbose:
_logger.info('Start training for {}-th epoch'.format(i))
input_batch = training_set.train_batch(actor.batch_size, actor.max_length, actor.input_dimension)
graphs_feed = sess.run(actor.graphs, feed_dict={actor.input_: input_batch})
# In the called function, comparsion with prior edges will be done
reward_feed = callreward.cal_rewards(graphs_feed, a, lambda1, lambda2, lambda3)
# max reward, max reward per batch
max_reward = -callreward.update_scores([max_reward_score_cyc], lambda1, lambda2, lambda3)[0]
max_reward_batch = float('inf')
max_reward_batch_score_cyc = (0, 0, 0)
for reward_, score_, cyc_, penalty_ in reward_feed:
if reward_ < max_reward_batch:
max_reward_batch = reward_
max_reward_batch_score_cyc = (score_, cyc_, penalty_)
max_reward_batch = -max_reward_batch
if max_reward < max_reward_batch:
max_reward = max_reward_batch
max_reward_score_cyc = max_reward_batch_score_cyc
# for average reward per batch
reward_batch_score_cyc = np.mean(reward_feed[:,1:], axis=0)
if config.verbose:
_logger.info('Finish calculating reward for current batch of graph')
# Get feed dict
feed = {actor.input_: input_batch, actor.reward_: -reward_feed[:,0], actor.graphs_:graphs_feed}
summary, base_op, score_test, probs, graph_batch, \
reward_batch, reward_avg_baseline, train_step1, train_step2 = sess.run([actor.merged, actor.base_op,
actor.test_scores, actor.log_softmax, actor.graph_batch, actor.reward_batch, actor.avg_baseline, actor.train_step1,
actor.train_step2], feed_dict=feed)
if config.verbose:
_logger.info('Finish updating actor and critic network using reward calculated')
lambda1s.append(lambda1)
lambda2s.append(lambda2)
lambda3s.append(lambda3)
rewards_avg_baseline.append(reward_avg_baseline)
rewards_batches.append(reward_batch_score_cyc)
reward_max_per_batch.append(max_reward_batch_score_cyc)
graphss.append(graph_batch)
probsss.append(probs)
max_rewards.append(max_reward_score_cyc)
# logging
if i == 1 or i % 500 == 0:
if i >= 500:
writer.add_summary(summary,i)
_logger.info('[iter {}] reward_batch: {}, max_reward: {}, max_reward_batch: {}'.format(i,
reward_batch, max_reward, max_reward_batch))
# other logger info; uncomment if you want to check
# _logger.info('graph_batch_avg: {}'.format(graph_batch))
# _logger.info('graph true: {}'.format(training_set.true_graph))
# _logger.info('graph weights true: {}'.format(training_set.b))
# _logger.info('=====================================')
plt.figure(1)
plt.plot(rewards_batches, label='reward per batch')
plt.plot(max_rewards, label='max reward')
plt.legend()
plt.savefig('{}/reward_batch_average.png'.format(config.plot_dir))
plt.close()
image_count += 1
# this draw the average graph per batch.
# can be modified to draw the graph (with or w/o pruning) that has the best reward
fig = plt.figure(2)
fig.suptitle('Iteration: {}'.format(i))
ax = fig.add_subplot(1, 2, 1)
ax.set_title('recovered_graph')
ax.imshow(np.around(graph_batch.T).astype(int),cmap=plt.cm.gray)
ax = fig.add_subplot(1, 2, 2)
ax.set_title('ground truth')
ax.imshow(training_set.true_graph, cmap=plt.cm.gray)
plt.savefig('{}/recovered_graph_iteration_{}.png'.format(config.plot_dir, image_count))
plt.close()
# update lambda1, lamda2, lamda3
if (i+1) % lambda_iter_num == 0:
ls_kv = callreward.update_all_scores(lambda1, lambda2, lambda3)
# np.save('{}/solvd_dict_epoch_{}.npy'.format(config.graph_dir, i), np.array(ls_kv))
max_rewards_re = callreward.update_scores(max_rewards, lambda1, lambda2, lambda3)
rewards_batches_re = callreward.update_scores(rewards_batches, lambda1, lambda2, lambda3)
