From 25b5ca179f24cfb2faec8b6b63422fdcf6cea844 Mon Sep 17 00:00:00 2001 From: amrit110 Date: Tue, 19 Dec 2023 17:42:28 -0500 Subject: [PATCH] deploy: 35c8f24faff126609683309403db523e9b27ce2c --- 404.html | 4 +- api/searchindex.js | 2 +- .../kaggle/heart_failure_prediction.html | 74 +- .../kaggle/heart_failure_prediction.ipynb | 3904 +-- .../kaggle/heart_failure_report_periodic.html | 158 +- .../mimiciv/mortality_prediction.html | 108 +- .../mimiciv/mortality_prediction.ipynb | 25014 ++++++++-------- .../mimiciv/mortality_report_periodic.html | 134 +- api/tutorials/nihcxr/cxr_classification.html | 132 +- api/tutorials/nihcxr/cxr_classification.ipynb | 3514 ++- api/tutorials/nihcxr/monitor_api.html | 22 +- api/tutorials/nihcxr/monitor_api.ipynb | 1984 +- .../nihcxr/nihcxr_report_periodic.html | 6 +- .../length_of_stay_report_periodic.html | 128 +- api/tutorials/synthea/los_prediction.html | 124 +- api/tutorials/synthea/los_prediction.ipynb | 6792 +++-- ...d99ed.37214bf2.js => 3e9d370c.29f4916b.js} | 2 +- ...79204.8d399381.js => 72bee0c1.b6c646b2.js} | 2 +- ...7c442.f735fc16.js => d098a0ec.101bc726.js} | 2 +- assets/js/main.040305dd.js | 2 - assets/js/main.5ab33cdc.js | 2 + ...CENSE.txt => main.5ab33cdc.js.LICENSE.txt} | 0 ...n.29a116ab.js => runtime~main.ed9ccda4.js} | 2 +- blog/CyclOps-0.2.0-release/index.html | 4 +- blog/archive/index.html | 4 +- blog/index.html | 4 +- blog/tags/0-2-0/index.html | 4 +- blog/tags/index.html | 4 +- docs/intro/index.html | 4 +- index.html | 4 +- markdown-page/index.html | 4 +- 31 files changed, 21005 insertions(+), 21139 deletions(-) rename assets/js/{b91d99ed.37214bf2.js => 3e9d370c.29f4916b.js} (65%) rename assets/js/{9f179204.8d399381.js => 72bee0c1.b6c646b2.js} (64%) rename assets/js/{1cd7c442.f735fc16.js => d098a0ec.101bc726.js} (64%) delete mode 100644 assets/js/main.040305dd.js create mode 100644 assets/js/main.5ab33cdc.js rename assets/js/{main.040305dd.js.LICENSE.txt => main.5ab33cdc.js.LICENSE.txt} (100%) rename assets/js/{runtime~main.29a116ab.js => runtime~main.ed9ccda4.js} (80%) diff --git a/404.html b/404.html index 9878335d1..2d7e235d0 100644 --- a/404.html +++ b/404.html @@ -5,8 +5,8 @@ Page Not Found | CyclOps - - + +
Skip to main content

Page Not Found

We could not find what you were looking for.

Please contact the owner of the site that linked you to the original URL and let them know their link is broken.

