-
Notifications
You must be signed in to change notification settings - Fork 10
/
submit_preprocessing_job.py
256 lines (212 loc) · 10.4 KB
/
submit_preprocessing_job.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import configparser
import argparse
import sys
import boto3
from collections import OrderedDict
# local imports
import utility
job_configuration = "preprocessing_job.config"
cluster_id = ""
def check_configuration(cfg):
"""
checks the validity of configuration elements
:param cfg: the configuration object (ConfigParser)
:return: True or False
"""
# general job configuration
if not utility.check_config(cfg, "job_config", ["name", "action_on_failure", "mapper_memory"]):
return False
if not utility.check_upload_config(cfg["job_config"], 'upload_script', 'script',
'script_local_location', 'script_s3_location'):
return False
# preprocessing script args
if not utility.check_config(cfg, "script_arguments", ["manifest", "input_location",
"output_location", "report_location",
"region"]):
return False
if not utility.check_s3_region(cfg["script_arguments"]['region']):
return False
# user files
# Note that the "files" item is optional
if not utility.check_config(cfg, "user_script_config", []) and \
not utility.check_upload_config(cfg["user_script_config"], 'upload_user_files', 'script',
'user_files_local_location', 'user_files_s3_location', 'supporting_files'):
return False
return True
def set_mapper_number(clust_id, mem_per_mapper):
"""
sets the number of mappers for the job
number of mappers is minimum of:
- total number of cpus in the cluster nodes
- total cluster memory divided by min memory required per mapper
:param clust_id: the cluster_id for this configuration/run
:param mem_per_mapper: the specified amount of memory required by each mapper
:return: an integer representing the number of mappers or -1 if invalid cluster_id
"""
mem, cpu = utility.get_cluster_mem_cpu(clust_id)
if mem < 0 or cpu < 0:
# could be dry-run
mappers = -1
else:
mappers = int(min(cpu, mem / mem_per_mapper))
return mappers
def upload_files_to_s3(cfg, dry_run):
"""
uploads files to aws s3 storage - and updates the configuration object with
the details of the s3 files
:param cfg: ConfigParser configuration object
:param dry_run: flag to indicate if this is "dry run" or not
:return: the configuration object
"""
s3_upload_list = []
section = "job_config"
if cfg[section]["upload_script"] == "True":
s3_upload_list.append((cfg[section]["script"],
cfg[section]["script_local_location"],
cfg[section]["script_s3_location"]))
section = "user_script_config"
if cfg[section]["upload_user_files"] == "True":
# upload the compulsory user script
s3_upload_list.append((cfg[section]["script"],
cfg[section]["user_files_local_location"],
cfg[section]["user_files_s3_location"]))
# upload any optional user files
if "supporting_files" in cfg[section]:
for f in cfg[section]["supporting_files"].split(','):
if f.strip() != "":
s3_upload_list.append((f.strip(), cfg[section]["user_files_local_location"],
cfg[section]["user_files_s3_location"]))
# call utility code to upload list of files to s3
files = utility.upload_files_to_s3(s3_upload_list, dry_run)
cfg["s3"] = {"files": files}
return cfg
# build a string to store the files that will be included in the
# step command "-files" option
# This is a comma separated list of files (in our case s3 keys)
# The result is stored "in memory" config["step"]["files"]
def build_files_option(cfg):
"""
builds the "-files" option that is passed as part of the job step
- a comma separated string of files to be copied to each node when the step is executed
- the config object is updated with details of all files and the subset of additional files
:param cfg: the ConfigParser configuration object
:return: the configuration object
"""
# add preprocessing script
section = "job_config"
files = (cfg[section]["script_s3_location"].rstrip("/") + "/" +
cfg[section]["script"])
# add user script
section = "user_script_config"
prefix = "," + cfg[section]["user_files_s3_location"].rstrip("/") + "/"
files += prefix + cfg[section]["script"]
# add optional files
optional_files = ""
if "supporting_files" in cfg[section]:
optional_files = " -a " + cfg[section]["supporting_files"]
for f in [x.strip() for x in cfg[section]["supporting_files"].split(",")]:
if f != "":
files += prefix + f
