-
Notifications
You must be signed in to change notification settings - Fork 0
/
Precalculus.nb
13073 lines (12738 loc) · 568 KB
/
Precalculus.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.3' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 581350, 13065]
NotebookOptionsPosition[ 553399, 12549]
NotebookOutlinePosition[ 557009, 12632]
CellTagsIndexPosition[ 556966, 12629]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[TextData[StyleBox["Pre-calculus", "Title"]], "Section",
CellChangeTimes->{{3.74887583003972*^9, 3.748875849663295*^9}, {
3.74887595821129*^9, 3.748875990243477*^9}, {3.748984021832053*^9,
3.748984148890151*^9}, {3.749032107368415*^9, 3.749032109154808*^9}, {
3.749035851460577*^9, 3.749035863624715*^9}, {3.7490389281937733`*^9,
3.749038930289625*^9}},ExpressionUUID->"363ee545-9904-4768-a066-\
50b5ee122f81"],
Cell[CellGroupData[{
Cell["exponentials and logarithms", "Chapter",
CellChangeTimes->{{3.749038947041512*^9,
3.749038952401256*^9}},ExpressionUUID->"35f20cfe-2d84-472e-9fcc-\
a5ac88d29aea"],
Cell["\<\
Not all exercises were implemented. I find it not interesting to work on \
items which I know that I can find a solution just by looking at them. I only \
do something if I do it for the first time or if it\[CloseCurlyQuote]s \
sufficiently different from previous exercises.
This notebook is a prerequisite for learning Calculus and also a nice process \
for me to get my head around Mathematica.\
\>", "Subsubsection",
CellChangeTimes->{{3.7491270283184767`*^9, 3.749127136910906*^9}, {
3.749238460326285*^9,
3.7492384736718073`*^9}},ExpressionUUID->"12afcfad-1634-4652-b997-\
e49458a6eed8"],
Cell[CellGroupData[{
Cell[TextData[{
"sketch the graph of ",
Cell[BoxData[
FormBox["f", TraditionalForm]],ExpressionUUID->
"41c99575-1fb7-45c5-86f3-fadd4a0a738b"]
}], "Section",
CellChangeTimes->{{3.749038971153282*^9,
3.749038977912076*^9}},ExpressionUUID->"a5e2d99a-e4b2-41d3-9115-\
8b3e116a10be"],
Cell[CellGroupData[{
Cell[TextData[Cell[BoxData[
FormBox[
RowBox[{
RowBox[{"f", "(", "x", ")"}], " ", "=", " ",
SuperscriptBox["2", "x"]}],
TraditionalForm]], \
"Subsection",ExpressionUUID->"55f077fa-b6df-4c72-84e5-fd21f47aaac0"]], \
"Subsection",
CellChangeTimes->{{3.74898581309836*^9, 3.748985821183564*^9}, {
3.7490358141587343`*^9,
3.749035836646203*^9}},ExpressionUUID->"bc4de434-d89f-46be-bdcf-\
732e478b2a0e"],
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
SuperscriptBox["2", "x"], ",", " ",
RowBox[{"{",
RowBox[{"x", ",", " ",
RowBox[{"-", "5"}], ",", " ", "5"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.74898431912775*^9, 3.748984433282745*^9}},
CellLabel->"In[4]:=",ExpressionUUID->"ae500546-0fbc-487d-9729-bace41343bd0"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwBYQOe/CFib1JlAgAAADUAAAACAAAAfedN8v//E8BU9vglAACgP+Z7FvXb
/BPAyTWjprcIoD9OEN/3t/kTwHynBudzEaA/IDlw/W/zE8DK2FOx+iKgP8KK
kgjg5hPAn4/RtEFGoD8ILtcewM0TwJrRVcK3jaA/lHRgS4CbE8Ay/QWbViCh
P6sBc6QANxPAtdorOvlUoj8FZUcyGV0SwM6ynFTXPqU/E9jFbKKREcAUKkW1
8GGoP1LDmmMpyhDALiTJN0zoqz977z1skOMPwB3MxlqcJ7A/uHeaaq9PDsDn
v6wwYYWyP06SVSD+mQzA3aesN3J6tT9Hnb1OSOwKwJX2Vxox17g/psd51nNb
CcBubNudJHO8P16ElBXPqAfA23uWc6x6wD9+YAOuCxMGwPDocOOx58I/AC0f
v0OFBMAfSbXcJ6HFP9qLmYer1QLAPqLW7gsIyT8cCmip9EIBwADG0DvHr8w/
azUqBdsc/7+zM/N4gqDQP2M33qjDw/u/GKte9uU40z8qeDr/bqT4v0P7zEKn
AdY/od1TxHlB9b971u+D4XvZP+eBFTxHGPK/Hf01CEw53T+6lShF6Fbtvyyp
4qH78uA/MOnZ9C+d5r/QqC3hcZvjP0S62wn9VuC/u9pHxCN25j9wqa/4ERPT
vxUTvMEFB+o/VmYjodJ8ub/shjamu93tP8fM2YozU7g/Gkxf7toW8T86LcGy
UJfTP51RoucryPM/AnYV3GQZ4D9VVRQWFK32PwcMUIFi7uY//b7bgflK+j+D
4NZDcqPtPxrxABp+Z/4/sJuGUH7y8T9k+hKehWgBQG+iZBDkVvU/yLyLPP8p
BEBeapodh4H4P6KFAsD9IAdAiVF2OTOc+z8C37C2QnUKQAQUleZ/+v4/zpqa
OWOdDkDXy4XwhA8BQDyt/i8+ihFAVXtiNprDAkCuPE/LX1QUQGwL6yLOWgRA
P5GBYWhVF0Afq8aWBuoFQLRpPdSUtRpAe7hDUw+bB0CUewVx3OweQHCmbLY2
LwlAJIgTRqu6IUAMAjdiLuUKQKxvy6rbjyRARW1UlSqTDECWWhducsgnQBi5
HW9FJA5AnxsopLU9K0CScoiRMNcPQGS/i7Kgjy9AUoZPLZ22EEDi3WHT7xoy
QAN7rV2ADBFAI8zV+mQ7M0BjRpoW
"]]},
Annotation[#, "Charting`Private`Tag$3064#1"]& ]}, {}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{-5, 5}, {0., 19.232009579846032`}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Input",
CellChangeTimes->{{3.748984701326948*^9,
3.7489847047803183`*^9}},ExpressionUUID->"36c50a64-8f2c-4d1c-b2e0-\
585a5461165c"]
}, Open ]],
Cell[CellGroupData[{
Cell[TextData[Cell[BoxData[
FormBox[
RowBox[{
RowBox[{"f", "(", "x", ")"}], " ", "=", " ",
RowBox[{"-",
SuperscriptBox["3", "x"]}]}], TraditionalForm]],
FormatType->
"TraditionalForm",ExpressionUUID->"c62f0f96-f4e7-4250-8a7f-f203663b5ca0"]], \
"Subsection",
CellChangeTimes->{{3.748984856301559*^9, 3.748984876846896*^9}, {
3.748985856668998*^9, 3.748985877722619*^9}, {3.748986068368925*^9,
3.748986078746154*^9}, {3.749035886226479*^9,
3.74903590008528*^9}},ExpressionUUID->"0d0b073b-61fc-4bad-b96e-\
8c1eabfbe3fe"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"-",
SuperscriptBox["3", "x"]}], ",",
RowBox[{"{",
RowBox[{"x", ",", " ",
RowBox[{"-", "5"}], ",", " ", "5"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.7489848880454187`*^9, 3.748984938650885*^9}},
CellLabel->"In[6]:=",ExpressionUUID->"125841a7-12b6-4d42-9c06-8773f1d17e40"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwVl3c81f3/xs85nGOdjHMi6iazQmSVRH0+slNGirIqsyQzW0ISkjK7rczK
yqyo5PUuK26j7JIRccrehPh9f39dj+vxeP5z/fe8RGxcz9qTCASCGpFA+P+8
xTizsL1NR5LjKwzhfjcYD+Bb7t+ko8EpX72y325gwD20WvmHjird7XGDNTcQ
VnH767pIR8ZjzLuLed3hY1Qc6/A4Hc33C5ZQjN2BVbZXCLXS0QzPNq9Eszsk
3LysH5xKR4UXYm47NHhAIdEzl6BMR4c7bpql/L4JR00KKMmKdKSYbtok//cm
NOT+uCovR0cZowOJ/dxeMKxjJGMjSUevbry843DUC/hiZF7X7qGj789mH1tE
