-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathTime.py
71 lines (56 loc) · 2.28 KB
/
Time.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
#!/usr/bin/env python
# coding=utf-8
from __future__ import absolute_import
from __future__ import print_function, division
import os
import numpy as np
from Utils import PrintWithTime, ProgressBar, BarFormat, CountVariables, Object, mAP
from Dataset import Dataset
from PIL import Image
import time
total_db = (Nb // 64) + 1
for i in range(total_db):
idx = np.arange(start=i * 64,
stop=np.minimum(Nb, (i + 1) * 64), step=1)
inp, label = db.Get(idx)
print(inp.shape, label.shape)
#!/usr/bin/env python
# coding=utf-8
from __future__ import absolute_import
from __future__ import print_function, division
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
warnings.simplefilter(action='ignore', category=DeprecationWarning)
import os
from os import path
import numpy as np
import tensorflow as tf
from DSQ import DSQ, IMAGE_WIDTH, IMAGE_HEIGHT
from Dataset import Dataset
tf.logging.set_verbosity(tf.logging.ERROR)
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string("Dataset", "NUS", "The preferred dataset")
tf.app.flags.DEFINE_string("Mode", "eval", "train or evaluate")
tf.app.flags.DEFINE_integer("BitLength", 32, "The quantization code length")
tf.app.flags.DEFINE_integer("ClassNum", 21, "The classification class number")
tf.app.flags.DEFINE_integer("K", 256, "The centroids number")
tf.app.flags.DEFINE_integer(
"PrintEvery", 50, "How many batches after one print")
tf.app.flags.DEFINE_float("LearningRate", 1e-4, "Init learning rate")
tf.app.flags.DEFINE_integer("Epoch", 64, "How many epoches")
tf.app.flags.DEFINE_integer("BatchSize", 256, "Batch size")
tf.app.flags.DEFINE_string("Device", "0", "Device ID")
tf.app.flags.DEFINE_boolean("UseGPU", True, "Batch size")
tf.app.flags.DEFINE_boolean("SaveModel", True, "Options to save in every epoch")
tf.app.flags.DEFINE_integer("R", 5000, "Recall@R, -1 for all")
os.environ['CUDA_VISIBLE_DEVICES'] = str(FLAGS.Device)
def main(_):
model = DSQ(FLAGS)
a = "/device:GPU:0" if FLAGS.UseGPU else "/cpu:0"
print("Using device:", a, "<-", FLAGS.Device)
with tf.device(a):
queryX, queryY, db = Dataset.PreparetoEval(FLAGS.Dataset, IMAGE_WIDTH, IMAGE_HEIGHT)
fileName = model.CheckTime(queryX)
if __name__ == '__main__':
tf.app.run()