diff --git a/api/searchindex.js b/api/searchindex.js index 1908e631f..6d2b7672f 100644 --- a/api/searchindex.js +++ b/api/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["api", "contributing", "index", "intro", "reference/api/_autosummary/cyclops.data.features.medical_image", "reference/api/_autosummary/cyclops.data.features.medical_image.MedicalImage", "reference/api/_autosummary/cyclops.data.slicer", "reference/api/_autosummary/cyclops.data.slicer.SliceSpec", "reference/api/_autosummary/cyclops.data.slicer.compound_filter", "reference/api/_autosummary/cyclops.data.slicer.filter_datetime", "reference/api/_autosummary/cyclops.data.slicer.filter_non_null", "reference/api/_autosummary/cyclops.data.slicer.filter_range", "reference/api/_autosummary/cyclops.data.slicer.filter_string_contains", "reference/api/_autosummary/cyclops.data.slicer.filter_value", "reference/api/_autosummary/cyclops.data.slicer.is_datetime", "reference/api/_autosummary/cyclops.data.slicer.overall", "reference/api/_autosummary/cyclops.evaluate.evaluator", "reference/api/_autosummary/cyclops.evaluate.evaluator.evaluate", "reference/api/_autosummary/cyclops.evaluate.fairness.config", "reference/api/_autosummary/cyclops.evaluate.fairness.config.FairnessConfig", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator.evaluate_fairness", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator.warn_too_many_unique_values", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.Accuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.BinaryAccuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.MulticlassAccuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.MultilabelAccuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.AUROC", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.BinaryAUROC", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.MulticlassAUROC", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.MultilabelAUROC", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.BinaryF1Score", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.BinaryFbetaScore", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.F1Score", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.FbetaScore", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MulticlassF1Score", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MultilabelF1Score", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore", "reference/api/_autosummary/cyclops.evaluate.metrics.factory", "reference/api/_autosummary/cyclops.evaluate.metrics.factory.create_metric", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.accuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.auroc", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.binary_f1_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.binary_fbeta_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.f1_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.fbeta_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multiclass_f1_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multiclass_fbeta_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multilabel_f1_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multilabel_fbeta_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.binary_precision", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.binary_recall", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multiclass_precision", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multiclass_recall", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multilabel_precision", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multilabel_recall", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.precision", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.recall", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.binary_roc_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.multiclass_roc_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.multilabel_roc_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.roc_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.sensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.specificity", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.stat_scores", "reference/api/_autosummary/cyclops.evaluate.metrics.metric", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.Metric", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.MetricCollection", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.OperatorMetric", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.BinaryPrecision", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.BinaryRecall", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MulticlassPrecision", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MulticlassRecall", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MultilabelPrecision", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MultilabelRecall", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.Precision", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.Recall", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.roc", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.BinaryROCCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.MulticlassROCCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.MultilabelROCCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.ROCCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.BinarySensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.Sensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.BinarySpecificity", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.MulticlassSpecificity", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.MultilabelSpecificity", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.Specificity", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.BinaryStatScores", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.MulticlassStatScores", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.MultilabelStatScores", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.StatScores", "reference/api/_autosummary/cyclops.monitor.clinical_applicator", "reference/api/_autosummary/cyclops.monitor.clinical_applicator.ClinicalShiftApplicator", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.binary_noise_shift", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.feature_association_shift", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.feature_swap_shift", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.gaussian_noise_shift", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.knockout_shift", "reference/api/_autosummary/cyclops.report.report", "reference/api/_autosummary/cyclops.report.report.ModelCardReport", "reference/api/_autosummary/cyclops.tasks.classification", "reference/api/_autosummary/cyclops.tasks.classification.BinaryTabularClassificationTask", "reference/api/_autosummary/cyclops.tasks.classification.MultilabelImageClassificationTask", "reference/api/cyclops.data", "reference/api/cyclops.evaluate", "reference/api/cyclops.monitor", "reference/api/cyclops.report", "reference/api/cyclops.tasks", "tutorials", "tutorials/kaggle/heart_failure_prediction", "tutorials/mimiciv/mortality_prediction", "tutorials/nihcxr/cxr_classification", "tutorials/nihcxr/monitor_api", "tutorials/synthea/los_prediction", "tutorials_monitor", "tutorials_use_cases"], "filenames": ["api.rst", "contributing.rst", "index.rst", "intro.rst", "reference/api/_autosummary/cyclops.data.features.medical_image.rst", "reference/api/_autosummary/cyclops.data.features.medical_image.MedicalImage.rst", "reference/api/_autosummary/cyclops.data.slicer.rst", "reference/api/_autosummary/cyclops.data.slicer.SliceSpec.rst", "reference/api/_autosummary/cyclops.data.slicer.compound_filter.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_datetime.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_non_null.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_range.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_string_contains.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_value.rst", "reference/api/_autosummary/cyclops.data.slicer.is_datetime.rst", "reference/api/_autosummary/cyclops.data.slicer.overall.rst", "reference/api/_autosummary/cyclops.evaluate.evaluator.rst", "reference/api/_autosummary/cyclops.evaluate.evaluator.evaluate.rst", "reference/api/_autosummary/cyclops.evaluate.fairness.config.rst", "reference/api/_autosummary/cyclops.evaluate.fairness.config.FairnessConfig.rst", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator.rst", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator.evaluate_fairness.rst", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator.warn_too_many_unique_values.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.Accuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.BinaryAccuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.AUROC.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.BinaryAUROC.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.MulticlassAUROC.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.MultilabelAUROC.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.BinaryF1Score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.F1Score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.FbetaScore.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MulticlassF1Score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MultilabelF1Score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.factory.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.factory.create_metric.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.accuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.auroc.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.binary_f1_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.binary_fbeta_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.f1_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.fbeta_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multiclass_f1_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multiclass_fbeta_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multilabel_f1_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multilabel_fbeta_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.binary_precision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.binary_recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multiclass_precision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multiclass_recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multilabel_precision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multilabel_recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.precision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.binary_roc_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.multiclass_roc_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.multilabel_roc_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.roc_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.sensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.specificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.stat_scores.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.Metric.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.MetricCollection.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.OperatorMetric.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.BinaryPrecision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.BinaryRecall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MulticlassRecall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MultilabelRecall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.Precision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.Recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.BinaryROCCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.MulticlassROCCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.MultilabelROCCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.ROCCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.BinarySensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.Sensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.BinarySpecificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.MulticlassSpecificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.MultilabelSpecificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.Specificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.BinaryStatScores.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.StatScores.rst", "reference/api/_autosummary/cyclops.monitor.clinical_applicator.rst", "reference/api/_autosummary/cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.binary_noise_shift.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.feature_association_shift.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.feature_swap_shift.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.gaussian_noise_shift.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.knockout_shift.rst", "reference/api/_autosummary/cyclops.report.report.rst", "reference/api/_autosummary/cyclops.report.report.ModelCardReport.rst", "reference/api/_autosummary/cyclops.tasks.classification.rst", "reference/api/_autosummary/cyclops.tasks.classification.BinaryTabularClassificationTask.rst", "reference/api/_autosummary/cyclops.tasks.classification.MultilabelImageClassificationTask.rst", "reference/api/cyclops.data.rst", "reference/api/cyclops.evaluate.rst", "reference/api/cyclops.monitor.rst", "reference/api/cyclops.report.rst", "reference/api/cyclops.tasks.rst", "tutorials.rst", "tutorials/kaggle/heart_failure_prediction.ipynb", "tutorials/mimiciv/mortality_prediction.ipynb", "tutorials/nihcxr/cxr_classification.ipynb", "tutorials/nihcxr/monitor_api.ipynb", "tutorials/synthea/los_prediction.ipynb", "tutorials_monitor.rst", "tutorials_use_cases.rst"], "titles": ["API Reference", "Contributing to cyclops", "Welcome to cyclops\u2019s documentation!", "\ud83d\udc23 Getting Started", "cyclops.data.features.medical_image", "cyclops.data.features.medical_image.MedicalImage", "cyclops.data.slicer", "cyclops.data.slicer.SliceSpec", "cyclops.data.slicer.compound_filter", "cyclops.data.slicer.filter_datetime", "cyclops.data.slicer.filter_non_null", "cyclops.data.slicer.filter_range", "cyclops.data.slicer.filter_string_contains", "cyclops.data.slicer.filter_value", "cyclops.data.slicer.is_datetime", "cyclops.data.slicer.overall", "cyclops.evaluate.evaluator", "cyclops.evaluate.evaluator.evaluate", "cyclops.evaluate.fairness.config", "cyclops.evaluate.fairness.config.FairnessConfig", "cyclops.evaluate.fairness.evaluator", "cyclops.evaluate.fairness.evaluator.evaluate_fairness", "cyclops.evaluate.fairness.evaluator.warn_too_many_unique_values", "cyclops.evaluate.metrics.accuracy", "cyclops.evaluate.metrics.accuracy.Accuracy", "cyclops.evaluate.metrics.accuracy.BinaryAccuracy", "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy", "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy", "cyclops.evaluate.metrics.auroc", "cyclops.evaluate.metrics.auroc.AUROC", "cyclops.evaluate.metrics.auroc.BinaryAUROC", "cyclops.evaluate.metrics.auroc.MulticlassAUROC", "cyclops.evaluate.metrics.auroc.MultilabelAUROC", "cyclops.evaluate.metrics.f_beta", "cyclops.evaluate.metrics.f_beta.BinaryF1Score", "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore", "cyclops.evaluate.metrics.f_beta.F1Score", "cyclops.evaluate.metrics.f_beta.FbetaScore", "cyclops.evaluate.metrics.f_beta.MulticlassF1Score", "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore", "cyclops.evaluate.metrics.f_beta.MultilabelF1Score", "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore", "cyclops.evaluate.metrics.factory", "cyclops.evaluate.metrics.factory.create_metric", "cyclops.evaluate.metrics.functional.accuracy", "cyclops.evaluate.metrics.functional.auroc", "cyclops.evaluate.metrics.functional.f_beta", "cyclops.evaluate.metrics.functional.f_beta.binary_f1_score", "cyclops.evaluate.metrics.functional.f_beta.binary_fbeta_score", "cyclops.evaluate.metrics.functional.f_beta.f1_score", "cyclops.evaluate.metrics.functional.f_beta.fbeta_score", "cyclops.evaluate.metrics.functional.f_beta.multiclass_f1_score", "cyclops.evaluate.metrics.functional.f_beta.multiclass_fbeta_score", "cyclops.evaluate.metrics.functional.f_beta.multilabel_f1_score", "cyclops.evaluate.metrics.functional.f_beta.multilabel_fbeta_score", "cyclops.evaluate.metrics.functional.precision_recall", "cyclops.evaluate.metrics.functional.precision_recall.binary_precision", "cyclops.evaluate.metrics.functional.precision_recall.binary_recall", "cyclops.evaluate.metrics.functional.precision_recall.multiclass_precision", "cyclops.evaluate.metrics.functional.precision_recall.multiclass_recall", "cyclops.evaluate.metrics.functional.precision_recall.multilabel_precision", "cyclops.evaluate.metrics.functional.precision_recall.multilabel_recall", "cyclops.evaluate.metrics.functional.precision_recall.precision", "cyclops.evaluate.metrics.functional.precision_recall.recall", "cyclops.evaluate.metrics.functional.precision_recall_curve", "cyclops.evaluate.metrics.functional.roc", "cyclops.evaluate.metrics.functional.roc.binary_roc_curve", "cyclops.evaluate.metrics.functional.roc.multiclass_roc_curve", "cyclops.evaluate.metrics.functional.roc.multilabel_roc_curve", "cyclops.evaluate.metrics.functional.roc.roc_curve", "cyclops.evaluate.metrics.functional.sensitivity", "cyclops.evaluate.metrics.functional.specificity", "cyclops.evaluate.metrics.functional.stat_scores", "cyclops.evaluate.metrics.metric", "cyclops.evaluate.metrics.metric.Metric", "cyclops.evaluate.metrics.metric.MetricCollection", "cyclops.evaluate.metrics.metric.OperatorMetric", "cyclops.evaluate.metrics.precision_recall", "cyclops.evaluate.metrics.precision_recall.BinaryPrecision", "cyclops.evaluate.metrics.precision_recall.BinaryRecall", "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision", "cyclops.evaluate.metrics.precision_recall.MulticlassRecall", "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision", "cyclops.evaluate.metrics.precision_recall.MultilabelRecall", "cyclops.evaluate.metrics.precision_recall.Precision", "cyclops.evaluate.metrics.precision_recall.Recall", "cyclops.evaluate.metrics.precision_recall_curve", "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve", "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve", "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve", "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve", "cyclops.evaluate.metrics.roc", "cyclops.evaluate.metrics.roc.BinaryROCCurve", "cyclops.evaluate.metrics.roc.MulticlassROCCurve", "cyclops.evaluate.metrics.roc.MultilabelROCCurve", "cyclops.evaluate.metrics.roc.ROCCurve", "cyclops.evaluate.metrics.sensitivity", "cyclops.evaluate.metrics.sensitivity.BinarySensitivity", "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity", "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity", "cyclops.evaluate.metrics.sensitivity.Sensitivity", "cyclops.evaluate.metrics.specificity", "cyclops.evaluate.metrics.specificity.BinarySpecificity", "cyclops.evaluate.metrics.specificity.MulticlassSpecificity", "cyclops.evaluate.metrics.specificity.MultilabelSpecificity", "cyclops.evaluate.metrics.specificity.Specificity", "cyclops.evaluate.metrics.stat_scores", "cyclops.evaluate.metrics.stat_scores.BinaryStatScores", "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores", "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores", "cyclops.evaluate.metrics.stat_scores.StatScores", "cyclops.monitor.clinical_applicator", "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator", "cyclops.monitor.synthetic_applicator", "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator", "cyclops.monitor.synthetic_applicator.binary_noise_shift", "cyclops.monitor.synthetic_applicator.feature_association_shift", "cyclops.monitor.synthetic_applicator.feature_swap_shift", "cyclops.monitor.synthetic_applicator.gaussian_noise_shift", "cyclops.monitor.synthetic_applicator.knockout_shift", "cyclops.report.report", "cyclops.report.report.ModelCardReport", "cyclops.tasks.classification", "cyclops.tasks.classification.BinaryTabularClassificationTask", "cyclops.tasks.classification.MultilabelImageClassificationTask", "cyclops.data", "cyclops.evaluate", "cyclops.monitor", "cyclops.report", "cyclops.tasks", "Tutorials", "Heart Failure Prediction", "Mortality Prediction", "Chest X-Ray Disease Classification", "NIHCXR Clinical Drift Experiments Tutorial", "Prolonged Length of Stay Prediction", "monitor API", "Example use cases"], "terms": {"cyclop": [0, 131, 132, 133, 134, 135], "data": [0, 2, 3, 24, 26, 27, 49, 50, 52, 54, 69, 72, 89, 95, 112, 114, 115, 116, 117, 118, 119, 121, 123, 124, 130, 133, 134, 136], "slicer": [0, 131, 132, 133, 134, 135], "compound_filt": 0, "filter_datetim": 0, "filter_non_nul": 0, "filter_rang": 0, "filter_string_contain": 0, "filter_valu": [0, 133], "is_datetim": 0, "overal": [0, 7, 21, 121, 131, 132, 133, 135], "slicespec": [0, 17, 112, 124, 131, 132, 133, 134, 135], "spec_list": [0, 7, 131, 132, 133, 134, 135], "include_overal": [0, 7, 131], "valid": [0, 7, 9, 17, 121, 123, 124, 131, 132, 133], "column_nam": [0, 7, 9, 10, 11, 12, 13, 133], "_registri": [0, 7], "add_slice_spec": [0, 7], "get_slic": [0, 7], "slice": [0, 3, 7, 8, 17, 21, 121, 123, 124, 131, 132, 133, 135], "featur": [0, 7, 9, 10, 11, 12, 13, 15, 112, 116, 117, 121, 123, 124, 130, 133, 137], "medical_imag": 0, "medicalimag": 0, "__call__": [0, 5, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "cast_storag": [0, 5], "decode_exampl": [0, 5], "embed_storag": [0, 5], "encode_exampl": [0, 5], "flatten": [0, 5, 133], "task": [0, 2, 3, 17, 24, 25, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 44, 47, 48, 49, 50, 51, 53, 54, 58, 60, 61, 62, 63, 66, 67, 68, 69, 78, 80, 81, 82, 83, 84, 85, 90, 92, 93, 94, 95, 98, 99, 100, 102, 103, 104, 105, 110, 130, 133, 137], "classif": [0, 3, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 44, 47, 48, 49, 50, 51, 53, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 78, 79, 80, 81, 82, 83, 84, 85, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 130, 131, 132, 135], "binarytabularclassificationtask": [0, 131, 132, 135], "__init__": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 123, 124, 133], "add_model": [0, 123, 124], "data_typ": [0, 123, 124], "evalu": [0, 2, 3, 121, 123, 124, 130, 133, 137], "get_model": [0, 123, 124], "list_model": [0, 123, 124, 131, 132, 135], "list_models_param": [0, 123, 124, 131, 132, 135], "load_model": [0, 123, 124], "models_count": [0, 123, 124], "predict": [0, 3, 17, 19, 21, 24, 26, 27, 30, 31, 32, 34, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 67, 80, 81, 82, 84, 85, 87, 88, 89, 92, 93, 94, 98, 100, 102, 103, 104, 105, 107, 108, 109, 110, 123, 124, 130, 133], "save_model": [0, 123, 124], "task_typ": [0, 123, 124, 131, 132, 135], "train": [0, 3, 17, 121, 123, 124, 130, 133, 136, 137], "multilabelimageclassificationtask": 0, "metric": [0, 17, 19, 21, 121, 123, 124, 130, 131, 132, 135, 137], "__add__": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "__mul__": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "add_stat": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "clone": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "comput": [0, 17, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 123, 124, 130, 133, 137], "name": [0, 3, 7, 8, 9, 10, 11, 12, 13, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 121, 123, 124, 131, 132, 133, 134, 135], "reset_st": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "update_st": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "metriccollect": [0, 17, 21, 123, 124, 131, 132, 135], "add_metr": [0, 75], "clear": [0, 75], "get": [0, 2, 75, 123, 124, 131, 132, 135], "item": [0, 75, 131, 132, 133, 134, 135], "kei": [0, 7, 21, 75, 121, 131, 132, 133, 134, 135], "pop": [0, 75, 131, 132, 135], "popitem": [0, 75], "setdefault": [0, 75], "updat": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 133], "valu": [0, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 121, 130, 132, 133, 134, 135, 137], "operatormetr": 0, "factori": [0, 7, 133], "create_metr": [0, 131, 132, 133, 135], "accuraci": [0, 131, 132, 135], "binaryaccuraci": [0, 131, 132, 135], "multiclassaccuraci": 0, "multilabelaccuraci": 0, "auroc": [0, 130, 131, 132, 135, 137], "binaryauroc": [0, 29, 131, 132, 135], "multiclassauroc": [0, 29], "multilabelauroc": [0, 29], "precision_recal": 0, "binaryprecis": [0, 131, 132, 135], "binaryrecal": [0, 97, 131, 132, 135], "multiclassprecis": 0, "multiclassrecal": [0, 98], "multilabelprecis": 0, "multilabelrecal": [0, 99], "precis": [0, 24, 35, 36, 37, 38, 39, 40, 41, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 60, 64, 66, 77, 78, 80, 82, 85, 86, 87, 88, 89, 90, 92, 100, 105, 131, 132, 133, 135], "recal": [0, 24, 38, 51, 55, 57, 59, 61, 64, 66, 77, 79, 81, 83, 86, 87, 88, 89, 90, 92, 97, 98, 99, 105, 131, 132, 133, 135], "precision_recall_curv": [0, 131, 132, 135], "binaryprecisionrecallcurv": [0, 30, 92, 131, 132, 135], "multiclassprecisionrecallcurv": [0, 31, 93], "multilabelprecisionrecallcurv": [0, 32, 94], "precisionrecallcurv": 0, "roc": [0, 28, 29, 30, 31, 32, 45, 131, 132, 135], "binaryroccurv": [0, 131, 132, 135], "multiclassroccurv": 0, "multilabelroccurv": 0, "roccurv": 0, "sensit": [0, 121, 130, 131, 132, 133, 135, 136], "binarysensit": 0, "multiclasssensit": 0, "multilabelsensit": [0, 133], "specif": [0, 3, 7, 17, 115, 118, 123, 124, 131, 132, 133, 135], "binaryspecif": 0, "multiclassspecif": 0, "multilabelspecif": [0, 133], "f_beta": 0, "binaryf1scor": [0, 131, 132, 135], "binaryfbetascor": [0, 34], "f1score": 0, "fbetascor": [0, 36], "multiclassf1scor": 0, "multiclassfbetascor": [0, 38], "multilabelf1scor": 0, "multilabelfbetascor": [0, 40], "stat_scor": [0, 133, 135], "binarystatscor": [0, 25, 35, 78, 79, 102, 135], "multiclassstatscor": [0, 26, 39, 80, 81, 103], "multilabelstatscor": [0, 27, 41, 82, 83, 104, 133], "statscor": 0, "function": [0, 3, 5, 6, 7, 8, 16, 17, 20, 21, 25, 35, 41, 42, 76, 93, 102, 104, 107, 109, 110, 113, 121, 132, 133, 135], "binary_precis": 0, "binary_recal": 0, "multiclass_precis": 0, "multiclass_recal": 0, "multilabel_precis": 0, "multilabel_recal": 0, "binary_roc_curv": 0, "multiclass_roc_curv": 0, "multilabel_roc_curv": 0, "roc_curv": [0, 131, 132, 135], "binary_f1_scor": 0, "binary_fbeta_scor": 0, "f1_score": [0, 131, 132, 135], "fbeta_scor": 0, "multiclass_f1_scor": 0, "multiclass_fbeta_scor": 0, "multilabel_f1_scor": 0, "multilabel_fbeta_scor": 0, "fair": [0, 17, 121, 123, 124, 131, 132, 133, 135], "evaluate_fair": 0, "warn_too_many_unique_valu": 0, "config": [0, 123], "fairnessconfig": [0, 17, 123, 124, 131, 132, 135], "monitor": [0, 2, 3, 130, 131, 132, 134, 135], "clinical_appl": 0, "clinicalshiftappl": [0, 134], "ag": [0, 112, 130, 134, 137], "apply_shift": [0, 112, 114, 134], "custom": [0, 112, 121, 134], "hospital_typ": [0, 112], "month": [0, 7, 9, 112], "sex": [0, 112, 130, 132, 134, 135, 137], "time": [0, 3, 7, 75, 112, 121, 131, 132, 133, 135, 136], "synthetic_appl": 0, "binary_noise_shift": 0, "feature_association_shift": 0, "feature_swap_shift": 0, "gaussian_noise_shift": 0, "knockout_shift": 0, "syntheticshiftappl": [0, 113], "report": [0, 2, 3, 110, 130, 137], "modelcardreport": [0, 131, 132, 133, 135], "export": [0, 121, 131, 132, 133, 135], "from_json_fil": [0, 121], "log_cit": [0, 121, 133], "log_dataset": [0, 121, 131], "log_descriptor": [0, 121, 131, 132, 133, 135], "log_fairness_assess": [0, 121, 131, 132, 133, 135], "log_from_dict": [0, 121, 131, 132, 133, 135], "log_imag": [0, 121], "log_licens": [0, 121, 131, 132, 135], "log_model_paramet": [0, 121, 131, 132, 135], "log_own": [0, 121, 131, 132, 133, 135], "log_performance_metr": [0, 121, 131, 132, 135], "log_plotly_figur": [0, 121, 131, 132, 133, 135], "log_quantitative_analysi": [0, 121, 131, 132, 133, 135], "log_refer": [0, 121, 131, 132, 135], "log_regul": [0, 121], "log_risk": [0, 121, 131, 132, 133, 135], "log_use_cas": [0, 121, 131, 132, 133, 135], "log_us": [0, 121, 131, 132, 133, 135], "log_vers": [0, 121, 131, 132, 135], "thank": 1, "your": [1, 131], "interest": [1, 131, 132, 135], "To": [1, 3, 5, 131, 135], "submit": 1, "pr": 1, "pleas": [1, 131, 132, 135], "fill": 1, "out": [1, 121, 131, 132, 135], "templat": [1, 121], "along": [1, 112, 131, 132, 133, 135], "If": [1, 5, 7, 9, 10, 11, 12, 13, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 123, 124, 131, 132, 135], "fix": 1, "an": [1, 3, 5, 7, 17, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 51, 60, 61, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 131, 132, 133, 135, 137], "issu": [1, 21], "don": [1, 132], "t": [1, 5, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 132], "forget": 1, "link": [1, 121, 131, 132, 133, 135], "onc": [1, 75, 131, 132, 135], "python": [1, 3, 132, 135], "virtual": [1, 3], "environ": [1, 3, 131, 132, 135], "i": [1, 3, 5, 7, 9, 10, 11, 12, 13, 14, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 123, 124, 131, 132, 133, 135, 137], "setup": [1, 132, 135], "you": [1, 3, 5, 75, 131, 132, 133, 135, 136], "can": [1, 3, 5, 7, 21, 25, 38, 51, 69, 74, 75, 84, 85, 95, 100, 110, 121, 123, 124, 131, 132, 133, 135, 136], "run": [1, 3, 131, 132, 135], "us": [1, 2, 5, 7, 8, 17, 21, 24, 29, 30, 31, 32, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 60, 61, 62, 63, 66, 67, 68, 69, 75, 76, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 98, 99, 100, 102, 105, 107, 110, 112, 114, 121, 123, 124, 130, 131, 132, 133, 135, 136], "all": [1, 3, 7, 8, 9, 10, 11, 12, 13, 15, 63, 73, 75, 108, 109, 110, 123, 131, 132, 133, 134, 135], "file": [1, 5, 121, 131, 132, 133, 135], "For": [1, 3, 21, 76, 121, 131, 132, 135], "style": 1, "we": [1, 3, 121, 131, 132, 133, 135], "recommend": [1, 76], "googl": 1, "guid": 1, "appli": [1, 8, 25, 29, 59, 62, 63, 66, 67, 68, 75, 76, 93, 104, 109, 110, 112, 123, 124, 131, 132, 135], "black": 1, "format": [1, 5, 7, 89, 121, 131, 132, 135], "docstr": 1, "numpi": [1, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 115, 116, 117, 118, 119, 124, 131, 132, 133, 134, 135], "also": [1, 3, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 131, 132, 133, 135, 137], "flake8": 1, "pylint": 1, "further": 1, "static": 1, "analysi": [1, 121, 131, 132, 133, 135], "The": [1, 3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 50, 51, 52, 53, 54, 56, 60, 61, 63, 66, 68, 69, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 123, 124, 131, 132, 133, 135, 136, 137], "show": [1, 131, 132, 133, 135], "error": [1, 17, 21], "which": [1, 9, 10, 11, 12, 13, 21, 90, 121, 131, 132, 133, 135, 137], "need": [1, 17, 21, 74, 110, 131, 132, 135], "befor": [1, 17, 21, 22, 123, 131, 132, 135], "last": 1, "least": 1, "type": [1, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 115, 116, 117, 118, 119, 121, 123, 124, 130, 133, 137], "hint": 1, "our": [1, 131, 132, 135], "check": [1, 14, 89], "mypi": 1, "current": [1, 121, 131, 132, 135], "ar": [1, 3, 5, 7, 11, 12, 17, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 75, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 97, 98, 99, 100, 103, 104, 105, 108, 109, 110, 112, 116, 121, 131, 132, 133, 135], "strict": 1, "enforc": 1, "more": [1, 7, 16, 17, 123, 124, 131, 137], "api": [1, 2, 3, 130, 131, 137], "becom": 1, "stabl": [1, 131, 132, 135], "start": [2, 131, 132, 135], "instal": [2, 131], "pip": [2, 131], "develop": [2, 131, 132, 133, 135], "poetri": 2, "contribut": 2, "notebook": [2, 131, 132, 133, 135], "citat": [2, 121, 131, 132, 133, 135], "pre": [2, 131, 132, 135], "commit": 2, "hook": 2, "code": [2, 131, 132, 135], "guidelin": [2, 3], "tutori": [2, 136, 137], "exampl": [2, 3, 5, 7, 8, 9, 10, 11, 12, 13, 15, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 130, 131, 132, 133, 136], "case": [2, 3, 75, 115, 121, 130, 131, 132, 135, 136], "refer": [2, 3, 121, 131, 132, 133, 135], "toolkit": 3, "facilit": 3, "research": 3, "deploy": 3, "ml": [3, 131, 132, 135], "model": [3, 16, 17, 21, 121, 123, 124, 130, 136, 137], "healthcar": 3, "It": [3, 38, 51, 75, 84, 85, 100, 105, 136], "provid": [3, 7, 9, 12, 17, 21, 69, 110, 121, 131, 132, 133, 135], "few": 3, "high": [3, 131, 132, 133, 135], "level": [3, 21, 131, 132, 133, 135], "creat": [3, 6, 7, 21, 42, 43, 75, 84, 85, 100, 115, 118, 119, 121, 123, 124, 130, 133, 137], "dataset": [3, 6, 7, 16, 17, 19, 21, 26, 38, 39, 51, 52, 58, 61, 68, 69, 80, 81, 83, 88, 89, 90, 94, 95, 98, 99, 103, 104, 112, 114, 121, 123, 124, 125, 130, 136, 137], "infer": 3, "popular": [3, 131], "effici": 3, "load": [3, 17, 121, 123, 124, 130, 132, 135, 136, 137], "differ": [3, 24, 29, 36, 37, 46, 55, 62, 63, 64, 69, 70, 72, 74, 84, 85, 90, 95, 100, 105, 110, 130, 131, 132, 133, 135, 136], "modal": 3, "common": [3, 131, 132], "implement": [3, 137], "scikit": [3, 131], "learn": [3, 131, 133], "pytorch": 3, "formul": [3, 131, 132, 135], "binari": [3, 5, 24, 25, 29, 30, 34, 35, 36, 37, 47, 48, 49, 50, 56, 57, 60, 61, 62, 63, 66, 69, 72, 78, 79, 84, 85, 87, 90, 92, 95, 97, 100, 102, 104, 105, 107, 110, 115, 123, 124, 131, 132, 135, 137], "multi": [3, 17, 133], "label": [3, 17, 24, 25, 27, 29, 32, 34, 35, 36, 37, 40, 41, 47, 48, 49, 50, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 68, 69, 78, 79, 81, 82, 83, 84, 85, 87, 89, 90, 92, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 109, 110, 116, 117, 119, 123, 124, 130, 131, 133, 137], "tabular": [3, 123, 124, 130], "seri": [3, 123], "imag": [3, 4, 5, 17, 21, 118, 121, 124, 125, 130, 133, 134], "clinic": [3, 111, 112, 130, 136], "detect": [3, 133, 136], "shift": [3, 111, 112, 114, 116, 117, 130, 136], "relev": [3, 121, 131, 132, 135, 136], "card": [3, 121, 130, 131, 132, 135, 137], "end": [3, 131, 132, 133, 135], "nih": [3, 130, 133, 134], "chest": [3, 130], "x": [3, 114, 115, 116, 117, 118, 119, 123, 130, 131, 132, 134, 135], "rai": [3, 130], "mimic": 3, "iv": 3, "python3": [3, 133], "m": [3, 131, 132, 133, 134, 135], "pycyclop": 3, "ha": [3, 13, 75, 121, 131, 132, 133, 135], "mani": 3, "option": [3, 5, 7, 9, 10, 11, 12, 13, 17, 21, 24, 27, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 69, 75, 80, 81, 82, 83, 84, 85, 90, 95, 98, 99, 100, 103, 104, 105, 108, 112, 114, 121, 123, 124, 133], "depend": 3, "monai": [3, 5], "librari": [3, 130, 136, 137], "dicom": 3, "set": [3, 7, 17, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 131, 132, 133, 135], "list": [3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 66, 67, 68, 69, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 115, 116, 117, 118, 119, 121, 123, 124, 131, 132, 135], "section": [3, 121, 131, 132, 133, 135], "below": [3, 131, 132, 135], "extra": [3, 121], "note": [3, 17, 121, 131, 132, 135], "xgboost": [3, 132, 135], "allow": [3, 17, 21, 22, 131, 132, 135, 136], "torch": [3, 134], "torchvis": [3, 133, 134], "torchxrayvis": [3, 133, 134], "transform": [3, 66, 67, 68, 93, 123, 124, 131, 132, 133, 134, 135], "alibi": 3, "addit": [3, 75, 121, 123, 124, 131, 132, 133, 135], "explain": [3, 121], "up": [3, 131, 132, 133, 135], "henc": 3, "make": [3, 131, 132, 135], "sure": [3, 131], "sourc": [3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 19, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 115, 116, 117, 118, 119, 121, 123, 124, 130, 136], "env": 3, "info": [3, 131, 132, 135], "path": [3, 5, 112, 121, 123, 124, 131, 132, 135], "bin": [3, 21], "activ": [3, 135], "In": [3, 75, 131, 132, 135], "order": [3, 5, 17, 107, 108, 109], "test": [3, 17, 114, 121, 123, 124, 130, 131, 132, 135, 136, 137], "codestyl": 3, "unit": 3, "integr": 3, "built": 3, "sphinx": 3, "local": 3, "doc": 3, "cd": 3, "html": [3, 121, 131, 132, 133, 135], "sphinxopt": 3, "d": [3, 75, 112, 133], "nbsphinx_allow_error": 3, "true": [3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 24, 26, 27, 31, 32, 35, 36, 37, 38, 39, 40, 41, 48, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 107, 108, 109, 110, 112, 114, 116, 121, 123, 124, 131, 132, 133, 134, 135], "welcom": 3, "see": [3, 7, 121, 131, 132, 135], "jupyt": [3, 131, 132, 135], "insid": 3, "ipython": 3, "kernel": 3, "after": [3, 131, 132, 135], "ipykernel": 3, "user": [3, 121, 131, 132, 135], "name_of_kernel": 3, "now": 3, "navig": 3, "": [3, 7, 10, 14, 17, 21, 75, 121, 123, 124, 131, 132, 133, 135], "tab": [3, 131], "cite": 3, "when": [3, 5, 17, 21, 24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 75, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 103, 104, 105, 123, 124, 131, 132, 135], "project": 3, "paper": 3, "articl": 3, "krishnan2022": 3, "12": [3, 7, 131, 132, 133, 135], "02": [3, 69, 131], "22283021": 3, "author": [3, 131, 133], "krishnan": 3, "amrit": 3, "subasri": 3, "vallijah": 3, "mckeen": 3, "kaden": 3, "kore": 3, "ali": 3, "ogidi": 3, "franklin": 3, "alinoori": 3, "mahshid": 3, "lalani": 3, "nadim": 3, "dhalla": 3, "azra": 3, "verma": 3, "amol": 3, "razak": 3, "fahad": 3, "pandya": 3, "deval": 3, "dolatabadi": 3, "elham": 3, "titl": [3, 131, 132, 133, 135], "cyclic": 3, "toward": 3, "operation": 3, "health": [3, 131, 132, 135], "eloc": 3, "id": [3, 5, 112, 131, 133, 135], "2022": [3, 7, 131, 132, 133, 135], "year": [3, 7, 9, 131, 132, 133, 135], "doi": 3, "10": [3, 108, 131, 132, 133, 134, 135], "1101": 3, "publish": [3, 131], "cold": 3, "spring": 3, "harbor": 3, "laboratori": [3, 135], "press": 3, "url": [3, 133], "http": [3, 121, 131, 132, 133, 135], "www": [3, 131], "medrxiv": 3, "org": [3, 121, 131, 132, 133, 135], "content": [3, 121], "earli": 3, "08": 3, "journal": 3, "medic": [4, 5, 125, 133, 135, 137], "class": [4, 5, 6, 7, 18, 19, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 69, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 116, 117, 119, 120, 121, 122, 123, 124, 131, 132, 133, 135], "decod": [5, 133], "none": [5, 7, 9, 17, 19, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 121, 123, 124, 131, 132, 133, 134, 135], "reader": 5, "itkread": 5, "suffix": 5, "jpg": 5, "base": [5, 7, 17, 19, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 123, 124, 130, 131, 137], "read": 5, "paramet": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 115, 116, 117, 118, 119, 121, 123, 124, 131, 132, 133, 135], "union": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 123, 124], "str": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 123, 124, 131, 132, 135], "imageread": 5, "default": [5, 7, 9, 10, 11, 12, 13, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 121, 123, 124, 131, 132, 135], "byte": 5, "bool": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 75, 76, 108, 109, 110, 112, 116, 117, 121, 123, 124, 131, 132, 133, 135], "whether": [5, 7, 17, 21, 75, 108, 109, 110, 112, 121, 132, 135, 137], "fals": [5, 7, 9, 10, 11, 12, 13, 14, 17, 19, 21, 29, 30, 40, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 75, 80, 81, 82, 83, 84, 85, 98, 99, 100, 105, 107, 108, 109, 110, 117, 118, 123, 124, 131, 132, 133, 135], "return": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 115, 116, 117, 118, 119, 121, 123, 124, 132, 133, 135], "dictionari": [5, 7, 8, 9, 10, 11, 12, 13, 15, 17, 21, 75, 121, 123, 124, 131, 132, 135], "image_path": 5, "image_byt": 5, "method": [5, 7, 19, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 123, 124, 131, 132, 135], "attribut": [5, 7, 19, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 123, 124, 131, 132, 135], "call": [5, 121], "self": [5, 133], "storag": 5, "cast": 5, "arrow": 5, "arrai": [5, 24, 26, 27, 29, 30, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 60, 61, 63, 66, 67, 68, 69, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 98, 99, 100, 103, 104, 105, 107, 108, 109, 110, 116, 117, 119, 124, 133, 135], "convert": [5, 25, 35, 41, 48, 61, 69, 95, 102, 104, 107, 131, 132, 135], "pyarrow": 5, "rtype": 5, "structarrai": 5, "pa": 5, "string": [5, 7, 9, 12, 17, 21, 75, 121, 133], "must": [5, 9, 17, 21, 121], "contain": [5, 7, 8, 9, 10, 11, 12, 13, 15, 17, 21, 27, 103, 104, 121, 131, 132, 133, 135, 137], "struct": 5, "doesn": 5, "matter": 5, "arg": [5, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "stringarrai": 5, "listarrai": 5, "token_per_repo_id": 5, "from": [5, 7, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 119, 121, 123, 124, 131, 132, 133, 134, 135, 137], "serial": 5, "version": [5, 121, 131, 132, 133, 135], "dict": [5, 7, 8, 9, 10, 11, 12, 13, 15, 17, 21, 22, 75, 121, 123, 124], "access": 5, "privat": 5, "repositori": [5, 131], "hub": 5, "pass": [5, 17, 43, 75, 112, 121, 123, 124, 131, 132, 135], "repo_id": 5, "token": [5, 131], "deseri": 5, "np": [5, 11, 14, 21, 123, 124, 131, 132, 133, 134, 135], "ndarrai": [5, 14, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 115, 116, 117, 118, 119, 123, 124], "metadata": [5, 131, 132, 133, 135], "emb": 5, "encod": 5, "input": [5, 24, 46, 55, 60, 61, 64, 69, 70, 72, 87, 89, 95, 115, 118, 123, 124], "state": [5, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 133], "itself": 5, "otherwis": [5, 14, 24, 27, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 67, 68, 75, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 108, 109, 110], "tupl": [5, 7, 66, 67, 68, 69, 75, 87, 88, 89, 92, 93, 94, 112, 123, 124], "classlabel": [5, 131, 132, 135], "translat": 5, "translationvariablelanguag": 5, "sequenc": [5, 17, 75, 123, 124, 133], "array2d": 5, "array3d": 5, "array4d": 5, "array5d": 5, "audio": 5, "subset": 6, "hug": [6, 123, 124, 130, 137], "face": [6, 123, 124, 130, 137], "object": [7, 19, 21, 112, 114, 121, 123, 124, 131, 132, 135], "ani": [7, 8, 9, 10, 11, 12, 13, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 123, 124, 131, 132, 133, 135], "A": [7, 8, 9, 10, 11, 12, 13, 15, 17, 21, 22, 25, 75, 76, 104, 109, 121, 131, 132, 133, 135], "each": [7, 8, 21, 24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 67, 68, 69, 75, 76, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 108, 109, 110, 131, 132, 135], "map": [7, 8, 22, 75, 123, 124, 133], "column": [7, 8, 9, 10, 11, 12, 13, 17, 21, 112, 123, 124, 131, 132, 133, 135], "one": [7, 16, 17, 21, 24, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 67, 68, 69, 76, 80, 81, 82, 83, 84, 85, 95, 98, 99, 100, 105, 123, 124], "follow": [7, 17, 24, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 60, 61, 75, 80, 81, 82, 83, 84, 85, 98, 99, 100, 105, 121, 131, 132, 133, 135], "exact": [7, 13], "select": [7, 112, 116, 131, 132, 133, 135], "thi": [7, 17, 21, 24, 25, 26, 27, 29, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 103, 104, 105, 110, 121, 123, 131, 132, 133, 135, 137], "singl": [7, 17, 75, 121, 123, 124, 131, 132, 135, 137], "row": [7, 131, 133], "where": [7, 8, 9, 10, 11, 12, 13, 60, 61, 63, 75, 121, 123, 124, 131, 132, 135, 137], "support": [7, 24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 72, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 107, 108, 109, 136], "e": [7, 9, 10, 17, 21, 75, 116, 117, 118, 121, 131, 132, 135], "g": [7, 9, 17, 21, 116, 117, 118, 121, 131, 132, 135], "2021": [7, 131, 132, 135], "01": [7, 29, 31, 32, 131, 132, 135], "00": [7, 133], "min_valu": [7, 11, 131, 132, 133, 134, 135], "minimum": [7, 11], "specifi": [7, 17, 75, 112, 121, 123, 124, 131, 132, 135], "min_inclus": [7, 11, 131, 132, 135], "indic": [7, 17, 21, 27, 60, 61, 115, 118, 131, 132, 133, 135], "includ": [7, 11, 21, 72, 112, 114, 131, 132, 133, 135, 136, 137], "rang": [7, 11, 29, 30, 66, 67, 68, 93, 131, 132, 133, 135], "work": [7, 27, 103, 104, 121, 131, 132, 133, 135], "numer": [7, 11, 131, 132, 135], "datetim": [7, 9, 11, 14, 121, 131, 132, 135], "inf": [7, 11], "max_valu": [7, 11, 131, 132, 133, 134, 135], "boolean": [7, 8, 9, 10, 11, 12, 13, 15], "greater": [7, 22, 135], "than": [7, 11, 22, 48, 52, 54, 123, 124, 131, 132, 135, 137], "equal": [7, 11, 21], "maximum": [7, 11, 22, 29, 30], "max_inclus": [7, 11, 131, 132, 135], "less": [7, 11, 48, 52, 54, 132, 135], "match": [7, 9, 12, 13, 17], "between": [7, 21, 38, 51, 69, 95], "1": [7, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 116, 117, 118, 119, 121, 130, 131, 132, 133, 135, 136, 137], "dai": [7, 9, 132, 135, 137], "31": [7, 131, 132, 135], "hour": [7, 9, 132], "0": [7, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 114, 115, 116, 117, 118, 119, 121, 131, 132, 133, 134, 135], "23": [7, 131, 132, 135], "negat": [7, 9, 10, 11, 12, 13, 133], "flag": [7, 132], "doe": [7, 9, 11, 12, 13, 21, 24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 74, 75, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 110, 121], "keep_nul": [7, 9, 11, 12, 13], "keep": [7, 17, 21, 135], "null": [7, 9, 10, 11, 12, 13, 132, 135], "conjunct": [7, 133], "its": [7, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 60, 61, 74, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 131, 132, 133, 135], "own": [7, 131, 132, 135], "callabl": [7, 8, 21, 76, 121], "import": [7, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 130, 136, 137], "slice_spec": [7, 17, 123, 124, 131, 132, 133, 135], "feature_1": 7, "feature_2": 7, "feature_3": 7, "value_1": 7, "value_2": 7, "2020": [7, 9, 133], "5": [7, 24, 25, 27, 29, 31, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 114, 115, 118, 119, 130, 131, 132, 133, 135, 136], "60": [7, 133], "6": [7, 24, 26, 35, 36, 38, 39, 49, 59, 62, 63, 78, 79, 80, 81, 83, 84, 85, 87, 88, 90, 92, 93, 95, 97, 98, 99, 100, 104, 107, 110, 131, 132, 133, 134, 135], "7": [7, 29, 30, 31, 36, 39, 40, 69, 80, 81, 82, 84, 85, 87, 88, 89, 93, 98, 100, 105, 109, 110, 131, 132, 133, 135, 137], "8": [7, 24, 26, 27, 29, 30, 31, 34, 35, 36, 37, 38, 40, 41, 47, 49, 50, 53, 54, 59, 60, 62, 66, 68, 69, 78, 79, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 99, 100, 105, 107, 108, 109, 110, 131, 132, 133, 135], "2000": 7, "2010": 7, "slice_nam": [7, 121, 131, 132, 135], "slice_func": 7, "print": [7, 131, 132, 133, 135], "do": [7, 131, 132, 133, 135], "someth": 7, "here": [7, 131, 132, 135], "filter": [7, 9, 10, 11, 12, 13, 17, 21, 132, 133, 135], "non_nul": 7, "add": [7, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 123, 124, 131, 132, 135], "detail": [7, 131, 132, 133, 135], "registri": [7, 131, 132, 135], "gener": [7, 69, 95, 112, 121, 130, 136, 137], "slice_funct": 8, "combin": [8, 131], "result": [8, 17, 38, 51, 123, 124, 131, 132, 134, 135], "multipl": [8, 17, 21, 75, 121], "bitwis": 8, "AND": 8, "signatur": 8, "should": [8, 17, 21, 69, 76, 95, 117, 121, 123, 124, 131, 132, 133, 135], "kwarg": [8, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 114, 123, 124], "given": [9, 11, 12, 13, 14, 24, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 75, 80, 81, 82, 84, 85, 98, 100, 105, 108, 109, 110, 121, 123, 124], "int": [9, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 116, 117, 118, 119, 121, 123, 124, 131, 132, 133, 135], "compon": 9, "have": [9, 12, 13, 114, 131, 132, 137], "nan": [9, 10, 17, 21, 130, 137], "nat": 9, "rais": [9, 11, 12, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 123, 124], "typeerror": [9, 11, 12, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121], "float": [11, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 109, 110, 115, 116, 117, 118, 119, 121, 133], "valueerror": [11, 17, 21, 48, 50, 52, 54, 58, 59, 60, 61, 62, 63, 69, 121, 123, 124], "either": [11, 30, 31, 32, 75, 87, 88, 89, 92, 93, 94, 110, 121, 131, 132, 135], "substr": 12, "find": [13, 24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 123, 133], "perform": [13, 26, 27, 31, 32, 121, 130, 131, 132, 135, 136, 137], "datetime64": 14, "target_column": [17, 19, 21, 131, 132, 133, 135], "prediction_column": [17, 19, 21, 133], "ignore_column": [17, 133], "split": [17, 112, 121, 123, 124, 131, 132, 133, 135], "batch_siz": [17, 19, 21, 112, 123, 124, 131, 132, 135], "1000": [17, 19, 21, 112, 123, 131, 133], "raise_on_empty_slic": [17, 21], "fairness_config": [17, 123, 124, 131, 132, 135], "override_fairness_metr": [17, 123, 124, 131, 132, 135], "load_dataset_kwarg": 17, "datasetdict": [17, 123, 124], "load_dataset": 17, "argument": [17, 21, 43, 75, 123, 124, 131, 132, 135], "target": [17, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 116, 117, 123, 124, 130, 131, 132, 135, 136, 137], "same": [17, 21, 75, 116], "ignor": [17, 131, 132, 133, 135], "while": 17, "mai": [17, 21, 131, 132, 133, 135], "expens": [17, 21], "memori": [17, 21], "entir": [17, 131, 132, 135], "chosen": 17, "avail": [17, 121, 131, 132, 135, 137], "first": [17, 21, 25, 76, 104, 131, 132, 135], "eval": 17, "val": 17, "dev": 17, "batch": [17, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 123, 124, 132, 133], "size": [17, 21, 112, 123, 124, 131, 132, 133, 135], "neg": [17, 35, 48, 49, 50, 51, 52, 53, 54, 59, 61, 62, 63, 72, 81, 83, 85, 98, 99, 100, 105, 107, 108, 109, 133, 135], "integ": [17, 21, 121], "empti": [17, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "warn": [17, 22, 24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 102, 103, 104, 105], "log": [17, 121, 130, 131, 132, 135, 137], "configur": [17, 18, 19, 123, 124, 131, 132, 135], "overridden": [17, 123, 124], "remove_column": [17, 19, 21, 123, 124, 133], "keyword": [17, 21, 43, 75, 123, 124], "onli": [17, 21, 24, 27, 29, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 62, 63, 75, 80, 81, 82, 84, 85, 98, 100, 103, 104, 105, 108, 109, 110], "group": [19, 21, 22, 75, 121, 131, 132, 135], "group_valu": [19, 21], "group_bin": [19, 21, 131, 132, 135], "group_base_valu": [19, 21, 131, 132, 135], "threshold": [19, 21, 24, 25, 27, 29, 30, 31, 32, 34, 35, 36, 37, 40, 41, 47, 48, 49, 50, 53, 54, 56, 57, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 99, 100, 102, 104, 105, 107, 109, 110, 121, 130, 131, 132, 135, 137], "compute_optimal_threshold": [19, 21], "metric_nam": [19, 21, 43, 121, 131, 132, 133, 135], "metric_kwarg": [19, 21], "take": [21, 24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 112, 131], "intersect": 21, "treat": 21, "multilabel": [21, 24, 27, 29, 32, 36, 37, 40, 41, 49, 50, 53, 54, 60, 61, 62, 63, 68, 69, 72, 82, 83, 84, 85, 89, 90, 94, 95, 99, 100, 104, 105, 109, 110, 130, 137], "uniqu": [21, 22, 29, 30, 31, 32, 66, 67, 68, 69, 74, 87, 88, 89, 92, 93, 94, 95, 110, 133, 137], "limit": [21, 131, 132, 133, 135], "number": [21, 22, 24, 26, 27, 29, 30, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 75, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 98, 99, 100, 103, 104, 105, 108, 110, 112, 116, 117, 121, 123, 124, 132, 135, 136], "continu": [21, 131, 132, 133, 135], "veri": 21, "slow": 21, "larg": 21, "denomin": 21, "pariti": 21, "across": [21, 116, 136], "linspac": 21, "monoton": [21, 69, 95], "optim": [21, 131], "oper": [21, 65, 76, 131, 132, 135], "necessari": 21, "remov": [21, 75, 119, 123, 124, 131, 132, 133, 135], "control": [21, 115], "usag": [21, 131, 132, 135], "rel": 21, "small": 21, "32": [21, 131, 132, 135], "avoid": 21, "encount": [21, 132, 135], "nest": 21, "second": [21, 76], "third": 21, "omit": 21, "requir": [21, 24, 29, 36, 37, 49, 50, 69, 84, 85, 90, 95, 100, 105, 110, 121, 123, 124, 131, 132, 135], "huggingfac": [21, 112, 123, 124], "runtimeerror": 21, "unique_valu": 22, "max_unique_valu": 22, "50": [22, 131, 132, 133, 134, 135], "score": [24, 25, 26, 27, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 66, 70, 72, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 108, 109, 110, 133], "liter": [24, 25, 26, 27, 29, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 69, 78, 79, 80, 81, 82, 83, 84, 85, 90, 95, 97, 98, 99, 100, 103, 104, 105, 110, 121], "multiclass": [24, 26, 29, 31, 36, 37, 38, 39, 49, 50, 51, 52, 58, 59, 62, 63, 67, 69, 72, 80, 81, 84, 85, 88, 90, 93, 95, 98, 100, 103, 105, 108, 110], "One": [24, 29, 31, 32, 35, 48, 59, 62, 63, 69, 95, 132, 133, 135], "pos_label": [24, 25, 30, 34, 35, 36, 37, 47, 48, 49, 50, 56, 57, 62, 63, 66, 69, 78, 79, 84, 85, 87, 90, 92, 95, 97, 100, 102, 105, 107, 110], "consid": [24, 26, 27, 36, 37, 49, 50, 62, 63, 84, 85, 90, 95, 100, 103, 104, 105, 132], "posit": [24, 25, 29, 30, 34, 35, 36, 37, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 75, 78, 79, 80, 81, 82, 83, 84, 85, 87, 90, 92, 95, 97, 98, 99, 100, 102, 105, 107, 108, 109, 110, 131, 132, 133, 135], "num_class": [24, 26, 29, 31, 36, 37, 38, 39, 49, 50, 51, 52, 58, 59, 62, 63, 67, 69, 80, 81, 84, 85, 88, 90, 93, 95, 98, 100, 103, 105, 108, 110, 131, 132, 135], "decid": [24, 36, 37, 40, 41, 49, 50, 53, 54, 56, 57, 60, 61, 78, 79, 82, 83, 84, 85, 97, 99, 100, 105], "top_k": [24, 26, 27, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 108, 109, 110, 133], "probabl": [24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 80, 81, 82, 84, 85, 93, 98, 100, 102, 103, 104, 105, 107, 108, 109, 110, 123, 131, 135], "logit": [24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 72, 80, 81, 82, 84, 85, 98, 100, 102, 103, 104, 105, 107, 108, 109, 110], "top": [24, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 80, 81, 82, 84, 85, 98, 100, 105, 108, 109, 110], "k": [24, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 75, 80, 81, 82, 84, 85, 98, 100, 105, 108, 109, 110, 134], "num_label": [24, 27, 29, 32, 36, 37, 40, 41, 49, 50, 53, 54, 60, 61, 62, 63, 68, 69, 82, 83, 84, 85, 89, 90, 94, 95, 99, 100, 104, 105, 109, 110, 133], "averag": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 131, 132], "micro": [24, 26, 27, 29, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105], "macro": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105], "weight": [24, 26, 27, 29, 31, 32, 35, 36, 37, 38, 39, 40, 41, 48, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 133, 134, 135], "calcul": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105], "global": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "unweight": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105], "mean": [24, 26, 27, 29, 31, 32, 35, 36, 37, 38, 39, 40, 41, 48, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 131, 132, 133, 135], "imbal": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 119], "account": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 131, 133], "instanc": [24, 26, 27, 31, 32, 36, 37, 38, 39, 40, 41, 43, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 131, 132, 133, 135], "alter": [24, 26, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 105], "zero_divis": [24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 102, 103, 104, 105], "zero": [24, 25, 26, 27, 34, 36, 37, 38, 39, 40, 41, 47, 49, 50, 51, 52, 53, 54, 56, 57, 58, 60, 61, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 103, 104, 105], "divis": [24, 25, 26, 27, 34, 36, 37, 38, 39, 40, 41, 47, 49, 50, 51, 52, 53, 54, 56, 57, 58, 60, 61, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 103, 104, 105], "act": [24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 103, 104, 105], "pred": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 131, 132, 135], "75": [24, 25, 29, 30, 66, 67, 68, 90, 92, 95, 103, 104, 105, 131], "05": [24, 26, 27, 29, 31, 32, 36, 38, 39, 40, 49, 53, 62, 67, 68, 69, 80, 81, 84, 85, 88, 90, 93, 94, 95, 98, 100, 103, 104, 105, 108, 110], "95": [24, 26, 27, 36, 38, 49, 62, 69, 88, 90, 93, 94, 95, 133], "p": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 115, 133], "zip": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "2": [24, 26, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 62, 63, 66, 67, 68, 69, 75, 78, 79, 80, 81, 82, 83, 84, 85, 88, 89, 90, 92, 93, 95, 97, 98, 99, 100, 103, 104, 105, 107, 108, 109, 110, 116, 117, 121, 130, 131, 132, 133, 135, 136], "3": [24, 26, 27, 29, 31, 34, 35, 36, 37, 38, 39, 40, 47, 49, 50, 51, 52, 53, 58, 59, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 103, 104, 105, 107, 108, 109, 110, 116, 117, 130, 131, 132, 133, 135, 136], "66666667": [24, 26, 36, 38, 49, 51, 63, 81, 85, 87, 88, 90, 93, 94, 95, 98, 100, 104], "initi": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 123, 124, 130, 131, 132, 135, 137], "other": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 131], "two": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "scalar": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "togeth": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "multipli": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "variabl": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 137], "attributeerror": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "alreadi": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 131, 132, 135], "exist": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 123, 124], "copi": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 131, 132, 133, 135], "abstract": [24, 29, 36, 37, 73, 74, 84, 85, 90, 95, 100, 105, 110], "final": [24, 29, 36, 37, 74, 84, 85, 90, 95, 100, 105, 110, 132, 133, 135], "reset": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "_update_count": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "_comput": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "sigmoid": [25, 35, 41, 66, 68, 69, 102, 104, 107, 109, 110], "them": [25, 104, 131, 132, 135, 136], "875": 25, "problem": [26, 88, 108, 109, 110, 137], "highest": [26, 27, 62, 63, 103, 104], "determin": [26, 27, 29, 30, 31, 32, 66, 67, 68, 87, 88, 89, 90, 92, 93, 94], "dtype": [26, 27, 31, 32, 38, 39, 40, 41, 66, 67, 68, 69, 80, 81, 82, 83, 87, 88, 89, 92, 93, 94, 98, 99, 103, 104, 115, 116, 117, 118, 119, 131, 132, 133], "float64": [26, 27, 31, 32, 38, 39, 40, 41, 66, 67, 68, 69, 80, 81, 82, 83, 87, 88, 89, 92, 93, 94, 98, 99, 103, 104, 115, 116, 117, 118, 119, 133], "binar": [27, 29, 30, 31, 32, 34, 47, 67, 68, 93, 94, 109, 110], "output": [27, 69, 121, 131, 132, 135], "classifi": [27, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 102, 131, 132, 135], "correct": [27, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 93, 102, 103, 104], "per": [27, 75, 132, 135], "area": [28, 29, 30, 31, 32, 45, 131, 132, 135], "under": [28, 29, 30, 31, 32, 45, 131, 132, 135], "curv": [28, 29, 30, 31, 32, 45, 64, 65, 66, 67, 68, 69, 86, 87, 88, 89, 90, 92, 93, 94, 95, 131, 132, 135], "max_fpr": [29, 30], "rate": [29, 30, 66, 67, 68, 69, 131, 132, 133, 135], "partial": [29, 30, 133], "auc": 29, "automat": [29, 30, 31, 32, 66, 67, 68, 87, 88, 89, 90, 92, 93, 94], "applic": [29, 111, 112, 114], "4": [29, 30, 34, 35, 36, 37, 40, 47, 50, 59, 63, 69, 82, 83, 84, 85, 87, 88, 90, 92, 93, 94, 95, 99, 100, 105, 107, 108, 109, 110, 130, 131, 132, 133, 135, 136], "35": [29, 30, 69, 87, 92, 95, 103, 104, 105, 131, 132, 133, 134, 135], "9": [29, 30, 31, 32, 34, 36, 37, 38, 39, 40, 41, 49, 50, 53, 54, 60, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 89, 90, 93, 94, 95, 97, 98, 99, 100, 103, 104, 105, 107, 108, 109, 110, 131, 132, 133, 135], "6111111111111112": [29, 30], "89": [29, 31, 32, 69], "06": [29, 31, 69, 133], "94": [29, 31, 133], "22222222": [29, 31], "625": [29, 32, 35, 103], "aucroc": 30, "confus": [30, 31, 32, 87, 88, 89, 92, 93, 94, 135], "matrix": [30, 31, 32, 87, 88, 89, 92, 93, 94, 115, 116, 117, 118, 119, 135], "f": [33, 35, 37, 38, 39, 41, 46, 48, 50, 51, 52, 54, 75, 131, 132, 133, 134, 135], "beta": [33, 35, 37, 39, 41, 46, 48, 50, 52, 54], "f1": [34, 36, 38, 40, 46, 47, 49, 51, 53], "form": [34, 47, 131, 132, 135], "6666666666666666": [34, 36, 47, 56, 78, 84], "harmon": [35, 37, 39, 41, 48, 50, 52, 54, 131, 132, 135], "8333333333333334": [35, 37, 50, 59, 62], "85714286": [36, 38], "9090909090909091": 37, "83333333": [37, 41, 50, 54], "55555556": [37, 103], "90909091": [37, 39, 41], "85": [39, 80, 81, 84, 85, 98, 100, 131, 135], "total": [40, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 108, 132, 135], "count": [40, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 131, 132, 133, 135], "constructor": 43, "arraylik": [47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 76, 93, 102], "ground": [47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 93, 102], "truth": [47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 93, 102], "npt": [48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63], "7142857142857143": 48, "estim": [49, 50, 66, 67, 68, 69, 93, 102, 123], "shape": [49, 50, 51, 52, 53, 54, 60, 61, 108, 109, 133, 134], "11": [56, 131, 132, 133, 135, 137], "22": [56, 108, 131, 132, 133, 135], "84": [56, 133], "73": [56, 133, 135], "33": [56, 131, 132, 133, 135], "92": [56, 133], "expect": [60, 61, 131, 132, 135], "like": [60, 61, 75, 131], "n": [60, 61, 131, 132, 133], "l": [60, 61], "sampl": [60, 61, 63, 119], "presenc": [60, 61, 133], "absenc": [60, 61], "rest": 61, "ratio": [62, 63, 105, 135], "correctli": [62, 131, 132, 133, 135], "observ": [62, 135, 137], "precision_scor": 62, "tp": [63, 107, 108, 109, 133, 135], "fn": [63, 107, 108, 109, 133, 135], "intuit": 63, "abil": [63, 131, 132, 135], "recall_scor": 63, "3333333333333333": 63, "receiv": [65, 131, 132, 135], "characterist": [65, 131, 132, 135], "decis": [66, 67, 68, 69, 93, 121, 131, 132, 135], "fpr": [66, 67, 68, 69, 131, 132, 135], "tpr": [66, 67, 68, 69], "25": [66, 67, 68, 88, 90, 92, 93, 95, 105, 110, 116, 117, 131, 132, 133, 134, 135], "softmax": [67, 69, 93], "1d": [67, 68, 69, 95], "33333333": [67, 85, 88, 90, 93, 94, 95, 100], "non": 69, "thei": 69, "evenli": [69, 95], "space": [69, 95], "increas": [69, 95], "assertionerror": [69, 121], "03": [69, 133], "stat": [72, 106, 107, 108, 109, 110], "abc": 74, "properti": [74, 110, 123, 124], "other_metr": 75, "prefix": 75, "postfix": 75, "userdict": 75, "collect": [75, 137], "want": 75, "behav": 75, "themselv": 75, "intern": 75, "similar": 75, "reduc": 75, "els": [75, 131, 133, 134], "keep_bas": 75, "iter": 75, "underli": 75, "moduledict": 75, "hashabl": 75, "v": 75, "correspond": [75, 123, 124], "found": [75, 121, 131], "keyerror": [75, 121], "some": [75, 131, 132, 135], "pair": 75, "present": 75, "lack": 75, "metric_a": 76, "metric_b": 76, "metric1": 76, "metric2": 76, "unari": 76, "appropri": [84, 85, 100, 131, 132, 135], "375": [88, 90], "suniqu": 90, "45": [90, 105, 131, 132, 133, 135], "42857143": 90, "15": [103, 104, 105, 108, 110, 131, 132, 135], "57142857": 103, "sum": [105, 108, 109, 110, 132, 133, 135], "_abstractscor": [107, 108, 109], "fp": [107, 108, 109, 133, 135], "tn": [107, 108, 109, 133, 135], "classwis": [108, 110], "over": [108, 109, 110, 131, 132, 133, 135], "16": [108, 131, 132, 133, 135], "26": [108, 131, 132, 133, 135], "58": [108, 133], "61": 108, "17": [108, 131, 132, 135], "71": 108, "09": [108, 131, 132, 135], "20": [108, 131, 132, 133, 135], "82": 108, "13": [108, 131, 132, 133, 135], "labelwis": [109, 110, 133], "prior": 110, "modul": [111, 120, 121, 131, 132, 135], "shift_typ": [112, 114], "shift_id": [112, 134], "induc": [112, 114], "synthet": [112, 114, 121, 130, 135, 136, 137], "categor": [112, 131, 132, 135], "origin": 112, "loader": [112, 133, 134], "load_nihcxr": [112, 133, 134], "mnt": [112, 133, 134], "nihcxr": [112, 130, 133, 136], "hospital_type_1": 112, "hospital_type_2": 112, "hospital_type_3": 112, "hospital_type_4": 112, "hospital_type_5": 112, "ds_sourc": [112, 134], "ds_target": [112, 134], "num_proc": [112, 134], "process": [112, 130, 131, 133, 135, 137], "build": 112, "hospit": [112, 131, 132, 135, 137], "sklearn": [114, 131, 132, 135], "load_diabet": 114, "y": [114, 116, 117, 119, 123, 131, 132, 133, 135], "return_x_i": 114, "from_dict": 114, "train_test_split": [114, 131, 132, 135], "test_siz": 114, "seed": [114, 131, 132, 133, 134, 135], "42": [114, 131, 132, 133, 134, 135], "gn_shift": 114, "x_shift": 114, "ko_shift": 114, "cp_shift": 114, "mfa_shift": 114, "bn_shift": 114, "tolerance_shift": 114, "ds_shift": 114, "nois": [114, 115, 118], "ad": [114, 121, 123, 124, 131, 132, 135], "prob": 115, "delta": [115, 118, 119], "covari": [115, 116, 117, 118, 119], "proport": [115, 131, 132, 133, 135], "fraction": [115, 118, 119, 135], "affect": [115, 118, 121, 131, 132, 135], "n_shuffl": [116, 117], "keep_rows_const": 116, "repermute_each_column": 116, "multiwai": 116, "associ": [116, 131, 132, 133, 135], "swap": [116, 117], "individu": [116, 131, 132, 135], "within": [116, 132], "cl": [116, 117], "etc": [116, 117, 131, 132, 133, 135], "floatnumpi": 116, "shuffl": [116, 117, 131], "permut": 116, "placehold": 116, "shift_class": [117, 119], "rank": 117, "changepoint": 117, "axi": [117, 132, 135], "x_ref": 117, "y_ref": 117, "noise_amt": 118, "normal": [118, 131, 132, 135], "clip": [118, 131, 132, 135], "gaussian": 118, "standard": [118, 131, 132, 135], "deviat": 118, "divid": 118, "255": [118, 131, 133, 134], "placehol": 119, "output_dir": [121, 131, 132, 135], "serv": 121, "interfac": 121, "popul": [121, 130, 131, 132, 135, 137], "modelcard": 121, "directori": [121, 131, 132, 135], "save": [121, 123, 124, 131, 132, 135], "output_filenam": [121, 131, 132, 133, 135], "template_path": 121, "interact": [121, 132, 135], "save_json": 121, "synthetic_timestamp": [121, 131, 132, 133, 135], "date": [121, 131, 132, 135], "jinja2": 121, "json": [121, 131, 132, 135], "timestamp": [121, 130, 132, 133, 136], "back": 121, "classmethod": 121, "cyclops_report": [121, 131, 132, 135], "section_nam": [121, 131, 132, 133, 135], "model_detail": [121, 131, 132, 135], "repres": [121, 133], "bibtex": 121, "entri": 121, "plain": 121, "text": [121, 133], "descript": [121, 131, 132, 133, 135], "license_id": [121, 131], "sensitive_featur": [121, 131], "sensitive_feature_justif": [121, 131], "inform": [121, 131], "about": [121, 131, 132, 133, 135], "resourc": [121, 131, 132, 135], "context": 121, "homepag": 121, "spdx": [121, 131], "identifi": [121, 130, 133, 137], "licens": [121, 131, 132, 133, 135], "apach": [121, 131, 132, 135], "unknown": 121, "unlicens": 121, "proprietari": 121, "justif": [121, 131], "field": [121, 130, 131, 132, 135, 137], "descriptor": 121, "new": [121, 131, 132, 135], "pydant": 121, "basemodel": 121, "subclass": 121, "As": 121, "long": 121, "conflict": 121, "defin": [121, 131, 132, 133, 135], "model_card": 121, "tradeoff": [121, 133], "trade": 121, "off": 121, "interpret": 121, "consider": [121, 131, 132, 133, 135], "affected_group": [121, 131, 132, 133, 135], "benefit": [121, 131, 132, 133, 135], "harm": [121, 131, 132, 133, 135], "mitigation_strategi": [121, 131, 132, 133, 135], "assess": 121, "mitig": [121, 131, 132, 133, 135], "strategi": [121, 131, 132, 133, 135], "relat": 121, "img_path": 121, "caption": [121, 131, 132, 133, 135], "full": 121, "whole": [121, 131, 132, 135], "left": [121, 135], "blank": 121, "instead": 121, "param": [121, 131, 132, 135], "contact": [121, 131, 132, 133, 135], "role": 121, "owner": [121, 131, 132, 133, 135], "quantit": [121, 131, 132, 133, 135], "slash": 121, "fig": [121, 131, 132, 133, 135], "plotli": [121, 131, 132, 133, 135], "figur": [121, 131, 132, 135], "plot": [121, 131, 132, 133, 135], "analysis_typ": 121, "metric_slic": [121, 131, 132, 133, 135], "decision_threshold": 121, "pass_fail_threshold": [121, 131, 132, 133, 135], "pass_fail_threshold_fn": [121, 131, 132, 133, 135], "fail": 121, "regul": 121, "regulatori": [121, 131, 132, 135], "compli": 121, "risk": [121, 131, 132, 133, 135, 137], "kind": [121, 131, 132, 133, 135], "primari": [121, 131, 132, 133, 135], "scope": [121, 131, 132, 135], "usecas": 121, "version_str": [121, 131, 132, 135], "semant": 121, "v1": 121, "dt_date": 121, "dt_datetim": 121, "unix": 121, "yyyi": 121, "mm": 121, "dd": 121, "hh": 121, "ss": 121, "ffffff": 121, "z": 121, "summar": 121, "chang": [121, 131, 132, 133, 135], "made": [121, 131, 132, 135], "task_featur": [123, 124, 131, 132, 135], "task_target": [123, 124, 131, 132, 135], "basetask": [123, 124], "ptmodel": [123, 124, 133], "skmodel": [123, 124], "wrappedmodel": [123, 124], "model_nam": [123, 124, 131, 132, 133, 134, 135], "prediction_column_prefix": [123, 124, 131, 132, 135], "splits_map": [123, 124], "fit": [123, 131, 132, 135], "columntransform": [123, 131, 132, 135], "slicingconfig": 123, "default_max_batch_s": 123, "unnecessari": [123, 124], "filepath": [123, 124], "pretrain": [123, 124, 133], "proba": [123, 131, 132, 135], "mortal": [123, 130], "pd": [123, 132], "datafram": [123, 131, 132, 135], "notfittederror": 123, "destin": [123, 124], "parent": [123, 124], "dirctori": [123, 124], "best_model_param": [123, 131, 132, 135], "x_train": 123, "y_train": 123, "pipelin": [123, 131, 132, 135], "best": [123, 131, 132, 135], "64": [124, 132, 133, 135], "compos": [124, 131, 132, 133, 134, 135], "pathologi": [124, 130, 131, 137], "represent": [124, 131, 132, 135], "packag": [125, 126, 127, 128, 129, 131, 132, 133, 135], "kaggl": [130, 131], "heart": 130, "failur": 130, "constant": [130, 137], "distribut": [130, 133, 137], "outcom": [130, 137], "preprocessor": [130, 137], "creation": [130, 137], "mimiciv": [130, 132], "queri": [130, 137], "inspect": [130, 131, 137], "preprocess": [130, 131, 137], "drop": [130, 131, 137], "nan_threshold": [130, 131, 137], "gender": [130, 131, 133, 134, 137], "synthea": [130, 135], "prolong": [130, 132], "length": [130, 132, 133], "stai": [130, 132], "diseas": [130, 131, 137], "histor": [130, 137], "period": [130, 137], "w": [130, 137], "drift": [130, 136], "experi": [130, 136], "dimension": [130, 136], "reduct": [130, 136], "techniqu": [130, 136], "roll": [130, 136], "window": [130, 136], "biweekli": [130, 136], "showcas": [131, 132, 135, 137], "patient": [131, 132, 133, 134, 135, 137], "shutil": [131, 132, 133, 135], "express": [131, 132, 133, 135], "px": [131, 132, 133, 135], "kaggle_api_extend": 131, "kaggleapi": 131, "imput": [131, 132, 135], "simpleimput": [131, 132, 135], "minmaxscal": [131, 132, 135], "onehotencod": [131, 132, 135], "df": [131, 132, 135], "tabularfeatur": [131, 132, 135], "noqa": [131, 132, 133, 135], "e402": [131, 132, 133, 135], "catalog": [131, 132, 135], "create_model": [131, 132, 135], "classificationplott": [131, 132, 135], "util": [131, 132, 133, 135], "flatten_results_dict": [131, 132, 135], "join": [131, 132, 135], "load_datafram": 131, "offer": [131, 132, 133, 135], "document": [131, 132, 133, 135], "through": [131, 132, 133, 135], "overview": [131, 132, 133, 135], "how": [131, 132, 133, 135], "quick": [131, 132, 133, 135], "glanc": [131, 132, 133, 135], "sever": [131, 132, 133, 135], "subgroup": [131, 132, 133, 135], "statist": [131, 132, 133, 135, 136], "subpopul": [131, 132, 133, 135], "technic": [131, 132, 133, 135], "architectur": [131, 132, 133, 135], "involv": [131, 132, 133, 135], "intend": [131, 132, 133, 135], "go": [131, 132, 133, 135], "tool": [131, 132, 133, 135], "progress": [131, 132, 133, 135], "subject": [131, 132, 133, 135], "data_dir": [131, 133], "random_se": [131, 132, 135], "train_siz": [131, 132, 135], "sign": [131, 135], "com": [131, 133], "Then": 131, "profil": [131, 132, 135], "usernam": 131, "trigger": 131, "download": 131, "credenti": 131, "place": 131, "locat": 131, "machin": [131, 133], "authent": 131, "dataset_download_fil": 131, "fedesoriano": 131, "unzip": 131, "csv": [131, 135], "file_format": 131, "reset_index": [131, 132, 135], "index": [131, 132, 133, 135], "2023": [131, 132, 133, 135], "19": [131, 132, 133, 135], "14": [131, 132, 133, 135, 137], "21": [131, 132, 135], "chestpaintyp": 131, "restingbp": 131, "cholesterol": 131, "fastingb": 131, "restingecg": 131, "40": [131, 132, 135], "ata": 131, "140": 131, "289": 131, "49": [131, 133, 135], "nap": 131, "160": 131, "180": 131, "37": [131, 132, 135], "130": 131, "283": 131, "st": 131, "48": [131, 132, 135], "asi": 131, "138": 131, "214": 131, "54": [131, 133], "150": 131, "195": 131, "913": 131, "ta": 131, "110": 131, "264": 131, "914": 131, "68": [131, 133], "144": 131, "193": 131, "915": 131, "57": 131, "131": 131, "916": 131, "236": 131, "lvh": 131, "917": 131, "38": [131, 132, 133, 135], "175": 131, "maxhr": 131, "exerciseangina": 131, "oldpeak": 131, "st_slope": 131, "heartdiseas": 131, "172": 131, "156": 131, "flat": 131, "98": [131, 133], "108": 131, "122": 131, "132": 131, "141": 131, "115": 131, "174": 131, "173": 131, "918": 131, "pie": [131, 132, 133, 135], "update_layout": [131, 132, 133, 135], "histogram": [131, 132, 133, 135], "xaxis_titl": [131, 132, 133, 135], "yaxis_titl": [131, 132, 133, 135], "bargap": [131, 132, 133, 135], "astyp": [131, 132, 135], "update_trac": [131, 132, 133, 135], "textinfo": [131, 132, 135], "percent": [131, 132, 135], "title_text": [131, 132, 135], "hovertempl": [131, 132, 135], "br": [131, 132, 135], "class_count": [131, 132, 135], "value_count": [131, 132, 135], "class_ratio": [131, 132, 135], "8070866141732284": 131, "508": 131, "410": [131, 135], "int64": [131, 132, 133], "39": [131, 132, 133, 135], "wa": [131, 132, 133, 135], "li": 131, "et": 131, "al": 131, "most": 131, "features_list": [131, 132, 135], "sort": [131, 132, 135], "help": [131, 132, 133, 135], "essenti": [131, 132, 135], "step": [131, 132, 135], "understand": [131, 132, 135], "u": [131, 132, 135], "tab_featur": [131, 132, 135], "ordin": [131, 132, 135], "might": [131, 132, 135], "numeric_transform": [131, 132, 135], "scaler": [131, 132, 135], "binary_transform": [131, 132, 135], "most_frequ": [131, 132, 135], "18": [131, 132, 133, 134, 135], "numeric_featur": [131, 132, 135], "features_by_typ": [131, 132, 135], "numeric_indic": [131, 132, 135], "get_loc": [131, 132, 135], "binary_featur": [131, 132, 135], "ordinal_featur": [131, 132], "binary_indic": [131, 132, 135], "ordinal_indic": [131, 132], "num": [131, 132, 135], "onehot": [131, 132, 135], "handle_unknown": [131, 132, 135], "remaind": [131, 132, 135], "passthrough": [131, 132, 135], "let": [131, 132, 135], "done": [131, 132, 135], "independ": 131, "everi": 131, "uci": 131, "archiv": 131, "ic": 131, "edu": 131, "databas": [131, 132, 135], "cleandoc": 131, "misc": 131, "cc0": 131, "demograph": [131, 133], "often": 131, "strong": 131, "correl": 131, "older": [131, 132, 135], "higher": 131, "panda": [131, 132, 135], "power": [131, 132, 135], "easi": [131, 132, 135], "compat": [131, 132, 135], "from_panda": [131, 132, 135], "cleanup_cache_fil": [131, 132, 135], "num_row": 131, "cast_column": [131, 132, 135], "stratify_by_column": [131, 132, 135], "straightforward": [131, 132, 135], "maintain": [131, 132, 135], "instanti": [131, 132, 135], "line": [131, 132, 135], "sgd": 131, "logisit": [131, 132, 135], "regress": [131, 132, 135], "sgdclassif": 131, "24": [131, 132, 135], "sgd_classifi": 131, "random_st": [131, 132, 135], "123": [131, 132, 135], "verbos": [131, 132, 135], "class_weight": 131, "balanc": 131, "encapsul": [131, 132, 135], "cohes": [131, 132, 135], "structur": [131, 132, 135], "smooth": [131, 132, 135], "manag": [131, 132, 135], "heart_failure_prediction_task": 131, "hyperparamet": [131, 132, 135], "search": [131, 132, 135], "grid": [131, 132, 135], "27": [131, 132, 135], "alpha": 131, "0001": 131, "001": 131, "100": [131, 132, 133, 135], "learning_r": [131, 132, 135], "invscal": 131, "adapt": 131, "eta0": 131, "roc_auc": 131, "718": 131, "wrapper": [131, 132, 133, 135], "sk_model": [131, 132, 135], "719": 131, "720": 131, "sgdclassifi": 131, "x27": [131, 132, 135], "early_stop": 131, "loss": 131, "log_loss": 131, "rerun": [131, 132, 135], "cell": [131, 132, 135], "trust": [131, 132, 135], "On": [131, 132, 133, 135], "github": [131, 132, 133, 135], "unabl": [131, 132, 135], "render": [131, 132, 135], "try": [131, 132, 135], "page": [131, 132, 135], "nbviewer": [131, 132, 135], "sgdclassifiersgdclassifi": 131, "28": [131, 132, 133, 135], "model_param": [131, 132, 135], "epsilon": 131, "fit_intercept": 131, "l1_ratio": 131, "max_it": 131, "n_iter_no_chang": 131, "n_job": [131, 132, 135], "penalti": 131, "l2": 131, "power_t": 131, "tol": 131, "validation_fract": 131, "warm_start": 131, "29": [131, 132, 135], "30": [131, 132, 133, 135, 137], "y_pred": [131, 132, 135], "only_predict": [131, 132, 135], "len": [131, 132, 133, 135], "184": 131, "variou": [131, 132, 135], "perspect": [131, 132, 135], "average_precis": [131, 132], "metric_collect": [131, 132, 135], "certain": [131, 132, 135], "70": 131, "fnr": [131, 132, 135], "ber": [131, 132, 135], "fairness_metric_collect": [131, 132, 135], "34": [131, 132, 133, 135], "dataset_with_pr": [131, 132, 135], "36": [131, 132, 135], "results_femal": 131, "_": [131, 135], "right": [131, 132, 135], "model_for_pr": [131, 132, 135], "results_flat": [131, 132, 133, 135], "remove_metr": [131, 132, 135], "results_female_flat": 131, "ruff": [131, 132], "w505": [131, 132], "plw2901": [131, 132, 133, 135], "actual": [131, 132, 133, 135], "known": [131, 132, 133, 135], "measur": [131, 132, 135], "binaryaverageprecis": [131, 132], "auprc": [131, 132], "lambda": [131, 132, 133, 134, 135], "plotter": [131, 132, 134, 135], "class_nam": [131, 132, 135], "set_templ": [131, 132, 135], "plotly_whit": [131, 132, 135], "extract": [131, 132, 135], "slice_result": [131, 132, 135], "dict_kei": [131, 132, 135], "roc_plot": [131, 132, 135], "roc_curve_comparison": [131, 132, 135], "femal": [131, 133, 134, 135], "41": [131, 132, 135], "pr_curv": [131, 132], "pr_plot": [131, 132], "precision_recall_curve_comparison": [131, 132], "comparison": [131, 132, 133, 135], "43": [131, 132, 133, 135], "overall_perform": [131, 132, 135], "metric_valu": [131, 132, 135], "44": [131, 132, 133, 135], "overall_performance_plot": [131, 132, 135], "metrics_valu": [131, 132, 135], "slice_metr": [131, 132, 135], "46": [131, 132, 133, 135], "slice_metrics_plot": [131, 132, 135], "metrics_comparison_bar": [131, 132, 135], "47": [131, 132, 135], "reform": [131, 132, 135], "fairness_result": [131, 132, 135], "deepcopi": [131, 132, 135], "fairness_metr": [131, 132, 135], "group_siz": [131, 132, 135], "fairness_plot": [131, 132, 135], "metrics_comparison_scatt": [131, 132, 135], "audienc": [131, 132, 135], "organ": [131, 132, 135], "store": [131, 132, 135], "regulatory_requir": [131, 132, 135], "todai": [131, 132, 135], "releas": [131, 132, 135], "team": [131, 132, 135], "vectorinstitut": [131, 132, 135], "io": [131, 132, 135], "email": [131, 132, 133, 135], "ai": [131, 132, 135], "linear_model": 131, "e501": [131, 132, 135], "next": [131, 132, 135], "use_cas": [131, 132, 135], "These": [131, 132, 135], "could": [131, 132, 135], "downstream": [131, 132, 135], "fairness_assess": [131, 132, 135], "well": [131, 132, 133, 135], "taken": [131, 132, 135], "ethical_consider": [131, 132, 135], "clinician": [131, 132, 135], "engin": [131, 132, 135], "condit": 131, "improv": [131, 132, 135], "bias": [131, 132, 133, 135], "lead": [131, 132, 135], "wors": [131, 132, 135], "retrain": [131, 132, 135], "By": [131, 132, 135], "folder": [131, 132, 135], "51": [131, 133], "_model_card": [131, 132, 135], "report_path": [131, 132, 133, 135], "heart_failure_report_period": 131, "metric_sav": 131, "quantitative_analysi": [131, 132, 135], "performance_metr": [131, 132, 135], "append": [131, 135], "random": [131, 132, 134, 135], "rmtree": [131, 132, 135], "view": [131, 132, 133, 135, 137], "die": 132, "admiss": 132, "cycqueri": [132, 135], "op": [132, 135], "qo": [132, 135], "graph_object": [132, 135], "mimicivqueri": 132, "imblearn": 132, "over_sampl": 132, "smote": 132, "imbpipelin": 132, "aggreg": 132, "restrict_timestamp": 132, "clean": 132, "normalize_nam": 132, "add_years_approxim": 132, "deathtim": 132, "lab": [132, 133], "event": 132, "merg": [132, 135], "querier": [132, 135], "dbm": [132, 135], "postgresql": [132, 135], "port": [132, 135], "5432": [132, 135], "host": [132, 135], "localhost": [132, 135], "postgr": [132, 135], "password": [132, 135], "pwd": [132, 135], "def": [132, 133, 135], "get_encount": [132, 135], "mimiciv_hosp": 132, "drop_op": 132, "languag": 132, "marital_statu": 132, "edregtim": 132, "edouttim": 132, "patient_encount": [132, 135], "subject_id": 132, "admittim": 132, "dt": 132, "anchor_year": 132, "anchor_ag": 132, "col": 132, "dischtim": 132, "anchor_year_differ": 132, "hadm_id": 132, "admission_loc": 132, "admission_typ": 132, "insur": 132, "hospital_expire_flag": 132, "compute_mortality_outcom": 132, "death": 132, "invalid": 132, "isna": 132, "shorter": 132, "di": 132, "mortality_outcom": 132, "get_labev": 132, "labev": 132, "index_col": 132, "batch_mod": 132, "process_labev": 132, "revers": 132, "deidentifi": 132, "charttim": 132, "categori": [132, 135], "start_timestamp": 132, "set_index": 132, "renam": [132, 135], "mean_aggreg": 132, "aggfunc": [132, 135], "valuenum": 132, "window_dur": 132, "window_start_tim": 132, "timestamp_col": 132, "time_bi": 132, "agg_bi": 132, "means_df": 132, "batch_num": 132, "labevents_batch": 132, "enumer": [132, 133], "fit_transform": 132, "pivot": 132, "add_prefix": [132, 135], "lab_": 132, "concat": 132, "break": 132, "run_queri": [132, 135], "cohort": [132, 135], "56": 132, "894": 132, "orm": [132, 135], "readi": [132, 135], "04": 132, "394": 132, "successfulli": [132, 135], "395": 132, "finish": [132, 135], "execut": [132, 135], "323046": 132, "105518": 132, "5925": 132, "760": 132, "761": 132, "596603": 132, "null_count": [132, 135], "isnul": [132, 135], "bar": [132, 133, 135], "height": [132, 133], "600": [132, 133], "respect": [132, 135], "larger": [132, 135], "thresh_nan": [132, 135], "dropna": [132, 135], "thresh": [132, 135], "heavili": 132, "unbalanc": 132, "55": 132, "36758893280632": 132, "14008": 132, "253": 132, "tolist": 132, "lab_anion": 132, "gap": 132, "lab_alanin": 132, "aminotransferas": [132, 135], "alt": 132, "lab_aspar": 132, "ast": 132, "lab_ptt": 132, "lab_chlorid": 132, "lab_alkalin": 132, "phosphatas": [132, 135], "lab_magnesium": 132, "lab_hematocrit": 132, "lab_mcv": 132, "lab_mchc": 132, "lab_rdw": 132, "sd": 132, "lab_i": 132, "lab_sodium": 132, "lab_potassium": 132, "lab_r": 132, "blood": [132, 135], "lab_phosph": 132, "lab_creatinin": 132, "lab_platelet": 132, "lab_ph": 132, "lab_hemoglobin": 132, "lab_bicarbon": 132, "lab_bilirubin": 132, "lab_pt": 132, "lab_calcium": 132, "lab_inr": 132, "pt": 132, "lab_glucos": 132, "lab_l": 132, "lab_whit": 132, "lab_h": 132, "lab_mch": 132, "lab_urea": 132, "nitrogen": [132, 135], "preprocessor_pipelin": 132, "oversampl": 132, "xgbclassif": [132, 135], "xgb_classifi": [132, 135], "mortality_task": 132, "n_estim": [132, 135], "250": [132, 135], "500": [132, 135], "max_depth": [132, 135], "reg_lambda": [132, 135], "colsample_bytre": [132, 135], "gamma": [132, 135], "784": 132, "785": 132, "786": 132, "787": 132, "xgbclassifi": [132, 135], "base_scor": [132, 135], "booster": [132, 135], "callback": [132, 135], "colsample_bylevel": [132, 135], "colsample_bynod": [132, 135], "early_stopping_round": [132, 135], "enable_categor": [132, 135], "eval_metr": [132, 135], "logloss": [132, 135], "feature_typ": [132, 135], "gpu_id": [132, 135], "grow_polici": [132, 135], "importance_typ": [132, 135], "interaction_constraint": [132, 135], "max_bin": [132, 135], "max_cat_threshold": [132, 135], "max_cat_to_onehot": [132, 135], "max_delta_step": [132, 135], "max_leav": [132, 135], "min_child_weight": [132, 135], "miss": [132, 135], "monotone_constraint": [132, 135], "num_parallel_tre": [132, 135], "predictor": [132, 135], "xgbclassifierxgbclassifi": [132, 135], "logist": [132, 135], "use_label_encod": [132, 135], "reg_alpha": [132, 135], "sampling_method": [132, 135], "scale_pos_weight": [132, 135], "subsampl": [132, 135], "tree_method": [132, 135], "validate_paramet": [132, 135], "2853": 132, "80": [132, 133, 135], "readthedoc": [132, 135], "en": [132, 135], "python_api": [132, 135], "mortality_report_period": 132, "functool": 133, "densenet": [133, 134], "lambdad": [133, 134], "resiz": [133, 134], "apply_transform": 133, "generate_nihcxr_report": 133, "py": 133, "lt": [133, 134], "543514": 133, "187866": 133, "400": 133, "1778": 133, "gt": [133, 134], "42806": 133, "66": 133, "34901": 133, "46077": 133, "41831": 133, "65": [133, 134], "43028": 133, "41388": 133, "amp": 133, "48508": 133, "69": 133, "554508": 133, "239976": 133, "396": 133, "1816": 133, "81": 133, "42819": 133, "43439": 133, "44934": 133, "39218": 133, "41051": 133, "52": 133, "40678": 133, "25361": 133, "551591": 133, "79": 133, "241024": 133, "383": 133, "1797": 133, "42636": 133, "42604": 133, "44897": 133, "24012": 133, "23006": 133, "24197": 133, "45368": 133, "557530": 133, "77": 133, "240182": 133, "411": 133, "1811": 133, "44563": 133, "43622": 133, "45894": 133, "42074": 133, "07": 133, "42672": 133, "42232": 133, "47422": 133, "clinical_dataset": [133, 134], "nih_d": [133, 134], "spatial_s": [133, 134], "224": [133, 134], "allow_missing_kei": [133, 134], "func": [133, 134], "1024": [133, 134], "newaxi": [133, 134], "densenet121": [133, 134], "res224": [133, 134], "feature_column": [133, 134], "No": 133, "adjust": 133, "originalimag": 133, "width": [133, 135], "originalimagepixelspac": 133, "unnam": 133, "atelectasi": 133, "float32": 133, "cardiomegali": 133, "consolid": 133, "edema": 133, "effus": 133, "emphysema": 133, "fibrosi": 133, "hernia": 133, "infiltr": 133, "mass": [133, 135], "nodul": 133, "pleural_thicken": 133, "pneumonia": 133, "pneumothorax": 133, "__index_level_0__": 133, "multilabelpositivepredictivevalu": 133, "registry_kei": 133, "positive_predictive_valu": 133, "super": 133, "overrid": 133, "_final_st": 133, "multilabelnegativepredictivevalu": 133, "negative_predictive_valu": 133, "ppv": 133, "npv": 133, "nih_eval_results_gend": 133, "nih_eval_results_ag": 133, "male": [133, 134], "1200": 133, "showlegend": 133, "slice_": 133, "model_for_predict": 133, "itr": 133, "among": 133, "112": [133, 137], "120": [133, 137], "frontal": [133, 137], "805": [133, 137], "fourteen": 133, "mine": 133, "radiolog": 133, "pleural": 133, "thicken": 133, "remain": 133, "arxiv": 133, "ab": 133, "2111": 133, "00595": 133, "inproceed": 133, "cohen2022xrv": 133, "cohen": 133, "joseph": 133, "paul": 133, "viviano": 133, "bertin": 133, "morrison": 133, "torabian": 133, "parsa": 133, "guarrera": 133, "matteo": 133, "lungren": 133, "matthew": 133, "chaudhari": 133, "akshai": 133, "brook": 133, "rupert": 133, "hashir": 133, "mohammad": 133, "bertrand": 133, "hadrien": 133, "booktitl": 133, "deep": 133, "mlmed": 133, "arxivid": 133, "cohen2020limit": 133, "cross": 133, "domain": 133, "autom": [133, 135], "2002": 133, "02497": 133, "medicin": 133, "josephpcohen": 133, "radiologist": 133, "scientist": 133, "inabl": 133, "addition": 133, "poor": 133, "qualiti": 133, "artifact": 133, "geograph": 133, "region": 133, "ethic": 133, "ensur": 133, "divers": 133, "regularli": 133, "human": 133, "expertis": 133, "address": 133, "rare": 133, "nihcxr_report_period": 133, "detector": 134, "reductor": 134, "tstester": 134, "plot_drift_experi": 134, "plot_drift_timeseri": 134, "manual_se": 134, "_c": 134, "0x7f6f9c552f90": 134, "shifter": 134, "source_d": 134, "target_d": 134, "dr_method": 134, "bbse": 134, "soft": 134, "txrv": 134, "ae": 134, "sensitivity_test": 134, "tester": 134, "tester_method": 134, "source_sample_s": 134, "target_sample_s": 134, "num_run": 134, "detect_shift": 134, "chexpert": 134, "chex": 134, "padchest": 134, "pc": 134, "source_slic": 134, "target_slic": 134, "rolling_window_drift": 134, "timestamp_column": 134, "window_s": 134, "4w": 134, "longer": 135, "v3": 135, "instruct": 135, "etl": 135, "datasetqueri": 135, "num_dai": 135, "synthea_demo": 135, "nativ": 135, "sequenti": 135, "patient_id": 135, "birthdat": 135, "race": 135, "ethnic": 135, "isout": 135, "encounter_id": 135, "extracttimestampcompon": 135, "start_year": 135, "birthdate_year": 135, "addcolumn": 135, "new_col_label": 135, "stop": 135, "lo": 135, "conditiongreaterthan": 135, "conditionlessthan": 135, "get_observ": 135, "conditionin": 135, "vital": 135, "conditionequ": 135, "groupby_op": 135, "groupbyaggreg": 135, "n_ob": 135, "observations_count": 135, "observations_stat": 135, "pivot_t": 135, "max": 135, "obs_": 135, "get_med": 135, "n_med": 135, "get_procedur": 135, "procedur": [135, 137], "n_procedur": 135, "cohort_queri": 135, "to_merg": 135, "extend": 135, "to_merge_df": 135, "413": 135, "601": 135, "602": 135, "866833": 135, "412": 135, "808322": 135, "969": 135, "970": 135, "395373": 135, "461": 135, "462": 135, "487607": 135, "565": 135, "566": 135, "102961": 135, "length_of_stai": 135, "length_of_stay_count": 135, "length_of_stay_kei": 135, "5573997233748271": 135, "obs_alanin": 135, "enzymat": 135, "volum": 135, "serum": 135, "plasma": 135, "obs_albumin": 135, "obs_alkalin": 135, "obs_aspart": 135, "obs_bilirubin": 135, "obs_bodi": 135, "obs_calcium": 135, "obs_carbon": 135, "dioxid": 135, "mole": 135, "obs_chlorid": 135, "obs_creatinin": 135, "obs_diastol": 135, "pressur": 135, "obs_erythrocyt": 135, "obs_ferritin": 135, "obs_glomerular": 135, "filtrat": 135, "sq": 135, "obs_glucos": 135, "obs_hematocrit": 135, "obs_hemoglobin": 135, "obs_leukocyt": 135, "obs_mch": 135, "entit": 135, "obs_mchc": 135, "obs_mcv": 135, "obs_oxygen": 135, "satur": 135, "arteri": 135, "obs_platelet": 135, "obs_potassium": 135, "obs_protein": 135, "obs_sodium": 135, "obs_systol": 135, "obs_troponin": 135, "cardiac": 135, "obs_urea": 135, "los_task": 135, "945": 135, "946": 135, "947": 135, "948": 135, "226": 135, "confusion_matrix": 135, "conf_plot": 135, "plot_confusion_matrix": 135, "length_of_stay_report_period": 135, "goal": 137, "ehr": 137, "site": 137, "icu": 137, "demonstr": 137}, "objects": {"cyclops": [[125, 0, 0, "-", "data"], [126, 0, 0, "-", "evaluate"], [127, 0, 0, "-", "monitor"], [128, 0, 0, "-", "report"], [129, 0, 0, "-", "tasks"]], "cyclops.data": [[125, 0, 0, "-", "features"], [6, 0, 0, "-", "slicer"]], "cyclops.data.features": [[4, 0, 0, "-", "medical_image"]], "cyclops.data.features.medical_image": [[5, 1, 1, "", "MedicalImage"]], "cyclops.data.features.medical_image.MedicalImage": [[5, 2, 1, "", "__call__"], [5, 2, 1, "", "cast_storage"], [5, 2, 1, "", "decode_example"], [5, 2, 1, "", "embed_storage"], [5, 2, 1, "", "encode_example"], [5, 2, 1, "", "flatten"]], "cyclops.data.slicer": [[7, 1, 1, "", "SliceSpec"], [8, 4, 1, "", "compound_filter"], [9, 4, 1, "", "filter_datetime"], [10, 4, 1, "", "filter_non_null"], [11, 4, 1, "", "filter_range"], [12, 4, 1, "", "filter_string_contains"], [13, 4, 1, "", "filter_value"], [14, 4, 1, "", "is_datetime"], [15, 4, 1, "", "overall"]], "cyclops.data.slicer.SliceSpec": [[7, 3, 1, "", "_registry"], [7, 2, 1, "", "add_slice_spec"], [7, 3, 1, "", "column_names"], [7, 2, 1, "", "get_slices"], [7, 3, 1, "", "include_overall"], [7, 2, 1, "", "slices"], [7, 3, 1, "", "spec_list"], [7, 3, 1, "", "validate"]], "cyclops.evaluate": [[16, 0, 0, "-", "evaluator"], [126, 0, 0, "-", "fairness"], [126, 0, 0, "-", "metrics"]], "cyclops.evaluate.evaluator": [[17, 4, 1, "", "evaluate"]], "cyclops.evaluate.fairness": [[18, 0, 0, "-", "config"], [20, 0, 0, "-", "evaluator"]], "cyclops.evaluate.fairness.config": [[19, 1, 1, "", "FairnessConfig"]], "cyclops.evaluate.fairness.evaluator": [[21, 4, 1, "", "evaluate_fairness"], [22, 4, 1, "", "warn_too_many_unique_values"]], "cyclops.evaluate.metrics": [[23, 0, 0, "-", "accuracy"], [28, 0, 0, "-", "auroc"], [33, 0, 0, "-", "f_beta"], [42, 0, 0, "-", "factory"], [126, 0, 0, "-", "functional"], [73, 0, 0, "-", "metric"], [77, 0, 0, "-", "precision_recall"], [86, 0, 0, "-", "precision_recall_curve"], [91, 0, 0, "-", "roc"], [96, 0, 0, "-", "sensitivity"], [101, 0, 0, "-", "specificity"], [106, 0, 0, "-", "stat_scores"]], "cyclops.evaluate.metrics.accuracy": [[24, 1, 1, "", "Accuracy"], [25, 1, 1, "", "BinaryAccuracy"], [26, 1, 1, "", "MulticlassAccuracy"], [27, 1, 1, "", "MultilabelAccuracy"]], "cyclops.evaluate.metrics.accuracy.Accuracy": [[24, 2, 1, "", "__add__"], [24, 2, 1, "", "__call__"], [24, 2, 1, "", "__init__"], [24, 2, 1, "", "__mul__"], [24, 2, 1, "", "add_state"], [24, 2, 1, "", "clone"], [24, 2, 1, "", "compute"], [24, 2, 1, "", "reset_state"], [24, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.accuracy.BinaryAccuracy": [[25, 2, 1, "", "__add__"], [25, 2, 1, "", "__call__"], [25, 2, 1, "", "__init__"], [25, 2, 1, "", "__mul__"], [25, 2, 1, "", "add_state"], [25, 2, 1, "", "clone"], [25, 2, 1, "", "compute"], [25, 2, 1, "", "reset_state"], [25, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy": [[26, 2, 1, "", "__add__"], [26, 2, 1, "", "__call__"], [26, 2, 1, "", "__init__"], [26, 2, 1, "", "__mul__"], [26, 2, 1, "", "add_state"], [26, 2, 1, "", "clone"], [26, 2, 1, "", "compute"], [26, 2, 1, "", "reset_state"], [26, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy": [[27, 2, 1, "", "__add__"], [27, 2, 1, "", "__call__"], [27, 2, 1, "", "__init__"], [27, 2, 1, "", "__mul__"], [27, 2, 1, "", "add_state"], [27, 2, 1, "", "clone"], [27, 2, 1, "", "compute"], [27, 2, 1, "", "reset_state"], [27, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.auroc": [[29, 1, 1, "", "AUROC"], [30, 1, 1, "", "BinaryAUROC"], [31, 1, 1, "", "MulticlassAUROC"], [32, 1, 1, "", "MultilabelAUROC"]], "cyclops.evaluate.metrics.auroc.AUROC": [[29, 2, 1, "", "__add__"], [29, 2, 1, "", "__call__"], [29, 2, 1, "", "__init__"], [29, 2, 1, "", "__mul__"], [29, 2, 1, "", "add_state"], [29, 2, 1, "", "clone"], [29, 2, 1, "", "compute"], [29, 2, 1, "", "reset_state"], [29, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.auroc.BinaryAUROC": [[30, 2, 1, "", "__add__"], [30, 2, 1, "", "__call__"], [30, 2, 1, "", "__init__"], [30, 2, 1, "", "__mul__"], [30, 2, 1, "", "add_state"], [30, 2, 1, "", "clone"], [30, 2, 1, "", "compute"], [30, 2, 1, "", "reset_state"], [30, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.auroc.MulticlassAUROC": [[31, 2, 1, "", "__add__"], [31, 2, 1, "", "__call__"], [31, 2, 1, "", "__init__"], [31, 2, 1, "", "__mul__"], [31, 2, 1, "", "add_state"], [31, 2, 1, "", "clone"], [31, 2, 1, "", "compute"], [31, 2, 1, "", "reset_state"], [31, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.auroc.MultilabelAUROC": [[32, 2, 1, "", "__add__"], [32, 2, 1, "", "__call__"], [32, 2, 1, "", "__init__"], [32, 2, 1, "", "__mul__"], [32, 2, 1, "", "add_state"], [32, 2, 1, "", "clone"], [32, 2, 1, "", "compute"], [32, 2, 1, "", "reset_state"], [32, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta": [[34, 1, 1, "", "BinaryF1Score"], [35, 1, 1, "", "BinaryFbetaScore"], [36, 1, 1, "", "F1Score"], [37, 1, 1, "", "FbetaScore"], [38, 1, 1, "", "MulticlassF1Score"], [39, 1, 1, "", "MulticlassFbetaScore"], [40, 1, 1, "", "MultilabelF1Score"], [41, 1, 1, "", "MultilabelFbetaScore"]], "cyclops.evaluate.metrics.f_beta.BinaryF1Score": [[34, 2, 1, "", "__add__"], [34, 2, 1, "", "__call__"], [34, 2, 1, "", "__init__"], [34, 2, 1, "", "__mul__"], [34, 2, 1, "", "add_state"], [34, 2, 1, "", "clone"], [34, 2, 1, "", "compute"], [34, 2, 1, "", "reset_state"], [34, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore": [[35, 2, 1, "", "__add__"], [35, 2, 1, "", "__call__"], [35, 2, 1, "", "__init__"], [35, 2, 1, "", "__mul__"], [35, 2, 1, "", "add_state"], [35, 2, 1, "", "clone"], [35, 2, 1, "", "compute"], [35, 2, 1, "", "reset_state"], [35, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.F1Score": [[36, 2, 1, "", "__add__"], [36, 2, 1, "", "__call__"], [36, 2, 1, "", "__init__"], [36, 2, 1, "", "__mul__"], [36, 2, 1, "", "add_state"], [36, 2, 1, "", "clone"], [36, 2, 1, "", "compute"], [36, 2, 1, "", "reset_state"], [36, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.FbetaScore": [[37, 2, 1, "", "__add__"], [37, 2, 1, "", "__call__"], [37, 2, 1, "", "__init__"], [37, 2, 1, "", "__mul__"], [37, 2, 1, "", "add_state"], [37, 2, 1, "", "clone"], [37, 2, 1, "", "compute"], [37, 2, 1, "", "reset_state"], [37, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.MulticlassF1Score": [[38, 2, 1, "", "__add__"], [38, 2, 1, "", "__call__"], [38, 2, 1, "", "__init__"], [38, 2, 1, "", "__mul__"], [38, 2, 1, "", "add_state"], [38, 2, 1, "", "clone"], [38, 2, 1, "", "compute"], [38, 2, 1, "", "reset_state"], [38, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore": [[39, 2, 1, "", "__add__"], [39, 2, 1, "", "__call__"], [39, 2, 1, "", "__init__"], [39, 2, 1, "", "__mul__"], [39, 2, 1, "", "add_state"], [39, 2, 1, "", "clone"], [39, 2, 1, "", "compute"], [39, 2, 1, "", "reset_state"], [39, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.MultilabelF1Score": [[40, 2, 1, "", "__add__"], [40, 2, 1, "", "__call__"], [40, 2, 1, "", "__init__"], [40, 2, 1, "", "__mul__"], [40, 2, 1, "", "add_state"], [40, 2, 1, "", "clone"], [40, 2, 1, "", "compute"], [40, 2, 1, "", "reset_state"], [40, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore": [[41, 2, 1, "", "__add__"], [41, 2, 1, "", "__call__"], [41, 2, 1, "", "__init__"], [41, 2, 1, "", "__mul__"], [41, 2, 1, "", "add_state"], [41, 2, 1, "", "clone"], [41, 2, 1, "", "compute"], [41, 2, 1, "", "reset_state"], [41, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.factory": [[43, 4, 1, "", "create_metric"]], "cyclops.evaluate.metrics.functional": [[44, 0, 0, "-", "accuracy"], [45, 0, 0, "-", "auroc"], [46, 0, 0, "-", "f_beta"], [55, 0, 0, "-", "precision_recall"], [64, 0, 0, "-", "precision_recall_curve"], [65, 0, 0, "-", "roc"], [70, 0, 0, "-", "sensitivity"], [71, 0, 0, "-", "specificity"], [72, 0, 