eEHo7l+N4QQ68tr5nqlD2hsuKFpNUptpyKRV+bJLiA+Q7XUUBKxoSH03n23c
dX/osJY3m7xIQ4V3V/YWh/rDkwt7At+b0tDRdDJ9MNkfjpyerb9iREOLqV4j
/p/8wUHx8cUCDRoaOu4kULAvAD4RGcGqUjREk4gsmxkPgOgn4e1Wqzyo035Y
NM7nFtD76p2zY3mQf0RI10eXYEDSWRFhMTzow0nGytfAYHC+HZjrcJ8H/XtK
R/ZvVDA07FP8LnWXB/2JdyVffR4M/l6Z+hW+PGjC7qnf5+FgGKEFSNVd4kG4
7oU3y+dDoPyM3K8xGR50gumi94BeKJytTbGVbOZGJ8dw20zzMBDv+jnY2MCN
BNU8ix7eCIOVn7LmDrXcaPjxdNyj4DBIptQa5VRzo5atc36Nz8JgWG/yuGAJ
NzrwIsSfYykMbnxW5edJ4P7fvlfL67F3IWLge8uaFTeKvPdBb64/HAJmjzs/
GuVCtdb7kmSLIiHtivIvfIALTTgbf/L5GAnVnXJ28z1cSEiIx6SrLxK2KsUs
zzZzIa7NyFeN5CgIDWY7vbOMCyl1Ho5IvhwFUTzd0v8GcaEHG2m2awL3IUXR
eTJDgAupvK9jFkqLhiqfFKcSQ05kUzuryDvyEETt3J/26f6vXzS/wU54BA+M
dIeJJznRneEUK36uR2AjuXL+nBInEmAMNVnLPAKOfmP1P/yc6Haipe5jp0dg
fYKNX2NkByoO7Xv/kfEImMi+9T03dyARf+Fj9tOxYBB3XngrmYrsyhKiaJIJ
4K/ApacTT0Wuyla9ZaoJ8Kzjk/ujaCraYFSa2RgkwBZNrVb0NhVZdSOFVc8E
eBEv6qBjR0UaAk9pC5AA1MTZwkeyVMTS9L74mEUiND+OVBar5UBSV12EozOS
QCf9vYHuFDtihGj7s9smw9yD75vM4+zorcto2G/fZEgJ2ij4MMSO7hvJOPbH
JMPUJRUW1U52VFNYt7j6NhniRF+BzFt2VJyyucK7MwUGnxfJ0SPY0c/FBbGl
phTwLk+lDYqxo8ZSV6ZSzTR41ujX42nBhv4xba7j9M+AZAVvjfxzbGjk91yW
z+MMiE73KB08w4YSZ+782XiZAR6e16P0cDZEEHgTZDaXAcf3Wp3YK8GGMh12
WsgqZUKXN/6seYYVHa3Kc+wvzgTSPhZvkVBWVFytpaZYkgXWYQm87XksqLMi
rHN1MAfasBUW32wWVL3X8NLpuRzANszWhdNYUNkuW9ZSYi4Ie+wZ8njIguoc
ZBi54rkwcik7j8+bBeWkq+hrX88FB9VSVWsNFqQcMubhuZELLgv/XZkeoKDm
tkdDvfufQdBlpmIOOgXFJX6ZWanIg9J2nZguKgV5VyVk8TblwciJaJd0CgXV
y3fYaA/mgbYg76FD62QkcjnSYJA1Hzi/7Ss9+4OMWFucgn5b58MTk1PlySVk
NCC+whLAWQCgHft6/2kyuvAupH0joBAIMntB4y4zspiLNZdOKIZAPnXru0HM
iNuziRJVWgyr2zZ/G3yYUVUnC5mptRhmOp6pnnJiRmPLlhc1KSXQ7ytbZWTI
jCL8qmks/iXwuu54mZUAMyrRUjI0ViyFG5aWOT4vmNBi2Ys2D6ky+HY/+V5h
NwlN4GSuOq0K6KwXLrrcTkJ7FINSPEwroGX7+WfeJhIyM3RPOuRYATWerwWC
q0mIsb+dpzuiArItOgvP5ZDQ6D42n/aWCnCS3vH5rxsJ+Ql6iz8wewkbzcH8
RlQSit4Kzbjn+wr+Yb+av3SSiL7VPqUHTlaCdU1LtKgaEWVf2KU5Q6yCLA95
N6PDRFQ/WxTmxV8F+/rXjxTtJ6IiY4e7tVpVcKjoQZ0tlYhYE+gVl7Kq4KRB
xVBHNwHNyijeKLB8A9fitnjLrhJQnykT7P75Fq4fliL3/7MNOb1CgkqqNeBB
fvPcm2sbXrQ1uuwwqwH/bp1TNNI2+NXPOhI8ayDKy/6hHmMLCtXNSxQLa6Dg
VaZAVdkWHGCUyHT8A/D78C7ZRO0tGA/9jzmUhMDxCLOZodtfOB9g7rW0hMBW
eTCvtnYD1lcixd6Qa8EhT9lUu3IDLI+l6HLz1YKTQCxTU8EGKBuz+njtqwW3
DQ3rttgN0NfXEHbSqYVAyKd/vbQBI88vrf2NrIUEHa+gmY11KEtjuvONpw4a
zKjnBJTWQfFKtgkcrAcp32PbLrlrcK0mT3RvXCOgAQOp0aQ1MJJ438eb1wim
GrbnzSLXQMFFmiJS0wihnNGFmMsaLM640r0mGuFr7oAZ99E1CPRc5eHT/AQR
X4JLy/5bBRL54IvTG59gXKrxytLCCmhORiTx+zdD1oBJnZ/6MqgfJV1red8K
Cj8V1ruUlqHjq0x6fm8r1E3wyMkdWIYxN0vD9PlWGF9tTx3nXAa/Ce7ATxJt
IEU77WnyfQl21VUKyT1sg3JtTVEZnyVgTcgkmDq0Q12JUvBw0SJ0SCZ+0or/
DIwQXjUd/gW4cbT+boFfB7DfKpmNZ18AgUiXVfr9DpD11csZ3pwHhZKNLw/S
OsDb5Ra7/495yPYp2i6HDqBYjPUVFcxDyU7WhTpKJ4grvfKiHZ+H0JPHWHn/
7QSb8XMlA1fmgE9c7WNvYxe8TTyg9ct0GvStfcvzL/UCqwXDlqg2DRKZMwKn
vHrBVPhZ6G6RaVj1WbuzFdULCwVi6PTkFJjWjefnvO4FSSSkWnZ7Cn7Gt+v8
4OyDfyd2yvvnTcLK9PzFY7V94IURBanrv2HTxWRmUvUbyP3+unQofRz+LFen
N7sPwM05GcldYeNQz551XOn+AFSthlhtOY3Du2ijlorcAVCnSDW0HB0Hkz9f
icu9A3BWzP/xta4x+H3x6WgINgheVruP5XCMQV/U0tUe2hC8/WJ+m89/FFjK
Pib42w+D5tt+tr+mw/Bdp8O95eQIFBc8VWlUHQbn98UBoyYjwJ/qei1WeBh+
7uMIY7cfgZ5VSpx+1xDE5Mq3RNwbAYkAU+709UGINGoa1mkdgY8hy1RcZwBu
s7sHDViMwmaMIiV8+Cu43+DO7rr7E9zyS9Z46J0g1MOmksjNADlOlzsnhzvA
UU1/6504A+Y9DnJ6vugAQ9nX1ktHGeChli/WpdMBJxLTZVOuMMCrPdsgKfAL
SNdUVr+rYMDihLTe4ZZ2EFvfNrCz+AWUO2uZ2h5NoB9zkLO66jeYOohldQS+
gUTar0rVkimIcveMiHtVBd3lsiqtjVPwPrDW9exMJexad6v3HJ4C8XjbEx2X
XkNiG5cOgTYNC5DT/+VkBUhKyEzye0+DkKLuwWyeAoj69qf1wskZmPs32W4+
2QYmGbl/kyZnobHla5SiSRUWdc//a9nHebjq+63RQvoNFr7/r7hi5zywivcz
hzG9xR7xCzbWjs7DqYDvQV0V7zAPK21dOnkBWiSHPLx2AiZOyPrsrLsAVzU8
XvRPfMQmhF5U8XUsgHOmT6JgURNGO0grL55fhGMyH8qNHndi22r6Y3b2K3C4
qyeppqkTO/4m3/uz7wrIBUz5H9zsxHpsCEOno1dgX9MuDdYrXZjZbQ5X34oV
oNu7dIJUN1YilHggjbQKU2l7lmRrejA5+0AOsdxVyKB6H94x9hXj3naOTV5a
A5I373c7gWHsZTg1qrhtA8wvF3RUKQ1jOcJY7pdfG1B+CmuiGg1jqerPDHcw
bYLN3muvX4YPY/ce333dprwJHz9VP2JeGsYM/tw0CszehDt77LRy235gA+RW
y8eBf4H5Q3nx6J1RbPM14ZW35jawUI1CbGbGsXqpMVvVBCK6sN8cHWFjYD++
XVv2zCWigpN22+ziDGz7b1nQu5dEZODne6viIgNrM+kr8ekmoqTxTD/megZ2
L9iC9mwXCe37MO/+LPUXdjcvW57xhIS0vONtJnQnsIp2AYvLb5j+53k9Gh45
0xi/lFvnPREKGnyjf8O3ehqL2+9qEa9EQcfiUVJQ9zTm9UBIp0SHgua0Cn5H
scxgC7rkUH4XCrIuvPUw5/oMJu7bTy9/9z/eW7y/S3EWM58yxTjNWdAfssqb
PTZzWNr+XkpHDisqTQ03ClqYx1L3+o1NuXCg/+jhDC7CAiZcqPHjXgQHGr9/
NyhrxwIW36RdeyybA/0TGFZUd2ABm2/Tiv/VzYEiLENZOS4tYHsyRvocTlDR
ZcEg9Pi/Baw2u3OauHMH4s7wkivLXcQyu77qmHZwItdsO+6fpsvY3poICXcj
HhTjl5wWY7uM8d4mpoX/7wcUG7UdUHFbxkJv3TmS78KDZraU1WMilzHbSR8y
3wMe5GzB4XG0ehmzJIgbPGzmQU47yzujRVYwtvGGWnZdGnII3046PLWC+Ufk
HPA7Q0fWTimC90LWMHWR0MCVMF608ZWtbf7BGnb3QLGQ2WNe9K+eX5Blyhpm
5PrYozGfF305cGFIvmINY6/Us+9t40WaDN6s7z/XsP2yunOvBPiQpF2suILu
H8yRnBrvV86HlqwipAc417EzFYqHb83tQpHG3iqKaRuYXMGHlJKs3SiuRcq5
KH8Ds9hx4qT1290oTWfoiUTlBqbUPdwk1rkblR7XZebv2MBSjwa0LTLvQX2S
u9s3WTYxJbnbTAXX9qADpBq7Bs9NrMdAgBaq/A9qKCc/uqj/FyspuJUaOCaI
mHcmjt9e38IqNrQEhxuFEW0miJPGso1xqAk72vQII5FPV4/k0rexvWVOavM/
hdGJQLXwTwe3MX+N6pdKJBHk93NUgufSNqaMn+c8d1wEzbxUsM+u3cY2zIt3
br0SQVNSv9xttAn4QS3PcYMyUdT73925MC4ivtPgY2ZwhzhKOJGudZ6PiA/L
OSWRx8XR2bKXKRKCRJw5x6Iv7Y84aksa1WyQIuJNxE93SSISqOGKejKLNhHP
JLNeL3KTQK9XN9WjAom4o13d60j6PpQkdjP+4W8irl8tdeuX4350PsDmSEot
CY91PuJ9xVAKJaXvpKw2kXC5fb73rjpIoR5o6Db5TMLvPDBGd25JIVNmaa8d
AyScaOY0u1IohS48WKwIXiHhHcQ5pQ42aWSeESbvKMmE90KskHOTNLpc++yg
0kMmvOTY2ZriCzLImWNStM2cGRc+tK7ZZyWHJv3eMnNcYcZFNBYvj16XQ06/
Isd1HJnxJx8rI9f95JBj/YGCD57MeGsMi/SZJDlkc9tB/lU0M2789ObnsHY5
dHHxB5ZWw4xzCKb/0NaUR9r9fZZOomRcIUO174qyAtpb2JBEmSDjl2Zp1m7a
SuhcRtWb5jkyHsx9dsHwohKKii/4HrNKxsuW+PnVnZXQUkCM6C4yBb8aU3nx
QpwSaj5tWrxfmIInm4+EWg4pIe+ZsXpdUwrepvCH2hx4GLXKk5ejPlLwK6Px
J8rrj6CAKg0TrlQW/LhO2bmSeBWkYPl57lIWC77XnkeMka+CJrYtY0qfs+CB
wfonFJAKMtfxbjJ+yYL/PuL8hDStgo715GEJrSx4eLHj4AOdY2htccdBAQIr
bnWNYGpFUEXeh/qYxexZcZ/MLKJFiBpye+b8+sghNnweGx7qr8PQYPueRM4j
