From 2af611b3d43306702928b16f105f10e5f00550e9 Mon Sep 17 00:00:00 2001 From: amrit110 Date: Tue, 7 Nov 2023 17:19:37 -0500 Subject: [PATCH] deploy: cb788c2b07963b6e7798d6294febdd79e628f6ed --- .../tutorials_nihcxr_monitor_api_10_1.png | Bin 64022 -> 66230 bytes .../tutorials_nihcxr_monitor_api_12_0.png | Bin 51746 -> 49591 bytes .../tutorials_nihcxr_monitor_api_6_0.png | Bin 39891 -> 39262 bytes .../tutorials_nihcxr_monitor_api_8_0.png | Bin 54447 -> 52002 bytes api/_sources/intro.rst.txt | 4 +- .../kaggle/heart_failure_prediction.ipynb.txt | 2 +- .../nihcxr/cxr_classification.ipynb.txt | 2 +- .../synthea/los_prediction.ipynb.txt | 2 +- api/intro.html | 2 +- api/searchindex.js | 2 +- .../kaggle/heart_failure_prediction.html | 62 +- .../kaggle/heart_failure_prediction.ipynb | 446 +- .../kaggle/heart_failure_report_periodic.html | 2477 ++++++ api/tutorials/nihcxr/cxr_classification.html | 130 +- api/tutorials/nihcxr/cxr_classification.ipynb | 380 +- api/tutorials/nihcxr/monitor_api.html | 18 +- api/tutorials/nihcxr/monitor_api.ipynb | 130 +- .../nihcxr/nihcxr_report_periodic.html | 7442 +++++++++++++++++ .../length_of_stay_report_periodic.html | 2254 +++++ api/tutorials/synthea/los_prediction.html | 126 +- api/tutorials/synthea/los_prediction.ipynb | 2868 ++++--- 21 files changed, 14540 insertions(+), 1807 deletions(-) create mode 100644 api/tutorials/kaggle/heart_failure_report_periodic.html create mode 100644 api/tutorials/nihcxr/nihcxr_report_periodic.html create mode 100644 api/tutorials/synthea/length_of_stay_report_periodic.html diff --git a/api/_images/tutorials_nihcxr_monitor_api_10_1.png b/api/_images/tutorials_nihcxr_monitor_api_10_1.png index 495d30903683afcd7f0962a0d8d51acf0e7a39f1..07b2b9ce7d9b84fcbe66c892abc03749dcbc084e 100644 GIT binary patch literal 66230 zcmbSzbyStx+wG>ilF!WcDN(vrQo6fAq@}w{q#LB}+Ti)ccfWD} zxQxL#$l2?CS3EJFIiJNlMR_R{rv}psak%+UcH&vT5EX&2L>3HPZcmr z-H$9L3>Fg;gNY#F`EDz6%9{uKTZY$u5z^h=tsYNx|C))@of)Z-Y`Lgf1DKOXU>Ibb zXJpM$OE=>Fm44lWgHQPQYT0$j!l1(i3n$hbpZ=YY>c~6h#8GOQ|JRg%a^-UUSUFg9 ztuJJj@J<-n>{znb)C;~}kFsbXOt8_1xVY!GwnbxEp%kI--&3=(DG9mUt=(4&rV^19 zGw0yoATT(X-u;IXQLvbU0~-+$5#-V1$6C74caO1C5*3mokIG?B`QFi?sTX-(^Wg(F zgq@u|G%9Ms*#Np@(F;GRWpXz6xpF>#{*13deY3pp^lXA53_4yl%U@f9vrt1mE{)-C zB~m&6+FUUhwY#m9^nMHbEoz^zqzD(EAo12SeA=g>ukWR8(}j5wm(_DcMeKL)-syTD zbb6nRX~cF_yc&W{?sx6z`lKL?(&Be}X#ficcX2vnm!INwx;@qL{rktbIM?BmaAGdh zw9kET)OVfNA#PUvo_A)(^3(1FxvB=a>=BKg*a!4^_2rsI^^i||h=_@w0I^6u`uw-3VCuKZ44GS2-(dG+BO_~|4M#2 zAh7rIvjoy~wcX(UQhOqg9r^ce--q`Oy73CW5G7fPyJEY(JS%SS zX+eUa**CRg_nD+rv=23cdyN>Xw(6YmSFyq1F~`WWSje|A2(VtHVL3+SaT; ziL2pk-pik;uDJ13TUkX#;c3QmNlDVuA0ta!2KOFd`!r+xtzj}>k_YudT-%P;6XD$p zP2QtN_;DD*os~Xs0|JORUttFzVk}2XksEDKmcC5ouY5rn5fPCkm(1NIG+5)X@@wcT z5|+?0^i#&bMPeta)Vsj%YImw;Anpg91W}$ZfqmoQ;i=(2V@D6j$e`4BUqYa!p;7o< zy6t+2(ky%zne#~M5G(N~t+9L?sGoHV2aZ6@|Y&y z!}*Leoqv3w0?Sh0%=vT4%??Qwa6{} zIo;_!KUiTn3knV{0}hUePN>K?#>2w0mrHfvuFE{Zc9xZ$&2GQg@>PC?jNKHu+`Qiy zB)iy+n%%msNM758CLhS^#>S_Z80U@~VEx~&!=V}B93u*5A-1(O{ZRThq0CuE62-4? zXxtJ$eDZW6BI!SVNFN>^Mk32+Wo2zoSBAwg={z9yen9Y^ynX43Y8;X=+4;`H7xD$! zX&iU!gn+1*2#4o=1_n9=u z(2}iBH+^tXY69D%MHeai+Tv3BiY+8j#Y-G3elT$K)90}5`@D4Zq08TGe!6$8+FNGz zjq$erk#9W#H5RVJ36sI$z>L?y`A~}1Kk!22c+9Q#IO&88vznm3`Za2$7Y3;E2J1)z;(|EB^%`2NDi2+~b&58hn*! zXWRPc=B851uvZo*YX5rGC{xQ~xWbt-@ovXuz3Ila%W*}62I*WtL0&O`#rtCDHiw2% zXy1;SC;7$(cNqy7^y7xosCTfr12Xs zyhT6*Fo=Jx&QB*Ex=GS<`!QZxo)g-FS>&h3;Tyd(DufSha$GXTV#i1$GXB7}`*Rtz zHV`Z+(sq1rkEj+cE^k#ASUCjI`Ex@DE4;<43@ zy#)3KId7-9X$i%lA!IX#-ZJ|rZ#zuG~sjan9F=G~gh zfVbb6W#WKyUR@m30#~Bn(`oeNvb3}e3<@GUaoFfj?t;S-Y-#W~s=2+nRLEQZR45Cz z*Hvde*d6D_EFp@kEdpVWUyK7N)lL^f2Frh#5LEMb=24FH{V8~^S;EPC0&}v(HgE}j zNI31(zG5XNC-=U`W6-R!CfZ1KBZu@S^Wr0W6;NUpSX7E`Ikk+~G^o-`Icz|d{ z#OL@Z-oTe{Lf>oW>4b~>qw2a#7-+Um;d7d-wxa+5*q=x=1pMO5v#?0sn_iY?5E%nE zM{>$v4N*7U{IU9TvZe9Wn1*ad`aDIsAluGp>OX7ZeoZjdq* zUcY{wI{FkEC>+_*i(7vuE|l9nL!5bmF^|e=@jD{azv#q%I1To-4YBXVJCV~J#NxAG z>3b(hm+1+rCpS956dq|R*x1-Dz|1rOGE`DhO7S_JdYLAe2y!8r!*&3cuqM$fEWZNH z(l0%11iJPx5+Rstsc!R2wHs+Pw6xhhHy{E6IOEq=Cw#TvP9Nn2FfWChAAm_9DDy50 zewB(c2hfEuxK-r#LP5LQwx7r%#i7ID;^N}!DE-#-e18doP9dD)Ht!MA*4FlLTsyVy zE}F@Y)$xgxdMwE|)p#-ao$wz_TBi`fYlP_NX+e=1;%kssbUin-z|`K3&`{fnOy)%LtL?Q%3GivK^MN!t68l9CnS@pq>b_~0lpcxGFG>4QjR z=f2l?7U`)Aph_~29WCXep9rFUaXbL5smh{4Q-8O4ylHLITWBt2X>xTM|7CLp7i8j@ z=$_|K`E^ZPMJpBiAMc_Z;Qi-(k1d;A>uYb%7~0bMJn}!QjX_T5sPCZS*Ly!wZxvFK>buLfrhkMw;%0Tz~da zP;=GmO{g<(%<&A`&lj4>>J#$M$4h{1Iso$n$mx}`vNDL4h5+yPC2@r@6xDp`DMdg) zkUHkTz`*ESb1bzOB;T#wAW!rCV+qa?v&G=%kU;q6+=Ny>Mw>vUt-w;LCR$K1byO7BurByk>04{PQdBc~FIKOS66s7rj z_-1%8xI1$fTu*NYB*nt8Ik5gw|20*tK2MHmdGpyC2jH%? zJ*6tyFO7O)o~rF8vl_ty)Xomz*Jrzhrf>?8CPxE+wLx$(Z1IPQRq;7GJe&lu&vK&C z{lNI+$B*A;CqU_9g1E52GVZMD;lby3IkVut--;Af=Lfv3FHNZ4@$=WVHt{;QJ^i%= z-~;78m#44C?hT&t%@R!D65lOt{w;)L9CpMBkUvXdM}Ww@W^M z{xLp2q<8IGSuv;>_3B+gX(szNK*5RK-Gk4&p4jsk#$s_ZRn}WQLf8Uo1eyBXGiuUW z`h07hc!CSeX^%U93PSYXhddG?*B8{!{=-z6c<}hmo1YuHK`M83Jz@td`l(N%ypcBB z?ibW;7+2R6qhJ*QR_@{E_RYM1&_U@>w?VtL5tMwb%h4zZylbfG^T^sgEF=4&p?I~t z_1oL)BQQwbx$T7x%N=ojpYk(l0@=Qx0VQI`|%YuFF%F9d_V{6W%GdH+Gqr% zqLDq(_Th9{tJQ`<(E3d&^Q+B@5>d2&IGfSZ?ZOMjMiZvzL1LermN#AeEE=d_1k-GG zDX?MVgS2$M;{EgX--=3}DCzQ=LG>kX6Xc_hlRt{vf2Gv#4-mq`Hsg^}2p}=kw(>V9 zgJOcvP?zBe3zZn97w(@F|H#R;jxmN8u9eU&%!&*nq`oaE9HPfCEj7L?4R98)XCA+w z$8x3mVo7%}N33Mj@-?Id?il^;=OuNGS7d)7TeP-0AtGKU`D`a%%tpP;HjadKJRRgl zAEGmh{TjrxV6H`vB8+ocg1>bRiNVx&zhFihr%zLhoY^XmAYOBCI@XpLgo*T{Dx~)NTEbo__#YMy$5^<=N$)1= zmCvxEy9<)^p#LI8o(KsjggFruB1TZ9SYj?Ryy&pI7)*~V^&YNPjZq!#UdaYE+vQGm zx%b5({hNmw1qI<^0f=lS-_b!H={#KPy#TeZ2Z%L4dU}>GHqwh7ufTHn-1iM*qd-PE ziuwJNnb{nGLEy$030=CbQ)a5Fs{7!R<$!(xZu;FUUhg@8k8C1co6hXU9mvAh$0}8} zb3NsQ!o60-jo(4E&nMk*to=6HY%!Ro^34Fctkr7FqHg1h)jh~79}ktf2)i(vpW#Ng zPv5$jVIzk-h{Z6sjB@2RQCfHjr_WUdzioU5vG(($AR=+B*}q7WtacciUctx5KLk8g zx$PYP@bEA|r(&^&yZ~LP7wL9`iT#>y^jf0{oPYg% z1CTg}_qjbt@EVVun?TM)C+5t3!F$a#^K?Ljkn1%r93pzIdSOUsN5{`5A1{0+ZAm31 z98mZ-9QH7DbajmYc=Jhk5Ijb!!JQ4DQT^CUG&D3zuo{3XbsakKtmhjpDt<$m+UVds z-triQ?