reward_max_per_batch_re = callreward.update_scores(reward_max_per_batch, lambda1, lambda2, lambda3)
# saved somewhat more detailed logging info
np.save('{}/solvd_dict.npy'.format(config.graph_dir), np.array(ls_kv))
pd.DataFrame(np.array(max_rewards_re)).to_csv('{}/max_rewards.csv'.format(output_dir))
pd.DataFrame(rewards_batches_re).to_csv('{}/rewards_batch.csv'.format(output_dir))
pd.DataFrame(reward_max_per_batch_re).to_csv('{}/reward_max_batch.csv'.format(output_dir))
pd.DataFrame(lambda1s).to_csv('{}/lambda1s.csv'.format(output_dir))
pd.DataFrame(lambda2s).to_csv('{}/lambda2s.csv'.format(output_dir))
pd.DataFrame(lambda3s).to_csv('{}/lambda3s.csv'.format(output_dir))
graph_int, score_min, cyc_min = np.int32(ls_kv[0][0]), ls_kv[0][1][1], ls_kv[0][1][-1]
if cyc_min < 1e-5:
lambda1_upper = score_min
lambda1 = min(lambda1+lambda1_update_add, lambda1_upper)
lambda2 = min(lambda2*lambda2_update_mul, lambda2_upper)
lambda3 = min(lambda3+lambda3_update_add, lambda3_upper)
# _logger.info('[iter {}] lambda1 {}, upper {}, lambda2 {}, upper {}, score_min {}, cyc_min {}'.format(i+1,
# lambda1, lambda1_upper, lambda2, lambda2_upper, score_min, cyc_min))
graph_batch = convert_graph_int_to_adj_mat(graph_int)
if reg_type == 'LR':
graph_batch_pruned = np.array(graph_prunned_by_coef(graph_batch, training_set.inputdata))
elif reg_type == 'QR':
graph_batch_pruned = np.array(graph_prunned_by_coef_2nd(graph_batch, training_set.inputdata))
elif reg_type == 'GPR':
# The R codes of CAM pruning operates the graph form that (i,j)=1 indicates i-th node-> j-th node
# so we need to do a tranpose on the input graph and another tranpose on the output graph
#graph_batch_pruned = np.array(graph_prunned_by_coef_2nd(graph_batch, training_set.inputdata))
graph_batch_pruned = np.transpose(pruning_cam(training_set.inputdata, np.array(graph_batch).T))
image_count2 += 1
fig = plt.figure(3)
fig.suptitle('Iteration: {}'.format(i))
ax = fig.add_subplot(1, 2, 1)
ax.set_title('est_graph')
ax.imshow(np.around(graph_batch_pruned.T).astype(int),cmap=plt.cm.binary)
ax = fig.add_subplot(1, 2, 2)
ax.set_title('true_graph')
ax.imshow(training_set.true_graph, cmap=plt.cm.binary)
plt.savefig('{}/estimated_graph_{}.png'.format(config.plot_dir, image_count2))
plt.close()
# estimate accuracy
acc_est = count_accuracy(training_set.true_graph, graph_batch.T)
acc_est2 = count_accuracy(training_set.true_graph, graph_batch_pruned.T)
fdr, tpr, fpr, shd, nnz = acc_est['fdr'], acc_est['tpr'], acc_est['fpr'], acc_est['shd'], \
acc_est['pred_size']
fdr2, tpr2, fpr2, shd2, nnz2 = acc_est2['fdr'], acc_est2['tpr'], acc_est2['fpr'], acc_est2['shd'], \
acc_est2['pred_size']
accuracy_res.append((fdr, tpr, fpr, shd, nnz))
accuracy_res_pruned.append((fdr2, tpr2, fpr2, shd2, nnz2))
np.save('{}/accuracy_res.npy'.format(output_dir), np.array(accuracy_res))
np.save('{}/accuracy_res2.npy'.format(output_dir), np.array(accuracy_res_pruned))
#_logger.info('before pruning: fdr {}, tpr {}, fpr {}, shd {}, nnz {}'.format(fdr, tpr, fpr, shd, nnz))
_logger.info('after pruning: fdr {}, tpr {}, fpr {}, shd {}, nnz {}'.format(fdr2, tpr2, fpr2, shd2, nnz2))
# Save the variables to disk
if i % max(1, int(config.nb_epoch / 5)) == 0 and i != 0:
curr_model_path = saver.save(sess, '{}/tmp.ckpt'.format(config.save_model_path), global_step=i)
_logger.info('Model saved in file: {}'.format(curr_model_path))
_logger.info('Training COMPLETED !')
saver.save(sess, '{}/actor.ckpt'.format(config.save_model_path))
if __name__ == '__main__':
main()