bLhrnVpf3QiGzvxp9hxXY8Pb7Go37Qg4kjotKZ90ig0/ZR72KEEIRz/nxwqX
7dnwfn3RtScWODI7finrZRobTlR0zHHuw9GJLuNoBXZ2nGJfOHt6QB1RSco2
smPs+AmJfH7zXZrojQ+TyfgkO/45Io82JamJHKbbNZ4ssOOXuauPPFTTRKjv
qgQngQO3m8hRY7PRRJ4lKb+md3PgXhFntltfaKJvllsuL4w48FOn/32Yp6uF
8irrAw5Wc+BVy+M+fNHaSOvGuUSpeCo+Oo0ii8/ooZtx7wiuyVScMSXDdNtW
D+VWijpXZFBxJSM2fRs/PUQizZ9UK6LiX8MWw6881UMo6cHcmXoqzvOF4Ke5
pYeOoQZ991Uq7lv6HQoqTiFZugqpymIHfvT6/QxXmdOI/42gq5Y4J77j5b2r
Hy8boi3b53t4pDnx8GRJO/4gQ/STU/7Td3lO3EqU0hqZaohK7TRFbmKc+AMV
/jPQY4h0uK93Zptz4l1f1KdV9xshb8cqZUIsJ56SVEVNzTJC3bwmhHd/OfEc
z+sDxlnGKM4jIlaulwu3SCjprmk3QestRVURA1z489lTe9h+mCCb/V+Ghke5
8KoXfT42CyZI8buAbOwcF65HDys4yXsOTWSfH1tj5sbL0l5ce2txDkVTGSEX
hbhx7gUJWvzkOdQ2xPZutzE3nptUFq+3yxS9/G6shxdy4z5z5xVEL15A/weM
LQdU
"]]},
Annotation[#, "Charting`Private`Tag$5036#1"]& ]}, {}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{-5, 5}, {-97.39271219627868, 0.}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{3.748984939913084*^9},
CellLabel->"Out[6]=",ExpressionUUID->"b53b362b-7338-458c-a01f-aea9c0b0e363"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[TextData[Cell[BoxData[
FormBox[
RowBox[{
RowBox[{"f", "(", "x", ")"}], " ", "=", " ",
RowBox[{"2",
SuperscriptBox[
RowBox[{"(", "5", ")"}], "x"]}]}], TraditionalForm]],
FormatType->
"TraditionalForm",ExpressionUUID->"959342c4-7c2c-4223-b10d-c5a74e223396"]], \
"Subsection",
CellChangeTimes->{{3.7489845210071707`*^9, 3.748984523922782*^9}, {
3.748984559612792*^9, 3.748984567881504*^9}, {3.7489849549058743`*^9,
3.7489849553605433`*^9}, {3.748986088416264*^9, 3.748986090155322*^9}, {
3.749035911462204*^9,
3.749035926720972*^9}},ExpressionUUID->"5d242319-5c70-4968-8c1e-\
23c39b3e4bd5"],
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"2",
SuperscriptBox[
RowBox[{"(", "5", ")"}], "x"]}], ",", " ",
RowBox[{"{",
RowBox[{"x", ",", " ",
RowBox[{"-", "5"}], ",", " ", "5"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.7489846473290987`*^9, 3.748984662930497*^9}},
CellLabel->"In[5]:=",ExpressionUUID->"85471ba1-0b70-41ac-9d69-372228da6e1a"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwVl2c41/8XxvnaM6OMNK1QyAhFzjuyokh22TNkZkuiVEJllVlSiIoyk3ze
2VKULXtkk73H//d/cp8n57rPdZ687us+auWqa0siIyOj+0/+P2+NXVzY3WXH
ziI3twrXzsNoAMdy9xY7/qJhOqLKrgKXWPpXi9fZsYmcm+e6qAocOe227brI
jhN5mySqrFWgIjyadmCUHbPluY8u/VIBWrGOQ/gnO+Y4ejp54qMqxN600AxO
Ysc1fiEXzB+rwzat8KVrz9lx8kXVmYAP6mCXMq8jF8eOIdNinfipDrI1IQZz
Uez48P1H+whGDfjD+cbSIoQdH3NWHk6N0IAjXyZ80HV2nD5s38oaewFyyD1f
k8my4xbniaIzlVogdyWbOkHqP7/CheGySS2oeT3oIHGSHbPfHtD3YrsIA2o6
olbC7FjzxrZkuNVF4IgSLarkYccTwT/YtKguQcj+8dowsv/+0Riq8tTXBiMp
0ynG72yYNe0WpRLrZRi9G3vxTQ0bblyizMoXugye7Q25ZyvZ8Hsj19sq6DJE
+Z256VLGhoUCuQO+u16GSoJzu+kDG3Y+q//I7NdlENNqZo6JYcMVv0ZoOp7p
ApWtmiS3KRsOvptkZXBOD5rNJAynjP+792muSfuqHqQa8QR+NWDDfM9EIxy9
9EBG61+1pQ4bJlN1TabM1gM7qWfG2cps+M7+6LamvfpQRz4WLC/Chnt9BkQn
5vQhIjWsyXSVFScrZjvYVxmC0XO3JfElVsyOr38bHDIE/mgTbtI8K25uDBUP
JTeCr/fErDMmWbGK1Z29CmAEs87tK7O9rHhXsjPiUZkR6MgLHgquYsWeDeQO
jeXGwN5Z7fzqKSt2+v5R6urwVcDH0x7cjWLFuYICho7U18D5duBru0es2OHj
48g3wtegRlCqR+QeK/7YcZI1ze0a+Hu91Mz3ZcWuoyj2E5kpDLEFiFSZs+Jh
gTYfd2Ez+HTx5PhfUVa8feXHsyBtCzBPY6CsE2HF+085fNu1tgDG5dHD2cdY
cdqX6Y+JvhZgl5xi6HKUFf8x9rl+6JUF7J+ir13Zy4pXGrZqLVYsIOTB3zc0
WyyYjizSezbdEnQrE62Fv7PgJ4tzpCN7rYG/daSvtoYFy3tb/hIQs4aVETET
u0oWzBeqe0Bb3RoSqCt10stY8H3BF/OMt6xhQGPq7MFcFsySUTNzZtwabvyS
52KNZcGNghQTj6pt4EFvz481UxaseSblqEuKHZjMCqo/M/lvn06zXLXMDk7s
ulWeMmTB/N+Lb2h020HTEapSDx0WfFcva/Intz1w2IhmTiuxYMY09uKu5/aQ
PnnrzsAxFvyITsTj5AsHCPh31vnJ8B5ssntQJLzREZItZcdR7x58fPLEuaw5
RyhrOWkz374Hr7ipV82zOcFOMd813e978PyhjSkaIycICabT2vtxDzakYOlT
HXGCcNa248+D9uD7h/4dOkd1AxKlnKdecO/B43K1LVWOrvDlja29DvsePDOY
R/kt2hV6OM2HyZj24KccDtxzpa5waOtytyXZHtx7vnltkcoNXlXJNvCNMWN2
7ZRKXiM3eKtPkZNZwIzr2fbr+5G7Q4lPomOuNjPeLdju3nLwAF4b9zed6swY
j40WWYV4QKSO+gC5EjNuF7iXNJXkAVbCK/p60sw48Vagsn2TBzB0Xz63zsWM
XwoqOzDIeYKZIh2X8hATTim0LZBkuQkUVL7V7TeZcM/tXrXrvV7gMn+JjMyF
CYuVRaOYTS/o7BWQF7ZnwqMfZNpHub3hXVFLXoAxEw62ly9nMPQGAwfx5COK
TPjIpmyPbos3ZDWMejjSMOGGOz8l6Ft94FK0/pGdBEas+YMu+OeqH/hL7tFQ
i2HEt6Rq/6zt94eM5jr3JxGMWMlob8cVRX/YYVOo5L3NiA+Pfy1KuOcP72N4
7dRsGHHuEr+MM0cAMMb9y3kixog1gMPP7lwgfH/2UJavkgE7hY8diCsPghVZ
ZQvnMgbM2uFyT248CHg7tx4UFjJg4b0WunvZboM/l9sftSwGrNhgp+ltdxuE
EwxuOUcyYKE0Ws4V2mB4kMhXWWjIgPs3XxotfA4GtZSvl9Sn6XGhhKY/n1QI
zEX2bFGO0uOir9qWRy6EQGLQZva3fnp8scj/8hnLEJg2P00j30KPS/gFBqof
h0A0byEhWkqPKZ34qmE2BPoy351kf0CPzXpzv/TnhYL3pyS2Pj56fHzj7feh
i/fgSHopTjxIj0Om3t5vcLgH9TFdLoac9NhIhDjXHnoPDnhxNvyip8dSpVzG
uqX3oEI2JrRyng6HjG23TAiFAfPX8KUsgg4/Lf6bU8Z4HzJq/do9r9Lhm34D
fFJzDyBB0lv5rR4dTqTJozRlewgRKR55fRfp8D2Z/E+F0g/Bw9MpXAPRYYGi
oz5Lfg/h7GFTxcMCdJhmPaL0A3U4tHqjjO+ztJiCroFbR/gRkARpvI+G0OJy
Wo5iobhIWH5CMWwQQIszhagtc79GwvjmrnbETVrM8Nj/8Y3RSGj8vSa8akeL
1b48yX4qFwUJtyZ7f2jSYm49fP5OfxScbPup4ruPFkdOvrA4euAJmN2N3deU
RYM9Pj1OqH70FBphhcb3FQ021dzPc+rVU4BNw40jyTTY17hQ61vJUzjiwdPv
8ZgGk65SXzk5+hSGzF9lcXjTYHfHmg1npWiwk8+TN1OmwT71t+rvkMWAy0KD
5UwvNfay7eA5ERsLfe9F9eI7qHFFsZdF4IdY0L7+WBV+U2N758cXZuti4eSA
7vGnVdT4p2boF9mdWFj42bUknUONtQXeNts6xoH327H7gb7UOP+KwEt9jXgI
sqD4wMBOjXdMuKareZ9DXpNaVCsjNbZxVSSozz2HIcUIlxRqapxGKxl0w/w5
qB7cJy6+QYWvJvfdep/8HJj/CObpDlLhe3//VW9xJUDqlQufEnKpsMaBZxcp
uBOBUH1adEyLCveXNX5hl0uGhcK2+DkVKux+VuGnx9Vk4BfY7/MZqPDNmB/S
O0HJ8IAiXVZTigqXUY+NJNYkgw4uKHHZT4VdmbVm5w1TYOB0Z2nhOCUWKXf7
rB6aCmSihwnle5T4q5qq04HbLyGQ45zZvSBKXPIf5SLjXsLqrtV2jQ8l3tOB
zx149xJmmzPkLzhS4qkw/s74rpfQ7StWoqNNiQmN6FBymTQoqjr70ZSbEltI
2ho2L6XBjWvX0n3eU+DASc7ziY/SYVwlSOlzBgW+y8WSejIjHWzEXw5uvKDA
XpJveKdwOpiQRg4HRVNgurxPbj9X0kE9yyn5rg8FjtnrGK1l8xr4l/zjnp6j
wPE8OqaWqm/gz6OE+zltJEzXkLnfUCgTWqqPvLNoIuGm5x0OpSqZ8GM389e+
ehL23XEgKVtnQrlnEXdwGQkHfVRoq0rNhFdXW3L00kn41de8U084s8DxONOv