0, "-", "stat_scores"]], "cyclops.evaluate.metrics.functional.f_beta": [[47, 4, 1, "", "binary_f1_score"], [48, 4, 1, "", "binary_fbeta_score"], [49, 4, 1, "", "f1_score"], [50, 4, 1, "", "fbeta_score"], [51, 4, 1, "", "multiclass_f1_score"], [52, 4, 1, "", "multiclass_fbeta_score"], [53, 4, 1, "", "multilabel_f1_score"], [54, 4, 1, "", "multilabel_fbeta_score"]], "cyclops.evaluate.metrics.functional.precision_recall": [[56, 4, 1, "", "binary_precision"], [57, 4, 1, "", "binary_recall"], [58, 4, 1, "", "multiclass_precision"], [59, 4, 1, "", "multiclass_recall"], [60, 4, 1, "", "multilabel_precision"], [61, 4, 1, "", "multilabel_recall"], [62, 4, 1, "", "precision"], [63, 4, 1, "", "recall"]], "cyclops.evaluate.metrics.functional.roc": [[66, 4, 1, "", "binary_roc_curve"], [67, 4, 1, "", "multiclass_roc_curve"], [68, 4, 1, "", "multilabel_roc_curve"], [69, 4, 1, "", "roc_curve"]], "cyclops.evaluate.metrics.metric": [[74, 1, 1, "", "Metric"], [75, 1, 1, "", "MetricCollection"], [76, 1, 1, "", "OperatorMetric"]], "cyclops.evaluate.metrics.metric.Metric": [[74, 2, 1, "", "__add__"], [74, 2, 1, "", "__call__"], [74, 2, 1, "", "__init__"], [74, 2, 1, "", "__mul__"], [74, 2, 1, "", "add_state"], [74, 2, 1, "", "clone"], [74, 2, 1, "", "compute"], [74, 5, 1, "", "name"], [74, 2, 1, "", "reset_state"], [74, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.metric.MetricCollection": [[75, 2, 1, "", "__call__"], [75, 2, 1, "", "__init__"], [75, 2, 1, "", "add_metrics"], [75, 2, 1, "", "clear"], [75, 2, 1, "", "clone"], [75, 2, 1, "", "compute"], [75, 2, 1, "", "get"], [75, 2, 1, "", "items"], [75, 2, 1, "", "keys"], [75, 2, 1, "", "pop"], [75, 2, 1, "", "popitem"], [75, 2, 1, "", "reset_state"], [75, 2, 1, "", "setdefault"], [75, 2, 1, "", "update"], [75, 2, 1, "", "update_state"], [75, 2, 1, "", "values"]], "cyclops.evaluate.metrics.metric.OperatorMetric": [[76, 2, 1, "", "__add__"], [76, 2, 1, "", "__call__"], [76, 2, 1, "", "__init__"], [76, 2, 1, "", "__mul__"], [76, 2, 1, "", "add_state"], [76, 2, 1, "", "clone"], [76, 2, 1, "", "compute"], [76, 2, 1, "", "reset_state"], [76, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall": [[78, 1, 1, "", "BinaryPrecision"], [79, 1, 1, "", "BinaryRecall"], [80, 1, 1, "", "MulticlassPrecision"], [81, 1, 1, "", "MulticlassRecall"], [82, 1, 1, "", "MultilabelPrecision"], [83, 1, 1, "", "MultilabelRecall"], [84, 1, 1, "", "Precision"], [85, 1, 1, "", "Recall"]], "cyclops.evaluate.metrics.precision_recall.BinaryPrecision": [[78, 2, 1, "", "__add__"], [78, 2, 1, "", "__call__"], [78, 2, 1, "", "__init__"], [78, 2, 1, "", "__mul__"], [78, 2, 1, "", "add_state"], [78, 2, 1, "", "clone"], [78, 2, 1, "", "compute"], [78, 2, 1, "", "reset_state"], [78, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.BinaryRecall": [[79, 2, 1, "", "__add__"], [79, 2, 1, "", "__call__"], [79, 2, 1, "", "__init__"], [79, 2, 1, "", "__mul__"], [79, 2, 1, "", "add_state"], [79, 2, 1, "", "clone"], [79, 2, 1, "", "compute"], [79, 2, 1, "", "reset_state"], [79, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision": [[80, 2, 1, "", "__add__"], [80, 2, 1, "", "__call__"], [80, 2, 1, "", "__init__"], [80, 2, 1, "", "__mul__"], [80, 2, 1, "", "add_state"], [80, 2, 1, "", "clone"], [80, 2, 1, "", "compute"], [80, 2, 1, "", "reset_state"], [80, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.MulticlassRecall": [[81, 2, 1, "", "__add__"], [81, 2, 1, "", "__call__"], [81, 2, 1, "", "__init__"], [81, 2, 1, "", "__mul__"], [81, 2, 1, "", "add_state"], [81, 2, 1, "", "clone"], [81, 2, 1, "", "compute"], [81, 2, 1, "", "reset_state"], [81, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision": [[82, 2, 1, "", "__add__"], [82, 2, 1, "", "__call__"], [82, 2, 1, "", "__init__"], [82, 2, 1, "", "__mul__"], [82, 2, 1, "", "add_state"], [82, 2, 1, "", "clone"], [82, 2, 1, "", "compute"], [82, 2, 1, "", "reset_state"], [82, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.MultilabelRecall": [[83, 2, 1, "", "__add__"], [83, 2, 1, "", "__call__"], [83, 2, 1, "", "__init__"], [83, 2, 1, "", "__mul__"], [83, 2, 1, "", "add_state"], [83, 2, 1, "", "clone"], [83, 2, 1, "", "compute"], [83, 2, 1, "", "reset_state"], [83, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.Precision": [[84, 2, 1, "", "__add__"], [84, 2, 1, "", "__call__"], [84, 2, 1, "", "__init__"], [84, 2, 1, "", "__mul__"], [84, 2, 1, "", "add_state"], [84, 2, 1, "", "clone"], [84, 2, 1, "", "compute"], [84, 2, 1, "", "reset_state"], [84, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.Recall": [[85, 2, 1, "", "__add__"], [85, 2, 1, "", "__call__"], [85, 2, 1, "", "__init__"], [85, 2, 1, "", "__mul__"], [85, 2, 1, "", "add_state"], [85, 2, 1, "", "clone"], [85, 2, 1, "", "compute"], [85, 2, 1, "", "reset_state"], [85, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall_curve": [[87, 1, 1, "", "BinaryPrecisionRecallCurve"], [88, 1, 1, "", "MulticlassPrecisionRecallCurve"], [89, 1, 1, "", "MultilabelPrecisionRecallCurve"], [90, 1, 1, "", "PrecisionRecallCurve"]], "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve": [[87, 2, 1, "", "__add__"], [87, 2, 1, "", "__call__"], [87, 2, 1, "", "__init__"], [87, 2, 1, "", "__mul__"], [87, 2, 1, "", "add_state"], [87, 2, 1, "", "clone"], [87, 2, 1, "", "compute"], [87, 2, 1, "", "reset_state"], [87, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve": [[88, 2, 1, "", "__add__"], [88, 2, 1, "", "__call__"], [88, 2, 1, "", "__init__"], [88, 2, 1, "", "__mul__"], [88, 2, 1, "", "add_state"], [88, 2, 1, "", "clone"], [88, 2, 1, "", "compute"], [88, 2, 1, "", "reset_state"], [88, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve": [[89, 2, 1, "", "__add__"], [89, 2, 1, "", "__call__"], [89, 2, 1, "", "__init__"], [89, 2, 1, "", "__mul__"], [89, 2, 1, "", "add_state"], [89, 2, 1, "", "clone"], [89, 2, 1, "", "compute"], [89, 2, 1, "", "reset_state"], [89, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve": [[90, 2, 1, "", "__add__"], [90, 2, 1, "", "__call__"], [90, 2, 1, "", "__init__"], [90, 2, 1, "", "__mul__"], [90, 2, 1, "", "add_state"], [90, 2, 1, "", "clone"], [90, 2, 1, "", "compute"], [90, 2, 1, "", "reset_state"], [90, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.roc": [[92, 1, 1, "", "BinaryROCCurve"], [93, 1, 1, "", "MulticlassROCCurve"], [94, 1, 1, "", "MultilabelROCCurve"], [95, 1, 1, "", "ROCCurve"]], "cyclops.evaluate.metrics.roc.BinaryROCCurve": [[92, 2, 1, "", "__add__"], [92, 2, 1, "", "__call__"], [92, 2, 1, "", "__init__"], [92, 2, 1, "", "__mul__"], [92, 2, 1, "", "add_state"], [92, 2, 1, "", "clone"], [92, 2, 1, "", "compute"], [92, 2, 1, "", "reset_state"], [92, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.roc.MulticlassROCCurve": [[93, 2, 1, "", "__add__"], [93, 2, 1, "", "__call__"], [93, 2, 1, "", "__init__"], [93, 2, 1, "", "__mul__"], [93, 2, 1, "", "add_state"], [93, 2, 1, "", "clone"], [93, 2, 1, "", "compute"], [93, 2, 1, "", "reset_state"], [93, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.roc.MultilabelROCCurve": [[94, 2, 1, "", "__add__"], [94, 2, 1, "", "__call__"], [94, 2, 1, "", "__init__"], [94, 2, 1, "", "__mul__"], [94, 2, 1, "", "add_state"], [94, 2, 1, "", "clone"], [94, 2, 1, "", "compute"], [94, 2, 1, "", "reset_state"], [94, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.roc.ROCCurve": [[95, 2, 1, "", "__add__"], [95, 2, 1, "", "__call__"], [95, 2, 1, "", "__init__"], [95, 2, 1, "", "__mul__"], [95, 2, 1, "", "add_state"], [95, 2, 1, "", "clone"], [95, 2, 1, "", "compute"], [95, 2, 1, "", "reset_state"], [95, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.sensitivity": [[97, 1, 1, "", "BinarySensitivity"], [98, 1, 1, "", "MulticlassSensitivity"], [99, 1, 1, "", "MultilabelSensitivity"], [100, 1, 1, "", "Sensitivity"]], "cyclops.evaluate.metrics.sensitivity.BinarySensitivity": [[97, 2, 1, "", "__add__"], [97, 2, 1, "", "__call__"], [97, 2, 1, "", "__init__"], [97, 2, 1, "", "__mul__"], [97, 2, 1, "", "add_state"], [97, 2, 1, "", "clone"], [97, 2, 1, "", "compute"], [97, 2, 1, "", "reset_state"], [97, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity": [[98, 2, 1, "", "__add__"], [98, 2, 1, "", "__call__"], [98, 2, 1, "", "__init__"], [98, 2, 1, "", "__mul__"], [98, 2, 1, "", "add_state"], [98, 2, 1, "", "clone"], [98, 2, 1, "", "compute"], [98, 2, 1, "", "reset_state"], [98, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity": [[99, 2, 1, "", "__add__"], [99, 2, 1, "", "__call__"], [99, 2, 1, "", "__init__"], [99, 2, 1, "", "__mul__"], [99, 2, 1, "", "add_state"], [99, 2, 1, "", "clone"], [99, 2, 1, "", "compute"], [99, 2, 1, "", "reset_state"], [99, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.sensitivity.Sensitivity": [[100, 2, 1, "", "__add__"], [100, 2, 1, "", "__call__"], [100, 2, 1, "", "__init__"], [100, 2, 1, "", "__mul__"], [100, 2, 1, "", "add_state"], [100, 2, 1, "", "clone"], [100, 2, 1, "", "compute"], [100, 2, 1, "", "reset_state"], [100, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.specificity": [[102, 1, 1, "", "BinarySpecificity"], [103, 1, 1, "", "MulticlassSpecificity"], [104, 1, 1, "", "MultilabelSpecificity"], [105, 1, 1, "", "Specificity"]], "cyclops.evaluate.metrics.specificity.BinarySpecificity": [[102, 2, 1, "", "__add__"], [102, 2, 1, "", "__call__"], [102, 2, 1, "", "__init__"], [102, 2, 1, "", "__mul__"], [102, 2, 1, "", "add_state"], [102, 2, 1, "", "clone"], [102, 2, 1, "", "compute"], [102, 2, 1, "", "reset_state"], [102, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.specificity.MulticlassSpecificity": [[103, 2, 1, "", "__add__"], [103, 2, 1, "", "__call__"], [103, 2, 1, "", "__init__"], [103, 2, 1, "", "__mul__"], [103, 2, 1, "", "add_state"], [103, 2, 1, "", "clone"], [103, 2, 1, "", "compute"], [103, 2, 1, "", "reset_state"], [103, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.specificity.MultilabelSpecificity": [[104, 2, 1, "", "__add__"], [104, 2, 1, "", "__call__"], [104, 2, 1, "", "__init__"], [104, 2, 1, "", "__mul__"], [104, 2, 1, "", "add_state"], [104, 2, 1, "", "clone"], [104, 2, 1, "", "compute"], [104, 2, 1, "", "reset_state"], [104, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.specificity.Specificity": [[105, 2, 1, "", "__add__"], [105, 2, 1, "", "__call__"], [105, 2, 1, "", "__init__"], [105, 2, 1, "", "__mul__"], [105, 2, 1, "", "add_state"], [105, 2, 1, "", "clone"], [105, 2, 1, "", "compute"], [105, 2, 1, "", "reset_state"], [105, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.stat_scores": [[107, 1, 1, "", "BinaryStatScores"], [108, 1, 1, "", "MulticlassStatScores"], [109, 1, 1, "", "MultilabelStatScores"], [110, 1, 1, "", "StatScores"]], "cyclops.evaluate.metrics.stat_scores.BinaryStatScores": [[107, 2, 1, "", "__add__"], [107, 2, 1, "", "__call__"], [107, 2, 1, "", "__init__"], [107, 2, 1, "", "__mul__"], [107, 2, 1, "", "add_state"], [107, 2, 1, "", "clone"], [107, 2, 1, "", "compute"], [107, 2, 1, "", "reset_state"], [107, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores": [[108, 2, 1, "", "__add__"], [108, 2, 1, "", "__call__"], [108, 2, 1, "", "__init__"], [108, 2, 1, "", "__mul__"], [108, 2, 1, "", "add_state"], [108, 2, 1, "", "clone"], [108, 2, 1, "", "compute"], [108, 2, 1, "", "reset_state"], [108, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores": [[109, 2, 1, "", "__add__"], [109, 2, 1, "", "__call__"], [109, 2, 1, "", "__init__"], [109, 2, 1, "", "__mul__"], [109, 2, 1, "", "add_state"], [109, 2, 1, "", "clone"], [109, 2, 1, "", "compute"], [109, 2, 1, "", "reset_state"], [109, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.stat_scores.StatScores": [[110, 2, 1, "", "__add__"], [110, 2, 1, "", "__call__"], [110, 2, 1, "", "__init__"], [110, 2, 1, "", "__mul__"], [110, 2, 1, "", "add_state"], [110, 2, 1, "", "clone"], [110, 2, 1, "", "compute"], [110, 5, 1, "", "name"], [110, 2, 1, "", "reset_state"], [110, 2, 1, "", "update_state"]], "cyclops.monitor": [[111, 0, 0, "-", "clinical_applicator"], [113, 0, 0, "-", "synthetic_applicator"]], "cyclops.monitor.clinical_applicator": [[112, 1, 1, "", "ClinicalShiftApplicator"]], "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator": [[112, 2, 1, "", "age"], [112, 2, 1, "", "apply_shift"], [112, 2, 1, "", "custom"], [112, 2, 1, "", "hospital_type"], [112, 2, 1, "", "month"], [112, 2, 1, "", "sex"], [112, 2, 1, "", "time"]], "cyclops.monitor.synthetic_applicator": [[114, 1, 1, "", "SyntheticShiftApplicator"], [115, 4, 1, "", "binary_noise_shift"], [116, 4, 1, "", "feature_association_shift"], [117, 4, 1, "", "feature_swap_shift"], [118, 4, 1, "", "gaussian_noise_shift"], [119, 4, 1, "", "knockout_shift"]], "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator": [[114, 2, 1, "", "apply_shift"]], "cyclops.report": [[120, 0, 0, "-", "report"]], "cyclops.report.report": [[121, 1, 1, "", "ModelCardReport"]], "cyclops.report.report.ModelCardReport": [[121, 2, 1, "", "export"], [121, 2, 1, "", "from_json_file"], [121, 2, 1, "", "log_citation"], [121, 2, 1, "", "log_dataset"], [121, 2, 1, "", "log_descriptor"], [121, 2, 1, "", "log_fairness_assessment"], [121, 2, 1, "", "log_from_dict"], [121, 2, 1, "", "log_image"], [121, 2, 1, "", "log_license"], [121, 2, 1, "", "log_model_parameters"], [121, 2, 1, "", "log_owner"], [121, 2, 1, "", "log_performance_metrics"], [121, 2, 1, "", "log_plotly_figure"], [121, 2, 1, "", "log_quantitative_analysis"], [121, 2, 1, "", "log_reference"], [121, 2, 1, "", "log_regulation"], [121, 2, 1, "", "log_risk"], [121, 2, 1, "", "log_use_case"], [121, 2, 1, "", "log_user"], [121, 2, 1, "", "log_version"]], "cyclops.tasks": [[122, 0, 0, "-", "classification"]], "cyclops.tasks.classification": [[123, 1, 1, "", "BinaryTabularClassificationTask"], [124, 1, 1, "", "MultilabelImageClassificationTask"]], "cyclops.tasks.classification.BinaryTabularClassificationTask": [[123, 2, 1, "", "__init__"], [123, 2, 1, "", "add_model"], [123, 5, 1, "", "data_type"], [123, 2, 1, "", "evaluate"], [123, 2, 1, "", "get_model"], [123, 2, 1, "", "list_models"], [123, 2, 1, "", "list_models_params"], [123, 2, 1, "", "load_model"], [123, 5, 1, "", "models_count"], [123, 2, 1, "", "predict"], [123, 2, 1, "", "save_model"], [123, 5, 1, "", "task_type"], [123, 2, 1, "", "train"]], "cyclops.tasks.classification.MultilabelImageClassificationTask": [[124, 2, 1, "", "__init__"], [124, 2, 1, "", "add_model"], [124, 5, 1, "", "data_type"], [124, 2, 1, "", "evaluate"], [124, 2, 1, "", "get_model"], [124, 2, 1, "", "list_models"], [124, 2, 1, "", "list_models_params"], [124, 2, 1, "", "load_model"], [124, 5, 1, "", "models_count"], [124, 2, 1, "", "predict"], [124, 2, 1, "", "save_model"], [124, 5, 1, "", "task_type"]]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:method", "3": "py:attribute", "4": "py:function", "5": "py:property"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "method", "Python method"], "3": ["py", "attribute", "Python attribute"], "4": ["py", "function", "Python function"], "5": ["py", "property", "Python property"]}, "titleterms": {"api": [0, 136], "refer": 0, "contribut": [1, 3], "cyclop": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129], "pre": 1, "commit": 1, "hook": 1, "code": 1, "guidelin": 1, "welcom": 2, "": 2, "document": [2, 3], "content": 2, "get": 3, "start": 3, "instal": 3, "us": [3, 134, 137], "pip": 3, "develop": 3, "poetri": 3, "notebook": 3, "citat": 3, "data": [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 125, 131, 132, 135, 137], "featur": [4, 5, 125, 131, 132, 135], "medical_imag": [4, 5], "medicalimag": 5, "slicer": [6, 7, 8, 9, 10, 11, 12, 13, 14, 15], "slicespec": 7, "compound_filt": 8, "filter_datetim": 9, "filter_non_nul": 10, "filter_rang": 11, "filter_string_contain": 12, "filter_valu": 13, "is_datetim": 14, "overal": 15, "evalu": [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 126, 131, 132, 135], "fair": [18, 19, 20, 21, 22, 126], "config": [18, 19], "fairnessconfig": 19, "evaluate_fair": 21, "warn_too_many_unique_valu": 22, "metric": [23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 126, 133], "accuraci": [23, 24, 25, 26, 27, 44], "binaryaccuraci": 25, "multiclassaccuraci": 26, "multilabelaccuraci": 27, "auroc": [28, 29, 30, 31, 32, 45, 133], "binaryauroc": 30, "multiclassauroc": 31, "multilabelauroc": 32, "f_beta": [33, 34, 35, 36, 37, 38, 39, 40, 41, 46, 47, 48, 49, 50, 51, 52, 53, 54], "binaryf1scor": 34, "binaryfbetascor": 35, "f1score": 36, "fbetascor": 37, "multiclassf1scor": 38, "multiclassfbetascor": 39, "multilabelf1scor": 40, "multilabelfbetascor": 41, "factori": [42, 43], "create_metr": 43, "function": [44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 126], "binary_f1_scor": 47, "binary_fbeta_scor": 48, "f1_score": 49, "fbeta_scor": 50, "multiclass_f1_scor": 51, "multiclass_fbeta_scor": 52, "multilabel_f1_scor": 53, "multilabel_fbeta_scor": 54, "precision_recal": [55, 56, 57, 58, 59, 60, 61, 62, 63, 77, 78, 79, 80, 81, 82, 83, 84, 85], "binary_precis": 56, "binary_recal": 57, "multiclass_precis": 58, "multiclass_recal": 59, "multilabel_precis": 60, "multilabel_recal": 61, "precis": [62, 84], "recal": [63, 85], "precision_recall_curv": [64, 86, 87, 88, 89, 90], "roc": [65, 66, 67, 68, 69, 91, 92, 93, 94, 95], "binary_roc_curv": 66, "multiclass_roc_curv": 67, "multilabel_roc_curv": 68, "roc_curv": 69, "sensit": [70, 96, 97, 98, 99, 100, 134], "specif": [71, 101, 102, 103, 104, 105], "stat_scor": [72, 106, 107, 108, 109, 110], "metriccollect": 75, "operatormetr": 76, "binaryprecis": 78, "binaryrecal": 79, "multiclassprecis": 80, "multiclassrecal": 81, "multilabelprecis": 82, "multilabelrecal": 83, "binaryprecisionrecallcurv": 87, "multiclassprecisionrecallcurv": 88, "multilabelprecisionrecallcurv": 89, "precisionrecallcurv": 90, "binaryroccurv": 92, "multiclassroccurv": 93, "multilabelroccurv": 94, "roccurv": 95, "binarysensit": 97, "multiclasssensit": 98, "multilabelsensit": 99, "binaryspecif": 102, "multiclassspecif": 103, "multilabelspecif": 104, "binarystatscor": 107, "multiclassstatscor": 108, "multilabelstatscor": 109, "statscor": 110, "monitor": [111, 112, 113, 114, 115, 116, 117, 118, 119, 127, 136], "clinical_appl": [111, 112], "clinicalshiftappl": 112, "synthetic_appl": [113, 114, 115, 116, 117, 118, 119], "syntheticshiftappl": 114, "binary_noise_shift": 115, "feature_association_shift": 116, "feature_swap_shift": 117, "gaussian_noise_shift": 118, "knockout_shift": 119, "report": [120, 121, 128, 131, 132, 133, 135], "modelcardreport": 121, "task": [122, 123, 124, 129, 131, 132, 135], "classif": [122, 123, 124, 133, 137], "binarytabularclassificationtask": 123, "multilabelimageclassificationtask": 124, "tutori": [130, 134], "heart": [131, 137], "failur": [131, 137], "predict": [131, 132, 135, 137], "import": [131, 132, 133, 134, 135], "librari": [131, 132, 133, 134, 135], "constant": [131, 132, 135], "load": [131, 133, 134], "sex": [131, 133], "valu": 131, "ag": [131, 132, 133, 135], "distribut": [131, 132, 135], "outcom": [131, 132, 135], "identifi": [131, 132, 135], "type": [131, 132, 135], "creat": [131, 132, 135], "preprocessor": [131, 132, 135], "hug": [131, 132, 135], "face": [131, 132, 135], "dataset": [131, 132, 133, 134, 135], "model": [131, 132, 133, 134, 135], "creation": [131, 132, 133, 135], "train": [131, 132, 134, 135], "gener": [131, 132, 133, 134, 135], "mortal": [132, 137], "queri": [132, 135], "process": 132, "comput": [132, 135], "label": [132, 135], "inspect": [132, 135], "preprocess": [132, 135], "drop": [132, 135], "nan": [132, 135], "base": [132, 135], "nan_threshold": [132, 135], "gender": [132, 135], "chest": [133, 137], "x": [133, 137], "rai": [133, 137], "diseas": 133, "histor": 133, "initi": 133, "period": 133, "multilabel": 133, "pathologi": 133, "log": 133, "perform": 133, "test": [133, 134], "w": 133, "threshold": 133, "popul": 133, "card": 133, "field": 133, "nihcxr": 134, "clinic": 134, "drift": 134, "experi": 134, "exampl": [134, 137], "1": 134, "sourc": 134, "target": 134, "2": 134, "3": 134, "dimension": 134, "reduct": 134, "techniqu": 134, "differ": 134, "4": 134, "shift": 134, "5": 134, "roll": 134, "window": 134, "synthet": 134, "timestamp": 134, "biweekli": 134, "prolong": [135, 137], "length": [135, 137], "stai": [135, 137], "case": 137, "tabular": 137, "kaggl": 137, "mimiciv": 137, "synthea": 137, "imag": 137, "nih": 137}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.todo": 2, "sphinx.ext.viewcode": 1, "sphinx.ext.intersphinx": 1, "nbsphinx": 4, "sphinx": 60}, "alltitles": {"API Reference": [[0, "api-reference"]], "Contributing to cyclops": [[1, "contributing-to-cyclops"]], "Pre-commit hooks": [[1, "pre-commit-hooks"]], "Coding guidelines": [[1, "coding-guidelines"]], "Welcome to cyclops\u2019s documentation!": [[2, "welcome-to-cyclops-s-documentation"]], "Contents:": [[2, null]], "\ud83d\udc23 Getting Started": [[3, "getting-started"]], "Installing cyclops using pip": [[3, "installing-cyclops-using-pip"]], "\ud83e\uddd1\ud83c\udfff\u200d\ud83d\udcbb Developing": [[3, "developing"]], "Using poetry": [[3, "using-poetry"]], "Contributing": [[3, "contributing"]], "\ud83d\udcda Documentation": [[3, "documentation"]], "\ud83d\udcd3 Notebooks": [[3, "notebooks"]], "\ud83c\udf93 Citation": [[3, "citation"]], "cyclops.data.features.medical_image": [[4, "module-cyclops.data.features.medical_image"]], "cyclops.data.features.medical_image.MedicalImage": [[5, "cyclops-data-features-medical-image-medicalimage"]], "cyclops.data.slicer": [[6, "module-cyclops.data.slicer"]], "cyclops.data.slicer.SliceSpec": [[7, "cyclops-data-slicer-slicespec"]], "cyclops.data.slicer.compound_filter": [[8, "cyclops-data-slicer-compound-filter"]], "cyclops.data.slicer.filter_datetime": [[9, "cyclops-data-slicer-filter-datetime"]], "cyclops.data.slicer.filter_non_null": [[10, "cyclops-data-slicer-filter-non-null"]], "cyclops.data.slicer.filter_range": [[11, "cyclops-data-slicer-filter-range"]], "cyclops.data.slicer.filter_string_contains": [[12, "cyclops-data-slicer-filter-string-contains"]], "cyclops.data.slicer.filter_value": [[13, "cyclops-data-slicer-filter-value"]], "cyclops.data.slicer.is_datetime": [[14, "cyclops-data-slicer-is-datetime"]], "cyclops.data.slicer.overall": [[15, "cyclops-data-slicer-overall"]], "cyclops.evaluate.evaluator": [[16, "module-cyclops.evaluate.evaluator"]], "cyclops.evaluate.evaluator.evaluate": [[17, "cyclops-evaluate-evaluator-evaluate"]], "cyclops.evaluate.fairness.config": [[18, "module-cyclops.evaluate.fairness.config"]], "cyclops.evaluate.fairness.config.FairnessConfig": [[19, "cyclops-evaluate-fairness-config-fairnessconfig"]], "cyclops.evaluate.fairness.evaluator": [[20, "module-cyclops.evaluate.fairness.evaluator"]], "cyclops.evaluate.fairness.evaluator.evaluate_fairness": [[21, "cyclops-evaluate-fairness-evaluator-evaluate-fairness"]], "cyclops.evaluate.fairness.evaluator.warn_too_many_unique_values": [[22, "cyclops-evaluate-fairness-evaluator-warn-too-many-unique-values"]], "cyclops.evaluate.metrics.accuracy": [[23, "module-cyclops.evaluate.metrics.accuracy"]], "cyclops.evaluate.metrics.accuracy.Accuracy": [[24, "cyclops-evaluate-metrics-accuracy-accuracy"]], "cyclops.evaluate.metrics.accuracy.BinaryAccuracy": [[25, "cyclops-evaluate-metrics-accuracy-binaryaccuracy"]], "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy": [[26, "cyclops-evaluate-metrics-accuracy-multiclassaccuracy"]], "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy": [[27, "cyclops-evaluate-metrics-accuracy-multilabelaccuracy"]], "cyclops.evaluate.metrics.auroc": [[28, "module-cyclops.evaluate.metrics.auroc"]], "cyclops.evaluate.metrics.auroc.AUROC": [[29, "cyclops-evaluate-metrics-auroc-auroc"]], "cyclops.evaluate.metrics.auroc.BinaryAUROC": [[30, "cyclops-evaluate-metrics-auroc-binaryauroc"]], "cyclops.evaluate.metrics.auroc.MulticlassAUROC": [[31, "cyclops-evaluate-metrics-auroc-multiclassauroc"]], "cyclops.evaluate.metrics.auroc.MultilabelAUROC": [[32, "cyclops-evaluate-metrics-auroc-multilabelauroc"]], "cyclops.evaluate.metrics.f_beta": [[33, "module-cyclops.evaluate.metrics.f_beta"]], "cyclops.evaluate.metrics.f_beta.BinaryF1Score": [[34, "cyclops-evaluate-metrics-f-beta-binaryf1score"]], "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore": [[35, "cyclops-evaluate-metrics-f-beta-binaryfbetascore"]], "cyclops.evaluate.metrics.f_beta.F1Score": [[36, "cyclops-evaluate-metrics-f-beta-f1score"]], "cyclops.evaluate.metrics.f_beta.FbetaScore": [[37, "cyclops-evaluate-metrics-f-beta-fbetascore"]], "cyclops.evaluate.metrics.f_beta.MulticlassF1Score": [[38, "cyclops-evaluate-metrics-f-beta-multiclassf1score"]], "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore": [[39, "cyclops-evaluate-metrics-f-beta-multiclassfbetascore"]], "cyclops.evaluate.metrics.f_beta.MultilabelF1Score": [[40, "cyclops-evaluate-metrics-f-beta-multilabelf1score"]], "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore": [[41, "cyclops-evaluate-metrics-f-beta-multilabelfbetascore"]], "cyclops.evaluate.metrics.factory": [[42, "module-cyclops.evaluate.metrics.factory"]], "cyclops.evaluate.metrics.factory.create_metric": [[43, "cyclops-evaluate-metrics-factory-create-metric"]], "cyclops.evaluate.metrics.functional.accuracy": [[44, "module-cyclops.evaluate.metrics.functional.accuracy"]], "cyclops.evaluate.metrics.functional.auroc": [[45, "module-cyclops.evaluate.metrics.functional.auroc"]], "cyclops.evaluate.metrics.functional.f_beta": [[46, "module-cyclops.evaluate.metrics.functional.f_beta"]], "cyclops.evaluate.metrics.functional.f_beta.binary_f1_score": [[47, "cyclops-evaluate-metrics-functional-f-beta-binary-f1-score"]], "cyclops.evaluate.metrics.functional.f_beta.binary_fbeta_score": [[48, "cyclops-evaluate-metrics-functional-f-beta-binary-fbeta-score"]], "cyclops.evaluate.metrics.functional.f_beta.f1_score": [[49, "cyclops-evaluate-metrics-functional-f-beta-f1-score"]], "cyclops.evaluate.metrics.functional.f_beta.fbeta_score": [[50, "cyclops-evaluate-metrics-functional-f-beta-fbeta-score"]], "cyclops.evaluate.metrics.functional.f_beta.multiclass_f1_score": [[51, "cyclops-evaluate-metrics-functional-f-beta-multiclass-f1-score"]], "cyclops.evaluate.metrics.functional.f_beta.multiclass_fbeta_score": [[52, "cyclops-evaluate-metrics-functional-f-beta-multiclass-fbeta-score"]], "cyclops.evaluate.metrics.functional.f_beta.multilabel_f1_score": [[53, "cyclops-evaluate-metrics-functional-f-beta-multilabel-f1-score"]], "cyclops.evaluate.metrics.functional.f_beta.multilabel_fbeta_score": [[54, "cyclops-evaluate-metrics-functional-f-beta-multilabel-fbeta-score"]], "cyclops.evaluate.metrics.functional.precision_recall": [[55, "module-cyclops.evaluate.metrics.functional.precision_recall"]], "cyclops.evaluate.metrics.functional.precision_recall.binary_precision": [[56, "cyclops-evaluate-metrics-functional-precision-recall-binary-precision"]], "cyclops.evaluate.metrics.functional.precision_recall.binary_recall": [[57, "cyclops-evaluate-metrics-functional-precision-recall-binary-recall"]], "cyclops.evaluate.metrics.functional.precision_recall.multiclass_precision": [[58, "cyclops-evaluate-metrics-functional-precision-recall-multiclass-precision"]], "cyclops.evaluate.metrics.functional.precision_recall.multiclass_recall": [[59, "cyclops-evaluate-metrics-functional-precision-recall-multiclass-recall"]], "cyclops.evaluate.metrics.functional.precision_recall.multilabel_precision": [[60, "cyclops-evaluate-metrics-functional-precision-recall-multilabel-precision"]], "cyclops.evaluate.metrics.functional.precision_recall.multilabel_recall": [[61, "cyclops-evaluate-metrics-functional-precision-recall-multilabel-recall"]], "cyclops.evaluate.metrics.functional.precision_recall.precision": [[62, "cyclops-evaluate-metrics-functional-precision-recall-precision"]], "cyclops.evaluate.metrics.functional.precision_recall.recall": [[63, "cyclops-evaluate-metrics-functional-precision-recall-recall"]], "cyclops.evaluate.metrics.functional.precision_recall_curve": [[64, "module-cyclops.evaluate.metrics.functional.precision_recall_curve"]], "cyclops.evaluate.metrics.functional.roc": [[65, "module-cyclops.evaluate.metrics.functional.roc"]], "cyclops.evaluate.metrics.functional.roc.binary_roc_curve": [[66, "cyclops-evaluate-metrics-functional-roc-binary-roc-curve"]], "cyclops.evaluate.metrics.functional.roc.multiclass_roc_curve": [[67, "cyclops-evaluate-metrics-functional-roc-multiclass-roc-curve"]], "cyclops.evaluate.metrics.functional.roc.multilabel_roc_curve": [[68, "cyclops-evaluate-metrics-functional-roc-multilabel-roc-curve"]], "cyclops.evaluate.metrics.functional.roc.roc_curve": [[69, "cyclops-evaluate-metrics-functional-roc-roc-curve"]], "cyclops.evaluate.metrics.functional.sensitivity": [[70, "module-cyclops.evaluate.metrics.functional.sensitivity"]], "cyclops.evaluate.metrics.functional.specificity": [[71, "module-cyclops.evaluate.metrics.functional.specificity"]], "cyclops.evaluate.metrics.functional.stat_scores": [[72, "module-cyclops.evaluate.metrics.functional.stat_scores"]], "cyclops.evaluate.metrics.metric": [[73, "module-cyclops.evaluate.metrics.metric"]], "cyclops.evaluate.metrics.metric.Metric": [[74, "cyclops-evaluate-metrics-metric-metric"]], "cyclops.evaluate.metrics.metric.MetricCollection": [[75, "cyclops-evaluate-metrics-metric-metriccollection"]], "cyclops.evaluate.metrics.metric.OperatorMetric": [[76, "cyclops-evaluate-metrics-metric-operatormetric"]], "cyclops.evaluate.metrics.precision_recall": [[77, "module-cyclops.evaluate.metrics.precision_recall"]], "cyclops.evaluate.metrics.precision_recall.BinaryPrecision": [[78, "cyclops-evaluate-metrics-precision-recall-binaryprecision"]], "cyclops.evaluate.metrics.precision_recall.BinaryRecall": [[79, "cyclops-evaluate-metrics-precision-recall-binaryrecall"]], "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision": [[80, "cyclops-evaluate-metrics-precision-recall-multiclassprecision"]], "cyclops.evaluate.metrics.precision_recall.MulticlassRecall": [[81, "cyclops-evaluate-metrics-precision-recall-multiclassrecall"]], "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision": [[82, "cyclops-evaluate-metrics-precision-recall-multilabelprecision"]], "cyclops.evaluate.metrics.precision_recall.MultilabelRecall": [[83, "cyclops-evaluate-metrics-precision-recall-multilabelrecall"]], "cyclops.evaluate.metrics.precision_recall.Precision": [[84, "cyclops-evaluate-metrics-precision-recall-precision"]], "cyclops.evaluate.metrics.precision_recall.Recall": [[85, "cyclops-evaluate-metrics-precision-recall-recall"]], "cyclops.evaluate.metrics.precision_recall_curve": [[86, "module-cyclops.evaluate.metrics.precision_recall_curve"]], "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve": [[87, "cyclops-evaluate-metrics-precision-recall-curve-binaryprecisionrecallcurve"]], "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve": [[88, "cyclops-evaluate-metrics-precision-recall-curve-multiclassprecisionrecallcurve"]], "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve": [[89, "cyclops-evaluate-metrics-precision-recall-curve-multilabelprecisionrecallcurve"]], "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve": [[90, "cyclops-evaluate-metrics-precision-recall-curve-precisionrecallcurve"]], "cyclops.evaluate.metrics.roc": [[91, "module-cyclops.evaluate.metrics.roc"]], "cyclops.evaluate.metrics.roc.BinaryROCCurve": [[92, "cyclops-evaluate-metrics-roc-binaryroccurve"]], "cyclops.evaluate.metrics.roc.MulticlassROCCurve": [[93, "cyclops-evaluate-metrics-roc-multiclassroccurve"]], "cyclops.evaluate.metrics.roc.MultilabelROCCurve": [[94, "cyclops-evaluate-metrics-roc-multilabelroccurve"]], "cyclops.evaluate.metrics.roc.ROCCurve": [[95, "cyclops-evaluate-metrics-roc-roccurve"]], "cyclops.evaluate.metrics.sensitivity": [[96, "module-cyclops.evaluate.metrics.sensitivity"]], "cyclops.evaluate.metrics.sensitivity.BinarySensitivity": [[97, "cyclops-evaluate-metrics-sensitivity-binarysensitivity"]], "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity": [[98, "cyclops-evaluate-metrics-sensitivity-multiclasssensitivity"]], "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity": [[99, "cyclops-evaluate-metrics-sensitivity-multilabelsensitivity"]], "cyclops.evaluate.metrics.sensitivity.Sensitivity": [[100, "cyclops-evaluate-metrics-sensitivity-sensitivity"]], "cyclops.evaluate.metrics.specificity": [[101, "module-cyclops.evaluate.metrics.specificity"]], "cyclops.evaluate.metrics.specificity.BinarySpecificity": [[102, "cyclops-evaluate-metrics-specificity-binaryspecificity"]], "cyclops.evaluate.metrics.specificity.MulticlassSpecificity": [[103, "cyclops-evaluate-metrics-specificity-multiclassspecificity"]], "cyclops.evaluate.metrics.specificity.MultilabelSpecificity": [[104, "cyclops-evaluate-metrics-specificity-multilabelspecificity"]], "cyclops.evaluate.metrics.specificity.Specificity": [[105, "cyclops-evaluate-metrics-specificity-specificity"]], "cyclops.evaluate.metrics.stat_scores": [[106, "module-cyclops.evaluate.metrics.stat_scores"]], "cyclops.evaluate.metrics.stat_scores.BinaryStatScores": [[107, "cyclops-evaluate-metrics-stat-scores-binarystatscores"]], "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores": [[108, "cyclops-evaluate-metrics-stat-scores-multiclassstatscores"]], "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores": [[109, "cyclops-evaluate-metrics-stat-scores-multilabelstatscores"]], "cyclops.evaluate.metrics.stat_scores.StatScores": [[110, "cyclops-evaluate-metrics-stat-scores-statscores"]], "cyclops.monitor.clinical_applicator": [[111, "module-cyclops.monitor.clinical_applicator"]], "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator": [[112, "cyclops-monitor-clinical-applicator-clinicalshiftapplicator"]], "cyclops.monitor.synthetic_applicator": [[113, "module-cyclops.monitor.synthetic_applicator"]], "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator": [[114, "cyclops-monitor-synthetic-applicator-syntheticshiftapplicator"]], "cyclops.monitor.synthetic_applicator.binary_noise_shift": [[115, "cyclops-monitor-synthetic-applicator-binary-noise-shift"]], "cyclops.monitor.synthetic_applicator.feature_association_shift": [[116, "cyclops-monitor-synthetic-applicator-feature-association-shift"]], "cyclops.monitor.synthetic_applicator.feature_swap_shift": [[117, "cyclops-monitor-synthetic-applicator-feature-swap-shift"]], "cyclops.monitor.synthetic_applicator.gaussian_noise_shift": [[118, "cyclops-monitor-synthetic-applicator-gaussian-noise-shift"]], "cyclops.monitor.synthetic_applicator.knockout_shift": [[119, "cyclops-monitor-synthetic-applicator-knockout-shift"]], "cyclops.report.report": [[120, "module-cyclops.report.report"]], "cyclops.report.report.ModelCardReport": [[121, "cyclops-report-report-modelcardreport"]], "cyclops.tasks.classification": [[122, "module-cyclops.tasks.classification"]], "cyclops.tasks.classification.BinaryTabularClassificationTask": [[123, "cyclops-tasks-classification-binarytabularclassificationtask"]], "cyclops.tasks.classification.MultilabelImageClassificationTask": [[124, "cyclops-tasks-classification-multilabelimageclassificationtask"]], "cyclops.data": [[125, "module-cyclops.data"]], "cyclops.data.features": [[125, "module-cyclops.data.features"]], "cyclops.evaluate": [[126, "module-cyclops.evaluate"]], "cyclops.evaluate.metrics": [[126, "module-cyclops.evaluate.metrics"]], "cyclops.evaluate.metrics.functional": [[126, "module-cyclops.evaluate.metrics.functional"]], "cyclops.evaluate.fairness": [[126, "module-cyclops.evaluate.fairness"]], "cyclops.monitor": [[127, "module-cyclops.monitor"]], "cyclops.report": [[128, "module-cyclops.report"]], "cyclops.tasks": [[129, "module-cyclops.tasks"]], "Tutorials": [[130, "tutorials"]], "Heart Failure Prediction": [[131, "Heart-Failure-Prediction"]], "Import Libraries": [[131, "Import-Libraries"], [132, "Import-Libraries"], [133, "Import-Libraries"], [135, "Import-Libraries"]], "Constants": [[131, "Constants"], [132, "Constants"], [135, "Constants"]], "Data Loading": [[131, "Data-Loading"]], "Sex values": [[131, "Sex-values"]], "Age distribution": [[131, "Age-distribution"], [132, "Age-distribution"], [135, "Age-distribution"]], "Outcome distribution": [[131, "Outcome-distribution"], [132, "Outcome-distribution"], [135, "Outcome-distribution"]], "Identifying feature types": [[131, "Identifying-feature-types"], [132, "Identifying-feature-types"], [135, "Identifying-feature-types"]], "Creating data preprocessors": [[131, "Creating-data-preprocessors"], [132, "Creating-data-preprocessors"], [135, "Creating-data-preprocessors"]], "Creating Hugging Face Dataset": [[131, "Creating-Hugging-Face-Dataset"], [132, "Creating-Hugging-Face-Dataset"], [135, "Creating-Hugging-Face-Dataset"]], "Model Creation": [[131, "Model-Creation"], [132, "Model-Creation"], [133, "Model-Creation"], [135, "Model-Creation"]], "Task Creation": [[131, "Task-Creation"], [132, "Task-Creation"], [135, "Task-Creation"]], "Training": [[131, "Training"], [132, "Training"], [135, "Training"]], "Prediction": [[131, "Prediction"], [132, "Prediction"], [135, "Prediction"]], "Evaluation": [[131, "Evaluation"], [132, "Evaluation"], [135, "Evaluation"]], "Report Generation": [[131, "Report-Generation"], [132, "Report-Generation"], [135, "Report-Generation"]], "Mortality Prediction": [[132, "Mortality-Prediction"]], "Data Querying & Processing": [[132, "Data-Querying-&-Processing"]], "Compute mortality (labels)": [[132, "Compute-mortality-(labels)"]], "Data Inspection and Preprocessing": [[132, "Data-Inspection-and-Preprocessing"], [135, "Data-Inspection-and-Preprocessing"]], "Drop NaNs based on the NAN_THRESHOLD": [[132, "Drop-NaNs-based-on-the-NAN_THRESHOLD"], [135, "Drop-NaNs-based-on-the-NAN_THRESHOLD"]], "Gender distribution": [[132, "Gender-distribution"], [135, "Gender-distribution"]], "Chest X-Ray Disease Classification": [[133, "Chest-X-Ray-Disease-Classification"]], "Generate Historical Reports": [[133, "Generate-Historical-Reports"]], "Initialize Periodic Report": [[133, "Initialize-Periodic-Report"]], "Load Dataset": [[133, "Load-Dataset"]], "Multilabel AUROC by Pathology and Sex": [[133, "Multilabel-AUROC-by-Pathology-and-Sex"]], "Multilabel AUROC by Pathology and Age": [[133, "Multilabel-AUROC-by-Pathology-and-Age"]], "Log Performance Metrics as Tests w/ Thresholds": [[133, "Log-Performance-Metrics-as-Tests-w/-Thresholds"]], "Populate Model Card Fields": [[133, "Populate-Model-Card-Fields"]], "NIHCXR Clinical Drift Experiments Tutorial": [[134, "NIHCXR-Clinical-Drift-Experiments-Tutorial"]], "Import Libraries and Load NIHCXR Dataset": [[134, "Import-Libraries-and-Load-NIHCXR-Dataset"]], "Example 1. Generate Source/Target Dataset for Experiments (1-2)": [[134, "Example-1.-Generate-Source/Target-Dataset-for-Experiments-(1-2)"]], "Example 2. Sensitivity test experiment with 3 dimensionality reduction techniques": [[134, "Example-2.-Sensitivity-test-experiment-with-3-dimensionality-reduction-techniques"]], "Example 3. Sensitivity test experiment with models trained on different datasets": [[134, "Example-3.-Sensitivity-test-experiment-with-models-trained-on-different-datasets"]], "Example 4. Sensitivity test experiment with different clinical shifts": [[134, "Example-4.-Sensitivity-test-experiment-with-different-clinical-shifts"]], "Example 5. Rolling window experiment with synthetic timestamps using biweekly window": [[134, "Example-5.-Rolling-window-experiment-with-synthetic-timestamps-using-biweekly-window"]], "Prolonged Length of Stay Prediction": [[135, "Prolonged-Length-of-Stay-Prediction"]], "Data Querying": [[135, "Data-Querying"]], "Compute length of stay (labels)": [[135, "Compute-length-of-stay-(labels)"]], "Length of stay distribution": [[135, "Length-of-stay-distribution"]], "monitor API": [[136, "monitor-api"]], "Example use cases": [[137, "example-use-cases"]], "Tabular data": [[137, "tabular-data"]], "Kaggle Heart Failure Prediction": [[137, "kaggle-heart-failure-prediction"]], "MIMICIV Mortality Prediction": [[137, "mimiciv-mortality-prediction"]], "Synthea Prolonged Length of Stay Prediction": [[137, "synthea-prolonged-length-of-stay-prediction"]], "Image data": [[137, "image-data"]], "NIH Chest X-ray classification": [[137, "nih-chest-x-ray-classification"]]}, "indexentries": {"cyclops.data.features.medical_image": [[4, "module-cyclops.data.features.medical_image"]], "module": [[4, "module-cyclops.data.features.medical_image"], [6, "module-cyclops.data.slicer"], [16, "module-cyclops.evaluate.evaluator"], [18, "module-cyclops.evaluate.fairness.config"], [20, "module-cyclops.evaluate.fairness.evaluator"], [23, "module-cyclops.evaluate.metrics.accuracy"], [28, "module-cyclops.evaluate.metrics.auroc"], [33, "module-cyclops.evaluate.metrics.f_beta"], [42, "module-cyclops.evaluate.metrics.factory"], [44, "module-cyclops.evaluate.metrics.functional.accuracy"], [45, "module-cyclops.evaluate.metrics.functional.auroc"], [46, "module-cyclops.evaluate.metrics.functional.f_beta"], [55, "module-cyclops.evaluate.metrics.functional.precision_recall"], [64, "module-cyclops.evaluate.metrics.functional.precision_recall_curve"], [65, "module-cyclops.evaluate.metrics.functional.roc"], [70, "module-cyclops.evaluate.metrics.functional.sensitivity"], [71, "module-cyclops.evaluate.metrics.functional.specificity"], [72, "module-cyclops.evaluate.metrics.functional.stat_scores"], [73, "module-cyclops.evaluate.metrics.metric"], [77, "module-cyclops.evaluate.metrics.precision_recall"], [86, "module-cyclops.evaluate.metrics.precision_recall_curve"], [91, "module-cyclops.evaluate.metrics.roc"], [96, "module-cyclops.evaluate.metrics.sensitivity"], [101, "module-cyclops.evaluate.metrics.specificity"], [106, "module-cyclops.evaluate.metrics.stat_scores"], [111, "module-cyclops.monitor.clinical_applicator"], [113, "module-cyclops.monitor.synthetic_applicator"], [120, "module-cyclops.report.report"], [122, "module-cyclops.tasks.classification"], [125, "module-cyclops.data"], [125, "module-cyclops.data.features"], [126, "module-cyclops.evaluate"], [126, "module-cyclops.evaluate.fairness"], [126, "module-cyclops.evaluate.metrics"], [126, "module-cyclops.evaluate.metrics.functional"], [127, "module-cyclops.monitor"], [128, "module-cyclops.report"], [129, "module-cyclops.tasks"]], "medicalimage (class in cyclops.data.features.medical_image)": [[5, "cyclops.data.features.medical_image.MedicalImage"]], "__call__() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.__call__"]], "cast_storage() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.cast_storage"]], "decode_example() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.decode_example"]], "embed_storage() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.embed_storage"]], "encode_example() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.encode_example"]], "flatten() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.flatten"]], "cyclops.data.slicer": [[6, "module-cyclops.data.slicer"]], "slicespec (class in cyclops.data.slicer)": [[7, "cyclops.data.slicer.SliceSpec"]], "_registry (slicespec attribute)": [[7, "cyclops.data.slicer.SliceSpec._registry"]], "add_slice_spec() (slicespec method)": [[7, "cyclops.data.slicer.SliceSpec.add_slice_spec"]], "column_names (slicespec attribute)": [[7, "cyclops.data.slicer.SliceSpec.column_names"]], "get_slices() (slicespec method)": [[7, "cyclops.data.slicer.SliceSpec.get_slices"]], "include_overall (slicespec attribute)": [[7, "cyclops.data.slicer.SliceSpec.include_overall"]], "slices() (slicespec method)": [[7, "cyclops.data.slicer.SliceSpec.slices"]], "spec_list (slicespec attribute)": [[7, "cyclops.data.slicer.SliceSpec.spec_list"]], "validate (slicespec attribute)": [[7, "cyclops.data.slicer.SliceSpec.validate"]], "compound_filter() (in module cyclops.data.slicer)": [[8, "cyclops.data.slicer.compound_filter"]], "filter_datetime() (in module cyclops.data.slicer)": [[9, "cyclops.data.slicer.filter_datetime"]], "filter_non_null() (in module cyclops.data.slicer)": [[10, "cyclops.data.slicer.filter_non_null"]], "filter_range() (in module cyclops.data.slicer)": [[11, "cyclops.data.slicer.filter_range"]], "filter_string_contains() (in module cyclops.data.slicer)": [[12, "cyclops.data.slicer.filter_string_contains"]], "filter_value() (in module cyclops.data.slicer)": [[13, "cyclops.data.slicer.filter_value"]], "is_datetime() (in module cyclops.data.slicer)": [[14, "cyclops.data.slicer.is_datetime"]], "overall() (in module cyclops.data.slicer)": [[15, "cyclops.data.slicer.overall"]], "cyclops.evaluate.evaluator": [[16, "module-cyclops.evaluate.evaluator"]], "evaluate() (in module cyclops.evaluate.evaluator)": [[17, "cyclops.evaluate.evaluator.evaluate"]], "cyclops.evaluate.fairness.config": [[18, "module-cyclops.evaluate.fairness.config"]], "fairnessconfig (class in cyclops.evaluate.fairness.config)": [[19, "cyclops.evaluate.fairness.config.FairnessConfig"]], "cyclops.evaluate.fairness.evaluator": [[20, "module-cyclops.evaluate.fairness.evaluator"]], "evaluate_fairness() (in module cyclops.evaluate.fairness.evaluator)": [[21, "cyclops.evaluate.fairness.evaluator.evaluate_fairness"]], "warn_too_many_unique_values() (in module cyclops.evaluate.fairness.evaluator)": [[22, "cyclops.evaluate.fairness.evaluator.warn_too_many_unique_values"]], "cyclops.evaluate.metrics.accuracy": [[23, "module-cyclops.evaluate.metrics.accuracy"]], "accuracy (class in cyclops.evaluate.metrics.accuracy)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy"]], "__add__() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.__add__"]], "__call__() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.__call__"]], "__init__() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.__init__"]], "__mul__() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.__mul__"]], "add_state() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.add_state"]], "clone() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.clone"]], "compute() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.compute"]], "reset_state() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.reset_state"]], "update_state() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.update_state"]], "binaryaccuracy (class in cyclops.evaluate.metrics.accuracy)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy"]], "__add__() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.__add__"]], "__call__() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.__call__"]], "__init__() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.__init__"]], "__mul__() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.__mul__"]], "add_state() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.add_state"]], "clone() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.clone"]], "compute() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.compute"]], "reset_state() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.reset_state"]], "update_state() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.update_state"]], "multiclassaccuracy (class in cyclops.evaluate.metrics.accuracy)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy"]], "__add__() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.__add__"]], "__call__() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.__call__"]], "__init__() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.__init__"]], "__mul__() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.__mul__"]], "add_state() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.add_state"]], "clone() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.clone"]], "compute() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.compute"]], "reset_state() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.reset_state"]], "update_state() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.update_state"]], "multilabelaccuracy (class in cyclops.evaluate.metrics.accuracy)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy"]], "__add__() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.__add__"]], "__call__() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.__call__"]], "__init__() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.__init__"]], "__mul__() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.__mul__"]], "add_state() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.add_state"]], "clone() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.clone"]], "compute() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.compute"]], "reset_state() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.reset_state"]], "update_state() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.update_state"]], "cyclops.evaluate.metrics.auroc": [[28, "module-cyclops.evaluate.metrics.auroc"]], "auroc (class in cyclops.evaluate.metrics.auroc)": [[29, "cyclops.evaluate.metrics.auroc.AUROC"]], "__add__() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.__add__"]], "__call__() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.__call__"]], "__init__() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.__init__"]], "__mul__() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.__mul__"]], "add_state() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.add_state"]], "clone() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.clone"]], "compute() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.compute"]], "reset_state() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.reset_state"]], "update_state() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.update_state"]], "binaryauroc (class in cyclops.evaluate.metrics.auroc)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC"]], "__add__() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.__add__"]], "__call__() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.__call__"]], "__init__() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.__init__"]], "__mul__() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.__mul__"]], "add_state() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.add_state"]], "clone() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.clone"]], "compute() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.compute"]], "reset_state() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.reset_state"]], "update_state() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.update_state"]], "multiclassauroc (class in cyclops.evaluate.metrics.auroc)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC"]], "__add__() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.__add__"]], "__call__() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.__call__"]], "__init__() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.__init__"]], "__mul__() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.__mul__"]], "add_state() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.add_state"]], "clone() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.clone"]], "compute() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.compute"]], "reset_state() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.reset_state"]], "update_state() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.update_state"]], "multilabelauroc (class in cyclops.evaluate.metrics.auroc)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC"]], "__add__() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.__add__"]], "__call__() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.__call__"]], "__init__() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.__init__"]], "__mul__() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.__mul__"]], "add_state() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.add_state"]], "clone() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.clone"]], "compute() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.compute"]], "reset_state() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.reset_state"]], "update_state() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.update_state"]], "cyclops.evaluate.metrics.f_beta": [[33, "module-cyclops.evaluate.metrics.f_beta"]], "binaryf1score (class in cyclops.evaluate.metrics.f_beta)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score"]], "__add__() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.__add__"]], "__call__() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.__call__"]], "__init__() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.__init__"]], "__mul__() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.__mul__"]], "add_state() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.add_state"]], "clone() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.clone"]], "compute() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.compute"]], "reset_state() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.reset_state"]], "update_state() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.update_state"]], "binaryfbetascore (class in cyclops.evaluate.metrics.f_beta)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore"]], "__add__() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.__add__"]], "__call__() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.__call__"]], "__init__() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.__init__"]], "__mul__() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.__mul__"]], "add_state() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.add_state"]], "clone() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.clone"]], "compute() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.compute"]], "reset_state() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.reset_state"]], "update_state() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.update_state"]], "f1score (class in cyclops.evaluate.metrics.f_beta)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score"]], "__add__() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.__add__"]], "__call__() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.__call__"]], "__init__() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.__init__"]], "__mul__() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.__mul__"]], "add_state() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.add_state"]], "clone() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.clone"]], "compute() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.compute"]], "reset_state() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.reset_state"]], "update_state() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.update_state"]], "fbetascore (class in cyclops.evaluate.metrics.f_beta)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore"]], "__add__() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.__add__"]], "__call__() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.__call__"]], "__init__() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.__init__"]], "__mul__() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.__mul__"]], "add_state() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.add_state"]], "clone() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.clone"]], "compute() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.compute"]], "reset_state() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.reset_state"]], "update_state() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.update_state"]], "multiclassf1score (class in cyclops.evaluate.metrics.f_beta)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score"]], "__add__() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.__add__"]], "__call__() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.__call__"]], "__init__() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.__init__"]], "__mul__() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.__mul__"]], "add_state() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.add_state"]], "clone() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.clone"]], "compute() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.compute"]], "reset_state() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.reset_state"]], "update_state() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.update_state"]], "multiclassfbetascore (class in cyclops.evaluate.metrics.f_beta)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore"]], "__add__() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.__add__"]], "__call__() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.__call__"]], "__init__() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.__init__"]], "__mul__() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.__mul__"]], "add_state() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.add_state"]], "clone() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.clone"]], "compute() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.compute"]], "reset_state() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.reset_state"]], "update_state() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.update_state"]], "multilabelf1score (class in cyclops.evaluate.metrics.f_beta)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score"]], "__add__() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.__add__"]], "__call__() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.__call__"]], "__init__() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.__init__"]], "__mul__() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.__mul__"]], "add_state() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.add_state"]], "clone() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.clone"]], "compute() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.compute"]], "reset_state() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.reset_state"]], "update_state() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.update_state"]], "multilabelfbetascore (class in cyclops.evaluate.metrics.f_beta)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore"]], "__add__() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.__add__"]], "__call__() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.__call__"]], "__init__() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.__init__"]], "__mul__() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.__mul__"]], "add_state() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.add_state"]], "clone() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.clone"]], "compute() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.compute"]], "reset_state() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.reset_state"]], "update_state() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.update_state"]], "cyclops.evaluate.metrics.factory": [[42, "module-cyclops.evaluate.metrics.factory"]], "create_metric() (in module cyclops.evaluate.metrics.factory)": [[43, "cyclops.evaluate.metrics.factory.create_metric"]], "cyclops.evaluate.metrics.functional.accuracy": [[44, "module-cyclops.evaluate.metrics.functional.accuracy"]], "cyclops.evaluate.metrics.functional.auroc": [[45, "module-cyclops.evaluate.metrics.functional.auroc"]], "cyclops.evaluate.metrics.functional.f_beta": [[46, "module-cyclops.evaluate.metrics.functional.f_beta"]], "binary_f1_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[47, "cyclops.evaluate.metrics.functional.f_beta.binary_f1_score"]], "binary_fbeta_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[48, "cyclops.evaluate.metrics.functional.f_beta.binary_fbeta_score"]], "f1_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[49, "cyclops.evaluate.metrics.functional.f_beta.f1_score"]], "fbeta_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[50, "cyclops.evaluate.metrics.functional.f_beta.fbeta_score"]], "multiclass_f1_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[51, "cyclops.evaluate.metrics.functional.f_beta.multiclass_f1_score"]], "multiclass_fbeta_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[52, "cyclops.evaluate.metrics.functional.f_beta.multiclass_fbeta_score"]], "multilabel_f1_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[53, "cyclops.evaluate.metrics.functional.f_beta.multilabel_f1_score"]], "multilabel_fbeta_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[54, "cyclops.evaluate.metrics.functional.f_beta.multilabel_fbeta_score"]], "cyclops.evaluate.metrics.functional.precision_recall": [[55, "module-cyclops.evaluate.metrics.functional.precision_recall"]], "binary_precision() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[56, "cyclops.evaluate.metrics.functional.precision_recall.binary_precision"]], "binary_recall() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[57, "cyclops.evaluate.metrics.functional.precision_recall.binary_recall"]], "multiclass_precision() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[58, "cyclops.evaluate.metrics.functional.precision_recall.multiclass_precision"]], "multiclass_recall() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[59, "cyclops.evaluate.metrics.functional.precision_recall.multiclass_recall"]], "multilabel_precision() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[60, "cyclops.evaluate.metrics.functional.precision_recall.multilabel_precision"]], "multilabel_recall() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[61, "cyclops.evaluate.metrics.functional.precision_recall.multilabel_recall"]], "precision() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[62, "cyclops.evaluate.metrics.functional.precision_recall.precision"]], "recall() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[63, "cyclops.evaluate.metrics.functional.precision_recall.recall"]], "cyclops.evaluate.metrics.functional.precision_recall_curve": [[64, "module-cyclops.evaluate.metrics.functional.precision_recall_curve"]], "cyclops.evaluate.metrics.functional.roc": [[65, "module-cyclops.evaluate.metrics.functional.roc"]], "binary_roc_curve() (in module cyclops.evaluate.metrics.functional.roc)": [[66, "cyclops.evaluate.metrics.functional.roc.binary_roc_curve"]], "multiclass_roc_curve() (in module cyclops.evaluate.metrics.functional.roc)": [[67, "cyclops.evaluate.metrics.functional.roc.multiclass_roc_curve"]], "multilabel_roc_curve() (in module cyclops.evaluate.metrics.functional.roc)": [[68, "cyclops.evaluate.metrics.functional.roc.multilabel_roc_curve"]], "roc_curve() (in module cyclops.evaluate.metrics.functional.roc)": [[69, "cyclops.evaluate.metrics.functional.roc.roc_curve"]], "cyclops.evaluate.metrics.functional.sensitivity": [[70, "module-cyclops.evaluate.metrics.functional.sensitivity"]], "cyclops.evaluate.metrics.functional.specificity": [[71, "module-cyclops.evaluate.metrics.functional.specificity"]], "cyclops.evaluate.metrics.functional.stat_scores": [[72, "module-cyclops.evaluate.metrics.functional.stat_scores"]], "cyclops.evaluate.metrics.metric": [[73, "module-cyclops.evaluate.metrics.metric"]], "metric (class in cyclops.evaluate.metrics.metric)": [[74, "cyclops.evaluate.metrics.metric.Metric"]], "__add__() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.__add__"]], "__call__() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.__call__"]], "__init__() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.__init__"]], "__mul__() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.__mul__"]], "add_state() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.add_state"]], "clone() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.clone"]], "compute() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.compute"]], "name (metric property)": [[74, "cyclops.evaluate.metrics.metric.Metric.name"]], "reset_state() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.reset_state"]], "update_state() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.update_state"]], "metriccollection (class in cyclops.evaluate.metrics.metric)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection"]], "__call__() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.__call__"]], "__init__() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.__init__"]], "add_metrics() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.add_metrics"]], "clear() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.clear"]], "clone() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.clone"]], "compute() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.compute"]], "get() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.get"]], "items() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.items"]], "keys() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.keys"]], "pop() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.pop"]], "popitem() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.popitem"]], "reset_state() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.reset_state"]], "setdefault() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.setdefault"]], "update() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.update"]], "update_state() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.update_state"]], "values() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.values"]], "operatormetric (class in cyclops.evaluate.metrics.metric)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric"]], "__add__() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.__add__"]], "__call__() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.__call__"]], "__init__() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.__init__"]], "__mul__() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.__mul__"]], "add_state() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.add_state"]], "clone() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.clone"]], "compute() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.compute"]], "reset_state() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.reset_state"]], "update_state() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.update_state"]], "cyclops.evaluate.metrics.precision_recall": [[77, "module-cyclops.evaluate.metrics.precision_recall"]], "binaryprecision (class in cyclops.evaluate.metrics.precision_recall)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision"]], "__add__() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.__add__"]], "__call__() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.__call__"]], "__init__() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.__init__"]], "__mul__() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.__mul__"]], "add_state() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.add_state"]], "clone() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.clone"]], "compute() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.compute"]], "reset_state() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.reset_state"]], "update_state() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.update_state"]], "binaryrecall (class in cyclops.evaluate.metrics.precision_recall)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall"]], "__add__() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.__add__"]], "__call__() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.__call__"]], "__init__() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.__init__"]], "__mul__() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.__mul__"]], "add_state() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.add_state"]], "clone() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.clone"]], "compute() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.compute"]], "reset_state() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.reset_state"]], "update_state() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.update_state"]], "multiclassprecision (class in cyclops.evaluate.metrics.precision_recall)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision"]], "__add__() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.__add__"]], "__call__() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.__call__"]], "__init__() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.__init__"]], "__mul__() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.__mul__"]], "add_state() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.add_state"]], "clone() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.clone"]], "compute() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.compute"]], "reset_state() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.reset_state"]], "update_state() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.update_state"]], "multiclassrecall (class in cyclops.evaluate.metrics.precision_recall)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall"]], "__add__() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.__add__"]], "__call__() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.__call__"]], "__init__() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.__init__"]], "__mul__() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.__mul__"]], "add_state() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.add_state"]], "clone() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.clone"]], "compute() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.compute"]], "reset_state() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.reset_state"]], "update_state() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.update_state"]], "multilabelprecision (class in cyclops.evaluate.metrics.precision_recall)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision"]], "__add__() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.__add__"]], "__call__() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.__call__"]], "__init__() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.__init__"]], "__mul__() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.__mul__"]], "add_state() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.add_state"]], "clone() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.clone"]], "compute() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.compute"]], "reset_state() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.reset_state"]], "update_state() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.update_state"]], "multilabelrecall (class in cyclops.evaluate.metrics.precision_recall)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall"]], "__add__() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.__add__"]], "__call__() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.__call__"]], "__init__() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.__init__"]], "__mul__() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.__mul__"]], "add_state() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.add_state"]], "clone() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.clone"]], "compute() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.compute"]], "reset_state() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.reset_state"]], "update_state() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.update_state"]], "precision (class in cyclops.evaluate.metrics.precision_recall)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision"]], "__add__() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.__add__"]], "__call__() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.__call__"]], "__init__() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.__init__"]], "__mul__() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.__mul__"]], "add_state() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.add_state"]], "clone() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.clone"]], "compute() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.compute"]], "reset_state() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.reset_state"]], "update_state() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.update_state"]], "recall (class in cyclops.evaluate.metrics.precision_recall)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall"]], "__add__() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.__add__"]], "__call__() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.__call__"]], "__init__() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.__init__"]], "__mul__() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.__mul__"]], "add_state() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.add_state"]], "clone() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.clone"]], "compute() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.compute"]], "reset_state() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.reset_state"]], "update_state() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.update_state"]], "cyclops.evaluate.metrics.precision_recall_curve": [[86, "module-cyclops.evaluate.metrics.precision_recall_curve"]], "binaryprecisionrecallcurve (class in cyclops.evaluate.metrics.precision_recall_curve)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve"]], "__add__() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.__add__"]], "__call__() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.__call__"]], "__init__() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.__init__"]], "__mul__() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.__mul__"]], "add_state() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.add_state"]], "clone() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.clone"]], "compute() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.compute"]], "reset_state() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.reset_state"]], "update_state() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.update_state"]], "multiclassprecisionrecallcurve (class in cyclops.evaluate.metrics.precision_recall_curve)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve"]], "__add__() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.__add__"]], "__call__() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.__call__"]], "__init__() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.__init__"]], "__mul__() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.__mul__"]], "add_state() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.add_state"]], "clone() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.clone"]], "compute() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.compute"]], "reset_state() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.reset_state"]], "update_state() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.update_state"]], "multilabelprecisionrecallcurve (class in cyclops.evaluate.metrics.precision_recall_curve)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve"]], "__add__() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.__add__"]], "__call__() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.__call__"]], "__init__() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.__init__"]], "__mul__() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.__mul__"]], "add_state() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.add_state"]], "clone() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.clone"]], "compute() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.compute"]], "reset_state() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.reset_state"]], "update_state() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.update_state"]], "precisionrecallcurve (class in cyclops.evaluate.metrics.precision_recall_curve)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve"]], "__add__() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.__add__"]], "__call__() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.__call__"]], "__init__() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.__init__"]], "__mul__() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.__mul__"]], "add_state() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.add_state"]], "clone() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.clone"]], "compute() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.compute"]], "reset_state() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.reset_state"]], "update_state() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.update_state"]], "cyclops.evaluate.metrics.roc": [[91, "module-cyclops.evaluate.metrics.roc"]], "binaryroccurve (class in cyclops.evaluate.metrics.roc)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve"]], "__add__() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.__add__"]], "__call__() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.__call__"]], "__init__() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.__init__"]], "__mul__() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.__mul__"]], "add_state() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.add_state"]], "clone() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.clone"]], "compute() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.compute"]], "reset_state() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.reset_state"]], "update_state() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.update_state"]], "multiclassroccurve (class in cyclops.evaluate.metrics.roc)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve"]], "__add__() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.__add__"]], "__call__() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.__call__"]], "__init__() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.__init__"]], "__mul__() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.__mul__"]], "add_state() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.add_state"]], "clone() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.clone"]], "compute() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.compute"]], "reset_state() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.reset_state"]], "update_state() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.update_state"]], "multilabelroccurve (class in cyclops.evaluate.metrics.roc)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve"]], "__add__() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.__add__"]], "__call__() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.__call__"]], "__init__() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.__init__"]], "__mul__() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.__mul__"]], "add_state() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.add_state"]], "clone() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.clone"]], "compute() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.compute"]], "reset_state() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.reset_state"]], "update_state() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.update_state"]], "roccurve (class in cyclops.evaluate.metrics.roc)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve"]], "__add__() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.__add__"]], "__call__() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.__call__"]], "__init__() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.__init__"]], "__mul__() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.__mul__"]], "add_state() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.add_state"]], "clone() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.clone"]], "compute() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.compute"]], "reset_state() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.reset_state"]], "update_state() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.update_state"]], "cyclops.evaluate.metrics.sensitivity": [[96, "module-cyclops.evaluate.metrics.sensitivity"]], "binarysensitivity (class in cyclops.evaluate.metrics.sensitivity)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity"]], "__add__() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.__add__"]], "__call__() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.__call__"]], "__init__() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.__init__"]], "__mul__() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.__mul__"]], "add_state() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.add_state"]], "clone() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.clone"]], "compute() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.compute"]], "reset_state() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.reset_state"]], "update_state() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.update_state"]], "multiclasssensitivity (class in cyclops.evaluate.metrics.sensitivity)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity"]], "__add__() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.__add__"]], "__call__() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.__call__"]], "__init__() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.__init__"]], "__mul__() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.__mul__"]], "add_state() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.add_state"]], "clone() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.clone"]], "compute() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.compute"]], "reset_state() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.reset_state"]], "update_state() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.update_state"]], "multilabelsensitivity (class in cyclops.evaluate.metrics.sensitivity)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity"]], "__add__() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.__add__"]], "__call__() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.__call__"]], "__init__() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.__init__"]], "__mul__() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.__mul__"]], "add_state() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.add_state"]], "clone() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.clone"]], "compute() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.compute"]], "reset_state() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.reset_state"]], "update_state() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.update_state"]], "sensitivity (class in cyclops.evaluate.metrics.sensitivity)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity"]], "__add__() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.__add__"]], "__call__() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.__call__"]], "__init__() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.__init__"]], "__mul__() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.__mul__"]], "add_state() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.add_state"]], "clone() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.clone"]], "compute() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.compute"]], "reset_state() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.reset_state"]], "update_state() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.update_state"]], "cyclops.evaluate.metrics.specificity": [[101, "module-cyclops.evaluate.metrics.specificity"]], "binaryspecificity (class in cyclops.evaluate.metrics.specificity)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity"]], "__add__() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.__add__"]], "__call__() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.__call__"]], "__init__() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.__init__"]], "__mul__() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.__mul__"]], "add_state() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.add_state"]], "clone() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.clone"]], "compute() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.compute"]], "reset_state() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.reset_state"]], "update_state() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.update_state"]], "multiclassspecificity (class in cyclops.evaluate.metrics.specificity)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity"]], "__add__() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.__add__"]], "__call__() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.__call__"]], "__init__() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.__init__"]], "__mul__() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.__mul__"]], "add_state() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.add_state"]], "clone() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.clone"]], "compute() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.compute"]], "reset_state() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.reset_state"]], "update_state() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.update_state"]], "multilabelspecificity (class in cyclops.evaluate.metrics.specificity)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity"]], "__add__() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.__add__"]], "__call__() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.__call__"]], "__init__() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.__init__"]], "__mul__() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.__mul__"]], "add_state() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.add_state"]], "clone() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.clone"]], "compute() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.compute"]], "reset_state() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.reset_state"]], "update_state() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.update_state"]], "specificity (class in cyclops.evaluate.metrics.specificity)": [[105, "cyclops.evaluate.metrics.specificity.Specificity"]], "__add__() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.__add__"]], "__call__() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.__call__"]], "__init__() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.__init__"]], "__mul__() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.__mul__"]], "add_state() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.add_state"]], "clone() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.clone"]], "compute() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.compute"]], "reset_state() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.reset_state"]], "update_state() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.update_state"]], "cyclops.evaluate.metrics.stat_scores": [[106, "module-cyclops.evaluate.metrics.stat_scores"]], "binarystatscores (class in cyclops.evaluate.metrics.stat_scores)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores"]], "__add__() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.__add__"]], "__call__() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.__call__"]], "__init__() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.__init__"]], "__mul__() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.__mul__"]], "add_state() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.add_state"]], "clone() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.clone"]], "compute() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.compute"]], "reset_state() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.reset_state"]], "update_state() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.update_state"]], "multiclassstatscores (class in cyclops.evaluate.metrics.stat_scores)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores"]], "__add__() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.__add__"]], "__call__() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.__call__"]], "__init__() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.__init__"]], "__mul__() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.__mul__"]], "add_state() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.add_state"]], "clone() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.clone"]], "compute() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.compute"]], "reset_state() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.reset_state"]], "update_state() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.update_state"]], "multilabelstatscores (class in cyclops.evaluate.metrics.stat_scores)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores"]], "__add__() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.__add__"]], "__call__() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.__call__"]], "__init__() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.__init__"]], "__mul__() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.__mul__"]], "add_state() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.add_state"]], "clone() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.clone"]], "compute() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.compute"]], "reset_state() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.reset_state"]], "update_state() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.update_state"]], "statscores (class in cyclops.evaluate.metrics.stat_scores)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores"]], "__add__() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.__add__"]], "__call__() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.__call__"]], "__init__() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.__init__"]], "__mul__() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.__mul__"]], "add_state() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.add_state"]], "clone() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.clone"]], "compute() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.compute"]], "name (statscores property)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.name"]], "reset_state() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.reset_state"]], "update_state() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.update_state"]], "cyclops.monitor.clinical_applicator": [[111, "module-cyclops.monitor.clinical_applicator"]], "clinicalshiftapplicator (class in cyclops.monitor.clinical_applicator)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator"]], "age() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.age"]], "apply_shift() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.apply_shift"]], "custom() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.custom"]], "hospital_type() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.hospital_type"]], "month() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.month"]], "sex() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.sex"]], "time() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.time"]], "cyclops.monitor.synthetic_applicator": [[113, "module-cyclops.monitor.synthetic_applicator"]], "syntheticshiftapplicator (class in cyclops.monitor.synthetic_applicator)": [[114, "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator"]], "apply_shift() (syntheticshiftapplicator method)": [[114, "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator.apply_shift"]], "binary_noise_shift() (in module cyclops.monitor.synthetic_applicator)": [[115, "cyclops.monitor.synthetic_applicator.binary_noise_shift"]], "feature_association_shift() (in module cyclops.monitor.synthetic_applicator)": [[116, "cyclops.monitor.synthetic_applicator.feature_association_shift"]], "feature_swap_shift() (in module cyclops.monitor.synthetic_applicator)": [[117, "cyclops.monitor.synthetic_applicator.feature_swap_shift"]], "gaussian_noise_shift() (in module cyclops.monitor.synthetic_applicator)": [[118, "cyclops.monitor.synthetic_applicator.gaussian_noise_shift"]], "knockout_shift() (in module cyclops.monitor.synthetic_applicator)": [[119, "cyclops.monitor.synthetic_applicator.knockout_shift"]], "cyclops.report.report": [[120, "module-cyclops.report.report"]], "modelcardreport (class in cyclops.report.report)": [[121, "cyclops.report.report.ModelCardReport"]], "export() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.export"]], "from_json_file() (modelcardreport class method)": [[121, "cyclops.report.report.ModelCardReport.from_json_file"]], "log_citation() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_citation"]], "log_dataset() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_dataset"]], "log_descriptor() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_descriptor"]], "log_fairness_assessment() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_fairness_assessment"]], "log_from_dict() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_from_dict"]], "log_image() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_image"]], "log_license() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_license"]], "log_model_parameters() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_model_parameters"]], "log_owner() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_owner"]], "log_performance_metrics() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_performance_metrics"]], "log_plotly_figure() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_plotly_figure"]], "log_quantitative_analysis() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_quantitative_analysis"]], "log_reference() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_reference"]], "log_regulation() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_regulation"]], "log_risk() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_risk"]], "log_use_case() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_use_case"]], "log_user() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_user"]], "log_version() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_version"]], "cyclops.tasks.classification": [[122, "module-cyclops.tasks.classification"]], "binarytabularclassificationtask (class in cyclops.tasks.classification)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask"]], "__init__() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.__init__"]], "add_model() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.add_model"]], "data_type (binarytabularclassificationtask property)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.data_type"]], "evaluate() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.evaluate"]], "get_model() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.get_model"]], "list_models() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.list_models"]], "list_models_params() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.list_models_params"]], "load_model() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.load_model"]], "models_count (binarytabularclassificationtask property)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.models_count"]], "predict() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.predict"]], "save_model() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.save_model"]], "task_type (binarytabularclassificationtask property)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.task_type"]], "train() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.train"]], "multilabelimageclassificationtask (class in cyclops.tasks.classification)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask"]], "__init__() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.