}c9k7v!7;2z+v~u^${Y_jaZAy%C4gMr;X1w&&c>YYedjJP;HA(N~jQD^Gn` zA=|x{Lzx9Km*yolRzXAqxv3v<)viZ5eptD)X9Gd9bp20(NhL68q&WJ3)B~^-DQnKg z`r6vTTD*aJ@Q-xAn~P9U4*+z^OuHXIKw>-xoD9R64`B2HLp1ardL6EI$9^pXr{mr@ zuTpeWZOu)R?sH1y_h%#>oI#6i^+O7Z!R5}dcaf38OB-if6H#`}*KuWK?BAm(20`_} za8_xzkOp7{Afv?f^~n`Pt~sy&oR}P~_jB4zA6NXwzgxZ8m`O67prW{@F|vh%EY&wN z$+f1e&i!X7y#A%p*u|>qG7G3^oz9Vus$_9PeESMXg@ls)6{R9XPC>!}R1yY2Gieuu zFfh7aJC%S@Aa{#70+s{_l+cYdugJCDc#SDHK%N`{LO`RoSn2EY*clFs0l}R*jP^xP zW<3@bP6OZ%`@w@YfS?D!?hH&GqI7Y2DP(&p1I#5H)QU;9;43s?nL=iqdB7gZ* z{-pzVLJ?mBmN>cLV^S)fs4N%egX4pl&!3% zj>+mpf2i6l%-$K0HQ(TT*t zz61LGq1%EF4~5S$4uQTq6#%+fez!N0Qc_0%7edPn3bx;xP&}9)@9z&WHZg%o;Iw>j zdA4UU^yOJs0TUBbL`6kKk5Vrb=Z1zNLp6b~&m(@#RI>~X4TY2PeSE3{JpVx(G(QMoQq_mKgXNE&qBCurayq%S4BanGfl{g z5YS@XeooNEXNpZ%oVhwa1{9QU;E>31O~2D5&{dFar0U?}Bgz4#DJa={-U8${{M%+@-291lq`*rfwN4CzZ3 zNe7OILqgIE0*J@2&mlF7Z_(`Q=bU$E6T#u7+s@UI9W?-84Y)n3kQAqW$T<;x?ncf7FqnCpH0 z0S5FL(R14##F=@GQf3^!3w_FwAJWqm0Ko9@@Q9rdB3IYe?g5+qYO3sUYiny4Z@`b+ zUwkyciIx3UcbHcLw$v5lbmW({*wEeA8QYfgo4#L`qCd|JAgJL%4X%y!{N}mip7^`k z8ROesnv&*$knZr$jEB20?a;M&_oUpO7xuNlWbYsfqlrI zm%HLC^QBUxUD!FHsao#AOG0CD&>*+EP6`;HgWQ?fD{k zB_qZELfq9y+ghF<6zsJ7mr0tlzl=(#CL?ddNIm~{jCyWWRO{oyn?j~s?ed4?pCvy0 zF&ooPa8`r_r`zBD&Xzz-bU(WNOE3(FQ^pVfarqi5*zKfgui<~-Zsga+cxvIs3lczU zEf0of4@&4EJ0g&uOe%yKd4L4rz#KaAO(aM1pXm_xIQCwc&c1$u6^k>)p5i-Fhm(fu zIcnl0#LCb$dt*YVYk%Cn%KNX!x2fzd0Tl6}I{(9mNy0>-d0$SMDp4Ja!x+a7ka39B8O-A(dA6( z{)$LGv~F3J&F3cMmo6yYn(*9xYF^3wTSWtZBssn?#elg#6#n&YM#r_!B;}M+zt)@S zz(~$2D|mEN)wcQC6@V~4p!tH(TQsYouKxWQfnEnl9`3+l`7XE1--U&lOcd!sr3As- ztE0XYzVgHK)&L|9znd%i4J=et{wz$0-)sq zfVWn)Eg4`N88u7%yFWeA*i8qD0fR=7DX0OQfq-y$15`idT8p+Rd8Lw{8k3VAix!Z5uc1@~nNd!~+e*pu8BP}7GqtxV zGb-}nXWPMpfK9vWo5}W#6XN-iZ+n1A1EdFL1;9^B?I9d?^9}Ts{{ce_SFS&h_X81_ zkkzn7hQdHqwF8i>mLO;Wbg6ba=ebn~2#Mi*jbfVL!b!K6&9`3xKA8o-e)QPT`PHxvj8`|nyq02(yuX;ah$6^%iOwaAGodF>vf*5wMP-Tb;5!u6}FcOM3E(P z$F}Mqte^gpe&u!C>9h6-Xlh?R?>*u;PBlI3#Z;R=+e=Tg_$AQY(6IXk;NRp05w*3` zUuT1c;CI`-GoIQfP^|?Z>z0(XeXk`K*( zegNaiYnDR;_<8dk-!!4!gEmWgMH?2nst79{DYQ9i(_%7Z2-$#d#{=h6vD%PT7$faY@GB?UBF08o3OH8h*cZ&e6$?dr##L0K7@&wwWan%y0%3QExw z)jNQ?oQ{fxd$cK+pGS9q9sl6jUbi0dd%+v~Usv9fOToy=e4fN#mYPSh{k6kxJo<$p zZ%J>h{GHXhW@^8*%kf&nYO3AgI5fUbqI@&oyt@*Z(nzip-6Ulcys>X}c&e=Qe{Uj{0^;bbrdJcv%Iq`!bhkPy+#tgFe~4G6LT zCqBf*l@t|)*i2XCUGb7C4hmmdgGokCTsCjH0+X-+j9VnJe5jf^-tr;76oJQUAriBf<4svUWOPI)7PImHi}DFM%+aHx z)krX~h}Z+6A--;tcDL!$R`|~^8s>(5anLF8;`Zhm)NSj)_0~btL=ihNin&e_z^C+Q z2=MUOBqV4pP?8f$kAs@?wVr_6F0@f%{Yw}#H8XRhf$v4olXUNopoivWKSTrqI6;aJ zX=(E5!am5DnC9IdANM7&1zhgd@6{Lp&3d5^jisRl1hsDPi~$gH05y*2HtQg@#&$O6 zMgd%p56Tb&atDa+cp>c$ebGA51aROd(pVc7kY8>OFYt>a53PG6t>$ZceNagr>02A~ zL6!KGz;x;-Kq3||${TR(Rg}{kAi|2N3*f!D89a0{|4?@8cL`1r^$gZ$F5}-iO^!W_`}) z0CxVFDf4i*;Ygm`d%v~E#P?#20BSOrWc-o<2W+G`VS;!~3#7C21;x9?>lCtBiT|md zdUX0qa;sN1qxfU|l?Yd0vM*&9~Ia z8#?r1L52@Xruqml;ZuyO!l**cF%xs=mOo%Fojh|Vw!cKcTCxgN#E2K++^&>J9uAc2 zs5zBl3(C;h<5;qmRj-#HM^@ILG1$XTZ~Dr5rF?!8`HYX;oxf|giJcTtwfS=}X^8s4 zUA~D%{7lyvsPLqqO;1zoWsWpIhTSv8(e9HF4|=4-hM$a(=e3lg`KRNkf01O~Sr6Kr zH@^|rGs~<%9+a$wQC!{r$c3%r61>MHHH6j)Dqf#Bu`0)bwt`*A_4tYG;2qaex8~w? zaaH7EYS;aQZdfM0TQ78P{8y%M^$#?Tvi==e@ulUT+Kj5WiVE=~oA4PmHIvIPIt)mC zi%5NUp`k>2NBiXbY}+954b2bvJsG`MzDC3EL^d@BH^l3ZmPuKs5#;4|3e|{Hgyk?p z0&;WdK!+Iw8AuD}BjxImri6%{ot>tprr3CRLG7O-2cYzT3stEbuWXt+_#P0iAALJFYsQ_l-4YBrh7ujYso;xY?n4 z`vo?S?i2z-zmIaGJeF*Kz#Ja7Wk@MA@=#~Ai#T`yA1P)K*4?p&tpVa~B)JJ@aa*c> zs78TtpyX4OutsnhD%OI#mE*|o|A<=#=aaga9|E&%^aeb zT+6B)NGm=5^sfmVcF>A z%4pjr6_(&9D_bm-kR$QeO_F?k#A0`rj?=7~q!K(~@}a)a-=7j`r`R@xSeW@r>5f( z5AHS-HK%YwQ&cAQ*zZwKfLkYYe;kW`fqP!xl9$&Qr}DSgqIvOz(A(qIlbvUM5uL{? zm3x;=r_ia8CCHB;X~u;5b7$TlW}NmvO(MQV{RREo`i|HD7VBd<}bGD}dU<2S%&`EjsLsu}`4T0_jT0n6Crvg&TRF#d6 zjUN%z<*1bk3IlY-2u6u zAmGLf$b1YVBO_?%XG~n&_*nd%K1MyZdP2B*r7Kzv^X|B&oCc;fXMPJeqs_ky^9|B3 zJamaRt15XuAMSQm^!%{%LcpSolv^l3`^g{;`Ya%`%=%vLfR?L+!1TQX_fU|_0TpQ2 z5sCx)c~`zi)B^6VcCYCY@}swxhKlM9=+dwUeSu^Sk$|A>>FJ@j+WXr$5B{qf-JjT8KF z?oD1M{)MV&e@{=_%E5;Z9~9Sa0t4ZJ5F!7Y6ifJ=5?aNgXNHLEsSfa24nKmTLeSwb z2q$Ms*;RAu;aWZPkQ8AEDET>s+Dh4j} zaS9j$C`rOy#Y|6_jbiy1RcLZcOG|l4F+r0}{%kq`OUA~_4kBlpIqBy4WTcSwZ(nM?NC;|PT&RN6N2GtY>QvI#RbaSS zSwD~qc>->3xaSfWhip7El#lMZYJhfH0wTH;=(z*@TLtu&+Evyvpye~xX?L#V*%!qyXT+&}c#mgsYQ0|}+(CUPs zd&VNw1t0X`E>BscXMxIu#I6CyA9M#pVGih3Lb;R9K|5ZX$jt$kcEu|t4?RoJ{;{;Q z1kw@c2Vy4oyK=(0m&uAn4A|pf2JM-SlM&Pui0|BVQZy?a!NXocdPoe8pQ!t0`H5 zwqSiES^cQD2R&s8hUSu0}9k!U)s}0$*Aeu4tJ*IvQtk`Rd#*t zGr9fqXkNaeslYNK#m$N6s~Jnj2S%D`A`)|=s>NL7+DN_{W~96o?HD6CU*4~(L{k)IY>?O5oPmhfRocds$B*^S zHNEA=v1) zyD_RQMDvvI$lG)5cB`MKJ*J*QlZpCgZf!)Ko&X%ptOZXT_U$Y&^GcMXT&wpB(qsZ+T3;b)UjK^2;1I8hjs2UF@!%NBH4TbSDw-FK3-CYC)n*(m2K4ZFKrD0u?GM*CyOa{mC~cY2ntV*SVbT!UB~WuGVgtKDh)Q|Wnd(mh{jB>>9&UWF+W1lZSb54KoyE~`-e zVd1`;w`42l=ih5*t3THTsda)!E?WlzJ4Uz5>N@q^sb^-J=tixp=}yAHz=v!87w>+y zS{Avxs?ZiNmDbTiZRo&acNtZfsQJCk?G%!zXlTIx_s?86ye#YDNnN@IX5nbCT$R=H zN}@LY)Z6=>u$l1Uc`(%$Z9T^KFUIi$kb|+_O{kf1(6C=6`Jkpzva+Zaz$_cafNIqK z9k%G7v?bpu#J&B&6!2b$)E?NYW5>XqnYLOy`@8fT&`YB(avG(>iPlQ*?r4EuKp2Gv#vzT9I|$*GB~5G;ctL$z{`H_#}As#s$0LZVOt0I;kTyf z(jBy&)8#YVg+haeQ~W9CyAeQmZ+znNnC^?KI-_R}wl5uz!PiI^G0A=l!vi+dT;*=_ z0GWtBgcy9hmRWB)w#7&~C#ZHFiYz)GDegHx^3H!B(za|>1@Ji%{bG==)8!xJUwQ&q zG{VnSyt7b~F?Qbvqc9(xw!ylyBcZoX-!+SMXyav(`+8atOwAlZ>;rj2i-KI)4VzBA zsb@$TE%!hXvmP#zcZ;jImP;$ys;9JmS|7y9MACqo2aU%VA16%q*RHoNJf~^78_qc( z5!1D=cMgQLbNHMq<1E>>X5b*vE9!Szko@!jBJcW=% zTz2A&@Rf~|Gt9u1JN4~|1hrpKRh}v?2Y@%%1V3;28qxQp=i`GKo`~w5o`005B&?TTK*&KxE@~8J2?Ax2jjh20RDzK4X^D4ODq#G$2yR*w$EBhT zV~E41V#WvPEjncuyls~6I!ljl!e4<(Gl)`S2gIB03tj0m(T2Y@62?c^Zz&)3saSb1 z#clRKk=VWrAdMPRdj}3&TF&Wlh{HgI?Q!yW#D3;9*}zrR=r$<~>vx30*F0!p(D$mu zJwPw+k_g0bRd304{-G=lEf){G(j2iKYh|tOGD0YU*vCfp+OAXIpB)Y;J+JpXsO&v7 z3x!k8c@b3e;xNTnMPR;cmlVT3&lb}T`uk=VBK?51hs`S@5>1c1tb|1iLsa}HjtmtL zB&UrE(B8%>5_4Xk$yQdP1_q&ETZIIW6GkIm&i-}xu~ORsh3%_7-xp;)biGfD$3U>S z*2P5YW9*|NaK`+05`s$sZo=g}o}?