bTcSbp7ReuTG8hY2vwdz6TCSMFA2/vx8JAeWKGnPUlGTMHNDzrygcg7MKj62
LN0lx2L+1dWEbQ4MfErJ5l8kx5zTxde8cnKgKrFUYb2LHH9UsrBfkXsHEY5L
Fq8yybF2e97EnWvv4QC9w9slJXKszBGbblqbC2blPyJ4FcixY5bXLMdiLqR5
SLjpnCLHkb1bJ8P25IFg94bMu2Pk+PQdufvt8nkg/i6yypqRHKtluVwZi8sD
pUv5/c1tZPhg4sqvWe2PcD16Z99HBzLc4Xd86kfPJ3inar3eZ0mG012fVeOV
TzC7UdvDeJUMCz8T1u9kyQcP66fpDhfJcEzCAyNPlXwIlOaXOCJJhkl0DyzM
8vLh0PuY54dWdwmHpUPd0pEF4HRKhKr7wC5x/nKUjr5NEXhQfc703rNLTCra
l8SEFIF/m9oFNtIukSAevb7xsgjCvWwfa4ztEBlRXSPn+4ogu/Ald8nHHUIg
xd3/h0kxTJziFItT3SEO0g969VwtAXsZSkNtt23CMZ3iZurtUnChjlmftNom
jl2+X+eQXgre7UeTw/S3iSxWiZvWtaUQ5g2DX89sE20yfu2Te75ARpG/0wmq
bUI/6jeZRvoX+Cszf5sucYuIrhMcudVSBtayfVmVlZvEJ2OGrwVXCbDLkjVQ
Ld4kWB6WjkmGEuDI/ZSiPnuTCFiDpqFsAtw2lc0an24S94Zzmjo3CAgk3rJ3
mW8S3g2fz0VfwhCr5hU0u7lBWNlJxH1exlBjyKjHLb1BDM+JMlkaVUB9nS15
8rENQkJ9oijAtQJ+nCY+HOLZINjxC7/8sApo5vGg4ydtEEIB33r8Cyugv7+j
XOzXOlGhrH/sxt5KWLNPFz7vvE68foBayTorQcT3zK7L6zXCnftD8Yp3NeDe
SyLD8WvEzPFL4hdiq8FA2Vrf8OEa8S1urbj6YzWEMEfkgMsa0U687zg1Uw1d
r3sNWeTWiCGFNnMyuxp48Ds472PDKjFVP0vjZl4LoyK1lksLK4RXAVOcvmc9
BD7pjnD4u0LsyJ46whNfD2wr/4p7OlYIEw8mUZbP9aD4jYu5umyFoDlc1/Rw
tx7iDB1L48JWiBDTXIeKqO9w/i4Tu+z+FWJF83BEaFEDpPVeqfI7t0wo/5Vd
EBVtBMkRyY1W6WXCvZ8rOPNKI1RNsp48KbRMmAlyHdD1b4TR1aakUeZlovXG
P1/5ukYQYdPyvNKzRNBkrufZ2jXBJ9XzvKI+S0SPaqmikMEvqMqVDh54t0g4
OhdMC+f9Bv0i9iL5l4vE3dKJi8U1v2G0bGEqPmaR0PvA72bZ+xtov+cZXvRf
JCQ1b4czMjTDxZET4qVqi4SrRSd/hX0ztHMJ9MUMLRAfz6HtBsEWGLuzT0GN
a4EQrOoody5rBfpbuf9i6BcIFz++Q3u7WkHMVyN9YGueOHuseN/wcit4u9yi
9x+cJ2y+9mStibcB9dW/ne+y54ntzp83aDPagF+60Ivt7DyhvXLz71RCO1iN
6uX2Ws4R29pqEWavOiFscNZKRG+OqF3xmnSo6oTsngccPqpzBOmSr+6r0U5Y
aC67xXJ8jnh78vL59ONdQLqt8Txs/B+RWHd3cKS4C0Bi4vdlpn/EI6VlnNb1
B0rjhFTGDWYIZj+vB1PKvUB7dcyaXGGGWH5jLPDCqRcMjmSE7D86Q1gnaaU+
iOmFhWw+rDU1TQjsodbYGe4FYXxI/uPtaeJHhcDzwPt98Hxyr4R/1hRRLvDi
AE1XP3gB+UHGjQlito8zSUFvECoosbxA/wSRIi7TVe40CCzfg0wUqyYIpZay
TYvQQXint/XMLWqCOOp6MYkqfxBGrq+ytfFOEEO/nJnb2IdAN3aGNlVznJjd
5OzK7x6CkxNdS+Ipo0TaE4lrRfdG4OacqDDn3VHi9ctN6Q8vRqBk9Y7pjuMo
MXugYKLm8wicoxap+SE3SpSHeEVenR0BXT7/Z9db/xL92y6GHMZ/wct0/5l0
hr9E1KyA66r0KJT+NrnN4T9MzDBzdKXSjMNO54f8bYth4rBSSj+14DgoDZDG
R9SGib5T2Dzu/Dg0zGbr5O8bJvSg9bFgyDj0MGwe1fk4RHiOJrEe3h2HXZWk
qofjg0TohtKtWLJJOF/aTbdtMEAIaU9f2uadhg/Zb07Xyg8QoXQ3UILGNHAl
uV5/emSAOOr+/oSj2zS0r1JHa7b2E7rKyVzvyqdBIMCAJWWjj1g/7XShxHQG
Ku4sMyK1XuJNjUWNVMYsbEVJUYcNdBGA5fhufJyDX661tvuzu4graaq8+nVz
kK5ztfqDZxfhJDD++Fr/HFxgC73bQd1F0OplWn9nmoeEuGaSsGgnIb/fOl/Q
eR5kkt13G/zaiT+4bZpWfAHc3uausbK3EDnHH9uWNC7CSWaXUKWBZqJNfaiY
c3wR5j1OMHu+byZ6zpuFPyNfAg+Ft3ytas2E5d8Ig3XpJfBqenUpPvA3UeX+
SvBCyhIsTh7XOPWjiXi7fklc9eYyUIeuvVT1qCeKM9UL+xVW4b6WV1EmYz0R
wvPtb7rJKtByLDTQZtYR97LVZKN8V4H+7dTK9+5awu40D3l7wSrsaerT0lap
IdpYh+JlxdeAi6d6zZCrkmAerGx1Ob4OBnZ8ac2Bn4lrpClnHuVNCHf3fBBd
WEKwYaOLhrab8DWw0lV3tpggWXaIlN/fBP4Ya8Vm8yJiNFuukOnnJiwQ6d2/
lfKJxvcNu5+Nt+CQlPqJV6zZRJLTeVbfgG2Ye55gM59gRZz9Hfrv4NAuBJJi
q1XlNIC7Q+k9OxUZEku0rt0r4woKnpRhEtxk6IpUZ1nYubvw4UDh4c/nyJC7
ndNEVWw8LJd6uG/GkCEyssJd6/JM8GcwJrt+lhzV/ugKl7pSAj3wa6LlNQk5
+P6pvXr8MxhxKUrJl5MQLX835V2KUsgXbuau7iChCwE9Qa35X8CiXi/gHAMF
+iHc7+G1lwCjfIW6QU8K5KDs8b57sgL0R3f4pzQpkfNLn7iD7+qh6k53figX
NVJYWc2X4PqP4zydrC9kqBGjlm+zyt3v8IEz1WtYjxq9X/Xd43KtAVI77MXG
n1Kj2Uv+D8sZf0JGUm/sGBMNKgkqL8+V+QVULGcK5pho0RnRb590nrXA4Z6Y
ol/i9OhUa3t8eX0L/I5fMOO5TI9OBkz7n9hqgbifmiZPPOiRYD2nMq1lK2Rg
56MbhfSI3dalhRBpA1fK6ZFmRQY0ncyzJFbeDlVvRSrqjRjRC0bvU0x/u8Bt
cF+GeS4zSsx/xB3A+QeQ4gstq3ZmFG+Stj2u8Qduc+s/it9mRhFZP6qrPvwB
w+r6n7Fae5DveT6DQN9uqLJltvg3vQfpBv7ynmLoBa33x+qyk1gQyXtfjw33
ACj+GWEx32BFJhbZzSXSA0DFdKFLgJ0NfboA9Yw6AyClT13LfIINWR2+XlQQ
NgD2+WRNamZsqKKu7Anl0gCI/8usuVrFhkJ5bFReNw5CdWt196ln7Ijy26cP
w6HDcDWiZnSv8T50LUftjeyLYajYYX0V7L0PFcT1JD0qHQbNSaWJvbH7kI0j
9UOp+WEgvRTcLG7ah6rZTaxDzUbA6OGLa7PqHCjMjpyL7/RfEBg8HH9JmRPR
MOrcsZodBW4SU/wdY25kdMwEy9CNgXVgoMvPAG6UrWSzS88/BrLWru/VUrnR
JT/fW/nGY3DpqbZJ3TA3ih996UdZPQamMcVW5O77keC3efeMpHGQ3087GB7L
g1S8Y6wm1SchWvtUdAv5IRT/NCWt3HoSNJq/hTuLHELj7zIHooMm4Um5spvC
lUMoYviLmXzBJNBc/n485M0h1KozYhJxeApO57mmvtc6jGyOn7oitjIFeR7j
tcO6R1DoQLuyR/oM5Dn1nEiqOIr6Pmve8C2bgRzRwQiKrqPoTAyOD2qbgQ9W
VpIP/h1FcyrZE+E0s9D2o6Bn9AAvMsu59TjdaRa+dPu+3PblRWe8+btbpf7B
xZzT9B9l+NA61enPPFZz4LhZpHmmnh9leCz+THWZg4Vhy13PYX6k1/9+6GjA
HLxuSq5v3OZHeSW8jEKxc9BFsaQ+LimA7JwYzaVr5oBCe9/T3FQB1Pqrn/Ki
yDyAOtlYQaAgyksK0wlamIcN9as0LVeEUAN72NgesgWgQd0zB72E0Oije0Fp
TAvwm+WgTXy8EDoQePddldACfB5LX2f5I4QeXAuhZTBfAAeuT7lS1sLI4mAQ
ftawAOzTNSn2QSKI5YXXyY+vF6FcjvWT2Z8T6DinV63Sp0U4xprO0U0uilQf
3zRrJRZB7M/Xu5HCoijwtmfE6p9FSLv07U2cnygaN3cfP8u6BNobGSLyB8QQ
PnLj5fdbS1DZXcVyyFkcub6yYRkxWIY+d+Nh2QMSKMovITnKehm+zfMksElK
oA86jUKn3ZZBQbFJjk5dAs3uyJ6LergMAUPNVRduSiDnqwwecmXL8L6xm4yv
UQI57v3UEnF0BQ6Proiq35dEdmG78aemV4BN9LeJG4s0CjOV5htYW4FZPLXM
IiKNMqSv54ZT/ZcDUu+0mpWl0d+h5tr+Q6vQrfWktdhHGtlAxtrDy6twevvr
DNugNLJa0zLpK1oF32DrVbHSU8jMMfHg/Ttr0HD9XZDsfVm02UXXOB+5Bpa/
PfrfvZZFzzX8gq4lrkHAnCOvWoUs+i1k1C+RvwazSUM0U9uy6PzYvrSekTU4
ZKnivOwth4RtnvJLqq/DaTtxWUW302jJ9MHxXuYNkMmNk1wPlkdPfq52q/Fs
gKwAZY9DujwSPWsf8enYBoTYHUinqJFHdgdUZ+6jDZisCbT6wqCAuv5Q5Ep6
bAD9xunU0wkKqNzwtuSDtg0w5Jl7n1Z2Fj287H1aKnkTrh3QXTRmRyj6h4jz
u7f/5VZ1hYKkMELJav2pAsWbwLfge0oIEMo7q07J1bwJpGrV9htOCHUK72/a
otkCGHDWsqlGSIhUblPjuQV1lAv+vLfPoZpPVE+MNbfh+FiHEjuDMvolWlrR
bLQNUedqpxf5ldGfLJdlTbtt6EvvxauKymg2tcNE8c42GK8PZ1z3VEYcj94K
8BVvA1mfacFmrzKytb74ZZp3B+58PbBLUXoeUe6NG729sQOPFzyKGR+rIrbZ
IGY2ml044TJu/iZHFR2tc5B5zb4LzjsX1K3qVJFioEJY3Yld4Orrf6JBUkN+
I8MCrOa78Ehbl6PFRw3NFkjavqrchdD+n6ab19XRtMi4u5UqGeKeaW5cc7qA
ljh77+VokaFIKfY9PpEX0CZlc8KSLhkqGDSuOpx7AdH3f/kWZk6Gft8Ps51f
uICOxTxmzfElQ9WUEt5JgZrIalPm42I2GTp6bOuK/HMt1NFwb+7uHnKknOvR
rrBwCcUqpqjoc5CjR3cpv1Uf0Ea6HwsSBQ6SozdLR3gfqmmjxvjh8zUi5Oh+
WutDnKKNaizPJdCokqPzMrKOtwR1UNHq1rnwQHIUt5i17tGtg+L5bsY8niBH
IVxZCX6mukgv/tG4+Rw5qhmuzSr21kVsdOlnT66So/mCjutcT3RR1OzvsV+U