__init__"]], "add_model() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.add_model"]], "data_type (multilabelimageclassificationtask property)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.data_type"]], "evaluate() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.evaluate"]], "get_model() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.get_model"]], "list_models() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.list_models"]], "list_models_params() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.list_models_params"]], "load_model() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.load_model"]], "models_count (multilabelimageclassificationtask property)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.models_count"]], "predict() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.predict"]], "save_model() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.save_model"]], "task_type (multilabelimageclassificationtask property)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.task_type"]], "cyclops.data": [[125, "module-cyclops.data"]], "cyclops.data.features": [[125, "module-cyclops.data.features"]], "cyclops.evaluate": [[126, "module-cyclops.evaluate"]], "cyclops.evaluate.fairness": [[126, "module-cyclops.evaluate.fairness"]], "cyclops.evaluate.metrics": [[126, "module-cyclops.evaluate.metrics"]], "cyclops.evaluate.metrics.functional": [[126, "module-cyclops.evaluate.metrics.functional"]], "cyclops.monitor": [[127, "module-cyclops.monitor"]], "cyclops.report": [[128, "module-cyclops.report"]], "cyclops.tasks": [[129, "module-cyclops.tasks"]]}}) \ No newline at end of file +Search.setIndex({"docnames": ["api", "contributing", "index", "intro", "reference/api/_autosummary/cyclops.data.features.medical_image", "reference/api/_autosummary/cyclops.data.features.medical_image.MedicalImage", "reference/api/_autosummary/cyclops.data.slicer", "reference/api/_autosummary/cyclops.data.slicer.SliceSpec", "reference/api/_autosummary/cyclops.data.slicer.compound_filter", "reference/api/_autosummary/cyclops.data.slicer.filter_datetime", "reference/api/_autosummary/cyclops.data.slicer.filter_non_null", "reference/api/_autosummary/cyclops.data.slicer.filter_range", "reference/api/_autosummary/cyclops.data.slicer.filter_string_contains", "reference/api/_autosummary/cyclops.data.slicer.filter_value", "reference/api/_autosummary/cyclops.data.slicer.is_datetime", "reference/api/_autosummary/cyclops.data.slicer.overall", "reference/api/_autosummary/cyclops.evaluate.evaluator", "reference/api/_autosummary/cyclops.evaluate.evaluator.evaluate", "reference/api/_autosummary/cyclops.evaluate.fairness.config", "reference/api/_autosummary/cyclops.evaluate.fairness.config.FairnessConfig", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator.evaluate_fairness", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator.warn_too_many_unique_values", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.Accuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.BinaryAccuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.MulticlassAccuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.MultilabelAccuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.AUROC", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.BinaryAUROC", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.MulticlassAUROC", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.MultilabelAUROC", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.BinaryF1Score", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.BinaryFbetaScore", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.F1Score", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.FbetaScore", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MulticlassF1Score", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MultilabelF1Score", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore", "reference/api/_autosummary/cyclops.evaluate.metrics.factory", "reference/api/_autosummary/cyclops.evaluate.metrics.factory.create_metric", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.accuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.auroc", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.binary_f1_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.binary_fbeta_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.f1_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.fbeta_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multiclass_f1_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multiclass_fbeta_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multilabel_f1_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multilabel_fbeta_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.binary_precision", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.binary_recall", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multiclass_precision", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multiclass_recall", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multilabel_precision", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multilabel_recall", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.precision", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.recall", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.binary_roc_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.multiclass_roc_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.multilabel_roc_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.roc_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.sensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.specificity", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.stat_scores", "reference/api/_autosummary/cyclops.evaluate.metrics.metric", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.Metric", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.MetricCollection", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.OperatorMetric", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.BinaryPrecision", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.BinaryRecall", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MulticlassPrecision", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MulticlassRecall", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MultilabelPrecision", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MultilabelRecall", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.Precision", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.Recall", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.roc", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.BinaryROCCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.MulticlassROCCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.MultilabelROCCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.ROCCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.BinarySensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.Sensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.BinarySpecificity", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.MulticlassSpecificity", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.MultilabelSpecificity", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.Specificity", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.BinaryStatScores", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.MulticlassStatScores", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.MultilabelStatScores", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.StatScores", "reference/api/_autosummary/cyclops.monitor.clinical_applicator", "reference/api/_autosummary/cyclops.monitor.clinical_applicator.ClinicalShiftApplicator", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.binary_noise_shift", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.feature_association_shift", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.feature_swap_shift", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.gaussian_noise_shift", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.knockout_shift", "reference/api/_autosummary/cyclops.report.report", "reference/api/_autosummary/cyclops.report.report.ModelCardReport", "reference/api/_autosummary/cyclops.tasks.classification", "reference/api/_autosummary/cyclops.tasks.classification.BinaryTabularClassificationTask", "reference/api/_autosummary/cyclops.tasks.classification.MultilabelImageClassificationTask", "reference/api/cyclops.data", "reference/api/cyclops.evaluate", "reference/api/cyclops.monitor", "reference/api/cyclops.report", "reference/api/cyclops.tasks", "tutorials", "tutorials/kaggle/heart_failure_prediction", "tutorials/mimiciv/mortality_prediction", "tutorials/nihcxr/cxr_classification", "tutorials/nihcxr/monitor_api", "tutorials/synthea/los_prediction", "tutorials_monitor", "tutorials_use_cases"], "filenames": ["api.rst", "contributing.rst", "index.rst", "intro.rst", "reference/api/_autosummary/cyclops.data.features.medical_image.rst", "reference/api/_autosummary/cyclops.data.features.medical_image.MedicalImage.rst", "reference/api/_autosummary/cyclops.data.slicer.rst", "reference/api/_autosummary/cyclops.data.slicer.SliceSpec.rst", "reference/api/_autosummary/cyclops.data.slicer.compound_filter.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_datetime.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_non_null.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_range.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_string_contains.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_value.rst", "reference/api/_autosummary/cyclops.data.slicer.is_datetime.rst", "reference/api/_autosummary/cyclops.data.slicer.overall.rst", "reference/api/_autosummary/cyclops.evaluate.evaluator.rst", "reference/api/_autosummary/cyclops.evaluate.evaluator.evaluate.rst", "reference/api/_autosummary/cyclops.evaluate.fairness.config.rst", "reference/api/_autosummary/cyclops.evaluate.fairness.config.FairnessConfig.rst", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator.rst", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator.evaluate_fairness.rst", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator.warn_too_many_unique_values.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.Accuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.BinaryAccuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.AUROC.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.BinaryAUROC.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.MulticlassAUROC.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.MultilabelAUROC.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.BinaryF1Score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.F1Score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.FbetaScore.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MulticlassF1Score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MultilabelF1Score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.factory.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.factory.create_metric.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.accuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.auroc.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.binary_f1_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.binary_fbeta_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.f1_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.fbeta_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multiclass_f1_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multiclass_fbeta_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multilabel_f1_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multilabel_fbeta_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.binary_precision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.binary_recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multiclass_precision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multiclass_recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multilabel_precision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multilabel_recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.precision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.binary_roc_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.multiclass_roc_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.multilabel_roc_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.roc_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.sensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.specificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.stat_scores.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.Metric.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.MetricCollection.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.OperatorMetric.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.BinaryPrecision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.BinaryRecall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MulticlassRecall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MultilabelRecall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.Precision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.Recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.BinaryROCCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.MulticlassROCCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.MultilabelROCCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.ROCCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.BinarySensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.Sensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.BinarySpecificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.MulticlassSpecificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.MultilabelSpecificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.Specificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.BinaryStatScores.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.StatScores.rst", "reference/api/_autosummary/cyclops.monitor.clinical_applicator.rst", "reference/api/_autosummary/cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.binary_noise_shift.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.feature_association_shift.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.feature_swap_shift.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.gaussian_noise_shift.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.knockout_shift.rst", "reference/api/_autosummary/cyclops.report.report.rst", "reference/api/_autosummary/cyclops.report.report.ModelCardReport.rst", "reference/api/_autosummary/cyclops.tasks.classification.rst", "reference/api/_autosummary/cyclops.tasks.classification.BinaryTabularClassificationTask.rst", "reference/api/_autosummary/cyclops.tasks.classification.MultilabelImageClassificationTask.rst", "reference/api/cyclops.data.rst", "reference/api/cyclops.evaluate.rst", "reference/api/cyclops.monitor.rst", "reference/api/cyclops.report.rst", "reference/api/cyclops.tasks.rst", "tutorials.rst", "tutorials/kaggle/heart_failure_prediction.ipynb", "tutorials/mimiciv/mortality_prediction.ipynb", "tutorials/nihcxr/cxr_classification.ipynb", "tutorials/nihcxr/monitor_api.ipynb", "tutorials/synthea/los_prediction.ipynb", "tutorials_monitor.rst", "tutorials_use_cases.rst"], "titles": ["API Reference", "Contributing to cyclops", "Welcome to cyclops\u2019s documentation!", "\ud83d\udc23 Getting Started", "cyclops.data.features.medical_image", "cyclops.data.features.medical_image.MedicalImage", "cyclops.data.slicer", "cyclops.data.slicer.SliceSpec", "cyclops.data.slicer.compound_filter", "cyclops.data.slicer.filter_datetime", "cyclops.data.slicer.filter_non_null", "cyclops.data.slicer.filter_range", "cyclops.data.slicer.filter_string_contains", "cyclops.data.slicer.filter_value", "cyclops.data.slicer.is_datetime", "cyclops.data.slicer.overall", "cyclops.evaluate.evaluator", "cyclops.evaluate.evaluator.evaluate", "cyclops.evaluate.fairness.config", "cyclops.evaluate.fairness.config.FairnessConfig", "cyclops.evaluate.fairness.evaluator", "cyclops.evaluate.fairness.evaluator.evaluate_fairness", "cyclops.evaluate.fairness.evaluator.warn_too_many_unique_values", "cyclops.evaluate.metrics.accuracy", "cyclops.evaluate.metrics.accuracy.Accuracy", "cyclops.evaluate.metrics.accuracy.BinaryAccuracy", "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy", "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy", "cyclops.evaluate.metrics.auroc", "cyclops.evaluate.metrics.auroc.AUROC", "cyclops.evaluate.metrics.auroc.BinaryAUROC", "cyclops.evaluate.metrics.auroc.MulticlassAUROC", "cyclops.evaluate.metrics.auroc.MultilabelAUROC", "cyclops.evaluate.metrics.f_beta", "cyclops.evaluate.metrics.f_beta.BinaryF1Score", "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore", "cyclops.evaluate.metrics.f_beta.F1Score", "cyclops.evaluate.metrics.f_beta.FbetaScore", "cyclops.evaluate.metrics.f_beta.MulticlassF1Score", "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore", "cyclops.evaluate.metrics.f_beta.MultilabelF1Score", "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore", "cyclops.evaluate.metrics.factory", "cyclops.evaluate.metrics.factory.create_metric", "cyclops.evaluate.metrics.functional.accuracy", "cyclops.evaluate.metrics.functional.auroc", "cyclops.evaluate.metrics.functional.f_beta", "cyclops.evaluate.metrics.functional.f_beta.binary_f1_score", "cyclops.evaluate.metrics.functional.f_beta.binary_fbeta_score", "cyclops.evaluate.metrics.functional.f_beta.f1_score", "cyclops.evaluate.metrics.functional.f_beta.fbeta_score", "cyclops.evaluate.metrics.functional.f_beta.multiclass_f1_score", "cyclops.evaluate.metrics.functional.f_beta.multiclass_fbeta_score", "cyclops.evaluate.metrics.functional.f_beta.multilabel_f1_score", "cyclops.evaluate.metrics.functional.f_beta.multilabel_fbeta_score", "cyclops.evaluate.metrics.functional.precision_recall", "cyclops.evaluate.metrics.functional.precision_recall.binary_precision", "cyclops.evaluate.metrics.functional.precision_recall.binary_recall", "cyclops.evaluate.metrics.functional.precision_recall.multiclass_precision", "cyclops.evaluate.metrics.functional.precision_recall.multiclass_recall", "cyclops.evaluate.metrics.functional.precision_recall.multilabel_precision", "cyclops.evaluate.metrics.functional.precision_recall.multilabel_recall", "cyclops.evaluate.metrics.functional.precision_recall.precision", "cyclops.evaluate.metrics.functional.precision_recall.recall", "cyclops.evaluate.metrics.functional.precision_recall_curve", "cyclops.evaluate.metrics.functional.roc", "cyclops.evaluate.metrics.functional.roc.binary_roc_curve", "cyclops.evaluate.metrics.functional.roc.multiclass_roc_curve", "cyclops.evaluate.metrics.functional.roc.multilabel_roc_curve", "cyclops.evaluate.metrics.functional.roc.roc_curve", "cyclops.evaluate.metrics.functional.sensitivity", "cyclops.evaluate.metrics.functional.specificity", "cyclops.evaluate.metrics.functional.stat_scores", "cyclops.evaluate.metrics.metric", "cyclops.evaluate.metrics.metric.Metric", "cyclops.evaluate.metrics.metric.MetricCollection", "cyclops.evaluate.metrics.metric.OperatorMetric", "cyclops.evaluate.metrics.precision_recall", "cyclops.evaluate.metrics.precision_recall.BinaryPrecision", "cyclops.evaluate.metrics.precision_recall.BinaryRecall", "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision", "cyclops.evaluate.metrics.precision_recall.MulticlassRecall", "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision", "cyclops.evaluate.metrics.precision_recall.MultilabelRecall", "cyclops.evaluate.metrics.precision_recall.Precision", "cyclops.evaluate.metrics.precision_recall.Recall", "cyclops.evaluate.metrics.precision_recall_curve", "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve", "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve", "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve", "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve", "cyclops.evaluate.metrics.roc", "cyclops.evaluate.metrics.roc.BinaryROCCurve", "cyclops.evaluate.metrics.roc.MulticlassROCCurve", "cyclops.evaluate.metrics.roc.MultilabelROCCurve", "cyclops.evaluate.metrics.roc.ROCCurve", "cyclops.evaluate.metrics.sensitivity", "cyclops.evaluate.metrics.sensitivity.BinarySensitivity", "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity", "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity", "cyclops.evaluate.metrics.sensitivity.Sensitivity", "cyclops.evaluate.metrics.specificity", "cyclops.evaluate.metrics.specificity.BinarySpecificity", "cyclops.evaluate.metrics.specificity.MulticlassSpecificity", "cyclops.evaluate.metrics.specificity.MultilabelSpecificity", "cyclops.evaluate.metrics.specificity.Specificity", "cyclops.evaluate.metrics.stat_scores", "cyclops.evaluate.metrics.stat_scores.BinaryStatScores", "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores", "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores", "cyclops.evaluate.metrics.stat_scores.StatScores", "cyclops.monitor.clinical_applicator", "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator", "cyclops.monitor.synthetic_applicator", "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator", "cyclops.monitor.synthetic_applicator.binary_noise_shift", "cyclops.monitor.synthetic_applicator.feature_association_shift", "cyclops.monitor.synthetic_applicator.feature_swap_shift", "cyclops.monitor.synthetic_applicator.gaussian_noise_shift", "cyclops.monitor.synthetic_applicator.knockout_shift", "cyclops.report.report", "cyclops.report.report.ModelCardReport", "cyclops.tasks.classification", "cyclops.tasks.classification.BinaryTabularClassificationTask", "cyclops.tasks.classification.MultilabelImageClassificationTask", "cyclops.data", "cyclops.evaluate", "cyclops.monitor", "cyclops.report", "cyclops.tasks", "Tutorials", "Heart Failure Prediction", "Mortality Prediction", "Chest X-Ray Disease Classification", "NIHCXR Clinical Drift Experiments Tutorial", "Prolonged Length of Stay Prediction", "monitor API", "Example use cases"], "terms": {"cyclop": [0, 131, 132, 133, 134, 135], "data": [0, 2, 3, 24, 26, 27, 49, 50, 52, 54, 69, 72, 89, 95, 112, 114, 115, 116, 117, 118, 119, 121, 123, 124, 130, 133, 134, 136], "slicer": [0, 131, 132, 133, 134, 135], "compound_filt": 0, "filter_datetim": 0, "filter_non_nul": 0, "filter_rang": 0, "filter_string_contain": 0, "filter_valu": [0, 133], "is_datetim": 0, "overal": [0, 7, 21, 121, 131, 132, 133, 135], "slicespec": [0, 17, 112, 124, 131, 132, 133, 134, 135], "spec_list": [0, 7, 131, 132, 133, 134, 135], "include_overal": [0, 7, 131], "valid": [0, 7, 9, 17, 121, 123, 124, 131, 132, 133], "column_nam": [0, 7, 9, 10, 11, 12, 13, 133], "_registri": [0, 7], "add_slice_spec": [0, 7], "get_slic": [0, 7], "slice": [0, 3, 7, 8, 17, 21, 121, 123, 124, 131, 132, 133, 135], "featur": [0, 7, 9, 10, 11, 12, 13, 15, 112, 116, 117, 121, 123, 124, 130, 133, 137], "medical_imag": 0, "medicalimag": 0, "__call__": [0, 5, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "cast_storag": [0, 5], "decode_exampl": [0, 5], "embed_storag": [0, 5], "encode_exampl": [0, 5], "flatten": [0, 5, 133], "task": [0, 2, 3, 17, 24, 25, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 44, 47, 48, 49, 50, 51, 53, 54, 58, 60, 61, 62, 63, 66, 67, 68, 69, 78, 80, 81, 82, 83, 84, 85, 90, 92, 93, 94, 95, 98, 99, 100, 102, 103, 104, 105, 110, 130, 133, 137], "classif": [0, 3, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 44, 47, 48, 49, 50, 51, 53, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 78, 79, 80, 81, 82, 83, 84, 85, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 130, 131, 132, 135], "binarytabularclassificationtask": [0, 131, 132, 135], "__init__": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 123, 124, 133], "add_model": [0, 123, 124], "data_typ": [0, 123, 124], "evalu": [0, 2, 3, 121, 123, 124, 130, 133, 137], "get_model": [0, 123, 124], "list_model": [0, 123, 124, 131, 132, 135], "list_models_param": [0, 123, 124, 131, 132, 135], "load_model": [0, 123, 124], "models_count": [0, 123, 124], "predict": [0, 3, 17, 19, 21, 24, 26, 27, 30, 31, 32, 34, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 67, 80, 81, 82, 84, 85, 87, 88, 89, 92, 93, 94, 98, 100, 102, 103, 104, 105, 107, 108, 109, 110, 123, 124, 130, 133], "save_model": [0, 123, 124], "task_typ": [0, 123, 124, 131, 132, 135], "train": [0, 3, 17, 121, 123, 124, 130, 133, 136, 137], "multilabelimageclassificationtask": 0, "metric": [0, 17, 19, 21, 121, 123, 124, 130, 131, 132, 135, 137], "__add__": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "__mul__": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "add_stat": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "clone": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "comput": [0, 17, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 123, 124, 130, 133, 137], "name": [0, 3, 7, 8, 9, 10, 11, 12, 13, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 121, 123, 124, 131, 132, 133, 134, 135], "reset_st": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "update_st": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "metriccollect": [0, 17, 21, 123, 124, 131, 132, 135], "add_metr": [0, 75], "clear": [0, 75], "get": [0, 2, 75, 123, 124, 131, 132, 135], "item": [0, 75, 131, 132, 133, 134, 135], "kei": [0, 7, 21, 75, 121, 131, 132, 133, 134, 135], "pop": [0, 75, 131, 132, 135], "popitem": [0, 75], "setdefault": [0, 75], "updat": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 133], "valu": [0, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 121, 130, 132, 133, 134, 135, 137], "operatormetr": 0, "factori": [0, 7, 133], "create_metr": [0, 131, 132, 133, 135], "accuraci": [0, 131, 132, 135], "binaryaccuraci": [0, 131, 132, 135], "multiclassaccuraci": 0, "multilabelaccuraci": 0, "auroc": [0, 130, 131, 132, 135, 137], "binaryauroc": [0, 29, 131, 132, 135], "multiclassauroc": [0, 29], "multilabelauroc": [0, 29], "precision_recal": 0, "binaryprecis": [0, 131, 132, 135], "binaryrecal": [0, 97, 131, 132, 135], "multiclassprecis": 0, "multiclassrecal": [0, 98], "multilabelprecis": 0, "multilabelrecal": [0, 99], "precis": [0, 24, 35, 36, 37, 38, 39, 40, 41, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 60, 64, 66, 77, 78, 80, 82, 85, 86, 87, 88, 89, 90, 92, 100, 105, 131, 132, 133, 135], "recal": [0, 24, 38, 51, 55, 57, 59, 61, 64, 66, 77, 79, 81, 83, 86, 87, 88, 89, 90, 92, 97, 98, 99, 105, 131, 132, 133, 135], "precision_recall_curv": [0, 131, 132, 135], "binaryprecisionrecallcurv": [0, 30, 92, 131, 132, 135], "multiclassprecisionrecallcurv": [0, 31, 93], "multilabelprecisionrecallcurv": [0, 32, 94], "precisionrecallcurv": 0, "roc": [0, 28, 29, 30, 31, 32, 45, 131, 132, 135], "binaryroccurv": [0, 131, 132, 135], "multiclassroccurv": 0, "multilabelroccurv": 0, "roccurv": 0, "sensit": [0, 121, 130, 131, 132, 133, 135, 136], "binarysensit": 0, "multiclasssensit": 0, "multilabelsensit": [0, 133], "specif": [0, 3, 7, 17, 115, 118, 123, 124, 131, 132, 133, 135], "binaryspecif": 0, "multiclassspecif": 0, "multilabelspecif": [0, 133], "f_beta": 0, "binaryf1scor": [0, 131, 132, 135], "binaryfbetascor": [0, 34], "f1score": 0, "fbetascor": [0, 36], "multiclassf1scor": 0, "multiclassfbetascor": [0, 38], "multilabelf1scor": 0, "multilabelfbetascor": [0, 40], "stat_scor": [0, 133, 135], "binarystatscor": [0, 25, 35, 78, 79, 102, 135], "multiclassstatscor": [0, 26, 39, 80, 81, 103], "multilabelstatscor": [0, 27, 41, 82, 83, 104, 133], "statscor": 0, "function": [0, 3, 5, 6, 7, 8, 16, 17, 20, 21, 25, 35, 41, 42, 76, 93, 102, 104, 107, 109, 110, 113, 121, 132, 133, 135], "binary_precis": 0, "binary_recal": 0, "multiclass_precis": 0, "multiclass_recal": 0, "multilabel_precis": 0, "multilabel_recal": 0, "binary_roc_curv": 0, "multiclass_roc_curv": 0, "multilabel_roc_curv": 0, "roc_curv": [0, 131, 132, 135], "binary_f1_scor": 0, "binary_fbeta_scor": 0, "f1_score": [0, 131, 132, 135], "fbeta_scor": 0, "multiclass_f1_scor": 0, "multiclass_fbeta_scor": 0, "multilabel_f1_scor": 0, "multilabel_fbeta_scor": 0, "fair": [0, 17, 121, 123, 124, 131, 132, 133, 135], "evaluate_fair": 0, "warn_too_many_unique_valu": 0, "config": [0, 123], "fairnessconfig": [0, 17, 123, 124, 131, 132, 135], "monitor": [0, 2, 3, 130, 131, 132, 134, 135], "clinical_appl": 0, "clinicalshiftappl": [0, 134], "ag": [0, 112, 130, 134, 137], "apply_shift": [0, 112, 114, 134], "custom": [0, 112, 121, 134], "hospital_typ": [0, 112], "month": [0, 7, 9, 112], "sex": [0, 112, 130, 132, 134, 135, 137], "time": [0, 3, 7, 75, 112, 121, 131, 132, 133, 135, 136], "synthetic_appl": 0, "binary_noise_shift": 0, "feature_association_shift": 0, "feature_swap_shift": 0, "gaussian_noise_shift": 0, "knockout_shift": 0, "syntheticshiftappl": [0, 113], "report": [0, 2, 3, 110, 130, 137], "modelcardreport": [0, 131, 132, 133, 135], "export": [0, 121, 131, 132, 133, 135], "from_json_fil": [0, 121], "log_cit": [0, 121, 133], "log_dataset": [0, 121, 131], "log_descriptor": [0, 121, 131, 132, 133, 135], "log_fairness_assess": [0, 121, 131, 132, 133, 135], "log_from_dict": [0, 121, 131, 132, 133, 135], "log_imag": [0, 121], "log_licens": [0, 121, 131, 132, 135], "log_model_paramet": [0, 121, 131, 132, 135], "log_own": [0, 121, 131, 132, 133, 135], "log_performance_metr": [0, 121, 131, 132, 135], "log_plotly_figur": [0, 121, 131, 132, 133, 135], "log_quantitative_analysi": [0, 121, 131, 132, 133, 135], "log_refer": [0, 121, 131, 132, 135], "log_regul": [0, 121], "log_risk": [0, 121, 131, 132, 133, 135], "log_use_cas": [0, 121, 131, 132, 133, 135], "log_us": [0, 121, 131, 132, 133, 135], "log_vers": [0, 121, 131, 132, 135], "thank": 1, "your": [1, 131], "interest": [1, 131, 132, 135], "To": [1, 3, 5, 131, 135], "submit": 1, "pr": 1, "pleas": [1, 131, 132, 135], "fill": 1, "out": [1, 121, 131, 132, 135], "templat": [1, 121], "along": [1, 112, 131, 132, 133, 135], "If": [1, 5, 7, 9, 10, 11, 12, 13, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 123, 124, 131, 132, 135], "fix": 1, "an": [1, 3, 5, 7, 17, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 51, 60, 61, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 131, 132, 133, 135, 137], "issu": [1, 21], "don": [1, 132], "t": [1, 5, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 132], "forget": 1, "link": [1, 121, 131, 132, 133, 135], "onc": [1, 75, 131, 132, 135], "python": [1, 3, 132, 135], "virtual": [1, 3], "environ": [1, 3, 131, 132, 135], "i": [1, 3, 5, 7, 9, 10, 11, 12, 13, 14, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 123, 124, 131, 132, 133, 135, 137], "setup": [1, 132, 135], "you": [1, 3, 5, 75, 131, 132, 133, 135, 136], "can": [1, 3, 5, 7, 21, 25, 38, 51, 69, 74, 75, 84, 85, 95, 100, 110, 121, 123, 124, 131, 132, 133, 135, 136], "run": [1, 3, 131, 132, 135], "us": [1, 2, 5, 7, 8, 17, 21, 24, 29, 30, 31, 32, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 60, 61, 62, 63, 66, 67, 68, 69, 75, 76, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 98, 99, 100, 102, 105, 107, 110, 112, 114, 121, 123, 124, 130, 131, 132, 133, 135, 136], "all": [1, 3, 7, 8, 9, 10, 11, 12, 13, 15, 63, 73, 75, 108, 109, 110, 123, 131, 132, 133, 134, 135], "file": [1, 5, 121, 131, 132, 133, 135], "For": [1, 3, 21, 76, 121, 131, 132, 135], "style": 1, "we": [1, 3, 121, 131, 132, 133, 135], "recommend": [1, 76], "googl": 1, "guid": 1, "appli": [1, 8, 25, 29, 59, 62, 63, 66, 67, 68, 75, 76, 93, 104, 109, 110, 112, 123, 124, 131, 132, 135], "black": 1, "format": [1, 5, 7, 89, 121, 131, 132, 135], "docstr": 1, "numpi": [1, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 115, 116, 117, 118, 119, 124, 131, 132, 133, 134, 135], "also": [1, 3, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 131, 132, 133, 135, 137], "flake8": 1, "pylint": 1, "further": 1, "static": 1, "analysi": [1, 121, 131, 132, 133, 135], "The": [1, 3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 50, 51, 52, 53, 54, 56, 60, 61, 63, 66, 68, 69, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 123, 124, 131, 132, 133, 135, 136, 137], "show": [1, 131, 132, 133, 135], "error": [1, 17, 21], "which": [1, 9, 10, 11, 12, 13, 21, 90, 121, 131, 132, 133, 135, 137], "need": [1, 17, 21, 74, 110, 131, 132, 135], "befor": [1, 17, 21, 22, 123, 131, 132, 135], "last": 1, "least": 1, "type": [1, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 115, 116, 117, 118, 119, 121, 123, 124, 130, 133, 137], "hint": 1, "our": [1, 131, 132, 135], "check": [1, 14, 89], "mypi": 1, "current": [1, 121, 131, 132, 135], "ar": [1, 3, 5, 7, 11, 12, 17, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 75, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 97, 98, 99, 100, 103, 104, 105, 108, 109, 110, 112, 116, 121, 131, 132, 133, 135], "strict": 1, "enforc": 1, "more": [1, 7, 16, 17, 123, 124, 131, 137], "api": [1, 2, 3, 130, 131, 137], "becom": 1, "stabl": [1, 131, 132, 135], "start": [2, 131, 132, 135], "instal": [2, 131], "pip": [2, 131], "develop": [2, 131, 132, 133, 135], "poetri": 2, "contribut": 2, "notebook": [2, 131, 132, 133, 135], "citat": [2, 121, 131, 132, 133, 135], "pre": [2, 131, 132, 135], "commit": 2, "hook": 2, "code": [2, 131, 132, 135], "guidelin": [2, 3], "tutori": [2, 136, 137], "exampl": [2, 3, 5, 7, 8, 9, 10, 11, 12, 13, 15, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 130, 131, 132, 133, 136], "case": [2, 3, 75, 115, 121, 130, 131, 132, 135, 136], "refer": [2, 3, 121, 131, 132, 133, 135], "toolkit": 3, "facilit": 3, "research": 3, "deploy": 3, "ml": [3, 131, 132, 135], "model": [3, 16, 17, 21, 121, 123, 124, 130, 136, 137], "healthcar": 3, "It": [3, 38, 51, 75, 84, 85, 100, 105, 136], "provid": [3, 7, 9, 12, 17, 21, 69, 110, 121, 131, 132, 133, 135], "few": 3, "high": [3, 131, 132, 133, 135], "level": [3, 21, 131, 132, 133, 135], "creat": [3, 6, 7, 21, 42, 43, 75, 84, 85, 100, 115, 118, 119, 121, 123, 124, 130, 133, 137], "dataset": [3, 6, 7, 16, 17, 19, 21, 26, 38, 39, 51, 52, 58, 61, 68, 69, 80, 81, 83, 88, 89, 90, 94, 95, 98, 99, 103, 104, 112, 114, 121, 123, 124, 125, 130, 136, 137], "infer": 3, "popular": [3, 131], "effici": 3, "load": [3, 17, 121, 123, 124, 130, 132, 135, 136, 137], "differ": [3, 24, 29, 36, 37, 46, 55, 62, 63, 64, 69, 70, 72, 74, 84, 85, 90, 95, 100, 105, 110, 130, 131, 132, 133, 135, 136], "modal": 3, "common": [3, 131, 132], "implement": [3, 137], "scikit": [3, 131], "learn": [3, 131, 133], "pytorch": 3, "formul": [3, 131, 132, 135], "binari": [3, 5, 24, 25, 29, 30, 34, 35, 36, 37, 47, 48, 49, 50, 56, 57, 60, 61, 62, 63, 66, 69, 72, 78, 79, 84, 85, 87, 90, 92, 95, 97, 100, 102, 104, 105, 107, 110, 115, 123, 124, 131, 132, 135, 137], "multi": [3, 17, 133], "label": [3, 17, 24, 25, 27, 29, 32, 34, 35, 36, 37, 40, 41, 47, 48, 49, 50, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 68, 69, 78, 79, 81, 82, 83, 84, 85, 87, 89, 90, 92, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 109, 110, 116, 117, 119, 123, 124, 130, 131, 133, 137], "tabular": [3, 123, 124, 130], "seri": [3, 123], "imag": [3, 4, 5, 17, 21, 118, 121, 124, 125, 130, 133, 134], "clinic": [3, 111, 112, 130, 136], "detect": [3, 133, 136], "shift": [3, 111, 112, 114, 116, 117, 130, 136], "relev": [3, 121, 131, 132, 135, 136], "card": [3, 121, 130, 131, 132, 135, 137], "end": [3, 131, 132, 133, 135], "nih": [3, 130, 133, 134], "chest": [3, 130], "x": [3, 114, 115, 116, 117, 118, 119, 123, 130, 131, 132, 134, 135], "rai": [3, 130], "mimic": 3, "iv": 3, "python3": [3, 133], "m": [3, 131, 132, 133, 134, 135], "pycyclop": 3, "ha": [3, 13, 75, 121, 131, 132, 133, 135], "mani": 3, "option": [3, 5, 7, 9, 10, 11, 12, 13, 17, 21, 24, 27, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 69, 75, 80, 81, 82, 83, 84, 85, 90, 95, 98, 99, 100, 103, 104, 105, 108, 112, 114, 121, 123, 124, 133], "depend": 3, "monai": [3, 5], "librari": [3, 130, 136, 137], "dicom": 3, "set": [3, 7, 17, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 131, 132, 133, 135], "list": [3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 66, 67, 68, 69, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 115, 116, 117, 118, 119, 121, 123, 124, 131, 132, 135], "section": [3, 121, 131, 132, 133, 135], "below": [3, 131, 132, 135], "extra": [3, 121], "note": [3, 17, 121, 131, 132, 135], "xgboost": [3, 132, 135], "allow": [3, 17, 21, 22, 131, 132, 135, 136], "torch": [3, 134], "torchvis": [3, 133, 134], "torchxrayvis": [3, 133, 134], "transform": [3, 66, 67, 68, 93, 123, 124, 131, 132, 133, 134, 135], "alibi": 3, "addit": [3, 75, 121, 123, 124, 131, 132, 133, 135], "explain": [3, 121], "up": [3, 131, 132, 133, 135], "henc": 3, "make": [3, 131, 132, 135], "sure": [3, 131], "sourc": [3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 19, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 115, 116, 117, 118, 119, 121, 123, 124, 130, 136], "env": 3, "info": [3, 131, 132, 135], "path": [3, 5, 112, 121, 123, 124, 131, 132, 135], "bin": [3, 21], "activ": [3, 135], "In": [3, 75, 131, 132, 135], "order": [3, 5, 17, 107, 108, 109], "test": [3, 17, 114, 121, 123, 124, 130, 131, 132, 135, 136, 137], "codestyl": 3, "unit": 3, "integr": 3, "built": 3, "sphinx": 3, "local": 3, "doc": 3, "cd": 3, "html": [3, 121, 131, 132, 133, 135], "sphinxopt": 3, "d": [3, 75, 112, 133], "nbsphinx_allow_error": 3, "true": [3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 24, 26, 27, 31, 32, 35, 36, 37, 38, 39, 40, 41, 48, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 107, 108, 109, 110, 112, 114, 116, 121, 123, 124, 131, 132, 133, 134, 135], "welcom": 3, "see": [3, 7, 121, 131, 132, 135], "jupyt": [3, 131, 132, 135], "insid": 3, "ipython": 3, "kernel": 3, "after": [3, 131, 132, 135], "ipykernel": 3, "user": [3, 121, 131, 132, 135], "name_of_kernel": 3, "now": 3, "navig": 3, "": [3, 7, 10, 14, 17, 21, 75, 121, 123, 124, 131, 132, 133, 135], "tab": [3, 131], "cite": 3, "when": [3, 5, 17, 21, 24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 75, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 103, 104, 105, 123, 124, 131, 132, 135], "project": 3, "paper": 3, "articl": 3, "krishnan2022": 3, "12": [3, 7, 131, 132, 133, 135], "02": [3, 69, 131], "22283021": 3, "author": [3, 131, 133], "krishnan": 3, "amrit": 3, "subasri": 3, "vallijah": 3, "mckeen": 3, "kaden": 3, "kore": 3, "ali": 3, "ogidi": 3, "franklin": 3, "alinoori": 3, "mahshid": 3, "lalani": 3, "nadim": 3, "dhalla": 3, "azra": 3, "verma": 3, "amol": 3, "razak": 3, "fahad": 3, "pandya": 3, "deval": 3, "dolatabadi": 3, "elham": 3, "titl": [3, 131, 132, 133, 135], "cyclic": 3, "toward": 3, "operation": 3, "health": [3, 131, 132, 135], "eloc": 3, "id": [3, 5, 112, 131, 133, 135], "2022": [3, 7, 131, 132, 133, 135], "year": [3, 7, 9, 131, 132, 133, 135], "doi": 3, "10": [3, 108, 131, 132, 133, 134, 135], "1101": 3, "publish": [3, 131], "cold": 3, "spring": 3, "harbor": 3, "laboratori": [3, 135], "press": 3, "url": [3, 133], "http": [3, 121, 131, 132, 133, 135], "www": [3, 131], "medrxiv": 3, "org": [3, 121, 131, 132, 133, 135], "content": [3, 121], "earli": 3, "08": 3, "journal": 3, "medic": [4, 5, 125, 133, 135, 137], "class": [4, 5, 6, 7, 18, 19, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 69, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 116, 117, 119, 120, 121, 122, 123, 124, 131, 132, 133, 135], "decod": [5, 133], "none": [5, 7, 9, 17, 19, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 121, 123, 124, 131, 132, 133, 134, 135], "reader": 5, "itkread": 5, "suffix": 5, "jpg": 5, "base": [5, 7, 17, 19, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 123, 124, 130, 131, 137], "read": 5, "paramet": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 115, 116, 117, 118, 119, 121, 123, 124, 131, 132, 133, 135], "union": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 123, 124], "str": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 123, 124, 131, 132, 135], "imageread": 5, "default": [5, 7, 9, 10, 11, 12, 13, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 121, 123, 124, 131, 132, 135], "byte": 5, "bool": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 75, 76, 108, 109, 110, 112, 116, 117, 121, 123, 124, 131, 132, 133, 135], "whether": [5, 7, 17, 21, 75, 108, 109, 110, 112, 121, 132, 135, 137], "fals": [5, 7, 9, 10, 11, 12, 13, 14, 17, 19, 21, 29, 30, 40, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 75, 80, 81, 82, 83, 84, 85, 98, 99, 100, 105, 107, 108, 109, 110, 117, 118, 123, 124, 131, 132, 133, 135], "return": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 115, 116, 117, 118, 119, 121, 123, 124, 132, 133, 135], "dictionari": [5, 7, 8, 9, 10, 11, 12, 13, 15, 17, 21, 75, 121, 123, 124, 131, 132, 135], "image_path": 5, "image_byt": 5, "method": [5, 7, 19, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 123, 124, 131, 132, 135], "attribut": [5, 7, 19, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 123, 124, 131, 132, 135], "call": [5, 121], "self": [5, 133], "storag": 5, "cast": 5, "arrow": 5, "arrai": [5, 24, 26, 27, 29, 30, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 60, 61, 63, 66, 67, 68, 69, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 98, 99, 100, 103, 104, 105, 107, 108, 109, 110, 116, 117, 119, 124, 133, 135], "convert": [5, 25, 35, 41, 48, 61, 69, 95, 102, 104, 107, 131, 132, 135], "pyarrow": 5, "rtype": 5, "structarrai": 5, "pa": 5, "string": [5, 7, 9, 12, 17, 21, 75, 121, 133], "must": [5, 9, 17, 21, 121], "contain": [5, 7, 8, 9, 10, 11, 12, 13, 15, 17, 21, 27, 103, 104, 121, 131, 132, 133, 135, 137], "struct": 5, "doesn": 5, "matter": 5, "arg": [5, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "stringarrai": 5, "listarrai": 5, "token_per_repo_id": 5, "from": [5, 7, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 119, 121, 123, 124, 131, 132, 133, 134, 135, 137], "serial": 5, "version": [5, 121, 131, 132, 133, 135], "dict": [5, 7, 8, 9, 10, 11, 12, 13, 15, 17, 21, 22, 75, 121, 123, 124], "access": 5, "privat": 5, "repositori": [5, 131], "hub": 5, "pass": [5, 17, 43, 75, 112, 121, 123, 124, 131, 132, 135], "repo_id": 5, "token": [5, 131], "deseri": 5, "np": [5, 11, 14, 21, 123, 124, 131, 132, 133, 134, 135], "ndarrai": [5, 14, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 115, 116, 117, 118, 119, 123, 124], "metadata": [5, 131, 132, 133, 135], "emb": 5, "encod": 5, "input": [5, 24, 46, 55, 60, 61, 64, 69, 70, 72, 87, 89, 95, 115, 118, 123, 124], "state": [5, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 133], "itself": 5, "otherwis": [5, 14, 24, 27, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 67, 68, 75, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 108, 109, 110], "tupl": [5, 7, 66, 67, 68, 69, 75, 87, 88, 89, 92, 93, 94, 112, 123, 124], "classlabel": [5, 131, 132, 135], "translat": 5, "translationvariablelanguag": 5, "sequenc": [5, 17, 75, 123, 124, 133], "array2d": 5, "array3d": 5, "array4d": 5, "array5d": 5, "audio": 5, "subset": 6, "hug": [6, 123, 124, 130, 137], "face": [6, 123, 124, 130, 137], "object": [7, 19, 21, 112, 114, 121, 123, 124, 131, 132, 135], "ani": [7, 8, 9, 10, 11, 12, 13, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 123, 124, 131, 132, 133, 135], "A": [7, 8, 9, 10, 11, 12, 13, 15, 17, 21, 22, 25, 75, 76, 104, 109, 121, 131, 132, 133, 135], "each": [7, 8, 21, 24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 67, 68, 69, 75, 76, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 108, 109, 110, 131, 132, 135], "map": [7, 8, 22, 75, 123, 124, 133], "column": [7, 8, 9, 10, 11, 12, 13, 17, 21, 112, 123, 124, 131, 132, 133, 135], "one": [7, 16, 17, 21, 24, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 67, 68, 69, 76, 80, 81, 82, 83, 84, 85, 95, 98, 99, 100, 105, 123, 124], "follow": [7, 17, 24, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 60, 61, 75, 80, 81, 82, 83, 84, 85, 98, 99, 100, 105, 121, 131, 132, 133, 135], "exact": [7, 13], "select": [7, 112, 116, 131, 132, 133, 135], "thi": [7, 17, 21, 24, 25, 26, 27, 29, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 103, 104, 105, 110, 121, 123, 131, 132, 133, 135, 137], "singl": [7, 17, 75, 121, 123, 124, 131, 132, 135, 137], "row": [7, 131, 133], "where": [7, 8, 9, 10, 11, 12, 13, 60, 61, 63, 75, 121, 123, 124, 131, 132, 135, 137], "support": [7, 24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 72, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 107, 108, 109, 136], "e": [7, 9, 10, 17, 21, 75, 116, 117, 118, 121, 131, 132, 135], "g": [7, 9, 17, 21, 116, 117, 118, 121, 131, 132, 135], "2021": [7, 131, 132, 135], "01": [7, 29, 31, 32, 131, 132, 135], "00": [7, 133], "min_valu": [7, 11, 131, 132, 133, 134, 135], "minimum": [7, 11], "specifi": [7, 17, 75, 112, 121, 123, 124, 131, 132, 135], "min_inclus": [7, 11, 131, 132, 135], "indic": [7, 17, 21, 27, 60, 61, 115, 118, 131, 132, 133, 135], "includ": [7, 11, 21, 72, 112, 114, 131, 132, 133, 135, 136, 137], "rang": [7, 11, 29, 30, 66, 67, 68, 93, 131, 132, 133, 135], "work": [7, 27, 103, 104, 121, 131, 132, 133, 135], "numer": [7, 11, 131, 132, 135], "datetim": [7, 9, 11, 14, 121, 131, 132, 135], "inf": [7, 11], "max_valu": [7, 11, 131, 132, 133, 134, 135], "boolean": [7, 8, 9, 10, 11, 12, 13, 15], "greater": [7, 22, 135], "than": [7, 11, 22, 48, 52, 54, 123, 124, 131, 132, 135, 137], "equal": [7, 11, 21], "maximum": [7, 11, 22, 29, 30], "max_inclus": [7, 11, 131, 132, 135], "less": [7, 11, 48, 52, 54, 132, 135], "match": [7, 9, 12, 13, 17], "between": [7, 21, 38, 51, 69, 95], "1": [7, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 116, 117, 118, 119, 121, 130, 131, 132, 133, 135, 136, 137], "dai": [7, 9, 132, 135, 137], "31": [7, 131, 132, 135], "hour": [7, 9, 132], "0": [7, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 114, 115, 116, 117, 118, 119, 121, 131, 132, 133, 134, 135], "23": [7, 131, 132, 133, 135], "negat": [7, 9, 10, 11, 12, 13, 133], "flag": [7, 132], "doe": [7, 9, 11, 12, 13, 21, 24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 74, 75, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 110, 121], "keep_nul": [7, 9, 11, 12, 13], "keep": [7, 17, 21, 135], "null": [7, 9, 10, 11, 12, 13, 132, 135], "conjunct": [7, 133], "its": [7, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 60, 61, 74, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 131, 132, 133, 135], "own": [7, 131, 132, 135], "callabl": [7, 8, 21, 76, 121], "import": [7, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 130, 136, 137], "slice_spec": [7, 17, 123, 124, 131, 132, 133, 135], "feature_1": 7, "feature_2": 7, "feature_3": 7, "value_1": 7, "value_2": 7, "2020": [7, 9, 133], "5": [7, 24, 25, 27, 29, 31, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 114, 115, 118, 119, 130, 131, 132, 133, 135, 136], "60": 7, "6": [7, 24, 26, 35, 36, 38, 39, 49, 59, 62, 63, 78, 79, 80, 81, 83, 84, 85, 87, 88, 90, 92, 93, 95, 97, 98, 99, 100, 104, 107, 110, 131, 132, 133, 134, 135], "7": [7, 29, 30, 31, 36, 39, 40, 69, 80, 81, 82, 84, 85, 87, 88, 89, 93, 98, 100, 105, 109, 110, 131, 132, 133, 135, 137], "8": [7, 24, 26, 27, 29, 30, 31, 34, 35, 36, 37, 38, 40, 41, 47, 49, 50, 53, 54, 59, 60, 62, 66, 68, 69, 78, 79, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 99, 100, 105, 107, 108, 109, 110, 131, 132, 133, 135], "2000": 7, "2010": 7, "slice_nam": [7, 121, 131, 132, 135], "slice_func": 7, "print": [7, 131, 132, 133, 135], "do": [7, 131, 132, 133, 135], "someth": 7, "here": [7, 131, 132, 135], "filter": [7, 9, 10, 11, 12, 13, 17, 21, 132, 133, 135], "non_nul": 7, "add": [7, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 123, 124, 131, 132, 135], "detail": [7, 131, 132, 133, 135], "registri": [7, 131, 132, 135], "gener": [7, 69, 95, 112, 121, 130, 136, 137], "slice_funct": 8, "combin": [8, 131], "result": [8, 17, 38, 51, 123, 124, 131, 132, 134, 135], "multipl": [8, 17, 21, 75, 121], "bitwis": 8, "AND": 8, "signatur": 8, "should": [8, 17, 21, 69, 76, 95, 117, 121, 123, 124, 131, 132, 133, 135], "kwarg": [8, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 114, 123, 124], "given": [9, 11, 12, 13, 14, 24, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 75, 80, 81, 82, 84, 85, 98, 100, 105, 108, 109, 110, 121, 123, 124], "int": [9, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 116, 117, 118, 119, 121, 123, 124, 131, 132, 133, 135], "compon": 9, "have": [9, 12, 13, 114, 131, 132, 137], "nan": [9, 10, 17, 21, 130, 137], "nat": 9, "rais": [9, 11, 12, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 123, 124], "typeerror": [9, 11, 12, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121], "float": [11, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 109, 110, 115, 116, 117, 118, 119, 121, 133], "valueerror": [11, 17, 21, 48, 50, 52, 54, 58, 59, 60, 61, 62, 63, 69, 121, 123, 124], "either": [11, 30, 31, 32, 75, 87, 88, 89, 92, 93, 94, 110, 121, 131, 132, 135], "substr": 12, "find": [13, 24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 123, 133], "perform": [13, 26, 27, 31, 32, 121, 130, 131, 132, 135, 136, 137], "datetime64": 14, "target_column": [17, 19, 21, 131, 132, 133, 135], "prediction_column": [17, 19, 21, 133], "ignore_column": [17, 133], "split": [17, 112, 121, 123, 124, 131, 132, 133, 135], "batch_siz": [17, 19, 21, 112, 123, 124, 131, 132, 135], "1000": [17, 19, 21, 112, 123, 131, 133], "raise_on_empty_slic": [17, 21], "fairness_config": [17, 123, 124, 131, 132, 135], "override_fairness_metr": [17, 123, 124, 131, 132, 135], "load_dataset_kwarg": 17, "datasetdict": [17, 123, 124], "load_dataset": 17, "argument": [17, 21, 43, 75, 123, 124, 131, 132, 135], "target": [17, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 116, 117, 123, 124, 130, 131, 132, 135, 136, 137], "same": [17, 21, 75, 116], "ignor": [17, 131, 132, 133, 135], "while": 17, "mai": [17, 21, 131, 132, 133, 135], "expens": [17, 21], "memori": [17, 21], "entir": [17, 131, 132, 135], "chosen": 17, "avail": [17, 121, 131, 132, 135, 137], "first": [17, 21, 25, 76, 104, 131, 132, 135], "eval": 17, "val": 17, "dev": 17, "batch": [17, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 123, 124, 132, 133], "size": [17, 21, 112, 123, 124, 131, 132, 133, 135], "neg": [17, 35, 48, 49, 50, 51, 52, 53, 54, 59, 61, 62, 63, 72, 81, 83, 85, 98, 99, 100, 105, 107, 108, 109, 133, 135], "integ": [17, 21, 121], "empti": [17, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "warn": [17, 22, 24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 102, 103, 104, 105], "log": [17, 121, 130, 131, 132, 135, 137], "configur": [17, 18, 19, 123, 124, 131, 132, 135], "overridden": [17, 123, 124], "remove_column": [17, 19, 21, 123, 124, 133], "keyword": [17, 21, 43, 75, 123, 124], "onli": [17, 21, 24, 27, 29, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 62, 63, 75, 80, 81, 82, 84, 85, 98, 100, 103, 104, 105, 108, 109, 110], "group": [19, 21, 22, 75, 121, 131, 132, 135], "group_valu": [19, 21], "group_bin": [19, 21, 131, 132, 135], "group_base_valu": [19, 21, 131, 132, 135], "threshold": [19, 21, 24, 25, 27, 29, 30, 31, 32, 34, 35, 36, 37, 40, 41, 47, 48, 49, 50, 53, 54, 56, 57, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 99, 100, 102, 104, 105, 107, 109, 110, 121, 130, 131, 132, 135, 137], "compute_optimal_threshold": [19, 21], "metric_nam": [19, 21, 43, 121, 131, 132, 133, 135], "metric_kwarg": [19, 21], "take": [21, 24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 112, 131], "intersect": 21, "treat": 21, "multilabel": [21, 24, 27, 29, 32, 36, 37, 40, 41, 49, 50, 53, 54, 60, 61, 62, 63, 68, 69, 72, 82, 83, 84, 85, 89, 90, 94, 95, 99, 100, 104, 105, 109, 110, 130, 137], "uniqu": [21, 22, 29, 30, 31, 32, 66, 67, 68, 69, 74, 87, 88, 89, 92, 93, 94, 95, 110, 133, 137], "limit": [21, 131, 132, 133, 135], "number": [21, 22, 24, 26, 27, 29, 30, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 75, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 98, 99, 100, 103, 104, 105, 108, 110, 112, 116, 117, 121, 123, 124, 132, 135, 136], "continu": [21, 131, 132, 133, 135], "veri": 21, "slow": 21, "larg": 21, "denomin": 21, "pariti": 21, "across": [21, 116, 136], "linspac": 21, "monoton": [21, 69, 95], "optim": [21, 131], "oper": [21, 65, 76, 131, 132, 135], "necessari": 21, "remov": [21, 75, 119, 123, 124, 131, 132, 133, 135], "control": [21, 115], "usag": [21, 131, 132, 135], "rel": 21, "small": 21, "32": [21, 131, 132, 135], "avoid": 21, "encount": [21, 132, 135], "nest": 21, "second": [21, 76], "third": 21, "omit": 21, "requir": [21, 24, 29, 36, 37, 49, 50, 69, 84, 85, 90, 95, 100, 105, 110, 121, 123, 124, 131, 132, 135], "huggingfac": [21, 112, 123, 124], "runtimeerror": 21, "unique_valu": 22, "max_unique_valu": 22, "50": [22, 131, 132, 133, 134, 135], "score": [24, 25, 26, 27, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 66, 70, 72, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 108, 109, 110, 133], "liter": [24, 25, 26, 27, 29, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 69, 78, 79, 80, 81, 82, 83, 84, 85, 90, 95, 97, 98, 99, 100, 103, 104, 105, 110, 121], "multiclass": [24, 26, 29, 31, 36, 37, 38, 39, 49, 50, 51, 52, 58, 59, 62, 63, 67, 69, 72, 80, 81, 84, 85, 88, 90, 93, 95, 98, 100, 103, 105, 108, 110], "One": [24, 29, 31, 32, 35, 48, 59, 62, 63, 69, 95, 132, 133, 135], "pos_label": [24, 25, 30, 34, 35, 36, 37, 47, 48, 49, 50, 56, 57, 62, 63, 66, 69, 78, 79, 84, 85, 87, 90, 92, 95, 97, 100, 102, 105, 107, 110], "consid": [24, 26, 27, 36, 37, 49, 50, 62, 63, 84, 85, 90, 95, 100, 103, 104, 105, 132], "posit": [24, 25, 29, 30, 34, 35, 36, 37, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 75, 78, 79, 80, 81, 82, 83, 84, 85, 87, 90, 92, 95, 97, 98, 99, 100, 102, 105, 107, 108, 109, 110, 131, 132, 133, 135], "num_class": [24, 26, 29, 31, 36, 37, 38, 39, 49, 50, 51, 52, 58, 59, 62, 63, 67, 69, 80, 81, 84, 85, 88, 90, 93, 95, 98, 100, 103, 105, 108, 110, 131, 132, 135], "decid": [24, 36, 37, 40, 41, 49, 50, 53, 54, 56, 57, 60, 61, 78, 79, 82, 83, 84, 85, 97, 99, 100, 105], "top_k": [24, 26, 27, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 108, 109, 110, 133], "probabl": [24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 80, 81, 82, 84, 85, 93, 98, 100, 102, 103, 104, 105, 107, 108, 109, 110, 123, 131, 135], "logit": [24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 72, 80, 81, 82, 84, 85, 98, 100, 102, 103, 104, 105, 107, 108, 109, 110], "top": [24, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 80, 81, 82, 84, 85, 98, 100, 105, 108, 109, 110], "k": [24, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 75, 80, 81, 82, 84, 85, 98, 100, 105, 108, 109, 110, 134], "num_label": [24, 27, 29, 32, 36, 37, 40, 41, 49, 50, 53, 54, 60, 61, 62, 63, 68, 69, 82, 83, 84, 85, 89, 90, 94, 95, 99, 100, 104, 105, 109, 110, 133], "averag": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 131, 132], "micro": [24, 26, 27, 29, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105], "macro": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105], "weight": [24, 26, 27, 29, 31, 32, 35, 36, 37, 38, 39, 40, 41, 48, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 133, 134, 135], "calcul": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105], "global": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "unweight": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105], "mean": [24, 26, 27, 29, 31, 32, 35, 36, 37, 38, 39, 40, 41, 48, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 131, 132, 133, 135], "imbal": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 119], "account": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 131, 133], "instanc": [24, 26, 27, 31, 32, 36, 37, 38, 39, 40, 41, 43, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 131, 132, 133, 135], "alter": [24, 26, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 105], "zero_divis": [24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 102, 103, 104, 105], "zero": [24, 25, 26, 27, 34, 36, 37, 38, 39, 40, 41, 47, 49, 50, 51, 52, 53, 54, 56, 57, 58, 60, 61, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 103, 104, 105], "divis": [24, 25, 26, 27, 34, 36, 37, 38, 39, 40, 41, 47, 49, 50, 51, 52, 53, 54, 56, 57, 58, 60, 61, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 103, 104, 105], "act": [24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 103, 104, 105], "pred": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 131, 132, 135], "75": [24, 25, 29, 30, 66, 67, 68, 90, 92, 95, 103, 104, 105, 131], "05": [24, 26, 27, 29, 31, 32, 36, 38, 39, 40, 49, 53, 62, 67, 68, 69, 80, 81, 84, 85, 88, 90, 93, 94, 95, 98, 100, 103, 104, 105, 108, 110, 133], "95": [24, 26, 27, 36, 38, 49, 62, 69, 88, 90, 93, 94, 95, 133], "p": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 115, 133], "zip": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "2": [24, 26, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 62, 63, 66, 67, 68, 69, 75, 78, 79, 80, 81, 82, 83, 84, 85, 88, 89, 90, 92, 93, 95, 97, 98, 99, 100, 103, 104, 105, 107, 108, 109, 110, 116, 117, 121, 130, 131, 132, 133, 135, 136], "3": [24, 26, 27, 29, 31, 34, 35, 36, 37, 38, 39, 40, 47, 49, 50, 51, 52, 53, 58, 59, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 103, 104, 105, 107, 108, 109, 110, 116, 117, 130, 131, 132, 133, 135, 136], "66666667": [24, 26, 36, 38, 49, 51, 63, 81, 85, 87, 88, 90, 93, 94, 95, 98, 100, 104], "initi": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 123, 124, 130, 131, 132, 135, 137], "other": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 131], "two": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "scalar": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "togeth": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "multipli": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "variabl": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 137], "attributeerror": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "alreadi": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 131, 132, 135], "exist": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 123, 124], "copi": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 131, 132, 133, 135], "abstract": [24, 29, 36, 37, 73, 74, 84, 85, 90, 95, 100, 105, 110], "final": [24, 29, 36, 37, 74, 84, 85, 90, 95, 100, 105, 110, 132, 133, 135], "reset": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "_update_count": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "_comput": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "sigmoid": [25, 35, 41, 66, 68, 69, 102, 104, 107, 109, 110], "them": [25, 104, 131, 132, 135, 136], "875": 25, "problem": [26, 88, 108, 109, 110, 137], "highest": [26, 27, 62, 63, 103, 104], "determin": [26, 27, 29, 30, 31, 32, 66, 67, 68, 87, 88, 89, 90, 92, 93, 94], "dtype": [26, 27, 31, 32, 38, 39, 40, 41, 66, 67, 68, 69, 80, 81, 82, 83, 87, 88, 89, 92, 93, 94, 98, 99, 103, 104, 115, 116, 117, 118, 119, 131, 132, 133], "float64": [26, 27, 31, 32, 38, 39, 40, 41, 66, 67, 68, 69, 80, 81, 82, 83, 87, 88, 89, 92, 93, 94, 98, 99, 103, 104, 115, 116, 117, 118, 119, 133], "binar": [27, 29, 30, 31, 32, 34, 47, 67, 68, 93, 94, 109, 110], "output": [27, 69, 121, 131, 132, 135], "classifi": [27, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 102, 131, 132, 135], "correct": [27, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 93, 102, 103, 104], "per": [27, 75, 132, 135], "area": [28, 29, 30, 31, 32, 45, 131, 132, 135], "under": [28, 29, 30, 31, 32, 45, 131, 132, 135], "curv": [28, 29, 30, 31, 32, 45, 64, 65, 66, 67, 68, 69, 86, 87, 88, 89, 90, 92, 93, 94, 95, 131, 132, 135], "max_fpr": [29, 30], "rate": [29, 30, 66, 67, 68, 69, 131, 132, 133, 135], "partial": [29, 30, 133], "auc": 29, "automat": [29, 30, 31, 32, 66, 67, 68, 87, 88, 89, 90, 92, 93, 94], "applic": [29, 111, 112, 114], "4": [29, 30, 34, 35, 36, 37, 40, 47, 50, 59, 63, 69, 82, 83, 84, 85, 87, 88, 90, 92, 93, 94, 95, 99, 100, 105, 107, 108, 109, 110, 130, 131, 132, 133, 135, 136], "35": [29, 30, 69, 87, 92, 95, 103, 104, 105, 131, 132, 133, 134, 135], "9": [29, 30, 31, 32, 34, 36, 37, 38, 39, 40, 41, 49, 50, 53, 54, 60, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 89, 90, 93, 94, 95, 97, 98, 99, 100, 103, 104, 105, 107, 108, 109, 110, 131, 132, 133, 135], "6111111111111112": [29, 30], "89": [29, 31, 32, 69, 133], "06": [29, 31, 69, 132, 133], "94": [29, 31], "22222222": [29, 31], "625": [29, 32, 35, 103], "aucroc": 30, "confus": [30, 31, 32, 87, 88, 89, 92, 93, 94, 135], "matrix": [30, 31, 32, 87, 88, 89, 92, 93, 94, 115, 116, 117, 118, 119, 135], "f": [33, 35, 37, 38, 39, 41, 46, 48, 50, 51, 52, 54, 75, 131, 132, 133, 134, 135], "beta": [33, 35, 37, 39, 41, 46, 48, 50, 52, 54], "f1": [34, 36, 38, 40, 46, 47, 49, 51, 53], "form": [34, 47, 131, 132, 135], "6666666666666666": [34, 36, 47, 56, 78, 84], "harmon": [35, 37, 39, 41, 48, 50, 52, 54, 131, 132, 135], "8333333333333334": [35, 37, 50, 59, 62], "85714286": [36, 38], "9090909090909091": 37, "83333333": [37, 41, 50, 54], "55555556": [37, 103], "90909091": [37, 39, 41], "85": [39, 80, 81, 84, 85, 98, 100, 131, 135], "total": [40, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 108, 132, 135], "count": [40, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 131, 132, 133, 135], "constructor": 43, "arraylik": [47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 76, 93, 102], "ground": [47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 93, 102], "truth": [47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 93, 102], "npt": [48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63], "7142857142857143": 48, "estim": [49, 50, 66, 67, 68, 69, 93, 102, 123], "shape": [49, 50, 51, 52, 53, 54, 60, 61, 108, 109, 133, 134], "11": [56, 131, 132, 133, 135, 137], "22": [56, 108, 131, 132, 133, 135], "84": 56, "73": [56, 133, 135], "33": [56, 131, 132, 133, 135], "92": 56, "expect": [60, 61, 131, 132, 135], "like": [60, 61, 75, 131], "n": [60, 61, 131, 132, 133], "l": [60, 61], "sampl": [60, 61, 63, 119], "presenc": [60, 61, 133], "absenc": [60, 61], "rest": 61, "ratio": [62, 63, 105, 135], "correctli": [62, 131, 132, 133, 135], "observ": [62, 135, 137], "precision_scor": 62, "tp": [63, 107, 108, 109, 133, 135], "fn": [63, 107, 108, 109, 133, 135], "intuit": 63, "abil": [63, 131, 132, 135], "recall_scor": 63, "3333333333333333": 63, "receiv": [65, 131, 132, 135], "characterist": [65, 131, 132, 135], "decis": [66, 67, 68, 69, 93, 121, 131, 132, 135], "fpr": [66, 67, 68, 69, 131, 132, 135], "tpr": [66, 67, 68, 69], "25": [66, 67, 68, 88, 90, 92, 93, 95, 105, 110, 116, 117, 131, 132, 134, 135], "softmax": [67, 69, 93], "1d": [67, 68, 69, 95], "33333333": [67, 85, 88, 90, 93, 94, 95, 100], "non": 69, "thei": 69, "evenli": [69, 95], "space": [69, 95], "increas": [69, 95], "assertionerror": [69, 121], "03": 69, "stat": [72, 106, 107, 108, 109, 110], "abc": 74, "properti": [74, 110, 123, 124], "other_metr": 75, "prefix": 75, "postfix": 75, "userdict": 75, "collect": [75, 137], "want": 75, "behav": 75, "themselv": 75, "intern": 75, "similar": 75, "reduc": 75, "els": [75, 131, 133, 134], "keep_bas": 75, "iter": 75, "underli": 75, "moduledict": 75, "hashabl": 75, "v": 75, "correspond": [75, 123, 124], "found": [75, 121, 131], "keyerror": [75, 121], "some": [75, 131, 132, 135], "pair": 75, "present": 75, "lack": 75, "metric_a": 76, "metric_b": 76, "metric1": 76, "metric2": 76, "unari": 76, "appropri": [84, 85, 100, 131, 132, 135], "375": [88, 90], "suniqu": 90, "45": [90, 105, 131, 132, 133, 135], "42857143": 90, "15": [103, 104, 105, 108, 110, 131, 132, 135], "57142857": 103, "sum": [105, 108, 109, 110, 132, 133, 135], "_abstractscor": [107, 108, 109], "fp": [107, 108, 109, 133, 135], "tn": [107, 108, 109, 133, 135], "classwis": [108, 110], "over": [108, 109, 110, 131, 132, 133, 135], "16": [108, 131, 132, 133, 135], "26": [108, 131, 132, 133, 135], "58": 108, "61": 108, "17": [108, 131, 132, 135], "71": 108, "09": [108, 131, 132, 133, 135], "20": [108, 131, 132, 133, 135], "82": 108, "13": [108, 131, 132, 133, 135], "labelwis": [109, 110, 133], "prior": 110, "modul": [111, 120, 121, 131, 132, 135], "shift_typ": [112, 114], "shift_id": [112, 134], "induc": [112, 114], "synthet": [112, 114, 121, 130, 135, 136, 137], "categor": [112, 131, 132, 135], "origin": 112, "loader": [112, 133, 134], "load_nihcxr": [112, 133, 134], "mnt": [112, 133, 134], "nihcxr": [112, 130, 133, 136], "hospital_type_1": 112, "hospital_type_2": 112, "hospital_type_3": 112, "hospital_type_4": 112, "hospital_type_5": 112, "ds_sourc": [112, 134], "ds_target": [112, 134], "num_proc": [112, 134], "process": [112, 130, 131, 133, 135, 137], "build": 112, "hospit": [112, 131, 132, 135, 137], "sklearn": [114, 131, 132, 135], "load_diabet": 114, "y": [114, 116, 117, 119, 123, 131, 132, 133, 135], "return_x_i": 114, "from_dict": 114, "train_test_split": [114, 131, 132, 135], "test_siz": 114, "seed": [114, 131, 132, 133, 134, 135], "42": [114, 131, 132, 134, 135], "gn_shift": 114, "x_shift": 114, "ko_shift": 114, "cp_shift": 114, "mfa_shift": 114, "bn_shift": 114, "tolerance_shift": 114, "ds_shift": 114, "nois": [114, 115, 118], "ad": [114, 121, 123, 124, 131, 132, 135], "prob": 115, "delta": [115, 118, 119], "covari": [115, 116, 117, 118, 119], "proport": [115, 131, 132, 133, 135], "fraction": [115, 118, 119, 135], "affect": [115, 118, 121, 131, 132, 135], "n_shuffl": [116, 117], "keep_rows_const": 116, "repermute_each_column": 116, "multiwai": 116, "associ": [116, 131, 132, 133, 135], "swap": [116, 117], "individu": [116, 131, 132, 135], "within": [116, 132], "cl": [116, 117], "etc": [116, 117, 131, 132, 133, 135], "floatnumpi": 116, "shuffl": [116, 117, 131], "permut": 116, "placehold": 116, "shift_class": [117, 119], "rank": 117, "changepoint": 117, "axi": [117, 132, 135], "x_ref": 117, "y_ref": 117, "noise_amt": 118, "normal": [118, 131, 132, 135], "clip": [118, 131, 132, 135], "gaussian": 118, "standard": [118, 131, 132, 135], "deviat": 118, "divid": 118, "255": [118, 133, 134], "placehol": 119, "output_dir": [121, 131, 132, 135], "serv": 121, "interfac": 121, "popul": [121, 130, 131, 132, 135, 137], "modelcard": 121, "directori": [121, 131, 132, 135], "save": [121, 123, 124, 131, 132, 135], "output_filenam": [121, 131, 132, 133, 135], "template_path": 121, "interact": [121, 132, 135], "save_json": 121, "synthetic_timestamp": [121, 131, 132, 133, 135], "date": [121, 131, 132, 135], "jinja2": 121, "json": [121, 131, 132, 135], "timestamp": [121, 130, 132, 133, 136], "back": 121, "classmethod": 121, "cyclops_report": [121, 131, 132, 135], "section_nam": [121, 131, 132, 133, 135], "model_detail": [121, 131, 132, 135], "repres": [121, 133], "bibtex": 121, "entri": 121, "plain": 121, "text": [121, 133], "descript": [121, 131, 132, 133, 135], "license_id": [121, 131], "sensitive_featur": [121, 131], "sensitive_feature_justif": [121, 131], "inform": [121, 131], "about": [121, 131, 132, 133, 135], "resourc": [121, 131, 132, 135], "context": 121, "homepag": 121, "spdx": [121, 131], "identifi": [121, 130, 133, 137], "licens": [121, 131, 132, 133, 135], "apach": [121, 131, 132, 135], "unknown": 121, "unlicens": 121, "proprietari": 121, "justif": [121, 131], "field": [121, 130, 131, 132, 135, 137], "descriptor": 121, "new": [121, 131, 132, 135], "pydant": 121, "basemodel": 121, "subclass": 121, "As": 121, "long": 121, "conflict": 121, "defin": [121, 131, 132, 133, 135], "model_card": 121, "tradeoff": [121, 133], "trade": 121, "off": 121, "interpret": 121, "consider": [121, 131, 132, 133, 135], "affected_group": [121, 131, 132, 133, 135], "benefit": [121, 131, 132, 133, 135], "harm": [121, 131, 132, 133, 135], "mitigation_strategi": [121, 131, 132, 133, 135], "assess": 121, "mitig": [121, 131, 132, 133, 135], "strategi": [121, 131, 132, 133, 135], "relat": 121, "img_path": 121, "caption": [121, 131, 132, 133, 135], "full": 121, "whole": [121, 131, 132, 135], "left": [121, 135], "blank": 121, "instead": 121, "param": [121, 131, 132, 135], "contact": [121, 131, 132, 133, 135], "role": 121, "owner": [121, 131, 132, 133, 135], "quantit": [121, 131, 132, 133, 135], "slash": 121, "fig": [121, 131, 132, 133, 135], "plotli": [121, 131, 132, 133, 135], "figur": [121, 131, 132, 135], "plot": [121, 131, 132, 133, 135], "analysis_typ": 121, "metric_slic": [121, 131, 132, 133, 135], "decision_threshold": 121, "pass_fail_threshold": [121, 131, 132, 133, 135], "pass_fail_threshold_fn": [121, 131, 132, 133, 135], "fail": 121, "regul": 121, "regulatori": [121, 131, 132, 135], "compli": 121, "risk": [121, 131, 132, 133, 135, 137], "kind": [121, 131, 132, 133, 135], "primari": [121, 131, 132, 133, 135], "scope": [121, 131, 132, 135], "usecas": 121, "version_str": [121, 131, 132, 135], "semant": 121, "v1": 121, "dt_date": 121, "dt_datetim": 121, "unix": 121, "yyyi": 121, "mm": 121, "dd": 121, "hh": 121, "ss": 121, "ffffff": 121, "z": 121, "summar": 121, "chang": [121, 131, 132, 133, 135], "made": [121, 131, 132, 135], "task_featur": [123, 124, 131, 132, 135], "task_target": [123, 124, 131, 132, 135], "basetask": [123, 124], "ptmodel": [123, 124, 133], "skmodel": [123, 124], "wrappedmodel": [123, 124], "model_nam": [123, 124, 131, 132, 133, 134, 135], "prediction_column_prefix": [123, 124, 131, 132, 135], "splits_map": [123, 124], "fit": [123, 131, 132, 135], "columntransform": [123, 131, 132, 135], "slicingconfig": 123, "default_max_batch_s": 123, "unnecessari": [123, 124], "filepath": [123, 124], "pretrain": [123, 124, 133], "proba": [123, 131, 132, 135], "mortal": [123, 130], "pd": [123, 132], "datafram": [123, 131, 132, 135], "notfittederror": 123, "destin": [123, 124], "parent": [123, 124], "dirctori": [123, 124], "best_model_param": [123, 131, 132, 135], "x_train": 123, "y_train": 123, "pipelin": [123, 131, 132, 135], "best": [123, 131, 132, 135], "64": [124, 132, 133, 135], "compos": [124, 131, 132, 133, 134, 135], "pathologi": [124, 130, 131, 137], "represent": [124, 131, 132, 135], "packag": [125, 126, 127, 128, 129, 131, 132, 133, 135], "kaggl": [130, 131], "heart": 130, "failur": 130, "constant": [130, 137], "distribut": [130, 133, 137], "outcom": [130, 137], "preprocessor": [130, 137], "creation": [130, 137], "mimiciv": [130, 132], "queri": [130, 137], "inspect": [130, 131, 137], "preprocess": [130, 131, 137], "drop": [130, 131, 137], "nan_threshold": [130, 131, 137], "gender": [130, 131, 133, 134, 137], "synthea": [130, 135], "prolong": [130, 132], "length": [130, 132, 133], "stai": [130, 132], "diseas": [130, 131, 137], "histor": [130, 137], "period": [130, 137], "w": [130, 137], "drift": [130, 136], "experi": [130, 136], "dimension": [130, 136], "reduct": [130, 136], "techniqu": [130, 136], "roll": [130, 136], "window": [130, 136], "biweekli": [130, 136], "showcas": [131, 132, 135, 137], "patient": [131, 132, 133, 134, 135, 137], "shutil": [131, 132, 133, 135], "express": [131, 132, 133, 135], "px": [131, 132, 133, 135], "kaggle_api_extend": 131, "kaggleapi": 131, "imput": [131, 132, 135], "simpleimput": [131, 132, 135], "minmaxscal": [131, 132, 135], "onehotencod": [131, 132, 135], "df": [131, 132, 135], "tabularfeatur": [131, 132, 135], "noqa": [131, 132, 133, 135], "e402": [131, 132, 133, 135], "catalog": [131, 132, 135], "create_model": [131, 132, 135], "classificationplott": [131, 132, 135], "util": [131, 132, 133, 135], "flatten_results_dict": [131, 132, 135], "join": [131, 132, 135], "load_datafram": 131, "offer": [131, 132, 133, 135], "document": [131, 132, 133, 135], "through": [131, 132, 133, 135], "overview": [131, 132, 133, 135], "how": [131, 132, 133, 135], "quick": [131, 132, 133, 135], "glanc": [131, 132, 133, 135], "sever": [131, 132, 133, 135], "subgroup": [131, 132, 133, 135], "statist": [131, 132, 133, 135, 136], "subpopul": [131, 132, 133, 135], "technic": [131, 132, 133, 135], "architectur": [131, 132, 133, 135], "involv": [131, 132, 133, 135], "intend": [131, 132, 133, 135], "go": [131, 132, 133, 135], "tool": [131, 132, 133, 135], "progress": [131, 132, 133, 135], "subject": [131, 132, 133, 135], "data_dir": [131, 133], "random_se": [131, 132, 135], "train_siz": [131, 132, 135], "sign": [131, 135], "com": [131, 133], "Then": 131, "profil": [131, 132, 135], "usernam": 131, "trigger": 131, "download": 131, "credenti": 131, "place": 131, "locat": 131, "machin": [131, 133], "authent": 131, "dataset_download_fil": 131, "fedesoriano": 131, "unzip": 131, "csv": [131, 135], "file_format": 131, "reset_index": [131, 132, 135], "index": [131, 132, 133, 135], "2023": [131, 132, 133, 135], "19": [131, 132, 133, 135], "24": [131, 132, 135], "46": [131, 132, 133, 135], "706": 131, "chestpaintyp": 131, "restingbp": 131, "cholesterol": 131, "fastingb": 131, "restingecg": 131, "40": [131, 132, 133, 135], "ata": 131, "140": 131, "289": 131, "49": [131, 133, 135], "nap": 131, "160": 131, "180": 131, "37": [131, 132, 135], "130": 131, "283": 131, "st": 131, "48": [131, 132, 135], "asi": 131, "138": 131, "214": 131, "54": [131, 133], "150": 131, "195": 131, "913": 131, "ta": 131, "110": 131, "264": 131, "914": 131, "68": 131, "144": 131, "193": 131, "915": 131, "57": [131, 133], "131": 131, "916": 131, "236": 131, "lvh": 131, "917": 131, "38": [131, 132, 133, 135], "175": 131, "maxhr": 131, "exerciseangina": 131, "oldpeak": 131, "st_slope": 131, "heartdiseas": 131, "172": 131, "156": 131, "flat": 131, "98": [131, 133], "108": 131, "122": [131, 132], "132": 131, "141": 131, "115": 131, "174": 131, "173": 131, "918": 131, "pie": [131, 132, 133, 135], "update_layout": [131, 132, 133, 135], "histogram": [131, 132, 133, 135], "xaxis_titl": [131, 132, 133, 135], "yaxis_titl": [131, 132, 133, 135], "bargap": [131, 132, 133, 135], "astyp": [131, 132, 135], "update_trac": [131, 132, 133, 135], "textinfo": [131, 132, 135], "percent": [131, 132, 135], "title_text": [131, 132, 135], "hovertempl": [131, 132, 135], "br": [131, 132, 135], "class_count": [131, 132, 135], "value_count": [131, 132, 135], "class_ratio": [131, 132, 135], "8070866141732284": 131, "508": 131, "410": 131, "int64": [131, 132, 133], "14": [131, 132, 133, 135, 137], "39": [131, 132, 133, 135], "wa": [131, 132, 133, 135], "li": 131, "et": 131, "al": 131, "most": 131, "features_list": [131, 132, 135], "sort": [131, 132, 135], "help": [131, 132, 133, 135], "essenti": [131, 132, 135], "step": [131, 132, 135], "understand": [131, 132, 135], "u": [131, 132, 135], "tab_featur": [131, 132, 135], "ordin": [131, 132, 135], "might": [131, 132, 135], "numeric_transform": [131, 132, 135], "scaler": [131, 132, 135], "binary_transform": [131, 132, 135], "most_frequ": [131, 132, 135], "18": [131, 132, 133, 134, 135], "numeric_featur": [131, 132, 135], "features_by_typ": [131, 132, 135], "numeric_indic": [131, 132, 135], "get_loc": [131, 132, 135], "binary_featur": [131, 132, 135], "ordinal_featur": [131, 132], "binary_indic": [131, 132, 135], "ordinal_indic": [131, 132], "num": [131, 132, 135], "onehot": [131, 132, 135], "handle_unknown": [131, 132, 135], "remaind": [131, 132, 135], "passthrough": [131, 132, 135], "let": [131, 132, 135], "done": [131, 132, 135], "21": [131, 132, 133, 135], "independ": 131, "everi": 131, "uci": 131, "archiv": 131, "ic": 131, "edu": 131, "databas": [131, 132, 135], "cleandoc": 131, "misc": 131, "cc0": 131, "demograph": [131, 133], "often": 131, "strong": 131, "correl": 131, "older": [131, 132, 135], "higher": 131, "panda": [131, 132, 135], "power": [131, 132, 135], "easi": [131, 132, 135], "compat": [131, 132, 135], "from_panda": [131, 132, 135], "cleanup_cache_fil": [131, 132, 135], "num_row": 131, "cast_column": [131, 132, 135], "stratify_by_column": [131, 132, 135], "straightforward": [131, 132, 135], "maintain": [131, 132, 135], "instanti": [131, 132, 135], "line": [131, 132, 135], "sgd": 131, "logisit": [131, 132, 135], "regress": [131, 132, 135], "sgdclassif": 131, "sgd_classifi": 131, "random_st": [131, 132, 135], "123": [131, 132, 135], "verbos": [131, 132, 135], "class_weight": 131, "balanc": 131, "encapsul": [131, 132, 135], "cohes": [131, 132, 135], "structur": [131, 132, 135], "smooth": [131, 132, 135], "manag": [131, 132, 135], "heart_failure_prediction_task": 131, "hyperparamet": [131, 132, 135], "search": [131, 132, 135], "grid": [131, 132, 135], "27": [131, 132, 135], "alpha": 131, "0001": 131, "001": 131, "100": [131, 132, 133, 135], "learning_r": [131, 132, 135], "invscal": 131, "adapt": 131, "eta0": 131, "roc_auc": 131, "169": 131, "wrapper": [131, 132, 133, 135], "sk_model": [131, 132, 135], "170": 131, "171": 131, "sgdclassifi": 131, "x27": [131, 132, 135], "early_stop": 131, "loss": 131, "log_loss": 131, "rerun": [131, 132, 135], "cell": [131, 132, 135], "trust": [131, 132, 135], "On": [131, 132, 133, 135], "github": [131, 132, 133, 135], "unabl": [131, 132, 135], "render": [131, 132, 135], "try": [131, 132, 135], "page": [131, 132, 135], "nbviewer": [131, 132, 135], "sgdclassifiersgdclassifi": 131, "28": [131, 132, 135], "model_param": [131, 132, 135], "epsilon": 131, "fit_intercept": 131, "l1_ratio": 131, "max_it": 131, "n_iter_no_chang": 131, "n_job": [131, 132, 135], "penalti": 131, "l2": 131, "power_t": 131, "tol": 131, "validation_fract": 131, "warm_start": 131, "29": [131, 132, 135], "30": [131, 132, 133, 135, 137], "y_pred": [131, 132, 135], "only_predict": [131, 132, 135], "len": [131, 132, 133, 135], "184": 131, "variou": [131, 132, 135], "perspect": [131, 132, 135], "average_precis": [131, 132], "metric_collect": [131, 132, 135], "certain": [131, 132, 135], "70": [131, 133], "fnr": [131, 132, 135], "ber": [131, 132, 135], "fairness_metric_collect": [131, 132, 135], "34": [131, 132, 133, 135], "dataset_with_pr": [131, 132, 135], "36": [131, 132, 135], "results_femal": 131, "_": [131, 135], "right": [131, 132, 135], "model_for_pr": [131, 132, 135], "results_flat": [131, 132, 133, 135], "remove_metr": [131, 132, 135], "results_female_flat": 131, "ruff": [131, 132], "w505": [131, 132], "plw2901": [131, 132, 133, 135], "actual": [131, 132, 133, 135], "known": [131, 132, 133, 135], "measur": [131, 132, 135], "binaryaverageprecis": [131, 132], "auprc": [131, 132], "lambda": [131, 132, 133, 134, 135], "plotter": [131, 132, 134, 135], "class_nam": [131, 132, 135], "set_templ": [131, 132, 135], "plotly_whit": [131, 132, 135], "extract": [131, 132, 135], "slice_result": [131, 132, 135], "dict_kei": [131, 132, 135], "roc_plot": [131, 132, 135], "roc_curve_comparison": [131, 132, 135], "femal": [131, 133, 134, 135], "41": [131, 132, 135], "pr_curv": [131, 132], "pr_plot": [131, 132], "precision_recall_curve_comparison": [131, 132], "comparison": [131, 132, 133, 135], "43": [131, 132, 133, 135], "overall_perform": [131, 132, 135], "metric_valu": [131, 132, 135], "44": [131, 132, 133, 135], "overall_performance_plot": [131, 132, 135], "metrics_valu": [131, 132, 135], "slice_metr": [131, 132, 135], "slice_metrics_plot": [131, 132, 135], "metrics_comparison_bar": [131, 132, 135], "47": [131, 132, 133, 135], "reform": [131, 132, 135], "fairness_result": [131, 132, 135], "deepcopi": [131, 132, 135], "fairness_metr": [131, 132, 135], "group_siz": [131, 132, 135], "fairness_plot": [131, 132, 135], "metrics_comparison_scatt": [131, 132, 135], "audienc": [131, 132, 135], "organ": [131, 132, 135], "store": [131, 132, 135], "regulatory_requir": [131, 132, 135], "todai": [131, 132, 135], "releas": [131, 132, 135], "team": [131, 132, 135], "vectorinstitut": [131, 132, 135], "io": [131, 132, 135], "email": [131, 132, 133, 135], "ai": [131, 132, 135], "linear_model": 131, "e501": [131, 132, 135], "next": [131, 132, 135], "use_cas": [131, 132, 135], "These": [131, 132, 135], "could": [131, 132, 135], "downstream": [131, 132, 135], "fairness_assess": [131, 132, 135], "well": [131, 132, 133, 135], "taken": [131, 132, 135], "ethical_consider": [131, 132, 135], "clinician": [131, 132, 135], "engin": [131, 132, 135], "condit": 131, "improv": [131, 132, 135], "bias": [131, 132, 133, 135], "lead": [131, 132, 135], "wors": [131, 132, 135], "retrain": [131, 132, 135], "By": [131, 132, 135], "folder": [131, 132, 135], "51": [131, 133], "_model_card": [131, 132, 135], "report_path": [131, 132, 133, 135], "heart_failure_report_period": 131, "metric_sav": 131, "quantitative_analysi": [131, 132, 135], "performance_metr": [131, 132, 135], "append": [131, 135], "random": [131, 132, 134, 135], "rmtree": [131, 132, 135], "view": [131, 132, 133, 135, 137], "die": 132, "admiss": 132, "cycqueri": [132, 135], "op": [132, 135], "qo": [132, 135], "graph_object": [132, 135], "mimicivqueri": 132, "imblearn": 132, "over_sampl": 132, "smote": 132, "imbpipelin": 132, "aggreg": 132, "restrict_timestamp": 132, "clean": 132, "normalize_nam": 132, "add_years_approxim": 132, "deathtim": 132, "lab": [132, 133], "event": 132, "merg": [132, 135], "querier": [132, 135], "dbm": [132, 135], "postgresql": [132, 135], "port": [132, 135], "5432": [132, 135], "host": [132, 135], "localhost": [132, 135], "postgr": [132, 135], "password": [132, 135], "pwd": [132, 135], "def": [132, 133, 135], "get_encount": [132, 135], "mimiciv_hosp": 132, "drop_op": 132, "languag": 132, "marital_statu": 132, "edregtim": 132, "edouttim": 132, "patient_encount": [132, 135], "subject_id": 132, "admittim": 132, "dt": 132, "anchor_year": 132, "anchor_ag": 132, "col": 132, "dischtim": 132, "anchor_year_differ": 132, "hadm_id": 132, "admission_loc": 132, "admission_typ": 132, "insur": 132, "hospital_expire_flag": 132, "compute_mortality_outcom": 132, "death": 132, "invalid": 132, "isna": 132, "shorter": 132, "di": 132, "mortality_outcom": 132, "get_labev": 132, "labev": 132, "index_col": 132, "batch_mod": 132, "process_labev": 132, "revers": 132, "deidentifi": 132, "charttim": 132, "categori": [132, 135], "start_timestamp": 132, "set_index": 132, "renam": [132, 135], "mean_aggreg": 132, "aggfunc": [132, 135], "valuenum": 132, "window_dur": 132, "window_start_tim": 132, "timestamp_col": 132, "time_bi": 132, "agg_bi": 132, "means_df": 132, "batch_num": 132, "labevents_batch": 132, "enumer": [132, 133], "fit_transform": 132, "pivot": 132, "add_prefix": [132, 135], "lab_": 132, "concat": 132, "break": 132, "run_queri": [132, 135], "cohort": [132, 135], "958": 132, "orm": [132, 135], "readi": [132, 135], "476": 132, "successfulli": [132, 135], "477": 132, "finish": [132, 135], "execut": [132, 135], "304767": 132, "105518": 132, "5925": 132, "285": 132, "286": 132, "061094": 132, "null_count": [132, 135], "isnul": [132, 135], "bar": [132, 133, 135], "height": [132, 133], "600": [132, 133], "respect": [132, 135], "larger": [132, 135], "thresh_nan": [132, 135], "dropna": [132, 135], "thresh": [132, 135], "heavili": 132, "unbalanc": 132, "55": [132, 133], "36758893280632": 132, "14008": 132, "253": 132, "tolist": 132, "lab_calcium": 132, "lab_pt": 132, "lab_anion": 132, "gap": 132, "lab_glucos": 132, "lab_rdw": 132, "sd": 132, "lab_urea": 132, "nitrogen": [132, 135], "lab_l": 132, "lab_alkalin": 132, "phosphatas": [132, 135], "lab_i": 132, "lab_ph": 132, "lab_aspar": 132, "aminotransferas": [132, 135], "ast": 132, "lab_phosph": 132, "lab_chlorid": 132, "lab_platelet": 132, "lab_h": 132, "lab_inr": 132, "pt": 132, "lab_sodium": 132, "lab_mch": 132, "lab_mcv": 132, "lab_hemoglobin": 132, "lab_bicarbon": 132, "lab_r": 132, "blood": [132, 135], "lab_ptt": 132, "lab_alanin": 132, "alt": 132, "lab_hematocrit": 132, "lab_whit": 132, "lab_bilirubin": 132, "lab_magnesium": 132, "lab_mchc": 132, "lab_potassium": 132, "lab_creatinin": 132, "preprocessor_pipelin": 132, "oversampl": 132, "xgbclassif": [132, 135], "xgb_classifi": [132, 135], "mortality_task": 132, "n_estim": [132, 135], "250": [132, 135], "500": [132, 135], "max_depth": [132, 135], "reg_lambda": [132, 135], "colsample_bytre": [132, 135], "gamma": [132, 135], "124": 132, "xgbclassifi": [132, 135], "base_scor": [132, 135], "booster": [132, 135], "callback": [132, 135], "colsample_bylevel": [132, 135], "colsample_bynod": [132, 135], "early_stopping_round": [132, 135], "enable_categor": [132, 135], "eval_metr": [132, 135], "logloss": [132, 135], "feature_typ": [132, 135], "gpu_id": [132, 135], "grow_polici": [132, 135], "importance_typ": [132, 135], "interaction_constraint": [132, 135], "max_bin": [132, 135], "max_cat_threshold": [132, 135], "max_cat_to_onehot": [132, 135], "max_delta_step": [132, 135], "max_leav": [132, 135], "min_child_weight": [132, 135], "miss": [132, 135], "monotone_constraint": [132, 135], "num_parallel_tre": [132, 135], "predictor": [132, 135], "xgbclassifierxgbclassifi": [132, 135], "logist": [132, 135], "use_label_encod": [132, 135], "reg_alpha": [132, 135], "sampling_method": [132, 135], "scale_pos_weight": [132, 135], "subsampl": [132, 135], "tree_method": [132, 135], "validate_paramet": [132, 135], "2853": 132, "80": [132, 133, 135], "readthedoc": [132, 135], "en": [132, 135], "python_api": [132, 135], "mortality_report_period": 132, "functool": 133, "densenet": [133, 134], "lambdad": [133, 134], "resiz": [133, 134], "apply_transform": 133, "generate_nihcxr_report": 133, "py": 133, "52": 133, "lt": [133, 134], "99": 133, "551301": 133, "79": 133, "229988": 133, "400": 133, "1559": 133, "gt": [133, 134], "42669": 133, "33734": 133, "45108": 133, "53": 133, "41567": 133, "65": [133, 134], "41475": 133, "39719": 133, "amp": 133, "45740": 133, "66": 133, "559315": 133, "234646": 133, "396": 133, "1796": 133, "42756": 133, "41877": 133, "44262": 133, "39876": 133, "41115": 133, "40568": 133, "45328": 133, "62": 133, "556199": 133, "97": 133, "237301": 133, "383": 133, "1778": 133, "88": 133, "42006": 133, "42493": 133, "44476": 133, "40546": 133, "67": 133, "40422": 133, "40312": 133, "45529": 133, "559762": 133, "230951": 133, "411": 133, "1799": 133, "43468": 133, "42783": 133, "44642": 133, "40946": 133, "77": 133, "41775": 133, "38797": 133, "69": 133, "47438": 133, "clinical_dataset": [133, 134], "nih_d": [133, 134], "spatial_s": [133, 134], "224": [133, 134], "allow_missing_kei": [133, 134], "func": [133, 134], "1024": [133, 134], "newaxi": [133, 134], "densenet121": [133, 134], "res224": [133, 134], "feature_column": [133, 134], "No": 133, "adjust": 133, "originalimag": 133, "width": [133, 135], "originalimagepixelspac": 133, "unnam": 133, "atelectasi": 133, "float32": 133, "cardiomegali": 133, "consolid": 133, "edema": 133, "effus": 133, "emphysema": 133, "fibrosi": 133, "hernia": 133, "infiltr": 133, "mass": [133, 135], "nodul": 133, "pleural_thicken": 133, "pneumonia": 133, "pneumothorax": 133, "__index_level_0__": 133, "multilabelpositivepredictivevalu": 133, "registry_kei": 133, "positive_predictive_valu": 133, "super": 133, "overrid": 133, "_final_st": 133, "multilabelnegativepredictivevalu": 133, "negative_predictive_valu": 133, "ppv": 133, "npv": 133, "nih_eval_results_gend": 133, "nih_eval_results_ag": 133, "male": [133, 134], "1200": 133, "showlegend": 133, "slice_": 133, "model_for_predict": 133, "itr": 133, "among": 133, "112": [133, 137], "120": [133, 137], "frontal": [133, 137], "805": [133, 137], "fourteen": 133, "mine": 133, "radiolog": 133, "pleural": 133, "thicken": 133, "remain": 133, "arxiv": 133, "ab": 133, "2111": 133, "00595": 133, "inproceed": 133, "cohen2022xrv": 133, "cohen": 133, "joseph": 133, "paul": 133, "viviano": 133, "bertin": 133, "morrison": 133, "torabian": 133, "parsa": 133, "guarrera": 133, "matteo": 133, "lungren": 133, "matthew": 133, "chaudhari": 133, "akshai": 133, "brook": 133, "rupert": 133, "hashir": 133, "mohammad": 133, "bertrand": 133, "hadrien": 133, "booktitl": 133, "deep": 133, "mlmed": 133, "arxivid": 133, "cohen2020limit": 133, "cross": 133, "domain": 133, "autom": [133, 135], "2002": 133, "02497": 133, "medicin": 133, "josephpcohen": 133, "radiologist": 133, "scientist": 133, "inabl": 133, "addition": 133, "poor": 133, "qualiti": 133, "artifact": 133, "geograph": 133, "region": 133, "ethic": 133, "ensur": 133, "divers": 133, "regularli": 133, "human": 133, "expertis": 133, "address": 133, "rare": 133, "nihcxr_report_period": 133, "detector": 134, "reductor": 134, "tstester": 134, "plot_drift_experi": 134, "plot_drift_timeseri": 134, "manual_se": 134, "_c": 134, "0x7f5330166f70": 134, "shifter": 134, "source_d": 134, "target_d": 134, "dr_method": 134, "bbse": 134, "soft": 134, "txrv": 134, "ae": 134, "sensitivity_test": 134, "tester": 134, "tester_method": 134, "source_sample_s": 134, "target_sample_s": 134, "num_run": 134, "detect_shift": 134, "chexpert": 134, "chex": 134, "padchest": 134, "pc": 134, "source_slic": 134, "target_slic": 134, "rolling_window_drift": 134, "timestamp_column": 134, "window_s": 134, "4w": 134, "longer": 135, "v3": 135, "instruct": 135, "etl": 135, "datasetqueri": 135, "num_dai": 135, "synthea_demo": 135, "nativ": 135, "sequenti": 135, "patient_id": 135, "birthdat": 135, "race": 135, "ethnic": 135, "isout": 135, "encounter_id": 135, "extracttimestampcompon": 135, "start_year": 135, "birthdate_year": 135, "addcolumn": 135, "new_col_label": 135, "stop": 135, "lo": 135, "conditiongreaterthan": 135, "conditionlessthan": 135, "get_observ": 135, "conditionin": 135, "vital": 135, "conditionequ": 135, "groupby_op": 135, "groupbyaggreg": 135, "n_ob": 135, "observations_count": 135, "observations_stat": 135, "pivot_t": 135, "max": 135, "obs_": 135, "get_med": 135, "n_med": 135, "get_procedur": 135, "procedur": [135, 137], "n_procedur": 135, "cohort_queri": 135, "to_merg": 135, "extend": 135, "to_merge_df": 135, "894": 135, "811": 135, "812": 135, "051921": 135, "703": 135, "704": 135, "891131": 135, "059": 135, "060": 135, "123429": 135, "270": 135, "271": 135, "206623": 135, "354": 135, "355": 135, "083895": 135, "length_of_stai": 135, "length_of_stay_count": 135, "length_of_stay_kei": 135, "5573997233748271": 135, "obs_alanin": 135, "enzymat": 135, "volum": 135, "serum": 135, "plasma": 135, "obs_albumin": 135, "obs_alkalin": 135, "obs_aspart": 135, "obs_bilirubin": 135, "obs_bodi": 135, "obs_calcium": 135, "obs_carbon": 135, "dioxid": 135, "mole": 135, "obs_chlorid": 135, "obs_creatinin": 135, "obs_diastol": 135, "pressur": 135, "obs_erythrocyt": 135, "obs_ferritin": 135, "obs_glomerular": 135, "filtrat": 135, "sq": 135, "obs_glucos": 135, "obs_hematocrit": 135, "obs_hemoglobin": 135, "obs_leukocyt": 135, "obs_mch": 135, "entit": 135, "obs_mchc": 135, "obs_mcv": 135, "obs_oxygen": 135, "satur": 135, "arteri": 135, "obs_platelet": 135, "obs_potassium": 135, "obs_protein": 135, "obs_sodium": 135, "obs_systol": 135, "obs_troponin": 135, "cardiac": 135, "obs_urea": 135, "los_task": 135, "318": 135, "319": 135, "320": 135, "321": 135, "322": 135, "226": 135, "confusion_matrix": 135, "conf_plot": 135, "plot_confusion_matrix": 135, "length_of_stay_report_period": 135, "goal": 137, "ehr": 137, "site": 137, "icu": 137, "demonstr": 137}, "objects": {"cyclops": [[125, 0, 0, "-", "data"], [126, 0, 0, "-", "evaluate"], [127, 0, 0, "-", "monitor"], [128, 0, 0, "-", "report"], [129, 0, 0, "-", "tasks"]], "cyclops.data": [[125, 0, 0, "-", "features"], [6, 0, 0, "-", "slicer"]], "cyclops.data.features": [[4, 0, 0, "-", "medical_image"]], "cyclops.data.features.medical_image": [[5, 1, 1, "", "MedicalImage"]], "cyclops.data.features.medical_image.MedicalImage": [[5, 2, 1, "", "__call__"], [5, 2, 1, "", "cast_storage"], [5, 2, 1, "", "decode_example"], [5, 2, 1, "", "embed_storage"], [5, 2, 1, "", "encode_example"], [5, 2, 1, "", "flatten"]], "cyclops.data.slicer": [[7, 1, 1, "", "SliceSpec"], [8, 4, 1, "", "compound_filter"], [9, 4, 1, "", "filter_datetime"], [10, 4, 1, "", "filter_non_null"], [11, 4, 1, "", "filter_range"], [12, 4, 1, "", "filter_string_contains"], [13, 4, 1, "", "filter_value"], [14, 4, 1, "", "is_datetime"], [15, 4, 1, "", "overall"]], "cyclops.data.slicer.SliceSpec": [[7, 3, 1, "", "_registry"], [7, 2, 1, "", "add_slice_spec"], [7, 3, 1, "", "column_names"], [7, 2, 1, "", "get_slices"], [7, 3, 1, "", "include_overall"], [7, 2, 1, "", "slices"], [7, 3, 1, "", "spec_list"], [7, 3, 1, "", "validate"]], "cyclops.evaluate": [[16, 0, 0, "-", "evaluator"], [126, 0, 0, "-", "fairness"], [126, 0, 0, "-", "metrics"]], "cyclops.evaluate.evaluator": [[17, 4, 1, "", "evaluate"]], "cyclops.evaluate.fairness": [[18, 0, 0, "-", "config"], [20, 0, 0, "-", "evaluator"]], "cyclops.evaluate.fairness.config": [[19, 1, 1, "", "FairnessConfig"]], "cyclops.evaluate.fairness.evaluator": [[21, 4, 1, "", "evaluate_fairness"], [22, 4, 1, "", "warn_too_many_unique_values"]], "cyclops.evaluate.metrics": [[23, 0, 0, "-", "accuracy"], [28, 0, 0, "-", "auroc"], [33, 0, 0, "-", "f_beta"], [42, 0, 0, "-", "factory"], [126, 0, 0, "-", "functional"], [73, 0, 0, "-", "metric"], [77, 0, 0, "-", "precision_recall"], [86, 0, 0, "-", "precision_recall_curve"], [91, 0, 0, "-", "roc"], [96, 0, 0, "-", "sensitivity"], [101, 0, 0, "-", "specificity"], [106, 0, 0, "-", "stat_scores"]], "cyclops.evaluate.metrics.accuracy": [[24, 1, 1, "", "Accuracy"], [25, 1, 1, "", "BinaryAccuracy"], [26, 1, 1, "", "MulticlassAccuracy"], [27, 1, 1, "", "MultilabelAccuracy"]], "cyclops.evaluate.metrics.accuracy.Accuracy": [[24, 2, 1, "", "__add__"], [24, 2, 1, "", "__call__"], [24, 2, 1, "", "__init__"], [24, 2, 1, "", "__mul__"], [24, 2, 1, "", "add_state"], [24, 2, 1, "", "clone"], [24, 2, 1, "", "compute"], [24, 2, 1, "", "reset_state"], [24, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.accuracy.BinaryAccuracy": [[25, 2, 1, "", "__add__"], [25, 2, 1, "", "__call__"], [25, 2, 1, "", "__init__"], [25, 2, 1, "", "__mul__"], [25, 2, 1, "", "add_state"], [25, 2, 1, "", "clone"], [25, 2, 1, "", "compute"], [25, 2, 1, "", "reset_state"], [25, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy": [[26, 2, 1, "", "__add__"], [26, 2, 1, "", "__call__"], [26, 2, 1, "", "__init__"], [26, 2, 1, "", "__mul__"], [26, 2, 1, "", "add_state"], [26, 2, 1, "", "clone"], [26, 2, 1, "", "compute"], [26, 2, 1, "", "reset_state"], [26, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy": [[27, 2, 1, "", "__add__"], [27, 2, 1, "", "__call__"], [27, 2, 1, "", "__init__"], [27, 2, 1, "", "__mul__"], [27, 2, 1, "", "add_state"], [27, 2, 1, "", "clone"], [27, 2, 1, "", "compute"], [27, 2, 1, "", "reset_state"], [27, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.auroc": [[29, 1, 1, "", "AUROC"], [30, 1, 1, "", "BinaryAUROC"], [31, 1, 1, "", "MulticlassAUROC"], [32, 1, 1, "", "MultilabelAUROC"]], "cyclops.evaluate.metrics.auroc.AUROC": [[29, 2, 1, "", "__add__"], [29, 2, 1, "", "__call__"], [29, 2, 1, "", "__init__"], [29, 2, 1, "", "__mul__"], [29, 2, 1, "", "add_state"], [29, 2, 1, "", "clone"], [29, 2, 1, "", "compute"], [29, 2, 1, "", "reset_state"], [29, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.auroc.BinaryAUROC": [[30, 2, 1, "", "__add__"], [30, 2, 1, "", "__call__"], [30, 2, 1, "", "__init__"], [30, 2, 1, "", "__mul__"], [30, 2, 1, "", "add_state"], [30, 2, 1, "", "clone"], [30, 2, 1, "", "compute"], [30, 2, 1, "", "reset_state"], [30, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.auroc.MulticlassAUROC": [[31, 2, 1, "", "__add__"], [31, 2, 1, "", "__call__"], [31, 2, 1, "", "__init__"], [31, 2, 1, "", "__mul__"], [31, 2, 1, "", "add_state"], [31, 2, 1, "", "clone"], [31, 2, 1, "", "compute"], [31, 2, 1, "", "reset_state"], [31, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.auroc.MultilabelAUROC": [[32, 2, 1, "", "__add__"], [32, 2, 1, "", "__call__"], [32, 2, 1, "", "__init__"], [32, 2, 1, "", "__mul__"], [32, 2, 1, "", "add_state"], [32, 2, 1, "", "clone"], [32, 2, 1, "", "compute"], [32, 2, 1, "", "reset_state"], [32, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta": [[34, 1, 1, "", "BinaryF1Score"], [35, 1, 1, "", "BinaryFbetaScore"], [36, 1, 1, "", "F1Score"], [37, 1, 1, "", "FbetaScore"], [38, 1, 1, "", "MulticlassF1Score"], [39, 1, 1, "", "MulticlassFbetaScore"], [40, 1, 1, "", "MultilabelF1Score"], [41, 1, 1, "", "MultilabelFbetaScore"]], "cyclops.evaluate.metrics.f_beta.BinaryF1Score": [[34, 2, 1, "", "__add__"], [34, 2, 1, "", "__call__"], [34, 2, 1, "", "__init__"], [34, 2, 1, "", "__mul__"], [34, 2, 1, "", "add_state"], [34, 2, 1, "", "clone"], [34, 2, 1, "", "compute"], [34, 2, 1, "", "reset_state"], [34, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore": [[35, 2, 1, "", "__add__"], [35, 2, 1, "", "__call__"], [35, 2, 1, "", "__init__"], [35, 2, 1, "", "__mul__"], [35, 2, 1, "", "add_state"], [35, 2, 1, "", "clone"], [35, 2, 1, "", "compute"], [35, 2, 1, "", "reset_state"], [35, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.F1Score": [[36, 2, 1, "", "__add__"], [36, 2, 1, "", "__call__"], [36, 2, 1, "", "__init__"], [36, 2, 1, "", "__mul__"], [36, 2, 1, "", "add_state"], [36, 2, 1, "", "clone"], [36, 2, 1, "", "compute"], [36, 2, 1, "", "reset_state"], [36, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.FbetaScore": [[37, 2, 1, "", "__add__"], [37, 2, 1, "", "__call__"], [37, 2, 1, "", "__init__"], [37, 2, 1, "", "__mul__"], [37, 2, 1, "", "add_state"], [37, 2, 1, "", "clone"], [37, 2, 1, "", "compute"], [37, 2, 1, "", "reset_state"], [37, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.MulticlassF1Score": [[38, 2, 1, "", "__add__"], [38, 2, 1, "", "__call__"], [38, 2, 1, "", "__init__"], [38, 2, 1, "", "__mul__"], [38, 2, 1, "", "add_state"], [38, 2, 1, "", "clone"], [38, 2, 1, "", "compute"], [38, 2, 1, "", "reset_state"], [38, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore": [[39, 2, 1, "", "__add__"], [39, 2, 1, "", "__call__"], [39, 2, 1, "", "__init__"], [39, 2, 1, "", "__mul__"], [39, 2, 1, "", "add_state"], [39, 2, 1, "", "clone"], [39, 2, 1, "", "compute"], [39, 2, 1, "", "reset_state"], [39, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.MultilabelF1Score": [[40, 2, 1, "", "__add__"], [40, 2, 1, "", "__call__"], [40, 2, 1, "", "__init__"], [40, 2, 1, "", "__mul__"], [40, 2, 1, "", "add_state"], [40, 2, 1, "", "clone"], [40, 2, 1, "", "compute"], [40, 2, 1, "", "reset_state"], [40, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore": [[41, 2, 1, "", "__add__"], [41, 2, 1, "", "__call__"], [41, 2, 1, "", "__init__"], [41, 2, 1, "", "__mul__"], [41, 2, 1, "", "add_state"], [41, 2, 1, "", "clone"], [41, 2, 1, "", "compute"], [41, 2, 1, "", "reset_state"], [41, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.factory": [[43, 4, 1, "", "create_metric"]], "cyclops.evaluate.metrics.functional": [[44, 0, 0, "-", "accuracy"], [45, 0, 0, "-", "auroc"], [46, 0, 0, "-", "f_beta"], [55, 0, 0, "-", "precision_recall"], [64, 0, 0, "-", "precision_recall_curve"], [65, 0, 0, "-", "roc"], [70, 0, 0, "-", "sensitivity"], [71, 0, 0, "-", "specificity"], [72, 0, 0, "-", "stat_scores"]], "cyclops.evaluate.metrics.functional.f_beta": [[47, 4, 1, "", "binary_f1_score"], [48, 4, 1, "", "binary_fbeta_score"], [49, 4, 1, "", "f1_score"], [50, 4, 1, "", "fbeta_score"], [51, 4, 1, "", "multiclass_f1_score"], [52, 4, 1, "", "multiclass_fbeta_score"], [53, 4, 