{sc!kVa1$Mk=6J68x-BFnr>gR zrxxef!Dd`@^~(^AAl8?knzSV&?3>iqp0B?m2z;7|417$&m~7p7K^;cXuw@c`QuVcq z8q~}k1+|i$0Mk=RNFK0y^pJNeEfPKue)P}Eu2Z}0JvqQoGfts=6$txnG=UDOPazOf zo{oDl`=zFi@!v-_oT!qOu%zFf_)9m)f@;edVu3>cU#;%C(u=0=(pu+Ol zE8u&po8G@17Ldmfk9t%TbSKB}{X3yMq-sy1Qa9i5@vWbJKrY|Q`(gJq<3%BIReRWh zy*#TbOE~Z+j^U5Li4${e1Kg0>H|1?qPrlQth>Gwgs`rP6$HgM(bGzCd+VST)Sf^c zd*tayUlnC!Th&Vd{}@i%OaQ(QqFO)Jk6r=6hMz|mb@x4c^#W6%<98Ms_9?exgG46jB z3pM;qbKGr)?2{}xOSW7#(2F^?X>zNI>33Nf&<=dAp#F`{feGM}deI~NrAQJL+8#f) zx1+7$`UnkEj@sz$hDTq>R(I($1Q#$w+Y((!K)(SH3&=CvSkY06M?wfhz$KTsI>uRR ziHDE^x}X`3zM*?imljcMZE_M$alXCI<<8LHG7T_M^IE$)PvDfHHGCkw%MY1hm1m4R z(C{iwS(1%zJK%48zhNp>D**pL4DI2T(x<=03hq8O`QXPWF zu03;anFH;50W$BZp&VA)cpRDzSgiDq|4W$V%l=pZh|1<9KvWLx=pLsgiA%qn8_e&| z^>1EJn$ZYp=c97be>)0?n!D`858rwPA6k~|Q~o@&wH5UqnH(}a**Nj1ahxy~M?T7PZ-d$>XYecxZ$Moe< zeoUDz4;7mjIDw&$+J}Ps@zze4hpaWMqaWEb?_L~7Xc#=Y3i)x8g!aVdY56^X zL%OZob^;85K7`mMyu*CRv377(yo!KWVDUKtz{15Th~V8GrI=22b_`E&30b+}xMTmO zWiD5y`9XjR4&uC?b~Dq|>A|~(aOK&9HUvd@ZbR!#J~;VRXVB?v5bBtK_Qb_rycCAV ztZn+i{jTNdY%Y*5_aZeRWB_tw(^tof^v(FO<5N(HHp}mj5u*AbmuI5qS>P&m+DT3> zoxn?@1S-SX_6Ejw-XFa(&!Hq)?ze;Q3+^h3OxM`|*`kAkZ*T^D{qi&VJR@thl$7`-W$%k< z&*v~|SMnuf`k^5=t&0B%YNdCk4%cl_Pw{bxDPAr-eJWX9cnR`kEk;5bhJJy?a( zR~BNPMD+RN91QcW)>X#xz41|Nr|CV#Enf|&2aG0-`&qwG(ngURi2UkcX9eijDprcB zda5>a=5X9ER4jR7p8W3?P)k}rm6|s*!6ih)*{$l_A!_M?2wh+(LPw!$%l_EIsvmQa?; zZ@T=LGT*{GYAFaPNy^`=I>`-pCWnDY_Zj`I4KQA2tGXF!p&T65JOXR(8U|up$HZy^ z{FYCAhJ@pHcVisC{k?0)*6`EY@Ik6n1vTa5G^cwBY}z1Kbumgv(>N0);|Yi!qYNuw z7mMheF6YD(;%wxl?rI_=gl61>&HjbOrzhBc&pCa_e~W+UokkPFfHOCjD21^}wU-F= zNQ{-XQ522!vku)q}CRv4^vru6Rx;M1-@WaB4 z%J7AK`chn~Gv4#QQ<(kCW{iQ;BYUrdi}X-qU9WQNYb0LVJ&3+0gwdO?95h(jCE zMIFwe6?Ke`g8QnGwLZ^yQz(pWgp_YVzHW5Us+kI=g=i|FLWzcnd!!R-T0Zs5-o{CM zC18`ImO<{aQ%COsL}5d;h#(2EB?8AhStNQo)1Urix*H6HIflzL2!@)B^mYU@RF!h=k`cLF66`W_GQ#I@Hr(<$C1 zDvFZp+tcXMry-zY1=8UfSyllGk!Sa{C@(HEW_cC4C1{q)68l92>$C!Ll}PQJu9|`52FHcf#t+F*vllnE4H8*MFYhs^D7&hcoIuP z=mab&;E$H6rlAyqWYUzoHq>^DfKCKuzEqT!sj94S!NI?32^k=j2A!UFfq!25lYQ>_%LV6U`(!(N^wI+DR&ILK0Fv zeIJnp5FNf$P`bQS;IsVjF|~va=K-1hkAJfWqtySc&HLPG^99WL!>5i3>2|hJ;F?_% zTP_1eIP5o0&37>7(sG!rmtJ!Th&ny@vFA5~LT$)?tqhFO`Y9>GmQ~nF%DpL@V2h5+jt*30xz4Fmg$?wfuE`&Y*Oe$^- z)G6eUF+3TGEU8E?xAFd^}@nxCaMFfvx zCujxvI5mFpPE0HIgWk#Fo%DVpAPcuDAVNlsk5<|~>;8)f-gYsK@x0*2o#l5JnA!DP zY?4{A(WCbq%}G8ASw=sJ0HM=I6Fy(I6(#&#;PWQ6G)__Q7f+gTtV0NvKl`z|`@aiW zY!|=JAATw^`fWK6)t8tHD8c;_pPWqW*&o$$okFW`rfSzuW0zPdJBA%4Aqc9`G`u#f z0{;{19uTYr*$StYBz>t+Zc7dvwtJ0QWZpCauuG03Ew0q#9UmZWVr!93F=lzyC6^MXA=e7|A%v;C?`0Y8J=7fYKC^FC|fI?@L@IDA% zRANo0=(=-F^t=a#+%b_=D9~|J%x(`qwJDT`*3a^?tS*xV*WJiGvi3TJwT5nV+Edb3 zb}u%RG^8I9>$yY;#=i-LLi;BG_es6qBz-n`$!}6Fkt{;1qc@-=l#WJpe=F(ekQT?_ zvp>BfEH}w49>!;Gjtpi-*2^sUaP_+=@M(z)TpoTpsUrzmNWnFi3sq2-kH@!(_~}6$ z3(&Or3k#)I&p-}XeH0P(w*G71jvJcMZ>oJ_b@fN!)lG|wNsRLpe;y;Lo55mF4OfHY zrEU(bl1}}xYx>T{Z5}9z;_>0})EGK)PWoeo85!fN(m?|Nr)I4H>iKpR7wI3iD4V^V z#|<*b1FQ=vndh&`xAXkz>OtdC!6QmxX$9G66;4jr?5+e6!Mn)2csFxP`xj*|E=;dp zLv5$pX=r6P5?<<39n8KeuKkOFz=LpSu_p_RDxf_ylb;!b(rLqd&O44^^a8Tnete9}hjA^jbirGW(Vy)|7;k%u z52&Q*KUVEwI#ZX=h+T6c!1b%o7cC$L@MkyLCL~+fVuksazlH9;B+y9ZRR*yWNGzHd zF8-5QkhZaO@puTlZ)7DhvZA((h?`%XHXr2E2IGKgLix0x6#C zo?TFd9(|r0eUG3jt_QE(dZIJ=6l#6D+rx#+XC+mA4WyRgXkWaY9E_sr!Mk5eUs5Iz zU=6uWYQWHpEE?W(3(|7Zx7^7#dwVpXI|&k9*zN$&&sg+(l3i&3B@n3YZsF)e{pbez zd!AS!tdSUO$23(x9L=y{`pljGuR4RKYSV6}g_5gQJH8V7PbHbyu^OIQI0SBzKpTbc zYu1x=qZS^9rPF9uFaBA!o(3C2bq!aj68>83e_JN4kfUff7!4IfthhnVeOzqY$RyZThJhU9d)AG*2Z=l2ID&1*QR z?wbrSXZ&Y;hQ6@Q|Ba@jA8K(}any?lg$lJiFGk`YSq4RcEdOV&to?LqCogc9^k}Eo zG%MS^alI>V_ecpu)k?-T%siA250JAEXX8*9-rv)tk)5pQ=Ps+Imo{Xt++z1m`GpEP z(4ubnE6>`noji*}MWCkuN9CG8f+ZBtf-(CEAstWa4vmsVOzdQV(v@gm73+?oYdJGu zZ~lnXtSU-VKXt_Uqxz^~6yA-GwCAul=tE@JhVQh#_rWtD4~l_SM`$}HxHr}%=nC3w z(LwVXxL5`LR+andltmP;Ik@Tp+NkL%$oQReJBvkEe*uD7T<{nR5sUQz+gtP1U0!n3 z+#P`J31j$iF}3ZIBuM$j-*5qniK5o_dCE;~oyCwA^i4Hii%-M2|6+FE7PGHk(xka^ zt-n~3^8Pkmz2KV+?k9u*Rq*itu=UnaRlQsHINd4TasVkMq`Q$&K)SnIy1Ntw32Et& z4naB(iZs$4qI7rjdk&xb-uK@3_Z>sV@UL_B*?aA0tu@!2a{;Q_D3ElswOyD35>Jee zA25{yJlWr1SW6GYY$@xz^Nn1nxYT7g+Knz24*uwnp1-x7JN%@i2!_VCyfmyD2pg!sKe&zNhc)HqZ50~?SXvQ!265v}mC2pAe4RsCgBrf5h6uaO zDc3lt6VQ8)9R$ypwfO^EN5vI#!@|c{V7R~fgTe{PcyGSZ4=}U`()nWF62#v80H#q1 zK>vY2>3(klloLJJRSEB-|pTTK1~3wtCoduI_%TD@Lvgo)Ym`^E!PfyM{OR@-m(6H?-}R1%5F#p$`9z6Ek^7#*+_zs1 zZ_I#}eG>>?fc`2U%%*#U+kh;xrskffd|-H3th|ThQluHXkS7F>qD2jDcr6u^=|gPI zKNnn(I{=OUKUDp@!-_*kzLqp_QhG{w-v1m|r9uq|wxSMQ5E__UH^Q2V37KxVryAR~ z=PC>MM@gK`P>{)%##X;uQW>0Z#{`YOzKNfU&GN_43(fo%_=bSM_xkGgI z9$34(fVSv!zV`~e5HNl-pmq+t7PA`7mxo#Ke5yY_J|0e=AQvCJ?%Brb&m&R$dE^9mW69Om-W+GeBGVlv;Wk;~w09KIIaxrlD!8 zG-Gg8?cJ=QN6L$%+BCII@=laM#mvkMu!-}FinJQVL_}I;D``HwdzTAX()LSjw<$gU zFd_a9=kL9beXjRwpf}tTbI{Oo%ygi*0~7|T#|k)~s!tad{s;e^Uk4+~Bt!VXLD1IW zM1GZe`s{@*v`u6!anZkdki(~w!Fd5KDyFWfMt7Y{%?}X~aT6FW0X9Q<%kcJT4UirI zGao&(ST$|!pFn0Or=U<$?fPy!j6$D7V0H)d&V=*jKnTXGb69303dUC&N)13U=&7Z( zcuBFNl;y4Cr~hxE2`PRKU+wniaK?%IG7@Xv|22nsL7pPLM2uT_dY-IVdh7G1jE1jo(sh9o4;N1 zAez75rOSSW`K^Kff2z*{rUo!$1K>6$42Z8N9U#cNfL+Ki&>BQVN3R0bgURXEME7^9 zzqzLPG|o0D-Xgt!p2C_{iw+|&g%(?!2KV+*Cmi*ij<6-s=ZHG`yZ5qT-GC6YDHh%P z$H!O`RIEK50M?xK$w#5OKzP*A-NbrugaBq42y}}rEyDV2 z$rFF&5UX=Z_lBQqtt+C3CI6n7dkMm~sqbjPkKZ1-aSkKOo@}Ut#0P&uunW9Qz2j1r zxTjCx4_qj@-9d*t9%Yf$#X8*8NYW*foPN$@hdy+5O5<0Ps=)3kMIOvxdo^o%8Al8%UInJx0xm$n1Fd~TxI*#}k! z`Dw#yFw`90i(YKlG`;8Hh`)(6AuaPWM?}@KT0!#|u~H?8A1-gi!FSJ@#stj5xlqZK zcn-VmIPzsSzWY}~aL?vCHuP5RY(`oN3M?)W0G*L0`4Lv};c^Xh2!r$!PU^$Bj1eH{ z|IM2yo?!S~^AE1I3kFBQy28H#$xxmK(Cjtf^HxOWN*>=uvqk>2wzE5ic|-Q%ctwKTvVEsLCeOj3Qj@Ft-2g z+UG1emBa*KckmnSq_Uc<9zND06h4CrD{yq&@V?F;Q}~$QJU|QMU9cq+uAC4yL@MEEL1`4i6j)92kmknzPPP@u?z_GY_22`1gqQg< ztOhslO*&rONAMXUDu>VTT27O01m=*b|3$kyPhc7CU_eQsb${6;uyFo^+lzr(5J|@% z6#x&X??x4;k0u>~8m@b-3ZIH%(*B}7{;2+Q;=7WZ6GuxL;nX7zNF zDgl6eDD}{dn{f?