JKS+VIeVKnVR2GdxBbYjJBRLbk+Hjl9B3tpTI7EGJISkpQ/SkvSQfoCVTGIl
CSU/sFQ+9UMfxafspV6tJyGmddtR0XF91E7UtF35RULNiNPlAqUBMqA87sXU
S0IvmleH/ykYIKPIxfzgFRIabl+8M59rgExe3JWwF6ZAykPbzOvJhsiiMuOE
9GMKNLE14+kRa4xe/jXaehJHgXrpiUiVQmM0SMPwYyaJAk31P6tRajdGVlqu
TplZFOg7/LlRxmWCrNtks/dXUKDx/VKRn16YILuxumPkyxTId/zEjz+FV5Ez
wxRvowklItLeiOdRmqEpv1JKBktKxDmyEekpYoYcxx+OqtlTIvg8esNOxwzZ
Vwtlf/OkREvP/6R1J5shq9t2EoURlCjhgYA3vZw5Ml4chORyStSX2tnWIW+B
VLs7rznyUqFzMxJ5U1GWqFojSzFTiAqdmNrVIb2xROdLfI6MiFGhtxbGX6S/
WKJzcRwjpvJU6A3/B9+ZMUukoK3ndFmPCmku3PP8pGSFJCub/OTCqBB1tOfk
220rdDinJp56kgpdNvEx1wu3QXovSj5/n6NCF391C5hm2KDwmOyeqFUq5KBt
Kx5RYYOWAqJ4Oamo0egAa6/ppg36rmXw4dgRasR3KdOxzcUWec/+rVY3oEaS
gymB503t0E8JquXwCmq09VLHLMfYAZEEVzm166lRiqDBlTF/ByS3f+IM+y9q
FHrW5LVOsgN6RfoZnNRLjcxf6+m+63dAvi2xjO/WqNHLLZuSKIfriN+Ln/+n
GA06qsWSJBvqiAJKlK/sSaJBbUMLgVO9zkjy2q858zQa9Hlqv3Qu6Qaa3L0W
lZdJg+bvTnxNO3YDmah5118uoEG68Zfk9nrcQGfasyD2Jw2qqSi2OEXngtYW
mU5wk9Giu0b+SqnIFXmLd1Ly2dKi9j5nq5FJNyTWYvPK04kWZat4CLmRuaNR
73mocqdFdNUXzDk53JF+OX2AbRAtar3tnFNyzh1JXzw7n/mMFv3Z2U28kOiO
Fh1f9Z74TouYUueNGnQ8kFuGc5GMOB3q5HNfV2n1RH1NPHHMMnToTIeU45t/
nuji+nfPUQU6VJup+FqE4SYS0RKWiL9Ahz7Wc6tkKt1EI/N/c5Zt6dBtNTky
1/ybyPCseVpBMh0amtYPtk/2QoqtlyMk6elRy74ph3uRPujdNpkTPSs9EqCn
LKf94IN4juVpDHHSo8NaI0sljT5ozY+ZJlqAHnU+4yNLY/FFnw433JlH9Oha
bbhDfLwvEnA675PnQ4+iU31uX8rxQ4wkWSuxv/SoOtRdrWY9AH32obgyOkWP
tvQPLOQeDkR2M03KqQv0iIFzbvuHSiDCnQ4CzGQMqO7lsvar6EDkmZs4PrOf
Ac3Wu0Z/E7uF/lzbcXmvw4BK1Fy9WN2DUFZxdcCJMgbEsi+On/xJMNIXjXYe
qWBABu/mZDwzghEp3cw0uZ4BNc7bFlB8DUbXolYVGTsYkGn757jgyWC0x1aY
ND3PgJhUOEJmVe8gb7bIBznHGBHPmfCzmCoEqdzQixOJYURPEzZPuyeHopvR
X8hcExjR0rGFzjOFoeh1Ma9z/gtGZB9x+wdfYygikeaVFN4xovCEVW09srsI
x0fOXaxmRKTpcGFpu7voDK7RdF9lRLk3TDvZ5O4hMfbTpJKrTMgsSibw5nIY
MpV7eWPLkgmx30L6fmz3UYQpTRdyYEKLHLQ9r8Tvo6nMttz6m0yIsyHgnY3j
fZSl4GHaHcmEzM3u+2UN3kd8djklOwQT4hpkijTpeIC4Ph90VeFnRgXTKfcr
B8LRjnUmD+txZmRfeOV1EtUjNMIsUdcj8V+vmLmnlCHyCOXZnD96E5iRpOJ7
Lj2vRyjJmst5vwoz6rGoc+uPfYT+B81Vl8s=
"]]},
Annotation[#, "Charting`Private`Tag$3683#1"]& ]}, {}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{-5, 5}, {0., 882.609101834732}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Input",
CellChangeTimes->{{3.7489846994852457`*^9,
3.7489847200011663`*^9}},ExpressionUUID->"5dafd481-b498-4613-b15e-\
715cf5a1e686"]
}, Open ]],
Cell[CellGroupData[{
Cell[TextData[Cell[BoxData[
FormBox[
RowBox[{
RowBox[{"f", "(", "x", ")"}], " ", "=", " ",
RowBox[{
SuperscriptBox["7", "x"], "+", " ", "3"}]}], TraditionalForm]],
FormatType->
"TraditionalForm",ExpressionUUID->"57f7650e-7944-447d-8a27-effedf9c187e"]], \
"Subsection",
CellChangeTimes->{{3.7489850381947002`*^9, 3.748985056676176*^9}, {
3.748986095526372*^9, 3.748986095842271*^9}, {3.749035932889619*^9,
3.74903594861053*^9}},ExpressionUUID->"ec866b89-91ba-4ca0-bdc8-\
a5509dab07cf"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
SuperscriptBox["7", "x"], "+", "3"}], ",", " ",
RowBox[{"{",
RowBox[{"x", ",", " ",
RowBox[{"-", "5"}], ",", " ", "5"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.748985059993074*^9, 3.748985086073658*^9}},
CellLabel->"In[7]:=",ExpressionUUID->"b7867223-1fc1-42ce-85ea-7c0a4e18d241"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwV13c8VW8YAHDbvdfF5ZZRySaUrB9JnEeKRJKs7J2ViowiUpKkaRTRIrNU
KknqvGVllFI0UMoe2Xv+Xv/c+/l+znnPOe97nvc5zyPpdtjCk42FhYUd/6z8
n+zZM7a8zES6Z76oirNQoDtcaLJlgYneDtxxXbEZ4/f0i1kmKk96cXXFEtpH
Fg+PM9GIz7uxFb+Lv0Zp72aiqGt2JRLYFOVv69EHJqovmNsnhZ10zMXk1E0m
CuAyeyeLvUhRMHO4wUQHkxUXVuyVMWq+JZmJ2BucNeWwtapOW49cYiI/t+aC
Ff8Uvu/qcpqJhkXZb8qv3P9VXyj4MFEZd3O8AnYBa1AWixYTiaj6PNuEvWV/
PleqOhMda7RnUcauyvrjrarCRKU59aYrbjcy3+SmwERbNTf2rFjo0qbi8rVM
pKUwJ6mCfXpNb3UsCxMVbb7yWA3bVt1xgF4riO6F92htWVmfmKQ996sEUUmS
RfKKg5rrHumWC6KsPtvxFV86vvVYQJkgCjfXeaKNXU4KLzYUCqLuoiANHWxl
00a+xERBpBOScUAPm9PTSE3UURDR3OPkdmI3OqnaDBwQRCrRH66u+Jbt2ojX
1oIokuvl4oo1TYcrXc0F0UPzc98MV9ZP/fqBfANBJHlaLHEX9nvWnlM6ioLo
VuIaJVPshFuxDY7TAiiljKV7/8p8bhyZ2DwhgPquyHlbYstcsxNlGxVAWcZC
Ayt+fVbZPbtfAI2Z2Y5bYQ/5N08NtQkgF7fzvLbY5jpy609VCCB6yysfB2zm
90r/e1cF0Pe8h7We2EjpblzMJQG0av64pxe2f1REltcFAXT0mSrrwZX3Iafe
qngW32/WW8cb+0TwHZOnYfj6Eetf+WL/FQxXrHAWQHJLfb2HsYv2qPR2bRJA
ftduUcKxne/ycLxXFEC0iyXlK6ZPdovnywugN/zDUREr65GeYRMgKYDeBpbM
n8ReM0CrnlolgM7eH2SJXnm/cV33uRcYSETI3eActkV5mrtCLQPdDLZ7nrSy
Hl87f1VXMRBnZGl+MvZUp7KdVzkDnTv46G4KdipXuXlmGQN5Wbgl3ViJJ+MB
XbFHDGSRr3kxHfvQJx0RgSQGEl2c+ZiFHdfWWj/jyED6NY3Zxdh2Q3K7rtsx
0O4Gja8vsDcuHyn/z4aBnknEsb/EbpDgLA00ZyC1k/zer1bi02NTzuB2Bjqr
tLALYWf2n4xul2egqhytQ7XY4cO6/lc6+FGdT5FNO3a6q1YvtPGjKVaRJ3+w
y76oeIw286NM56v0DuylF9IOFrX8aLdOfU3XynqcopquesKPbmu9dhzAjhdo
UroRyY+aJwKHprDT1P0HbovyoyAipI6flQKv7nseNGfyI+2T/YcEsFuFnTtY
ePkR5/xfQSb2+oV9La4s/Eh52xEPIex7FVp10j18yKPOR04MO8+KvSDnGR+S
7nJQUMIuCU3zfbSXD315XrjLGFvK4+j977v4kOXlrQEm2BfNd7WzbudDsxft
r+/BdlOYsrLU4ENqw8cm9mHztOzTnxXhQ9HSj37aYTvpUUUM/vIiVp4ih0PY
7Jxhlc3HeJGTaa5HMnbAqBkLSwAv0tDUpt7A/t4mq6NwkBfZ6KsXpWE/KP7y
OPwALzqufUrgDra19+Z0CT1e5PbNjKsAO7euO9CXmxc5+BxteIttds1KYimV
jmALU2Qc+4Qav7FRIh01NlUbT2FnN74/eiWBjh4rlJyaxV4S3FYuFUVH6mYB
S8vYDxOlvIw86EhRWGYrLxuO5+ThgivKdCTnE126Abv2+nkt6XIe5B8SLOGB
PaVl4OJfxoNsWu14vLGlvi/EPX/Og2TcChb8sE+IHPlplMuD2odejAVhK6Ra
n/S/yIO2vMvbFIMdlyZd/tyGB83znuq9j22U8dps1yANCa7d9m4Ie+Ri6wJH
Nw2p0w/ojmOnRc7nv/1NQ7LPzchp7EFnbW6dLzR0X2joGws7Ba5JPSc3ldLQ
o0lZRyb2r5wHKsw4Gtr+fQppY4cU3RT8JU1DXq1RugnYEpmlKE2Mhp7RtuVd
xa5J/BFgI0xDeTdA7Dr2umDhuk80GloVa7X+HvY7rcQz5aNUxF27OrYEm+91
/EQuSUXx632nu7Gzq483B9lTUX2q39vdHHh/qoUY5FlSUZOu1a992AkZgY9/
7aEi1usU7gPYgUF+8cZARVEP10QcxNYVd9QTl6WiLYeEp2Owv4ZAdu0QBfkf
3bL9HTabHHeI5GkKWqx2eGfISYHJK+wd1uEUpB7Ve2ovdu/88t6EYxTUTRvb
Y4v98fOMwrQXBXF+/8X0xU492d9Wb0JBe1Nq9l3CVmn6sDNsNQU90ysr+IHt