1, "", "multilabel_f1_score"], [54, 4, 1, "", "multilabel_fbeta_score"]], "cyclops.evaluate.metrics.functional.precision_recall": [[56, 4, 1, "", "binary_precision"], [57, 4, 1, "", "binary_recall"], [58, 4, 1, "", "multiclass_precision"], [59, 4, 1, "", "multiclass_recall"], [60, 4, 1, "", "multilabel_precision"], [61, 4, 1, "", "multilabel_recall"], [62, 4, 1, "", "precision"], [63, 4, 1, "", "recall"]], "cyclops.evaluate.metrics.functional.roc": [[66, 4, 1, "", "binary_roc_curve"], [67, 4, 1, "", "multiclass_roc_curve"], [68, 4, 1, "", "multilabel_roc_curve"], [69, 4, 1, "", "roc_curve"]], "cyclops.evaluate.metrics.metric": [[74, 1, 1, "", "Metric"], [75, 1, 1, "", "MetricCollection"], [76, 1, 1, "", "OperatorMetric"]], "cyclops.evaluate.metrics.metric.Metric": [[74, 2, 1, "", "__add__"], [74, 2, 1, "", "__call__"], [74, 2, 1, "", "__init__"], [74, 2, 1, "", "__mul__"], [74, 2, 1, "", "add_state"], [74, 2, 1, "", "clone"], [74, 2, 1, "", "compute"], [74, 5, 1, "", "name"], [74, 2, 1, "", "reset_state"], [74, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.metric.MetricCollection": [[75, 2, 1, "", "__call__"], [75, 2, 1, "", "__init__"], [75, 2, 1, "", "add_metrics"], [75, 2, 1, "", "clear"], [75, 2, 1, "", "clone"], [75, 2, 1, "", "compute"], [75, 2, 1, "", "get"], [75, 2, 1, "", "items"], [75, 2, 1, "", "keys"], [75, 2, 1, "", "pop"], [75, 2, 1, "", "popitem"], [75, 2, 1, "", "reset_state"], [75, 2, 1, "", "setdefault"], [75, 2, 1, "", "update"], [75, 2, 1, "", "update_state"], [75, 2, 1, "", "values"]], "cyclops.evaluate.metrics.metric.OperatorMetric": [[76, 2, 1, "", "__add__"], [76, 2, 1, "", "__call__"], [76, 2, 1, "", "__init__"], [76, 2, 1, "", "__mul__"], [76, 2, 1, "", "add_state"], [76, 2, 1, "", "clone"], [76, 2, 1, "", "compute"], [76, 2, 1, "", "reset_state"], [76, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall": [[78, 1, 1, "", "BinaryPrecision"], [79, 1, 1, "", "BinaryRecall"], [80, 1, 1, "", "MulticlassPrecision"], [81, 1, 1, "", "MulticlassRecall"], [82, 1, 1, "", "MultilabelPrecision"], [83, 1, 1, "", "MultilabelRecall"], [84, 1, 1, "", "Precision"], [85, 1, 1, "", "Recall"]], "cyclops.evaluate.metrics.precision_recall.BinaryPrecision": [[78, 2, 1, "", "__add__"], [78, 2, 1, "", "__call__"], [78, 2, 1, "", "__init__"], [78, 2, 1, "", "__mul__"], [78, 2, 1, "", "add_state"], [78, 2, 1, "", "clone"], [78, 2, 1, "", "compute"], [78, 2, 1, "", "reset_state"], [78, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.BinaryRecall": [[79, 2, 1, "", "__add__"], [79, 2, 1, "", "__call__"], [79, 2, 1, "", "__init__"], [79, 2, 1, "", "__mul__"], [79, 2, 1, "", "add_state"], [79, 2, 1, "", "clone"], [79, 2, 1, "", "compute"], [79, 2, 1, "", "reset_state"], [79, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision": [[80, 2, 1, "", "__add__"], [80, 2, 1, "", "__call__"], [80, 2, 1, "", "__init__"], [80, 2, 1, "", "__mul__"], [80, 2, 1, "", "add_state"], [80, 2, 1, "", "clone"], [80, 2, 1, "", "compute"], [80, 2, 1, "", "reset_state"], [80, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.MulticlassRecall": [[81, 2, 1, "", "__add__"], [81, 2, 1, "", "__call__"], [81, 2, 1, "", "__init__"], [81, 2, 1, "", "__mul__"], [81, 2, 1, "", "add_state"], [81, 2, 1, "", "clone"], [81, 2, 1, "", "compute"], [81, 2, 1, "", "reset_state"], [81, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision": [[82, 2, 1, "", "__add__"], [82, 2, 1, "", "__call__"], [82, 2, 1, "", "__init__"], [82, 2, 1, "", "__mul__"], [82, 2, 1, "", "add_state"], [82, 2, 1, "", "clone"], [82, 2, 1, "", "compute"], [82, 2, 1, "", "reset_state"], [82, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.MultilabelRecall": [[83, 2, 1, "", "__add__"], [83, 2, 1, "", "__call__"], [83, 2, 1, "", "__init__"], [83, 2, 1, "", "__mul__"], [83, 2, 1, "", "add_state"], [83, 2, 1, "", "clone"], [83, 2, 1, "", "compute"], [83, 2, 1, "", "reset_state"], [83, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.Precision": [[84, 2, 1, "", "__add__"], [84, 2, 1, "", "__call__"], [84, 2, 1, "", "__init__"], [84, 2, 1, "", "__mul__"], [84, 2, 1, "", "add_state"], [84, 2, 1, "", "clone"], [84, 2, 1, "", "compute"], [84, 2, 1, "", "reset_state"], [84, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.Recall": [[85, 2, 1, "", "__add__"], [85, 2, 1, "", "__call__"], [85, 2, 1, "", "__init__"], [85, 2, 1, "", "__mul__"], [85, 2, 1, "", "add_state"], [85, 2, 1, "", "clone"], [85, 2, 1, "", "compute"], [85, 2, 1, "", "reset_state"], [85, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall_curve": [[87, 1, 1, "", "BinaryPrecisionRecallCurve"], [88, 1, 1, "", "MulticlassPrecisionRecallCurve"], [89, 1, 1, "", "MultilabelPrecisionRecallCurve"], [90, 1, 1, "", "PrecisionRecallCurve"]], "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve": [[87, 2, 1, "", "__add__"], [87, 2, 1, "", "__call__"], [87, 2, 1, "", "__init__"], [87, 2, 1, "", "__mul__"], [87, 2, 1, "", "add_state"], [87, 2, 1, "", "clone"], [87, 2, 1, "", "compute"], [87, 2, 1, "", "reset_state"], [87, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve": [[88, 2, 1, "", "__add__"], [88, 2, 1, "", "__call__"], [88, 2, 1, "", "__init__"], [88, 2, 1, "", "__mul__"], [88, 2, 1, "", "add_state"], [88, 2, 1, "", "clone"], [88, 2, 1, "", "compute"], [88, 2, 1, "", "reset_state"], [88, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve": [[89, 2, 1, "", "__add__"], [89, 2, 1, "", "__call__"], [89, 2, 1, "", "__init__"], [89, 2, 1, "", "__mul__"], [89, 2, 1, "", "add_state"], [89, 2, 1, "", "clone"], [89, 2, 1, "", "compute"], [89, 2, 1, "", "reset_state"], [89, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve": [[90, 2, 1, "", "__add__"], [90, 2, 1, "", "__call__"], [90, 2, 1, "", "__init__"], [90, 2, 1, "", "__mul__"], [90, 2, 1, "", "add_state"], [90, 2, 1, "", "clone"], [90, 2, 1, "", "compute"], [90, 2, 1, "", "reset_state"], [90, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.roc": [[92, 1, 1, "", "BinaryROCCurve"], [93, 1, 1, "", "MulticlassROCCurve"], [94, 1, 1, "", "MultilabelROCCurve"], [95, 1, 1, "", "ROCCurve"]], "cyclops.evaluate.metrics.roc.BinaryROCCurve": [[92, 2, 1, "", "__add__"], [92, 2, 1, "", "__call__"], [92, 2, 1, "", "__init__"], [92, 2, 1, "", "__mul__"], [92, 2, 1, "", "add_state"], [92, 2, 1, "", "clone"], [92, 2, 1, "", "compute"], [92, 2, 1, "", "reset_state"], [92, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.roc.MulticlassROCCurve": [[93, 2, 1, "", "__add__"], [93, 2, 1, "", "__call__"], [93, 2, 1, "", "__init__"], [93, 2, 1, "", "__mul__"], [93, 2, 1, "", "add_state"], [93, 2, 1, "", "clone"], [93, 2, 1, "", "compute"], [93, 2, 1, "", "reset_state"], [93, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.roc.MultilabelROCCurve": [[94, 2, 1, "", "__add__"], [94, 2, 1, "", "__call__"], [94, 2, 1, "", "__init__"], [94, 2, 1, "", "__mul__"], [94, 2, 1, "", "add_state"], [94, 2, 1, "", "clone"], [94, 2, 1, "", "compute"], [94, 2, 1, "", "reset_state"], [94, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.roc.ROCCurve": [[95, 2, 1, "", "__add__"], [95, 2, 1, "", "__call__"], [95, 2, 1, "", "__init__"], [95, 2, 1, "", "__mul__"], [95, 2, 1, "", "add_state"], [95, 2, 1, "", "clone"], [95, 2, 1, "", "compute"], [95, 2, 1, "", "reset_state"], [95, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.sensitivity": [[97, 1, 1, "", "BinarySensitivity"], [98, 1, 1, "", "MulticlassSensitivity"], [99, 1, 1, "", "MultilabelSensitivity"], [100, 1, 1, "", "Sensitivity"]], "cyclops.evaluate.metrics.sensitivity.BinarySensitivity": [[97, 2, 1, "", "__add__"], [97, 2, 1, "", "__call__"], [97, 2, 1, "", "__init__"], [97, 2, 1, "", "__mul__"], [97, 2, 1, "", "add_state"], [97, 2, 1, "", "clone"], [97, 2, 1, "", "compute"], [97, 2, 1, "", "reset_state"], [97, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity": [[98, 2, 1, "", "__add__"], [98, 2, 1, "", "__call__"], [98, 2, 1, "", "__init__"], [98, 2, 1, "", "__mul__"], [98, 2, 1, "", "add_state"], [98, 2, 1, "", "clone"], [98, 2, 1, "", "compute"], [98, 2, 1, "", "reset_state"], [98, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity": [[99, 2, 1, "", "__add__"], [99, 2, 1, "", "__call__"], [99, 2, 1, "", "__init__"], [99, 2, 1, "", "__mul__"], [99, 2, 1, "", "add_state"], [99, 2, 1, "", "clone"], [99, 2, 1, "", "compute"], [99, 2, 1, "", "reset_state"], [99, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.sensitivity.Sensitivity": [[100, 2, 1, "", "__add__"], [100, 2, 1, "", "__call__"], [100, 2, 1, "", "__init__"], [100, 2, 1, "", "__mul__"], [100, 2, 1, "", "add_state"], [100, 2, 1, "", "clone"], [100, 2, 1, "", "compute"], [100, 2, 1, "", "reset_state"], [100, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.specificity": [[102, 1, 1, "", "BinarySpecificity"], [103, 1, 1, "", "MulticlassSpecificity"], [104, 1, 1, "", "MultilabelSpecificity"], [105, 1, 1, "", "Specificity"]], "cyclops.evaluate.metrics.specificity.BinarySpecificity": [[102, 2, 1, "", "__add__"], [102, 2, 1, "", "__call__"], [102, 2, 1, "", "__init__"], [102, 2, 1, "", "__mul__"], [102, 2, 1, "", "add_state"], [102, 2, 1, "", "clone"], [102, 2, 1, "", "compute"], [102, 2, 1, "", "reset_state"], [102, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.specificity.MulticlassSpecificity": [[103, 2, 1, "", "__add__"], [103, 2, 1, "", "__call__"], [103, 2, 1, "", "__init__"], [103, 2, 1, "", "__mul__"], [103, 2, 1, "", "add_state"], [103, 2, 1, "", "clone"], [103, 2, 1, "", "compute"], [103, 2, 1, "", "reset_state"], [103, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.specificity.MultilabelSpecificity": [[104, 2, 1, "", "__add__"], [104, 2, 1, "", "__call__"], [104, 2, 1, "", "__init__"], [104, 2, 1, "", "__mul__"], [104, 2, 1, "", "add_state"], [104, 2, 1, "", "clone"], [104, 2, 1, "", "compute"], [104, 2, 1, "", "reset_state"], [104, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.specificity.Specificity": [[105, 2, 1, "", "__add__"], [105, 2, 1, "", "__call__"], [105, 2, 1, "", "__init__"], [105, 2, 1, "", "__mul__"], [105, 2, 1, "", "add_state"], [105, 2, 1, "", "clone"], [105, 2, 1, "", "compute"], [105, 2, 1, "", "reset_state"], [105, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.stat_scores": [[107, 1, 1, "", "BinaryStatScores"], [108, 1, 1, "", "MulticlassStatScores"], [109, 1, 1, "", "MultilabelStatScores"], [110, 1, 1, "", "StatScores"]], "cyclops.evaluate.metrics.stat_scores.BinaryStatScores": [[107, 2, 1, "", "__add__"], [107, 2, 1, "", "__call__"], [107, 2, 1, "", "__init__"], [107, 2, 1, "", "__mul__"], [107, 2, 1, "", "add_state"], [107, 2, 1, "", "clone"], [107, 2, 1, "", "compute"], [107, 2, 1, "", "reset_state"], [107, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores": [[108, 2, 1, "", "__add__"], [108, 2, 1, "", "__call__"], [108, 2, 1, "", "__init__"], [108, 2, 1, "", "__mul__"], [108, 2, 1, "", "add_state"], [108, 2, 1, "", "clone"], [108, 2, 1, "", "compute"], [108, 2, 1, "", "reset_state"], [108, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores": [[109, 2, 1, "", "__add__"], [109, 2, 1, "", "__call__"], [109, 2, 1, "", "__init__"], [109, 2, 1, "", "__mul__"], [109, 2, 1, "", "add_state"], [109, 2, 1, "", "clone"], [109, 2, 1, "", "compute"], [109, 2, 1, "", "reset_state"], [109, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.stat_scores.StatScores": [[110, 2, 1, "", "__add__"], [110, 2, 1, "", "__call__"], [110, 2, 1, "", "__init__"], [110, 2, 1, "", "__mul__"], [110, 2, 1, "", "add_state"], [110, 2, 1, "", "clone"], [110, 2, 1, "", "compute"], [110, 5, 1, "", "name"], [110, 2, 1, "", "reset_state"], [110, 2, 1, "", "update_state"]], "cyclops.monitor": [[111, 0, 0, "-", "clinical_applicator"], [113, 0, 0, "-", "synthetic_applicator"]], "cyclops.monitor.clinical_applicator": [[112, 1, 1, "", "ClinicalShiftApplicator"]], "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator": [[112, 2, 1, "", "age"], [112, 2, 1, "", "apply_shift"], [112, 2, 1, "", "custom"], [112, 2, 1, "", "hospital_type"], [112, 2, 1, "", "month"], [112, 2, 1, "", "sex"], [112, 2, 1, "", "time"]], "cyclops.monitor.synthetic_applicator": [[114, 1, 1, "", "SyntheticShiftApplicator"], [115, 4, 1, "", "binary_noise_shift"], [116, 4, 1, "", "feature_association_shift"], [117, 4, 1, "", "feature_swap_shift"], [118, 4, 1, "", "gaussian_noise_shift"], [119, 4, 1, "", "knockout_shift"]], "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator": [[114, 2, 1, "", "apply_shift"]], "cyclops.report": [[120, 0, 0, "-", "report"]], "cyclops.report.report": [[121, 1, 1, "", "ModelCardReport"]], "cyclops.report.report.ModelCardReport": [[121, 2, 1, "", "export"], [121, 2, 1, "", "from_json_file"], [121, 2, 1, "", "log_citation"], [121, 2, 1, "", "log_dataset"], [121, 2, 1, "", "log_descriptor"], [121, 2, 1, "", "log_fairness_assessment"], [121, 2, 1, "", "log_from_dict"], [121, 2, 1, "", "log_image"], [121, 2, 1, "", "log_license"], [121, 2, 1, "", "log_model_parameters"], [121, 2, 1, "", "log_owner"], [121, 2, 1, "", "log_performance_metrics"], [121, 2, 1, "", "log_plotly_figure"], [121, 2, 1, "", "log_quantitative_analysis"], [121, 2, 1, "", "log_reference"], [121, 2, 1, "", "log_regulation"], [121, 2, 1, "", "log_risk"], [121, 2, 1, "", "log_use_case"], [121, 2, 1, "", "log_user"], [121, 2, 1, "", "log_version"]], "cyclops.tasks": [[122, 0, 0, "-", "classification"]], "cyclops.tasks.classification": [[123, 1, 1, "", "BinaryTabularClassificationTask"], [124, 1, 1, "", "MultilabelImageClassificationTask"]], "cyclops.tasks.classification.BinaryTabularClassificationTask": [[123, 2, 1, "", "__init__"], [123, 2, 1, "", "add_model"], [123, 5, 1, "", "data_type"], [123, 2, 1, "", "evaluate"], [123, 2, 1, "", "get_model"], [123, 2, 1, "", "list_models"], [123, 2, 1, "", "list_models_params"], [123, 2, 1, "", "load_model"], [123, 5, 1, "", "models_count"], [123, 2, 1, "", "predict"], [123, 2, 1, "", "save_model"], [123, 5, 1, "", "task_type"], [123, 2, 1, "", "train"]], "cyclops.tasks.classification.MultilabelImageClassificationTask": [[124, 2, 1, "", "__init__"], [124, 2, 1, "", "add_model"], [124, 5, 1, "", "data_type"], [124, 2, 1, "", "evaluate"], [124, 2, 1, "", "get_model"], [124, 2, 1, "", "list_models"], [124, 2, 1, "", "list_models_params"], [124, 2, 1, "", "load_model"], [124, 5, 1, "", "models_count"], [124, 2, 1, "", "predict"], [124, 2, 1, "", "save_model"], [124, 5, 1, "", "task_type"]]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:method", "3": "py:attribute", "4": "py:function", "5": "py:property"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "method", "Python method"], "3": ["py", "attribute", "Python attribute"], "4": ["py", "function", "Python function"], "5": ["py", "property", "Python property"]}, "titleterms": {"api": [0, 136], "refer": 0, "contribut": [1, 3], "cyclop": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129], "pre": 1, "commit": 1, "hook": 1, "code": 1, "guidelin": 1, "welcom": 2, "": 2, "document": [2, 3], "content": 2, "get": 3, "start": 3, "instal": 3, "us": [3, 134, 137], "pip": 3, "develop": 3, "poetri": 3, "notebook": 3, "citat": 3, "data": [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 125, 131, 132, 135, 137], "featur": [4, 5, 125, 131, 132, 135], "medical_imag": [4, 5], "medicalimag": 5, "slicer": [6, 7, 8, 9, 10, 11, 12, 13, 14, 15], "slicespec": 7, "compound_filt": 8, "filter_datetim": 9, "filter_non_nul": 10, "filter_rang": 11, "filter_string_contain": 12, "filter_valu": 13, "is_datetim": 14, "overal": 15, "evalu": [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 126, 131, 132, 135], "fair": [18, 19, 20, 21, 22, 126], "config": [18, 19], "fairnessconfig": 19, "evaluate_fair": 21, "warn_too_many_unique_valu": 22, "metric": [23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 126, 133], "accuraci": [23, 24, 25, 26, 27, 44], "binaryaccuraci": 25, "multiclassaccuraci": 26, "multilabelaccuraci": 27, "auroc": [28, 29, 30, 31, 32, 45, 133], "binaryauroc": 30, "multiclassauroc": 31, "multilabelauroc": 32, "f_beta": [33, 34, 35, 36, 37, 38, 39, 40, 41, 46, 47, 48, 49, 50, 51, 52, 53, 54], "binaryf1scor": 34, "binaryfbetascor": 35, "f1score": 36, "fbetascor": 37, "multiclassf1scor": 38, "multiclassfbetascor": 39, "multilabelf1scor": 40, "multilabelfbetascor": 41, "factori": [42, 43], "create_metr": 43, "function": [44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 126], "binary_f1_scor": 47, "binary_fbeta_scor": 48, "f1_score": 49, "fbeta_scor": 50, "multiclass_f1_scor": 51, "multiclass_fbeta_scor": 52, "multilabel_f1_scor": 53, "multilabel_fbeta_scor": 54, "precision_recal": [55, 56, 57, 58, 59, 60, 61, 62, 63, 77, 78, 79, 80, 81, 82, 83, 84, 85], "binary_precis": 56, "binary_recal": 57, "multiclass_precis": 58, "multiclass_recal": 59, "multilabel_precis": 60, "multilabel_recal": 61, "precis": [62, 84], "recal": [63, 85], "precision_recall_curv": [64, 86, 87, 88, 89, 90], "roc": [65, 66, 67, 68, 69, 91, 92, 93, 94, 95], "binary_roc_curv": 66, "multiclass_roc_curv": 67, "multilabel_roc_curv": 68, "roc_curv": 69, "sensit": [70, 96, 97, 98, 99, 100, 134], "specif": [71, 101, 102, 103, 104, 105], "stat_scor": [72, 106, 107, 108, 109, 110], "metriccollect": 75, "operatormetr": 76, "binaryprecis": 78, "binaryrecal": 79, "multiclassprecis": 80, "multiclassrecal": 81, "multilabelprecis": 82, "multilabelrecal": 83, "binaryprecisionrecallcurv": 87, "multiclassprecisionrecallcurv": 88, "multilabelprecisionrecallcurv": 89, "precisionrecallcurv": 90, "binaryroccurv": 92, "multiclassroccurv": 93, "multilabelroccurv": 94, "roccurv": 95, "binarysensit": 97, "multiclasssensit": 98, "multilabelsensit": 99, "binaryspecif": 102, "multiclassspecif": 103, "multilabelspecif": 104, "binarystatscor": 107, "multiclassstatscor": 108, "multilabelstatscor": 109, "statscor": 110, "monitor": [111, 112, 113, 114, 115, 116, 117, 118, 119, 127, 136], "clinical_appl": [111, 112], "clinicalshiftappl": 112, "synthetic_appl": [113, 114, 115, 116, 117, 118, 119], "syntheticshiftappl": 114, "binary_noise_shift": 115, "feature_association_shift": 116, "feature_swap_shift": 117, "gaussian_noise_shift": 118, "knockout_shift": 119, "report": [120, 121, 128, 131, 132, 133, 135], "modelcardreport": 121, "task": [122, 123, 124, 129, 131, 132, 135], "classif": [122, 123, 124, 133, 137], "binarytabularclassificationtask": 123, "multilabelimageclassificationtask": 124, "tutori": [130, 134], "heart": [131, 137], "failur": [131, 137], "predict": [131, 132, 135, 137], "import": [131, 132, 133, 134, 135], "librari": [131, 132, 133, 134, 135], "constant": [131, 132, 135], "load": [131, 133, 134], "sex": [131, 133], "valu": 131, "ag": [131, 132, 133, 135], "distribut": [131, 132, 135], "outcom": [131, 132, 135], "identifi": [131, 132, 135], "type": [131, 132, 135], "creat": [131, 132, 135], "preprocessor": [131, 132, 135], "hug": [131, 132, 135], "face": [131, 132, 135], "dataset": [131, 132, 133, 134, 135], "model": [131, 132, 133, 134, 135], "creation": [131, 132, 133, 135], "train": [131, 132, 134, 135], "gener": [131, 132, 133, 134, 135], "mortal": [132, 137], "queri": [132, 135], "process": 132, "comput": [132, 135], "label": [132, 135], "inspect": [132, 135], "preprocess": [132, 135], "drop": [132, 135], "nan": [132, 135], "base": [132, 135], "nan_threshold": [132, 135], "gender": [132, 135], "chest": [133, 137], "x": [133, 137], "rai": [133, 137], "diseas": 133, "histor": 133, "initi": 133, "period": 133, "multilabel": 133, "pathologi": 133, "log": 133, "perform": 133, "test": [133, 134], "w": 133, "threshold": 133, "popul": 133, "card": 133, "field": 133, "nihcxr": 134, "clinic": 134, "drift": 134, "experi": 134, "exampl": [134, 137], "1": 134, "sourc": 134, "target": 134, "2": 134, "3": 134, "dimension": 134, "reduct": 134, "techniqu": 134, "differ": 134, "4": 134, "shift": 134, "5": 134, "roll": 134, "window": 134, "synthet": 134, "timestamp": 134, "biweekli": 134, "prolong": [135, 137], "length": [135, 137], "stai": [135, 137], "case": 137, "tabular": 137, "kaggl": 137, "mimiciv": 137, "synthea": 137, "imag": 137, "nih": 137}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.todo": 2, "sphinx.ext.viewcode": 1, "sphinx.ext.intersphinx": 1, "nbsphinx": 4, "sphinx": 60}, "alltitles": {"API Reference": [[0, "api-reference"]], "Contributing to cyclops": [[1, "contributing-to-cyclops"]], "Pre-commit hooks": [[1, "pre-commit-hooks"]], "Coding guidelines": [[1, "coding-guidelines"]], "Welcome to cyclops\u2019s documentation!": [[2, "welcome-to-cyclops-s-documentation"]], "Contents:": [[2, null]], "\ud83d\udc23 Getting Started": [[3, "getting-started"]], "Installing cyclops using pip": [[3, "installing-cyclops-using-pip"]], "\ud83e\uddd1\ud83c\udfff\u200d\ud83d\udcbb Developing": [[3, "developing"]], "Using poetry": [[3, "using-poetry"]], "Contributing": [[3, "contributing"]], "\ud83d\udcda Documentation": [[3, "documentation"]], "\ud83d\udcd3 Notebooks": [[3, "notebooks"]], "\ud83c\udf93 Citation": [[3, "citation"]], "cyclops.data.features.medical_image": [[4, "module-cyclops.data.features.medical_image"]], "cyclops.data.features.medical_image.MedicalImage": [[5, "cyclops-data-features-medical-image-medicalimage"]], "cyclops.data.slicer": [[6, "module-cyclops.data.slicer"]], "cyclops.data.slicer.SliceSpec": [[7, "cyclops-data-slicer-slicespec"]], "cyclops.data.slicer.compound_filter": [[8, "cyclops-data-slicer-compound-filter"]], "cyclops.data.slicer.filter_datetime": [[9, "cyclops-data-slicer-filter-datetime"]], "cyclops.data.slicer.filter_non_null": [[10, "cyclops-data-slicer-filter-non-null"]], "cyclops.data.slicer.filter_range": [[11, "cyclops-data-slicer-filter-range"]], "cyclops.data.slicer.filter_string_contains": [[12, "cyclops-data-slicer-filter-string-contains"]], "cyclops.data.slicer.filter_value": [[13, "cyclops-data-slicer-filter-value"]], "cyclops.data.slicer.is_datetime": [[14, "cyclops-data-slicer-is-datetime"]], "cyclops.data.slicer.overall": [[15, "cyclops-data-slicer-overall"]], "cyclops.evaluate.evaluator": [[16, "module-cyclops.evaluate.evaluator"]], "cyclops.evaluate.evaluator.evaluate": [[17, "cyclops-evaluate-evaluator-evaluate"]], "cyclops.evaluate.fairness.config": [[18, "module-cyclops.evaluate.fairness.config"]], "cyclops.evaluate.fairness.config.FairnessConfig": [[19, "cyclops-evaluate-fairness-config-fairnessconfig"]], "cyclops.evaluate.fairness.evaluator": [[20, "module-cyclops.evaluate.fairness.evaluator"]], "cyclops.evaluate.fairness.evaluator.evaluate_fairness": [[21, "cyclops-evaluate-fairness-evaluator-evaluate-fairness"]], "cyclops.evaluate.fairness.evaluator.warn_too_many_unique_values": [[22, "cyclops-evaluate-fairness-evaluator-warn-too-many-unique-values"]], "cyclops.evaluate.metrics.accuracy": [[23, "module-cyclops.evaluate.metrics.accuracy"]], "cyclops.evaluate.metrics.accuracy.Accuracy": [[24, "cyclops-evaluate-metrics-accuracy-accuracy"]], "cyclops.evaluate.metrics.accuracy.BinaryAccuracy": [[25, "cyclops-evaluate-metrics-accuracy-binaryaccuracy"]], "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy": [[26, "cyclops-evaluate-metrics-accuracy-multiclassaccuracy"]], "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy": [[27, "cyclops-evaluate-metrics-accuracy-multilabelaccuracy"]], "cyclops.evaluate.metrics.auroc": [[28, "module-cyclops.evaluate.metrics.auroc"]], "cyclops.evaluate.metrics.auroc.AUROC": [[29, "cyclops-evaluate-metrics-auroc-auroc"]], "cyclops.evaluate.metrics.auroc.BinaryAUROC": [[30, "cyclops-evaluate-metrics-auroc-binaryauroc"]], "cyclops.evaluate.metrics.auroc.MulticlassAUROC": [[31, "cyclops-evaluate-metrics-auroc-multiclassauroc"]], "cyclops.evaluate.metrics.auroc.MultilabelAUROC": [[32, "cyclops-evaluate-metrics-auroc-multilabelauroc"]], "cyclops.evaluate.metrics.f_beta": [[33, "module-cyclops.evaluate.metrics.f_beta"]], "cyclops.evaluate.metrics.f_beta.BinaryF1Score": [[34, "cyclops-evaluate-metrics-f-beta-binaryf1score"]], "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore": [[35, "cyclops-evaluate-metrics-f-beta-binaryfbetascore"]], "cyclops.evaluate.metrics.f_beta.F1Score": [[36, "cyclops-evaluate-metrics-f-beta-f1score"]], "cyclops.evaluate.metrics.f_beta.FbetaScore": [[37, "cyclops-evaluate-metrics-f-beta-fbetascore"]], "cyclops.evaluate.metrics.f_beta.MulticlassF1Score": [[38, "cyclops-evaluate-metrics-f-beta-multiclassf1score"]], "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore": [[39, "cyclops-evaluate-metrics-f-beta-multiclassfbetascore"]], "cyclops.evaluate.metrics.f_beta.MultilabelF1Score": [[40, "cyclops-evaluate-metrics-f-beta-multilabelf1score"]], "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore": [[41, "cyclops-evaluate-metrics-f-beta-multilabelfbetascore"]], "cyclops.evaluate.metrics.factory": [[42, "module-cyclops.evaluate.metrics.factory"]], "cyclops.evaluate.metrics.factory.create_metric": [[43, "cyclops-evaluate-metrics-factory-create-metric"]], "cyclops.evaluate.metrics.functional.accuracy": [[44, "module-cyclops.evaluate.metrics.functional.accuracy"]], "cyclops.evaluate.metrics.functional.auroc": [[45, "module-cyclops.evaluate.metrics.functional.auroc"]], "cyclops.evaluate.metrics.functional.f_beta": [[46, "module-cyclops.evaluate.metrics.functional.f_beta"]], "cyclops.evaluate.metrics.functional.f_beta.binary_f1_score": [[47, "cyclops-evaluate-metrics-functional-f-beta-binary-f1-score"]], "cyclops.evaluate.metrics.functional.f_beta.binary_fbeta_score": [[48, "cyclops-evaluate-metrics-functional-f-beta-binary-fbeta-score"]], "cyclops.evaluate.metrics.functional.f_beta.f1_score": [[49, "cyclops-evaluate-metrics-functional-f-beta-f1-score"]], "cyclops.evaluate.metrics.functional.f_beta.fbeta_score": [[50, "cyclops-evaluate-metrics-functional-f-beta-fbeta-score"]], "cyclops.evaluate.metrics.functional.f_beta.multiclass_f1_score": [[51, "cyclops-evaluate-metrics-functional-f-beta-multiclass-f1-score"]], "cyclops.evaluate.metrics.functional.f_beta.multiclass_fbeta_score": [[52, "cyclops-evaluate-metrics-functional-f-beta-multiclass-fbeta-score"]], "cyclops.evaluate.metrics.functional.f_beta.multilabel_f1_score": [[53, "cyclops-evaluate-metrics-functional-f-beta-multilabel-f1-score"]], "cyclops.evaluate.metrics.functional.f_beta.multilabel_fbeta_score": [[54, "cyclops-evaluate-metrics-functional-f-beta-multilabel-fbeta-score"]], "cyclops.evaluate.metrics.functional.precision_recall": [[55, "module-cyclops.evaluate.metrics.functional.precision_recall"]], "cyclops.evaluate.metrics.functional.precision_recall.binary_precision": [[56, "cyclops-evaluate-metrics-functional-precision-recall-binary-precision"]], "cyclops.evaluate.metrics.functional.precision_recall.binary_recall": [[57, "cyclops-evaluate-metrics-functional-precision-recall-binary-recall"]], "cyclops.evaluate.metrics.functional.precision_recall.multiclass_precision": [[58, "cyclops-evaluate-metrics-functional-precision-recall-multiclass-precision"]], "cyclops.evaluate.metrics.functional.precision_recall.multiclass_recall": [[59, "cyclops-evaluate-metrics-functional-precision-recall-multiclass-recall"]], "cyclops.evaluate.metrics.functional.precision_recall.multilabel_precision": [[60, "cyclops-evaluate-metrics-functional-precision-recall-multilabel-precision"]], "cyclops.evaluate.metrics.functional.precision_recall.multilabel_recall": [[61, "cyclops-evaluate-metrics-functional-precision-recall-multilabel-recall"]], "cyclops.evaluate.metrics.functional.precision_recall.precision": [[62, "cyclops-evaluate-metrics-functional-precision-recall-precision"]], "cyclops.evaluate.metrics.functional.precision_recall.recall": [[63, "cyclops-evaluate-metrics-functional-precision-recall-recall"]], "cyclops.evaluate.metrics.functional.precision_recall_curve": [[64, "module-cyclops.evaluate.metrics.functional.precision_recall_curve"]], "cyclops.evaluate.metrics.functional.roc": [[65, "module-cyclops.evaluate.metrics.functional.roc"]], "cyclops.evaluate.metrics.functional.roc.binary_roc_curve": [[66, "cyclops-evaluate-metrics-functional-roc-binary-roc-curve"]], "cyclops.evaluate.metrics.functional.roc.multiclass_roc_curve": [[67, "cyclops-evaluate-metrics-functional-roc-multiclass-roc-curve"]], "cyclops.evaluate.metrics.functional.roc.multilabel_roc_curve": [[68, "cyclops-evaluate-metrics-functional-roc-multilabel-roc-curve"]], "cyclops.evaluate.metrics.functional.roc.roc_curve": [[69, "cyclops-evaluate-metrics-functional-roc-roc-curve"]], "cyclops.evaluate.metrics.functional.sensitivity": [[70, "module-cyclops.evaluate.metrics.functional.sensitivity"]], "cyclops.evaluate.metrics.functional.specificity": [[71, "module-cyclops.evaluate.metrics.functional.specificity"]], "cyclops.evaluate.metrics.functional.stat_scores": [[72, "module-cyclops.evaluate.metrics.functional.stat_scores"]], "cyclops.evaluate.metrics.metric": [[73, "module-cyclops.evaluate.metrics.metric"]], "cyclops.evaluate.metrics.metric.Metric": [[74, "cyclops-evaluate-metrics-metric-metric"]], "cyclops.evaluate.metrics.metric.MetricCollection": [[75, "cyclops-evaluate-metrics-metric-metriccollection"]], "cyclops.evaluate.metrics.metric.OperatorMetric": [[76, "cyclops-evaluate-metrics-metric-operatormetric"]], "cyclops.evaluate.metrics.precision_recall": [[77, "module-cyclops.evaluate.metrics.precision_recall"]], "cyclops.evaluate.metrics.precision_recall.BinaryPrecision": [[78, "cyclops-evaluate-metrics-precision-recall-binaryprecision"]], "cyclops.evaluate.metrics.precision_recall.BinaryRecall": [[79, "cyclops-evaluate-metrics-precision-recall-binaryrecall"]], "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision": [[80, "cyclops-evaluate-metrics-precision-recall-multiclassprecision"]], "cyclops.evaluate.metrics.precision_recall.MulticlassRecall": [[81, "cyclops-evaluate-metrics-precision-recall-multiclassrecall"]], "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision": [[82, "cyclops-evaluate-metrics-precision-recall-multilabelprecision"]], "cyclops.evaluate.metrics.precision_recall.MultilabelRecall": [[83, "cyclops-evaluate-metrics-precision-recall-multilabelrecall"]], "cyclops.evaluate.metrics.precision_recall.Precision": [[84, "cyclops-evaluate-metrics-precision-recall-precision"]], "cyclops.evaluate.metrics.precision_recall.Recall": [[85, "cyclops-evaluate-metrics-precision-recall-recall"]], "cyclops.evaluate.metrics.precision_recall_curve": [[86, "module-cyclops.evaluate.metrics.precision_recall_curve"]], "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve": [[87, "cyclops-evaluate-metrics-precision-recall-curve-binaryprecisionrecallcurve"]], "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve": [[88, "cyclops-evaluate-metrics-precision-recall-curve-multiclassprecisionrecallcurve"]], "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve": [[89, "cyclops-evaluate-metrics-precision-recall-curve-multilabelprecisionrecallcurve"]], "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve": [[90, "cyclops-evaluate-metrics-precision-recall-curve-precisionrecallcurve"]], "cyclops.evaluate.metrics.roc": [[91, "module-cyclops.evaluate.metrics.roc"]], "cyclops.evaluate.metrics.roc.BinaryROCCurve": [[92, "cyclops-evaluate-metrics-roc-binaryroccurve"]], "cyclops.evaluate.metrics.roc.MulticlassROCCurve": [[93, "cyclops-evaluate-metrics-roc-multiclassroccurve"]], "cyclops.evaluate.metrics.roc.MultilabelROCCurve": [[94, "cyclops-evaluate-metrics-roc-multilabelroccurve"]], "cyclops.evaluate.metrics.roc.ROCCurve": [[95, "cyclops-evaluate-metrics-roc-roccurve"]], "cyclops.evaluate.metrics.sensitivity": [[96, "module-cyclops.evaluate.metrics.sensitivity"]], "cyclops.evaluate.metrics.sensitivity.BinarySensitivity": [[97, "cyclops-evaluate-metrics-sensitivity-binarysensitivity"]], "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity": [[98, "cyclops-evaluate-metrics-sensitivity-multiclasssensitivity"]], "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity": [[99, "cyclops-evaluate-metrics-sensitivity-multilabelsensitivity"]], "cyclops.evaluate.metrics.sensitivity.Sensitivity": [[100, "cyclops-evaluate-metrics-sensitivity-sensitivity"]], "cyclops.evaluate.metrics.specificity": [[101, "module-cyclops.evaluate.metrics.specificity"]], "cyclops.evaluate.metrics.specificity.BinarySpecificity": [[102, "cyclops-evaluate-metrics-specificity-binaryspecificity"]], "cyclops.evaluate.metrics.specificity.MulticlassSpecificity": [[103, "cyclops-evaluate-metrics-specificity-multiclassspecificity"]], "cyclops.evaluate.metrics.specificity.MultilabelSpecificity": [[104, "cyclops-evaluate-metrics-specificity-multilabelspecificity"]], "cyclops.evaluate.metrics.specificity.Specificity": [[105, "cyclops-evaluate-metrics-specificity-specificity"]], "cyclops.evaluate.metrics.stat_scores": [[106, "module-cyclops.evaluate.metrics.stat_scores"]], "cyclops.evaluate.metrics.stat_scores.BinaryStatScores": [[107, "cyclops-evaluate-metrics-stat-scores-binarystatscores"]], "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores": [[108, "cyclops-evaluate-metrics-stat-scores-multiclassstatscores"]], "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores": [[109, "cyclops-evaluate-metrics-stat-scores-multilabelstatscores"]], "cyclops.evaluate.metrics.stat_scores.StatScores": [[110, "cyclops-evaluate-metrics-stat-scores-statscores"]], "cyclops.monitor.clinical_applicator": [[111, "module-cyclops.monitor.clinical_applicator"]], "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator": [[112, "cyclops-monitor-clinical-applicator-clinicalshiftapplicator"]], "cyclops.monitor.synthetic_applicator": [[113, "module-cyclops.monitor.synthetic_applicator"]], "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator": [[114, "cyclops-monitor-synthetic-applicator-syntheticshiftapplicator"]], "cyclops.monitor.synthetic_applicator.binary_noise_shift": [[115, "cyclops-monitor-synthetic-applicator-binary-noise-shift"]], "cyclops.monitor.synthetic_applicator.feature_association_shift": [[116, "cyclops-monitor-synthetic-applicator-feature-association-shift"]], "cyclops.monitor.synthetic_applicator.feature_swap_shift": [[117, "cyclops-monitor-synthetic-applicator-feature-swap-shift"]], "cyclops.monitor.synthetic_applicator.gaussian_noise_shift": [[118, "cyclops-monitor-synthetic-applicator-gaussian-noise-shift"]], "cyclops.monitor.synthetic_applicator.knockout_shift": [[119, "cyclops-monitor-synthetic-applicator-knockout-shift"]], "cyclops.report.report": [[120, "module-cyclops.report.report"]], "cyclops.report.report.ModelCardReport": [[121, "cyclops-report-report-modelcardreport"]], "cyclops.tasks.classification": [[122, "module-cyclops.tasks.classification"]], "cyclops.tasks.classification.BinaryTabularClassificationTask": [[123, "cyclops-tasks-classification-binarytabularclassificationtask"]], "cyclops.tasks.classification.MultilabelImageClassificationTask": [[124, "cyclops-tasks-classification-multilabelimageclassificationtask"]], "cyclops.data": [[125, "module-cyclops.data"]], "cyclops.data.features": [[125, "module-cyclops.data.features"]], "cyclops.evaluate": [[126, "module-cyclops.evaluate"]], "cyclops.evaluate.metrics": [[126, "module-cyclops.evaluate.metrics"]], "cyclops.evaluate.metrics.functional": [[126, "module-cyclops.evaluate.metrics.functional"]], "cyclops.evaluate.fairness": [[126, "module-cyclops.evaluate.fairness"]], "cyclops.monitor": [[127, "module-cyclops.monitor"]], "cyclops.report": [[128, "module-cyclops.report"]], "cyclops.tasks": [[129, "module-cyclops.tasks"]], "Tutorials": [[130, "tutorials"]], "Heart Failure Prediction": [[131, "Heart-Failure-Prediction"]], "Import Libraries": [[131, "Import-Libraries"], [132, "Import-Libraries"], [133, "Import-Libraries"], [135, "Import-Libraries"]], "Constants": [[131, "Constants"], [132, "Constants"], [135, "Constants"]], "Data Loading": [[131, "Data-Loading"]], "Sex values": [[131, "Sex-values"]], "Age distribution": [[131, "Age-distribution"], [132, "Age-distribution"], [135, "Age-distribution"]], "Outcome distribution": [[131, "Outcome-distribution"], [132, "Outcome-distribution"], [135, "Outcome-distribution"]], "Identifying feature types": [[131, "Identifying-feature-types"], [132, "Identifying-feature-types"], [135, "Identifying-feature-types"]], "Creating data preprocessors": [[131, "Creating-data-preprocessors"], [132, "Creating-data-preprocessors"], [135, "Creating-data-preprocessors"]], "Creating Hugging Face Dataset": [[131, "Creating-Hugging-Face-Dataset"], [132, "Creating-Hugging-Face-Dataset"], [135, "Creating-Hugging-Face-Dataset"]], "Model Creation": [[131, "Model-Creation"], [132, "Model-Creation"], [133, "Model-Creation"], [135, "Model-Creation"]], "Task Creation": [[131, "Task-Creation"], [132, "Task-Creation"], [135, "Task-Creation"]], "Training": [[131, "Training"], [132, "Training"], [135, "Training"]], "Prediction": [[131, "Prediction"], [132, "Prediction"], [135, "Prediction"]], "Evaluation": [[131, "Evaluation"], [132, "Evaluation"], [135, "Evaluation"]], "Report Generation": [[131, "Report-Generation"], [132, "Report-Generation"], [135, "Report-Generation"]], "Mortality Prediction": [[132, "Mortality-Prediction"]], "Data Querying & Processing": [[132, "Data-Querying-&-Processing"]], "Compute mortality (labels)": [[132, "Compute-mortality-(labels)"]], "Data Inspection and Preprocessing": [[132, "Data-Inspection-and-Preprocessing"], [135, "Data-Inspection-and-Preprocessing"]], "Drop NaNs based on the NAN_THRESHOLD": [[132, "Drop-NaNs-based-on-the-NAN_THRESHOLD"], [135, "Drop-NaNs-based-on-the-NAN_THRESHOLD"]], "Gender distribution": [[132, "Gender-distribution"], [135, "Gender-distribution"]], "Chest X-Ray Disease Classification": [[133, "Chest-X-Ray-Disease-Classification"]], "Generate Historical Reports": [[133, "Generate-Historical-Reports"]], "Initialize Periodic Report": [[133, "Initialize-Periodic-Report"]], "Load Dataset": [[133, "Load-Dataset"]], "Multilabel AUROC by Pathology and Sex": [[133, "Multilabel-AUROC-by-Pathology-and-Sex"]], "Multilabel AUROC by Pathology and Age": [[133, "Multilabel-AUROC-by-Pathology-and-Age"]], "Log Performance Metrics as Tests w/ Thresholds": [[133, "Log-Performance-Metrics-as-Tests-w/-Thresholds"]], "Populate Model Card Fields": [[133, "Populate-Model-Card-Fields"]], "NIHCXR Clinical Drift Experiments Tutorial": [[134, "NIHCXR-Clinical-Drift-Experiments-Tutorial"]], "Import Libraries and Load NIHCXR Dataset": [[134, "Import-Libraries-and-Load-NIHCXR-Dataset"]], "Example 1. Generate Source/Target Dataset for Experiments (1-2)": [[134, "Example-1.-Generate-Source/Target-Dataset-for-Experiments-(1-2)"]], "Example 2. Sensitivity test experiment with 3 dimensionality reduction techniques": [[134, "Example-2.-Sensitivity-test-experiment-with-3-dimensionality-reduction-techniques"]], "Example 3. Sensitivity test experiment with models trained on different datasets": [[134, "Example-3.-Sensitivity-test-experiment-with-models-trained-on-different-datasets"]], "Example 4. Sensitivity test experiment with different clinical shifts": [[134, "Example-4.-Sensitivity-test-experiment-with-different-clinical-shifts"]], "Example 5. Rolling window experiment with synthetic timestamps using biweekly window": [[134, "Example-5.-Rolling-window-experiment-with-synthetic-timestamps-using-biweekly-window"]], "Prolonged Length of Stay Prediction": [[135, "Prolonged-Length-of-Stay-Prediction"]], "Data Querying": [[135, "Data-Querying"]], "Compute length of stay (labels)": [[135, "Compute-length-of-stay-(labels)"]], "Length of stay distribution": [[135, "Length-of-stay-distribution"]], "monitor API": [[136, "monitor-api"]], "Example use cases": [[137, "example-use-cases"]], "Tabular data": [[137, "tabular-data"]], "Kaggle Heart Failure Prediction": [[137, "kaggle-heart-failure-prediction"]], "MIMICIV Mortality Prediction": [[137, "mimiciv-mortality-prediction"]], "Synthea Prolonged Length of Stay Prediction": [[137, "synthea-prolonged-length-of-stay-prediction"]], "Image data": [[137, "image-data"]], "NIH Chest X-ray classification": [[137, "nih-chest-x-ray-classification"]]}, "indexentries": {"cyclops.data.features.medical_image": [[4, "module-cyclops.data.features.medical_image"]], "module": [[4, "module-cyclops.data.features.medical_image"], [6, "module-cyclops.data.slicer"], [16, "module-cyclops.evaluate.evaluator"], [18, "module-cyclops.evaluate.fairness.config"], [20, "module-cyclops.evaluate.fairness.evaluator"], [23, "module-cyclops.evaluate.metrics.accuracy"], [28, "module-cyclops.evaluate.metrics.auroc"], [33, "module-cyclops.evaluate.metrics.f_beta"], [42, "module-cyclops.evaluate.metrics.factory"], [44, "module-cyclops.evaluate.metrics.functional.accuracy"], [45, "module-cyclops.evaluate.metrics.functional.auroc"], [46, "module-cyclops.evaluate.metrics.functional.f_beta"], [55, "module-cyclops.evaluate.metrics.functional.precision_recall"], [64, "module-cyclops.evaluate.metrics.functional.precision_recall_curve"], [65, "module-cyclops.evaluate.metrics.functional.roc"], [70, "module-cyclops.evaluate.metrics.functional.sensitivity"], [71, "module-cyclops.evaluate.metrics.functional.specificity"], [72, "module-cyclops.evaluate.metrics.functional.stat_scores"], [73, "module-cyclops.evaluate.metrics.metric"], [77, "module-cyclops.evaluate.metrics.precision_recall"], [86, "module-cyclops.evaluate.metrics.precision_recall_curve"], [91, "module-cyclops.evaluate.metrics.roc"], [96, "module-cyclops.evaluate.metrics.sensitivity"], [101, "module-cyclops.evaluate.metrics.specificity"], [106, "module-cyclops.evaluate.metrics.stat_scores"], [111, "module-cyclops.monitor.clinical_applicator"], [113, "module-cyclops.monitor.synthetic_applicator"], [120, "module-cyclops.report.report"], [122, "module-cyclops.tasks.classification"], [125, "module-cyclops.data"], [125, "module-cyclops.data.features"], [126, "module-cyclops.evaluate"], [126, "module-cyclops.evaluate.fairness"], [126, "module-cyclops.evaluate.metrics"], [126, "module-cyclops.evaluate.metrics.functional"], [127, "module-cyclops.monitor"], [128, "module-cyclops.report"], [129, "module-cyclops.tasks"]], "medicalimage (class in cyclops.data.features.medical_image)": [[5, "cyclops.data.features.medical_image.MedicalImage"]], "__call__() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.__call__"]], "cast_storage() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.cast_storage"]], "decode_example() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.decode_example"]], "embed_storage() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.embed_storage"]], "encode_example() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.encode_example"]], "flatten() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.flatten"]], "cyclops.data.slicer": [[6, "module-cyclops.data.slicer"]], "slicespec (class in cyclops.data.slicer)": [[7, "cyclops.data.slicer.SliceSpec"]], "_registry (slicespec attribute)": [[7, "cyclops.data.slicer.SliceSpec._registry"]], "add_slice_spec() (slicespec method)": [[7, "cyclops.data.slicer.SliceSpec.add_slice_spec"]], "column_names (slicespec attribute)": [[7, "cyclops.data.slicer.SliceSpec.column_names"]], "get_slices() (slicespec method)": [[7, "cyclops.data.slicer.SliceSpec.get_slices"]], "include_overall (slicespec attribute)": [[7, "cyclops.data.slicer.SliceSpec.include_overall"]], "slices() (slicespec method)": [[7, "cyclops.data.slicer.SliceSpec.slices"]], "spec_list (slicespec attribute)": [[7, "cyclops.data.slicer.SliceSpec.spec_list"]], "validate (slicespec attribute)": [[7, "cyclops.data.slicer.SliceSpec.validate"]], "compound_filter() (in module cyclops.data.slicer)": [[8, "cyclops.data.slicer.compound_filter"]], "filter_datetime() (in module cyclops.data.slicer)": [[9, "cyclops.data.slicer.filter_datetime"]], "filter_non_null() (in module cyclops.data.slicer)": [[10, "cyclops.data.slicer.filter_non_null"]], "filter_range() (in module cyclops.data.slicer)": [[11, "cyclops.data.slicer.filter_range"]], "filter_string_contains() (in module cyclops.data.slicer)": [[12, "cyclops.data.slicer.filter_string_contains"]], "filter_value() (in module cyclops.data.slicer)": [[13, "cyclops.data.slicer.filter_value"]], "is_datetime() (in module cyclops.data.slicer)": [[14, "cyclops.data.slicer.is_datetime"]], "overall() (in module cyclops.data.slicer)": [[15, "cyclops.data.slicer.overall"]], "cyclops.evaluate.evaluator": [[16, "module-cyclops.evaluate.evaluator"]], "evaluate() (in module cyclops.evaluate.evaluator)": [[17, "cyclops.evaluate.evaluator.evaluate"]], "cyclops.evaluate.fairness.config": [[18, "module-cyclops.evaluate.fairness.config"]], "fairnessconfig (class in cyclops.evaluate.fairness.config)": [[19, "cyclops.evaluate.fairness.config.FairnessConfig"]], "cyclops.evaluate.fairness.evaluator": [[20, "module-cyclops.evaluate.fairness.evaluator"]], "evaluate_fairness() (in module cyclops.evaluate.fairness.evaluator)": [[21, "cyclops.evaluate.fairness.evaluator.evaluate_fairness"]], "warn_too_many_unique_values() (in module cyclops.evaluate.fairness.evaluator)": [[22, "cyclops.evaluate.fairness.evaluator.warn_too_many_unique_values"]], "cyclops.evaluate.metrics.accuracy": [[23, "module-cyclops.evaluate.metrics.accuracy"]], "accuracy (class in cyclops.evaluate.metrics.accuracy)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy"]], "__add__() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.__add__"]], "__call__() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.__call__"]], "__init__() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.__init__"]], "__mul__() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.__mul__"]], "add_state() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.add_state"]], "clone() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.clone"]], "compute() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.compute"]], "reset_state() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.reset_state"]], "update_state() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.update_state"]], "binaryaccuracy (class in cyclops.evaluate.metrics.accuracy)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy"]], "__add__() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.__add__"]], "__call__() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.__call__"]], "__init__() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.__init__"]], "__mul__() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.__mul__"]], "add_state() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.add_state"]], "clone() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.clone"]], "compute() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.compute"]], "reset_state() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.reset_state"]], "update_state() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.update_state"]], "multiclassaccuracy (class in cyclops.evaluate.metrics.accuracy)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy"]], "__add__() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.__add__"]], "__call__() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.__call__"]], "__init__() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.__init__"]], "__mul__() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.__mul__"]], "add_state() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.add_state"]], "clone() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.clone"]], "compute() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.compute"]], "reset_state() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.reset_state"]], "update_state() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.update_state"]], "multilabelaccuracy (class in cyclops.evaluate.metrics.accuracy)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy"]], "__add__() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.__add__"]], "__call__() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.__call__"]], "__init__() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.__init__"]], "__mul__() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.__mul__"]], "add_state() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.add_state"]], "clone() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.clone"]], "compute() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.compute"]], "reset_state() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.reset_state"]], "update_state() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.update_state"]], "cyclops.evaluate.metrics.auroc": [[28, "module-cyclops.evaluate.metrics.auroc"]], "auroc (class in cyclops.evaluate.metrics.auroc)": [[29, "cyclops.evaluate.metrics.auroc.AUROC"]], "__add__() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.__add__"]], "__call__() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.__call__"]], "__init__() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.__init__"]], "__mul__() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.__mul__"]], "add_state() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.add_state"]], "clone() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.clone"]], "compute() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.compute"]], "reset_state() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.reset_state"]], "update_state() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.update_state"]], "binaryauroc (class in cyclops.evaluate.metrics.auroc)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC"]], "__add__() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.__add__"]], "__call__() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.__call__"]], "__init__() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.__init__"]], "__mul__() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.__mul__"]], "add_state() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.add_state"]], "clone() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.clone"]], "compute() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.compute"]], "reset_state() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.reset_state"]], "update_state() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.update_state"]], "multiclassauroc (class in cyclops.evaluate.metrics.auroc)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC"]], "__add__() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.__add__"]], "__call__() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.__call__"]], "__init__() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.__init__"]], "__mul__() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.__mul__"]], "add_state() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.add_state"]], "clone() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.clone"]], "compute() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.compute"]], "reset_state() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.reset_state"]], "update_state() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.update_state"]], "multilabelauroc (class in cyclops.evaluate.metrics.auroc)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC"]], "__add__() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.__add__"]], "__call__() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.__call__"]], "__init__() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.__init__"]], "__mul__() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.__mul__"]], "add_state() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.add_state"]], "clone() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.clone"]], "compute() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.compute"]], "reset_state() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.reset_state"]], "update_state() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.update_state"]], "cyclops.evaluate.metrics.f_beta": [[33, "module-cyclops.evaluate.metrics.f_beta"]], "binaryf1score (class in cyclops.evaluate.metrics.f_beta)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score"]], "__add__() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.__add__"]], "__call__() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.__call__"]], "__init__() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.__init__"]], "__mul__() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.__mul__"]], "add_state() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.add_state"]], "clone() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.clone"]], "compute() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.compute"]], "reset_state() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.reset_state"]], "update_state() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.update_state"]], "binaryfbetascore (class in cyclops.evaluate.metrics.f_beta)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore"]], "__add__() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.__add__"]], "__call__() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.__call__"]], "__init__() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.__init__"]], "__mul__() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.__mul__"]], "add_state() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.add_state"]], "clone() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.clone"]], "compute() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.compute"]], "reset_state() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.reset_state"]], "update_state() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.update_state"]], "f1score (class in cyclops.evaluate.metrics.f_beta)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score"]], "__add__() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.__add__"]], "__call__() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.__call__"]], "__init__() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.__init__"]], "__mul__() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.__mul__"]], "add_state() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.add_state"]], "clone() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.clone"]], "compute() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.compute"]], "reset_state() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.reset_state"]], "update_state() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.update_state"]], "fbetascore (class in cyclops.evaluate.metrics.f_beta)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore"]], "__add__() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.__add__"]], "__call__() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.__call__"]], "__init__() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.__init__"]], "__mul__() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.__mul__"]], "add_state() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.add_state"]], "clone() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.clone"]], "compute() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.compute"]], "reset_state() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.reset_state"]], "update_state() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.update_state"]], "multiclassf1score (class in cyclops.evaluate.metrics.f_beta)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score"]], "__add__() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.__add__"]], "__call__() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.__call__"]], "__init__() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.__init__"]], "__mul__() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.__mul__"]], "add_state() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.add_state"]], "clone() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.clone"]], "compute() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.compute"]], "reset_state() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.reset_state"]], "update_state() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.update_state"]], "multiclassfbetascore (class in cyclops.evaluate.metrics.f_beta)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore"]], "__add__() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.__add__"]], "__call__() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.__call__"]], "__init__() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.__init__"]], "__mul__() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.__mul__"]], "add_state() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.add_state"]], "clone() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.clone"]], "compute() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.compute"]], "reset_state() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.reset_state"]], "update_state() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.update_state"]], "multilabelf1score (class in cyclops.evaluate.metrics.f_beta)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score"]], "__add__() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.__add__"]], "__call__() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.__call__"]], "__init__() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.__init__"]], "__mul__() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.__mul__"]], "add_state() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.add_state"]], "clone() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.clone"]], "compute() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.compute"]], "reset_state() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.reset_state"]], "update_state() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.update_state"]], "multilabelfbetascore (class in cyclops.evaluate.metrics.f_beta)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore"]], "__add__() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.__add__"]], "__call__() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.__call__"]], "__init__() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.__init__"]], "__mul__() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.__mul__"]], "add_state() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.add_state"]], "clone() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.clone"]], "compute() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.compute"]], "reset_state() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.reset_state"]], "update_state() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.update_state"]], "cyclops.evaluate.metrics.factory": [[42, "module-cyclops.evaluate.metrics.factory"]], "create_metric() (in module cyclops.evaluate.metrics.factory)": [[43, "cyclops.evaluate.metrics.factory.create_metric"]], "cyclops.evaluate.metrics.functional.accuracy": [[44, "module-cyclops.evaluate.metrics.functional.accuracy"]], "cyclops.evaluate.metrics.functional.auroc": [[45, "module-cyclops.evaluate.metrics.functional.auroc"]], "cyclops.evaluate.metrics.functional.f_beta": [[46, "module-cyclops.evaluate.metrics.functional.f_beta"]], "binary_f1_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[47, "cyclops.evaluate.metrics.functional.f_beta.binary_f1_score"]], "binary_fbeta_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[48, "cyclops.evaluate.metrics.functional.f_beta.binary_fbeta_score"]], "f1_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[49, "cyclops.evaluate.metrics.functional.f_beta.f1_score"]], "fbeta_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[50, "cyclops.evaluate.metrics.functional.f_beta.fbeta_score"]], "multiclass_f1_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[51, "cyclops.evaluate.metrics.functional.f_beta.multiclass_f1_score"]], "multiclass_fbeta_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[52, "cyclops.evaluate.metrics.functional.f_beta.multiclass_fbeta_score"]], "multilabel_f1_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[53, "cyclops.evaluate.metrics.functional.f_beta.multilabel_f1_score"]], "multilabel_fbeta_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[54, "cyclops.evaluate.metrics.functional.f_beta.multilabel_fbeta_score"]], "cyclops.evaluate.metrics.functional.precision_recall": [[55, "module-cyclops.evaluate.metrics.functional.precision_recall"]], "binary_precision() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[56, "cyclops.evaluate.metrics.functional.precision_recall.binary_precision"]], "binary_recall() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[57, "cyclops.evaluate.metrics.functional.precision_recall.binary_recall"]], "multiclass_precision() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[58, "cyclops.evaluate.metrics.functional.precision_recall.multiclass_precision"]], "multiclass_recall() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[59, "cyclops.evaluate.metrics.functional.precision_recall.multiclass_recall"]], "multilabel_precision() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[60, "cyclops.evaluate.metrics.functional.precision_recall.multilabel_precision"]], "multilabel_recall() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[61, "cyclops.evaluate.metrics.functional.precision_recall.multilabel_recall"]], "precision() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[62, "cyclops.evaluate.metrics.functional.precision_recall.precision"]], "recall() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[63, "cyclops.evaluate.metrics.functional.precision_recall.recall"]], "cyclops.evaluate.metrics.functional.precision_recall_curve": [[64, "module-cyclops.evaluate.metrics.functional.precision_recall_curve"]], "cyclops.evaluate.metrics.functional.roc": [[65, "module-cyclops.evaluate.metrics.functional.roc"]], "binary_roc_curve() (in module cyclops.evaluate.metrics.functional.roc)": [[66, "cyclops.evaluate.metrics.functional.roc.binary_roc_curve"]], "multiclass_roc_curve() (in module cyclops.evaluate.metrics.functional.roc)": [[67, "cyclops.evaluate.metrics.functional.roc.multiclass_roc_curve"]], "multilabel_roc_curve() (in module cyclops.evaluate.metrics.functional.roc)": [[68, "cyclops.evaluate.metrics.functional.roc.multilabel_roc_curve"]], "roc_curve() (in module cyclops.evaluate.metrics.functional.roc)": [[69, "cyclops.evaluate.metrics.functional.roc.roc_curve"]], "cyclops.evaluate.metrics.functional.sensitivity": [[70, "module-cyclops.evaluate.metrics.functional.sensitivity"]], "cyclops.evaluate.metrics.functional.specificity": [[71, "module-cyclops.evaluate.metrics.functional.specificity"]], "cyclops.evaluate.metrics.functional.stat_scores": [[72, "module-cyclops.evaluate.metrics.functional.stat_scores"]], "cyclops.evaluate.metrics.metric": [[73, "module-cyclops.evaluate.metrics.metric"]], "metric (class in cyclops.evaluate.metrics.metric)": [[74, "cyclops.evaluate.metrics.metric.Metric"]], "__add__() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.__add__"]], "__call__() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.__call__"]], "__init__() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.__init__"]], "__mul__() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.__mul__"]], "add_state() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.add_state"]], "clone() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.clone"]], "compute() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.compute"]], "name (metric property)": [[74, "cyclops.evaluate.metrics.metric.Metric.name"]], "reset_state() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.reset_state"]], "update_state() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.update_state"]], "metriccollection (class in cyclops.evaluate.metrics.metric)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection"]], "__call__() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.__call__"]], "__init__() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.__init__"]], "add_metrics() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.add_metrics"]], "clear() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.clear"]], "clone() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.clone"]], "compute() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.compute"]], "get() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.get"]], "items() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.items"]], "keys() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.keys"]], "pop() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.pop"]], "popitem() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.popitem"]], "reset_state() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.reset_state"]], "setdefault() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.setdefault"]], "update() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.update"]], "update_state() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.update_state"]], "values() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.values"]], "operatormetric (class in cyclops.evaluate.metrics.metric)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric"]], "__add__() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.__add__"]], "__call__() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.__call__"]], "__init__() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.__init__"]], "__mul__() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.__mul__"]], "add_state() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.add_state"]], "clone() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.clone"]], "compute() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.compute"]], "reset_state() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.reset_state"]], "update_state() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.update_state"]], "cyclops.evaluate.metrics.precision_recall": [[77, "module-cyclops.evaluate.metrics.precision_recall"]], "binaryprecision (class in cyclops.evaluate.metrics.precision_recall)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision"]], "__add__() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.__add__"]], "__call__() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.__call__"]], "__init__() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.__init__"]], "__mul__() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.__mul__"]], "add_state() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.add_state"]], "clone() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.clone"]], "compute() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.compute"]], "reset_state() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.reset_state"]], "update_state() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.update_state"]], "binaryrecall (class in cyclops.evaluate.metrics.precision_recall)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall"]], "__add__() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.__add__"]], "__call__() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.__call__"]], "__init__() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.__init__"]], "__mul__() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.__mul__"]], "add_state() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.add_state"]], "clone() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.clone"]], "compute() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.compute"]], "reset_state() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.reset_state"]], "update_state() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.update_state"]], "multiclassprecision (class in cyclops.evaluate.metrics.precision_recall)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision"]], "__add__() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.__add__"]], "__call__() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.__call__"]], "__init__() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.__init__"]], "__mul__() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.__mul__"]], "add_state() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.add_state"]], "clone() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.clone"]], "compute() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.compute"]], "reset_state() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.reset_state"]], "update_state() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.update_state"]], "multiclassrecall (class in cyclops.evaluate.metrics.precision_recall)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall"]], "__add__() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.__add__"]], "__call__() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.__call__"]], "__init__() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.__init__"]], "__mul__() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.__mul__"]], "add_state() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.add_state"]], "clone() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.clone"]], "compute() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.compute"]], "reset_state() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.reset_state"]], "update_state() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.update_state"]], "multilabelprecision (class in cyclops.evaluate.metrics.precision_recall)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision"]], "__add__() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.__add__"]], "__call__() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.__call__"]], "__init__() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.__init__"]], "__mul__() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.__mul__"]], "add_state() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.add_state"]], "clone() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.clone"]], "compute() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.compute"]], "reset_state() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.reset_state"]], "update_state() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.update_state"]], "multilabelrecall (class in cyclops.evaluate.metrics.precision_recall)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall"]], "__add__() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.__add__"]], "__call__() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.__call__"]], "__init__() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.__init__"]], "__mul__() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.__mul__"]], "add_state() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.add_state"]], "clone() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.clone"]], "compute() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.compute"]], "reset_state() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.reset_state"]], "update_state() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.update_state"]], "precision (class in cyclops.evaluate.metrics.precision_recall)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision"]], "__add__() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.__add__"]], "__call__() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.__call__"]], "__init__() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.__init__"]], "__mul__() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.__mul__"]], "add_state() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.add_state"]], "clone() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.clone"]], "compute() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.compute"]], "reset_state() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.reset_state"]], "update_state() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.update_state"]], "recall (class in cyclops.evaluate.metrics.precision_recall)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall"]], "__add__() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.__add__"]], "__call__() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.__call__"]], "__init__() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.__init__"]], "__mul__() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.__mul__"]], "add_state() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.add_state"]], "clone() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.clone"]], "compute() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.compute"]], "reset_state() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.reset_state"]], "update_state() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.update_state"]], "cyclops.evaluate.metrics.precision_recall_curve": [[86, "module-cyclops.evaluate.metrics.precision_recall_curve"]], "binaryprecisionrecallcurve (class in cyclops.evaluate.metrics.precision_recall_curve)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve"]], "__add__() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.__add__"]], "__call__() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.__call__"]], "__init__() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.__init__"]], "__mul__() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.__mul__"]], "add_state() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.add_state"]], "clone() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.clone"]], "compute() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.compute"]], "reset_state() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.reset_state"]], "update_state() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.update_state"]], "multiclassprecisionrecallcurve (class in cyclops.evaluate.metrics.precision_recall_curve)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve"]], "__add__() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.__add__"]], "__call__() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.__call__"]], "__init__() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.__init__"]], "__mul__() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.__mul__"]], "add_state() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.add_state"]], "clone() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.clone"]], "compute() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.compute"]], "reset_state() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.reset_state"]], "update_state() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.update_state"]], "multilabelprecisionrecallcurve (class in cyclops.evaluate.metrics.precision_recall_curve)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve"]], "__add__() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.__add__"]], "__call__() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.__call__"]], "__init__() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.__init__"]], "__mul__() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.__mul__"]], "add_state() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.add_state"]], "clone() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.clone"]], "compute() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.compute"]], "reset_state() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.reset_state"]], "update_state() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.update_state"]], "precisionrecallcurve (class in cyclops.evaluate.metrics.precision_recall_curve)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve"]], "__add__() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.__add__"]], "__call__() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.__call__"]], "__init__() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.__init__"]], "__mul__() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.__mul__"]], "add_state() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.add_state"]], "clone() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.clone"]], "compute() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.compute"]], "reset_state() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.reset_state"]], "update_state() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.update_state"]], "cyclops.evaluate.metrics.roc": [[91, "module-cyclops.evaluate.metrics.roc"]], "binaryroccurve (class in cyclops.evaluate.metrics.roc)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve"]], "__add__() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.__add__"]], "__call__() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.__call__"]], "__init__() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.__init__"]], "__mul__() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.__mul__"]], "add_state() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.add_state"]], "clone() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.clone"]], "compute() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.compute"]], "reset_state() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.reset_state"]], "update_state() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.update_state"]], "multiclassroccurve (class in cyclops.evaluate.metrics.roc)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve"]], "__add__() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.__add__"]], "__call__() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.__call__"]], "__init__() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.__init__"]], "__mul__() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.__mul__"]], "add_state() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.add_state"]], "clone() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.clone"]], "compute() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.compute"]], "reset_state() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.reset_state"]], "update_state() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.update_state"]], "multilabelroccurve (class in cyclops.evaluate.metrics.roc)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve"]], "__add__() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.__add__"]], "__call__() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.__call__"]], "__init__() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.__init__"]], "__mul__() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.__mul__"]], "add_state() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.add_state"]], "clone() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.clone"]], "compute() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.compute"]], "reset_state() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.reset_state"]], "update_state() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.update_state"]], "roccurve (class in cyclops.evaluate.metrics.roc)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve"]], "__add__() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.__add__"]], "__call__() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.__call__"]], "__init__() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.__init__"]], "__mul__() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.__mul__"]], "add_state() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.add_state"]], "clone() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.clone"]], "compute() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.compute"]], "reset_state() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.reset_state"]], "update_state() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.update_state"]], "cyclops.evaluate.metrics.sensitivity": [[96, "module-cyclops.evaluate.metrics.sensitivity"]], "binarysensitivity (class in cyclops.evaluate.metrics.sensitivity)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity"]], "__add__() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.__add__"]], "__call__() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.__call__"]], "__init__() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.__init__"]], "__mul__() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.__mul__"]], "add_state() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.add_state"]], "clone() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.clone"]], "compute() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.compute"]], "reset_state() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.reset_state"]], "update_state() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.update_state"]], "multiclasssensitivity (class in cyclops.evaluate.metrics.sensitivity)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity"]], "__add__() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.__add__"]], "__call__() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.__call__"]], "__init__() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.__init__"]], "__mul__() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.__mul__"]], "add_state() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.add_state"]], "clone() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.clone"]], "compute() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.compute"]], "reset_state() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.reset_state"]], "update_state() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.update_state"]], "multilabelsensitivity (class in cyclops.evaluate.metrics.sensitivity)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity"]], "__add__() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.__add__"]], "__call__() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.__call__"]], "__init__() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.__init__"]], "__mul__() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.__mul__"]], "add_state() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.add_state"]], "clone() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.clone"]], "compute() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.compute"]], "reset_state() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.reset_state"]], "update_state() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.update_state"]], "sensitivity (class in cyclops.evaluate.metrics.sensitivity)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity"]], "__add__() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.__add__"]], "__call__() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.__call__"]], "__init__() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.__init__"]], "__mul__() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.__mul__"]], "add_state() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.add_state"]], "clone() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.clone"]], "compute() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.compute"]], "reset_state() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.reset_state"]], "update_state() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.update_state"]], "cyclops.evaluate.metrics.specificity": [[101, "module-cyclops.evaluate.metrics.specificity"]], "binaryspecificity (class in cyclops.evaluate.metrics.specificity)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity"]], "__add__() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.__add__"]], "__call__() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.__call__"]], "__init__() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.__init__"]], "__mul__() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.__mul__"]], "add_state() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.add_state"]], "clone() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.clone"]], "compute() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.compute"]], "reset_state() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.reset_state"]], "update_state() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.update_state"]], "multiclassspecificity (class in cyclops.evaluate.metrics.specificity)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity"]], "__add__() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.__add__"]], "__call__() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.__call__"]], "__init__() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.__init__"]], "__mul__() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.__mul__"]], "add_state() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.add_state"]], "clone() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.clone"]], "compute() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.compute"]], "reset_state() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.reset_state"]], "update_state() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.update_state"]], "multilabelspecificity (class in cyclops.evaluate.metrics.specificity)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity"]], "__add__() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.__add__"]], "__call__() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.__call__"]], "__init__() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.__init__"]], "__mul__() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.__mul__"]], "add_state() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.add_state"]], "clone() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.clone"]], "compute() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.compute"]], "reset_state() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.reset_state"]], "update_state() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.update_state"]], "specificity (class in cyclops.evaluate.metrics.specificity)": [[105, "cyclops.evaluate.metrics.specificity.Specificity"]], "__add__() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.__add__"]], "__call__() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.__call__"]], "__init__() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.__init__"]], "__mul__() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.__mul__"]], "add_state() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.add_state"]], "clone() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.clone"]], "compute() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.compute"]], "reset_state() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.reset_state"]], "update_state() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.update_state"]], "cyclops.evaluate.metrics.stat_scores": [[106, "module-cyclops.evaluate.metrics.stat_scores"]], "binarystatscores (class in cyclops.evaluate.metrics.stat_scores)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores"]], "__add__() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.__add__"]], "__call__() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.__call__"]], "__init__() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.__init__"]], "__mul__() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.__mul__"]], "add_state() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.add_state"]], "clone() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.clone"]], "compute() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.compute"]], "reset_state() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.reset_state"]], "update_state() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.update_state"]], "multiclassstatscores (class in cyclops.evaluate.metrics.stat_scores)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores"]], "__add__() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.__add__"]], "__call__() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.__call__"]], "__init__() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.__init__"]], "__mul__() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.__mul__"]], "add_state() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.add_state"]], "clone() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.clone"]], "compute() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.compute"]], "reset_state() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.reset_state"]], "update_state() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.update_state"]], "multilabelstatscores (class in cyclops.evaluate.metrics.stat_scores)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores"]], "__add__() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.__add__"]], "__call__() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.__call__"]], "__init__() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.__init__"]], "__mul__() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.__mul__"]], "add_state() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.add_state"]], "clone() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.clone"]], "compute() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.compute"]], "reset_state() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.reset_state"]], "update_state() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.update_state"]], "statscores (class in cyclops.evaluate.metrics.stat_scores)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores"]], "__add__() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.__add__"]], "__call__() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.__call__"]], "__init__() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.__init__"]], "__mul__() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.__mul__"]], "add_state() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.add_state"]], "clone() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.clone"]], "compute() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.compute"]], "name (statscores property)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.name"]], "reset_state() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.reset_state"]], "update_state() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.update_state"]], "cyclops.monitor.clinical_applicator": [[111, "module-cyclops.monitor.clinical_applicator"]], "clinicalshiftapplicator (class in cyclops.monitor.clinical_applicator)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator"]], "age() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.age"]], "apply_shift() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.apply_shift"]], "custom() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.custom"]], "hospital_type() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.hospital_type"]], "month() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.month"]], "sex() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.sex"]], "time() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.time"]], "cyclops.monitor.synthetic_applicator": [[113, "module-cyclops.monitor.synthetic_applicator"]], "syntheticshiftapplicator (class in cyclops.monitor.synthetic_applicator)": [[114, "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator"]], "apply_shift() (syntheticshiftapplicator method)": [[114, "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator.apply_shift"]], "binary_noise_shift() (in module cyclops.monitor.synthetic_applicator)": [[115, "cyclops.monitor.synthetic_applicator.binary_noise_shift"]], "feature_association_shift() (in module cyclops.monitor.synthetic_applicator)": [[116, "cyclops.monitor.synthetic_applicator.feature_association_shift"]], "feature_swap_shift() (in module cyclops.monitor.synthetic_applicator)": [[117, "cyclops.monitor.synthetic_applicator.feature_swap_shift"]], "gaussian_noise_shift() (in module cyclops.monitor.synthetic_applicator)": [[118, "cyclops.monitor.synthetic_applicator.gaussian_noise_shift"]], "knockout_shift() (in module cyclops.monitor.synthetic_applicator)": [[119, "cyclops.monitor.synthetic_applicator.knockout_shift"]], "cyclops.report.report": [[120, "module-cyclops.report.report"]], "modelcardreport (class in cyclops.report.report)": [[121, "cyclops.report.report.ModelCardReport"]], "export() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.export"]], "from_json_file() (modelcardreport class method)": [[121, "cyclops.report.report.ModelCardReport.from_json_file"]], "log_citation() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_citation"]], "log_dataset() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_dataset"]], "log_descriptor() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_descriptor"]], "log_fairness_assessment() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_fairness_assessment"]], "log_from_dict() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_from_dict"]], "log_image() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_image"]], "log_license() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_license"]], "log_model_parameters() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_model_parameters"]], "log_owner() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_owner"]], "log_performance_metrics() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_performance_metrics"]], "log_plotly_figure() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_plotly_figure"]], "log_quantitative_analysis() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_quantitative_analysis"]], "log_reference() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_reference"]], "log_regulation() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_regulation"]], "log_risk() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_risk"]], "log_use_case() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_use_case"]], "log_user() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_user"]], "log_version() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_version"]], "cyclops.tasks.classification": [[122, "module-cyclops.tasks.classification"]], "binarytabularclassificationtask (class in cyclops.tasks.classification)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask"]], "__init__() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.__init__"]], "add_model() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.add_model"]], "data_type (binarytabularclassificationtask property)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.data_type"]], "evaluate() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.evaluate"]], "get_model() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.get_model"]], "list_models() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.list_models"]], "list_models_params() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.list_models_params"]], "load_model() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.load_model"]], "models_count (binarytabularclassificationtask property)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.models_count"]], "predict() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.predict"]], "save_model() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.save_model"]], "task_type (binarytabularclassificationtask property)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.task_type"]], "train() (binarytabularclassificationtask method)": [[123, "cyclops.tasks.classification.BinaryTabularClassificationTask.train"]], "multilabelimageclassificationtask (class in cyclops.tasks.classification)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask"]], "__init__() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.__init__"]], "add_model() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.add_model"]], "data_type (multilabelimageclassificationtask property)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.data_type"]], "evaluate() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.evaluate"]], "get_model() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.get_model"]], "list_models() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.list_models"]], "list_models_params() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.list_models_params"]], "load_model() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.load_model"]], "models_count (multilabelimageclassificationtask property)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.models_count"]], "predict() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.predict"]], "save_model() (multilabelimageclassificationtask method)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.save_model"]], "task_type (multilabelimageclassificationtask property)": [[124, "cyclops.tasks.classification.MultilabelImageClassificationTask.task_type"]], "cyclops.data": [[125, "module-cyclops.data"]], "cyclops.data.features": [[125, "module-cyclops.data.features"]], "cyclops.evaluate": [[126, "module-cyclops.evaluate"]], "cyclops.evaluate.fairness": [[126, "module-cyclops.evaluate.fairness"]], "cyclops.evaluate.metrics": [[126, "module-cyclops.evaluate.metrics"]], "cyclops.evaluate.metrics.functional": [[126, "module-cyclops.evaluate.metrics.functional"]], "cyclops.monitor": [[127, "module-cyclops.monitor"]], "cyclops.report": [[128, "module-cyclops.report"]], "cyclops.tasks": [[129, "module-cyclops.tasks"]]}}) \ No newline at end of file diff --git a/api/tutorials/kaggle/heart_failure_prediction.html b/api/tutorials/kaggle/heart_failure_prediction.html index 0c0bd015c..6dd0ec79e 100644 --- a/api/tutorials/kaggle/heart_failure_prediction.html +++ b/api/tutorials/kaggle/heart_failure_prediction.html @@ -549,7 +549,7 @@