@8Jlq}7x24EFu+o3Nz2F}XhjoR8M1(~+^xM%1W;Z!BJ(X*mt~2t@_se@XX3q z{)@F-D#lG)@+mMP7#z3M8=bsg*NYXoByJ<8Fz>x7s2lsSia6gmZ~Gst|H3E&?0Ajt zSefa;@c1TV7#+Z(>)k(efMPws;W+(Y4#xwTIex-IqrVfwOLS_!jThm{+9UCvi8VYG z7rJD~6$)f^UI(1~p4kqwNU^ukr*{R5E1wW=} z!NWZVm#LcKhSrDG@N|Bw4+NL(6wHrdAtMWJ!^ez55ZmsrCk&%)AZ=seG0Kkp5JuXn zdhTz?-q7E<7u4E3V4TKBdX-u9ddzlo%rHOGdDhs2^5sy-u!6DeH-TNxFKnK8_;Ef1 z`1U>c)_^JvyZdB5-Sq^uKt@EG$9>vSOmSZ(~_fZ=CLSzQ>KZ# zMZlm~V2I40FaN>=EO}2e;}D~d9zdOZ4?w{5Qe|2fnFxKbB{*KHPA+nNJd8PrV4T>0 zlg=i}w)*&{3cgLxjx8#29O==`@vN26?{=~85Epe1ikEgsw7gzLc$tG-FI0P8JOr%V zAX6_(0gzYfR8RypRJ;bQ&AzQ9tHQu$D=)B!q2DBG+ILM(-!+TC2`wDVu@ZZ=Sx)P7 z6+JG+OCe0^5HTK(%)z&0FXL*Jc=ZL0qXS(@v<^030ikJSlxRZpqcMSaz$DR3)^Lz{ z7>DEH@Q8K4_)8g*Yy~Bn5t) z(9K`aRrVOqv~Kra(UL%ef=1wS=NbSEQY)N=X+s_5+CiG!SQvJZjlI3Rh<>n3?sbcN zjI6P09zLddBngy5`?mXh=N5wPoBbK|$Ay>T z_c*8&eFN=-#t~zh!IP78FIEma<}g=U`36HKpl zA`Nl+RQ^!Z1OgV|-H8RHw1;NhRb$$Ztj6HfUaE1~2ly>0q{5Hkrbd%zQkb$iGl{OL zJQ?st_;zEwxHm>~Cp=3j@JTl>h-Fk9>jTFN)gtQWb0disU1M+36aWa)<}~&Dwk)-d zENF;M_m{Uc>kiKS9byu|5m_IP0`l_OlJz0&wiXogYxZNBkPwrf92d~6$J)1nw&@5Z za)>TAq)0OZhQ)yJ@D1z2juL4*HW&PQCMd^ri#6kei1~bO7T|096RP!}{!O*l(Tly2 zl|jCtBf8r+IQB@ejA}GR1*wooC@UVW38!pAgp}0~Xn4zmPIDQ|!03K8aV) zhZkf-%8U&)rm$y;tlm^vu7jbdarcK!gJLfudDrprc3@mAwCM9C0O7Ujz=azA&90 z{K96vysCah8WAiqq9m<$?}XRXj$qiwRbLq!w0M_Qza2}%C-It=zCK9k36!Riw^HPj zU=ed01X~*hHABN*PV2zuje?QUSCVva<`V%Qv}D{eMl&fKfjLY$QTE_Jt^~07BtrpC zI~Dm$oOlu8=_38#B_mAk7%BTg0uTr6UZNW1EEW=vp@G{uC5pE8U8Q2d|jxmvHJY}FO$=VTRn;sIszZ}!`I+B`j7(_yC&{GC8hYkLe)n~*0+fm^Er@}^Uvu; zhNv=gc2LSwB{(Xbw{l_|zKz83k$Mdd;@7}}sDDon41CrQ6E@yxp(2EA_k^JJzcZ1q z7GU9Kd-UjJYmS^XNz$5Bn&-Kb=bojZ6ZyuHL-bbO)#10qsPPo-NP+m-|3*Ykb+jeX z3}ow`9F~#(!>_qT!~S2*!sWeW_gzsLpnM-c23Wk>^O`tO>Xu5K?2p|pA^X*4n6=X22(UJ zVkQwjKqePLP`fI>-<~%YKa@0uYvG}Gcw@AqTQ#;Xi%F>adFzL9gB7=jv#a)5nSEq>XOlx}|=LqSX3`4F;3f&rM{QUkV~wpy+D`F8(0~0-taH zBJkMbP<)Q8hkUb3oM4#vGIeC)6h33-2M9ns^y++PJ7HGTpx7N`ZV6=zEsd0dmFm6B zU|1bT-~!8>!imU=|H_=!VH2M~4r!k`I&>h0x-@+%8ic9?bEM4W+8N*} zj4NE!0ZRSX`>qy}P6M0@xrRGgQfE$np8DA(Fb@7Hk6zU|pp7;Zf&0!_7KhN+MEW*0 z4zMfh?3a$*+A`bFgU+V78DXv4&=psUwh0*N06Z2MiZ{qx;?MB?ppR1fGTgh_fU&_u z*lowu!9djk77C*e2)m^HffB87Iw}Lo%cuwZ;Lu%1Z0+dsvmK`}O7A+O^P~tBI$E(2 zyUe{N%)81mv>G2zH?XFDU$?#wtH`6-`}5|A2_Bh)yM_z-)|3-6ezE(%Q|W<18=30< z`_XqmJnLc~YyyuYgYszNNt7tAI|F}7z@Y!ac7zt-2#dWCk2SX2w!ssomb1lJ#|ax+ zSZo+${<_HeI_l3jq_h<8EQ-1lP#dXbNg*eZs{(- z(+3kKxZ-!R1zU^`R9))Jj?R^0Jm*f@h zuLzlgob{1mQulav+r?AD)cl@!-3%Q;5+k{FT{a^5`0Drq4pNW-YN!9x{pOoo?S+@a zT&8%1kY1oZ8Y>Q9yS_8WAtVQ=DIFjywfpmwKBft{!=LqxI0+r0C!gJ~pT%Dsa|AN%VPuFv|`eT-yGFIIf9Xd9SUDWt13%NV*;3g?&3-2D*QM zxRu#d-BBF3b^pL9g3Xx0@f4hM@RAYnH)CxE&%h=`GMnVLT@msDs^Y{l}680_HRrEhcx;xl%~ zmwxrKpuDwPTkB*e8u^KnM>nuoBMZK|fg;Q&A`0xanA_6xql-f0cOqGSYM zqt`c^Yx`^M`Gs$Aqkmq%ADyNW6qjOvxix(YNNa9lzb0Y!P z$38P4P{J>(2C-K_$7vJgW0FB#L@?A&>T?z<%w3=b_vNfrrl zLbvt;|JEIV+q3btB*Ea_PBNer6``1v@Pi~KhZZ5A+`*@DhknEZglrm9urY)GGeIH{ zq4{5XU|?bbDVn=o8?jQrQ++~1YVmqa`p)I zi%v1w-|P|3uC9MXsJqvsZq;Vt2L}hcZH>P*Z1tJwcV>a`uy^59GNuG>C}KB=5NHxU z&~-ARR(LJ|D;2mWzI9yBT^djHp;Cgs)3A;h17filb^h{i#N~tAis|)8$(XwJYW$z_ zO3u)>fV%~7h6a+R36`HEHb@%z9*JbmFHp*!A)<27p`h3}AmQU@eOt}D^}D~~y%L@e z2Lv+BWVO;!R^tr`rsu}eNb~r}rx(xX((0XXxgAiNJyV{UV_;_cGonq_7DsHDb7_EB zJl|U=o%d*7fGPEWg%vR6HK_E-VF9y4>U#Kxj@(tDr&iWE^@$niPV#|Lkg4C@j1=XK zL0&mqktP|+{OR^m(KjV8P8`$HRv$$~wbv$RJpT7oq@p-YcWD&d1@#g_GcPrEX}$tw z;@%frLECYr3SgPHm8mIBPWr%&lG3TlM=G>T9}9?-)rNsJK{MNKw?_3Joh|7k$x}-a zC)Pok;je2SF$M?NWnG){{VyX0Vxhxp7{fbDn78a;Bw@GxsQt}sH2v)&u#y^v8M^H) zG}|53CV_k*w|h)}V9o2NV!qhM`bc(s$-@T%30S@Mo`cQKVvL0ljW%Abw!N9AI`z%8 zt3ZvQ45MVnLXSkvqsD6xxcsg6o1^T7icZn z*((c`Ss|wx3zkaz*wvjv;Rp8AiKHB~eJ~h8NmE+pTO^HekgVPJ?8 zYBL5$N|fX5Bk9O@v&(a_v9z}PhxlNf(^-?IYBQa&sBjkk6ue5MF2I5kW)cF_cAX5# z`YyBKZ{?t7UsLy0Bd3i`;9KIIBF2UCPR?HeeoR4N`XFd|Q2&=&cN&O3SE;a^XIces zW-!ui<1Qo0b_)j(xt)udmW6vsP@{caDwg9>7s?(=uPQe%XJ;kc%L!z>iyK`LO?M6fw^b8(5x3y=Y~FfI!fu2bOiWW?xC2H4uGXB`jl7e{4;*3T`*{6)WoYo!OWRO zLHOizyrkP)M0MF!;d8Ijk$GwYbce0`pf{(aD8i!n0rTdIqW7i^mh|1<_4Ja*DS&2u zA3Tl((X&*mOo6|q($WD=a!5#XfERI5hNQqX_>Ef$Fk|C%U&k9L4L1wDPSa8X> zPzJSi{z2gfmO+uovzkmq#=Z3?_h}I&nC*<+VOvSt8;b5YhxR+331k0SN-pVBpuK(E z&CnI>?<}jlk%&OmWUWv+-TQYL z#}q<30Cl0y$`U`>Y=T5gRo6{J@765Qd9_)YNj6@T~z**1Vp<=WYku ziQ>nRCpR)jvhNw-qHxnBO2-Nb;o;3Y2jsM=p)Dn+m;Q(a;vMMaXl!NKI985Df%7s6 zsQ`ReS57|}h*NCwx+UsnU=a#)S^^Squy3fw``9vx-DpV1>hpKt2yI&>jUQJ6tAG|; zG_7HRxyYBTj87mg3P+ZoMnIDsCQt3)*e_DG@H1M3RH^-tpw{W z?^mX;5DwVAB2p@d0Y9_?h|7WRJXjYHz2Mm6SP#Uh>m06YFZUW&W75iAOaDRJ4Fzlf z={XZ4+si7%j)HRg}ngMnQZzAc)B098d!ioYKG<=6i z;1qi6yV5^A5KuIzD`}oMF(Hqrx*N0wl;u$z*QVcp{BQx40~~Co1xh2kLP7kvRqIWF zU*N5CP?W~Xg|<4v2w8{zWE8GHm-M9N?D71mHx*t+$^k~38VwP&MAg~!OxVF~wzTG= zG2Rq7;-_3=HT36z{>>A^Z3jWA2=jdWMY1kvFM>dN#=o>iKlEUu@?!zmMW3<6zoA;Lr_2Rn zL>^0(mG`&^)pv5mO3emT&8_?v>-uP-TcGt+Z8zxZ0E(-ou8!0JvTWl{P5;JHyBH@Y zXUpx`9FJyp)X%r{C_n^A`uQImWbKF4i#iNE{NgSH{otYjMR`rKL*`%IZjRb?MR3Z0 z#WP9LkUN-2_{q1%4WU8Gceunu$n_MEyp`d+70~^Sj6^1WSKwVeIBMp342;A!Ha2{w z_*nnFGQ_!2Uo)8w((`dUxSFhL46wDln1}RL=`kpKMJ0SCTg4i{T41 z9J9TY-&&CN`j99Ntg-ZoE!|~^nOVY;vw|o32j{4oK{Gc{+zP4t12X)FJ58`>;&m%# z5r9B*Dc8E>sXqTRW+;3ZGnCakc?%jTFG;W5Jpv}dkP>&VP|TwL6-e=A@Z^-twh>V` z%zzeINS_yJFRRd*MKo`=J@rQnRjJ2w$ZuB&&<=cAK*$*nn&UE&sfK}C+Kk&h`l9Ww z&mwvrU)~@MwX}-B(_%YetRFXi+za-C;W1xnV~U?%6H+%3jN(eVVa>bHfPqUz1mA?7 zpB5-gEG?hF)(!~>q+aj0X90o#q`3hEGC^z_*@!;Eg*M+I0;+}wO5v8_O0a1XuzLDO zwzJkH_ZoX2;dWmEq!U-)_n5jo86K4yGCT-SyEAToXF;q6xvBJb!^Ixr{`a@%z5@u)~5DTh;VDE&&`>v%q$s=Id87VK0u# zwksBxr<8;Q_O1gn{vpZ#g>Igozl|D46}$Ik2aKFYzTI$m3q#?9iyVQyFw{CJ-M<`T^rWW%6YaYVvpVVjiAv6GiYr*3(li@9z(87e!B>Os}8w z2&=FXmjtN$qv9Cb`$=-JgvEmY7JLdX>Q zDjVQx09>%_r>la2>GnkTCisd4=VXBePgxuQ`V^oHMDdVlfYY5(W|IMUE)nf@VVDZa zj5;Y`bbcV;v(UQNLbB`YKnG?Q>i&b9)VMd>`v-eV1B-=+@?a!!vRTR8`g_Xu&x=V8 z?vuxmJ1aS)u<1ek@nMB*?lF7CRTvjh>@|?I1H~1y0xO__GTjyyF56Cyko(^$C!uEc z0$fQt#b0^5AVcb4Ds^pxxkJa_PcuVDR6BatQn!JRhBhTSvWrFfV+g2LhhzRo$ z9J$bPpjEWsuu)*pp7MN9lyaSA?