FJO0uiGXG81eT7kcwYXHE1PcYfe4UaeQ7I1YbGLeZk4inRtZ3t3y+Aq2RODa
34GXudEA+17++9h/ne/lCoVwI1m7vxc+YnvpPNZxMuBGJqv9kmS4cbyP1bn+
a+NCi/udU9uwfz3cZJnyjQtlbGOr6MPe63PZkPjMhYbaQlinsFXaLZSuVnCh
nh7j53wUCox9+DGhUcCFHpp9ZtfHDsnrORcRxoXsb320zsOOdGEv5GFyIZ3b
956cp1LgcYPRpa90LrR1y5D8Dey/egkBGVxciBYv/ywb21Bs9ebNc5woML6X
rwKb76fcY4s/nGgwZP/nZexb+3cXpT7iRJb2YznhNAqQhleL5U05EU9R5I2z
PPh5njeljOzkROoX+xjXsWVk14S+JDjR3I/PmbnYceyZWibqnCj90SvRemxz
9KwkYA0nusThvXsVHedr7e+lz3s50OjyxY48bJZN4qTBWQ504+lD2QFeCkQI
6TudjeRA7ouyvGx8FJhedlusCuVA2yT3rhHFHmrM1tnty4F2BD/INsJuCVMu
Md/LgQK2Bl/Kxi6u0H3iKMqBBnOzG/348ffAwSEz9CE7+pMgxy0kgONlZ+T2
l9nsqLJ1SUYN22PznT9zt9mRR8vao2bYdmyd4pHX2NHwsGXyOexduX7pMaHs
qP6AptACtszEieSr+uyotWBcb0gQ10cXUs8VNLGhl6Jvjs6uosCXSokHLg1s
aND7ZpboagrUL+d8Wl3DhiqfdFO2Yr8JKhY9VcaG4pSmvcKx79l/KbDMZEPt
hE80ixAFfJV4Py0eYUPWA57HVglTYL72lIg5nQ3JJDZc8xSlwAQHRZeTiw1p
1eZcTsAe0rvsWrrMilS57d4/xW4vysiXGWdFf++XDbGtoUBFWum22R+s6C1n
vmgWdoLvhMu9HFY05B+hM7YW73ead97EdlZ0vPSMN1qP98Ob+gSpbawoR6nh
+jj23UDVI+b/saLGKNN18uIUkGuZ03wgz4qKx1fJX8be/OBihTudFWWNp+53
l6DAdrOnvxubWJDthdDz66Qo4HNtafUTbxbkknYwq1kW53dD99lfriyoKsr3
9mo5/Pxz1a10exZkf1yf3Qo70P1qpvceFpT6Uo7ShB2hIaMqocaCGr4orfkp
j79vDxNvrJ9eJj//+7U4o0ABv/8UOVvWLZMyIamzl5TxeM6XOSH8y2QGw5ze
gn2iyWi3INsyebrT4qb8Zvx9Dfa8bNyzRLZ2+Kq+w85/fke05MkSObDob7mo
QoG+/4SVkw2XyLczjsoJ6hQ4qMlhs/fIIikf3UgIauP9zJU42++2SC45tEcd
xg5plkyPtVokjZ1NbD9gx4YQf15vXSTnddY3x2/F+bH4hN9GzkVyKNNakncb
Bbo0R6OoaQukeNrB75sJCrhr/cotL58nBx7+0pjcifNHrpa14Yt5kha/u8bZ
EMeD6FX2mvx5MvfLapY67CPzBk4fr86T7+7n2WYa4fUh85g/nOfJ4RHVz/bG
uN43Co4cmp8jdx4UQoOmuN6zoVuKasyRU1qTfcmWON+/92RNl58jqTru1UJW
OD61ycL1a+dIVyUZnxvYjWsDqTJsc2TykulShjUFfv/+9kb50yz59bfrlSJb
CswczFTY4T9L/hX57MbmSAHFsK3LAVkz5HTvdMZOL1x/tpkpdqTMkJHfP2cP
YVsbuFvZnJ8hD4zSq28cxPUOX0IBETBDXrnbbjniTYEfWW02jC0zpPjqbT8e
+OH88fnU4yd102SpzNsNjkdxva9Y7ToxNkXyijnm557E873SkuDdNUWGnkiy
C4ukgODU8IvWb1OkDgfDzTiKAnpvRfgqy6bIjwXPooZPUSDZxrc0OXaKXJDP
1zCNocCOGF6m1pop0lHd7LzxBRzfbfsrjutPku/DjtR5pFFArVNt7qvGJLk/
2XfQ4ibeP/0CKiobJsnlFwUR29Px80w33OzmmyTV7drHZW/h+QuaBu1vnSB/
ubaHL93F9bLhDqlNoRPkxV1SE9N5ePwjjVPtD8bJDlS4X+wVBayKmcU6d8bJ
dLvNg7pl+HplYwMpiePknMsHfZfXuH+rfWyz58Q4yfdPfHM+SYE9nRs3lxqN
k0lpOk77KyjQLCL7K/HvGPnshNjJxQ8U6Ilevc1IZIwsFzdaW/mXArSTj4YT
aWOkB7VEBTpxvxNmnNm+MEpuSGwlX3fheA04STvxZ5Rcrvtqj3opwGXf9f1B
/ii5dGs1S+cQzm8az4MFdUdJ8K97nTuP671uy0dtriNkuJlzkZEwFWL/DLkp
Wo6QspU2l9eIUiG/NU4o1HCE7ChHYSNrqDDWWHaSoTRCJnjvPXt/PRXYooxv
xPYOk/H9G4X+k6MCodr3eR/vMFnWyigd+o8KpckbdvZa/yNFE2PYxm2oQLHv
cWfd9o+8aNV3XN6OCtYS2afXSP4jw2wKLjs74OvnSyPTgUESlgQKf7pQQQGt
13kSNUhmuq51XvShwo3+VaoncgfI9uWYmdkIKgQTrGL0uT5SBI07Ld6nwjsO
pCP7u48M74zoe5JLBUZtpJ1eRR950yqx07eACg8sF64fudRH2rCmGvc/pkKn
z7Rgk1QfefjucoZ4GRUskv5Rbpn0kh9jjBl+X6ig0vdjYnNGN7nFKbS0jJMG
x0Y2KQjHdJORrw20myg0KJmOdlzy7SZXPZcIHuOhgT6XYlX9lm6yuGmNvo4g
DSykT1z3+dpFft7cPc0lToNgxzVbM3m6SHelnmMXtWlQ+tkuSuhEB/n4hevL
i4E0WPpe+HTRpYNsjk5/bxpCg+3tbL2dRh3knHJbosAJGtQN5Zs/Xd1BHlxI
jX4QTYNWnnlJ8yd/yZxva55uuEqD5Z03K873/iGNQ7Z6bH9Cgx2lLdRF63ay
3rMsQ3eKBoX597WrddpJLktr0w3zNBC5edjnqkQ7qd1sJ7OWhQeap7mumXz9
Td75OhArSuMB2XBrRsbcL9JQZO31E+t54F30JB2M2sjgrGHNn7t4YOGSOlds
+w9yB8ePxZAsHvh0uNpzTf4P0pbtz9/T+TyQaW5fWRj0gxzM8Pt84zEP7BY8
E/ON6wdJHajh7SjjgdTkRjaFTd/Jpkha21gTD2imH12uO95MOri0LPLR6HAk
79GMAPMLGY07z5ITdFDhCzizvb2R5OWjxeRF02E0cCNf0MNGMkxHaNP9ODoE
bsuT/mrUSFaWKXG9TqFDcMM9s5SIz2RMrPXDI0/pMN6vZPxffQM5cXpkaGqI
DlxnZu4YBtaQkoVxbYsBvHDONLg4h15D3ncmjXxCeYEiNFZHyXlPXu/oeP0n
ihdoeQNTtS3V5E+T8fVzV3iBv+GX6d6dVWRe/9xo7VNeEFlbOWMjUk5GFF5X
X57nBWsv6buNES/JwlmpMpPrfBB/NCju2vMSkiG8vs7sLh+8jig/bDH0gjTV
DuN3LeADmUR3vUbnYtJsV1PSU5IPxsjMls/bn5LPb76WZPbxwXr1XRvvCeST
ZnkPNT/r8cPIjVSP0VQ3Ul1RO25mih8i2JIqDbcYEw+zZ7riWBmgnOZevUrz
MEEQ+iW3uBmwX/17Wax+DHGtjU2um8mAo15+fRVJKcQdFaeiro0MYGF5vuz+
Jofo+Buh+cyFAdX1P+LV95cQVx811c80MMA77Ge1vdJLwuqZ4+mebwygyLRw
xLCXEp9i1Uw6fjNgd3hr5Nenr4hwgXWH2EYYUK/wOzB4FUlUhahb/2EIgLdB
4MOW/nfEdLKjzX9WAuB/JzRZ7EENoXIr/dHPXgHYNjX9VFWklmg8Eut2Y0wA
6KZhjTtjaglf6JH2WhCAh9Nh/AEOdcSgnvA2NYYgDJmdOP+G/oEo9uEturxF
EEoi37x5pPmJWMzcXRWaIAhbN70tMr/+hRAT031Spc+E/742p7yp+UJ8CSl7
O2zKBJXwwRMbF74Qtv+JLijYMkGuRtiA4vqVcC3cYNsYwASmZ8AXUrGJ6Jci
0ybTmTCYvnZC+U0zkUZ31bm1wITb9JD/eLt+ECUMaUuoXQVpTy+Ihgv/JLi+
x85VfFsFKXZ3F3uNfxIaJhQ/p65VkJBbX1lR+JNg1IcpfmJZDWE7pK0jwlqI
qcOBhUVbVoNFxKeQAZ42QsLAvO7Kg9XAFrK61UO0nYg+T4hm3RcCO5f8xhKN
diJf4c4+jxdCULSbqKGbtxOf5jZJba8RAjdxn+Jnse2E4MeofTb/hODd+7Ir
HBPtROHW327/NIXhzFqPnVkf/xDuv+j/TTYIA8fbosKOMx2E3B2bmsE1ouBQ
YHRf63YHEaA3L1+lIgrPkltvXijtIP5Ej4+XG4qChy/XefXRDkLPT6N6U5Ao
VDLt3M84dRJm62JE3n4QhVgvVhFp7S6ikFU1Vyx+DXDTzaPdhroJsr+hPFJy
HdjK2yFNag9h5+zj16WzDvK3eyzTZHoI/Sm0K9R6HZgdDzv59EAPEW/DgsQS
1kFK953jHJU9xLm+xOMnZ9eB3NvRo9k3e4mczk+e71vFYGdIolv/rn5iuOZQ
b061OKRczbj7xr2feL2QH87dKw69D3Lar0X2E1b8pzjNOCQgoeOVk86zfuKd
0uMyNVkJ+GreaZcgPkDs8BZL0/eWAA+l//YrTw0Qg7leJ9PHJeBMe7NBYOY/
oveuWPNVCSn49dLkUFjZPyKzoFR2lboUbE1EKZFN/4jqC5LPi3ZKwcjO/L54
7iHijQUH7PSTAqeCk5cz/YaIwYyMDxUv8PkhMi1f1YcJf9PoP5bW0jDLqf1y
rdsIMVPhzmQpkIHswPEPtwJGCIcdqqLub2XA8vfDv5LhI4Tduy7j3m8y8LhE
ir4haYToLOlfOMApC15+dGeNqhGiZIv20XZXWfj66TfHHsVRQmCdVVuupBw8
vhlrHjk2SviVHAx++loe6pixPfwsY0TZyFCIYIs8dF84G3mXd4zI2R4vcm9G
HtZFxDyo2DBGtPLHRFpqbIA4h9MUHucxIn99QgVf4QZwEYtE1+vGiBvGsYFS
BQrAuB2s8iRrnPh9acl500clUBIOrt5eNE58F04cMRxTAsPLx5y+kuOE5S72
nelCGyEiKihh+uc4McL7p3LeeSP0Oh/t1RWYIL61XpBKndwISOLQndqTE0Sx
ywujnI3KcPieB6PTepLIvU5JPe2lApeOp6Zfcp8k5HvZV2mFq0Ch+ccN2kcm
CZfrFQk8V1RgaElL/9L5SUIhKk13dakK+NvzBG4pmyRO7YgVfsKvCr6rir4k
SE4RJu+bYrTeqoJX7HLKf4NThMCDjS+m9NQh1lFDun1miujPLill2KpDtobP
o3jOaULitei5fUfVoetvY/Xv9dNE3Iyf764sdfAgsmfO75smig/IsQjSNcBt
xtTuV/E0ce2sXtXuDg1w8k0TOxc9Q4QGb+oVLdKE+R/Uj6MXZwihhw8Shxo0
4Ybx8UiHtBmi6EzsoZF/mvB5g+1v1aczxCof3zcRilqwo2f13dbOGYKkZfmS
97VAweOqjNquWWLxF3Va8f4WmHCMU2rjmyPONp2sv1uzFa58mG4xWjtHtFNG