Data Loading
-2023-12-19 14:21:35,255 INFO cyclops.utils.file - Loading DataFrame from ./data/heart.csv
+2023-12-19 17:24:46,706 INFO cyclops.utils.file - Loading DataFrame from ./data/heart.csv
 
-
+
@@ -1131,9 +1131,9 @@

Training
-2023-12-19 14:21:42,718 INFO cyclops.models.wrappers.sk_model - Best alpha: 0.001
-2023-12-19 14:21:42,719 INFO cyclops.models.wrappers.sk_model - Best eta0: 0.01
-2023-12-19 14:21:42,720 INFO cyclops.models.wrappers.sk_model - Best learning_rate: adaptive
+2023-12-19 17:24:54,169 INFO cyclops.models.wrappers.sk_model - Best alpha: 0.001
+2023-12-19 17:24:54,170 INFO cyclops.models.wrappers.sk_model - Best eta0: 0.01
+2023-12-19 17:24:54,171 INFO cyclops.models.wrappers.sk_model - Best learning_rate: adaptive
 
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+

Log the performance metrics to the report.

We can add a performance metric to the model card using the log_performance_metric method, which expects a dictionary where the keys are in the following format: slice_name/metric_name. For instance, overall/accuracy.

@@ -1534,9 +1534,9 @@

Evaluation
-

diff --git a/api/tutorials/kaggle/heart_failure_prediction.ipynb b/api/tutorials/kaggle/heart_failure_prediction.ipynb index 51272bc15..f47a65bc6 100644 --- a/api/tutorials/kaggle/heart_failure_prediction.ipynb +++ b/api/tutorials/kaggle/heart_failure_prediction.ipynb @@ -21,10 +21,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-12-19T19:21:29.911924Z", - "iopub.status.busy": "2023-12-19T19:21:29.911462Z", - "iopub.status.idle": "2023-12-19T19:21:34.681585Z", - "shell.execute_reply": "2023-12-19T19:21:34.680870Z" + "iopub.execute_input": "2023-12-19T22:24:42.147742Z", + "iopub.status.busy": "2023-12-19T22:24:42.147119Z", + "iopub.status.idle": "2023-12-19T22:24:46.116463Z", + "shell.execute_reply": "2023-12-19T22:24:46.115752Z" }, "tags": [] }, @@ -83,10 +83,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-12-19T19:21:34.687059Z", - "iopub.status.busy": "2023-12-19T19:21:34.686624Z", - "iopub.status.idle": "2023-12-19T19:21:34.690562Z", - "shell.execute_reply": "2023-12-19T19:21:34.689900Z" + "iopub.execute_input": "2023-12-19T22:24:46.123258Z", + "iopub.status.busy": "2023-12-19T22:24:46.122748Z", + "iopub.status.idle": "2023-12-19T22:24:46.126654Z", + "shell.execute_reply": "2023-12-19T22:24:46.125892Z" } }, "outputs": [], @@ -106,10 +106,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-12-19T19:21:34.695981Z", - "iopub.status.busy": "2023-12-19T19:21:34.695557Z", - "iopub.status.idle": "2023-12-19T19:21:34.700235Z", - "shell.execute_reply": "2023-12-19T19:21:34.699369Z" + "iopub.execute_input": "2023-12-19T22:24:46.135438Z", + "iopub.status.busy": "2023-12-19T22:24:46.135016Z", + "iopub.status.idle": "2023-12-19T22:24:46.140266Z", + "shell.execute_reply": "2023-12-19T22:24:46.139063Z" }, "tags": [] }, @@ -135,10 +135,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-12-19T19:21:34.705437Z", - "iopub.status.busy": "2023-12-19T19:21:34.704931Z", - "iopub.status.idle": "2023-12-19T19:21:35.248417Z", - "shell.execute_reply": "2023-12-19T19:21:35.247130Z" + "iopub.execute_input": "2023-12-19T22:24:46.145299Z", + "iopub.status.busy": "2023-12-19T22:24:46.144783Z", + "iopub.status.idle": "2023-12-19T22:24:46.696459Z", + "shell.execute_reply": "2023-12-19T22:24:46.694977Z" }, "tags": [] }, @@ -158,10 +158,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-12-19T19:21:35.253934Z", - "iopub.status.busy": "2023-12-19T19:21:35.253471Z", - "iopub.status.idle": "2023-12-19T19:21:35.278541Z", - "shell.execute_reply": "2023-12-19T19:21:35.277775Z" + "iopub.execute_input": "2023-12-19T22:24:46.703963Z", + "iopub.status.busy": "2023-12-19T22:24:46.703222Z", + "iopub.status.idle": "2023-12-19T22:24:46.732327Z", + "shell.execute_reply": "2023-12-19T22:24:46.731265Z" }, "tags": [] }, @@ -170,7 +170,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "2023-12-19 14:21:35,255 \u001b[1;37mINFO\u001b[0m cyclops.utils.file - Loading DataFrame from ./data/heart.csv\n" + "2023-12-19 17:24:46,706 \u001b[1;37mINFO\u001b[0m cyclops.utils.file - Loading DataFrame from ./data/heart.csv\n" ] }, { @@ -226,10 +226,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-12-19T19:21:35.309588Z", - "iopub.status.busy": "2023-12-19T19:21:35.308558Z", - "iopub.status.idle": "2023-12-19T19:21:35.969015Z", - "shell.execute_reply": "2023-12-19T19:21:35.967609Z" + "iopub.execute_input": "2023-12-19T22:24:46.765987Z", + "iopub.status.busy": "2023-12-19T22:24:46.765252Z", + "iopub.status.idle": "2023-12-19T22:24:47.270238Z", + "shell.execute_reply": "2023-12-19T22:24:47.269547Z" }, "tags": [] }, @@ -2037,9 +2037,9 @@ } }, "text/html": [ - "
+
@@ -1380,7 +1380,7 @@

Graphics

-
+
@@ -1388,7 +1388,7 @@

Graphics

-
+
@@ -1454,7 +1454,7 @@

Quantitative Analysis

- 0.96 + 1.0 @@ -1487,7 +1487,7 @@

Quantitative Analysis

- 0.73 + 1.0 @@ -1520,7 +1520,7 @@

Quantitative Analysis

- 0.89 + 0.86 @@ -1553,7 +1553,7 @@

Quantitative Analysis

- 0.91 + 1.0 @@ -1586,7 +1586,7 @@

Quantitative Analysis

- 0.99 + 1.0 @@ -1619,7 +1619,7 @@

Quantitative Analysis

- 0.73 + 1.0 @@ -1653,7 +1653,7 @@

Graphics

-
+
@@ -1661,7 +1661,7 @@

Graphics

-
+
@@ -1669,7 +1669,7 @@

Graphics

-
+
@@ -1677,7 +1677,7 @@

Graphics

-
+
@@ -1731,7 +1731,7 @@

Graphics

-
+
@@ -2006,8 +2006,8 @@

Model Parameters

-

Penalty

- l2 +

Average

+ False
@@ -2015,8 +2015,8 @@

Penalty

-

Verbose

- 0 +

Power_t

+ 0.5
@@ -2024,8 +2024,8 @@

Verbose

-

Power_t

- 0.5 +

Loss

+ log_loss
@@ -2033,8 +2033,8 @@

Power_t

-

L1_ratio

- 0.15 +

Shuffle

+ True
@@ -2042,8 +2042,8 @@

L1_ratio

-

Learning_rate

- adaptive +

Penalty

+ l2
@@ -2051,8 +2051,8 @@

Learning_rate

-

Loss

- log_loss +

Early_stopping

+ True
@@ -2060,26 +2060,22 @@

Loss

-

N_iter_no_change

- 5 +

Class_weight

+ balanced
-
-

Early_stopping

- True -
-

Class_weight

- balanced +

Alpha

+ 0.001
@@ -2087,8 +2083,8 @@

Class_weight

-

Average

- False +

Validation_fraction

+ 0.1
@@ -2096,22 +2092,26 @@

Average

-

Tol

- 0.001 +

Max_iter

+ 1000
+
+

N_iter_no_change

+ 5 +
-

Fit_intercept

- True +

Random_state

+ 123
@@ -2119,8 +2119,8 @@

Fit_intercept

-

Shuffle

- True +

Warm_start

+ False
@@ -2128,8 +2128,8 @@

Shuffle

-

Random_state

- 123 +

Fit_intercept

+ True
@@ -2137,8 +2137,8 @@

Random_state

-

Alpha

- 0.001 +

Eta0

+ 0.01
@@ -2146,8 +2146,8 @@

Alpha

-

Max_iter

- 1000 +

Tol

+ 0.001
@@ -2155,8 +2155,8 @@

Max_iter

-

Epsilon

- 0.1 +

Learning_rate

+ adaptive
@@ -2164,8 +2164,8 @@

Epsilon

-

Validation_fraction

- 0.1 +

Verbose

+ 0
@@ -2173,8 +2173,8 @@

Validation_fraction

-

Warm_start

- False +

Epsilon

+ 0.1
@@ -2182,8 +2182,8 @@

Warm_start

-

Eta0

- 0.01 +

L1_ratio

+ 0.15
@@ -2495,7 +2495,7 @@

Ethical Considerations

function generate_model_card_plot() { var model_card_plots = [] var overall_indices = [12, 13, 14, 15, 16, 17] - var histories = JSON.parse("{\"0\": [\"0.8421052631578947\", \"0.9563183143956834\", \"0.9669304094853757\", \"0.9464206356017884\", \"0.8867207186839391\"], \"1\": [\"0.8260869565217391\", \"0.6723729263763614\", \"0.6307009706881452\", \"0.6975453037482373\", \"0.8718854015617544\"], \"2\": [\"0.6785714285714286\", \"0.5539900684594384\", \"0.7508264802360016\", \"0.8578278654205337\", \"0.8255499641300726\"], \"3\": [\"0.7450980392156863\", \"0.7737847819200602\", \"0.8007894179282308\", \"0.8551127856422635\", \"0.9472919169510678\"], \"4\": [\"0.8819444444444444\", \"0.9334174941739443\", \"1.0\", \"0.9163832993690382\", \"0.9208514687388986\"], \"5\": [\"0.7804346778900575\", \"0.7730946078115127\", \"0.6639907628355863\", \"0.5743575045311637\", \"0.727357331787272\"], \"6\": [\"0.8623853211009175\", \"0.8782361853448365\", \"0.9789927900665523\", \"0.8033962338442663\", \"0.9204887978945415\"], \"7\": [\"0.8676470588235294\", \"1.0\", \"1.0\", \"0.8703799428089805\", \"0.7867955296722748\"], \"8\": [\"0.9076923076923077\", \"0.9176269266269064\", \"0.7814350445829501\", \"0.6556630911002219\", \"0.3181271474849528\"], \"9\": [\"0.8872180451127819\", \"0.5616334428332529\", \"0.5349372372149382\", \"0.6081651503844128\", \"0.7397558210074878\"], \"10\": [\"0.927972027972028\", \"0.9503733953788889\", \"1.0\", \"0.987226998912839\", \"1.0\"], \"11\": [\"0.9437647444468813\", \"1.0\", \"0.7916882463916917\", \"0.8928903471679268\", \"0.7919602186590714\"], \"12\": [\"0.842391304347826\", \"1.0\", \"0.7763425895573902\", \"0.969321447120338\", \"0.9563738092930156\"], \"13\": [\"0.8686868686868687\", \"0.6383350557076345\", \"0.5674978018807262\", \"0.7383740785034321\", \"0.7279081747082601\"], \"14\": [\"0.8431372549019608\", \"0.9594407464861706\", \"0.9448403480690725\", \"0.8190534252675915\", \"0.8877974887200849\"], \"15\": [\"0.8557213930348259\", \"1.0\", \"0.9167123818097029\", \"0.9399820047316609\", \"0.9110434884084787\"], \"16\": [\"0.9152319464371114\", \"0.7797173013468413\", \"0.9154113293525944\", \"0.8909166249028894\", \"0.9887871886340454\"], \"17\": [\"0.9135027641916293\", \"0.9679478185090722\", \"0.7966254274046327\", \"0.765319785143711\", \"0.7336025200166187\"], \"18\": [\"0.796875\", \"0.809248096993\", \"nan\", \"0.7541655940754116\", \"0.7638014318063421\"]}"); + var histories = JSON.parse("{\"0\": [\"0.8421052631578947\", \"0.900307447264279\", \"0.873168914566397\", \"0.8795320011685173\", \"0.9032257294123694\"], \"1\": [\"0.8260869565217391\", \"0.7077958091940261\", \"0.6902484740139817\", \"0.5734164339049217\", \"0.7067621989045616\"], \"2\": [\"0.6785714285714286\", \"0.6822855603442981\", \"0.7626991801298384\", \"0.8946232809179748\", \"0.9583873959455838\"], \"3\": [\"0.7450980392156863\", \"0.7692370904141371\", \"0.7183441027729726\", \"0.7275993016529521\", \"0.798895757166463\"], \"4\": [\"0.8819444444444444\", \"0.962149259174959\", \"0.9949917131564872\", \"1.0\", \"0.8797990853842348\"], \"5\": [\"0.7804346778900575\", \"0.745879080326222\", \"0.6530836943086966\", \"0.6555100898340133\", \"0.7757674928293556\"], \"6\": [\"0.8623853211009175\", \"0.8264070205797504\", \"0.8877240991166256\", \"1.0\", \"1.0\"], \"7\": [\"0.8676470588235294\", \"0.8705552654752788\", \"0.7949560519233949\", \"0.8335770838954795\", \"0.6709353677315157\"], \"8\": [\"0.9076923076923077\", \"0.9413438597822475\", \"1.0\", \"0.8446642856148739\", \"0.8145094678175515\"], \"9\": [\"0.8872180451127819\", \"0.9006659646800862\", \"0.9577821419460817\", \"1.0\", \"1.0\"], \"10\": [\"0.927972027972028\", \"0.929017957284023\", \"1.0\", \"0.9252364815216615\", \"0.8197366314025815\"], \"11\": [\"0.9437647444468813\", \"0.9767158743231521\", \"0.942866258784751\", \"1.0\", \"0.9169903858840955\"], \"12\": [\"0.842391304347826\", \"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"13\": [\"0.8686868686868687\", \"0.9225936620057996\", \"0.991979311144513\", \"1.0\", \"1.0\"], \"14\": [\"0.8431372549019608\", \"0.8739184854992295\", \"0.9783753916069721\", \"0.8465988196538312\", \"0.8598846242494643\"], \"15\": [\"0.8557213930348259\", \"1.0\", \"1.0\", \"0.8805219058718354\", \"1.0\"], \"16\": [\"0.9152319464371114\", \"0.7876663246958717\", \"0.8465153559866936\", \"0.9583662036168297\", \"1.0\"], \"17\": [\"0.9135027641916293\", \"0.9488557041308288\", \"0.8832603486681623\", \"0.9705670375470956\", \"1.0\"], \"18\": [\"0.796875\", \"0.7052468463756425\", \"nan\", \"0.6154292306777902\", \"0.630728642186188\"]}"); var thresholds = JSON.parse("{\"0\": \"0.7\", \"1\": \"0.7\", \"2\": \"0.7\", \"3\": \"0.7\", \"4\": \"0.7\", \"5\": \"0.7\", \"6\": \"0.7\", \"7\": \"0.7\", \"8\": \"0.7\", \"9\": \"0.7\", \"10\": \"0.7\", \"11\": \"0.7\", \"12\": \"0.7\", \"13\": \"0.7\", \"14\": \"0.7\", \"15\": \"0.7\", \"16\": \"0.7\", \"17\": \"0.7\", \"18\": \"0.7\"}"); var timestamps = JSON.parse("{\"0\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"1\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"2\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"3\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"4\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"5\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"6\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"7\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"8\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"9\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"10\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"11\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"12\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"13\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"14\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"15\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"16\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"17\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"18\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"]}"); @@ -2782,10 +2782,10 @@

Ethical Considerations

} } var slices_all = JSON.parse("{\"0\": [\"metric:Accuracy\", \"Sex:F\", \"Age:overall_Age\"], \"1\": [\"metric:Precision\", \"Age:[30 - 50)\", \"Sex:overall_Sex\"], \"2\": [\"metric:Recall\", \"Age:[30 - 50)\", \"Sex:overall_Sex\"], \"3\": [\"metric:F1 Score\", \"Age:[30 - 50)\", \"Sex:overall_Sex\"], \"4\": [\"metric:AUROC\", \"Age:[30 - 50)\", \"Sex:overall_Sex\"], \"5\": [\"metric:AveragePrecision\", \"Age:[30 - 50)\", \"Sex:overall_Sex\"], \"6\": [\"metric:Accuracy\", \"Age:[50 - 70)\", \"Sex:overall_Sex\"], \"7\": [\"metric:Precision\", \"Age:[50 - 70)\", \"Sex:overall_Sex\"], \"8\": [\"metric:Recall\", \"Age:[50 - 70)\", \"Sex:overall_Sex\"], \"9\": [\"metric:F1 Score\", \"Age:[50 - 70)\", \"Sex:overall_Sex\"], \"10\": [\"metric:AUROC\", \"Age:[50 - 70)\", \"Sex:overall_Sex\"], \"11\": [\"metric:AveragePrecision\", \"Age:[50 - 70)\", \"Sex:overall_Sex\"], \"12\": [\"metric:Accuracy\", \"Sex:overall_Sex\", \"Age:overall_Age\"], \"13\": [\"metric:Precision\", \"Sex:overall_Sex\", \"Age:overall_Age\"], \"14\": [\"metric:Recall\", \"Sex:overall_Sex\", \"Age:overall_Age\"], \"15\": [\"metric:F1 Score\", \"Sex:overall_Sex\", \"Age:overall_Age\"], \"16\": [\"metric:AUROC\", \"Sex:overall_Sex\", \"Age:overall_Age\"], \"17\": [\"metric:AveragePrecision\", \"Sex:overall_Sex\", \"Age:overall_Age\"], \"18\": [\"metric:Accuracy\", \"Age:[30 - 50)\", \"Sex:overall_Sex\"]}"); - var histories_all = JSON.parse("{\"0\": [\"0.8421052631578947\", \"0.9563183143956834\", \"0.9669304094853757\", \"0.9464206356017884\", \"0.8867207186839391\"], \"1\": [\"0.8260869565217391\", \"0.6723729263763614\", \"0.6307009706881452\", \"0.6975453037482373\", \"0.8718854015617544\"], \"2\": [\"0.6785714285714286\", \"0.5539900684594384\", \"0.7508264802360016\", \"0.8578278654205337\", \"0.8255499641300726\"], \"3\": [\"0.7450980392156863\", \"0.7737847819200602\", \"0.8007894179282308\", \"0.8551127856422635\", \"0.9472919169510678\"], \"4\": [\"0.8819444444444444\", \"0.9334174941739443\", \"1.0\", \"0.9163832993690382\", \"0.9208514687388986\"], \"5\": [\"0.7804346778900575\", \"0.7730946078115127\", \"0.6639907628355863\", \"0.5743575045311637\", \"0.727357331787272\"], \"6\": [\"0.8623853211009175\", \"0.8782361853448365\", \"0.9789927900665523\", \"0.8033962338442663\", \"0.9204887978945415\"], \"7\": [\"0.8676470588235294\", \"1.0\", \"1.0\", \"0.8703799428089805\", \"0.7867955296722748\"], \"8\": [\"0.9076923076923077\", \"0.9176269266269064\", \"0.7814350445829501\", \"0.6556630911002219\", \"0.3181271474849528\"], \"9\": [\"0.8872180451127819\", \"0.5616334428332529\", \"0.5349372372149382\", \"0.6081651503844128\", \"0.7397558210074878\"], \"10\": [\"0.927972027972028\", \"0.9503733953788889\", \"1.0\", \"0.987226998912839\", \"1.0\"], \"11\": [\"0.9437647444468813\", \"1.0\", \"0.7916882463916917\", \"0.8928903471679268\", \"0.7919602186590714\"], \"12\": [\"0.842391304347826\", \"1.0\", \"0.7763425895573902\", \"0.969321447120338\", \"0.9563738092930156\"], \"13\": [\"0.8686868686868687\", \"0.6383350557076345\", \"0.5674978018807262\", \"0.7383740785034321\", \"0.7279081747082601\"], \"14\": [\"0.8431372549019608\", \"0.9594407464861706\", \"0.9448403480690725\", \"0.8190534252675915\", \"0.8877974887200849\"], \"15\": [\"0.8557213930348259\", \"1.0\", \"0.9167123818097029\", \"0.9399820047316609\", \"0.9110434884084787\"], \"16\": [\"0.9152319464371114\", \"0.7797173013468413\", \"0.9154113293525944\", \"0.8909166249028894\", \"0.9887871886340454\"], \"17\": [\"0.9135027641916293\", \"0.9679478185090722\", \"0.7966254274046327\", \"0.765319785143711\", \"0.7336025200166187\"], \"18\": [\"0.796875\", \"0.809248096993\", \"nan\", \"0.7541655940754116\", \"0.7638014318063421\"]}"); + var histories_all = JSON.parse("{\"0\": [\"0.8421052631578947\", \"0.900307447264279\", \"0.873168914566397\", \"0.8795320011685173\", \"0.9032257294123694\"], \"1\": [\"0.8260869565217391\", \"0.7077958091940261\", \"0.6902484740139817\", \"0.5734164339049217\", \"0.7067621989045616\"], \"2\": [\"0.6785714285714286\", \"0.6822855603442981\", \"0.7626991801298384\", \"0.8946232809179748\", \"0.9583873959455838\"], \"3\": [\"0.7450980392156863\", \"0.7692370904141371\", \"0.7183441027729726\", \"0.7275993016529521\", \"0.798895757166463\"], \"4\": [\"0.8819444444444444\", \"0.962149259174959\", \"0.9949917131564872\", \"1.0\", \"0.8797990853842348\"], \"5\": [\"0.7804346778900575\", \"0.745879080326222\", \"0.6530836943086966\", \"0.6555100898340133\", \"0.7757674928293556\"], \"6\": [\"0.8623853211009175\", \"0.8264070205797504\", \"0.8877240991166256\", \"1.0\", \"1.0\"], \"7\": [\"0.8676470588235294\", \"0.8705552654752788\", \"0.7949560519233949\", \"0.8335770838954795\", \"0.6709353677315157\"], \"8\": [\"0.9076923076923077\", \"0.9413438597822475\", \"1.0\", \"0.8446642856148739\", \"0.8145094678175515\"], \"9\": [\"0.8872180451127819\", \"0.9006659646800862\", \"0.9577821419460817\", \"1.0\", \"1.0\"], \"10\": [\"0.927972027972028\", \"0.929017957284023\", \"1.0\", \"0.9252364815216615\", \"0.8197366314025815\"], \"11\": [\"0.9437647444468813\", \"0.9767158743231521\", \"0.942866258784751\", \"1.0\", \"0.9169903858840955\"], \"12\": [\"0.842391304347826\", \"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"13\": [\"0.8686868686868687\", \"0.9225936620057996\", \"0.991979311144513\", \"1.0\", \"1.0\"], \"14\": [\"0.8431372549019608\", \"0.8739184854992295\", \"0.9783753916069721\", \"0.8465988196538312\", \"0.8598846242494643\"], \"15\": [\"0.8557213930348259\", \"1.0\", \"1.0\", \"0.8805219058718354\", \"1.0\"], \"16\": [\"0.9152319464371114\", \"0.7876663246958717\", \"0.8465153559866936\", \"0.9583662036168297\", \"1.0\"], \"17\": [\"0.9135027641916293\", \"0.9488557041308288\", \"0.8832603486681623\", \"0.9705670375470956\", \"1.0\"], \"18\": [\"0.796875\", \"0.7052468463756425\", \"nan\", \"0.6154292306777902\", \"0.630728642186188\"]}"); var thresholds_all = JSON.parse("{\"0\": \"0.7\", \"1\": \"0.7\", \"2\": \"0.7\", \"3\": \"0.7\", \"4\": \"0.7\", \"5\": \"0.7\", \"6\": \"0.7\", \"7\": \"0.7\", \"8\": \"0.7\", \"9\": \"0.7\", \"10\": \"0.7\", \"11\": \"0.7\", \"12\": \"0.7\", \"13\": \"0.7\", \"14\": \"0.7\", \"15\": \"0.7\", \"16\": \"0.7\", \"17\": \"0.7\", \"18\": \"0.7\"}"); - var trends_all = JSON.parse("{\"0\": \"neutral\", \"1\": \"positive\", \"2\": \"positive\", \"3\": \"positive\", \"4\": \"neutral\", \"5\": \"negative\", \"6\": \"neutral\", \"7\": \"negative\", \"8\": \"negative\", \"9\": \"negative\", \"10\": \"positive\", \"11\": \"negative\", \"12\": \"positive\", \"13\": \"negative\", \"14\": \"neutral\", \"15\": \"neutral\", \"16\": \"positive\", \"17\": \"negative\", \"18\": \"neutral\"}"); - var passed_all = JSON.parse("{\"0\": true, \"1\": true, \"2\": true, \"3\": true, \"4\": true, \"5\": true, \"6\": true, \"7\": true, \"8\": false, \"9\": true, \"10\": true, \"11\": true, \"12\": true, \"13\": true, \"14\": true, \"15\": true, \"16\": true, \"17\": true, \"18\": true}"); + var trends_all = JSON.parse("{\"0\": \"positive\", \"1\": \"negative\", \"2\": \"positive\", \"3\": \"neutral\", \"4\": \"neutral\", \"5\": \"neutral\", \"6\": \"positive\", \"7\": \"negative\", \"8\": \"negative\", \"9\": \"positive\", \"10\": \"negative\", \"11\": \"neutral\", \"12\": \"positive\", \"13\": \"positive\", \"14\": \"neutral\", \"15\": \"positive\", \"16\": \"positive\", \"17\": \"positive\", \"18\": \"neutral\"}"); + var passed_all = JSON.parse("{\"0\": true, \"1\": true, \"2\": true, \"3\": true, \"4\": true, \"5\": true, \"6\": true, \"7\": false, \"8\": true, \"9\": true, \"10\": true, \"11\": true, \"12\": true, \"13\": true, \"14\": true, \"15\": true, \"16\": true, \"17\": true, \"18\": false}"); var names_all = JSON.parse("{\"0\": \"Accuracy\", \"1\": \"Precision\", \"2\": \"Recall\", \"3\": \"F1 Score\", \"4\": \"AUROC\", \"5\": \"AveragePrecision\", \"6\": \"Accuracy\", \"7\": \"Precision\", \"8\": \"Recall\", \"9\": \"F1 Score\", \"10\": \"AUROC\", \"11\": \"AveragePrecision\", \"12\": \"Accuracy\", \"13\": \"Precision\", \"14\": \"Recall\", \"15\": \"F1 Score\", \"16\": \"AUROC\", \"17\": \"AveragePrecision\", \"18\": \"Accuracy\"}"); var timestamps_all = JSON.parse("{\"0\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"1\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"2\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"3\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"4\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"5\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"6\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"7\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"8\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"9\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"10\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"11\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"12\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"13\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"14\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"15\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"16\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"17\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"18\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"]}"); @@ -3073,10 +3073,10 @@

Ethical Considerations

} } var slices_all = JSON.parse("{\"0\": [\"metric:Accuracy\", \"Sex:F\", \"Age:overall_Age\"], \"1\": [\"metric:Precision\", \"Age:[30 - 50)\", \"Sex:overall_Sex\"], \"2\": [\"metric:Recall\", \"Age:[30 - 50)\", \"Sex:overall_Sex\"], \"3\": [\"metric:F1 Score\", \"Age:[30 - 50)\", \"Sex:overall_Sex\"], \"4\": [\"metric:AUROC\", \"Age:[30 - 50)\", \"Sex:overall_Sex\"], \"5\": [\"metric:AveragePrecision\", \"Age:[30 - 50)\", \"Sex:overall_Sex\"], \"6\": [\"metric:Accuracy\", \"Age:[50 - 70)\", \"Sex:overall_Sex\"], \"7\": [\"metric:Precision\", \"Age:[50 - 70)\", \"Sex:overall_Sex\"], \"8\": [\"metric:Recall\", \"Age:[50 - 70)\", \"Sex:overall_Sex\"], \"9\": [\"metric:F1 Score\", \"Age:[50 - 70)\", \"Sex:overall_Sex\"], \"10\": [\"metric:AUROC\", \"Age:[50 - 70)\", \"Sex:overall_Sex\"], \"11\": [\"metric:AveragePrecision\", \"Age:[50 - 70)\", \"Sex:overall_Sex\"], \"12\": [\"metric:Accuracy\", \"Sex:overall_Sex\", \"Age:overall_Age\"], \"13\": [\"metric:Precision\", \"Sex:overall_Sex\", \"Age:overall_Age\"], \"14\": [\"metric:Recall\", \"Sex:overall_Sex\", \"Age:overall_Age\"], \"15\": [\"metric:F1 Score\", \"Sex:overall_Sex\", \"Age:overall_Age\"], \"16\": [\"metric:AUROC\", \"Sex:overall_Sex\", \"Age:overall_Age\"], \"17\": [\"metric:AveragePrecision\", \"Sex:overall_Sex\", \"Age:overall_Age\"], \"18\": [\"metric:Accuracy\", \"Age:[30 - 50)\", \"Sex:overall_Sex\"]}"); - var histories_all = JSON.parse("{\"0\": [\"0.8421052631578947\", \"0.9563183143956834\", \"0.9669304094853757\", \"0.9464206356017884\", \"0.8867207186839391\"], \"1\": [\"0.8260869565217391\", \"0.6723729263763614\", \"0.6307009706881452\", \"0.6975453037482373\", \"0.8718854015617544\"], \"2\": [\"0.6785714285714286\", \"0.5539900684594384\", \"0.7508264802360016\", \"0.8578278654205337\", \"0.8255499641300726\"], \"3\": [\"0.7450980392156863\", \"0.7737847819200602\", \"0.8007894179282308\", \"0.8551127856422635\", \"0.9472919169510678\"], \"4\": [\"0.8819444444444444\", \"0.9334174941739443\", \"1.0\", \"0.9163832993690382\", \"0.9208514687388986\"], \"5\": [\"0.7804346778900575\", \"0.7730946078115127\", \"0.6639907628355863\", \"0.5743575045311637\", \"0.727357331787272\"], \"6\": [\"0.8623853211009175\", \"0.8782361853448365\", \"0.9789927900665523\", \"0.8033962338442663\", \"0.9204887978945415\"], \"7\": [\"0.8676470588235294\", \"1.0\", \"1.0\", \"0.8703799428089805\", \"0.7867955296722748\"], \"8\": [\"0.9076923076923077\", \"0.9176269266269064\", \"0.7814350445829501\", \"0.6556630911002219\", \"0.3181271474849528\"], \"9\": [\"0.8872180451127819\", \"0.5616334428332529\", \"0.5349372372149382\", \"0.6081651503844128\", \"0.7397558210074878\"], \"10\": [\"0.927972027972028\", \"0.9503733953788889\", \"1.0\", \"0.987226998912839\", \"1.0\"], \"11\": [\"0.9437647444468813\", \"1.0\", \"0.7916882463916917\", \"0.8928903471679268\", \"0.7919602186590714\"], \"12\": [\"0.842391304347826\", \"1.0\", \"0.7763425895573902\", \"0.969321447120338\", \"0.9563738092930156\"], \"13\": [\"0.8686868686868687\", \"0.6383350557076345\", \"0.5674978018807262\", \"0.7383740785034321\", \"0.7279081747082601\"], \"14\": [\"0.8431372549019608\", \"0.9594407464861706\", \"0.9448403480690725\", \"0.8190534252675915\", \"0.8877974887200849\"], \"15\": [\"0.8557213930348259\", \"1.0\", \"0.9167123818097029\", \"0.9399820047316609\", \"0.9110434884084787\"], \"16\": [\"0.9152319464371114\", \"0.7797173013468413\", \"0.9154113293525944\", \"0.8909166249028894\", \"0.9887871886340454\"], \"17\": [\"0.9135027641916293\", \"0.9679478185090722\", \"0.7966254274046327\", \"0.765319785143711\", \"0.7336025200166187\"], \"18\": [\"0.796875\", \"0.809248096993\", \"nan\", \"0.7541655940754116\", \"0.7638014318063421\"]}"); + var histories_all = JSON.parse("{\"0\": [\"0.8421052631578947\", \"0.900307447264279\", \"0.873168914566397\", \"0.8795320011685173\", \"0.9032257294123694\"], \"1\": [\"0.8260869565217391\", \"0.7077958091940261\", \"0.6902484740139817\", \"0.5734164339049217\", \"0.7067621989045616\"], \"2\": [\"0.6785714285714286\", \"0.6822855603442981\", \"0.7626991801298384\", \"0.8946232809179748\", \"0.9583873959455838\"], \"3\": [\"0.7450980392156863\", \"0.7692370904141371\", \"0.7183441027729726\", \"0.7275993016529521\", \"0.798895757166463\"], \"4\": [\"0.8819444444444444\", \"0.962149259174959\", \"0.9949917131564872\", \"1.0\", \"0.8797990853842348\"], \"5\": [\"0.7804346778900575\", \"0.745879080326222\", \"0.6530836943086966\", \"0.6555100898340133\", \"0.7757674928293556\"], \"6\": [\"0.8623853211009175\", \"0.8264070205797504\", \"0.8877240991166256\", \"1.0\", \"1.0\"], \"7\": [\"0.8676470588235294\", \"0.8705552654752788\", \"0.7949560519233949\", \"0.8335770838954795\", \"0.6709353677315157\"], \"8\": [\"0.9076923076923077\", \"0.9413438597822475\", \"1.0\", \"0.8446642856148739\", \"0.8145094678175515\"], \"9\": [\"0.8872180451127819\", \"0.9006659646800862\", \"0.9577821419460817\", \"1.0\", \"1.0\"], \"10\": [\"0.927972027972028\", \"0.929017957284023\", \"1.0\", \"0.9252364815216615\", \"0.8197366314025815\"], \"11\": [\"0.9437647444468813\", \"0.9767158743231521\", \"0.942866258784751\", \"1.0\", \"0.9169903858840955\"], \"12\": [\"0.842391304347826\", \"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"13\": [\"0.8686868686868687\", \"0.9225936620057996\", \"0.991979311144513\", \"1.0\", \"1.0\"], \"14\": [\"0.8431372549019608\", \"0.8739184854992295\", \"0.9783753916069721\", \"0.8465988196538312\", \"0.8598846242494643\"], \"15\": [\"0.8557213930348259\", \"1.0\", \"1.0\", \"0.8805219058718354\", \"1.0\"], \"16\": [\"0.9152319464371114\", \"0.7876663246958717\", \"0.8465153559866936\", \"0.9583662036168297\", \"1.0\"], \"17\": [\"0.9135027641916293\", \"0.9488557041308288\", \"0.8832603486681623\", \"0.9705670375470956\", \"1.0\"], \"18\": [\"0.796875\", \"0.7052468463756425\", \"nan\", \"0.6154292306777902\", \"0.630728642186188\"]}"); var thresholds_all = JSON.parse("{\"0\": \"0.7\", \"1\": \"0.7\", \"2\": \"0.7\", \"3\": \"0.7\", \"4\": \"0.7\", \"5\": \"0.7\", \"6\": \"0.7\", \"7\": \"0.7\", \"8\": \"0.7\", \"9\": \"0.7\", \"10\": \"0.7\", \"11\": \"0.7\", \"12\": \"0.7\", \"13\": \"0.7\", \"14\": \"0.7\", \"15\": \"0.7\", \"16\": \"0.7\", \"17\": \"0.7\", \"18\": \"0.7\"}"); - var trends_all = JSON.parse("{\"0\": \"neutral\", \"1\": \"positive\", \"2\": \"positive\", \"3\": \"positive\", \"4\": \"neutral\", \"5\": \"negative\", \"6\": \"neutral\", \"7\": \"negative\", \"8\": \"negative\", \"9\": \"negative\", \"10\": \"positive\", \"11\": \"negative\", \"12\": \"positive\", \"13\": \"negative\", \"14\": \"neutral\", \"15\": \"neutral\", \"16\": \"positive\", \"17\": \"negative\", \"18\": \"neutral\"}"); - var passed_all = JSON.parse("{\"0\": true, \"1\": true, \"2\": true, \"3\": true, \"4\": true, \"5\": true, \"6\": true, \"7\": true, \"8\": false, \"9\": true, \"10\": true, \"11\": true, \"12\": true, \"13\": true, \"14\": true, \"15\": true, \"16\": true, \"17\": true, \"18\": true}"); + var trends_all = JSON.parse("{\"0\": \"positive\", \"1\": \"negative\", \"2\": \"positive\", \"3\": \"neutral\", \"4\": \"neutral\", \"5\": \"neutral\", \"6\": \"positive\", \"7\": \"negative\", \"8\": \"negative\", \"9\": \"positive\", \"10\": \"negative\", \"11\": \"neutral\", \"12\": \"positive\", \"13\": \"positive\", \"14\": \"neutral\", \"15\": \"positive\", \"16\": \"positive\", \"17\": \"positive\", \"18\": \"neutral\"}"); + var passed_all = JSON.parse("{\"0\": true, \"1\": true, \"2\": true, \"3\": true, \"4\": true, \"5\": true, \"6\": true, \"7\": false, \"8\": true, \"9\": true, \"10\": true, \"11\": true, \"12\": true, \"13\": true, \"14\": true, \"15\": true, \"16\": true, \"17\": true, \"18\": false}"); var names_all = JSON.parse("{\"0\": \"Accuracy\", \"1\": \"Precision\", \"2\": \"Recall\", \"3\": \"F1 Score\", \"4\": \"AUROC\", \"5\": \"AveragePrecision\", \"6\": \"Accuracy\", \"7\": \"Precision\", \"8\": \"Recall\", \"9\": \"F1 Score\", \"10\": \"AUROC\", \"11\": \"AveragePrecision\", \"12\": \"Accuracy\", \"13\": \"Precision\", \"14\": \"Recall\", \"15\": \"F1 Score\", \"16\": \"AUROC\", \"17\": \"AveragePrecision\", \"18\": \"Accuracy\"}"); var timestamps_all = JSON.parse("{\"0\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"1\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"2\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"3\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"4\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"5\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"6\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"7\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"8\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"9\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"10\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"11\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"12\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"13\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"14\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"15\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"16\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"17\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"18\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"]}"); diff --git a/api/tutorials/mimiciv/mortality_prediction.html b/api/tutorials/mimiciv/mortality_prediction.html index d61e586b3..04daeedb9 100644 --- a/api/tutorials/mimiciv/mortality_prediction.html +++ b/api/tutorials/mimiciv/mortality_prediction.html @@ -709,9 +709,9 @@

Compute mortality (labels)
-2023-12-19 14:21:56,894 INFO cycquery.orm    - Database setup, ready to run queries!
-2023-12-19 14:22:04,394 INFO cycquery.orm    - Query returned successfully!
-2023-12-19 14:22:04,395 INFO cycquery.utils.profile - Finished executing function run_query in 5.323046 s
+2023-12-19 17:25:06,958 INFO cycquery.orm    - Database setup, ready to run queries!
+2023-12-19 17:25:14,476 INFO cycquery.orm    - Query returned successfully!
+2023-12-19 17:25:14,477 INFO cycquery.utils.profile - Finished executing function run_query in 5.304767 s
 

@@ -796,9 +796,9 @@

Drop NaNs based on the

-
+
@@ -1276,12 +1276,12 @@

Training

-2023-12-19 14:25:18,784 INFO cyclops.models.wrappers.sk_model - Best reg_lambda: 1
-2023-12-19 14:25:18,785 INFO cyclops.models.wrappers.sk_model - Best n_estimators: 500
-2023-12-19 14:25:18,786 INFO cyclops.models.wrappers.sk_model - Best max_depth: 5
-2023-12-19 14:25:18,786 INFO cyclops.models.wrappers.sk_model - Best learning_rate: 0.01
-2023-12-19 14:25:18,786 INFO cyclops.models.wrappers.sk_model - Best gamma: 1
-2023-12-19 14:25:18,787 INFO cyclops.models.wrappers.sk_model - Best colsample_bytree: 0.8
+2023-12-19 17:28:21,122 INFO cyclops.models.wrappers.sk_model - Best reg_lambda: 1
+2023-12-19 17:28:21,123 INFO cyclops.models.wrappers.sk_model - Best n_estimators: 250
+2023-12-19 17:28:21,123 INFO cyclops.models.wrappers.sk_model - Best max_depth: 5
+2023-12-19 17:28:21,124 INFO cyclops.models.wrappers.sk_model - Best learning_rate: 0.1
+2023-12-19 17:28:21,124 INFO cyclops.models.wrappers.sk_model - Best gamma: 10
+2023-12-19 17:28:21,124 INFO cyclops.models.wrappers.sk_model - Best colsample_bytree: 0.8
 
-{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': 0.8, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': 'logloss', 'feature_types': None, 'gamma': 1, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.01, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': 3, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 500, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 123, 'reg_alpha': None, 'reg_lambda': 1, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': None, 'seed': 123}
+{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': 0.8, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': 'logloss', 'feature_types': None, 'gamma': 10, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': 3, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 250, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 123, 'reg_alpha': None, 'reg_lambda': 1, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': None, 'seed': 123}
 

Log the model parameters to the report.

@@ -1361,7 +1361,7 @@

Prediction
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+

Log the performance metrics to the report.

We can add a performance metric to the model card using the log_performance_metric method, which expects a dictionary where the keys are in the following format: slice_name/metric_name. For instance, overall/accuracy.

@@ -1694,9 +1694,9 @@

Evaluation
-
diff --git a/api/tutorials/mimiciv/mortality_prediction.ipynb b/api/tutorials/mimiciv/mortality_prediction.ipynb index 663dace75..57387fdec 100644 --- a/api/tutorials/mimiciv/mortality_prediction.ipynb +++ b/api/tutorials/mimiciv/mortality_prediction.ipynb @@ -21,10 +21,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-12-19T19:21:50.191850Z", - "iopub.status.busy": "2023-12-19T19:21:50.191231Z", - "iopub.status.idle": "2023-12-19T19:21:54.698991Z", - "shell.execute_reply": "2023-12-19T19:21:54.698172Z" + "iopub.execute_input": "2023-12-19T22:25:00.599216Z", + "iopub.status.busy": "2023-12-19T22:25:00.598377Z", + "iopub.status.idle": "2023-12-19T22:25:04.660406Z", + "shell.execute_reply": "2023-12-19T22:25:04.659652Z" } }, "outputs": [], @@ -88,10 +88,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-12-19T19:21:54.703781Z", - "iopub.status.busy": "2023-12-19T19:21:54.703214Z", - "iopub.status.idle": "2023-12-19T19:21:54.707043Z", - "shell.execute_reply": "2023-12-19T19:21:54.706424Z" + "iopub.execute_input": "2023-12-19T22:25:04.665845Z", + "iopub.status.busy": "2023-12-19T22:25:04.665476Z", + "iopub.status.idle": "2023-12-19T22:25:04.670836Z", + "shell.execute_reply": "2023-12-19T22:25:04.669360Z" } }, "outputs": [], @@ -111,10 +111,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-12-19T19:21:54.712155Z", - "iopub.status.busy": "2023-12-19T19:21:54.711910Z", - "iopub.status.idle": "2023-12-19T19:21:54.715342Z", - "shell.execute_reply": "2023-12-19T19:21:54.714679Z" + "iopub.execute_input": "2023-12-19T22:25:04.676795Z", + "iopub.status.busy": "2023-12-19T22:25:04.675948Z", + "iopub.status.idle": "2023-12-19T22:25:04.682409Z", + "shell.execute_reply": "2023-12-19T22:25:04.681173Z" } }, "outputs": [], @@ -146,10 +146,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-12-19T19:21:54.721532Z", - "iopub.status.busy": "2023-12-19T19:21:54.720727Z", - "iopub.status.idle": "2023-12-19T19:23:57.471516Z", - "shell.execute_reply": "2023-12-19T19:23:57.470350Z" + "iopub.execute_input": "2023-12-19T22:25:04.688359Z", + "iopub.status.busy": "2023-12-19T22:25:04.687799Z", + "iopub.status.idle": "2023-12-19T22:26:22.496195Z", + "shell.execute_reply": "2023-12-19T22:26:22.460203Z" } }, "outputs": [ @@ -157,21 +157,21 @@ "name": "stderr", "output_type": "stream", "text": [ - "2023-12-19 14:21:56,894 \u001b[1;37mINFO\u001b[0m cycquery.orm - Database setup, ready to run queries!\n" + "2023-12-19 17:25:06,958 \u001b[1;37mINFO\u001b[0m cycquery.orm - Database setup, ready to run queries!\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2023-12-19 14:22:04,394 \u001b[1;37mINFO\u001b[0m cycquery.orm - Query returned successfully!\n" + "2023-12-19 17:25:14,476 \u001b[1;37mINFO\u001b[0m cycquery.orm - Query returned successfully!\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2023-12-19 14:22:04,395 \u001b[1;37mINFO\u001b[0m cycquery.utils.profile - Finished executing function run_query in 5.323046 s\n" + "2023-12-19 17:25:14,477 \u001b[1;37mINFO\u001b[0m cycquery.utils.profile - Finished executing function run_query in 5.304767 s\n" ] }, { @@ -188,14 +188,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "2023-12-19 14:22:39,760 \u001b[1;37mINFO\u001b[0m cycquery.orm - Query returned successfully!\n" + "2023-12-19 17:25:36,285 \u001b[1;37mINFO\u001b[0m cycquery.orm - Query returned successfully!\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2023-12-19 14:22:39,761 \u001b[1;37mINFO\u001b[0m cycquery.utils.profile - Finished executing function run_query in 34.596603 s\n" + "2023-12-19 17:25:36,286 \u001b[1;37mINFO\u001b[0m cycquery.utils.profile - Finished executing function run_query in 21.061094 s\n" ] }, { @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-12-19T19:23:57.477214Z", - "iopub.status.busy": "2023-12-19T19:23:57.476882Z", - "iopub.status.idle": "2023-12-19T19:23:57.647031Z", - "shell.execute_reply": "2023-12-19T19:23:57.646160Z" + "iopub.execute_input": "2023-12-19T22:26:22.512666Z", + "iopub.status.busy": "2023-12-19T22:26:22.512318Z", + "iopub.status.idle": "2023-12-19T22:26:22.674475Z", + "shell.execute_reply": "2023-12-19T22:26:22.673817Z" } }, "outputs": [ @@ -2394,9 +2394,9 @@ } }, "text/html": [ - "
+
@@ -1053,7 +1053,7 @@

Graphics

-
+
@@ -1061,7 +1061,7 @@

Graphics

-
+
@@ -1069,7 +1069,7 @@

Graphics

-
+
@@ -1159,7 +1159,7 @@

Quantitative Analysis

- 0.8 + 0.84 @@ -1192,7 +1192,7 @@

Quantitative Analysis

- 0.33 + 0.0 @@ -1225,7 +1225,7 @@

Quantitative Analysis

- 0.68 + 0.43 @@ -1258,7 +1258,7 @@

Quantitative Analysis

- 0.18 + 0.11 @@ -1291,7 +1291,7 @@

Quantitative Analysis

- 0.8 + 0.92 @@ -1324,7 +1324,7 @@

Quantitative Analysis

- 0.08 + 0.01 @@ -1356,7 +1356,7 @@

Graphics

-
+
@@ -1364,7 +1364,7 @@

Graphics

-
+
@@ -1372,7 +1372,7 @@

Graphics

-
+
@@ -1380,7 +1380,7 @@

Graphics

-
+
@@ -1434,7 +1434,7 @@

Graphics

-
+
@@ -1713,11 +1713,10 @@

Model Parameters

- - - - - +
+

Colsample_bytree

+ 0.8 +
@@ -1734,8 +1733,8 @@

Model Parameters

-

Gamma

- 1 +

Enable_categorical

+ False
@@ -1771,19 +1770,11 @@

Seed

-
-

Eval_metric

- logloss -
-
-

Missing

- nan -
@@ -1803,15 +1794,15 @@

Max_depth

+
+

Learning_rate

+ 0.1 +
-
-

Colsample_bytree

- 0.8 -
@@ -1822,6 +1813,10 @@

Colsample_bytree

+
+

N_estimators

+ 250 +
@@ -1842,6 +1837,10 @@

Colsample_bytree

+
+

Missing

+ nan +
@@ -1857,10 +1856,6 @@

Colsample_bytree

-
-

Enable_categorical

- False -
@@ -1871,10 +1866,6 @@

Enable_categorical

-
-

Random_state

- 123 -
@@ -1890,15 +1881,15 @@

Random_state

-
-

N_estimators

- 500 -
+
+

Gamma

+ 10 +
@@ -1910,8 +1901,8 @@

N_estimators

-

Reg_lambda

- 1 +

Min_child_weight

+ 3
@@ -1923,23 +1914,23 @@

Reg_lambda

-
-

Learning_rate

- 0.01 -
+
+

Eval_metric

+ logloss +
-

Min_child_weight

- 3 +

Random_state

+ 123
@@ -1963,6 +1954,15 @@

Objective

+ + +
+

Reg_lambda

+ 1 +
+ + +
@@ -2240,7 +2240,7 @@

Ethical Considerations

function generate_model_card_plot() { var model_card_plots = [] var overall_indices = [24, 25, 26, 27, 28, 29] - var histories = JSON.parse("{\"0\": [\"0.9881305637982196\", \"0.9846642424596361\", \"1.0\", \"0.9774150023005145\", \"1.0\"], \"1\": [\"0.16666666666666666\", \"0.12355993933932125\", \"0.0869232309681681\", \"0.16848545439520507\", \"0.2112634461547963\"], \"2\": [\"0.25\", \"0.2830041880864144\", \"0.41993045475460566\", \"0.43225179380317375\", \"0.5597221796411271\"], \"3\": [\"0.2\", \"0.14449726458815493\", \"0.22421798595769948\", \"0.14629213269349095\", \"0.05247796386824151\"], \"4\": [\"0.8048507462686567\", \"0.9342565165150828\", \"0.8326477184475645\", \"0.7837802923586923\", \"0.6153230961656271\"], \"5\": [\"0.33532536520584333\", \"0.4483547925594397\", \"0.583228952457814\", \"0.6933369218991075\", \"0.629190295280195\"], \"6\": [\"0.9434889434889435\", \"1.0\", \"1.0\", \"0.8488761897437797\", \"0.6994719852432872\"], \"7\": [\"0.1276595744680851\", \"0.12665371341896167\", \"0.10203420425805942\", \"0.18930572267029583\", \"0.19195177972424882\"], \"8\": [\"0.5454545454545454\", \"0.4875310216838917\", \"0.3320599333256127\", \"0.22307578639712178\", \"0.15317291426986096\"], \"9\": [\"0.20689655172413793\", \"0.20145989190511068\", \"0.2731344575033684\", \"0.1656436918849981\", \"0.19540560065803958\"], \"10\": [\"0.8674855654930375\", \"0.8972268034820535\", \"0.8892416445616308\", \"0.9586238683364244\", \"1.0\"], \"11\": [\"0.24891113213186\", \"0.1575636032394537\", \"0.3054230944545963\", \"0.3397461998845977\", \"0.338375308267361\"], \"12\": [\"0.9312130177514792\", \"0.9841155604894851\", \"1.0\", \"0.962039493055335\", \"0.8425878782852144\"], \"13\": [\"0.15294117647058825\", \"0.20859391120752838\", \"0.14341995448654027\", \"0.0898049900674727\", \"0.35021070503266927\"], \"14\": [\"0.38235294117647056\", \"0.4096407769458771\", \"0.46890653428540685\", \"0.5100196064614011\", \"0.6633640244378706\"], \"15\": [\"0.2184873949579832\", \"0.1329796793667143\", \"0.16945647320999394\", \"0.29799798314722303\", \"0.2689648561382229\"], \"16\": [\"0.830335624386325\", \"0.9704158695441639\", \"0.9416619108258805\", \"0.8603671945292782\", \"0.8819785988838736\"], \"17\": [\"0.21237283774963328\", \"0.1818051388150806\", \"0.29074966402637775\", \"0.2710695923097229\", \"0.2546698742212553\"], \"18\": [\"0.9506995336442372\", \"1.0\", \"1.0\", \"0.9357066407302105\", \"0.9992375832300644\"], \"19\": [\"0.08695652173913043\", \"0.0283564318005148\", \"0.0\", \"0.0\", \"0.0\"], \"20\": [\"0.35294117647058826\", \"0.494637462315184\", \"0.47381247301334384\", \"0.4740394992563078\", \"0.5417864174811365\"], \"21\": [\"0.13953488372093023\", \"0.030782550341716897\", \"0.06214736416791168\", \"0.13897662573700637\", \"0.14984415071322915\"], \"22\": [\"0.8393848105279849\", \"0.916293454457296\", \"0.8701754081154712\", \"0.7428676909929434\", \"0.6672561518819491\"], \"23\": [\"0.17930950065270065\", \"0.1118838751608168\", \"0.0\", \"0.10268131049750805\", \"0.14136895175804054\"], \"24\": [\"0.9414651244304241\", \"0.6587923737710815\", \"0.7220200063306562\", \"0.629975663705904\", \"0.7973801920973087\"], \"25\": [\"0.12337662337662338\", \"0.31019591821104153\", \"0.36339074711680414\", \"0.37494996097136374\", \"0.32636977298833375\"], \"26\": [\"0.37254901960784315\", \"0.4531488417238344\", \"0.6367861597663401\", \"0.7816695066949879\", \"0.6777660057428346\"], \"27\": [\"0.18536585365853658\", \"0.19641463540287019\", \"0.05131505489328392\", \"0.21948175592804067\", \"0.18392049817703468\"], \"28\": [\"0.8409644371667295\", \"0.8406569558561543\", \"0.7743035610024097\", \"0.8086166367387012\", \"0.8049443967953129\"], \"29\": [\"0.18752991294664764\", \"0.26738811163079496\", \"0.1982048978346155\", \"0.20103578588117713\", \"0.07940893288934088\"]}"); + var histories = JSON.parse("{\"0\": [\"0.9910979228486647\", \"0.9551027885687664\", \"0.9476821492397716\", \"1.0\", \"0.9029265334051461\"], \"1\": [\"0.25\", \"0.24149580817347682\", \"0.17262193517018803\", \"0.22535926073266713\", \"0.08122629647048757\"], \"2\": [\"0.25\", \"0.16161902517697557\", \"0.19317238038191537\", \"0.33106000906367167\", \"0.3428178942030108\"], \"3\": [\"0.25\", \"0.3025023221105475\", \"0.40093233033145315\", \"0.40628480390712407\", \"0.2139652239476544\"], \"4\": [\"0.8391791044776119\", \"0.7379332434324294\", \"0.6852477577575716\", \"0.754138638603504\", \"0.8703993559208607\"], \"5\": [\"0.13118961352657005\", \"0.2234672098124077\", \"0.13923300434824976\", \"0.34922819769798014\", \"0.1871597497769886\"], \"6\": [\"0.9680589680589681\", \"0.9119007184395003\", \"1.0\", \"1.0\", \"1.0\"], \"7\": [\"0.1875\", \"0.2538006437107212\", \"0.4403010484145677\", \"0.32031616408149616\", \"0.37559069492862046\"], \"8\": [\"0.4090909090909091\", \"0.43837451064398497\", \"0.5600234632560943\", \"0.5412184147272299\", \"0.4473040461357677\"], \"9\": [\"0.2571428571428571\", \"0.08387545237734079\", \"0.1627556381278868\", \"0.20030989158179216\", \"0.15299651681419382\"], \"10\": [\"0.852484999433941\", \"0.8792906522229355\", \"0.8284606379279933\", \"0.9129662152294957\", \"0.9620254405731373\"], \"11\": [\"0.32173933819025763\", \"0.3194197492378962\", \"0.36016780242689395\", \"0.38168552986513293\", \"0.12722149357683438\"], \"12\": [\"0.9563609467455622\", \"0.9953473878934656\", \"1.0\", \"1.0\", \"1.0\"], \"13\": [\"0.2222222222222222\", \"0.11860156583727859\", \"0.3917822836130673\", \"0.4233227129081373\", \"0.5288538925268242\"], \"14\": [\"0.29411764705882354\", \"0.27533582846259363\", \"0.2843500366692596\", \"0.26602849961640634\", \"0.16763191666623203\"], \"15\": [\"0.25316455696202533\", \"0.323838818797371\", \"0.303620226197352\", \"0.41046833006391265\", \"0.3845286095927599\"], \"16\": [\"0.81299651878961\", \"0.802123500698371\", \"0.9162659623437334\", \"0.9217841954948318\", \"0.9017499847161142\"], \"17\": [\"0.24706249745222636\", \"0.1401421840863098\", \"0.043331174237276615\", \"0.13896997025369956\", \"0.0\"], \"18\": [\"0.9726848767488341\", \"0.9627164745384116\", \"0.9822242727928177\", \"0.9264119939813182\", \"1.0\"], \"19\": [\"0.125\", \"0.0\", \"0.0\", \"0.09179153637213769\", \"0.03622574533982135\"], \"20\": [\"0.23529411764705882\", \"0.3247727165160673\", \"0.44073235504667096\", \"0.43667117508149916\", \"0.3225955452123267\"], \"21\": [\"0.16326530612244897\", \"0.07080023250253471\", \"0.1689355745584472\", \"0.04935180293859506\", \"0.02683047803223798\"], \"22\": [\"0.842635167274457\", \"0.94235298646717\", \"0.7742650003062747\", \"0.7723691479553396\", \"0.673949872142709\"], \"23\": [\"0.207600954098402\", \"0.27683100742807426\", \"0.20516774249402575\", \"0.217530998883252\", \"0.21703466247461362\"], \"24\": [\"0.9649491763056431\", \"0.9935535980981289\", \"0.9257441699553686\", \"0.7810581620398953\", \"0.8386891937509838\"], \"25\": [\"0.18181818181818182\", \"0.12781467306126143\", \"0.1488402472474146\", \"0.16734649474642535\", \"0.0\"], \"26\": [\"0.27450980392156865\", \"0.25434997869293496\", \"0.3290002533939981\", \"0.3854039025234891\", \"0.42586954322842646\"], \"27\": [\"0.21875\", \"0.24353068059100832\", \"0.25985287146449176\", \"0.09560137627672127\", \"0.10824119394903231\"], \"28\": [\"0.8308141243649494\", \"0.9715901949951978\", \"1.0\", \"0.9446511604371872\", \"0.9174962836932693\"], \"29\": [\"0.23163107098947502\", \"0.10732818400826394\", \"0.08121729905649898\", \"0.10179918944272683\", \"0.010462741127687983\"]}"); var thresholds = JSON.parse("{\"0\": \"0.7\", \"1\": \"0.7\", \"2\": \"0.7\", \"3\": \"0.7\", \"4\": \"0.7\", \"5\": \"0.7\", \"6\": \"0.7\", \"7\": \"0.7\", \"8\": \"0.7\", \"9\": \"0.7\", \"10\": \"0.7\", \"11\": \"0.7\", \"12\": \"0.7\", \"13\": \"0.7\", \"14\": \"0.7\", \"15\": \"0.7\", \"16\": \"0.7\", \"17\": \"0.7\", \"18\": \"0.7\", \"19\": \"0.7\", \"20\": \"0.7\", \"21\": \"0.7\", \"22\": \"0.7\", \"23\": \"0.7\", \"24\": \"0.7\", \"25\": \"0.7\", \"26\": \"0.7\", \"27\": \"0.7\", \"28\": \"0.7\", \"29\": \"0.7\"}"); var timestamps = JSON.parse("{\"0\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"1\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"2\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"3\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"4\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"5\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"6\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"7\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"8\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"9\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"10\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"11\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"12\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"13\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"14\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"15\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"16\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"17\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"18\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"19\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"20\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"21\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"22\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"23\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"24\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"25\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"26\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"27\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"28\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"29\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"]}"); @@ -2527,10 +2527,10 @@

Ethical Considerations

} } var slices_all = JSON.parse("{\"0\": [\"metric:Accuracy\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"1\": [\"metric:Precision\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"2\": [\"metric:Recall\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"3\": [\"metric:F1 Score\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"4\": [\"metric:AUROC\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"5\": [\"metric:AveragePrecision\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"6\": [\"metric:Accuracy\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"7\": [\"metric:Precision\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"8\": [\"metric:Recall\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"9\": [\"metric:F1 Score\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"10\": [\"metric:AUROC\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"11\": [\"metric:AveragePrecision\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"12\": [\"metric:Accuracy\", \"gender:M\", \"age:overall_age\"], \"13\": [\"metric:Precision\", \"gender:M\", \"age:overall_age\"], \"14\": [\"metric:Recall\", \"gender:M\", \"age:overall_age\"], \"15\": [\"metric:F1 Score\", \"gender:M\", \"age:overall_age\"], \"16\": [\"metric:AUROC\", \"gender:M\", \"age:overall_age\"], \"17\": [\"metric:AveragePrecision\", \"gender:M\", \"age:overall_age\"], \"18\": [\"metric:Accuracy\", \"gender:F\", \"age:overall_age\"], \"19\": [\"metric:Precision\", \"gender:F\", \"age:overall_age\"], \"20\": [\"metric:Recall\", \"gender:F\", \"age:overall_age\"], \"21\": [\"metric:F1 Score\", \"gender:F\", \"age:overall_age\"], \"22\": [\"metric:AUROC\", \"gender:F\", \"age:overall_age\"], \"23\": [\"metric:AveragePrecision\", \"gender:F\", \"age:overall_age\"], \"24\": [\"metric:Accuracy\", \"age:overall_age\", \"gender:overall_gender\"], \"25\": [\"metric:Precision\", \"age:overall_age\", \"gender:overall_gender\"], \"26\": [\"metric:Recall\", \"age:overall_age\", \"gender:overall_gender\"], \"27\": [\"metric:F1 Score\", \"age:overall_age\", \"gender:overall_gender\"], \"28\": [\"metric:AUROC\", \"age:overall_age\", \"gender:overall_gender\"], \"29\": [\"metric:AveragePrecision\", \"age:overall_age\", \"gender:overall_gender\"]}"); - var histories_all = JSON.parse("{\"0\": [\"0.9881305637982196\", \"0.9846642424596361\", \"1.0\", \"0.9774150023005145\", \"1.0\"], \"1\": [\"0.16666666666666666\", \"0.12355993933932125\", \"0.0869232309681681\", \"0.16848545439520507\", \"0.2112634461547963\"], \"2\": [\"0.25\", \"0.2830041880864144\", \"0.41993045475460566\", \"0.43225179380317375\", \"0.5597221796411271\"], \"3\": [\"0.2\", \"0.14449726458815493\", \"0.22421798595769948\", \"0.14629213269349095\", \"0.05247796386824151\"], \"4\": [\"0.8048507462686567\", \"0.9342565165150828\", \"0.8326477184475645\", \"0.7837802923586923\", \"0.6153230961656271\"], \"5\": [\"0.33532536520584333\", \"0.4483547925594397\", \"0.583228952457814\", \"0.6933369218991075\", \"0.629190295280195\"], \"6\": [\"0.9434889434889435\", \"1.0\", \"1.0\", \"0.8488761897437797\", \"0.6994719852432872\"], \"7\": [\"0.1276595744680851\", \"0.12665371341896167\", \"0.10203420425805942\", \"0.18930572267029583\", \"0.19195177972424882\"], \"8\": [\"0.5454545454545454\", \"0.4875310216838917\", \"0.3320599333256127\", \"0.22307578639712178\", \"0.15317291426986096\"], \"9\": [\"0.20689655172413793\", \"0.20145989190511068\", \"0.2731344575033684\", \"0.1656436918849981\", \"0.19540560065803958\"], \"10\": [\"0.8674855654930375\", \"0.8972268034820535\", \"0.8892416445616308\", \"0.9586238683364244\", \"1.0\"], \"11\": [\"0.24891113213186\", \"0.1575636032394537\", \"0.3054230944545963\", \"0.3397461998845977\", \"0.338375308267361\"], \"12\": [\"0.9312130177514792\", \"0.9841155604894851\", \"1.0\", \"0.962039493055335\", \"0.8425878782852144\"], \"13\": [\"0.15294117647058825\", \"0.20859391120752838\", \"0.14341995448654027\", \"0.0898049900674727\", \"0.35021070503266927\"], \"14\": [\"0.38235294117647056\", \"0.4096407769458771\", \"0.46890653428540685\", \"0.5100196064614011\", \"0.6633640244378706\"], \"15\": [\"0.2184873949579832\", \"0.1329796793667143\", \"0.16945647320999394\", \"0.29799798314722303\", \"0.2689648561382229\"], \"16\": [\"0.830335624386325\", \"0.9704158695441639\", \"0.9416619108258805\", \"0.8603671945292782\", \"0.8819785988838736\"], \"17\": [\"0.21237283774963328\", \"0.1818051388150806\", \"0.29074966402637775\", \"0.2710695923097229\", \"0.2546698742212553\"], \"18\": [\"0.9506995336442372\", \"1.0\", \"1.0\", \"0.9357066407302105\", \"0.9992375832300644\"], \"19\": [\"0.08695652173913043\", \"0.0283564318005148\", \"0.0\", \"0.0\", \"0.0\"], \"20\": [\"0.35294117647058826\", \"0.494637462315184\", \"0.47381247301334384\", \"0.4740394992563078\", \"0.5417864174811365\"], \"21\": [\"0.13953488372093023\", \"0.030782550341716897\", \"0.06214736416791168\", \"0.13897662573700637\", \"0.14984415071322915\"], \"22\": [\"0.8393848105279849\", \"0.916293454457296\", \"0.8701754081154712\", \"0.7428676909929434\", \"0.6672561518819491\"], \"23\": [\"0.17930950065270065\", \"0.1118838751608168\", \"0.0\", \"0.10268131049750805\", \"0.14136895175804054\"], \"24\": [\"0.9414651244304241\", \"0.6587923737710815\", \"0.7220200063306562\", \"0.629975663705904\", \"0.7973801920973087\"], \"25\": [\"0.12337662337662338\", \"0.31019591821104153\", \"0.36339074711680414\", \"0.37494996097136374\", \"0.32636977298833375\"], \"26\": [\"0.37254901960784315\", \"0.4531488417238344\", \"0.6367861597663401\", \"0.7816695066949879\", \"0.6777660057428346\"], \"27\": [\"0.18536585365853658\", \"0.19641463540287019\", \"0.05131505489328392\", \"0.21948175592804067\", \"0.18392049817703468\"], \"28\": [\"0.8409644371667295\", \"0.8406569558561543\", \"0.7743035610024097\", \"0.8086166367387012\", \"0.8049443967953129\"], \"29\": [\"0.18752991294664764\", \"0.26738811163079496\", \"0.1982048978346155\", \"0.20103578588117713\", \"0.07940893288934088\"]}"); + var histories_all = JSON.parse("{\"0\": [\"0.9910979228486647\", \"0.9551027885687664\", \"0.9476821492397716\", \"1.0\", \"0.9029265334051461\"], \"1\": [\"0.25\", \"0.24149580817347682\", \"0.17262193517018803\", \"0.22535926073266713\", \"0.08122629647048757\"], \"2\": [\"0.25\", \"0.16161902517697557\", \"0.19317238038191537\", \"0.33106000906367167\", \"0.3428178942030108\"], \"3\": [\"0.25\", \"0.3025023221105475\", \"0.40093233033145315\", \"0.40628480390712407\", \"0.2139652239476544\"], \"4\": [\"0.8391791044776119\", \"0.7379332434324294\", \"0.6852477577575716\", \"0.754138638603504\", \"0.8703993559208607\"], \"5\": [\"0.13118961352657005\", \"0.2234672098124077\", \"0.13923300434824976\", \"0.34922819769798014\", \"0.1871597497769886\"], \"6\": [\"0.9680589680589681\", \"0.9119007184395003\", \"1.0\", \"1.0\", \"1.0\"], \"7\": [\"0.1875\", \"0.2538006437107212\", \"0.4403010484145677\", \"0.32031616408149616\", \"0.37559069492862046\"], \"8\": [\"0.4090909090909091\", \"0.43837451064398497\", \"0.5600234632560943\", \"0.5412184147272299\", \"0.4473040461357677\"], \"9\": [\"0.2571428571428571\", \"0.08387545237734079\", \"0.1627556381278868\", \"0.20030989158179216\", \"0.15299651681419382\"], \"10\": [\"0.852484999433941\", \"0.8792906522229355\", \"0.8284606379279933\", \"0.9129662152294957\", \"0.9620254405731373\"], \"11\": [\"0.32173933819025763\", \"0.3194197492378962\", \"0.36016780242689395\", \"0.38168552986513293\", \"0.12722149357683438\"], \"12\": [\"0.9563609467455622\", \"0.9953473878934656\", \"1.0\", \"1.0\", \"1.0\"], \"13\": [\"0.2222222222222222\", \"0.11860156583727859\", \"0.3917822836130673\", \"0.4233227129081373\", \"0.5288538925268242\"], \"14\": [\"0.29411764705882354\", \"0.27533582846259363\", \"0.2843500366692596\", \"0.26602849961640634\", \"0.16763191666623203\"], \"15\": [\"0.25316455696202533\", \"0.323838818797371\", \"0.303620226197352\", \"0.41046833006391265\", \"0.3845286095927599\"], \"16\": [\"0.81299651878961\", \"0.802123500698371\", \"0.9162659623437334\", \"0.9217841954948318\", \"0.9017499847161142\"], \"17\": [\"0.24706249745222636\", \"0.1401421840863098\", \"0.043331174237276615\", \"0.13896997025369956\", \"0.0\"], \"18\": [\"0.9726848767488341\", \"0.9627164745384116\", \"0.9822242727928177\", \"0.9264119939813182\", \"1.0\"], \"19\": [\"0.125\", \"0.0\", \"0.0\", \"0.09179153637213769\", \"0.03622574533982135\"], \"20\": [\"0.23529411764705882\", \"0.3247727165160673\", \"0.44073235504667096\", \"0.43667117508149916\", \"0.3225955452123267\"], \"21\": [\"0.16326530612244897\", \"0.07080023250253471\", \"0.1689355745584472\", \"0.04935180293859506\", \"0.02683047803223798\"], \"22\": [\"0.842635167274457\", \"0.94235298646717\", \"0.7742650003062747\", \"0.7723691479553396\", \"0.673949872142709\"], \"23\": [\"0.207600954098402\", \"0.27683100742807426\", \"0.20516774249402575\", \"0.217530998883252\", \"0.21703466247461362\"], \"24\": [\"0.9649491763056431\", \"0.9935535980981289\", \"0.9257441699553686\", \"0.7810581620398953\", \"0.8386891937509838\"], \"25\": [\"0.18181818181818182\", \"0.12781467306126143\", \"0.1488402472474146\", \"0.16734649474642535\", \"0.0\"], \"26\": [\"0.27450980392156865\", \"0.25434997869293496\", \"0.3290002533939981\", \"0.3854039025234891\", \"0.42586954322842646\"], \"27\": [\"0.21875\", \"0.24353068059100832\", \"0.25985287146449176\", \"0.09560137627672127\", \"0.10824119394903231\"], \"28\": [\"0.8308141243649494\", \"0.9715901949951978\", \"1.0\", \"0.9446511604371872\", \"0.9174962836932693\"], \"29\": [\"0.23163107098947502\", \"0.10732818400826394\", \"0.08121729905649898\", \"0.10179918944272683\", \"0.010462741127687983\"]}"); var thresholds_all = JSON.parse("{\"0\": \"0.7\", \"1\": \"0.7\", \"2\": \"0.7\", \"3\": \"0.7\", \"4\": \"0.7\", \"5\": \"0.7\", \"6\": \"0.7\", \"7\": \"0.7\", \"8\": \"0.7\", \"9\": \"0.7\", \"10\": \"0.7\", \"11\": \"0.7\", \"12\": \"0.7\", \"13\": \"0.7\", \"14\": \"0.7\", \"15\": \"0.7\", \"16\": \"0.7\", \"17\": \"0.7\", \"18\": \"0.7\", \"19\": \"0.7\", \"20\": \"0.7\", \"21\": \"0.7\", \"22\": \"0.7\", \"23\": \"0.7\", \"24\": \"0.7\", \"25\": \"0.7\", \"26\": \"0.7\", \"27\": \"0.7\", \"28\": \"0.7\", \"29\": \"0.7\"}"); - var trends_all = JSON.parse("{\"0\": \"neutral\", \"1\": \"positive\", \"2\": \"positive\", \"3\": \"negative\", \"4\": \"negative\", \"5\": \"positive\", \"6\": \"negative\", \"7\": \"positive\", \"8\": \"negative\", \"9\": \"neutral\", \"10\": \"positive\", \"11\": \"positive\", \"12\": \"negative\", \"13\": \"positive\", \"14\": \"positive\", \"15\": \"positive\", \"16\": \"neutral\", \"17\": \"positive\", \"18\": \"neutral\", \"19\": \"negative\", \"20\": \"positive\", \"21\": \"positive\", \"22\": \"negative\", \"23\": \"neutral\", \"24\": \"negative\", \"25\": \"positive\", \"26\": \"positive\", \"27\": \"neutral\", \"28\": \"negative\", \"29\": \"negative\"}"); - var passed_all = JSON.parse("{\"0\": true, \"1\": false, \"2\": false, \"3\": false, \"4\": false, \"5\": false, \"6\": false, \"7\": false, \"8\": false, \"9\": false, \"10\": true, \"11\": false, \"12\": true, \"13\": false, \"14\": false, \"15\": false, \"16\": true, \"17\": false, \"18\": true, \"19\": false, \"20\": false, \"21\": false, \"22\": false, \"23\": false, \"24\": true, \"25\": false, \"26\": false, \"27\": false, \"28\": true, \"29\": false}"); + var trends_all = JSON.parse("{\"0\": \"negative\", \"1\": \"negative\", \"2\": \"positive\", \"3\": \"neutral\", \"4\": \"neutral\", \"5\": \"positive\", \"6\": \"positive\", \"7\": \"positive\", \"8\": \"positive\", \"9\": \"neutral\", \"10\": \"positive\", \"11\": \"negative\", \"12\": \"neutral\", \"13\": \"positive\", \"14\": \"negative\", \"15\": \"positive\", \"16\": \"positive\", \"17\": \"negative\", \"18\": \"neutral\", \"19\": \"neutral\", \"20\": \"positive\", \"21\": \"negative\", \"22\": \"negative\", \"23\": \"neutral\", \"24\": \"negative\", \"25\": \"negative\", \"26\": \"positive\", \"27\": \"negative\", \"28\": \"positive\", \"29\": \"negative\"}"); + var passed_all = JSON.parse("{\"0\": true, \"1\": false, \"2\": false, \"3\": false, \"4\": true, \"5\": false, \"6\": true, \"7\": false, \"8\": false, \"9\": false, \"10\": true, \"11\": false, \"12\": true, \"13\": false, \"14\": false, \"15\": false, \"16\": true, \"17\": false, \"18\": true, \"19\": false, \"20\": false, \"21\": false, \"22\": false, \"23\": false, \"24\": true, \"25\": false, \"26\": false, \"27\": false, \"28\": true, \"29\": false}"); var names_all = JSON.parse("{\"0\": \"Accuracy\", \"1\": \"Precision\", \"2\": \"Recall\", \"3\": \"F1 Score\", \"4\": \"AUROC\", \"5\": \"AveragePrecision\", \"6\": \"Accuracy\", \"7\": \"Precision\", \"8\": \"Recall\", \"9\": \"F1 Score\", \"10\": \"AUROC\", \"11\": \"AveragePrecision\", \"12\": \"Accuracy\", \"13\": \"Precision\", \"14\": \"Recall\", \"15\": \"F1 Score\", \"16\": \"AUROC\", \"17\": \"AveragePrecision\", \"18\": \"Accuracy\", \"19\": \"Precision\", \"20\": \"Recall\", \"21\": \"F1 Score\", \"22\": \"AUROC\", \"23\": \"AveragePrecision\", \"24\": \"Accuracy\", \"25\": \"Precision\", \"26\": \"Recall\", \"27\": \"F1 Score\", \"28\": \"AUROC\", \"29\": \"AveragePrecision\"}"); var timestamps_all = JSON.parse("{\"0\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"1\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"2\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"3\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"4\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"5\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"6\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"7\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"8\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"9\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"10\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"11\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"12\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"13\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"14\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"15\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"16\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"17\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"18\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"19\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"20\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"21\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"22\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"23\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"24\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"25\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"26\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"27\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"28\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"29\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"]}"); @@ -2818,10 +2818,10 @@

