diff --git a/README.zh_Hant.md b/README.zh_Hant.md index aa8303b81..7d6bf9501 100644 --- a/README.zh_Hant.md +++ b/README.zh_Hant.md @@ -63,9 +63,9 @@ ValueCell 是一個社群驅動的多智能體金融應用平台。 ## 多智能體系統 -- **DeepResearch Agent**:獲取並分析股票的 SEC 文件,輸出準確的數據與可解釋的總結 +- **DeepResearch Agent**:獲取並分析股票的 SEC 文件,輸出準確的數據與可解釋的總結 - **Auto Trading Agent**:支援多種加密資產與 AI 自動交易策略 -**Trading Agents**: 專責市場分析、情緒分析、新聞分析與基本面分析的智能體協同運作 +- **Trading Agents**: 專責市場分析、情緒分析、新聞分析與基本面分析的智能體協同運作 - **AI-Hedge-Fund**:智能體協作提供全面的金融洞見 - **其他智能體**:更多智能體正在規劃中… diff --git a/python/valuecell/agents/auto_trading_agent/market_data.py b/python/valuecell/agents/auto_trading_agent/market_data.py index 7bce5f807..166760e12 100644 --- a/python/valuecell/agents/auto_trading_agent/market_data.py +++ b/python/valuecell/agents/auto_trading_agent/market_data.py @@ -111,7 +111,8 @@ def _calculate_rsi(df: pd.DataFrame, period: int = 14): delta = df["Close"].diff() gain = (delta.where(delta > 0, 0)).rolling(window=period).mean() loss = (-delta.where(delta < 0, 0)).rolling(window=period).mean() - rs = gain / loss + # Avoid division by zero: if loss is 0, RSI = 100 (maximum strength) + rs = gain / loss.replace(0, float("inf")) df["rsi"] = 100 - (100 / (1 + rs)) @staticmethod