qXn/tsIm3YMJRfJzBDnz6nu3gA54rTP8dw7miHKuQ8Hc9jrw4yf7I7XAOWLv
uv1fu4Z14I1NlFpc0xzxbu/8ajcZXTi/L0RbPX2euFnI5VlXSsC1ekX/B3nz
xDl5w2bOfgLSjX7fkn0xT6xj+k5W0QEe6+7iEGmcJz5q34is2AbwXWFNwwL3
ApGtoBmWfgtgA9sbj6qgBcL6hQRjzkcfqoo4rxwwWSRkXzYw9ksawKdNpe8a
bReJzWceHDPTM4CfuQGTJl6LxN4MxZPH7Q1g6NY3O73oRSJttvG5c4oBCF3I
k5V+sUgsa2eHBPPtAE/3Pa8GpZYI27jeAF7KTuBYldwdNbdEWAf3au+UNgLB
oUg+Qe5lIm8pwiVohxFIvvfWzGIuEw4B9t5fPY1AL2Jb7PuNy4QFOmOpkmcE
xzs7ZAWcl4mY1OIdtmq7YOiZmue98mXi7t3WXY/MjGFQsfeomyELXC7qF699
YgITwm1nC0xZ4Mmje4zJHyYwz9GYOmHBAh/H7qc6spkC7fert7HOLOCoNjTU
u98U5BMvCxSEscC/Mxzi47Om4Dav+WQ8nwXaz90EJQsz+FZ3diSGnxVEJqlv
59PMIUkvY6eVECvUtiz9tH1uDhZPnqXJirGC5F1G3Z8Gc/iY0rGjSpEVDl24
ti+Mcx9UueqnchuygnX4JB8K3AfF0wv68RGs4JAieHPBygJSpI8lXu5jhfpg
c4aNviVYplzodR5hhSOV3ysrXS1BkJqpqzLNCoqB5d6+py3h0tDnnk8cbPBx
guWXdYUlxL7cvE1Qgg00O18cr9ptBSF7BzqTrNkgsucx1cLNGqzC3TTTytlA
VKi5vfqNLaRkrOKarmGDXPOnttydttBMVjXt/8QGZErMvVPUA2DNoRTM28YG
9I2JTCmrA2B7cfzpqSk2CDo966Q4fADsbseoHlRgh2czufR7yvbgUp69UeMy
O3xKSHn7rc0R7nTZLlxJxsdtD3vQeJzgDzdP/b+b7BBy97DKmS1O4GZ62C8n
lx3XMRozu5KcwL1JK3/NO3YwXpaxU93rDF497+VZJ9lB2qZQzN/HBfx5BqQ+
2nFA1h9BFkeaGwwcL+XgceUASkIhg5B1A9/e891GBzngzVZz2m5wg4OVG/Lf
BnHAejmeopYQN3CL8lJ9nsABEr+XXk50ucGB8T9E+hsOOLA3RVyz3h0MW747
+EpxAlqnf+FjqSdUGufq5WzghOJu8x97WjxhR0moRKcyJ/RYX7u5NO8J+slC
nY46nCAoIJs/qesF2/Za+u2z5ATZeVGj7RVeoFbecHxLLCc4HeV9k/rzIIgX
VKVw9XOCiEn6hQgVX7C8XfKydoQTLjNPV62194X4xPzWS9OcYLX7lwtrrC9M
hF+SEubkgi8vIs/ebfWFWlPrQnkJLuCw0A3aftEPQoa6KndZc0E+8+ClIwv+
8EGVczL+HRcM8Lfem6MdATa5aeG9NVyQdJ7dY4PsEdiypm8r8xMX+B3ycIom
jsA9tg+nbrZxgasSua742BEI+5JEfzDDBRcbtxeo/TkCMsEyMh+UuYHkF54p
eXcUwksM9vPf5IbiXvWAtflBoObwacT5LjeoParbLvY+CPqXHS49zuGGRD8X
iz3dQWBnFFKz7xk3/M35SmhLH4OtzblE0gdueHnsgPau28dgZpx3oygLBQTa
7xucuRMMIZu/c0h7UiA0/u/V+JpQUP7icS/ID/fxVhlB3f9CoTtklKg4SoHb
TacOnBAMA6s3tHDPSApYeodfMHEIA409uqM51ylQnJUomjEWBuO+99o21lJA
fNl7g4niCTiS7V+suZkK9rmdPm7vI+BXw9pkPk0qzD8bUZOeiYA9s7VB3duo
IGwwXqq+4SQomiqopuymgqezn5jh+ZPQOdpVMOlJhb+XeCb09kaCja7z3Wfp
+Pw9m1bP9UeB3td9CWo0GpiMtaq8L4qGB4ssfjQBGtjP/LBX/hQNa+UfG/8V
psEUMrxd+S8aZo7zcV+TpYFM38CLOIXTUCReFz0KNFAxGDH2zTwNsn47Qh+H
0qBCciG+684ZoLNpuSl30UDDQMllc+VZeBnKvr97gAZc3rS/Jb1nwetfg8Gt
MRqcdsvOjqDHAvruLcuH+8gYZRTyzDIWgh6l9f5bwwNnvmTWDffEwk+HpYCH
5jxwfHi75KBoHOS+qAzfiPtAFYpL6tfCeLDadM2/8x0PrL8y+8/vZzywZTo5
ptfwQNDFcy93c10Ah0vTevRvPBC3ozu+3ekC8HsqsA2O8kB15muhE8wECBG8
GFcgTwfP8td2DfEXYechy2TFRDqUWU+FIrsrcOzaK5bDqXQ4YF9561HQFch6
IeX/9DYdKroPdFUkXAE2ttHt2x7QIY5u88qNvAIo5eLInkrcdw43swTKXYWt
qMrk6DQdJFvDGpgLV0GZqc1WYs8L3XXHW9ZXJ4LjljuHFlx5ge9p/rRxVyIk
OHL/AG9e8D/qo5HJngQDOU2Pao7xQlyviOIfSILH+Sd/FIbzQmfmB/FN7knw
PxC+b74=
"]]},
Annotation[#, "Charting`Private`Tag$5656#1"]& ]}, {}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{-5, 5}, {0., 1304.794066632393}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{3.748985086493451*^9},
CellLabel->"Out[7]=",ExpressionUUID->"46f261b9-3b7d-4a61-895e-c5bbe889b0cb"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[TextData[Cell[BoxData[
FormBox[
RowBox[{
RowBox[{"f", "(", "x", ")"}], " ", "=", " ",
SuperscriptBox["4",
RowBox[{"-", "x"}]]}], TraditionalForm]],
FormatType->
"TraditionalForm",ExpressionUUID->"07493a53-8dc4-4638-bd8c-d844b5770b8a"]], \
"Subsection",
CellChangeTimes->{{3.7489850932529697`*^9, 3.7489851088725843`*^9}, {
3.748986100580681*^9, 3.748986101210348*^9}, {3.749035954182428*^9,
3.749035973223344*^9}},ExpressionUUID->"4767a212-3e05-4504-b549-\
971ca9591c67"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
SuperscriptBox["4",
RowBox[{"-", "x"}]], ",", " ",
RowBox[{"{",
RowBox[{"x", ",", " ",
RowBox[{"-", "5"}], ",", " ", "5"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.748985115696072*^9, 3.748985139952009*^9}},
CellLabel->"In[8]:=",ExpressionUUID->"84234514-4410-4981-8eee-6ff52f4bfd42"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwVlnc41o8XhnntPd6EJCIVQkbKqHMiRAhZyd4hGZEiFJEoRcgqUUQqEaHy
+cgqSiJKiGRFZO/x+/7+Oee6r+e+zvn32e541sSFQkNDs/m/8f/9V+tpHRhz
kUpHSnfp+XlhmqLX2H1BLlJxw/fTTgdPfP3Ixc2IykV24MMT2pqe2M1v95uG
g4s07Zjxj5LwxG2rxl0ONFxko0btrNuoB2bX7m8SH+Yk1arjtxYGeGC+Gd2T
vJec5IEDwk+3JJzG8vNpHs+Pc5IoZ1T86Jcbijn7Pvp+lJNUhl7J03VueMPo
aB+tBif5hE2S3jDfDR0l581MlThJBW1lzWBfN2TrMj68JMBJ3m91fGRH54a2
h1gENPs5yJk7dxxkZVyRjiGoruMcB0k9dIGvL8UZvacMaWi8OciVawJfo8Kc
8XuPhJqkGwd5990Taz03ZywsaysKPslBNoY909y13xnN3eUyRA9xkL8WxyqU
vjvh46YhPw8mDjKAk+74ZREnNEwwE11PZSetn8fsp33ngBcVuHR1EtnJ5nhN
WuenDpjb+t73Vhw7edaNoeLnXQdc51WvEQtjJ7vLciKEfBzwaaKYq44zO2mW
6hTxXMQB2ZP+Pbkl+x9zR1+VjLDHxpSY/eI1bGQGu6uRTaktzu/XtPd6w0YK
LlZffHXbFsW+r14rLf0v921mVPO2xYsCPj90HrOR5sAa+XaXLUqmml/yusFG
pmoX9BZk2OC1NPGaUgs2sjhrWXH9hjXqZL41PPqXlQwrt1zTu2GFkze6V+mH
WMl9pXkJMT5WmBa6UlDdy0oGhJnoD5+wwr92Kkxqbazk4vrCo40tVpggVkrI
VLKSnswix7IKTuLPvMK91GusZFLUpZTIz5YYWJzO+1OclZxZLT6wLGuBojmV
ZJowKyl7Lun5Tz4L/JDY6W3Bz0qmdfpY/Fw1x60B/E0trKxkaZpbrWyTOb7b
nxhRM8VCTsWn93OfNkfOt9dnHxMsJH+WCE91vhnmNlzo8D/FQroXcV7mPGSK
qQqBmvmmLGR+Qy6T3k5TjMv0K/ppwEJ2+eoGPuA0RT9/z+u6yELmBdVey+k9
gQdFbA6JSLCQzK9i5yevnMCvgZjbOMFMWpgw8iQ1myBlJ1Pg9ivMZCNv40Op
C8Y4d4vut3kwM7lpZPpyrrMxjqxsHI87x0ya5vcEqBoZY/OXRckFV2ZyNXph
b8EuY0y9NNrz8Rgz+WST98Cjb0a4t/2TVhAfM2nM1L5nXs0IbSPv8H1+zEQe
8+/SC5cyxGaYZwrKZiJLXoxIebMYIqxYLItmMJH12Ub64SMGKOon1OsXz0T+
/W73kjvPAPvtsh9vDmQiQ8Y1m3okDNBVrUjNVpOJ/CLUJsskpY/e000O4z2M
pJNdueytY3r486mMafI3RrLPMtrjjaweHj8drw1fGMlB1wpk5tXDvX0m0rdr
GcnJtQ759e+6OP2pc1bpCSNZWSLnaueui4H5w9EhQYxka1VIbGfcUQy1p3vG
RmUkLY/x9DSMaWPRZ52bX9kZyau0qeYSbdrYfyjOO5ORkWTmUtLLrNRGbWE+
ObllBnJU7Z9Md4w2cv7YWWTyi4FUe7O3NUFSG++d0CtOfc5AyuyT1246o4WE
9u2yXfoMpJBj//1C5iM4XdqePKnFQBpXGQftmNHEHRJbzlcAA8nIxB1Q0qOJ
1+hy9h9TZCCFVzYHbS7RRCPyZbn3lv98X5/pcVtN7FP5Xlk6Qk9+3Hor7FOl