*xu6!;0*!z@|(8)i@nQb)5|>-0JsZyobSxc=ZFJ zAZFMyGG*vBf5`4h=6LuT$rBxe_<}YjUMuKyFd!cqEk&3JQ+v5m3yc23Dw2P-e1-~! zK;de|S|zu6*I-!?Con|>4i%Wr%m z4CRB+J^*Y#mWBOG_V*5Y5WgdTb|OSnRF=b2foP_c8w({uS5NtaP$KfMD7=`z)8d{# z&W$$~xBNG7=;*5KCL0nwd6{k26H{i;oK&t?e*}C24*{kE^V_chgeO={k*}0Ngyp(A zkm;>A?`%f?#|t*x%r8MKea-Jp(zy$1egI`|oTq;k+@E8Agk8b0poew{) zi$d_6b_uf=9w^wmZ6u`e58+X#%&WZySO7uW`E1;=yFhvstJKL=M|rSGl{Cx5QEVQq z0;B$0Ci&`V$O4Xq#X&#ybQ^Lmxx{e5+ASnt4c6UeEx=p?>FDzM{CU$qz_$1RR}fg= z+3oWGD4wtl_F@o3n;ozLxBH+QFLzFc`@&gwE4&AIgkeg8vFoX%rJ%42-_!d6tRmxz z@wsbC@GQ?uZn0>9IXu8QguptzQkQmFGMRkQhdSxM<~(vz8W}o$jH_B|nfp(gK1a8K z+Uza*x2C84t?^cEaik8BoNTTdXFe;d=O){h7rrHp{HkM?cw<$STuBjmvrf&x$;SY$ z)?qHGw4&)9*APD<@Vs8SJL3cFNe#7Aka7zjMnRmL&LfCR-AybC&2BoYQT+D)5K^UiU@7*Kn~4uK&_fc{`1Vm zbfOJ~2keIg_KUFkjMsj;1FTD${^mddZYZE*je;GFz(rn8Ufu+3E#NWm{5;C@1%f?C zi~C-QZ>b=*s&oFr=R{IY+AnR&tm@<&518tHfcbU}^Cu98l6we|!PT1#+0Sf6EOv4T z5lh~Bui0I}UmO@YU-GDYv|1!tKqLRItCuW?EeOL9f_%8aZZ$uUwKYPvf!D6Mqod<1 zkuU}@XQ7`$G~+TZn$!P#UcfK+Yex{j*aG=F`f_>pZ{puit{{YJsYbEVWyiEX;tv0n zOu^3l5KetJkK#7r0^l7c=7?zaNKCfi!a-WO{V;`FQ+e_7O7O8r1ERis1yE&2w7XN8 z*X)4-ujwJ8l`SK$u9~D^0=(5K&1ou(BHsmP2l7NR4$((X8gATB?7an^`jLrVcC;+y z*3C#3`m&4NhDgWkgP?>OUcHk3Lnu8xXs6=T8}#9?v+omOD$Lt$Jt;5zYJKkXU#CA!5graNkIcj)>&ZJ?k1lL{0 zF;jFfYm`%l)n(wkz|`Q(!OvsM;=+A*vic0vx&Jw4vWm%9dKfbul0-}`_oGfGG;*R^ zdBK4$FXxTZhcc?9_272E151wV48N=8Fwh}uxsJGWNkr8jLEsL>b$9|bve0iGPgeil9rHtNFUQ%46O3?aOI{(J!SQJG!${*a&+Abmx@fw}%GdM#>WSAx z5o6#QTpxj{{hu|^rvBD?xXNkgWHME&KOHZ=tJtPQGha^Ba^n|kq^7$}gCXNAu0za% zP0xhz`yk^$`z;+`!y#Ze6jcq~Ktnr;T*{GumA#!hQcLEh5d6g&RG^1I*$(E2#&Thx zg4v?g)U+eM)Ez%f)SSyCqmmXR z*Sa`2d3np((C$h(S+xddx4e{Ro!5T@r{P?a ztE_3kvd%DEEp8!69sU&NA_tiE^UhFg7_*#KDuTnL3kfV=sBiT5_ZI=Z(E7JIM;Od0 zbH)rAjsH>5AtJDh)P~c=@O{m_7*ezUHX^qraE7uZpzM3XuIc?YO5B7N0ptBV*F+Tr z%ZB(XM?7QkkY;+BHp`D4|H9ofo@XTegDkThbaDM50+v zxS2UoJEd(lVM|FVQ+a3Z9RqOr46E|VQ9DGk1Iu|!!xj@1+to$W{1-_kZeoQ}x#^$W zG{aYRKH#AQtVS}o(U*ofk{+zF9_*OmeMlMmks*YPBdFh62x-r5Y9eo6x{pp}u~CYZ z%)tX~qQ%X{;i0=`>8Hch9xkxHS#x0>cvc@=-yUXxbsD>qhceQyVD;f{2uMs|H%!JokGB$K#fjm<%I=2t)|J(IfVbbLdWHjmYO{W@siY}5J z9Y--C=ZRry$mL+@`X zGJO$pU;pe2b}j6Xhzx#~`lwd!I*z+Y8ra7JgE-*DmR8Qr!ZPa!pD(?mCT*_l?%KiS z%~61ck;hTZobNIDlmN1;FcZ)6lozx5qYl}#(sr6=MjNHp_z07Z_by-fvXc=5KA}vS zZx~lpJZC)_y6$Tc@e@@uho)Vh@H%ai=p4h-5 z`;p-6N-Er+x$LKwIOhgLN^Ygn`32*SU)C3*Esxv3isqQg@MKbwu(fmj8dOl&A5T|% zGs9VWX33x!5qLz)l`*^Pd^E$cD+pdJ&5uuM;Nf7V_+TwACs@@4TLA@3fnOLHPyzpL z6yx9BZ((bPzzh}65QgEdtoEak4YxS_G~rp2^$8ix-#8ntV^F5s!K> zJfNvdJpUD@W~BG}Z}wt#^!Q1EPwx#yRS`3#`B<4Xq*r1vTrZ{BDU+VEtMOx*#Rj?C zEq8OR1XYudvW_amvt(y_ucam?COU&neK1ZvShNQ-&R>;@0rw$vqN#BV=3I?M!TU7e zx}tgSH~2FJi;-cX6QMd~{5a{pnpBZu5@Kjy)#d(@%Rq<%Wb{m0iqrDe1Lu?2`0|k3 z^R;2bUh0pT8W?!2whf#4Z-f87VH0e=)jp&L=KTlq{pGraBm! zR_5U`M2#P}pg|C-_|8~g-9Az7dUS0KxUkM77wD`U z!eO~f=9y&H`s-$GXukbfk#axsT(jjHaWs*v;Y8M6kB6LFLcFE{mg6(NWXAlCFzI#i zA_A0M)W*w?1VI%dgi11xV2dZ{<-N)d2%HV;~uU2&|2snqKns#9SJy3m> ztH%JDdsK#HLW=UYzoc5A>_j9FGltOrzFmYC(UAoak$)Por~Zs-)|&9{lz!gjnYxA~ zKhkO4NO@6Lv0VHJTrJvb+ubD}nADc?er(9KBiK82|aiT?YGRe?a*sMe1OX zkvk*9)CX1r*Ux)D2{aDOko+`Lwz$|Gta&ULoR^GDdLhSWcc{=A67fi-@@X{uONK4* zl;l-4qjhGE-WLK-eXY)czA#>S>9jCgXp8S*@;DK%Dt9I2(~oIIqjN$v5F}-d^nQXd zV->rhOW}RihAUI9jHY?#A!O$n9*iQ0yqpLq3FHS%gT>6n-yvsK1gB1n7_(QH1wOZx#CEwE&+F;h$YSjzQ@oxk()l7ne{xDaF8}zBz#yx2cxd#`J=o{k(6ODQ zGkTt@cPZAb@e~L4BBV=}$d&3`OyfTF-DIrlI$*v2b&Q0Kf6G7tIZ*l3=%-2k-lM)t zV%-l1cL~{@XZfsSbG`F5V;a;~hQ1icK%;7D*DnV?UQJusQD$l5)yQDM`k5sGk#Wjva!`tPZ-jC^17^p;XNv51wP&qfccmsELo`CkOk`fj_QKQ^+ItW5X znNNzLEio0@X2`W`NBOZuTx%BxR$m)mPqB}X7Z5*LqR)OS7RD%Y3@b^|`EYYi=6e_) zwofeHE>Y!E;4MTLve(*Cu#_NIGd=UNK#dGswXHtJd^)1i^7dnWReQr^klu>g^5f0} zZi%)<*$_HDZ>sYz$a|`%tkgzRJ-IwH<@fh^a`V^L>k9w)+jj(iRHlq~wJ-@K#9=y^ z+KY)~o>-eSq*z8J?<317r0W!avH6eUq@VWBdDJ9RSG_~xeEKFGhpwK}1IJeHT!9JP zOJ7&(O7?{tzG<{n9n0b33O*v6udr%(wgKPKiyKw-Srs={0%i^*4V+H34%J^eUuX>$ zoLsYH*my+THQ|zpxTg*eeRijNF=2vO9QQwXKx{&e{R;1vl1!9uv_^ud3 zM$;ZXHn`K#3qshz*4QW?Hv#P4QFRTy#sNOj$l82SK5h0m?#K~wJf?LUvipM9;C_H z%>7K=-uU$ZBuuRKTpAJOz4tOwvYvhOvKOA@L=M(r-Mer(%fFpDeD4 ziRUk0?03-wAlhk$PNAx?MG`25p1da(j*6m391LZFj1IZgLchW{ zWTWxQuG~Ppgy9zSY8a*RKlg2|_e?Q-D!U7aFqlM5A4}SJQb!h88IlG0=*Z)%tYkyy2#p9Y3buUlt4ZK zms8Wp1>aCbsu?jDc%NiOto|r&ki0LHaG0HuXBoaDJxkKI;!edwvpa~QpBCf2Tc^#U z$b61T%2cZ8Azql&@-cKKVPyn;c|-*-?o0`mOlr+GdA**)-BPMJbuch+6w&@Felu|c%ma7FJF5gr?uGE#bZVV_k1|$#XjID?B5++ zw|C(8FlW5mp?mo4johW)*jp-$+~gqp`aL94`b>PTi;J|zL_fV?s2yWzpkQh%&(vmx zHbumXl7YXjV*}o)o_aE5`p0$`JBU@fD;o*RX%sn2*-6$VQMEAP666{#mWUc1Owq!E zZ3+$y4M3iX*LK~z$eh@B?6$4v*h+(U6L~K7>y@qA`@)h|2}BhB75jbap|jto5@|Fy zo6d*(#-j`+qpUT!FboQEjh2i|JrG{1xI8ACVrZGEO3Ly4=s42{VNfGEbH5jqBa9YU?2qnu@hT+^Sz(z6sLaf1+Q zj9f6Ovy?!KdIIbvt;n);_|xCchLF7^ut4e+fLrGA`O)sXc&2$Z6Sk}*6jWaiGe*|r zbSWR2mIbULxCI{;a3@#CL2TBGXd0|;_; zJRi5hK~bJ#3s!Id_UGu!QQXi)-tX9u_Y zq~oJNRGMG;VYD+tGfnfVpG$Y9WJvRs0`Lys&?YU@_8pC&kjHO{35|mhDvo{DvrZ1?;XwNHQefIcLzf?6Eh z+D8ldyv4LAe97tktHNssi$=BP`19vlOst&IG*p3t8D0@SuVl=D<*|%3{T^ZEOoERT z*??`34Z~V3w-C>JW%}Ny{w6$2qGyP3Qh^KUqD7t{dp6rx5|u@Z7fxgxkJsfTa}sk! z9*W-AHfDUr1P2o0kC0bH2{PtAun)~oHB%i-7~U*6(4o`U#5!LO($m1q$JV))$2Xd< z#R~!-XmXI4sZHfWupjfC_QGn+uQ$PeWU4OoLn+I0@Z9oT%nM`4nIzuNz4ydusyM7L%rA=~<2g zHPcu-@)jjsTO5iY#!Ms(!4JhZTaK;o2#(zHQNy2k20Mvrq(T=Cq}eXYs#p*b-epVE zYQ(?fCN!J;>#BX%N6rDqdeK~R?&$d)>#MC38tI>~uPv514o_xJBo4+{NIkhkPNlK#qblmAfVe-M%9Wv+)qUW zSPv^Wlk?n?SV{NMOSe*UquRS@Q_-bkMrP7jf|QB6?lnqcNMMvfyqy*l2>9BbgW)f~RkY;AsKvWckDF ztMj*n99DKj4~A5J1?gAqE5&l4yD>c5OZ2hBtiVVmiu%;J1T%JB2O5wlS&e|8%&hHC`D+{-Jbl*n>e>eT*_WW74C`x@&dcW1A!