Ethical Considerations

} } var slices_all = JSON.parse("{\"0\": [\"metric:Accuracy\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"1\": [\"metric:Precision\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"2\": [\"metric:Recall\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"3\": [\"metric:F1 Score\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"4\": [\"metric:AUROC\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"5\": [\"metric:AveragePrecision\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"6\": [\"metric:Accuracy\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"7\": [\"metric:Precision\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"8\": [\"metric:Recall\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"9\": [\"metric:F1 Score\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"10\": [\"metric:AUROC\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"11\": [\"metric:AveragePrecision\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"12\": [\"metric:Accuracy\", \"gender:M\", \"age:overall_age\"], \"13\": [\"metric:Precision\", \"gender:M\", \"age:overall_age\"], \"14\": [\"metric:Recall\", \"gender:M\", \"age:overall_age\"], \"15\": [\"metric:F1 Score\", \"gender:M\", \"age:overall_age\"], \"16\": [\"metric:AUROC\", \"gender:M\", \"age:overall_age\"], \"17\": [\"metric:AveragePrecision\", \"gender:M\", \"age:overall_age\"], \"18\": [\"metric:Accuracy\", \"gender:F\", \"age:overall_age\"], \"19\": [\"metric:Precision\", \"gender:F\", \"age:overall_age\"], \"20\": [\"metric:Recall\", \"gender:F\", \"age:overall_age\"], \"21\": [\"metric:F1 Score\", \"gender:F\", \"age:overall_age\"], \"22\": [\"metric:AUROC\", \"gender:F\", \"age:overall_age\"], \"23\": [\"metric:AveragePrecision\", \"gender:F\", \"age:overall_age\"], \"24\": [\"metric:Accuracy\", \"age:overall_age\", \"gender:overall_gender\"], \"25\": [\"metric:Precision\", \"age:overall_age\", \"gender:overall_gender\"], \"26\": [\"metric:Recall\", \"age:overall_age\", \"gender:overall_gender\"], \"27\": [\"metric:F1 Score\", \"age:overall_age\", \"gender:overall_gender\"], \"28\": [\"metric:AUROC\", \"age:overall_age\", \"gender:overall_gender\"], \"29\": [\"metric:AveragePrecision\", \"age:overall_age\", \"gender:overall_gender\"]}"); - var histories_all = JSON.parse("{\"0\": [\"0.9881305637982196\", \"0.9846642424596361\", \"1.0\", \"0.9774150023005145\", \"1.0\"], \"1\": [\"0.16666666666666666\", \"0.12355993933932125\", \"0.0869232309681681\", \"0.16848545439520507\", \"0.2112634461547963\"], \"2\": [\"0.25\", \"0.2830041880864144\", \"0.41993045475460566\", \"0.43225179380317375\", \"0.5597221796411271\"], \"3\": [\"0.2\", \"0.14449726458815493\", \"0.22421798595769948\", \"0.14629213269349095\", \"0.05247796386824151\"], \"4\": [\"0.8048507462686567\", \"0.9342565165150828\", \"0.8326477184475645\", \"0.7837802923586923\", \"0.6153230961656271\"], \"5\": [\"0.33532536520584333\", \"0.4483547925594397\", \"0.583228952457814\", \"0.6933369218991075\", \"0.629190295280195\"], \"6\": [\"0.9434889434889435\", \"1.0\", \"1.0\", \"0.8488761897437797\", \"0.6994719852432872\"], \"7\": [\"0.1276595744680851\", \"0.12665371341896167\", \"0.10203420425805942\", \"0.18930572267029583\", \"0.19195177972424882\"], \"8\": [\"0.5454545454545454\", \"0.4875310216838917\", \"0.3320599333256127\", \"0.22307578639712178\", \"0.15317291426986096\"], \"9\": [\"0.20689655172413793\", \"0.20145989190511068\", \"0.2731344575033684\", \"0.1656436918849981\", \"0.19540560065803958\"], \"10\": [\"0.8674855654930375\", \"0.8972268034820535\", \"0.8892416445616308\", \"0.9586238683364244\", \"1.0\"], \"11\": [\"0.24891113213186\", \"0.1575636032394537\", \"0.3054230944545963\", \"0.3397461998845977\", \"0.338375308267361\"], \"12\": [\"0.9312130177514792\", \"0.9841155604894851\", \"1.0\", \"0.962039493055335\", \"0.8425878782852144\"], \"13\": [\"0.15294117647058825\", \"0.20859391120752838\", \"0.14341995448654027\", \"0.0898049900674727\", \"0.35021070503266927\"], \"14\": [\"0.38235294117647056\", \"0.4096407769458771\", \"0.46890653428540685\", \"0.5100196064614011\", \"0.6633640244378706\"], \"15\": [\"0.2184873949579832\", \"0.1329796793667143\", \"0.16945647320999394\", \"0.29799798314722303\", \"0.2689648561382229\"], \"16\": [\"0.830335624386325\", \"0.9704158695441639\", \"0.9416619108258805\", \"0.8603671945292782\", \"0.8819785988838736\"], \"17\": [\"0.21237283774963328\", \"0.1818051388150806\", \"0.29074966402637775\", \"0.2710695923097229\", \"0.2546698742212553\"], \"18\": [\"0.9506995336442372\", \"1.0\", \"1.0\", \"0.9357066407302105\", \"0.9992375832300644\"], \"19\": [\"0.08695652173913043\", \"0.0283564318005148\", \"0.0\", \"0.0\", \"0.0\"], \"20\": [\"0.35294117647058826\", \"0.494637462315184\", \"0.47381247301334384\", \"0.4740394992563078\", \"0.5417864174811365\"], \"21\": [\"0.13953488372093023\", \"0.030782550341716897\", \"0.06214736416791168\", \"0.13897662573700637\", \"0.14984415071322915\"], \"22\": [\"0.8393848105279849\", \"0.916293454457296\", \"0.8701754081154712\", \"0.7428676909929434\", \"0.6672561518819491\"], \"23\": [\"0.17930950065270065\", \"0.1118838751608168\", \"0.0\", \"0.10268131049750805\", \"0.14136895175804054\"], \"24\": [\"0.9414651244304241\", \"0.6587923737710815\", \"0.7220200063306562\", \"0.629975663705904\", \"0.7973801920973087\"], \"25\": [\"0.12337662337662338\", \"0.31019591821104153\", \"0.36339074711680414\", \"0.37494996097136374\", \"0.32636977298833375\"], \"26\": [\"0.37254901960784315\", \"0.4531488417238344\", \"0.6367861597663401\", \"0.7816695066949879\", \"0.6777660057428346\"], \"27\": [\"0.18536585365853658\", \"0.19641463540287019\", \"0.05131505489328392\", \"0.21948175592804067\", \"0.18392049817703468\"], \"28\": [\"0.8409644371667295\", \"0.8406569558561543\", \"0.7743035610024097\", \"0.8086166367387012\", \"0.8049443967953129\"], \"29\": [\"0.18752991294664764\", \"0.26738811163079496\", \"0.1982048978346155\", \"0.20103578588117713\", \"0.07940893288934088\"]}"); + var histories_all = JSON.parse("{\"0\": [\"0.9910979228486647\", \"0.9551027885687664\", \"0.9476821492397716\", \"1.0\", \"0.9029265334051461\"], \"1\": [\"0.25\", \"0.24149580817347682\", \"0.17262193517018803\", \"0.22535926073266713\", \"0.08122629647048757\"], \"2\": [\"0.25\", \"0.16161902517697557\", \"0.19317238038191537\", \"0.33106000906367167\", \"0.3428178942030108\"], \"3\": [\"0.25\", \"0.3025023221105475\", \"0.40093233033145315\", \"0.40628480390712407\", \"0.2139652239476544\"], \"4\": [\"0.8391791044776119\", \"0.7379332434324294\", \"0.6852477577575716\", \"0.754138638603504\", \"0.8703993559208607\"], \"5\": [\"0.13118961352657005\", \"0.2234672098124077\", \"0.13923300434824976\", \"0.34922819769798014\", \"0.1871597497769886\"], \"6\": [\"0.9680589680589681\", \"0.9119007184395003\", \"1.0\", \"1.0\", \"1.0\"], \"7\": [\"0.1875\", \"0.2538006437107212\", \"0.4403010484145677\", \"0.32031616408149616\", \"0.37559069492862046\"], \"8\": [\"0.4090909090909091\", \"0.43837451064398497\", \"0.5600234632560943\", \"0.5412184147272299\", \"0.4473040461357677\"], \"9\": [\"0.2571428571428571\", \"0.08387545237734079\", \"0.1627556381278868\", \"0.20030989158179216\", \"0.15299651681419382\"], \"10\": [\"0.852484999433941\", \"0.8792906522229355\", \"0.8284606379279933\", \"0.9129662152294957\", \"0.9620254405731373\"], \"11\": [\"0.32173933819025763\", \"0.3194197492378962\", \"0.36016780242689395\", \"0.38168552986513293\", \"0.12722149357683438\"], \"12\": [\"0.9563609467455622\", \"0.9953473878934656\", \"1.0\", \"1.0\", \"1.0\"], \"13\": [\"0.2222222222222222\", \"0.11860156583727859\", \"0.3917822836130673\", \"0.4233227129081373\", \"0.5288538925268242\"], \"14\": [\"0.29411764705882354\", \"0.27533582846259363\", \"0.2843500366692596\", \"0.26602849961640634\", \"0.16763191666623203\"], \"15\": [\"0.25316455696202533\", \"0.323838818797371\", \"0.303620226197352\", \"0.41046833006391265\", \"0.3845286095927599\"], \"16\": [\"0.81299651878961\", \"0.802123500698371\", \"0.9162659623437334\", \"0.9217841954948318\", \"0.9017499847161142\"], \"17\": [\"0.24706249745222636\", \"0.1401421840863098\", \"0.043331174237276615\", \"0.13896997025369956\", \"0.0\"], \"18\": [\"0.9726848767488341\", \"0.9627164745384116\", \"0.9822242727928177\", \"0.9264119939813182\", \"1.0\"], \"19\": [\"0.125\", \"0.0\", \"0.0\", \"0.09179153637213769\", \"0.03622574533982135\"], \"20\": [\"0.23529411764705882\", \"0.3247727165160673\", \"0.44073235504667096\", \"0.43667117508149916\", \"0.3225955452123267\"], \"21\": [\"0.16326530612244897\", \"0.07080023250253471\", \"0.1689355745584472\", \"0.04935180293859506\", \"0.02683047803223798\"], \"22\": [\"0.842635167274457\", \"0.94235298646717\", \"0.7742650003062747\", \"0.7723691479553396\", \"0.673949872142709\"], \"23\": [\"0.207600954098402\", \"0.27683100742807426\", \"0.20516774249402575\", \"0.217530998883252\", \"0.21703466247461362\"], \"24\": [\"0.9649491763056431\", \"0.9935535980981289\", \"0.9257441699553686\", \"0.7810581620398953\", \"0.8386891937509838\"], \"25\": [\"0.18181818181818182\", \"0.12781467306126143\", \"0.1488402472474146\", \"0.16734649474642535\", \"0.0\"], \"26\": [\"0.27450980392156865\", \"0.25434997869293496\", \"0.3290002533939981\", \"0.3854039025234891\", \"0.42586954322842646\"], \"27\": [\"0.21875\", \"0.24353068059100832\", \"0.25985287146449176\", \"0.09560137627672127\", \"0.10824119394903231\"], \"28\": [\"0.8308141243649494\", \"0.9715901949951978\", \"1.0\", \"0.9446511604371872\", \"0.9174962836932693\"], \"29\": [\"0.23163107098947502\", \"0.10732818400826394\", \"0.08121729905649898\", \"0.10179918944272683\", \"0.010462741127687983\"]}"); var thresholds_all = JSON.parse("{\"0\": \"0.7\", \"1\": \"0.7\", \"2\": \"0.7\", \"3\": \"0.7\", \"4\": \"0.7\", \"5\": \"0.7\", \"6\": \"0.7\", \"7\": \"0.7\", \"8\": \"0.7\", \"9\": \"0.7\", \"10\": \"0.7\", \"11\": \"0.7\", \"12\": \"0.7\", \"13\": \"0.7\", \"14\": \"0.7\", \"15\": \"0.7\", \"16\": \"0.7\", \"17\": \"0.7\", \"18\": \"0.7\", \"19\": \"0.7\", \"20\": \"0.7\", \"21\": \"0.7\", \"22\": \"0.7\", \"23\": \"0.7\", \"24\": \"0.7\", \"25\": \"0.7\", \"26\": \"0.7\", \"27\": \"0.7\", \"28\": \"0.7\", \"29\": \"0.7\"}"); - var trends_all = JSON.parse("{\"0\": \"neutral\", \"1\": \"positive\", \"2\": \"positive\", \"3\": \"negative\", \"4\": \"negative\", \"5\": \"positive\", \"6\": \"negative\", \"7\": \"positive\", \"8\": \"negative\", \"9\": \"neutral\", \"10\": \"positive\", \"11\": \"positive\", \"12\": \"negative\", \"13\": \"positive\", \"14\": \"positive\", \"15\": \"positive\", \"16\": \"neutral\", \"17\": \"positive\", \"18\": \"neutral\", \"19\": \"negative\", \"20\": \"positive\", \"21\": \"positive\", \"22\": \"negative\", \"23\": \"neutral\", \"24\": \"negative\", \"25\": \"positive\", \"26\": \"positive\", \"27\": \"neutral\", \"28\": \"negative\", \"29\": \"negative\"}"); - var passed_all = JSON.parse("{\"0\": true, \"1\": false, \"2\": false, \"3\": false, \"4\": false, \"5\": false, \"6\": false, \"7\": false, \"8\": false, \"9\": false, \"10\": true, \"11\": false, \"12\": true, \"13\": false, \"14\": false, \"15\": false, \"16\": true, \"17\": false, \"18\": true, \"19\": false, \"20\": false, \"21\": false, \"22\": false, \"23\": false, \"24\": true, \"25\": false, \"26\": false, \"27\": false, \"28\": true, \"29\": false}"); + var trends_all = JSON.parse("{\"0\": \"negative\", \"1\": \"negative\", \"2\": \"positive\", \"3\": \"neutral\", \"4\": \"neutral\", \"5\": \"positive\", \"6\": \"positive\", \"7\": \"positive\", \"8\": \"positive\", \"9\": \"neutral\", \"10\": \"positive\", \"11\": \"negative\", \"12\": \"neutral\", \"13\": \"positive\", \"14\": \"negative\", \"15\": \"positive\", \"16\": \"positive\", \"17\": \"negative\", \"18\": \"neutral\", \"19\": \"neutral\", \"20\": \"positive\", \"21\": \"negative\", \"22\": \"negative\", \"23\": \"neutral\", \"24\": \"negative\", \"25\": \"negative\", \"26\": \"positive\", \"27\": \"negative\", \"28\": \"positive\", \"29\": \"negative\"}"); + var passed_all = JSON.parse("{\"0\": true, \"1\": false, \"2\": false, \"3\": false, \"4\": true, \"5\": false, \"6\": true, \"7\": false, \"8\": false, \"9\": false, \"10\": true, \"11\": false, \"12\": true, \"13\": false, \"14\": false, \"15\": false, \"16\": true, \"17\": false, \"18\": true, \"19\": false, \"20\": false, \"21\": false, \"22\": false, \"23\": false, \"24\": true, \"25\": false, \"26\": false, \"27\": false, \"28\": true, \"29\": false}"); var names_all = JSON.parse("{\"0\": \"Accuracy\", \"1\": \"Precision\", \"2\": \"Recall\", \"3\": \"F1 Score\", \"4\": \"AUROC\", \"5\": \"AveragePrecision\", \"6\": \"Accuracy\", \"7\": \"Precision\", \"8\": \"Recall\", \"9\": \"F1 Score\", \"10\": \"AUROC\", \"11\": \"AveragePrecision\", \"12\": \"Accuracy\", \"13\": \"Precision\", \"14\": \"Recall\", \"15\": \"F1 Score\", \"16\": \"AUROC\", \"17\": \"AveragePrecision\", \"18\": \"Accuracy\", \"19\": \"Precision\", \"20\": \"Recall\", \"21\": \"F1 Score\", \"22\": \"AUROC\", \"23\": \"AveragePrecision\", \"24\": \"Accuracy\", \"25\": \"Precision\", \"26\": \"Recall\", \"27\": \"F1 Score\", \"28\": \"AUROC\", \"29\": \"AveragePrecision\"}"); var timestamps_all = JSON.parse("{\"0\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"1\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"2\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"3\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"4\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"5\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"6\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"7\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"8\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"9\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"10\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"11\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"12\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"13\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"14\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"15\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"16\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"17\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"18\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"19\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"20\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"21\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"22\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"23\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"24\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"25\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"26\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"27\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"28\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"29\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"]}"); diff --git a/api/tutorials/nihcxr/cxr_classification.html b/api/tutorials/nihcxr/cxr_classification.html index 7f2c4cff6..0b8fce16a 100644 --- a/api/tutorials/nihcxr/cxr_classification.html +++ b/api/tutorials/nihcxr/cxr_classification.html @@ -496,74 +496,74 @@

Generate Historical Reports
-Flattening the indices: 100%|████████| 1000/1000 [00:54<00:00, 18.51 examples/s]
-Flattening the indices: 100%|████| 1000/1000 [00:00<00:00, 543514.84 examples/s]
-Filter: 100%|████████████████████| 1000/1000 [00:00<00:00, 187866.34 examples/s]
-Map: 100%|███████████████████████████| 400/400 [00:00<00:00, 1778.49 examples/s]
-Filter -> Patient Gender:M: 100%|███| 400/400 [00:00<00:00, 42806.66 examples/s]
-Filter -> Patient Gender:F: 100%|███| 400/400 [00:00<00:00, 34901.64 examples/s]
-Filter -> overall: 100%|████████████| 400/400 [00:00<00:00, 46077.33 examples/s]
-Filter -> Patient Age:[19 - 35]: 100%|█| 400/400 [00:00<00:00, 41831.14 examples
-Filter -> Patient Age:[35 - 65]: 100%|█| 400/400 [00:00<00:00, 43028.43 examples
-Filter -> Patient Age:[65 - 100]: 100%|█| 400/400 [00:00<00:00, 41388.43 example
+Flattening the indices: 100%|████████| 1000/1000 [00:52<00:00, 18.99 examples/s]
+Flattening the indices: 100%|████| 1000/1000 [00:00<00:00, 551301.79 examples/s]
+Filter: 100%|████████████████████| 1000/1000 [00:00<00:00, 229988.70 examples/s]
+Map: 100%|███████████████████████████| 400/400 [00:00<00:00, 1559.55 examples/s]
+Filter -> Patient Gender:M: 100%|███| 400/400 [00:00<00:00, 42669.49 examples/s]
+Filter -> Patient Gender:F: 100%|███| 400/400 [00:00<00:00, 33734.57 examples/s]
+Filter -> overall: 100%|████████████| 400/400 [00:00<00:00, 45108.53 examples/s]
+Filter -> Patient Age:[19 - 35]: 100%|█| 400/400 [00:00<00:00, 41567.89 examples
+Filter -> Patient Age:[35 - 65]: 100%|█| 400/400 [00:00<00:00, 41475.40 examples
+Filter -> Patient Age:[65 - 100]: 100%|█| 400/400 [00:00<00:00, 39719.73 example
 Filter -> Patient Age:[19 - 35]&Patient Gender:M: 100%|█| 400/400 [00:00<00:00,
 Filter -> Patient Age:[19 - 35]&Patient Gender:F: 100%|█| 400/400 [00:00<00:00,
 Filter -> Patient Age:[35 - 65]&Patient Gender:M: 100%|█| 400/400 [00:00<00:00,
 Filter -> Patient Age:[35 - 65]&Patient Gender:F: 100%|█| 400/400 [00:00<00:00,
 Filter -> Patient Age:[65 - 100]&Patient Gender:M: 100%|█| 400/400 [00:00<00:00,
 Filter -> Patient Age:[65 - 100]&Patient Gender:F: 100%|█| 400/400 [00:00<00:00,
-Filter -> overall: 100%|████████████| 400/400 [00:00<00:00, 48508.69 examples/s]
-Flattening the indices: 100%|████████| 1000/1000 [00:51<00:00, 19.38 examples/s]
-Flattening the indices: 100%|████| 1000/1000 [00:00<00:00, 554508.73 examples/s]
-Filter: 100%|████████████████████| 1000/1000 [00:00<00:00, 239976.20 examples/s]
-Map: 100%|███████████████████████████| 396/396 [00:00<00:00, 1816.81 examples/s]
-Filter -> Patient Gender:M: 100%|███| 396/396 [00:00<00:00, 42819.98 examples/s]
-Filter -> Patient Gender:F: 100%|███| 396/396 [00:00<00:00, 43439.28 examples/s]
-Filter -> overall: 100%|████████████| 396/396 [00:00<00:00, 44934.11 examples/s]
-Filter -> Patient Age:[19 - 35]: 100%|█| 396/396 [00:00<00:00, 39218.54 examples
-Filter -> Patient Age:[35 - 65]: 100%|█| 396/396 [00:00<00:00, 41051.52 examples
-Filter -> Patient Age:[65 - 100]: 100%|█| 396/396 [00:00<00:00, 40678.51 example
+Filter -> overall: 100%|████████████| 400/400 [00:00<00:00, 45740.66 examples/s]
+Flattening the indices: 100%|████████| 1000/1000 [00:53<00:00, 18.55 examples/s]
+Flattening the indices: 100%|████| 1000/1000 [00:00<00:00, 559315.11 examples/s]
+Filter: 100%|████████████████████| 1000/1000 [00:00<00:00, 234646.38 examples/s]
+Map: 100%|███████████████████████████| 396/396 [00:00<00:00, 1796.22 examples/s]
+Filter -> Patient Gender:M: 100%|███| 396/396 [00:00<00:00, 42756.05 examples/s]
+Filter -> Patient Gender:F: 100%|███| 396/396 [00:00<00:00, 41877.47 examples/s]
+Filter -> overall: 100%|████████████| 396/396 [00:00<00:00, 44262.34 examples/s]
+Filter -> Patient Age:[19 - 35]: 100%|█| 396/396 [00:00<00:00, 39876.70 examples
+Filter -> Patient Age:[35 - 65]: 100%|█| 396/396 [00:00<00:00, 41115.54 examples
+Filter -> Patient Age:[65 - 100]: 100%|█| 396/396 [00:00<00:00, 40568.23 example
 Filter -> Patient Age:[19 - 35]&Patient Gender:M: 100%|█| 396/396 [00:00<00:00,
 Filter -> Patient Age:[19 - 35]&Patient Gender:F: 100%|█| 396/396 [00:00<00:00,
 Filter -> Patient Age:[35 - 65]&Patient Gender:M: 100%|█| 396/396 [00:00<00:00,
 Filter -> Patient Age:[35 - 65]&Patient Gender:F: 100%|█| 396/396 [00:00<00:00,
 Filter -> Patient Age:[65 - 100]&Patient Gender:M: 100%|█| 396/396 [00:00<00:00,
 Filter -> Patient Age:[65 - 100]&Patient Gender:F: 100%|█| 396/396 [00:00<00:00,
-Filter -> overall: 100%|████████████| 396/396 [00:00<00:00, 25361.03 examples/s]
-Flattening the indices: 100%|████████| 1000/1000 [00:51<00:00, 19.26 examples/s]
-Flattening the indices: 100%|████| 1000/1000 [00:00<00:00, 551591.79 examples/s]
-Filter: 100%|████████████████████| 1000/1000 [00:00<00:00, 241024.25 examples/s]
-Map: 100%|███████████████████████████| 383/383 [00:00<00:00, 1797.95 examples/s]
-Filter -> Patient Gender:M: 100%|███| 383/383 [00:00<00:00, 42636.58 examples/s]
-Filter -> Patient Gender:F: 100%|███| 383/383 [00:00<00:00, 42604.92 examples/s]
-Filter -> overall: 100%|████████████| 383/383 [00:00<00:00, 44897.11 examples/s]
-Filter -> Patient Age:[19 - 35]: 100%|█| 383/383 [00:00<00:00, 24012.95 examples
-Filter -> Patient Age:[35 - 65]: 100%|█| 383/383 [00:00<00:00, 23006.35 examples
-Filter -> Patient Age:[65 - 100]: 100%|█| 383/383 [00:00<00:00, 24197.42 example
+Filter -> overall: 100%|████████████| 396/396 [00:00<00:00, 45328.98 examples/s]
+Flattening the indices: 100%|████████| 1000/1000 [00:50<00:00, 19.62 examples/s]
+Flattening the indices: 100%|████| 1000/1000 [00:00<00:00, 556199.97 examples/s]
+Filter: 100%|████████████████████| 1000/1000 [00:00<00:00, 237301.50 examples/s]
+Map: 100%|███████████████████████████| 383/383 [00:00<00:00, 1778.88 examples/s]
+Filter -> Patient Gender:M: 100%|███| 383/383 [00:00<00:00, 42006.65 examples/s]
+Filter -> Patient Gender:F: 100%|███| 383/383 [00:00<00:00, 42493.35 examples/s]
+Filter -> overall: 100%|████████████| 383/383 [00:00<00:00, 44476.95 examples/s]
+Filter -> Patient Age:[19 - 35]: 100%|█| 383/383 [00:00<00:00, 40546.67 examples
+Filter -> Patient Age:[35 - 65]: 100%|█| 383/383 [00:00<00:00, 40422.19 examples
+Filter -> Patient Age:[65 - 100]: 100%|█| 383/383 [00:00<00:00, 40312.64 example
 Filter -> Patient Age:[19 - 35]&Patient Gender:M: 100%|█| 383/383 [00:00<00:00,
 Filter -> Patient Age:[19 - 35]&Patient Gender:F: 100%|█| 383/383 [00:00<00:00,
 Filter -> Patient Age:[35 - 65]&Patient Gender:M: 100%|█| 383/383 [00:00<00:00,
 Filter -> Patient Age:[35 - 65]&Patient Gender:F: 100%|█| 383/383 [00:00<00:00,
 Filter -> Patient Age:[65 - 100]&Patient Gender:M: 100%|█| 383/383 [00:00<00:00,
 Filter -> Patient Age:[65 - 100]&Patient Gender:F: 100%|█| 383/383 [00:00<00:00,
-Filter -> overall: 100%|████████████| 383/383 [00:00<00:00, 45368.80 examples/s]
-Flattening the indices: 100%|████████| 1000/1000 [00:51<00:00, 19.50 examples/s]
-Flattening the indices: 100%|████| 1000/1000 [00:00<00:00, 557530.77 examples/s]
-Filter: 100%|████████████████████| 1000/1000 [00:00<00:00, 240182.33 examples/s]
-Map: 100%|███████████████████████████| 411/411 [00:00<00:00, 1811.68 examples/s]
-Filter -> Patient Gender:M: 100%|███| 411/411 [00:00<00:00, 44563.73 examples/s]
-Filter -> Patient Gender:F: 100%|███| 411/411 [00:00<00:00, 43622.12 examples/s]
-Filter -> overall: 100%|████████████| 411/411 [00:00<00:00, 45894.92 examples/s]
-Filter -> Patient Age:[19 - 35]: 100%|█| 411/411 [00:00<00:00, 42074.07 examples
-Filter -> Patient Age:[35 - 65]: 100%|█| 411/411 [00:00<00:00, 42672.94 examples
-Filter -> Patient Age:[65 - 100]: 100%|█| 411/411 [00:00<00:00, 42232.81 example
+Filter -> overall: 100%|████████████| 383/383 [00:00<00:00, 45529.53 examples/s]
+Flattening the indices: 100%|████████| 1000/1000 [00:51<00:00, 19.38 examples/s]
+Flattening the indices: 100%|████| 1000/1000 [00:00<00:00, 559762.98 examples/s]
+Filter: 100%|████████████████████| 1000/1000 [00:00<00:00, 230951.16 examples/s]
+Map: 100%|███████████████████████████| 411/411 [00:00<00:00, 1799.38 examples/s]
+Filter -> Patient Gender:M: 100%|███| 411/411 [00:00<00:00, 43468.13 examples/s]
+Filter -> Patient Gender:F: 100%|███| 411/411 [00:00<00:00, 42783.09 examples/s]
+Filter -> overall: 100%|████████████| 411/411 [00:00<00:00, 44642.21 examples/s]
+Filter -> Patient Age:[19 - 35]: 100%|█| 411/411 [00:00<00:00, 40946.77 examples
+Filter -> Patient Age:[35 - 65]: 100%|█| 411/411 [00:00<00:00, 41775.33 examples
+Filter -> Patient Age:[65 - 100]: 100%|█| 411/411 [00:00<00:00, 38797.69 example
 Filter -> Patient Age:[19 - 35]&Patient Gender:M: 100%|█| 411/411 [00:00<00:00,
 Filter -> Patient Age:[19 - 35]&Patient Gender:F: 100%|█| 411/411 [00:00<00:00,
 Filter -> Patient Age:[35 - 65]&Patient Gender:M: 100%|█| 411/411 [00:00<00:00,
 Filter -> Patient Age:[35 - 65]&Patient Gender:F: 100%|█| 411/411 [00:00<00:00,
 Filter -> Patient Age:[65 - 100]&Patient Gender:M: 100%|█| 411/411 [00:00<00:00,
 Filter -> Patient Age:[65 - 100]&Patient Gender:F: 100%|█| 411/411 [00:00<00:00,
-Filter -> overall: 100%|████████████| 411/411 [00:00<00:00, 47422.60 examples/s]
+Filter -> overall: 100%|████████████| 411/411 [00:00<00:00, 47438.26 examples/s]
 

CyclOps offers a package for documentation of the model through a model report. The ModelCardReport class is used to populate and generate the model report as an HTML file. The model report has the following sections:

@@ -660,13 +660,13 @@

Model Creation

-
+
-
+
-
+
-
+
@@ -852,61 +852,61 @@

Multilabel AUROC by Pathology and Age
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-

diff --git a/api/tutorials/nihcxr/cxr_classification.ipynb b/api/tutorials/nihcxr/cxr_classification.ipynb index f304a8048..6e97a80e0 100644 --- a/api/tutorials/nihcxr/cxr_classification.ipynb +++ b/api/tutorials/nihcxr/cxr_classification.ipynb @@ -24,10 +24,10 @@ "id": "fc1eb72a", "metadata": { "execution": { - "iopub.execute_input": "2023-12-19T19:25:35.493877Z", - "iopub.status.busy": "2023-12-19T19:25:35.493375Z", - "iopub.status.idle": "2023-12-19T19:25:40.484395Z", - "shell.execute_reply": "2023-12-19T19:25:40.483151Z" + "iopub.execute_input": "2023-12-19T22:28:38.082988Z", + "iopub.status.busy": "2023-12-19T22:28:38.082347Z", + "iopub.status.idle": "2023-12-19T22:28:44.285824Z", + "shell.execute_reply": "2023-12-19T22:28:44.285099Z" } }, "outputs": [], @@ -71,10 +71,10 @@ "id": "25c2a16f", "metadata": { "execution": { - "iopub.execute_input": "2023-12-19T19:25:40.489546Z", - "iopub.status.busy": "2023-12-19T19:25:40.489090Z", - "iopub.status.idle": "2023-12-19T19:30:58.799812Z", - "shell.execute_reply": "2023-12-19T19:30:58.797926Z" + "iopub.execute_input": "2023-12-19T22:28:44.291596Z", + "iopub.status.busy": "2023-12-19T22:28:44.291034Z", + "iopub.status.idle": "2023-12-19T22:33:59.281135Z", + "shell.execute_reply": "2023-12-19T22:33:59.279344Z" } }, "outputs": [ @@ -91,20 +91,20 @@ "output_type": "stream", "text": [ "\r", - "Flattening the indices: 100%|████████| 1000/1000 [00:54<00:00, 18.51 examples/s]\r", - "Flattening the indices: 100%|████████| 1000/1000 [00:54<00:00, 18.51 examples/s]\r\n", + "Flattening the indices: 100%|████████| 1000/1000 [00:52<00:00, 19.00 examples/s]\r", + "Flattening the indices: 100%|████████| 1000/1000 [00:52<00:00, 18.99 examples/s]\r\n", "\r", "Flattening the indices: 0%| | 0/1000 [00:00 Patient Gender:M: 0%| | 0/400 [00:00 Patient Gender:M: 100%|███| 400/400 [00:00<00:00, 42806.66 examples/s]\r\n" + "Filter -> Patient Gender:M: 100%|███| 400/400 [00:00<00:00, 42669.49 examples/s]\r\n" ] }, { @@ -127,7 +127,7 @@ "text": [ "\r", "Filter -> Patient Gender:F: 0%| | 0/400 [00:00 Patient Gender:F: 100%|███| 400/400 [00:00<00:00, 34901.64 examples/s]\r\n" + "Filter -> Patient Gender:F: 100%|███| 400/400 [00:00<00:00, 33734.57 examples/s]\r\n" ] }, { @@ -136,7 +136,7 @@ "text": [ "\r", "Filter -> overall: 0%| | 0/400 [00:00 overall: 100%|████████████| 400/400 [00:00<00:00, 46077.33 examples/s]\r\n" + "Filter -> overall: 100%|████████████| 400/400 [00:00<00:00, 45108.53 examples/s]\r\n" ] }, { @@ -145,10 +145,10 @@ "text": [ "\r", "Filter -> Patient Age:[19 - 35]: 0%| | 0/400 [00:00 Patient Age:[19 - 35]: 100%|█| 400/400 [00:00<00:00, 41831.14 examples\r\n", + "Filter -> Patient Age:[19 - 35]: 100%|█| 400/400 [00:00<00:00, 41567.89 examples\r\n", "\r", "Filter -> Patient Age:[35 - 65]: 0%| | 0/400 [00:00 Patient Age:[35 - 65]: 100%|█| 400/400 [00:00<00:00, 43028.43 examples\r\n" + "Filter -> Patient Age:[35 - 65]: 100%|█| 400/400 [00:00<00:00, 41475.40 examples\r\n" ] }, { @@ -157,7 +157,7 @@ "text": [ "\r", "Filter -> Patient Age:[65 - 100]: 0%| | 0/400 [00:00 Patient Age:[65 - 100]: 100%|█| 400/400 [00:00<00:00, 41388.43 example\r\n", + "Filter -> Patient Age:[65 - 100]: 100%|█| 400/400 [00:00<00:00, 39719.73 example\r\n", "\r", "Filter -> Patient Age:[19 - 35]&Patient Gender:M: 0%| | 0/400 [00:00 Patient Age:[19 - 35]&Patient Gender:M: 100%|█| 400/400 [00:00<00:00, \r\n" @@ -196,7 +196,7 @@ "Filter -> Patient Age:[65 - 100]&Patient Gender:F: 100%|█| 400/400 [00:00<00:00,\r\n", "\r", "Filter -> overall: 0%| | 0/400 [00:00 overall: 100%|████████████| 400/400 [00:00<00:00, 48508.69 examples/s]\r\n" + "Filter -> overall: 100%|████████████| 400/400 [00:00<00:00, 45740.66 examples/s]\r\n" ] }, { @@ -212,21 +212,14 @@ "output_type": "stream", "text": [ "\r", - "Flattening the indices: 100%|████████| 1000/1000 [00:51<00:00, 19.38 examples/s]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Flattening the indices: 100%|████████| 1000/1000 [00:51<00:00, 19.38 examples/s]\r\n", + "Flattening the indices: 100%|████████| 1000/1000 [00:53<00:00, 18.56 examples/s]\r", + "Flattening the indices: 100%|████████| 1000/1000 [00:53<00:00, 18.55 examples/s]\r\n", "\r", "Flattening the indices: 0%| | 0/1000 [00:00 Patient Gender:M: 0%| | 0/396 [00:00 Patient Gender:M: 100%|███| 396/396 [00:00<00:00, 42819.98 examples/s]\r\n", + "Filter -> Patient Gender:M: 0%| | 0/396 [00:00 Patient Gender:M: 100%|███| 396/396 [00:00<00:00, 42756.05 examples/s]\r\n", "\r", - "Filter -> Patient Gender:F: 0%| | 0/396 [00:00 Patient Gender:F: 100%|███| 396/396 [00:00<00:00, 43439.28 examples/s]\r\n" + "Filter -> Patient Gender:F: 0%| | 0/396 [00:00 Patient Gender:F: 100%|███| 396/396 [00:00<00:00, 41877.47 examples/s]\r\n", "\r", "Filter -> overall: 0%| | 0/396 [00:00 overall: 100%|████████████| 396/396 [00:00<00:00, 44934.11 examples/s]\r\n" + "Filter -> overall: 100%|████████████| 396/396 [00:00<00:00, 44262.34 examples/s]\r\n" ] }, { @@ -268,10 +261,9 @@ "text": [ "\r", "Filter -> Patient Age:[19 - 35]: 0%| | 0/396 [00:00 Patient Age:[19 - 35]: 100%|█| 396/396 [00:00<00:00, 39218.54 examples\r\n", + "Filter -> Patient Age:[19 - 35]: 100%|█| 396/396 [00:00<00:00, 39876.70 examples\r\n", "\r", - "Filter -> Patient Age:[35 - 65]: 0%| | 0/396 [00:00 Patient Age:[35 - 65]: 100%|█| 396/396 [00:00<00:00, 41051.52 examples\r\n" + "Filter -> Patient Age:[35 - 65]: 0%| | 0/396 [00:00 Patient Age:[65 - 100]: 0%| | 0/396 [00:00 Patient Age:[65 - 100]: 100%|█| 396/396 [00:00<00:00, 40678.51 example\r\n", + "Filter -> Patient Age:[35 - 65]: 100%|█| 396/396 [00:00<00:00, 41115.54 examples\r\n", "\r", - "Filter -> Patient Age:[19 - 35]&Patient Gender:M: 0%| | 0/396 [00:00 Patient Age:[19 - 35]&Patient Gender:M: 100%|█| 396/396 [00:00<00:00, \r\n" + "Filter -> Patient Age:[65 - 100]: 0%| | 0/396 [00:00 Patient Age:[65 - 100]: 100%|█| 396/396 [00:00<00:00, 40568.23 example\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ + "\r", + "Filter -> Patient Age:[19 - 35]&Patient Gender:M: 0%| | 0/396 [00:00 Patient Age:[19 - 35]&Patient Gender:M: 100%|█| 396/396 [00:00<00:00, \r\n", "\r", "Filter -> Patient Age:[19 - 35]&Patient Gender:F: 0%| | 0/396 [00:00 Patient Age:[19 - 35]&Patient Gender:F: 100%|█| 396/396 [00:00<00:00, \r\n", "\r", - "Filter -> Patient Age:[35 - 65]&Patient Gender:M: 0%| | 0/396 [00:00 Patient Age:[35 - 65]&Patient Gender:M: 100%|█| 396/396 [00:00<00:00, \r\n" + "Filter -> Patient Age:[35 - 65]&Patient Gender:M: 0%| | 0/396 [00:00 Patient Age:[35 - 65]&Patient Gender:M: 100%|█| 396/396 [00:00<00:00, \r\n", "\r", "Filter -> Patient Age:[35 - 65]&Patient Gender:F: 0%| | 0/396 [00:00 Patient Age:[35 - 65]&Patient Gender:F: 100%|█| 396/396 [00:00<00:00, \r\n", @@ -316,18 +311,11 @@ "\r", "Filter -> Patient Age:[65 - 100]&Patient Gender:M: 100%|█| 396/396 [00:00<00:00,\r\n", "\r", - "Filter -> Patient Age:[65 - 100]&Patient Gender:F: 0%| | 0/396 [00:00 Patient Age:[65 - 100]&Patient Gender:F: 0%| | 0/396 [00:00 Patient Age:[65 - 100]&Patient Gender:F: 100%|█| 396/396 [00:00<00:00,\r\n", "\r", "Filter -> overall: 0%| | 0/396 [00:00 overall: 100%|████████████| 396/396 [00:00<00:00, 25361.03 examples/s]\r\n" + "Filter -> overall: 100%|████████████| 396/396 [00:00<00:00, 45328.98 examples/s]\r\n" ] }, { @@ -343,16 +331,13 @@ "output_type": "stream", "text": [ "\r", - "Flattening the indices: 100%|████████| 1000/1000 [00:51<00:00, 19.27 examples/s]\r", - "Flattening the indices: 100%|████████| 1000/1000 [00:51<00:00, 19.26 examples/s]\r\n", + "Flattening the indices: 100%|████████| 1000/1000 [00:50<00:00, 19.62 examples/s]\r", + "Flattening the indices: 100%|████████| 1000/1000 [00:50<00:00, 19.62 examples/s]\r\n", "\r", "Flattening the indices: 0%| | 0/1000 [00:00 Patient Gender:M: 0%| | 0/383 [00:00 Patient Gender:M: 100%|███| 383/383 [00:00<00:00, 42636.58 examples/s]\r\n" + "Map: 0%| | 0/383 [00:00 Patient Gender:F: 0%| | 0/383 [00:00 Patient Gender:F: 100%|███| 383/383 [00:00<00:00, 42604.92 examples/s]\r\n", + "Map: 100%|███████████████████████████| 383/383 [00:00<00:00, 1814.00 examples/s]\r", + "Map: 100%|███████████████████████████| 383/383 [00:00<00:00, 1778.88 examples/s]\r\n", "\r", - "Filter -> overall: 0%| | 0/383 [00:00 overall: 100%|████████████| 383/383 [00:00<00:00, 44897.11 examples/s]\r\n" + "Filter -> Patient Gender:M: 0%| | 0/383 [00:00 Patient Gender:M: 100%|███| 383/383 [00:00<00:00, 42006.65 examples/s]\r\n" ] }, { @@ -384,7 +367,10 @@ "output_type": "stream", "text": [ "\r", - "Filter -> Patient Age:[19 - 35]: 0%| | 0/383 [00:00 Patient Gender:F: 0%| | 0/383 [00:00 Patient Gender:F: 100%|███| 383/383 [00:00<00:00, 42493.35 examples/s]\r\n", + "\r", + "Filter -> overall: 0%| | 0/383 [00:00 Patient Age:[19 - 35]: 100%|█| 383/383 [00:00<00:00, 24012.95 examples\r\n", + "Filter -> overall: 100%|████████████| 383/383 [00:00<00:00, 44476.95 examples/s]\r\n", "\r", - "Filter -> Patient Age:[35 - 65]: 0%| | 0/383 [00:00 Patient Age:[35 - 65]: 100%|█| 383/383 [00:00<00:00, 23006.35 examples\r\n" + "Filter -> Patient Age:[19 - 35]: 0%| | 0/383 [00:00 Patient Age:[65 - 100]: 0%| | 0/383 [00:00 Patient Age:[65 - 100]: 100%|█| 383/383 [00:00<00:00, 24197.42 example\r\n" + "Filter -> Patient Age:[19 - 35]: 100%|█| 383/383 [00:00<00:00, 40546.67 examples\r\n", + "\r", + "Filter -> Patient Age:[35 - 65]: 0%| | 0/383 [00:00 Patient Age:[35 - 65]: 100%|█| 383/383 [00:00<00:00, 40422.19 examples\r\n", + "\r", + "Filter -> Patient Age:[65 - 100]: 0%| | 0/383 [00:00 Patient Age:[65 - 100]: 100%|█| 383/383 [00:00<00:00, 40312.64 example\r\n", "\r", "Filter -> Patient Age:[19 - 35]&Patient Gender:M: 0%| | 0/383 [00:00 Patient Age:[19 - 35]&Patient Gender:M: 100%|█| 383/383 [00:00<00:00, \r\n", "\r", - "Filter -> Patient Age:[19 - 35]&Patient Gender:F: 0%| | 0/383 [00:00 Patient Age:[19 - 35]&Patient Gender:F: 0%| | 0/383 [00:00 Patient Age:[19 - 35]&Patient Gender:F: 100%|█| 383/383 [00:00<00:00, \r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "\r", - "Filter -> Patient Age:[19 - 35]&Patient Gender:F: 100%|█| 383/383 [00:00<00:00, \r\n", "\r", "Filter -> Patient Age:[35 - 65]&Patient Gender:M: 0%| | 0/383 [00:00 Patient Age:[35 - 65]&Patient Gender:M: 100%|█| 383/383 [00:00<00:00, \r\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "Filter -> Patient Age:[35 - 65]&Patient Gender:M: 100%|█| 383/383 [00:00<00:00, \r\n", "\r", "Filter -> Patient Age:[35 - 65]&Patient Gender:F: 0%| | 0/383 [00:00 Patient Age:[35 - 65]&Patient Gender:F: 100%|█| 383/383 [00:00<00:00, \r\n" @@ -457,7 +441,7 @@ "output_type": "stream", "text": [ "\r", - "Filter -> overall: 100%|████████████| 383/383 [00:00<00:00, 45368.80 examples/s]\r\n" + "Filter -> overall: 100%|████████████| 383/383 [00:00<00:00, 45529.53 examples/s]\r\n" ] }, { @@ -473,7 +457,7 @@ "output_type": "stream", "text": [ "\r", - "Flattening the indices: 100%|████████| 1000/1000 [00:51<00:00, 19.51 examples/s]" + "Flattening the indices: 100%|████████| 1000/1000 [00:51<00:00, 19.39 examples/s]" ] }, { @@ -481,13 +465,13 @@ "output_type": "stream", "text": [ "\r", - "Flattening the indices: 100%|████████| 1000/1000 [00:51<00:00, 19.50 examples/s]\r\n", + "Flattening the indices: 100%|████████| 1000/1000 [00:51<00:00, 19.38 examples/s]\r\n", "\r", "Flattening the indices: 0%| | 0/1000 [00:00 Patient Gender:M: 0%| | 0/411 [00:00 Patient Gender:M: 100%|███| 411/411 [00:00<00:00, 44563.73 examples/s]\r\n", + "Filter -> Patient Gender:M: 100%|███| 411/411 [00:00<00:00, 43468.13 examples/s]\r\n", "\r", - "Filter -> Patient Gender:F: 0%| | 0/411 [00:00 Patient Gender:F: 0%| | 0/411 [00:00 Patient Gender:F: 100%|███| 411/411 [00:00<00:00, 42783.09 examples/s]\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "\r", - "Filter -> Patient Gender:F: 100%|███| 411/411 [00:00<00:00, 43622.12 examples/s]\r\n", "\r", "Filter -> overall: 0%| | 0/411 [00:00 overall: 100%|████████████| 411/411 [00:00<00:00, 45894.92 examples/s]\r\n" + "Filter -> overall: 100%|████████████| 411/411 [00:00<00:00, 44642.21 examples/s]\r\n" ] }, { @@ -529,7 +512,7 @@ "text": [ "\r", "Filter -> Patient Age:[19 - 35]: 0%| | 0/411 [00:00 Patient Age:[19 - 35]: 100%|█| 411/411 [00:00<00:00, 42074.07 examples\r\n", + "Filter -> Patient Age:[19 - 35]: 100%|█| 411/411 [00:00<00:00, 40946.77 examples\r\n", "\r", "Filter -> Patient Age:[35 - 65]: 0%| | 0/411 [00:00 Patient Age:[35 - 65]: 100%|█| 411/411 [00:00<00:00, 42672.94 examples\r\n", + "Filter -> Patient Age:[35 - 65]: 100%|█| 411/411 [00:00<00:00, 41775.33 examples\r\n", "\r", "Filter -> Patient Age:[65 - 100]: 0%| | 0/411 [00:00 Patient Age:[65 - 100]: 100%|█| 411/411 [00:00<00:00, 42232.81 example\r\n", - "\r", - "Filter -> Patient Age:[19 - 35]&Patient Gender:M: 0%| | 0/411 [00:00 Patient Age:[65 - 100]: 100%|█| 411/411 [00:00<00:00, 38797.69 example\r\n" ] }, { @@ -552,37 +533,40 @@ "output_type": "stream", "text": [ "\r", + "Filter -> Patient Age:[19 - 35]&Patient Gender:M: 0%| | 0/411 [00:00 Patient Age:[19 - 35]&Patient Gender:M: 100%|█| 411/411 [00:00<00:00, \r\n", "\r", "Filter -> Patient Age:[19 - 35]&Patient Gender:F: 0%| | 0/411 [00:00 Patient Age:[19 - 35]&Patient Gender:F: 100%|█| 411/411 [00:00<00:00, \r\n", "\r", - "Filter -> Patient Age:[35 - 65]&Patient Gender:M: 0%| | 0/411 [00:00 Patient Age:[35 - 65]&Patient Gender:M: 100%|█| 411/411 [00:00<00:00, \r\n" + "Filter -> Patient Age:[35 - 65]&Patient Gender:M: 0%| | 0/411 [00:00 Patient Age:[35 - 65]&Patient Gender:M: 100%|█| 411/411 [00:00<00:00, \r\n", "\r", "Filter -> Patient Age:[35 - 65]&Patient Gender:F: 0%| | 0/411 [00:00 Patient Age:[35 - 65]&Patient Gender:F: 100%|█| 411/411 [00:00<00:00, \r\n", "\r", - "Filter -> Patient Age:[65 - 100]&Patient Gender:M: 0%| | 0/411 [00:00 Patient Age:[65 - 100]&Patient Gender:M: 100%|█| 411/411 [00:00<00:00,\r\n" + "Filter -> Patient Age:[65 - 100]&Patient Gender:M: 0%| | 0/411 [00:00 Patient Age:[65 - 100]&Patient Gender:M: 100%|█| 411/411 [00:00<00:00,\r\n", "\r", "Filter -> Patient Age:[65 - 100]&Patient Gender:F: 0%| | 0/411 [00:00 Patient Age:[65 - 100]&Patient Gender:F: 100%|█| 411/411 [00:00<00:00,\r\n", "\r", "Filter -> overall: 0%| | 0/411 [00:00 overall: 100%|████████████| 411/411 [00:00<00:00, 47422.60 examples/s]\r\n" + "Filter -> overall: 100%|████████████| 411/411 [00:00<00:00, 47438.26 examples/s]\r\n" ] } ], @@ -630,10 +614,10 @@ "id": "03edf1c0", "metadata": { "execution": { - "iopub.execute_input": "2023-12-19T19:30:58.809719Z", - "iopub.status.busy": "2023-12-19T19:30:58.809124Z", - "iopub.status.idle": "2023-12-19T19:30:58.817339Z", - "shell.execute_reply": "2023-12-19T19:30:58.815914Z" + "iopub.execute_input": "2023-12-19T22:33:59.288623Z", + "iopub.status.busy": "2023-12-19T22:33:59.287880Z", + "iopub.status.idle": "2023-12-19T22:33:59.295931Z", + "shell.execute_reply": "2023-12-19T22:33:59.294681Z" } }, "outputs": [], @@ -655,10 +639,10 @@ "id": "6514120e", "metadata": { "execution": { - "iopub.execute_input": "2023-12-19T19:30:58.823228Z", - "iopub.status.busy": "2023-12-19T19:30:58.822720Z", - "iopub.status.idle": "2023-12-19T19:31:02.226167Z", - "shell.execute_reply": "2023-12-19T19:31:02.225157Z" + "iopub.execute_input": "2023-12-19T22:33:59.301865Z", + "iopub.status.busy": "2023-12-19T22:33:59.301230Z", + "iopub.status.idle": "2023-12-19T22:34:02.696538Z", + "shell.execute_reply": "2023-12-19T22:34:02.695891Z" } }, "outputs": [], @@ -702,17 +686,17 @@ "id": "5f624ed4", "metadata": { "execution": { - "iopub.execute_input": "2023-12-19T19:31:02.231227Z", - "iopub.status.busy": "2023-12-19T19:31:02.231028Z", - "iopub.status.idle": "2023-12-19T19:31:15.899234Z", - "shell.execute_reply": "2023-12-19T19:31:15.898590Z" + "iopub.execute_input": "2023-12-19T22:34:02.704636Z", + "iopub.status.busy": "2023-12-19T22:34:02.704423Z", + "iopub.status.idle": "2023-12-19T22:34:16.017323Z", + "shell.execute_reply": "2023-12-19T22:34:16.016688Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "cc502dd40d22491994b1f777025d0170", + "model_id": "9373c2e0d8d341dcba45cbcb12648fb4", "version_major": 2, "version_minor": 0 }, @@ -726,7 +710,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d0855e42ae464c13bc77bfdf45b9a1b8", + "model_id": "8a408e146d974687bd808ec806200e98", "version_major": 2, "version_minor": 0 }, @@ -786,17 +770,17 @@ "id": "bff27cc1", "metadata": { "execution": { - "iopub.execute_input": "2023-12-19T19:31:15.906271Z", - "iopub.status.busy": "2023-12-19T19:31:15.905941Z", - "iopub.status.idle": "2023-12-19T19:31:16.128282Z", - "shell.execute_reply": "2023-12-19T19:31:16.127091Z" + "iopub.execute_input": "2023-12-19T22:34:16.023897Z", + "iopub.status.busy": "2023-12-19T22:34:16.023524Z", + "iopub.status.idle": "2023-12-19T22:34:16.241200Z", + "shell.execute_reply": "2023-12-19T22:34:16.240532Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ba414d140e274eb99fa243548495972d", + "model_id": "6b59dd2683a74e9d8f23df1db7154fbf", "version_major": 2, "version_minor": 0 }, @@ -810,7 +794,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "92e5ed2fcbda473fbfd46a3ba2e5a467", + "model_id": "84eec996238e43349ea066fbf9114cf6", "version_major": 2, "version_minor": 0 }, @@ -824,7 +808,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2ba6b7a22fd84f2d988580665b536257", + "model_id": "dedc21230b804d0d850f04e53ba3ada6", "version_major": 2, "version_minor": 0 }, @@ -944,17 +928,17 @@ "id": "8c38ef9e", "metadata": { "execution": { - "iopub.execute_input": "2023-12-19T19:31:16.133871Z", - "iopub.status.busy": "2023-12-19T19:31:16.133412Z", - "iopub.status.idle": "2023-12-19T19:31:16.629491Z", - "shell.execute_reply": "2023-12-19T19:31:16.628785Z" + "iopub.execute_input": "2023-12-19T22:34:16.246385Z", + "iopub.status.busy": "2023-12-19T22:34:16.246182Z", + "iopub.status.idle": "2023-12-19T22:34:16.740433Z", + "shell.execute_reply": "2023-12-19T22:34:16.739744Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "dbd4d21e0bc74b689fe5ae6705bbdc0a", + "model_id": "4070aba94ca743f88fae6c3c73778db9", "version_major": 2, "version_minor": 0 }, @@ -968,7 +952,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3e6bdb6f706348bb8c2d616a4ac0d251", + "model_id": "1df5b904294f428ebc25d4ccec3e1a24", "version_major": 2, "version_minor": 0 }, @@ -982,7 +966,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f012b1141b11446cadc73f655da956bf", + "model_id": "770a7e230aa2403488dc027bbcec2f9a", "version_major": 2, "version_minor": 0 }, @@ -996,7 +980,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d81fea6fc9484d88b737954857008d8c", + "model_id": "ff6aa64a2b9d4cd89c82801a7c7e3fdf", "version_major": 2, "version_minor": 0 }, @@ -1010,7 +994,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a5b8d136255c47a7b5c186868b5fcd25", + "model_id": "70ec85ae148547caa6e8bc3cca3ce09d", "version_major": 2, "version_minor": 0 }, @@ -1024,7 +1008,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4ffe68e3a580427daae40759ea0f9e0c", + "model_id": "fda1272733154f13977e1967940816d9", "version_major": 2, "version_minor": 0 }, @@ -1038,7 +1022,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4ed767c100ab45be994bfdf14b4eab6d", + "model_id": "c452a1315926481b8f3471086a8890d5", "version_major": 2, "version_minor": 0 }, @@ -1052,7 +1036,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "41187801fbcc4250950809a8f5fe7622", + "model_id": "1dc441d24c6b46af85e402a68955457c", "version_major": 2, "version_minor": 0 }, @@ -1066,7 +1050,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "eeb0097964644ce191866142bee65469", + "model_id": "2de2b2e0dd5744889a21eb933ec10716", "version_major": 2, "version_minor": 0 }, @@ -1080,7 +1064,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "edaae6c4bad3423bab46c5587bed7aff", + "model_id": "2d66f20811d84ddba30c6b13fecf3b8b", "version_major": 2, "version_minor": 0 }, @@ -1143,10 +1127,10 @@ "id": "3e674b7a", "metadata": { "execution": { - "iopub.execute_input": "2023-12-19T19:31:16.634447Z", - "iopub.status.busy": "2023-12-19T19:31:16.634230Z", - "iopub.status.idle": "2023-12-19T19:31:16.889083Z", - "shell.execute_reply": "2023-12-19T19:31:16.888412Z" + "iopub.execute_input": "2023-12-19T22:34:16.745343Z", + "iopub.status.busy": "2023-12-19T22:34:16.745103Z", + "iopub.status.idle": "2023-12-19T22:34:16.973205Z", + "shell.execute_reply": "2023-12-19T22:34:16.972554Z" } }, "outputs": [ @@ -2043,9 +2027,9 @@ } }, "text/html": [ - "
+
@@ -671,49 +671,49 @@

Example 4. Sensitivity test experiment with different clinical shifts
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
@@ -758,7 +758,7 @@