BtLIiBCaV+nJ6GaWgIIrhzFk82Hbq6H0pHysEi16H8aFDce1+vP0ZLgM46nx
k4dxojVXTc+DnrSLfs0cL38Yu4Jky42O05OWQkePjf1CLKs9+MJGkJ681/yz
6Z824hlr65zzT+nIkwv8nAMah3BEK1SjIpeOPJxR/y5d5BA6y2X9Wr5PR5Y9
PZsWsnoQrSgDIqEJdKTTM66Z8rKDePSxZ0bkeTryx309AX6Zg7hj9mLS7cN0
pJdtkzVuV8cfsanRT9op5MPifVxsO1WxrU600P4zhTR78sE/hUUVP27ktfB9
oJCuooGfNMZVsMq/TDD8DYXUbg3vnHupgtmn2p6Y5lBIfWPFZx+0VNBDmqNl
zYdC9of/vMl25gCuNIYLGLFTSIeg+UjBL8o4S898kIGRQvqrCS9rlSvjxKF4
h8oNWvKneLzfjfvK2FecWbBjhpbs2Ohf8PJWxtq0SvWlTlqS69xuCU8OZYzz
mLXPzqMlhQ2lF/WM9uFWVvf8WQ1a8qBVhnLHiCLaVn2ME1OnJR3lWUdPfVHE
B37yPkb7aEnBg1P6axWKuLNrWblwFy3p+7DyXkKsIsoV3qh1YqclAxOu/6Hb
q4gahiW9re00pA/bVZPBSwp4OmGd74U7Dbn48/eTj3vksVDbaemnAw05/om9
N1ZAHieWG7rZT9GQl6rVZx3p5dHP6XaOuwENqVctbWrZvRdDlHbIiyrQkDxF
33qsb+zFbU8T725b2CB0YwvBY1gOPfdJMXRt3SCk0kX3tj6QQT+GirxArg3i
W7MHU2SYDF5s19HjpWwQWQx9STY2Mng9wCVed3id2GmYLBotKIMFpVmC5S/W
Cd/A9ulniXvwzz5+2STtdYL+Db+TVLw0uinTWxz3WSM2fRvJevBAEr0ZE5dG
HdeISQNn2bkISQzs2J4RZbZGTLeabfZ0lcSoQPj1VnWNsPAuMX8rLYm5ZRc9
9zCsEUpRrMcWXu3GQeWpMJa0VYJ/aUr8fscudNr/83FNzQrB7ueYVy69E10f
7zfXfrVCFE+bljVQd6KH4G26DwUrhOObB/cnVyTQZ0XTtvn2ClH4783t+I8S
GELkUzvtVohhk2fj694SeEcnIHRiZZloiT5eElu+A+st2E0FlZaJKGe6bw9t
xPHDexfajF3LhHlhn9Hro+L4UYV4tk1omXDmfGc3oiiOrUJ+LDsoy8S1ftGu
q6zi2Nv7rUq2ZYm4GrqU01QuhotuOZJHvJaIzTuOF50RFEOpINUN74eLxAmG
OB+PUVEkewylficvEiYPwi6nd4iiuaaTmUXMIhF141rt73eieIUz7gl4LxL0
vKbnKtJFsfNhjwX3gUVixyrv9UBDUbz2JbzoRdMCcW5KuQd9RHBIqsFhdnqe
UOLWeE6zXxhDbnXFuQ/OE/QHdaoaNwkj7/y/V93f5omp97+630xvxUPVApx1
b/7jDPcbAs+3YpKFR2VS1Dxx8sOzvMeSW/FIJAd1/5Z5wlAg5AvdTiF80HOi
9sLhOUJ3h5War6ogKgwoLH9VmiMabnJI9WwTxNpRnr17d88Rh/0uHXKjE8Sh
hc/pQ5xzBLn227T9owBK8er7n+ieJQZ8fz7icxDAYu0jYjLnZ4nISeW3rPH8
WPtcKbyvcIaQ6Dq0+HeDD83KqGVqWTMEc6/V6b5hPhx6Mz2WnDhD8L6N2jHx
mQ+ZG4ssDC7OEG9DVBgts/jQYGCPXKXODEFPS7Vy1ODDDgGJn4n908T5cr7q
A7GbcPgyn7qOwDQhcHl7tqwcFVkvPf+XyDpNjDPSmAQKUFE2SDenb3WKCF0S
Hf1OS8VA70usF39NEXSt309MfOVFxlOD3wsLpojAF9vSzEN4cYdSaQDvwSmi
U+d0G20LDzoOmT7vcZgkIr1TnKdiuDHq14SjlOkk4XPeSexUIDcWdF/bfF57
ktDzTuDtduTG6dY3l7ilJ4m6U+ZbxdW5kRKmezdq5B8hEuJTfrWXC0H+zxdj
jn+Er6yRpVMZJ1Ym7dYaMR8nOEtfvZWLZEfmU8NOtOrjBNETLsfkxI7morlX
tmwfJ1JH8uUYNNhxukCc1B/7S1xRX9l1joYdJcltai/C/hJxgrzbBMPY8O7o
JvmLj8cIUbbMGcsIVgwAWmH25T/EswhbakwuM76jJ9Ukev8Q7m2NWr0xzMjd
GGp1qPYPcbHxykfzM8xYaLqa4nPzDxHQvKaWr8SMA6cXeNvF/hCH97D4fqtl
QpM748z3jo0Quhc/Kx4YY8S9fzpn5TKHCOapz//YjjPguUkZSf7IIWK/TXri
+H4GLF+4bLPuMUSU0p/RHxFlwMOMUvUfDwwRhxjcbu2eoUcT8Yspp78OEpwi
NGe/3KXHAJstqjlsg0TCa02jpyN0WPnFKmzzxd+EdDRWdqZScP37s5I1+9+E
2IaRz5OrFNToo4wM6PwmDDGALdGXgk0TBUYlfL8Jg1OcCTm6FOxmW9lu9KKf
cCdeGjQs0+KGVnptzMgvYljZX43BgRaPVHaxrJn3EcOvYwbeqtPgs4JHKg1q
fcQRo7gDjyRpUCD97Onbon2EhSErJWczDXYsMCYc+9pLJGv08df82gCJYHPu
zOWfBPfMt0Of9Tfg3eU5dtTpIZozPyVQpNdh9aYiY1RfJ2Ef0v3mAuMqtJxt
cNlS0Encvi89HzG4AjlGp+qe+XcSEm40My9rV0CPNyLyG2Mnobq86fL1iBVI
TWqlSMp8JxpTbmysU1ZAOcN3o+lCB3Hx/ulXQ8zL4JP/fJGH2kb40jFsvSq3
CHs5vSM0+lqJcsonu7lNizDlt4fT/2kr8TpD5/OV5QXwU88X/6rTSrx7afJi
tm4BAj5nGyaHfCHK2qxZ5G0XYGZUWnffx89EjkDUq8nEeWCMWMzS9vtAZGdR
XMqpcxCtH1CWx/6BGBHflp2wOgvMm6ebmPPeExXuAseiBmeBNX9svrGrgXin
KuRb8WoWuD7/1D+uVU/sbJBg0reZBQGhukULgRpCRDskjvXpDJi7ij9oDakg
PMyUY5Rsp+G6r/+1hNJyovjpVMYZvWl4G1Jz1mTiFbFrcnXltfI07Eh0OtRq
V0ZUDbvgXa5pmCZyur5olBC/FJNc9d9NwTbFo3uyeQoIrYj0u/HSUzB5N9V5
KtWRsP53dfwP+ySEUO7UaR/QBXMVg3uaC/9ANs2pYZPyWTD1vXX3+9d/cELx
+5uow5Hgo0qT4HvrH/i6ev6pvZMMl20lDp9i+Qc0NKUbTlV5UHgl036MdgIa
PnZeVzxRDq/36WTOsf8F96AfDaekK2A5TkBF8e8YMO/ooo+kq4Q9Spv5U5rG
QC+4O/RryWvgv84z3HJ9DD5K9voFbCKgoeUdDTPbGLhr+j3tGn0HjyW6uW15
R8Er63yScOEHeKwrHB2hNgLq8wsl8gKNYNClkq8sMgLs+kGtWpGNIKBo852V
bgSeLgRxeVs3gd5kWA1f0zBMGF6MqWL/BO6PQu6/sB6G8tCqqufKLdBwJfd2
39UhUJWpLjZKaYP4gxF6wv8GYN/XjuSqD23wV5N8f+z7AOwN/ntxz2obzF4+
vjOxegB2fuDXZHb4CmDGTfW6MwBUF+82QqodwhkO1miqDcDfDKFZ2aoOUHWK
t/W/8Rvuswfu4xjshAHD3uOimv2QVhIrGMz/A8R2xVgfkOuHZKsHayO6P4Am
7YeQq1A/xD3+WFf77Adohs2coMz+gqAj4uYhQV1wS4Rvi1ruLzAJaQkcY+uB
lZbxL6mcv4ASyNftLNgHTUwSar3dvWBlX9BartQHPJ4mueqveqFYDz6wG/VB
s23o1frbveAocrrsZVQfcN9gabbV6YV379/cop/tAxuJme/pL39ChJCz1sPm
X/Bud7eEUEoP0FcXP/sd8Rui/ehV2y92gfUTnUf77/+GsLoTs3ZWXfAyqTs9
tvI32OiqMvCodoGzB2OM4tRvCBzrDRhc+gF1VCunCNsBeGtY/sQk+AdEudIK
iKsMgl7o5l7+q53AxG502XFiCCT28F8VL/kGlrusSGWWYdAKe9CQl/INCjSc
N1h3DMP1bIk/x0K+geGFoEslJ4ehmeqzb0brGyQPZV2grxuGAMrL6YofHbCz
eso3N30Euhp2RjOzdoBWYKLj6NFRaKebKykL/QrJtzMfVDmNwnbNFptp168w
UpjXlxA6ClcDrFJ0j3+FuN+vbdVejoKv1XsVPdGv8NVowCpOZAwGhpTqb9W0
gbP0vhOy82OgLLlcx8/VBhF9HZp+OeMwmLM0pFrxBX5WHDsT9GYcYj8M3OTM
/QKqiWRyaPs4dM7dn51P+AKTWgV/rjNNAJfcz/sMZ76A7ZNL8TmeEzBuIMUk
IPafH7ij66viP1AOrJ5di2+BJQaVCiHHSbDYurvLf7YZcv1mPt3znoRSnRX1
hdZmMO192r89eBI6B9K+33vRDEXlYuy770yCXdRjUauzzeDqyW6nVD8Jl2cE
SkP+foKvLb30BlJToP6oLdxo/CMUpUcZhU5PwQlfhityzE3QRI0a5qKZBut9
3ZEXRxphKPZq6AOOaRBLCyoffd8IW0MiC2t3T8OscDmd6vVGuGZ9hZnNbhrM
Fc76xnM2gr1wKJnSNA0MWRbRk8IfgPt+wN4XD2dgX5NdrJd5A0jzBzRoFM+A
UlbgL3a1BtCOP2f7lZiB1nWJE59EGiAkzD9u4ccM6DB2TD/9Uw8jdr4jB3lm
4ar7Z67R0HogRc9kNV6ahfSqhSKZ53VwNtuZe8B8DmYV2CtHJWrh5oXUjJtO
c/ABh01+cNXCM6Pm3So+c9B4RI+vf6kGJtb3H74ZMweFyhOFKs014HWKze/A
mzlQejGsyxhUAx6bitvits8DK39b/vrnd+AatZG87+88JEgelXp7qxqibJTE
+xbn4bHFmZbwS9WQq3T6+XWGBajuVog+6VENg/2tDb3bFmD4nF+j7pFqcIbc
xRjjBfBQ4dgtvkSC46K+1c+yBTjJ6Zr4yJUEW4804ejLi+DyuvfCg6wqWOlk
aZ66sQjl2sQaEVYFd3UvhFqnLUKtvWszrV0VfNlt2StfsggLTplVE8JVcGSY
70H3wCIE+l4nTme+BUnn2zsUji6BK8VjvCb7DczaXJPu4VwGtTeR2pz1lXDr
00KXjtAy3L2rPXM8vxJkDrrFFe9ahlXLyuCiuEpw3ao9Ho3L0HjFIv3TiUro
/EH3XMFvGQaqokPP/a6AKoswhWvtyzD7yemWJXMFxBgHqihmrMDf2rbKe26v
IOGjlFdh/gpMlu8Vs9Z/BRk6vfckXq1A4u+Xuiryr6Do4FF6gdYV8Hjkq2Wy
UgbfJbd8XmVahRT/9onlW2Wwm1LlXO+/CkFyJXFM70qhvpjh1slja/C2WfbS
FtWX0CJT+a7Vcg0S+J57xIq9hB+PveeOua7B6cDX7/nZXsLEvW9Why6vQRtH
g/mV7hLYHJsvIf5qDf44jB5JDy8BFyeD13/F1qGGUFes/lQM9JuShsKW1+E8
F9s/1uAXwDsRysnLtAEVjxpE2dxfwPb37soPqRuQUN+1KGL2Ag6FqEe937MB