-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathdataset.py
192 lines (155 loc) · 7.42 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import torch
from torch import Tensor
from torch.utils import data
import pandas as pd
import numpy as np
import datetime as dt
import os
import json
class PixelSetData(data.Dataset):
def __init__(self, folder, labels, npixel, sub_classes=None, norm=None,
extra_feature=None, jitter=(0.01, 0.05), return_id=False):
"""
Args:
folder (str): path to the main folder of the dataset, formatted as indicated in the readme
labels (str): name of the nomenclature to use in the labels.json file
npixel (int): Number of sampled pixels in each parcel
sub_classes (list): If provided, only the samples from the given list of classes are considered.
(Can be used to remove classes with too few samples)
norm (tuple): (mean,std) tuple to use for normalization
extra_feature (str): name of the additional static feature file to use
jitter (tuple): if provided (sigma, clip) values for the addition random gaussian noise
return_id (bool): if True, the id of the yielded item is also returned (useful for inference)
"""
super(PixelSetData, self).__init__()
self.folder = folder
self.data_folder = os.path.join(folder, 'DATA')
self.meta_folder = os.path.join(folder, 'META')
self.labels = labels
self.npixel = npixel
self.norm = norm
self.extra_feature = extra_feature
self.jitter = jitter # (sigma , clip )
self.return_id = return_id
l = [f for f in os.listdir(self.data_folder) if f.endswith('.npy')]
self.pid = [int(f.split('.')[0]) for f in l]
self.pid = list(np.sort(self.pid))
self.pid = list(map(str, self.pid))
self.len = len(self.pid)
# Get Labels
if sub_classes is not None:
sub_indices = []
num_classes = len(sub_classes)
convert = dict((c, i) for i, c in enumerate(sub_classes))
with open(os.path.join(folder, 'META', 'labels.json'), 'r') as file:
d = json.loads(file.read())
self.target = []
for i, p in enumerate(self.pid):
t = d[labels][p]
self.target.append(t)
if sub_classes is not None:
if t in sub_classes:
sub_indices.append(i)
self.target[-1] = convert[self.target[-1]]
if sub_classes is not None:
self.pid = list(np.array(self.pid)[sub_indices])
self.target = list(np.array(self.target)[sub_indices])
self.len = len(sub_indices)
with open(os.path.join(folder, 'META', 'dates.json'), 'r') as file:
d = json.loads(file.read())
self.dates = [d[str(i)] for i in range(len(d))]
self.date_positions = date_positions(self.dates)
if self.extra_feature is not None:
with open(os.path.join(self.meta_folder, '{}.json'.format(extra_feature)), 'r') as file:
self.extra = json.loads(file.read())
if isinstance(self.extra[list(self.extra.keys())[0]], int):
for k in self.extra.keys():
self.extra[k] = [self.extra[k]]
df = pd.DataFrame(self.extra).transpose()
self.extra_m, self.extra_s = np.array(df.mean(axis=0)), np.array(df.std(axis=0))
def __len__(self):
return self.len
def __getitem__(self, item):
"""
Returns a Pixel-Set sequence tensor with its pixel mask and optional additional features.
For each item npixel pixels are randomly dranw from the available pixels.
If the total number of pixel is too small one arbitrary pixel is repeated. The pixel mask keeps track of true
and repeated pixels.
Returns:
(Pixel-Set, Pixel-Mask) or ((Pixel-Set, Pixel-Mask), Extra-features) with:
Pixel-Set: Sequence_length x Channels x npixel
Pixel-Mask : Sequence_length x npixel
Extra-features : Sequence_length x Number of additional features
"""
x0 = np.load(os.path.join(self.folder, 'DATA', '{}.npy'.format(self.pid[item])))
y = self.target[item]
if x0.shape[-1] > self.npixel:
idx = np.random.choice(list(range(x0.shape[-1])), size=self.npixel, replace=False)
x = x0[:, :, idx]
mask = np.ones(self.npixel)
elif x0.shape[-1] < self.npixel:
if x0.shape[-1] == 0:
x = np.zeros((*x0.shape[:2], self.npixel))
mask = np.zeros(self.npixel)
mask[0] = 1
else:
x = np.zeros((*x0.shape[:2], self.npixel))
x[:, :, :x0.shape[-1]] = x0
x[:, :, x0.shape[-1]:] = np.stack([x[:, :, 0] for _ in range(x0.shape[-1], x.shape[-1])], axis=-1)
mask = np.array(
[1 for _ in range(x0.shape[-1])] + [0 for _ in range(x0.shape[-1], self.npixel)])
else:
x = x0
mask = np.ones(self.npixel)
if self.norm is not None:
m, s = self.norm
m = np.array(m)
s = np.array(s)
if len(m.shape) == 0:
x = (x - m) / s
elif len(m.shape) == 1: # Normalise channel-wise
x = (x.swapaxes(1, 2) - m) / s
x = x.swapaxes(1, 2) # Normalise channel-wise for each date
elif len(m.shape) == 2:
x = np.rollaxis(x, 2) # TxCxS -> SxTxC
x = (x - m) / s
x = np.swapaxes((np.rollaxis(x, 1)), 1, 2)
x = x.astype('float')
if self.jitter is not None:
sigma, clip = self.jitter
x = x + np.clip(sigma * np.random.randn(*x.shape), -1 * clip, clip)
mask = np.stack([mask for _ in range(x.shape[0])], axis=0) # Add temporal dimension to mask
data = (Tensor(x), Tensor(mask))
if self.extra_feature is not None:
ef = (self.extra[str(self.pid[item])] - self.extra_m) / self.extra_s
ef = torch.from_numpy(ef).float()
ef = torch.stack([ef for _ in range(data[0].shape[0])], dim=0)
data = (data, ef)
if self.return_id:
return data, torch.from_numpy(np.array(y, dtype=int)), self.pid[item]
else:
return data, torch.from_numpy(np.array(y, dtype=int))
class PixelSetData_preloaded(PixelSetData):
""" Wrapper class to load all the dataset to RAM at initialization (when the hardware permits it).
"""
def __init__(self, folder, labels, npixel, sub_classes=None, norm=None,
extra_feature=None, jitter=(0.01, 0.05), return_id=False):
super(PixelSetData_preloaded, self).__init__(folder, labels, npixel, sub_classes=sub_classes, norm=norm,
extra_feature=extra_feature, jitter=jitter, return_id=return_id)
self.samples = []
print('Loading samples to memory . . .')
for item in range(len(self)):
self.samples.append(super(PixelSetData_preloaded, self).__getitem__(item))
print('Done !')
def __getitem__(self, item):
return self.samples[item]
def parse(date):
d = str(date)
return int(d[:4]), int(d[4:6]), int(d[6:])
def interval_days(date1, date2):
return abs((dt.datetime(*parse(date1)) - dt.datetime(*parse(date2))).days)
def date_positions(dates):
pos = []
for d in dates:
pos.append(interval_days(d, dates[0]))
return pos