# store "in memory" to config
cfg["step"] = {"files": files, "additional_files_option": optional_files}
return cfg
def build_command(cfg):
"""
Builds a dictionary of job arguments for the step command that is submitted to the AWS EMR cluster for this job
:param cfg: the ConfigParser configuration object
:return: an ordered dictionary of job arguments
"""
global cluster_id
job_arguments = OrderedDict()
job_arguments["JobFlowId"] = cluster_id
step_arguments = OrderedDict()
step_arguments['Name'] = cfg["job_config"]["name"]
step_arguments["ActionOnFailure"] = cfg["job_config"]["action_on_failure"]
hadoop_arguments = OrderedDict()
hadoop_arguments["Jar"] = "command-runner.jar"
mapper_mbytes = int(cfg["job_config"]["mapper_memory"])
command_args = ["hadoop-streaming",
"-D", 'mapreduce.job.name=Preprocessing',
"-D", "mapreduce.map.memory.mb=" + str(mapper_mbytes),
"-D", "mapreduce.job.reducer=0",
"-D", "mapreduce.task.timeout=86400000",
"-D", "mapreduce.map.speculative=false",
"-D", "mapreduce.reduce.speculative=false"]
# number of mappers
mapper_gbytes = float(mapper_mbytes) / 1024
mapper_number = set_mapper_number(cluster_id, mapper_gbytes)
if mapper_number < 0:
mapper_number = 'None'
else:
mapper_number = str(mapper_number)
command_args.append("-D")
command_args.append("mapreduce.job.maps=" + mapper_number)
command_args.append("-files")
command_args.append(cfg["step"]["files"])
command_args.append("-mapper")
command_args.append(
'{} -i {} -o {} -r {} -u {}{}'.format(cfg["job_config"]["script"].strip().split("/")[-1],
cfg["script_arguments"]["input_location"],
cfg["script_arguments"]["output_location"],
cfg["script_arguments"]["region"],
cfg["user_script_config"]["script"],
cfg["step"]["additional_files_option"]))
command_args.append("-input")
command_args.append(cfg["script_arguments"]["manifest"])
command_args.append("-output")
command_args.append(cfg["script_arguments"]["report_location"])
hadoop_arguments['Args'] = command_args
step_arguments["HadoopJarStep"] = hadoop_arguments
job_arguments["Steps"] = [step_arguments]
return job_arguments
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description='Job submission script for spark-based RNA-seq Pipeline - Preprocessing')
parser.add_argument('--config', '-c', action="store", dest="job_config", help="Job configuration file")
parser.add_argument('--cluster-id', '-id', action="store", dest="cluster_id", help="Cluster ID for submission")
parser.add_argument('--dry-run', '-d', action="store_true", dest="dry_run",
help="Produce the configurations for the job flow to be submitted")
parser_result = parser.parse_args()
if parser_result.job_config is not None and parser_result.job_config.strip() != "":
job_configuration = parser_result.job_config.strip()
config = configparser.ConfigParser()
config.optionxform = str
config.read(job_configuration)
if parser_result.cluster_id is None or parser_result.cluster_id.strip() == "":
cluster_id = utility.get_cluster_id(parser_result.dry_run)
else:
cluster_id = parser_result.cluster_id.strip()
if cluster_id != "" and check_configuration(config):
if (config["job_config"]["upload_script"] == "True" or
config["user_script_config"]["upload_user_files"] == "True"):
config = upload_files_to_s3(config, parser_result.dry_run)
# build the "-files" step option string - which is the list of
# files that need to be copied when executing the step
config = build_files_option(config)
job_argument = build_command(config)
if not parser_result.dry_run:
emr_client = boto3.client("emr")
# warn user before removing any output
out = config["script_arguments"]["output_location"]
rep = config["script_arguments"]["report_location"]
# find out which output dirs, if any, exist
dirs_to_remove = utility.check_s3_path_exists([out, rep])
if dirs_to_remove:
response = input("About to remove any existing output directories." +
"\n\n\t{}\n\nProceed? [y/n]: ".format(
'\n\n\t'.join(dirs_to_remove)))
while response not in ['y', 'n']:
response = input('Proceed? [y/n]: ')
if response == 'n':
print("Program Terminated. Modify config file to change " +
"output directories.")
sys.exit(0)
# remove the output directories
if not utility.remove_s3_files(dirs_to_remove):
print("Program terminated")
sys.exit(1)
job_submission = emr_client.add_job_flow_steps(**job_argument)
print("Submitted preprocessing job to cluster {}. Job id is {}".format(cluster_id,
job_submission["StepIds"][0]))
else:
print(job_argument)