Example 5. Rolling window experiment with synthetic timestamps using biweekl

diff --git a/api/tutorials/nihcxr/monitor_api.ipynb b/api/tutorials/nihcxr/monitor_api.ipynb index 4ea510974..d84dd3286 100644 --- a/api/tutorials/nihcxr/monitor_api.ipynb +++ b/api/tutorials/nihcxr/monitor_api.ipynb @@ -22,17 +22,17 @@ "id": "8aa3302d", "metadata": { "execution": { - "iopub.execute_input": "2023-12-19T19:31:22.550401Z", - "iopub.status.busy": "2023-12-19T19:31:22.549839Z", - "iopub.status.idle": "2023-12-19T19:31:30.605597Z", - "shell.execute_reply": "2023-12-19T19:31:30.603651Z" + "iopub.execute_input": "2023-12-19T22:34:22.252387Z", + "iopub.status.busy": "2023-12-19T22:34:22.251573Z", + "iopub.status.idle": "2023-12-19T22:34:30.289082Z", + "shell.execute_reply": "2023-12-19T22:34:30.288337Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 1, @@ -79,17 +79,17 @@ "id": "e11920db", "metadata": { "execution": { - "iopub.execute_input": "2023-12-19T19:31:30.613112Z", - "iopub.status.busy": "2023-12-19T19:31:30.612340Z", - "iopub.status.idle": "2023-12-19T19:31:31.235364Z", - "shell.execute_reply": "2023-12-19T19:31:31.234362Z" + "iopub.execute_input": "2023-12-19T22:34:30.296194Z", + "iopub.status.busy": "2023-12-19T22:34:30.295906Z", + "iopub.status.idle": "2023-12-19T22:34:30.915625Z", + "shell.execute_reply": "2023-12-19T22:34:30.914233Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "46e804cca0854e33ba29f34ed2e0b975", + "model_id": "9e2365758abe4c2cba7ad308a2b02260", "version_major": 2, "version_minor": 0 }, @@ -145,10 +145,10 @@ "id": "54a3523a", "metadata": { "execution": { - "iopub.execute_input": "2023-12-19T19:31:31.241025Z", - "iopub.status.busy": "2023-12-19T19:31:31.240643Z", - "iopub.status.idle": "2023-12-19T19:31:41.935056Z", - "shell.execute_reply": "2023-12-19T19:31:41.934392Z" + "iopub.execute_input": "2023-12-19T22:34:30.920619Z", + "iopub.status.busy": "2023-12-19T22:34:30.920076Z", + "iopub.status.idle": "2023-12-19T22:34:41.601690Z", + "shell.execute_reply": "2023-12-19T22:34:41.601013Z" } }, "outputs": [ @@ -213,10 +213,10 @@ "id": "40b5a90f", "metadata": { "execution": { - "iopub.execute_input": "2023-12-19T19:31:41.940756Z", - "iopub.status.busy": "2023-12-19T19:31:41.940466Z", - "iopub.status.idle": "2023-12-19T19:31:48.748539Z", - "shell.execute_reply": "2023-12-19T19:31:48.747697Z" + "iopub.execute_input": "2023-12-19T22:34:41.607701Z", + "iopub.status.busy": "2023-12-19T22:34:41.607329Z", + "iopub.status.idle": "2023-12-19T22:34:48.372208Z", + "shell.execute_reply": "2023-12-19T22:34:48.371516Z" } }, "outputs": [ @@ -271,17 +271,17 @@ "id": "9ba03fac", "metadata": { "execution": { - "iopub.execute_input": "2023-12-19T19:31:48.758101Z", - "iopub.status.busy": "2023-12-19T19:31:48.757727Z", - "iopub.status.idle": "2023-12-19T19:32:03.587067Z", - "shell.execute_reply": "2023-12-19T19:32:03.586354Z" + "iopub.execute_input": "2023-12-19T22:34:48.377609Z", + "iopub.status.busy": "2023-12-19T22:34:48.377256Z", + "iopub.status.idle": "2023-12-19T22:35:02.720249Z", + "shell.execute_reply": "2023-12-19T22:35:02.719181Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8e7060dfa7d1462c9fe8cc702b4cdcd4", + "model_id": "f0b212f13df4435e87cc031143c1cbfc", "version_major": 2, "version_minor": 0 }, @@ -295,7 +295,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "68ee4fbafcba4dee97db7490d7be4eac", + "model_id": "9e88523b6f2545e1a9381174bd19ea97", "version_major": 2, "version_minor": 0 }, @@ -309,7 +309,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f5923943f39f45c8b08e8a7ac2636e2d", + "model_id": "1f26b73e713942cc9881d5e44d3841f0", "version_major": 2, "version_minor": 0 }, @@ -323,7 +323,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b346ee36c65c40dabebcc796298b2199", + "model_id": "f1fa11fb86f14a1281fc37442fe9c7e6", "version_major": 2, "version_minor": 0 }, @@ -337,7 +337,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "71e95656d7854d30b0652fffc55fb57b", + "model_id": "b7db996d421f45c6a600424baaa1d5ec", "version_major": 2, "version_minor": 0 }, @@ -351,7 +351,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "391d1fb42ccc4306ad8246688d83238c", + "model_id": "96e7370b681f41f182d1a384c5bc2f8a", "version_major": 2, "version_minor": 0 }, @@ -365,7 +365,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "5fbaecf33ee04d2aa0c68385424cab08", + "model_id": "7ef3693046654563bb0b821c29dce528", "version_major": 2, "version_minor": 0 }, @@ -379,7 +379,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "fe67c8d17c244b5890ece1adf245d846", + "model_id": "5cacbab8bd1d45778ef250eb1067424a", "version_major": 2, "version_minor": 0 }, @@ -456,10 +456,10 @@ "id": "77e4b383", "metadata": { "execution": { - "iopub.execute_input": "2023-12-19T19:32:03.591350Z", - "iopub.status.busy": "2023-12-19T19:32:03.591023Z", - "iopub.status.idle": "2023-12-19T19:32:05.534121Z", - "shell.execute_reply": "2023-12-19T19:32:05.533250Z" + "iopub.execute_input": "2023-12-19T22:35:02.723748Z", + "iopub.status.busy": "2023-12-19T22:35:02.723409Z", + "iopub.status.idle": "2023-12-19T22:35:04.904773Z", + "shell.execute_reply": "2023-12-19T22:35:04.903761Z" }, "tags": [] }, @@ -518,33 +518,23 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "005c69ef703449aebaee329f8f331cad": { + "02c18bea3e9b493582b3ab85d20a4248": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3d0bb37514c24457bd68c0c8c46c8af1", - "max": 25596.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c017c68c65b14542a8e551ef75cefc63", - "tabbable": null, - "tooltip": null, - "value": 25596.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "0350ff38275842898a9ae5e7c80c897a": { + "05968b17d6664ccbb81631f02d8a533d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -559,15 +549,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3c5b96bd5b794d7cbe23a9237e6bc075", + "layout": "IPY_MODEL_2f80bc6fc1b94f02830649e4cf914c8e", "placeholder": "​", - "style": "IPY_MODEL_e3e130fa9b1e4b0191c803aea5b222fd", + "style": "IPY_MODEL_a95ec8df1b89485c9cec2f6ba536e4be", "tabbable": null, "tooltip": null, - "value": "Filter (num_proc=6): 100%" + "value": " 25596/25596 [00:00<00:00, 62816.16 examples/s]" } }, - "0f4c383760db48208d3df5c141329190": { + "076c76fb67344d3eac011e9acd554681": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -582,15 +572,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_78d03991d3bf4ed8a5ff0a79d9c107ee", + "layout": "IPY_MODEL_07d8e7c5eba446c9a237b599550883c6", "placeholder": "​", - "style": "IPY_MODEL_ee5efaefc78d495db42129a70542c172", + "style": "IPY_MODEL_26f384e6c68b4026b2ec0710a24f03c1", "tabbable": null, "tooltip": null, - "value": " 25596/25596 [00:00<00:00, 72350.81 examples/s]" + "value": "Filter (num_proc=6): 100%" } }, - "0fbe060efe9643a9bc615d442de32167": { + "07d8e7c5eba446c9a237b599550883c6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -643,118 +633,7 @@ "width": null } }, - "10d41374effc4c8dae73cddc22e10b54": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a08d5a76ee3d490cb6ab1fe2135aef1a", - "max": 25596.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4ded2e2932544515a711fb61d988c365", - "tabbable": null, - "tooltip": null, - "value": 25596.0 - } - }, - "124b9d65c87044db99014d71645a4ec0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c8f6d7ad8eed46d9b2c04b773848ce27", - "placeholder": "​", - "style": "IPY_MODEL_4a6ca45205c5478e89f5f4248e2ed1f3", - "tabbable": null, - "tooltip": null, - "value": "Filter (num_proc=6): 100%" - } - }, - "153dc25a1b544f0fa50ac4d13e604253": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2c5aee627a2e4fc989c17933df5b5a84", - "placeholder": "​", - "style": "IPY_MODEL_5e0729d5faee429f9e7299a4c038ebde", - "tabbable": null, - "tooltip": null, - "value": " 25596/25596 [00:00<00:00, 63753.35 examples/s]" - } - }, - "169b5d6b1fca43e0a59bab7f7ff73f4a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_24f2a527e937457c828b735e5d743cad", - "placeholder": "​", - "style": "IPY_MODEL_d9b169929b8b4d4aad8b3165026ff781", - "tabbable": null, - "tooltip": null, - "value": "Filter (num_proc=6): 100%" - } - }, - "16a754ff4195469faf9e7f9e02d416ba": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "1adb8d1307d44ecdbea9c14003c6713d": { + "0a3daa599df84f36a819cb9e9a1ea74e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -807,60 +686,25 @@ "width": null } }, - "1ed5dc6e386241189a9526aa0bb24c3b": { - "model_module": "@jupyter-widgets/base", + "0c0fd56516b2448d83fba7e2824bf664": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "20643f4366464348a5c2b6871c7d73ce": { + "0dec1a4f7ddd4f98bf3fa436230a40dc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -913,7 +757,33 @@ "width": null } }, - "24f2a527e937457c828b735e5d743cad": { + "0e1b045ac1b041e4b41caa3a5359da41": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7309537839854758865d75a853160c98", + "max": 25596.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1db1407ca6de420a928a4e5250c3da32", + "tabbable": null, + "tooltip": null, + "value": 25596.0 + } + }, + "0e879049b88445e7ab738339c1be1aca": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -966,7 +836,25 @@ "width": null } }, - "2c5aee627a2e4fc989c17933df5b5a84": { + "0faa3d6097384dc88c848c1a7f783160": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "126846e4314e49eda54cb2d94c4f1040": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1019,30 +907,23 @@ "width": null } }, - "2ce46dbc8ebb4c86963f29fa2c48ba88": { + "143784401ae84bffab02247de2b92a38": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d2d6d440ab8940e2bb5791f9b6e45c45", - "placeholder": "​", - "style": "IPY_MODEL_d2e0235f96f5492dbc5270311c8b9204", - "tabbable": null, - "tooltip": null, - "value": "Filter (num_proc=6): 100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "33837e0fc385445e85b04a1e970958fc": { + "17d3da7aa4cd4ce7b1bb5b412de892a6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1057,15 +938,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a6f03493a3a542e1b0b3b85fc439878e", + "layout": "IPY_MODEL_d29f3456807f4cc59a9317f12c088929", "placeholder": "​", - "style": "IPY_MODEL_6a2a08e42bac49ce8705777c261fbb27", + "style": "IPY_MODEL_0faa3d6097384dc88c848c1a7f783160", "tabbable": null, "tooltip": null, "value": "Filter (num_proc=6): 100%" } }, - "35d8c8610ca24e45846878380a1f4344": { + "1a4529b4352b4be9a35dd8c43c26781d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1118,31 +999,7 @@ "width": null } }, - "391d1fb42ccc4306ad8246688d83238c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b13f341e7f114e8d8d3e4bf4c70d4622", - "IPY_MODEL_bcd1ad89ed584edc8008833b7029141f", - "IPY_MODEL_a8301a321e0d4fd2b90bb46440708880" - ], - "layout": "IPY_MODEL_20643f4366464348a5c2b6871c7d73ce", - "tabbable": null, - "tooltip": null - } - }, - "3ad7e0321cfc48e9b243e85ed0df6c7d": { + "1b94d14fa3aa4dfc9f17c09d771a1949": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1160,83 +1017,83 @@ "text_color": null } }, - "3c0ed6e658754e6181a26d6bf5e17925": { + "1db1407ca6de420a928a4e5250c3da32": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c597a3724809489cbc1650195e9e14c7", - "placeholder": "​", - "style": "IPY_MODEL_b79fa7daaf314a089b6f982dfe3cfdb1", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "1ddc92facbb1486eabea08881a4c238e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "1f26b73e713942cc9881d5e44d3841f0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a7be43ef789f4393a35dacb5cde6d276", + "IPY_MODEL_ea677ec6864b48679d15737be5f015b9", + "IPY_MODEL_05968b17d6664ccbb81631f02d8a533d" + ], + "layout": "IPY_MODEL_0e879049b88445e7ab738339c1be1aca", "tabbable": null, - "tooltip": null, - "value": " 25596/25596 [00:00<00:00, 70806.24 examples/s]" + "tooltip": null } }, - "3c5b96bd5b794d7cbe23a9237e6bc075": { - "model_module": "@jupyter-widgets/base", + "20cc321dbbae42bd841e822e020b5188": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "3d0bb37514c24457bd68c0c8c46c8af1": { + "219d96668849454cbb8c027e3b25d297": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1289,7 +1146,43 @@ "width": null } }, - "3d5b96a60d8f485383f38e1ec227107e": { + "237f4c4077e64c50820d174b057574bc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "26f384e6c68b4026b2ec0710a24f03c1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "2f80bc6fc1b94f02830649e4cf914c8e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1342,7 +1235,30 @@ "width": null } }, - "42c7ac9a55cc4ea59476a69d962b2ec1": { + "30aafe1319d9405c8eb783e7c56e8915": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0dec1a4f7ddd4f98bf3fa436230a40dc", + "placeholder": "​", + "style": "IPY_MODEL_cb7368ca2e564b6599e9b7acfda19595", + "tabbable": null, + "tooltip": null, + "value": " 25596/25596 [00:00<00:00, 56846.31 examples/s]" + } + }, + "30c2a61a0aa544418e53eab088ab5e51": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1395,49 +1311,7 @@ "width": null } }, - "46e804cca0854e33ba29f34ed2e0b975": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_124b9d65c87044db99014d71645a4ec0", - "IPY_MODEL_e7e1c386129b43a592aa53460df9b338", - "IPY_MODEL_0f4c383760db48208d3df5c141329190" - ], - "layout": "IPY_MODEL_4d6be80fe1a64b72ad67e9d3fac123b5", - "tabbable": null, - "tooltip": null - } - }, - "4a6ca45205c5478e89f5f4248e2ed1f3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4c9c106963454d768ee506307ea6b60d": { + "357e1eb6025840909b5515329097faad": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1453,17 +1327,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1ed5dc6e386241189a9526aa0bb24c3b", + "layout": "IPY_MODEL_fd48c97b848f4e0186e69d51188b9237", "max": 25596.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_16a754ff4195469faf9e7f9e02d416ba", + "style": "IPY_MODEL_9d709c0dc4b24ad59bba4a1f037209dc", "tabbable": null, "tooltip": null, "value": 25596.0 } }, - "4d6be80fe1a64b72ad67e9d3fac123b5": { + "36671fd542274b84915b89f678c6d233": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1516,41 +1390,7 @@ "width": null } }, - "4ded2e2932544515a711fb61d988c365": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "5327cfbf73004c3aa28948b624fdb889": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "53f30a8cb7e24061b35cf40d0e82469e": { + "39ce4e5c5d054ab49c68f0374bf3a6d1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1603,7 +1443,7 @@ "width": null } }, - "555ae2f9700944969a741535955ae0ff": { + "3a955e8d1a3e4a8381cab00f4b2095f8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1619,35 +1459,40 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bcfdc19ad5844485872ffc75ed80ac50", + "layout": "IPY_MODEL_0a3daa599df84f36a819cb9e9a1ea74e", "max": 25596.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_af0b0135d1d8456393b1a9ace76258fa", + "style": "IPY_MODEL_b15dc0409b5643debc9bf895681c4ad8", "tabbable": null, "tooltip": null, "value": 25596.0 } }, - "58eaabac1dac4b11850a82da0b21de02": { + "43cb0d53168541968b8ededfb2c16470": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6dd05326e8ce474092f1d41000295d4a", + "placeholder": "​", + "style": "IPY_MODEL_f385f70d6bea48ad92f9374691145a75", + "tabbable": null, + "tooltip": null, + "value": " 25596/25596 [00:00<00:00, 56996.22 examples/s]" } }, - "5b20aa90062f4b8c9584631273ef464a": { + "480b9bc7647b46a382eb5cbab8c289f1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1700,7 +1545,7 @@ "width": null } }, - "5b52cfba819e4f628311cbfac862bd45": { + "48563ce9acad42f59da819730df7ba65": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1716,7 +1561,7 @@ "description_width": "" } }, - "5e0729d5faee429f9e7299a4c038ebde": { + "493a44a6363c4b0faa23fd64eb0ff02a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1734,107 +1579,74 @@ "text_color": null } }, - "5ecc966c4a154761b217d809b6a1009c": { - "model_module": "@jupyter-widgets/base", + "4e2fcd3091294b91b518e39be71c44c8": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_30c2a61a0aa544418e53eab088ab5e51", + "placeholder": "​", + "style": "IPY_MODEL_6d9f50db911e4a31ac6d63bf10f2ef1e", + "tabbable": null, + "tooltip": null, + "value": "Filter (num_proc=6): 100%" } }, - "5fbaecf33ee04d2aa0c68385424cab08": { + "5533b42b55934716a551c2df886b91ed": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_33837e0fc385445e85b04a1e970958fc", - "IPY_MODEL_eaa29c97c16a45dab40d344c760c2d41", - "IPY_MODEL_8388b6476a0f4ad0b90115d955e2b02d" - ], - "layout": "IPY_MODEL_f31a57c25b9047a0995de54f1e19f422", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "6896cf432c8f40a7bb2632cea532ce80": { + "5a0679ed327f47bc8303138803ef2131": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_42c7ac9a55cc4ea59476a69d962b2ec1", - "placeholder": "​", - "style": "IPY_MODEL_bd27e5336e7d4777949c4800bdb9ac8e", + "layout": "IPY_MODEL_cc11e2d2937345b0be74792cc67a56a9", + "max": 25596.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_02c18bea3e9b493582b3ab85d20a4248", "tabbable": null, "tooltip": null, - "value": " 25596/25596 [00:00<00:00, 71528.44 examples/s]" + "value": 25596.0 } }, - "68ee4fbafcba4dee97db7490d7be4eac": { + "5cacbab8bd1d45778ef250eb1067424a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1849,76 +1661,175 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_169b5d6b1fca43e0a59bab7f7ff73f4a", - "IPY_MODEL_e8d63893731e4d39bfef44ae727e86ef", - "IPY_MODEL_8e19a649e55d419e9e47a85438113210" + "IPY_MODEL_8b91fadcfa724716a9d7dce9140db675", + "IPY_MODEL_802a56ef3d11433aaf6b4c7332af56de", + "IPY_MODEL_e36d83495786492f95063b6850009612" ], - "layout": "IPY_MODEL_53f30a8cb7e24061b35cf40d0e82469e", + "layout": "IPY_MODEL_99f913ab578f4077b474de8fbc4e6ebe", "tabbable": null, "tooltip": null } }, - "6a2a08e42bac49ce8705777c261fbb27": { - "model_module": "@jupyter-widgets/controls", + "5f3c8dcf97194644bba84b34e0788cc2": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "6b84edc5ef494e929f6818cff1c2e670": { - "model_module": "@jupyter-widgets/controls", + "620038c9379d402bb78184e02191112c": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "71e95656d7854d30b0652fffc55fb57b": { - "model_module": "@jupyter-widgets/controls", + "62ad150874fc4595a756bd27469d6a5a": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9c99d0b28732411caf94c2b203b96834", - "IPY_MODEL_7ec40cf0227e412ea1c29fbb0046d827", - "IPY_MODEL_153dc25a1b544f0fa50ac4d13e604253" - ], - "layout": "IPY_MODEL_927f1d37760c4af4a6dfbe83f1a45757", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "7382cd407fa24f50848ab1e52fcb59d7": { + "6626d23fbd494e9d85fad048d28e5a83": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1936,7 +1847,7 @@ "text_color": null } }, - "78d03991d3bf4ed8a5ff0a79d9c107ee": { + "6af4c876de084f5b9a9b9b567a8ed44e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1989,72 +1900,25 @@ "width": null } }, - "7ec40cf0227e412ea1c29fbb0046d827": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_bde2ae4f381540a59bcbeab2229b01d4", - "max": 25596.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8db45c28ab9e4877b4c0309746f07361", - "tabbable": null, - "tooltip": null, - "value": 25596.0 - } - }, - "7fee244c3828448bb0713214142ff97a": { + "6d9f50db911e4a31ac6d63bf10f2ef1e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "815b98f5f417490bb0fd927e9bac1e73": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5ecc966c4a154761b217d809b6a1009c", - "placeholder": "​", - "style": "IPY_MODEL_de02a78ad11d48b8864c13db51d268f7", - "tabbable": null, - "tooltip": null, - "value": "Filter (num_proc=6): 100%" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "81e735a1f66b44b8ae9d4de699a64d38": { + "6dd05326e8ce474092f1d41000295d4a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2107,92 +1971,78 @@ "width": null } }, - "82f4f72f95574bf9ab6743bea229c2ce": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_dcec0a3e83a74bc2b2b3a65fc49435f9", - "placeholder": "​", - "style": "IPY_MODEL_e7496814fd7045909e997449529c80cf", - "tabbable": null, - "tooltip": null, - "value": " 25596/25596 [00:00<00:00, 70803.14 examples/s]" - } - }, - "8388b6476a0f4ad0b90115d955e2b02d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1adb8d1307d44ecdbea9c14003c6713d", - "placeholder": "​", - "style": "IPY_MODEL_3ad7e0321cfc48e9b243e85ed0df6c7d", - "tabbable": null, - "tooltip": null, - "value": " 25596/25596 [00:00<00:00, 70316.92 examples/s]" - } - }, - "8474f8ab80cb40dbb564564f0613e103": { + "71690217632045baac46bec99527c176": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5b20aa90062f4b8c9584631273ef464a", - "placeholder": "​", - "style": "IPY_MODEL_ed95f8d64acd45299526a8e840e2cef3", - "tabbable": null, - "tooltip": null, - "value": " 25596/25596 [00:00<00:00, 58513.04 examples/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "8db45c28ab9e4877b4c0309746f07361": { - "model_module": "@jupyter-widgets/controls", + "7309537839854758865d75a853160c98": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "8e19a649e55d419e9e47a85438113210": { + "7c381f656f0240d0bafe6cad977e54d2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2207,39 +2057,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_eb28e551d9d14fad96e0095cef478b53", + "layout": "IPY_MODEL_620038c9379d402bb78184e02191112c", "placeholder": "​", - "style": "IPY_MODEL_6b84edc5ef494e929f6818cff1c2e670", + "style": "IPY_MODEL_1ddc92facbb1486eabea08881a4c238e", "tabbable": null, "tooltip": null, - "value": " 25596/25596 [00:00<00:00, 72398.61 examples/s]" - } - }, - "8e7060dfa7d1462c9fe8cc702b4cdcd4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_2ce46dbc8ebb4c86963f29fa2c48ba88", - "IPY_MODEL_10d41374effc4c8dae73cddc22e10b54", - "IPY_MODEL_82f4f72f95574bf9ab6743bea229c2ce" - ], - "layout": "IPY_MODEL_db82abc156034aac869def915cd8a61c", - "tabbable": null, - "tooltip": null + "value": "Filter (num_proc=6): 100%" } }, - "927f1d37760c4af4a6dfbe83f1a45757": { + "7d80374bd3714fdd9546985367c81c9d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2292,23 +2118,80 @@ "width": null } }, - "92dc2d3100b64cefba97319d8a9bba95": { + "7e56756d27ba4350ac236257289c84ed": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_cd052050e7424a07b8b67477262a052b", + "placeholder": "​", + "style": "IPY_MODEL_da8fe39c7d4742cfb9866db6bfcb787d", + "tabbable": null, + "tooltip": null, + "value": " 25596/25596 [00:00<00:00, 60996.29 examples/s]" + } + }, + "7ef3693046654563bb0b821c29dce528": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e617738826234217abe0236db738627b", + "IPY_MODEL_0e1b045ac1b041e4b41caa3a5359da41", + "IPY_MODEL_7e56756d27ba4350ac236257289c84ed" + ], + "layout": "IPY_MODEL_8107cc4b7f254eab8d49d48b04b7dc73", + "tabbable": null, + "tooltip": null + } + }, + "802a56ef3d11433aaf6b4c7332af56de": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_39ce4e5c5d054ab49c68f0374bf3a6d1", + "max": 25596.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_bf8659f9cac2401b86d895bd45fe4884", + "tabbable": null, + "tooltip": null, + "value": 25596.0 } }, - "97205b11c89f44f889dc707632c51211": { + "8107cc4b7f254eab8d49d48b04b7dc73": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2361,7 +2244,7 @@ "width": null } }, - "98fc0c2b91254c64bd14d97a3e678908": { + "8ae49dd95f8e4b6d8c17d2db454915f0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2400,39 +2283,21 @@ "left": null, "margin": null, "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "9c928242dca44e6da99b1ac490253121": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "9c99d0b28732411caf94c2b203b96834": { + "8b91fadcfa724716a9d7dce9140db675": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2447,15 +2312,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_98fc0c2b91254c64bd14d97a3e678908", + "layout": "IPY_MODEL_8ae49dd95f8e4b6d8c17d2db454915f0", "placeholder": "​", - "style": "IPY_MODEL_9c928242dca44e6da99b1ac490253121", + "style": "IPY_MODEL_493a44a6363c4b0faa23fd64eb0ff02a", "tabbable": null, "tooltip": null, "value": "Filter (num_proc=6): 100%" } }, - "a08d5a76ee3d490cb6ab1fe2135aef1a": { + "8e528b4a45a14f1c849994fc584c2709": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2508,30 +2373,31 @@ "width": null } }, - "a50f3faea560418fa5318f8cb44cdde6": { + "96e7370b681f41f182d1a384c5bc2f8a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3d5b96a60d8f485383f38e1ec227107e", - "placeholder": "​", - "style": "IPY_MODEL_58eaabac1dac4b11850a82da0b21de02", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_17d3da7aa4cd4ce7b1bb5b412de892a6", + "IPY_MODEL_b6440878c465480882948fd2b62672cd", + "IPY_MODEL_e6c2c9be994b4968841ead083f7cda58" + ], + "layout": "IPY_MODEL_9de7088dc8d640ee8282be765d6ac709", "tabbable": null, - "tooltip": null, - "value": "Filter (num_proc=6): 100%" + "tooltip": null } }, - "a6f03493a3a542e1b0b3b85fc439878e": { + "99f913ab578f4077b474de8fbc4e6ebe": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2584,30 +2450,7 @@ "width": null } }, - "a8301a321e0d4fd2b90bb46440708880": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a87910205693456ca13c6ab35e3588fd", - "placeholder": "​", - "style": "IPY_MODEL_7382cd407fa24f50848ab1e52fcb59d7", - "tabbable": null, - "tooltip": null, - "value": " 25596/25596 [00:00<00:00, 62447.42 examples/s]" - } - }, - "a87910205693456ca13c6ab35e3588fd": { + "9bf4cca0c65d4cf29764ab23b3a88650": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2660,7 +2503,7 @@ "width": null } }, - "a8ce4ec7396942aeacb6801fe3a7e61a": { + "9d709c0dc4b24ad59bba4a1f037209dc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2676,7 +2519,7 @@ "description_width": "" } }, - "adb9847c8b3044879326ecf0c4e84a94": { + "9de7088dc8d640ee8282be765d6ac709": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2729,46 +2572,31 @@ "width": null } }, - "af0b0135d1d8456393b1a9ace76258fa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "b13f341e7f114e8d8d3e4bf4c70d4622": { + "9e2365758abe4c2cba7ad308a2b02260": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_97205b11c89f44f889dc707632c51211", - "placeholder": "​", - "style": "IPY_MODEL_5327cfbf73004c3aa28948b624fdb889", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4e2fcd3091294b91b518e39be71c44c8", + "IPY_MODEL_cf4bd9e4810a462086ccded213c57a1e", + "IPY_MODEL_ec21401967404a5fbba90dedc2c1bbc5" + ], + "layout": "IPY_MODEL_62ad150874fc4595a756bd27469d6a5a", "tabbable": null, - "tooltip": null, - "value": "Filter (num_proc=6): 100%" + "tooltip": null } }, - "b346ee36c65c40dabebcc796298b2199": { + "9e88523b6f2545e1a9381174bd19ea97": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2783,16 +2611,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_0350ff38275842898a9ae5e7c80c897a", - "IPY_MODEL_005c69ef703449aebaee329f8f331cad", - "IPY_MODEL_6896cf432c8f40a7bb2632cea532ce80" + "IPY_MODEL_f1b5074a8e574a0aa58892a03f5c364d", + "IPY_MODEL_3a955e8d1a3e4a8381cab00f4b2095f8", + "IPY_MODEL_ff79d46d5f7649b298e7c31242adb5c2" ], - "layout": "IPY_MODEL_cf0e07274e4949f8bad22905a8c25911", + "layout": "IPY_MODEL_36671fd542274b84915b89f678c6d233", "tabbable": null, "tooltip": null } }, - "b79fa7daaf314a089b6f982dfe3cfdb1": { + "9f7a33faa8994334ab44c8b6dee72939": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2810,33 +2638,7 @@ "text_color": null } }, - "bcd1ad89ed584edc8008833b7029141f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_adb9847c8b3044879326ecf0c4e84a94", - "max": 25596.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_92dc2d3100b64cefba97319d8a9bba95", - "tabbable": null, - "tooltip": null, - "value": 25596.0 - } - }, - "bcfdc19ad5844485872ffc75ed80ac50": { + "a6e3306758a342bca1ae5681dbfbf302": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2889,7 +2691,30 @@ "width": null } }, - "bd27e5336e7d4777949c4800bdb9ac8e": { + "a7be43ef789f4393a35dacb5cde6d276": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7d80374bd3714fdd9546985367c81c9d", + "placeholder": "​", + "style": "IPY_MODEL_1b94d14fa3aa4dfc9f17c09d771a1949", + "tabbable": null, + "tooltip": null, + "value": "Filter (num_proc=6): 100%" + } + }, + "a95ec8df1b89485c9cec2f6ba536e4be": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2907,7 +2732,89 @@ "text_color": null } }, - "bde2ae4f381540a59bcbeab2229b01d4": { + "b15dc0409b5643debc9bf895681c4ad8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b19e0db3226b4ac8a6f07014aa142933": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b6440878c465480882948fd2b62672cd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9bf4cca0c65d4cf29764ab23b3a88650", + "max": 25596.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b19e0db3226b4ac8a6f07014aa142933", + "tabbable": null, + "tooltip": null, + "value": 25596.0 + } + }, + "b7db996d421f45c6a600424baaa1d5ec": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_dee822d978684e609b08b53ee4e2d879", + "IPY_MODEL_357e1eb6025840909b5515329097faad", + "IPY_MODEL_d88dac0325ba4438ab920208ef16e71e" + ], + "layout": "IPY_MODEL_c7834d3001f544b9b95651fc7fce7797", + "tabbable": null, + "tooltip": null + } + }, + "bf5de1d7d3064d4a953c386f3fd52358": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2960,7 +2867,7 @@ "width": null } }, - "c017c68c65b14542a8e551ef75cefc63": { + "bf8659f9cac2401b86d895bd45fe4884": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2976,7 +2883,7 @@ "description_width": "" } }, - "c597a3724809489cbc1650195e9e14c7": { + "c7834d3001f544b9b95651fc7fce7797": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3029,7 +2936,7 @@ "width": null } }, - "c8f6d7ad8eed46d9b2c04b773848ce27": { + "ca3deb21adc3485b8fbf7489655ba295": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3082,7 +2989,25 @@ "width": null } }, - "cf0e07274e4949f8bad22905a8c25911": { + "cb7368ca2e564b6599e9b7acfda19595": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "cc11e2d2937345b0be74792cc67a56a9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3135,7 +3060,7 @@ "width": null } }, - "d2d6d440ab8940e2bb5791f9b6e45c45": { + "cd052050e7424a07b8b67477262a052b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3188,43 +3113,59 @@ "width": null } }, - "d2e0235f96f5492dbc5270311c8b9204": { + "cdc20a944b6a44d5b645af1685b4def0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1a4529b4352b4be9a35dd8c43c26781d", + "max": 25596.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_48563ce9acad42f59da819730df7ba65", + "tabbable": null, + "tooltip": null, + "value": 25596.0 } }, - "d9b169929b8b4d4aad8b3165026ff781": { + "cf4bd9e4810a462086ccded213c57a1e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bf5de1d7d3064d4a953c386f3fd52358", + "max": 25596.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_fae92487715a4892ace0dab7fbfc7a87", + "tabbable": null, + "tooltip": null, + "value": 25596.0 } }, - "db82abc156034aac869def915cd8a61c": { + "d29f3456807f4cc59a9317f12c088929": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3277,7 +3218,48 @@ "width": null } }, - "dcec0a3e83a74bc2b2b3a65fc49435f9": { + "d88dac0325ba4438ab920208ef16e71e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5f3c8dcf97194644bba84b34e0788cc2", + "placeholder": "​", + "style": "IPY_MODEL_6626d23fbd494e9d85fad048d28e5a83", + "tabbable": null, + "tooltip": null, + "value": " 25596/25596 [00:00<00:00, 66134.37 examples/s]" + } + }, + "da8fe39c7d4742cfb9866db6bfcb787d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "dcde8ef5b37c44beb50425bebc3e99b7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3330,25 +3312,30 @@ "width": null } }, - "de02a78ad11d48b8864c13db51d268f7": { + "dee822d978684e609b08b53ee4e2d879": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a6e3306758a342bca1ae5681dbfbf302", + "placeholder": "​", + "style": "IPY_MODEL_20cc321dbbae42bd841e822e020b5188", + "tabbable": null, + "tooltip": null, + "value": "Filter (num_proc=6): 100%" } }, - "e0549cf946e3498a9c75ee97980ac33d": { + "e01a4f1a21d54bc19d4aa8f9dbe792d1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3401,69 +3388,76 @@ "width": null } }, - "e3e130fa9b1e4b0191c803aea5b222fd": { + "e36d83495786492f95063b6850009612": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ca3deb21adc3485b8fbf7489655ba295", + "placeholder": "​", + "style": "IPY_MODEL_5533b42b55934716a551c2df886b91ed", + "tabbable": null, + "tooltip": null, + "value": " 25596/25596 [00:00<00:00, 58300.95 examples/s]" } }, - "e7496814fd7045909e997449529c80cf": { + "e617738826234217abe0236db738627b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_dcde8ef5b37c44beb50425bebc3e99b7", + "placeholder": "​", + "style": "IPY_MODEL_71690217632045baac46bec99527c176", + "tabbable": null, + "tooltip": null, + "value": "Filter (num_proc=6): 100%" } }, - "e7e1c386129b43a592aa53460df9b338": { + "e6c2c9be994b4968841ead083f7cda58": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_35d8c8610ca24e45846878380a1f4344", - "max": 25596.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a8ce4ec7396942aeacb6801fe3a7e61a", + "layout": "IPY_MODEL_6af4c876de084f5b9a9b9b567a8ed44e", + "placeholder": "​", + "style": "IPY_MODEL_0c0fd56516b2448d83fba7e2824bf664", "tabbable": null, "tooltip": null, - "value": 25596.0 + "value": " 25596/25596 [00:00<00:00, 60403.88 examples/s]" } }, - "e8d63893731e4d39bfef44ae727e86ef": { + "ea677ec6864b48679d15737be5f015b9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3479,96 +3473,111 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_81e735a1f66b44b8ae9d4de699a64d38", + "layout": "IPY_MODEL_480b9bc7647b46a382eb5cbab8c289f1", "max": 25596.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_7fee244c3828448bb0713214142ff97a", + "style": "IPY_MODEL_143784401ae84bffab02247de2b92a38", "tabbable": null, "tooltip": null, "value": 25596.0 } }, - "eaa29c97c16a45dab40d344c760c2d41": { + "ec21401967404a5fbba90dedc2c1bbc5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f2680f892ebb4e3f9bb6fdfa8ba3ef82", - "max": 25596.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_5b52cfba819e4f628311cbfac862bd45", + "layout": "IPY_MODEL_e01a4f1a21d54bc19d4aa8f9dbe792d1", + "placeholder": "​", + "style": "IPY_MODEL_237f4c4077e64c50820d174b057574bc", "tabbable": null, "tooltip": null, - "value": 25596.0 + "value": " 25596/25596 [00:00<00:00, 71818.25 examples/s]" } }, - "eb28e551d9d14fad96e0095cef478b53": { - "model_module": "@jupyter-widgets/base", + "f0b212f13df4435e87cc031143c1cbfc": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7c381f656f0240d0bafe6cad977e54d2", + "IPY_MODEL_cdc20a944b6a44d5b645af1685b4def0", + "IPY_MODEL_43cb0d53168541968b8ededfb2c16470" + ], + "layout": "IPY_MODEL_219d96668849454cbb8c027e3b25d297", + "tabbable": null, + "tooltip": null + } + }, + "f1b5074a8e574a0aa58892a03f5c364d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_faf78e608b7e4d9fa5aed7dadc9c6eb4", + "placeholder": "​", + "style": "IPY_MODEL_9f7a33faa8994334ab44c8b6dee72939", + "tabbable": null, + "tooltip": null, + "value": "Filter (num_proc=6): 100%" + } + }, + "f1fa11fb86f14a1281fc37442fe9c7e6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_076c76fb67344d3eac011e9acd554681", + "IPY_MODEL_5a0679ed327f47bc8303138803ef2131", + "IPY_MODEL_30aafe1319d9405c8eb783e7c56e8915" + ], + "layout": "IPY_MODEL_8e528b4a45a14f1c849994fc584c2709", + "tabbable": null, + "tooltip": null } }, - "ed95f8d64acd45299526a8e840e2cef3": { + "f385f70d6bea48ad92f9374691145a75": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3586,7 +3595,7 @@ "text_color": null } }, - "ee5efaefc78d495db42129a70542c172": { + "f6f6b949e12141bba508d74c68664bcc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3604,7 +3613,23 @@ "text_color": null } }, - "f2680f892ebb4e3f9bb6fdfa8ba3ef82": { + "fae92487715a4892ace0dab7fbfc7a87": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "faf78e608b7e4d9fa5aed7dadc9c6eb4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3657,7 +3682,7 @@ "width": null } }, - "f31a57c25b9047a0995de54f1e19f422": { + "fd48c97b848f4e0186e69d51188b9237": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3710,52 +3735,27 @@ "width": null } }, - "f5923943f39f45c8b08e8a7ac2636e2d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_815b98f5f417490bb0fd927e9bac1e73", - "IPY_MODEL_4c9c106963454d768ee506307ea6b60d", - "IPY_MODEL_3c0ed6e658754e6181a26d6bf5e17925" - ], - "layout": "IPY_MODEL_0fbe060efe9643a9bc615d442de32167", - "tabbable": null, - "tooltip": null - } - }, - "fe67c8d17c244b5890ece1adf245d846": { + "ff79d46d5f7649b298e7c31242adb5c2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a50f3faea560418fa5318f8cb44cdde6", - "IPY_MODEL_555ae2f9700944969a741535955ae0ff", - "IPY_MODEL_8474f8ab80cb40dbb564564f0613e103" - ], - "layout": "IPY_MODEL_e0549cf946e3498a9c75ee97980ac33d", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_126846e4314e49eda54cb2d94c4f1040", + "placeholder": "​", + "style": "IPY_MODEL_f6f6b949e12141bba508d74c68664bcc", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 25596/25596 [00:00<00:00, 64458.50 examples/s]" } } }, diff --git a/api/tutorials/nihcxr/nihcxr_report_periodic.html b/api/tutorials/nihcxr/nihcxr_report_periodic.html index 3bf919bdc..acb88d404 100644 --- a/api/tutorials/nihcxr/nihcxr_report_periodic.html +++ b/api/tutorials/nihcxr/nihcxr_report_periodic.html @@ -3793,7 +3793,7 @@

Graphics

-
+
@@ -3801,7 +3801,7 @@

Graphics

-
+
@@ -3809,7 +3809,7 @@

Graphics

-
+
diff --git a/api/tutorials/synthea/length_of_stay_report_periodic.html b/api/tutorials/synthea/length_of_stay_report_periodic.html index 83edd0d6e..7d97dfe1d 100644 --- a/api/tutorials/synthea/length_of_stay_report_periodic.html +++ b/api/tutorials/synthea/length_of_stay_report_periodic.html @@ -677,7 +677,7 @@

A quick glance of your most import
- 0.91 + 0.94 @@ -710,7 +710,7 @@

A quick glance of your most import
- 0.9 + 1.0 @@ -743,11 +743,11 @@

A quick glance of your most import
- 0.68 + 0.78 - + @@ -776,7 +776,7 @@

A quick glance of your most import
- 0.93 + 1.0 @@ -809,7 +809,7 @@

A quick glance of your most import
- 0.97 + 1.0 @@ -980,7 +980,7 @@

Graphics

-
+
@@ -988,7 +988,7 @@

Graphics

-
+
@@ -996,7 +996,7 @@

Graphics

-
+
@@ -1004,7 +1004,7 @@

Graphics

-
+
@@ -1012,7 +1012,7 @@

Graphics

-
+
@@ -1094,7 +1094,7 @@

Quantitative Analysis

- 0.91 + 0.94 @@ -1127,7 +1127,7 @@

Quantitative Analysis

- 0.9 + 1.0 @@ -1160,11 +1160,11 @@

Quantitative Analysis

- 0.68 + 0.78 - + @@ -1193,7 +1193,7 @@

Quantitative Analysis

- 0.93 + 1.0 @@ -1226,7 +1226,7 @@

Quantitative Analysis

- 0.97 + 1.0 @@ -1258,7 +1258,7 @@

Graphics

-
+
@@ -1266,7 +1266,7 @@

Graphics

-
+
@@ -1274,7 +1274,7 @@

Graphics

-
+
@@ -1282,7 +1282,7 @@

Graphics

-
+
@@ -1336,7 +1336,7 @@

Graphics

-
+
@@ -1610,32 +1610,28 @@

Model Parameters

+
+

Random_state

+ 123 +
-
-

Objective

- binary:logistic -
-
-

Colsample_bytree

- 0.7 -
-

N_estimators

- 100 +

Learning_rate

+ 0.01
@@ -1652,6 +1648,10 @@

N_estimators

+
+

Eval_metric

+ logloss +
@@ -1668,8 +1668,8 @@

N_estimators

-

Missing

- nan +

Min_child_weight

+ 3
@@ -1690,19 +1690,6 @@

Enable_categorical

-
-

Random_state

- 123 -
- - - - - -
-

Gamma

- 1 -
@@ -1714,8 +1701,8 @@

Gamma

-

Learning_rate

- 0.1 +

Gamma

+ 1
@@ -1727,11 +1714,19 @@

Learning_rate

+
+

Colsample_bytree

+ 0.8 +
+
+

Missing

+ nan +
@@ -1758,8 +1753,8 @@

Learning_rate

-

Reg_lambda

- 0 +

Objective

+ binary:logistic
@@ -1810,10 +1805,6 @@

Max_depth

-
-

Eval_metric

- logloss -
@@ -1830,8 +1821,8 @@

Eval_metric

-

Min_child_weight

- 3 +

Reg_lambda

+ 1
@@ -1852,6 +1843,15 @@

Seed

+
+

N_estimators

+ 500 +
+ + + + + @@ -2142,7 +2142,7 @@

Ethical Considerations

function generate_model_card_plot() { var model_card_plots = [] var overall_indices = [20, 21, 22, 23, 24] - var histories = JSON.parse("{\"0\": [\"0.8907563025210085\", \"1.0\", \"1.0\", \"1.0\", \"0.9880158526897856\"], \"1\": [\"0.9821428571428571\", \"0.9310590620637155\", \"1.0\", \"1.0\", \"1.0\"], \"2\": [\"0.8208955223880597\", \"0.731920694762269\", \"0.8426850825575278\", \"0.8608286275723958\", \"0.8223451934320134\"], \"3\": [\"0.8943089430894309\", \"0.842374421632282\", \"0.8932362828759461\", \"0.8090765221352141\", \"0.8184638991146056\"], \"4\": [\"0.9649827784156143\", \"0.9881424592480722\", \"0.9271337525858394\", \"0.8653006607189198\", \"0.8302038527466072\"], \"5\": [\"0.9038461538461539\", \"0.9150865766098234\", \"0.9082870772257372\", \"0.8357118692657074\", \"0.7348831846357723\"], \"6\": [\"0.9\", \"1.0\", \"1.0\", \"0.9086745376064163\", \"0.828451750272029\"], \"7\": [\"0.9310344827586207\", \"0.7897494937712568\", \"0.8732034606154833\", \"0.8225543126785403\", \"0.7419984686288204\"], \"8\": [\"0.9152542372881356\", \"0.8849163791574379\", \"0.8999944706422353\", \"0.8348382628735972\", \"0.8683776232269216\"], \"9\": [\"0.9685157421289355\", \"0.9163252458732778\", \"1.0\", \"0.9291101785796909\", \"0.9830693648760995\"], \"10\": [\"0.9166666666666666\", \"0.9352174971746042\", \"1.0\", \"1.0\", \"1.0\"], \"11\": [\"0.9863013698630136\", \"0.9163826950365944\", \"1.0\", \"1.0\", \"1.0\"], \"12\": [\"0.8888888888888888\", \"1.0\", \"1.0\", \"0.979193932264773\", \"0.9924238569900865\"], \"13\": [\"0.935064935064935\", \"0.897176412299387\", \"0.8366895341619429\", \"0.892718438334348\", \"0.8428129991536567\"], \"14\": [\"0.9743589743589743\", \"0.8745218955806155\", \"0.9839446244028153\", \"1.0\", \"1.0\"], \"15\": [\"0.8962264150943396\", \"0.8387316309976032\", \"0.9220820942432293\", \"0.7201166703885507\", \"0.6891709127206229\"], \"16\": [\"0.9344262295081968\", \"0.862901199134526\", \"0.8132047723856649\", \"0.8944937065377371\", \"0.9205028759616664\"], \"17\": [\"0.890625\", \"1.0\", \"1.0\", \"1.0\", \"0.9516431801207124\"], \"18\": [\"0.912\", \"0.9282486065384606\", \"1.0\", \"1.0\", \"1.0\"], \"19\": [\"0.9542410714285714\", \"0.8391307472945365\", \"0.861871218453203\", \"0.8445997198039747\", \"0.8120765760611559\"], \"20\": [\"0.9070796460176991\", \"0.886591473213573\", \"0.791949222268421\", \"0.8087503162499585\", \"0.9128423284988948\"], \"21\": [\"0.9626865671641791\", \"0.9212244674236073\", \"1.0\", \"1.0\", \"0.9037340616933736\"], \"22\": [\"0.8896551724137931\", \"0.8458745761391254\", \"0.7607926134165484\", \"0.6667993938585411\", \"0.6753374417087216\"], \"23\": [\"0.9247311827956989\", \"0.9630544398811139\", \"1.0\", \"1.0\", \"0.9254555959605683\"], \"24\": [\"0.9650063856960408\", \"0.9197140857265396\", \"0.8728212546001057\", \"0.9979788373833638\", \"0.9703193299741121\"]}"); + var histories = JSON.parse("{\"0\": [\"0.865546218487395\", \"0.9110266168194848\", \"0.9710350885766814\", \"0.923298252471693\", \"0.820221379413443\"], \"1\": [\"1.0\", \"0.8329775084800468\", \"0.8324122635428698\", \"0.8326066765321822\", \"0.8522291013231669\"], \"2\": [\"0.7681159420289855\", \"0.763681132183412\", \"0.7226001879092401\", \"0.7444053223981398\", \"0.6512582072414794\"], \"3\": [\"0.8688524590163934\", \"0.9075254807720297\", \"0.9799167019987514\", \"1.0\", \"0.9749641830482502\"], \"4\": [\"0.9510144927536232\", \"0.9397203435204348\", \"0.8837421461691282\", \"0.964141830725181\", \"1.0\"], \"5\": [\"0.9038461538461539\", \"0.764794664646071\", \"0.6430209723365414\", \"0.5386913753419003\", \"0.5532654285158163\"], \"6\": [\"0.896551724137931\", \"0.8801575449870345\", \"0.8882513615575618\", \"1.0\", \"0.9856587134851611\"], \"7\": [\"0.9285714285714286\", \"0.9301137770837963\", \"0.74858480154088\", \"0.8556739711696437\", \"0.8971594543005736\"], \"8\": [\"0.9122807017543859\", \"0.8350394943224642\", \"0.7253423179586007\", \"0.7669320968859538\", \"0.6708172392657945\"], \"9\": [\"0.9657738095238095\", \"0.9421423610770231\", \"0.924641133093329\", \"0.8358925806520754\", \"0.9320129165258605\"], \"10\": [\"0.9291338582677166\", \"1.0\", \"1.0\", \"0.9142658169079521\", \"0.8425563774253573\"], \"11\": [\"1.0\", \"0.897665729974571\", \"1.0\", \"0.8653938422670757\", \"0.9614429167450117\"], \"12\": [\"0.8902439024390244\", \"0.8130339983350626\", \"0.7535495034679031\", \"0.7185850979973456\", \"0.9001614105536506\"], \"13\": [\"0.9419354838709677\", \"0.9857020989846381\", \"0.9558090625958499\", \"0.9993299355690027\", \"0.9625270147387822\"], \"14\": [\"0.9780487804878049\", \"0.7887481675392372\", \"0.850321379433941\", \"0.7388724606423147\", \"0.7944827409032598\"], \"15\": [\"0.8585858585858586\", \"0.9788300654852401\", \"1.0\", \"0.9714210428506851\", \"1.0\"], \"16\": [\"0.9298245614035088\", \"0.7882842498535975\", \"0.7314776266368582\", \"0.7230192886110607\", \"0.6678639441875316\"], \"17\": [\"0.8412698412698413\", \"0.9016585321588075\", \"1.0\", \"0.9799381957459102\", \"1.0\"], \"18\": [\"0.8833333333333333\", \"0.8856142445674113\", \"0.9685816846205133\", \"0.8325758178437385\", \"0.8420244387747393\"], \"19\": [\"0.9581128747795414\", \"0.7879111284118243\", \"0.8674730934886363\", \"0.6921382331815268\", \"0.5440197774421514\"], \"20\": [\"0.8982300884955752\", \"0.8638135234641583\", \"0.8751088381943093\", \"0.8975168458012515\", \"0.9444525125063907\"], \"21\": [\"0.9692307692307692\", \"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"22\": [\"0.8689655172413793\", \"0.885825130182628\", \"0.9624710731340196\", \"0.9813317184114776\", \"0.7829453737412231\"], \"23\": [\"0.9163636363636364\", \"0.9863156103089644\", \"1.0\", \"0.9500645458637769\", \"1.0\"], \"24\": [\"0.9686675180928055\", \"1.0\", \"1.0\", \"1.0\", \"1.0\"]}"); var thresholds = JSON.parse("{\"0\": \"0.7\", \"1\": \"0.7\", \"2\": \"0.7\", \"3\": \"0.7\", \"4\": \"0.7\", \"5\": \"0.7\", \"6\": \"0.7\", \"7\": \"0.7\", \"8\": \"0.7\", \"9\": \"0.7\", \"10\": \"0.7\", \"11\": \"0.7\", \"12\": \"0.7\", \"13\": \"0.7\", \"14\": \"0.7\", \"15\": \"0.7\", \"16\": \"0.7\", \"17\": \"0.7\", \"18\": \"0.7\", \"19\": \"0.7\", \"20\": \"0.7\", \"21\": \"0.7\", \"22\": \"0.7\", \"23\": \"0.7\", \"24\": \"0.7\"}"); var timestamps = JSON.parse("{\"0\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"1\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"2\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"3\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"4\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"5\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"6\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"7\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"8\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"9\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"10\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"11\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"12\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"13\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"14\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"15\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"16\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"17\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"18\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"19\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"20\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"21\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"22\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"23\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"24\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"]}"); @@ -2429,10 +2429,10 @@

Ethical Considerations

} } var slices_all = JSON.parse("{\"0\": [\"metric:Accuracy\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"1\": [\"metric:Precision\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"2\": [\"metric:Recall\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"3\": [\"metric:F1 Score\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"4\": [\"metric:AUROC\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"5\": [\"metric:Accuracy\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"6\": [\"metric:Precision\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"7\": [\"metric:Recall\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"8\": [\"metric:F1 Score\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"9\": [\"metric:AUROC\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"10\": [\"metric:Accuracy\", \"gender:M\", \"age:overall_age\"], \"11\": [\"metric:Precision\", \"gender:M\", \"age:overall_age\"], \"12\": [\"metric:Recall\", \"gender:M\", \"age:overall_age\"], \"13\": [\"metric:F1 Score\", \"gender:M\", \"age:overall_age\"], \"14\": [\"metric:AUROC\", \"gender:M\", \"age:overall_age\"], \"15\": [\"metric:Accuracy\", \"gender:F\", \"age:overall_age\"], \"16\": [\"metric:Precision\", \"gender:F\", \"age:overall_age\"], \"17\": [\"metric:Recall\", \"gender:F\", \"age:overall_age\"], \"18\": [\"metric:F1 Score\", \"gender:F\", \"age:overall_age\"], \"19\": [\"metric:AUROC\", \"gender:F\", \"age:overall_age\"], \"20\": [\"metric:Accuracy\", \"age:overall_age\", \"gender:overall_gender\"], \"21\": [\"metric:Precision\", \"age:overall_age\", \"gender:overall_gender\"], \"22\": [\"metric:Recall\", \"age:overall_age\", \"gender:overall_gender\"], \"23\": [\"metric:F1 Score\", \"age:overall_age\", \"gender:overall_gender\"], \"24\": [\"metric:AUROC\", \"age:overall_age\", \"gender:overall_gender\"]}"); - var histories_all = JSON.parse("{\"0\": [\"0.8907563025210085\", \"1.0\", \"1.0\", \"1.0\", \"0.9880158526897856\"], \"1\": [\"0.9821428571428571\", \"0.9310590620637155\", \"1.0\", \"1.0\", \"1.0\"], \"2\": [\"0.8208955223880597\", \"0.731920694762269\", \"0.8426850825575278\", \"0.8608286275723958\", \"0.8223451934320134\"], \"3\": [\"0.8943089430894309\", \"0.842374421632282\", \"0.8932362828759461\", \"0.8090765221352141\", \"0.8184638991146056\"], \"4\": [\"0.9649827784156143\", \"0.9881424592480722\", \"0.9271337525858394\", \"0.8653006607189198\", \"0.8302038527466072\"], \"5\": [\"0.9038461538461539\", \"0.9150865766098234\", \"0.9082870772257372\", \"0.8357118692657074\", \"0.7348831846357723\"], \"6\": [\"0.9\", \"1.0\", \"1.0\", \"0.9086745376064163\", \"0.828451750272029\"], \"7\": [\"0.9310344827586207\", \"0.7897494937712568\", \"0.8732034606154833\", \"0.8225543126785403\", \"0.7419984686288204\"], \"8\": [\"0.9152542372881356\", \"0.8849163791574379\", \"0.8999944706422353\", \"0.8348382628735972\", \"0.8683776232269216\"], \"9\": [\"0.9685157421289355\", \"0.9163252458732778\", \"1.0\", \"0.9291101785796909\", \"0.9830693648760995\"], \"10\": [\"0.9166666666666666\", \"0.9352174971746042\", \"1.0\", \"1.0\", \"1.0\"], \"11\": [\"0.9863013698630136\", \"0.9163826950365944\", \"1.0\", \"1.0\", \"1.0\"], \"12\": [\"0.8888888888888888\", \"1.0\", \"1.0\", \"0.979193932264773\", \"0.9924238569900865\"], \"13\": [\"0.935064935064935\", \"0.897176412299387\", \"0.8366895341619429\", \"0.892718438334348\", \"0.8428129991536567\"], \"14\": [\"0.9743589743589743\", \"0.8745218955806155\", \"0.9839446244028153\", \"1.0\", \"1.0\"], \"15\": [\"0.8962264150943396\", \"0.8387316309976032\", \"0.9220820942432293\", \"0.7201166703885507\", \"0.6891709127206229\"], \"16\": [\"0.9344262295081968\", \"0.862901199134526\", \"0.8132047723856649\", \"0.8944937065377371\", \"0.9205028759616664\"], \"17\": [\"0.890625\", \"1.0\", \"1.0\", \"1.0\", \"0.9516431801207124\"], \"18\": [\"0.912\", \"0.9282486065384606\", \"1.0\", \"1.0\", \"1.0\"], \"19\": [\"0.9542410714285714\", \"0.8391307472945365\", \"0.861871218453203\", \"0.8445997198039747\", \"0.8120765760611559\"], \"20\": [\"0.9070796460176991\", \"0.886591473213573\", \"0.791949222268421\", \"0.8087503162499585\", \"0.9128423284988948\"], \"21\": [\"0.9626865671641791\", \"0.9212244674236073\", \"1.0\", \"1.0\", \"0.9037340616933736\"], \"22\": [\"0.8896551724137931\", \"0.8458745761391254\", \"0.7607926134165484\", \"0.6667993938585411\", \"0.6753374417087216\"], \"23\": [\"0.9247311827956989\", \"0.9630544398811139\", \"1.0\", \"1.0\", \"0.9254555959605683\"], \"24\": [\"0.9650063856960408\", \"0.9197140857265396\", \"0.8728212546001057\", \"0.9979788373833638\", \"0.9703193299741121\"]}"); + var histories_all = JSON.parse("{\"0\": [\"0.865546218487395\", \"0.9110266168194848\", \"0.9710350885766814\", \"0.923298252471693\", \"0.820221379413443\"], \"1\": [\"1.0\", \"0.8329775084800468\", \"0.8324122635428698\", \"0.8326066765321822\", \"0.8522291013231669\"], \"2\": [\"0.7681159420289855\", \"0.763681132183412\", \"0.7226001879092401\", \"0.7444053223981398\", \"0.6512582072414794\"], \"3\": [\"0.8688524590163934\", \"0.9075254807720297\", \"0.9799167019987514\", \"1.0\", \"0.9749641830482502\"], \"4\": [\"0.9510144927536232\", \"0.9397203435204348\", \"0.8837421461691282\", \"0.964141830725181\", \"1.0\"], \"5\": [\"0.9038461538461539\", \"0.764794664646071\", \"0.6430209723365414\", \"0.5386913753419003\", \"0.5532654285158163\"], \"6\": [\"0.896551724137931\", \"0.8801575449870345\", \"0.8882513615575618\", \"1.0\", \"0.9856587134851611\"], \"7\": [\"0.9285714285714286\", \"0.9301137770837963\", \"0.74858480154088\", \"0.8556739711696437\", \"0.8971594543005736\"], \"8\": [\"0.9122807017543859\", \"0.8350394943224642\", \"0.7253423179586007\", \"0.7669320968859538\", \"0.6708172392657945\"], \"9\": [\"0.9657738095238095\", \"0.9421423610770231\", \"0.924641133093329\", \"0.8358925806520754\", \"0.9320129165258605\"], \"10\": [\"0.9291338582677166\", \"1.0\", \"1.0\", \"0.9142658169079521\", \"0.8425563774253573\"], \"11\": [\"1.0\", \"0.897665729974571\", \"1.0\", \"0.8653938422670757\", \"0.9614429167450117\"], \"12\": [\"0.8902439024390244\", \"0.8130339983350626\", \"0.7535495034679031\", \"0.7185850979973456\", \"0.9001614105536506\"], \"13\": [\"0.9419354838709677\", \"0.9857020989846381\", \"0.9558090625958499\", \"0.9993299355690027\", \"0.9625270147387822\"], \"14\": [\"0.9780487804878049\", \"0.7887481675392372\", \"0.850321379433941\", \"0.7388724606423147\", \"0.7944827409032598\"], \"15\": [\"0.8585858585858586\", \"0.9788300654852401\", \"1.0\", \"0.9714210428506851\", \"1.0\"], \"16\": [\"0.9298245614035088\", \"0.7882842498535975\", \"0.7314776266368582\", \"0.7230192886110607\", \"0.6678639441875316\"], \"17\": [\"0.8412698412698413\", \"0.9016585321588075\", \"1.0\", \"0.9799381957459102\", \"1.0\"], \"18\": [\"0.8833333333333333\", \"0.8856142445674113\", \"0.9685816846205133\", \"0.8325758178437385\", \"0.8420244387747393\"], \"19\": [\"0.9581128747795414\", \"0.7879111284118243\", \"0.8674730934886363\", \"0.6921382331815268\", \"0.5440197774421514\"], \"20\": [\"0.8982300884955752\", \"0.8638135234641583\", \"0.8751088381943093\", \"0.8975168458012515\", \"0.9444525125063907\"], \"21\": [\"0.9692307692307692\", \"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"22\": [\"0.8689655172413793\", \"0.885825130182628\", \"0.9624710731340196\", \"0.9813317184114776\", \"0.7829453737412231\"], \"23\": [\"0.9163636363636364\", \"0.9863156103089644\", \"1.0\", \"0.9500645458637769\", \"1.0\"], \"24\": [\"0.9686675180928055\", \"1.0\", \"1.0\", \"1.0\", \"1.0\"]}"); var thresholds_all = JSON.parse("{\"0\": \"0.7\", \"1\": \"0.7\", \"2\": \"0.7\", \"3\": \"0.7\", \"4\": \"0.7\", \"5\": \"0.7\", \"6\": \"0.7\", \"7\": \"0.7\", \"8\": \"0.7\", \"9\": \"0.7\", \"10\": \"0.7\", \"11\": \"0.7\", \"12\": \"0.7\", \"13\": \"0.7\", \"14\": \"0.7\", \"15\": \"0.7\", \"16\": \"0.7\", \"17\": \"0.7\", \"18\": \"0.7\", \"19\": \"0.7\", \"20\": \"0.7\", \"21\": \"0.7\", \"22\": \"0.7\", \"23\": \"0.7\", \"24\": \"0.7\"}"); - var trends_all = JSON.parse("{\"0\": \"positive\", \"1\": \"positive\", \"2\": \"positive\", \"3\": \"negative\", \"4\": \"negative\", \"5\": \"negative\", \"6\": \"negative\", \"7\": \"negative\", \"8\": \"negative\", \"9\": \"neutral\", \"10\": \"positive\", \"11\": \"positive\", \"12\": \"positive\", \"13\": \"negative\", \"14\": \"positive\", \"15\": \"negative\", \"16\": \"neutral\", \"17\": \"positive\", \"18\": \"positive\", \"19\": \"negative\", \"20\": \"neutral\", \"21\": \"neutral\", \"22\": \"negative\", \"23\": \"neutral\", \"24\": \"neutral\"}"); - var passed_all = JSON.parse("{\"0\": true, \"1\": true, \"2\": true, \"3\": true, \"4\": true, \"5\": true, \"6\": true, \"7\": true, \"8\": true, \"9\": true, \"10\": true, \"11\": true, \"12\": true, \"13\": true, \"14\": true, \"15\": false, \"16\": true, \"17\": true, \"18\": true, \"19\": true, \"20\": true, \"21\": true, \"22\": false, \"23\": true, \"24\": true}"); + var trends_all = JSON.parse("{\"0\": \"neutral\", \"1\": \"negative\", \"2\": \"negative\", \"3\": \"positive\", \"4\": \"positive\", \"5\": \"negative\", \"6\": \"positive\", \"7\": \"negative\", \"8\": \"negative\", \"9\": \"negative\", \"10\": \"negative\", \"11\": \"negative\", \"12\": \"neutral\", \"13\": \"neutral\", \"14\": \"negative\", \"15\": \"positive\", \"16\": \"negative\", \"17\": \"positive\", \"18\": \"negative\", \"19\": \"negative\", \"20\": \"positive\", \"21\": \"neutral\", \"22\": \"neutral\", \"23\": \"positive\", \"24\": \"neutral\"}"); + var passed_all = JSON.parse("{\"0\": true, \"1\": true, \"2\": false, \"3\": true, \"4\": true, \"5\": false, \"6\": true, \"7\": true, \"8\": false, \"9\": true, \"10\": true, \"11\": true, \"12\": true, \"13\": true, \"14\": true, \"15\": true, \"16\": false, \"17\": true, \"18\": true, \"19\": false, \"20\": true, \"21\": true, \"22\": true, \"23\": true, \"24\": true}"); var names_all = JSON.parse("{\"0\": \"Accuracy\", \"1\": \"Precision\", \"2\": \"Recall\", \"3\": \"F1 Score\", \"4\": \"AUROC\", \"5\": \"Accuracy\", \"6\": \"Precision\", \"7\": \"Recall\", \"8\": \"F1 Score\", \"9\": \"AUROC\", \"10\": \"Accuracy\", \"11\": \"Precision\", \"12\": \"Recall\", \"13\": \"F1 Score\", \"14\": \"AUROC\", \"15\": \"Accuracy\", \"16\": \"Precision\", \"17\": \"Recall\", \"18\": \"F1 Score\", \"19\": \"AUROC\", \"20\": \"Accuracy\", \"21\": \"Precision\", \"22\": \"Recall\", \"23\": \"F1 Score\", \"24\": \"AUROC\"}"); var timestamps_all = JSON.parse("{\"0\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"1\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"2\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"3\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"4\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"5\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"6\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"7\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"8\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"9\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"10\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"11\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"12\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"13\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"14\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"15\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"16\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"17\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"18\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"19\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"20\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"21\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"22\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"23\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"24\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"]}"); @@ -2720,10 +2720,10 @@

Ethical Considerations

} } var slices_all = JSON.parse("{\"0\": [\"metric:Accuracy\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"1\": [\"metric:Precision\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"2\": [\"metric:Recall\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"3\": [\"metric:F1 Score\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"4\": [\"metric:AUROC\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"5\": [\"metric:Accuracy\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"6\": [\"metric:Precision\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"7\": [\"metric:Recall\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"8\": [\"metric:F1 Score\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"9\": [\"metric:AUROC\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"10\": [\"metric:Accuracy\", \"gender:M\", \"age:overall_age\"], \"11\": [\"metric:Precision\", \"gender:M\", \"age:overall_age\"], \"12\": [\"metric:Recall\", \"gender:M\", \"age:overall_age\"], \"13\": [\"metric:F1 Score\", \"gender:M\", \"age:overall_age\"], \"14\": [\"metric:AUROC\", \"gender:M\", \"age:overall_age\"], \"15\": [\"metric:Accuracy\", \"gender:F\", \"age:overall_age\"], \"16\": [\"metric:Precision\", \"gender:F\", \"age:overall_age\"], \"17\": [\"metric:Recall\", \"gender:F\", \"age:overall_age\"], \"18\": [\"metric:F1 Score\", \"gender:F\", \"age:overall_age\"], \"19\": [\"metric:AUROC\", \"gender:F\", \"age:overall_age\"], \"20\": [\"metric:Accuracy\", \"age:overall_age\", \"gender:overall_gender\"], \"21\": [\"metric:Precision\", \"age:overall_age\", \"gender:overall_gender\"], \"22\": [\"metric:Recall\", \"age:overall_age\", \"gender:overall_gender\"], \"23\": [\"metric:F1 Score\", \"age:overall_age\", \"gender:overall_gender\"], \"24\": [\"metric:AUROC\", \"age:overall_age\", \"gender:overall_gender\"]}"); - var histories_all = JSON.parse("{\"0\": [\"0.8907563025210085\", \"1.0\", \"1.0\", \"1.0\", \"0.9880158526897856\"], \"1\": [\"0.9821428571428571\", \"0.9310590620637155\", \"1.0\", \"1.0\", \"1.0\"], \"2\": [\"0.8208955223880597\", \"0.731920694762269\", \"0.8426850825575278\", \"0.8608286275723958\", \"0.8223451934320134\"], \"3\": [\"0.8943089430894309\", \"0.842374421632282\", \"0.8932362828759461\", \"0.8090765221352141\", \"0.8184638991146056\"], \"4\": [\"0.9649827784156143\", \"0.9881424592480722\", \"0.9271337525858394\", \"0.8653006607189198\", \"0.8302038527466072\"], \"5\": [\"0.9038461538461539\", \"0.9150865766098234\", \"0.9082870772257372\", \"0.8357118692657074\", \"0.7348831846357723\"], \"6\": [\"0.9\", \"1.0\", \"1.0\", \"0.9086745376064163\", \"0.828451750272029\"], \"7\": [\"0.9310344827586207\", \"0.7897494937712568\", \"0.8732034606154833\", \"0.8225543126785403\", \"0.7419984686288204\"], \"8\": [\"0.9152542372881356\", \"0.8849163791574379\", \"0.8999944706422353\", \"0.8348382628735972\", \"0.8683776232269216\"], \"9\": [\"0.9685157421289355\", \"0.9163252458732778\", \"1.0\", \"0.9291101785796909\", \"0.9830693648760995\"], \"10\": [\"0.9166666666666666\", \"0.9352174971746042\", \"1.0\", \"1.0\", \"1.0\"], \"11\": [\"0.9863013698630136\", \"0.9163826950365944\", \"1.0\", \"1.0\", \"1.0\"], \"12\": [\"0.8888888888888888\", \"1.0\", \"1.0\", \"0.979193932264773\", \"0.9924238569900865\"], \"13\": [\"0.935064935064935\", \"0.897176412299387\", \"0.8366895341619429\", \"0.892718438334348\", \"0.8428129991536567\"], \"14\": [\"0.9743589743589743\", \"0.8745218955806155\", \"0.9839446244028153\", \"1.0\", \"1.0\"], \"15\": [\"0.8962264150943396\", \"0.8387316309976032\", \"0.9220820942432293\", \"0.7201166703885507\", \"0.6891709127206229\"], \"16\": [\"0.9344262295081968\", \"0.862901199134526\", \"0.8132047723856649\", \"0.8944937065377371\", \"0.9205028759616664\"], \"17\": [\"0.890625\", \"1.0\", \"1.0\", \"1.0\", \"0.9516431801207124\"], \"18\": [\"0.912\", \"0.9282486065384606\", \"1.0\", \"1.0\", \"1.0\"], \"19\": [\"0.9542410714285714\", \"0.8391307472945365\", \"0.861871218453203\", \"0.8445997198039747\", \"0.8120765760611559\"], \"20\": [\"0.9070796460176991\", \"0.886591473213573\", \"0.791949222268421\", \"0.8087503162499585\", \"0.9128423284988948\"], \"21\": [\"0.9626865671641791\", \"0.9212244674236073\", \"1.0\", \"1.0\", \"0.9037340616933736\"], \"22\": [\"0.8896551724137931\", \"0.8458745761391254\", \"0.7607926134165484\", \"0.6667993938585411\", \"0.6753374417087216\"], \"23\": [\"0.9247311827956989\", \"0.9630544398811139\", \"1.0\", \"1.0\", \"0.9254555959605683\"], \"24\": [\"0.9650063856960408\", \"0.9197140857265396\", \"0.8728212546001057\", \"0.9979788373833638\", \"0.9703193299741121\"]}"); + var histories_all = JSON.parse("{\"0\": [\"0.865546218487395\", \"0.9110266168194848\", \"0.9710350885766814\", \"0.923298252471693\", \"0.820221379413443\"], \"1\": [\"1.0\", \"0.8329775084800468\", \"0.8324122635428698\", \"0.8326066765321822\", \"0.8522291013231669\"], \"2\": [\"0.7681159420289855\", \"0.763681132183412\", \"0.7226001879092401\", \"0.7444053223981398\", \"0.6512582072414794\"], \"3\": [\"0.8688524590163934\", \"0.9075254807720297\", \"0.9799167019987514\", \"1.0\", \"0.9749641830482502\"], \"4\": [\"0.9510144927536232\", \"0.9397203435204348\", \"0.8837421461691282\", \"0.964141830725181\", \"1.0\"], \"5\": [\"0.9038461538461539\", \"0.764794664646071\", \"0.6430209723365414\", \"0.5386913753419003\", \"0.5532654285158163\"], \"6\": [\"0.896551724137931\", \"0.8801575449870345\", \"0.8882513615575618\", \"1.0\", \"0.9856587134851611\"], \"7\": [\"0.9285714285714286\", \"0.9301137770837963\", \"0.74858480154088\", \"0.8556739711696437\", \"0.8971594543005736\"], \"8\": [\"0.9122807017543859\", \"0.8350394943224642\", \"0.7253423179586007\", \"0.7669320968859538\", \"0.6708172392657945\"], \"9\": [\"0.9657738095238095\", \"0.9421423610770231\", \"0.924641133093329\", \"0.8358925806520754\", \"0.9320129165258605\"], \"10\": [\"0.9291338582677166\", \"1.0\", \"1.0\", \"0.9142658169079521\", \"0.8425563774253573\"], \"11\": [\"1.0\", \"0.897665729974571\", \"1.0\", \"0.8653938422670757\", \"0.9614429167450117\"], \"12\": [\"0.8902439024390244\", \"0.8130339983350626\", \"0.7535495034679031\", \"0.7185850979973456\", \"0.9001614105536506\"], \"13\": [\"0.9419354838709677\", \"0.9857020989846381\", \"0.9558090625958499\", \"0.9993299355690027\", \"0.9625270147387822\"], \"14\": [\"0.9780487804878049\", \"0.7887481675392372\", \"0.850321379433941\", \"0.7388724606423147\", \"0.7944827409032598\"], \"15\": [\"0.8585858585858586\", \"0.9788300654852401\", \"1.0\", \"0.9714210428506851\", \"1.0\"], \"16\": [\"0.9298245614035088\", \"0.7882842498535975\", \"0.7314776266368582\", \"0.7230192886110607\", \"0.6678639441875316\"], \"17\": [\"0.8412698412698413\", \"0.9016585321588075\", \"1.0\", \"0.9799381957459102\", \"1.0\"], \"18\": [\"0.8833333333333333\", \"0.8856142445674113\", \"0.9685816846205133\", \"0.8325758178437385\", \"0.8420244387747393\"], \"19\": [\"0.9581128747795414\", \"0.7879111284118243\", \"0.8674730934886363\", \"0.6921382331815268\", \"0.5440197774421514\"], \"20\": [\"0.8982300884955752\", \"0.8638135234641583\", \"0.8751088381943093\", \"0.8975168458012515\", \"0.9444525125063907\"], \"21\": [\"0.9692307692307692\", \"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"22\": [\"0.8689655172413793\", \"0.885825130182628\", \"0.9624710731340196\", \"0.9813317184114776\", \"0.7829453737412231\"], \"23\": [\"0.9163636363636364\", \"0.9863156103089644\", \"1.0\", \"0.9500645458637769\", \"1.0\"], \"24\": [\"0.9686675180928055\", \"1.0\", \"1.0\", \"1.0\", \"1.0\"]}"); var thresholds_all = JSON.parse("{\"0\": \"0.7\", \"1\": \"0.7\", \"2\": \"0.7\", \"3\": \"0.7\", \"4\": \"0.7\", \"5\": \"0.7\", \"6\": \"0.7\", \"7\": \"0.7\", \"8\": \"0.7\", \"9\": \"0.7\", \"10\": \"0.7\", \"11\": \"0.7\", \"12\": \"0.7\", \"13\": \"0.7\", \"14\": \"0.7\", \"15\": \"0.7\", \"16\": \"0.7\", \"17\": \"0.7\", \"18\": \"0.7\", \"19\": \"0.7\", \"20\": \"0.7\", \"21\": \"0.7\", \"22\": \"0.7\", \"23\": \"0.7\", \"24\": \"0.7\"}"); - var trends_all = JSON.parse("{\"0\": \"positive\", \"1\": \"positive\", \"2\": \"positive\", \"3\": \"negative\", \"4\": \"negative\", \"5\": \"negative\", \"6\": \"negative\", \"7\": \"negative\", \"8\": \"negative\", \"9\": \"neutral\", \"10\": \"positive\", \"11\": \"positive\", \"12\": \"positive\", \"13\": \"negative\", \"14\": \"positive\", \"15\": \"negative\", \"16\": \"neutral\", \"17\": \"positive\", \"18\": \"positive\", \"19\": \"negative\", \"20\": \"neutral\", \"21\": \"neutral\", \"22\": \"negative\", \"23\": \"neutral\", \"24\": \"neutral\"}"); - var passed_all = JSON.parse("{\"0\": true, \"1\": true, \"2\": true, \"3\": true, \"4\": true, \"5\": true, \"6\": true, \"7\": true, \"8\": true, \"9\": true, \"10\": true, \"11\": true, \"12\": true, \"13\": true, \"14\": true, \"15\": false, \"16\": true, \"17\": true, \"18\": true, \"19\": true, \"20\": true, \"21\": true, \"22\": false, \"23\": true, \"24\": true}"); + var trends_all = JSON.parse("{\"0\": \"neutral\", \"1\": \"negative\", \"2\": \"negative\", \"3\": \"positive\", \"4\": \"positive\", \"5\": \"negative\", \"6\": \"positive\", \"7\": \"negative\", \"8\": \"negative\", \"9\": \"negative\", \"10\": \"negative\", \"11\": \"negative\", \"12\": \"neutral\", \"13\": \"neutral\", \"14\": \"negative\", \"15\": \"positive\", \"16\": \"negative\", \"17\": \"positive\", \"18\": \"negative\", \"19\": \"negative\", \"20\": \"positive\", \"21\": \"neutral\", \"22\": \"neutral\", \"23\": \"positive\", \"24\": \"neutral\"}"); + var passed_all = JSON.parse("{\"0\": true, \"1\": true, \"2\": false, \"3\": true, \"4\": true, \"5\": false, \"6\": true, \"7\": true, \"8\": false, \"9\": true, \"10\": true, \"11\": true, \"12\": true, \"13\": true, \"14\": true, \"15\": true, \"16\": false, \"17\": true, \"18\": true, \"19\": false, \"20\": true, \"21\": true, \"22\": true, \"23\": true, \"24\": true}"); var names_all = JSON.parse("{\"0\": \"Accuracy\", \"1\": \"Precision\", \"2\": \"Recall\", \"3\": \"F1 Score\", \"4\": \"AUROC\", \"5\": \"Accuracy\", \"6\": \"Precision\", \"7\": \"Recall\", \"8\": \"F1 Score\", \"9\": \"AUROC\", \"10\": \"Accuracy\", \"11\": \"Precision\", \"12\": \"Recall\", \"13\": \"F1 Score\", \"14\": \"AUROC\", \"15\": \"Accuracy\", \"16\": \"Precision\", \"17\": \"Recall\", \"18\": \"F1 Score\", \"19\": \"AUROC\", \"20\": \"Accuracy\", \"21\": \"Precision\", \"22\": \"Recall\", \"23\": \"F1 Score\", \"24\": \"AUROC\"}"); var timestamps_all = JSON.parse("{\"0\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"1\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"2\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"3\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"4\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"5\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"6\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"7\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"8\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"9\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"10\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"11\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"12\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"13\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"14\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"15\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"16\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"17\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"18\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"19\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"20\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"21\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"22\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"23\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"24\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"]}"); diff --git a/api/tutorials/synthea/los_prediction.html b/api/tutorials/synthea/los_prediction.html index 197bf2f37..783d9ff22 100644 --- a/api/tutorials/synthea/los_prediction.html +++ b/api/tutorials/synthea/los_prediction.html @@ -677,17 +677,17 @@

Compute length of stay (labels)
-2023-12-19 14:32:13,413 INFO cycquery.orm    - Database setup, ready to run queries!
-2023-12-19 14:32:18,601 INFO cycquery.orm    - Query returned successfully!
-2023-12-19 14:32:18,602 INFO cycquery.utils.profile - Finished executing function run_query in 3.866833 s
-2023-12-19 14:32:20,410 INFO cycquery.orm    - Query returned successfully!
-2023-12-19 14:32:20,412 INFO cycquery.utils.profile - Finished executing function run_query in 1.808322 s
-2023-12-19 14:32:21,969 INFO cycquery.orm    - Query returned successfully!
-2023-12-19 14:32:21,970 INFO cycquery.utils.profile - Finished executing function run_query in 0.395373 s
-2023-12-19 14:32:22,461 INFO cycquery.orm    - Query returned successfully!
-2023-12-19 14:32:22,462 INFO cycquery.utils.profile - Finished executing function run_query in 0.487607 s
-2023-12-19 14:32:22,565 INFO cycquery.orm    - Query returned successfully!
-2023-12-19 14:32:22,566 INFO cycquery.utils.profile - Finished executing function run_query in 0.102961 s
+2023-12-19 17:35:12,894 INFO cycquery.orm    - Database setup, ready to run queries!
+2023-12-19 17:35:16,811 INFO cycquery.orm    - Query returned successfully!
+2023-12-19 17:35:16,812 INFO cycquery.utils.profile - Finished executing function run_query in 3.051921 s
+2023-12-19 17:35:18,703 INFO cycquery.orm    - Query returned successfully!
+2023-12-19 17:35:18,704 INFO cycquery.utils.profile - Finished executing function run_query in 1.891131 s
+2023-12-19 17:35:20,059 INFO cycquery.orm    - Query returned successfully!
+2023-12-19 17:35:20,060 INFO cycquery.utils.profile - Finished executing function run_query in 0.123429 s
+2023-12-19 17:35:20,270 INFO cycquery.orm    - Query returned successfully!
+2023-12-19 17:35:20,271 INFO cycquery.utils.profile - Finished executing function run_query in 0.206623 s
+2023-12-19 17:35:20,354 INFO cycquery.orm    - Query returned successfully!
+2023-12-19 17:35:20,355 INFO cycquery.utils.profile - Finished executing function run_query in 0.083895 s
 

@@ -740,9 +740,9 @@

Drop NaNs based on the

-
+
@@ -1304,12 +1304,12 @@

Training

-2023-12-19 14:32:27,945 INFO cyclops.models.wrappers.sk_model - Best reg_lambda: 0
-2023-12-19 14:32:27,946 INFO cyclops.models.wrappers.sk_model - Best n_estimators: 100
-2023-12-19 14:32:27,947 INFO cyclops.models.wrappers.sk_model - Best max_depth: 2
-2023-12-19 14:32:27,947 INFO cyclops.models.wrappers.sk_model - Best learning_rate: 0.1
-2023-12-19 14:32:27,948 INFO cyclops.models.wrappers.sk_model - Best gamma: 1
-2023-12-19 14:32:27,948 INFO cyclops.models.wrappers.sk_model - Best colsample_bytree: 0.7
+2023-12-19 17:35:31,318 INFO cyclops.models.wrappers.sk_model - Best reg_lambda: 1
+2023-12-19 17:35:31,319 INFO cyclops.models.wrappers.sk_model - Best n_estimators: 500
+2023-12-19 17:35:31,320 INFO cyclops.models.wrappers.sk_model - Best max_depth: 2
+2023-12-19 17:35:31,321 INFO cyclops.models.wrappers.sk_model - Best learning_rate: 0.01
+2023-12-19 17:35:31,322 INFO cyclops.models.wrappers.sk_model - Best gamma: 1
+2023-12-19 17:35:31,322 INFO cyclops.models.wrappers.sk_model - Best colsample_bytree: 0.8
 
@@ -1319,24 +1319,24 @@

Training
XGBClassifier(base_score=None, booster=None, callbacks=None,
               colsample_bylevel=None, colsample_bynode=None,
-              colsample_bytree=0.7, early_stopping_rounds=None,
+              colsample_bytree=0.8, early_stopping_rounds=None,
               enable_categorical=False, eval_metric='logloss',
               feature_types=None, gamma=1, gpu_id=None, grow_policy=None,
               importance_type=None, interaction_constraints=None,
-              learning_rate=0.1, max_bin=None, max_cat_threshold=None,
+              learning_rate=0.01, max_bin=None, max_cat_threshold=None,
               max_cat_to_onehot=None, max_delta_step=None, max_depth=2,
               max_leaves=None, min_child_weight=3, missing=nan,
-              monotone_constraints=None, n_estimators=100, n_jobs=None,
+              monotone_constraints=None, n_estimators=500, n_jobs=None,
               num_parallel_tree=None, predictor=None, random_state=123, ...)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

-{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': 0.7, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': 'logloss', 'feature_types': None, 'gamma': 1, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 2, 'max_leaves': None, 'min_child_weight': 3, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 100, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 123, 'reg_alpha': None, 'reg_lambda': 0, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': None, 'seed': 123}
+{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': 0.8, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': 'logloss', 'feature_types': None, 'gamma': 1, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.01, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 2, 'max_leaves': None, 'min_child_weight': 3, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 500, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 123, 'reg_alpha': None, 'reg_lambda': 1, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': None, 'seed': 123}
 

Log the model parameters to the report.

@@ -1389,7 +1389,7 @@

Prediction

-
+

-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+

Log the performance metrics to the report.

We can add a performance metric to the model card using the log_performance_metric method, which expects a dictionary where the keys are in the following format: slice_name/metric_name. For instance, overall/accuracy.

@@ -1700,9 +1700,9 @@

Evaluation
-
diff --git a/api/tutorials/synthea/los_prediction.ipynb b/api/tutorials/synthea/los_prediction.ipynb index 1de6f07eb..9f0f0f1d7 100644 --- a/api/tutorials/synthea/los_prediction.ipynb +++ b/api/tutorials/synthea/los_prediction.ipynb @@ -33,10 +33,10 @@ "id": "53009e6b", "metadata": { "execution": { - "iopub.execute_input": "2023-12-19T19:32:08.602168Z", - "iopub.status.busy": "2023-12-19T19:32:08.601199Z", - "iopub.status.idle": "2023-12-19T19:32:12.684781Z", - "shell.execute_reply": "2023-12-19T19:32:12.684076Z" + "iopub.execute_input": "2023-12-19T22:35:08.071900Z", + "iopub.status.busy": "2023-12-19T22:35:08.071010Z", + "iopub.status.idle": "2023-12-19T22:35:12.249433Z", + "shell.execute_reply": "2023-12-19T22:35:12.248666Z" } }, "outputs": [], @@ -96,10 +96,10 @@ "id": "afae58a8-5708-4e05-8695-25ba3ce1a71f", "metadata": { "execution": { - "iopub.execute_input": "2023-12-19T19:32:12.690051Z", - "iopub.status.busy": "2023-12-19T19:32:12.689683Z", - "iopub.status.idle": "2023-12-19T19:32:12.693112Z", - "shell.execute_reply": "2023-12-19T19:32:12.692549Z" + "iopub.execute_input": "2023-12-19T22:35:12.254483Z", + "iopub.status.busy": "2023-12-19T22:35:12.254099Z", + "iopub.status.idle": "2023-12-19T22:35:12.257752Z", + "shell.execute_reply": "2023-12-19T22:35:12.257159Z" }, "tags": [] }, @@ -122,10 +122,10 @@ "id": "739b109a-011b-4e6e-a3de-964edeffddbd", "metadata": { "execution": { - "iopub.execute_input": "2023-12-19T19:32:12.700702Z", - "iopub.status.busy": "2023-12-19T19:32:12.700463Z", - "iopub.status.idle": "2023-12-19T19:32:12.704949Z", - "shell.execute_reply": "2023-12-19T19:32:12.704025Z" + "iopub.execute_input": "2023-12-19T22:35:12.262477Z", + "iopub.status.busy": "2023-12-19T22:35:12.262300Z", + "iopub.status.idle": "2023-12-19T22:35:12.265398Z", + "shell.execute_reply": "2023-12-19T22:35:12.264824Z" }, "tags": [] }, @@ -156,10 +156,10 @@ "id": "e497df9f-0f3d-4e9c-845c-539627a37f67", "metadata": { "execution": { - "iopub.execute_input": "2023-12-19T19:32:12.709859Z", - "iopub.status.busy": "2023-12-19T19:32:12.709461Z", - "iopub.status.idle": "2023-12-19T19:32:22.605886Z", - "shell.execute_reply": "2023-12-19T19:32:22.604509Z" + "iopub.execute_input": "2023-12-19T22:35:12.270107Z", + "iopub.status.busy": "2023-12-19T22:35:12.269926Z", + "iopub.status.idle": "2023-12-19T22:35:20.397465Z", + "shell.execute_reply": "2023-12-19T22:35:20.396750Z" }, "tags": [] }, @@ -168,77 +168,77 @@ "name": "stderr", "output_type": "stream", "text": [ - "2023-12-19 14:32:13,413 \u001b[1;37mINFO\u001b[0m cycquery.orm - Database setup, ready to run queries!\n" + "2023-12-19 17:35:12,894 \u001b[1;37mINFO\u001b[0m cycquery.orm - Database setup, ready to run queries!\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2023-12-19 14:32:18,601 \u001b[1;37mINFO\u001b[0m cycquery.orm - Query returned successfully!\n" + "2023-12-19 17:35:16,811 \u001b[1;37mINFO\u001b[0m cycquery.orm - Query returned successfully!\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2023-12-19 14:32:18,602 \u001b[1;37mINFO\u001b[0m cycquery.utils.profile - Finished executing function run_query in 3.866833 s\n" + "2023-12-19 17:35:16,812 \u001b[1;37mINFO\u001b[0m cycquery.utils.profile - Finished executing function run_query in 3.051921 s\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2023-12-19 14:32:20,410 \u001b[1;37mINFO\u001b[0m cycquery.orm - Query returned successfully!\n" + "2023-12-19 17:35:18,703 \u001b[1;37mINFO\u001b[0m cycquery.orm - Query returned successfully!\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2023-12-19 14:32:20,412 \u001b[1;37mINFO\u001b[0m cycquery.utils.profile - Finished executing function run_query in 1.808322 s\n" + "2023-12-19 17:35:18,704 \u001b[1;37mINFO\u001b[0m cycquery.utils.profile - Finished executing function run_query in 1.891131 s\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2023-12-19 14:32:21,969 \u001b[1;37mINFO\u001b[0m cycquery.orm - Query returned successfully!\n" + "2023-12-19 17:35:20,059 \u001b[1;37mINFO\u001b[0m cycquery.orm - Query returned successfully!\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2023-12-19 14:32:21,970 \u001b[1;37mINFO\u001b[0m cycquery.utils.profile - Finished executing function run_query in 0.395373 s\n" + "2023-12-19 17:35:20,060 \u001b[1;37mINFO\u001b[0m cycquery.utils.profile - Finished executing function run_query in 0.123429 s\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2023-12-19 14:32:22,461 \u001b[1;37mINFO\u001b[0m cycquery.orm - Query returned successfully!\n" + "2023-12-19 17:35:20,270 \u001b[1;37mINFO\u001b[0m cycquery.orm - Query returned successfully!\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2023-12-19 14:32:22,462 \u001b[1;37mINFO\u001b[0m cycquery.utils.profile - Finished executing function run_query in 0.487607 s\n" + "2023-12-19 17:35:20,271 \u001b[1;37mINFO\u001b[0m cycquery.utils.profile - Finished executing function run_query in 0.206623 s\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2023-12-19 14:32:22,565 \u001b[1;37mINFO\u001b[0m cycquery.orm - Query returned successfully!\n" + "2023-12-19 17:35:20,354 \u001b[1;37mINFO\u001b[0m cycquery.orm - Query returned successfully!\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2023-12-19 14:32:22,566 \u001b[1;37mINFO\u001b[0m cycquery.utils.profile - Finished executing function run_query in 0.102961 s\n" + "2023-12-19 17:35:20,355 \u001b[1;37mINFO\u001b[0m cycquery.utils.profile - Finished executing function run_query in 0.083895 s\n" ] } ], @@ -397,10 +397,10 @@ "id": "c576ee51-e825-4970-86e8-3e5f221f145c", "metadata": { "execution": { - "iopub.execute_input": "2023-12-19T19:32:22.611025Z", - "iopub.status.busy": "2023-12-19T19:32:22.610800Z", - "iopub.status.idle": "2023-12-19T19:32:22.700246Z", - "shell.execute_reply": "2023-12-19T19:32:22.699585Z" + "iopub.execute_input": "2023-12-19T22:35:20.402708Z", + "iopub.status.busy": "2023-12-19T22:35:20.402357Z", + "iopub.status.idle": "2023-12-19T22:35:20.488044Z", + "shell.execute_reply": "2023-12-19T22:35:20.487280Z" }, "tags": [] }, @@ -1496,9 +1496,9 @@ } }, "text/html": [ - "
- + +

CyclOps 0.2.0 release

· 4 min read
Carolyn Chong
Amrit Krishnan

diff --git a/blog/archive/index.html b/blog/archive/index.html index d5dc19fad..6a174b1d5 100644 --- a/blog/archive/index.html +++ b/blog/archive/index.html @@ -5,8 +5,8 @@ Archive | CyclOps - - + +
diff --git a/blog/index.html b/blog/index.html index bdb74048d..1fe407251 100644 --- a/blog/index.html +++ b/blog/index.html @@ -5,8 +5,8 @@ Blog | CyclOps - - + +

· 4 min read
Carolyn Chong
Amrit Krishnan

diff --git a/blog/tags/0-2-0/index.html b/blog/tags/0-2-0/index.html index c2d8f1ffb..3f4d103a1 100644 --- a/blog/tags/0-2-0/index.html +++ b/blog/tags/0-2-0/index.html @@ -5,8 +5,8 @@ One post tagged with "0.2.0" | CyclOps - - + +

One post tagged with "0.2.0"

View All Tags

· 4 min read
Carolyn Chong
Amrit Krishnan

diff --git a/blog/tags/index.html b/blog/tags/index.html index 24d68f193..7007c30d4 100644 --- a/blog/tags/index.html +++ b/blog/tags/index.html @@ -5,8 +5,8 @@ Tags | CyclOps - - + +
diff --git a/docs/intro/index.html b/docs/intro/index.html index 1ae9dfb01..8119ccc4c 100644 --- a/docs/intro/index.html +++ b/docs/intro/index.html @@ -5,8 +5,8 @@ intro | CyclOps - - + +

intro

Getting Started

diff --git a/index.html b/index.html index fc364e958..6afdad669 100644 --- a/index.html +++ b/index.html @@ -5,8 +5,8 @@ CyclOps | CyclOps - - + +

CyclOps

Cyclical development towards Operationalizing ML models for healthcare

Rigorous Evaluation

CyclOps APIs support rigorous evaluation across patient sub-populations

Monitoring

CyclOps supports monitoring of clinical ML models for performance degradation

diff --git a/markdown-page/index.html b/markdown-page/index.html index dcfcffe3b..540cb4265 100644 --- a/markdown-page/index.html +++ b/markdown-page/index.html @@ -5,8 +5,8 @@ Markdown page example | CyclOps - - + +