*TrUCzm)?kbl6Gv z=TUM%?rLWvtd^TW93xmL^H_1xsG`MSe0CL9n%RzNC)FyDwMj;>@^iJbU}X$4>ho|4 z$?!jQ_Qbg<9w&Ob@E`2h*MZk3iHi;b{t{a%sUPnn zXrZU5ED-df%E#c&P~U-gQz@22&}-B?i$x1`ZTH7NNBJmMrg z`$^hZdoB3=O$A4kPKF7BbaPKj z=&v&cJpG2j5rS8S<=~z*w*FYV?bHX34h34d5h)|$-^@5Iw~205{X0}g*yE4%(81ia z*kBSUt)jSr_7Vaq|NVc`C62`hkK&3iCa(J%AsA1Dzlp^~Fku%+Y++EKX+~5DmYbi* z(dEU)4v2~#$(pb1@BJ;8H&Xf5P&32xCEZ6^h%zOifpLPk{1Sh%GJLO){`w`!Tz(4vS*x0M_K*y z+sJ{x{S_nn7uVfwrx+!rNEbn%h~&xCz&2kyFC7Mvbuc+#Gbi5p;9CZ?ChDsTo$OUI|)Spj8i z*w$`H5yBeBk~@Bix^;y5>Cq0=FO|f<_c{c)`8;;p=?gT`0+1ps zmj{(Qw?;^J^1qs<3gp*Y=K;)VBVlFSwZqD=@>+#~P+YHae9QJ) zkkyf~LY((=5g0J;LEmKIp!bCrgb7jDHpES&29C}WuMFq-)F2vtN@n20)8*|9+q0On z!vrqw&{`#Cet(=}-4P=uYkG9R7FsJk*m)Tx`v!nh zP&bd3w7C@wNRm_Cu#U7sbe6!kf8TW}bKnKn#G1cH2<7-&wgYFF_cXuaZAy3o4EwH-u77&jor|J5w|1E3^y)6;gHe)W zoq<9{I(S?F(K{m)%CsjzU3#wm{r#+PIGqnWOq<`OrDpEw$V zpcq{Ib^E+`V;8!q!RMAv65Xj+*;Vy=O}Ge-ASSXxq+_z>{5ld(SjT})`KVLezmpE) z5CzP&R+IVW>NT{qR?n}COG>)dk8h6<|39+6GAzod?Us;`H0Tr%5ozgGX_Zh~x`yuV zP#B~`x}>|Mo1tOo?nb)1&c^qA-}%ltKm6n6<;*9fkC7(S|Uk}H<)JJ2bW0KKNfjaNe znOVH+%9a)#c%;RvnLl)=VFawlj9mZf&seQ~tmLb5uF3{ZRjx*jZ=Js`6j-Ldk93nK zdNa)ZY)@ON-JNgNIk-z;)%AS+7k&PZxy4yA343CeN?)ra;9Q5n-Fsk_3?Hd1g(Ikc z!Ls#XEyTNvN0IomK}iH?`zgJf6ytggvs?bUyQ$Rs|B-&E zToI%HFLU0X@HculQH4kRB~h>zS}mZv=I`N&g_XzpbzM8Vu*l6;-KwyNUF!0b2io6k z_tmE~Ma5?1s+KBSoukY_M=w<@dbyH0=mR5)6O4Ld+ghV3*IDcTN9^C{o&2K$?i5h> z$6(lNfLGp}p;(KR3&y7kAdK}53RsVlKhmJR9oQBRUE$Le#VT-MAV@&*RJI(k(x9vn zVej7BS7xK}-Y00jW&fRqMTS%U;;RRm>rYMj8P{JR?@48|0_7KY$SmJu zaAgM&OGO&tX?oyj-k=e&b-|&w+0A!omX4D9uMECa*A1%+wPWg?mjYATaO1zXm!R`M zz|mXRuPjoQNh=a0)V~<>GMqek9YTZenzm$0-hS4w7G%)UlK8`h>Q&YJJY|d4P>zpR zD8Ru@tHpxglBiuKAXZr0!5+ocOZHHxwo_>`%`0Z?*nLDrAt*7 z7zy|1vR?rdc(-ogb!u7r_Tb{v59DVNS7uoFp zdAKfnNpi@uwCp)SKPSvsk(Nip>PXdUHg|EV#%7FiA^|pE*zD_p{@0w2+B{LH19({B z;IpcT!*n_Gqwmr?uyRM(9fUJFsM$=$$5-|%Yp#aX2;EA@!ZaMSBKw3qz+P|0py#!i zC6*~e%i3>Yk8qdaz+e$VX1VVzu==Hp0GjY2G;jM2KaYvF#bW&RBeq;CQT{|9DbX{* zf9EMg`ZPf>*HQVuX^9%Dke0kB?F&k6t`eUb3!D9k$DgJKDGyDV zO(h24c;$%qe7QWrp|}8VuMR(&@vUX35IU&O)pt{sRs@WMNS%*u0yD;e*a6d9d8IKgnv%sxf1U3~WnwH^hcJenhn^@6rD z7@k`rk?H$Gr&;296^SSn6yA**1BuFi-fyAZqExxBR^i;Tt$s9 zWidp}lQi0AbP%eHaI~G1uz6_`JuBOq8n;-qkg-9{r^XWhRs`I%0DZ_(hJM0LqaW9{ zxBD(N!ZAL87;zP+`!@`+1_6&O?9;bw1teH`*WWll8pV739!;gMk2uG|!XK|0Kwb;p zyhdN$AK$yv#5Sc4)A7v}vNElt2LJm>Q<=a2ANtaq_wBf2)$EBGsC_!&!tN#E19yKA zyxxsCoDwseTxZ&94=4<~W-WDFFLm4G#)khXqKs~38fjVbV#pHt_{MHa7iWJC`;*9l zSw)RoBkonrw~|6IX##Pv;LQ34PT@nJ_4c4v`=_X%cVq^h_ocl}{!G}&oO@U!@d>JL zEz4nRpE*66;U~ch{eO2?R_`hN<|=Apzi86jWc?2mW&g4;H4SSx z!S7fp8aBG{VZ-7{*G&4{ofbADwn!dIR#w~y<4^xT-2W;XD}X7(`}xZa>32oBSjp3Y zeq}FG^H`&V$9)j#5gpy~Vs;QWSNCG1KAwdH5@Xx^e~7A#+x?RMW|x`B6N}6#w#MSX zV{y8?wA!@wzz7VfWJs`p38oc1r+-&%ehUWqS(m@V(wx@-$DMsr_c1M1xmV{p-y)sA#QNzX{Zwl75_JL$Q3JLMvBCMhs77)-)3a`emDq?I~X@z-vxyf z5&9u?zD_X1@j1*(t%u5}`CT@#+__Z@_{dN9Vt_Ev)M>+dqckd4SCrfjO%Nfa!T!>C zv+X!qR2*u#al#80aia(5QbDnaV=llk4aDQv`VY){iYKn4D=)cQ;7pU5X{L^QK8qz> z#A-?D@-mV4u?-Tx$E=J?1y18*pI#)wi{|1l2%!D{2bTiTC&XT>s=Oa^D|h_k^qx00 z9vzfVy=0*$f$*IpdZI{aP(~qIl)T^ByNG{V^z=7nC%)LYA<2z0>8GN)|$iU=^3sXYzP0O8M|4ciG!09Pp<=do8+SYI9#m$Vu6^XdDd{%OE!{|@B?Y(-XCrecAMo}k!qFTIAsdydI^ z*OP2q40A(1^adCYM z!Oi2w?vKY>2|<$R4IwNJY1v&{KeEncWzH0HWTB4u^H6}!ti}8O^~38ik=)dnp2{rY ze(0o)uXUCdJpC;<4yISygWg_WbWtV+a|@#+lsbAXcXltv}NFMt{SJ z86pX|o0rD+yN|g@0q9LUWa#ReW`JJiJ=M%d#$+ACO^R@p^YNDq{5N3U09&m-rrge& z_FnMzc~H)f8EL}EN0$MP+0AuUG3DCtCls1|l+hDgyXMmWNTMbdZ&?x@mpI;uRqJ^$ zQ;6`M$E|JZ*^3S!AL8OA4aSg1XhN8DM zT%GZm-n>Zf>trpN?p6$H>>cYIc2qRAG{a9=-pvxuXU;ONnd0nI?VP9fa zcYdv|x|-!+)=sedZ@j?;#?yJq6JG#_Vr3qS_}ul0anP_FiT7WE0MAkt_@QTm>>d^YChzy*Zt`evei(j}tV41;(ge^+;3wz# zb>_jtTnuWRQ~v1LSFj#yN=o_Cgs@MnJ<^`cQR2NRA3G2sswc4RmzSMk2w|drEJw~b z18xLI@AOeX>wVZj`V$<#P!9FYDMmmXrB>Nt{xD=lg`5DCq423rSq?lJ+Qp8@HQly9 zcZGAa4!yeGy(94C(I&+fVG|%%6%?VWnEO^kwpT+Oz!k6Pa!!hUi~2skSP`d*56iRo zZOp)NiyZbYes~gI0N1P9$4n0s)R&05U%m&djp4x=(w#g|K$*zZ&>DEmLjEkJgSJo) zW34w)|LnAVgAz^|C2i6iJXW+9)nK0YptyZNXYj2&&+fOy%25ujtc!)pOH-XMp7{lR z<}nN)mfJ0~4Zvex%(6j86iKv-R@VCAzw?P}{6^9|CxUtN)@phdT&Z&(T|Chw;_=N9 zXV>MM+YG6Y!1uJ;l#7*?fryRW4=)LH&!#7ykDWAt3q?dT@NYRxX#(%}B?1V4J_cbx<*p@m)@+9WAVYtbDeB@8?=*Zi-5g#cEy85U1m)gJ9r7Zc(w-hGZ3~AB!ljS#0F_Ieq)NotCca zh{MW-$=wB4u5WWq*fLK^Rg|tcQ;m=j!d0s6Q|uTXK%ub?=()oLBpu zfo|r&bEeO8xuZlnTqpJA5k(G1%)m*j_nwkqeU}iN6)QTrKb2V>9@eZv#$`)!fZ|Je zxK>;BH>rXW>d4RDcuQLxnw3`?R2Sk#+Qgq=#nE;jE!+{fumH=!kvPn6@uW71)j5o! z#r;B9l;zoPbX2c_sG{7Eh|S5+ZM9KW>7we^B&1B>kpKP4iZeV`)sR}akW`P4VuCRd zDUo;ae6oP6HWT+HJnrY*mbL;k{c_=`^KAXo*w(+3LyiM4^Q7+0f0)#uw97S)Xy4^? z{;#`0ZHkOgBk~q#!&pEw5m~48ieB{%WR!p`(gbLSJ}n)KR~HabbRkxWf2(5hL%hG{ zzFAm#68r(emB^2e!`D}T_9rUgXu<|eTw;*>Ke01N1$I@6>3u06Fm)3h@{3n2$iMU6 z`GsRQK!hIK@G}&iB%_fN-z%{Iok>P&_9PH)2G5{(vMBrL;Tb%`d>Y_)0lV&e%APiB zH|cr6d1}|Mde2qNa?ekL(J?Z$K<9CD)8!O0D5%u`SjXO3+C3V!o-e%zoy^5c@-fpvcH6&7 z+iyq$&sPnkKR%S{x}4NM;VPpqfV$!LLBiYlMs0_3^8yFVyFFw5)6?)F25iH4a@op+ z9q&y$J`R?r@Mu9hrw8>8AV<0X2RSMtjW1wF*LOSoPw8p-#%{l1rE`~de;k$_y#8}i zL0Eq~=<{@`Bx8_Ho7H3=hW3(?e+}tEwvakZM`OSrtvpou9?CM&(A|Y2(c#KM+FJ41 zEmIgf{9CesHI+ktk|bjv!zYUMLVQ_ktBpwBiu*OMDTb@Ffb5^dY&iQ4s2+}72w+#_ zU@Cu6uZjkHetGwe1Mh5bjPAp$%nfsL0cBa(^-GH_D@O98Cqe&_6!$oc1StHP3Gcc5%Gm z#;~N#mkrsf8r-aD@Zz|QkDLj}wAu)k zQ_>|6=DXwIIsAN(MVrAJ^`$z!Rb6NZ6YBhI7%M#KSqN$_?!>aAVf)0b99PO%RN!Vb zTUc_O2tp3F;^CsQ@*q*}3JbK+zg?G#B=G3GX2kgx+R0n9pP4v%&JAjZi3tAeQMWU~ zs&idiATpfgCQNps9_h(Gu%&(PkQ78P&5!O7$zDhjqti;cFh>Y%Zyge3X|}L$J2x)p z;i*3E4%&0V+uTzhp5vV?l-W^2!=*gt5-?m9B~!9l?V2+zK&U9y0t!WZhK#va)yTc5b@B^LXwY_<}h0Q4&M8BwyfVuL%^ zxM@omfxK#IAF*pN6V~0k=@)O()z1k%pJbrkdbiH7&<#Mj{#ojUHc4-y@Y|oa8&bGYg7eDl5>T!4DSm zBIc{RxL&Eue)3byitCmar)w&O!w{9+y#ZnQ{Za9XCe7F;9V{tuWWB?}e$agJML+3H zXJPVjrC&>>VNEW1ob$~DIDRYZf(N3;fSDHs2rj0e#D4F0ul$_$bKnMgZTnY4awHk4 zjFLb>-CFS!h-rx%hP$@5=>YN8?9X_k(J(pp@#S^i`v=V!^BZqPKw&?Uee^=Y^5^PP z9BmXExn2{EKsyhYkLTGmnUrq0N-QWDtwZ8`W?vXL60rA6 zYi-y>jypPFD%Nw~_Tp|$3kXO($rCBV0-*c|@e9_^uKyWx8LYjDN#Fafyg5TfuZ2NSrv)5(v7|WrKQv!+8 z`!=&@3T6cSIQf`$W8G5jp0I9r7FtlFXO@gHl4K}^&dR}~I%{3aYJM{loiJT0jWVc} z23n=-UlC&XcyK1myb`tf0=m&n+risd92G_aMgmNr!$6a*jBNH$bt;=v;Y7?bORd68 z#)yTvO^9iKO(p(%d@5|Z?0(NAU_}c0z}i@mLtbshjEubtYgbkGzQi*0#V$OaH>L3K zhJpeQ8pW2kWdfInOQmbrzV%I8yx{9*pWU0g&CqQuG|yu1+m1IclzVpS`L}&2$h!y; zuJ^w9)4qTqx{o<9-Vx!l~b;~Rzs$>PPwFV2w2?|DkyvfB> zMqI4SW_@AkIqSdz>T|-_4a8g@`WT!Eq7qugS(+c|jQbfO6x?XV?8s0!G0S>+!;2{f zQx(icpR(d%&vfcx3r?j+^jb>NEqA;KZPaX#h5E1v->5@#pme!=V81WGdg%<;r2`0V z)4pwk27fBq0_Q=Y{@Mp95X>-glg1dLRVW(_H7&39?iX7bew&8=z}cKzU3xP~*;GHA6D;r zM$5=}_3Nidk)9ni-M_81p!m|;u&Dv1nEgAIGqmlzuJ*{)Bkx;lS(#;*>^8uJ6Zsg;NuP2gS`E3x=(?TG+GNH>uT_jW&R*#7q9D z?tm9>A-oI+Yo(EkLn$H#)R#Y)pc%AL#BM)k0Mv+LKHS=_Q^5U2h{Ev-v#T~LS9Wla zkWksxMHlIRxUCk?x#( zj+_S8vUG)JFe7el#4Gv&=_0hHh~+3fE_C+lk7YpO7V%qsbX=i}7wO{W_n~{4F`CP@ z+eLaHO#WnREO5rMDM>Gc_m#)}>!z%D&S8u76LanxUjrlKH*pBll-R8Y;l$$L+``+G*k4dIyf^>+8h*X%?34IlVGr<<|8d=wo zTWr2?VDa!|+0OG^{N)id#MvN>fQccz95TR?@uCpTllR0oOQ(eDp-?F)GU{%Xs1Xwp zAvXscSvs3frLSh#>FYyjmamy|wPX$S9t$fny<#cEL|~%{ScnqK88!ck;{Cnr z+<|IwmqaTjY1q40VlH$b>gPn9_uN*qj=jxTY}{cDGdFfR3Q@G@q*AfB3yT=nr&_P8 zR!kOF^JxwW_meN;p%idn6zTl&__<1@8F5WbjhgvAaG+U%D^b|>I+hgwITVQ93}0N&!fkJ<+NH@<8#W zcEiOrPj4Nd*bNdwuRVQadK47kR5tA zuHPCtNeYs_>ZbZ#)eYNGg9fkTfn76JmU5HpOW|KEi?V3KpY{uuKd zGd}q{6hy`w0i|$3_flaL&z4E5zB%fxIh!`En!bAo0x2pAnb7hSY_tG&W5d6LsRCDj z)4is?e^XWM&M$7PRWr{kD(cujmseEu9oU#DbocKn%AK2Rmfbi1ZS)?c{kSKG!OYCz zJ}l5>=v1=YMZ4sUsGgXA^TFq@HiB;;FCYJJs|%4jLA5ZcxN&lCw6YS$`5eY4g19OP z@<$so-Z)9mW{Of&iG9j3sgTsyp_n&6EruXNDnG8QuqmK~bz}8bwIvRmfu9;%_j@2t zE!7v5p>FQjpzW(My3pEO-2Ms72nQ?2v*&9DSQun&`?yX)R`P3;+d@210H{{mtqPv> zkYF^Yr42ai-r1}9_PZKtb;v3PKD2~bIAo8Sw|Z#nFKz|#GVC|%vsf_?#%il_9xJ|m zef|zT(NCo)_!Dv?^3PUI1_=7zx?BQ$42E8ZYg$c#mU^W=#rZLPS@T2n;i?z48OxvL zIZ33L|3BSTH{0|d_gHQ;ih6RByuPLS>}1T&M6Bf1t5+{fnx!ASck4bQ4NO)0l8m1< zx(a%>7SbdR(#P&WGx^JUZXiHw;{xt??qt51e$qc3s)c>|oQ*~tH1<8FBDqG4>sccA z(r8+;;EALZI!Adj)<-o?(X2!nA~wz+Ft^*As;Jmufvy4}@B11NkpgG*m+=y|M)R1H z#tU^2CM1P`FIoH^t6Sx0AytBQq@F=#<(D<_?2?U(%D@j_At<)YP4 z&l?&EN_P(M4mv7>^E|+nGK(NL)XdxPCAF|25h{?)Sx^-5HzoE&t#^Z&1wY%O^7^kQ z^ivi{*9H+ooe~gA%FFaJsqNT2UGd>p|J+YSjDE%cHQ)U^4bxIkud+D)alBMAB{FUK zgoo@&@UrW*yN#CXM19lm$SG64Bd-jS;kxd?ijvolECP8qjHd~*$?&noMt$?Uj~#-~ zHH#Rvx?0m@=_R*Y{)R}jS2Y}_m*<)>uFFCNKKb#7N;0+q5VRU+X{ieu?`orqpbNa0 zq40+2Ep6V-Ju<$FK3=VusD1;FB`AmJ7EyUS-pi0I1l6xi1S$N_z3d#h+{^q%x+m(U zY#LyZenBHXD$1BwA`uojSm_xhq6HENsOD6n&UhrqL&dp4Q@c0x#PWl9>l@1-LMnR z>u-yy@hO^)vd;ckJ(`>1>KQ!_C56Pt5xkc;E)X1p4+Bzaf`+G>0g|Rtd0z2JNx^VP zdQMKx)Kyv<_0iE$vD^XY}wMmP$L9qOo`JIit3ZZ zj~*X6W-QF8*zMX1a2~U^tBkWaxS*jSY^+OAjuz^p(vVr(@m78w;`@{M>0Rl864>Ys z<$mlVHVD{$p)y0%CV7Nq^^Ad(4BT3ki`E%Bp{QWxTEv$DV!v*_SCgA!AEMx zmxM(rlnAcRvL2SALxhAs+@xhaWe{V2%%;~7qyxO0>dtFXhxYpo=M>;CruM8s+>?Z= zD)HszCDW8!xcm4pp;EcE41GHwMju3Ljnk*6qcI%1r79&VjAU>1h~nIDGf-z$cDuP> z%4TFvF|HqIR-xRfp;alq6Tx~#`=vCo64L%#{p$zP*H&>cz+brKY%#Pu3N^iechxPY z9%t_FuLM(47`j#2@?_qx0ajoO#;Jamr5dzRL^I!_W2^IIWh6y&DJg2e=3Vwmx76+v z;qmFbHPK+!-rgpv5j~Gf^HLQ_`wN8c+IGi=^LON-Ek3?ArDOz)Fqt4d8?<4nV;mcK zzKE@ZPH2me%Z@USSwE!R4Xn8}@CYki8n+to!ri65q9}M7k7ThK55E)-B5KL`l3oph zM|1M?^^R7%5k4pKgyWF&u>u%{P*lB)0W!>bK_(5nw3DLuctCjIAs|aHR1o!@xj7Ta z|CH;6Jc6Z;|H!Zs-%{lCxQ2t z`1rjEkl$54P37G4{P7QJtNz^T+x3Ez2N~`8BhhDVCf=mOdKuz+H`%W`MAo=Sut;Mv z^fV1sl`#o0FGje9bE=OMDA$KcTltWefH4!ky`buYxuSME{e+4Ez917zgRAvq)8i&h##yiP*vrG z{!?Hh^={O}?+KQsWL)=K{*b>On)0#i=wjdN>sQ|+bU5&$gu=)qG*s&1hp(^;3N`!v z;-d~bv+HaD^D-)7axm4mEnJs{yBNltJt(LrSFU#pS=Dgb$z64=0u)`wIz|)2(&@yGT-y#~|gUR!bj%kD2%l0|Wi* z*Na^=p{wf&mKKySClRXHYg()Y%0$p{iBCTT!ZcNR2_Q^s4+4W(_|9(U9vg!P z&@VnrC*NLObW=w87Tdnz+89Ua$_Ne+een!60h_EJzMaQVMQ-MR_uJ(J)loik?9@~T z_O0vjJLThAKA-oow}+LKb?Np{N|YMu7zakpM_L|88nv+MtTaYHMBKSj(`(?YF(pI8 z;XG&a#1XiTy(D9<>zK{fX&xg?7}HM|UXVS$RrOlnzP&jeT{xQbrW+ibY>vur?64V- zhE(75YP=iqu&hPJsH(oOF(h*qAahQBfttxnA6Myza z9-FcrD9(7iiBLJiO-z~+#Gse?%eZk#THURQBxek#Y-L?L%*>9^n#G)bf1QJ^d>DEb zAHC)Ym!+jsfNamaULuWcc6{VgzbOfUY5%W{5Npt=BaINzUAPRXK2Yl7YO_g0)_6xl7i0mq1mqNfRE$Z-P7;ML0<~p-F z5f@8i8@-gsh^-??%lHY2w2V5E)Du0FqY8IA+JRN41ywYW->lail<62glVZZZvMZ*<^ zW49e?1=`aNHfFelH#`MVFgIEcvtfvOaC>1!a}0%ch%adlLL5S;wgV;;DEHt&Xl ziZeszhK(%bVL5SL=f>s~zYbMxz!)z=ts_@rUZ|H={W+CijfoSiaBR6qNrlUMs??8s z>?p6==uDH1`SmM&p?J*1gI&KOey$X#AWsjk8P~5lNX%X8NnOsSX78kH&ryplj~f|< zXP{#r+jL9%zepu9^?9in{+-44Ql+&#u)j1UvopiR3Baa?v`rGJ542+rG*82OM#%5p z^*y68VY}$z3p_8(_dnT@lGt9-E`3tj<}cdk{7Ly{%V^e^_s1^koZBt>vyPZ8-`a^w z+KJFxVHX2z)5^U(WQw`Wg_ijPW8``bT)+!b9z`B8eiD6IvzcDb^sNCS*$th5W!6pi zn-Y@a9SSOzA0{)qE6&Rr;*KKUY?Z#9$A_F6)dUzVK=Ah*Ts9K)Q|%O4LHTxBXqzDo zuh?Ji&l~YWRKm>sRiZ`(D}%1>@)#+0oce0Da}39%af~i8PESBPuyhYqG49MML6qvZr={3 zme<^k5%y6*>!`zUJ(G3zMpzdciRG#(JZz&b)v=I;?$I?pEGEtpA}|`REgNt5?)$t} z&fan87O8Pi&R^~q?GkFYm%&F&Z%RgQR7*$Qm=VAX_o}eT=t9hwG_`SF-NLN4qo|1B z*JIR1)@% zGc7G#q5W2qkJ!;IbxUK9^}jK~eI_egi3u1ceidWfzrk{f_zm zyE9h)nA?1%^gY+DO8ofL&N>$t0~(KpI==bho;dFL31652ZezFB@P|pW@vK`Ub_$M| z!f1Hs^hsRP=IISB%~>dmUs^CD^JT!*ii`ETYl;TSki4&d}SZ%Tt&$y%x zTvq*T{Jlzv&HWJNQ+Dcig2xzy$Es`4>Z@ci&6Mw6FT!JS34D5!TWhWLB#lWlXBu86 z9pbzHjpzMUyYmz@lZjm1j!+z0SR`~}6J~s@UB&nJ=hR3;+Krl~^K}ezUVDVwMDaw& zVzKlB3t1Aftv8lw2vJ=2wp0jt9-=R_A(5p0f~d6aE$|xMi}o zk28{*hCyIL0Li&z;V*pGbxrHZ&prKp`H@|k zkU284XcjhPc$V`iSIu@7Ij+I%c-rv%WUC4+=NGy&dekomj(fmS^GiUCDZ9V2trq7*|2<&Ma5L(iVMp0PbYv z+H{#Tl3qnDS5@I5i%nE^TI(~Hu)eC^ERR_gt>#3tlTq5z9b{H=|6y;|W-H6jib<=; zHPBCzsqcZxo-di1Y%?qQZhc_eZ z2My^mMi|1)9j6DKy$Rq-%zm~iyE*g0QU>j2QWlt}mJc$nuWjE4g3p4YvW^Pv& zgvP7Bot7=(NjIE?o9*1)Cgz#vUEH$$Es0on`2&5aX4jPU&I#=c@$XHQ3$7n~d^2Ds zwD7v(v;Dh#Rgq9N#erq%%9S)|N&GSGi>!xdUulrp2VM>O-0qB=w}Bxw znXCE=PXkqR82Sv>@*1T{Niwp>A|k&?LmY88SNy`}MuL0seV49RN>r>KB_^=^-r{fG zX}HbQEM$TyKxB?L>^el7k@kMUbqxBb1|1g(8e|-fW0lm7=W{N~#&(=fF1ee;Cl+)l z*vBUD`n==^d`J3?w;HBLBMqj=(imgSD>#@e8RX`i&c~Z#C>r2Rk%Fa#zem&0*L7;@ z@~<88dd;R>8KlLAC^IK2_90RI~J*iIDm!BN*%S6Q4iJBbf^D^K^i1dPPAVRg zE@ftYnU{AP)S#sT-oFGS6IVPl4(R<}SAap-yh2c#5skvHxKum1iLHilX-$fTPU$;E zTBn2#o_5{E!&vXCN{H>u+p0w*^v;W zvFPXZgmyn7`;kD=^pNEnVMNz6-%>4`s?@x5{@v5X1zq{Z3Tx5Yd;2|7*xmNs6)YIy zx^jInHP|d&+;WDbxM9J1?0md7Hz+ye6Og4Vu9vH#Nq#SsY9VP@V3;rwT4U0B;%wW% zd;YiU-xyD0<~3y0b8vk7TiUs?+V!Mn&NRL%Z&Q7+B!h9#=$9!KpU%DZ{eINnd@B7- zgbNa^!_CDK^TZ2hjZ-m)ccBB;ANEZzEcYlc>W5klDrgnpO%#{};&?%!(Egr|XP~h& z%TX0GzI8zW(}IS#&?Wn<=OKPpQ*a~&G&{Z!ol9uM{;o_dKVddJcw}97-Fkt80qars z*hpN$bU2VGN!yq7sXxVm4T}w0%DLJ77>E+H*xEb&wvYWD*}~$=(y{<8L{{3&RaA7E zFHpyfg!IjfyoN^b!hUvM9>&4|>=X5k#nw7iA+pj6PJm%{QE+*lg7i5Kqi3{3dc`5mVdTl8Fk>q zc~N*Ehl6E=_WTi03}OR`rxYdc8`T2Pr8&6Ek9ne9wP&R=Ns znsPEj0=9WEKv!rd@G>T~X%m@^RTs6$4h=}!|1TSh{ml`g=-C(3yy&tb7nCHohRs!O z*Yn;jZkvUem}eorv21&u;3xmkdw(aiFY8vht|;@@_A%6v9n*8n@6DyvX`q)g`9{{D zarvaRN)n(1(8b|M^0_jUPzOQs;t|ffv9mlO) zAn_={51iUar{U8Ozv}zHq39CdAEjg8*e+o;s$2_)>~coYxFjOSrrLTeNgyz?B#<`U zy=@N{&!WTKCP)|hN@h&9a7_(HWC-e9xHt(3QX)kwX-id0m98Z~?BXM?Ov!pom@*)V z+t=s4@T<9u^)vI2CbSnKBN%i^Mj#yFHESzMw)68j>Zjpn?-47Qwua{z=Z{Va*9CGi z+t)dr2-QtAp}9Kc=Kowd)W_39+6MkZo=YOvj$hU=n`g(w4+y2G3tO=_i?AE^c}85H?2`)tra^`Hc@9QdoLeyuzI# z@&fclyDowF$FcM8z`*gV{`TOuCAG}EyU0NgS?svyb+WR|gV`fS zQBM>eX%sm3p^65xgcF}>%T-*NQ3)hU1ve#tEDXbJkT$0GPRfTCXq zqi~**kwdIrVJxo-#oo(P((9E{*UOnwttSDfkHtuxUE4?8D(;x_dxH~DUG8>-q zIV%1i75Z~bc-Xh!_Z5+?wdew~3bVI697Jm}|BBZ0Tjhyy-lURys-G6VW+IGa>1M|G zfd5$$Oe(k3?25<5NHE{%c8F_8cfV0F3ya_Ah+3j{)pkMp#&pyRcxf`508U>Y;q z*5=fPIkRc$WrURZ1s@(vGMEx^*tL&_(f-y?@V^nz~`YJM#=IpSHkVmOi=60pG%M;rl*|L}|6&LWm2xUg=+ zI8{n?tN3ysE4GPjG|#eS)Y&e34_nwrtkExerwdcVlAxX80kEwONQF7K-C5Uchn?i^ zXEc5RQdW_zjvU_E^F#H&sfg^4j~DnZ@<1XLijd?)+%KSs9`4NRqPRNTJ?(4oq<YB*}gP` zn{hY5IotgbQ&&~IioxAcUIk|nhEvxte53n*z#StAUp~2J*X)=;Jf{i zo_cZUw-K5iS&R$Ni(VBU0H_xlyf-VqG7ohs5-><;M`jbcnYFoHzh>jL#G?aypM-5{ z)0>XU+Ts5M%)~?bU4i1C=@X)&KAq_QHfc3ZiSQYHlm&w_qt~Vx4k97~i7x!WG`O`w zV`#+(%m)7~T00bg9>Y}DtC|K9C&U~R#l z7L-+9jGK!iER&ERV5ywUXT79kYxTx%Pf(T1=@o)}ppF3%^BX^?t+s!WyP2ZnFOgux zxg9GHlF5@HX6oT(AgQdRQg{xTGi-;vNYau4x}_lhr%l4Ni&^``8i-w6`-UeK$lauI zQZDBlI~2F7-DhLIdGwaA+ctVy_xq9hYPjzkE8)No-~QF5s+LH^>J0SgA4?I>9;UjvgvE+(D!BXH zUictxN8Noi5G0XaIYqf^GCoTO9!Mo?j=`?_$U8R%dAU|YIw=jAKcb9e;3BwTW&d5>PejnIaAb0Sd4G@{aPCFNOUA!T|StkVBT0+R&NR z>eMg~Tqi(|w`1$0NClL5{^udlZffr{s6J-Hkair6wGhm>7~RB4b#Px5BE7n?KRX)%96w_>vTvLxnlC&^>6?*dnFPPg(UL7Dw~ ze!xQtXrBdm)UGQ6L8|aCcqmjFI_5i*{81z$T9WaR*FaQvwT0mdK&0%tlZ7~7g1UiI z8%+ezQ~ERu!szd|hbe~I}oa4M?(K=Db@8{Z~K%hTMS7OL0wo|(?K#>sHT zpw&U(Neh3FY@ZPi$puZwT*m^1x!RneY^hF#d1G{cwI#w$0_tO4dh!H~(75%U)z!wBW&13>(n+fsK^}7ou#nN1>(H{{b7naGU@BMD z@rio(M=uiYYU}=|#Ym8Jg&K@Xwh!DO(B@)6%xV>xn|j`@;~f4NP8d zRvOX?Fv;9{SxI_)L`l*_N#L8TUylX!&o~2#4RAlxm1w=%!y+WeZzPa~v`8YKE}6U) z@V=-W7_aXDY8c{?L!vAFPy}uJHQgfTeWKYjJPMvGJpd~}>ATl-69(ti!xv{8pTy(C zR8_u3<_i1{`nNU_!{(Vd3gYjFd?PEJM|I_~Jgaj{H7= zA>kvM(_f>7fzW;nVq{jEueNh4yGlS;PPg}XhlYgaw4mrF z8A#uMH+vtRKD?2@0HKu&Awo6*PXVAN1V1)TXqyMfZTpDMwZMBrWfRgm)>^fKt-^5uo+uEGfwEhj0 z4(G%9RAuL?Ojhn$#9y`khm)nO(p(DtZpcoo>r&`%wzHv_=r>=ayqAS?=CR8t34z4; zEU)RlTH*|y>eoniv(X{+k%s&B?sIHVkVk+l3p;fo=sJb@`-;>z1o-aaqy7)ocV#<8 z)9U##w?}gva*?hmlm=alR8^BJbX!;eyNMxz6xa1JtLvX8phCLzr5x^FNU*C?J*{T@ z8VEF4kkS#N+|c`ezxCiup!u3(M@59_q~bJc-t5Ls={wo1jHCe(pkf9-A|pZdE99>Q z2MQHa#}nGkQ6M+8%#<2+Rvq<=_8(H2v5E$e*8yq+Fhdb(KWRcendyu^hBtiTGDzU5 z>l7Dfp$tc5Tz2vU;>9by8AZzE#CKuY&erz9$v)~)o+9wB6tleckB#5Rk~@K)_J znHzaJKZW$`=`OIxYEDPAmTV1xdF0uGgJSy!aLBG+N3e9CIv_Q(>grb`U(Bfzi8E60 zo$otgxtB`}(z*j}J{lA*?Z@9NETieyyVs#(-(IEo7jMd*08>2~2ju4zV%&WJNu`^_ z7`b&@DV!i{GM6AW9)jxm^rlA}o8s29O z*5v6v^}N1%1JsA0VIWwj%&=fu!xpn>#rS^iVgeeST){hV;Igp(3CdysyZ4+Oo1xj53^)Q#7_I%QE^Kg~Pp9si*N0T$CD z+%sFcN!qc#nKB6Lb!6tuR=Npdl925fpSATfA zJEDP;5||}A&u55oLBBbvQXbLMp^E?_<5AZsyavVu>?p>L-Cms}N;X!x$`8HZ))+xM zI4DiA9Mklb3177<8c1Y09k+2xpHK9Gh;vQie|3BfX@;*o;m{6y-hY;Nt}2>QvCD6G zH*69V`@TJZBw! zVU*0PUIpgpA2^>P@P+omme>{`^i#~W6mhcRmjA~XJM}7%n2A0P28=G?aF7Oul;%X& zN<(fa8;$qns*&iR?N-q_w( zv8KWEiKk|j-nv{JIC2&T+hy_}>emsSzq9G1GA05Y#FK3E<90EvV$YbAyy&-Oi|Dl( z=g8V(mq-vd7opt#lPqI7fPhGyU0Q5_pcf?bwDxG2H;!x%@G==VS zk34^|0Iq%;n>U-=ye)nSj{VI2&J~dKMC1C zVpsq4(*t()ax@T;)7uug(lY%~kr$*$QGFG0ujUd8B3S%Rsim#hP7UmEd_c~E0NLM2 z5#ssDC@TaSyjLwoG)qP_EKH3t?X+4$VE2$=B0>H#=BbI8`}8Nh#K5`U$8zHjPMavu)L8J| ztU1YU%rGQFth<%LcjJPq%8!?L%l!$@(HVc>kr1+bH1R3byOn^@LiQkd8hAosKin~|!o}z~E)>W@)Jos? zKHoP;R)KmsAYNoOk@OKoz{Yu?EH_@99(?>zW^(%(>d&qQRcz#sZAcIn$W$MRSxqk1Dgapqmbxsl$^4&Ae) zWoo~~+u4a=rQ+`EJ5X>e4s@Dbz)yzq;X~r-lup0%uimoZMQ6Y3cj;SxeuwYmdmhlG@8@2``rgQxno|C_HxR;7HHNM5S9@dwlxf=Y{U6 z(x$n>x4*9BEv_>8@i(i{+ZsP@qhm-EO9lslE(&Pg(HNKg?0V92|)d{!)I3_+?E zG1F!@5OBpksRf{WZx!715Av+R4d7VZL;zQ7?5aYlzsN`|bmi5`;A9so<3rc0i4nFcdy#3-9UN3 zaXxlbv20T+#5TdwL;;z!HqQUrxORW(FkP>RRNdJ}7Me$91BZia1k4>87$`ZdhH>aG{5esVBoodN+s$_rsp2oC-?ivlamqHDKCqLg?i zbamIwxgG)E#QU%rr)y%LPfIwna8&^`6i75nTdV}@RGk(QP|!{dID@m!rba6aeAPogV<`^uz|puA$lL+_4`eE_A?GnGgf z%4MAILe0?8F&KTig%8C(0Nms`ffH%F(Zm<`*(5QMwC}vhYVELenPvB36$QnadK+J0 zPaPtKRy)ZMg|6RlGq^?L*)@H2K&mebL4gf`IqgEw)$C0{2rGpS{!4{fmC198NF$-$ z%*Eio7$?@%%e@S2Z%d`%TjUT!jq{5hPYhfyZdv;*TAq7~#_&Y{V2P%|r#9ve8XHZw znj=tPiA;2FFR?xejDaNwC$IYjKYDg)KWCx`R1GX*(dtC0f(hfT%3F70Y7!_(Am^{s&`TaR|kcN z)mHL+zET0<`A>lYtCQ;^yg=~E9bZ3@W=3NBakl?LJ5xgXrLB##F2xMj>-;6y?3pWN z;IjOGPnns#;3sL8P`?uDR$fYWS&l+&!O-5SqC)%<4of- z1rp=&=v!@_KpW%L?~|RbY{RdJiwv;dqeH7mHaWqoxjUdg@Hx!81TZO>l;Sp^6NpezteN~Z|i%TeQkVU@LC$YUAi*UPc4Y8ZvS%gvo z-ue)$J54m_gEZj)q3|1c-d?XSV1!YbP)MgJSOsBiCq%b^=(Kvto ze8V6AS-SLG3lqGQPeQS*AL^Mj7Z~)RogIMinFK8sBCyB7Mf3qL!up#YecSRo!nJ;C z5p=N7xhNetsq4ud^eFT+Nk@=Bbd=0gewLb(Z8Pnx1P!q zzoIyi5oeREnJ^ zpvsT=I|YI#d)|vMOL!uZG_J2;ZXaFzWifuqFi=jS;KXxOy+!zCpqDg=ABOuR>*DjX zz-pWNedXv#!otV-cV|>wHZU(DZ8N7kCri35deUY4-&A#T{}RE@IeZ_e z>3II$6FG2=gr5&|VZy)9?RVV2JS@TRNgy-7?Q{Jfi;0s~oRiGSIkiF?PC1)3ydVq0 z_GS;Hv~pT5+@OJH`M1PCW+2%;7YGC+nf@--M{A05!ShP@aZbZVP01c!GkSh@WJI83 zM}>$kwsJ6${qp5=e{U(b%hGp&fAV_1>;BO-my&1um}4})*Q;BV{fjpp7YOc3r|YVX ziot}+;RWM(r5aGExP7Ey$PvnX|3|k{>-Z{^`2kKt&e8Ru;wB%3e%|-hJ;Y*!lBoPnaWAnkhM%t?%+CQkQI53$W zm?V2*(paqw&%n7)=0^_SEJJFT`#vp76Gu99z~Wz7Ix-^s4L=n~6^q#{ZCQb!=U*4~ z@3kRV7>!y2-m@iy^%lH!xQ*4&|M_p84x9?1A7dt26iiR}%PxXTl{=Z?$mh8hdKy1O z(`_p~9Rn(o!J3p$CNxq2w7=+w!Z(Tysw;$0hvjb?OB7%a1>WqrK#W*hZ#mhG??w+7 zI71T#lL%4Sa~jgd`hRCwuEo@s1Q2Dn;q!?ByI}Hg$f_X(637ve{`X@r4RTT^qX3T( zc|taXe2^IdG@l%D_$Na_ri<*vYr*H3*-sq9|Ev=-o80o;oeZ2G{>))pmWXJlnRO-6 z+aC8SaQBqi>5te715{$NO;W=iJ=%nhO)xWA54 z5`F2qG0ST|aSIEy=?NKJCa{rLvnw4JnnAGi1jJbF!fRXRo{1?nZX>PMvkShdd9scX zo>De8OIfOVmU1b0aZf|D4L`*ZNm0R}Xr5cbXl}=MV<$J4m z%lDQ~hC;0E2Cu)rKW3z+pn%8g_=6(`GduS|IkgMmZ&0%3 zSZjOS`&fU33lLsKpbKBFlb1WNvoJ`M+8ygd@%L&ay8ZqAVxM)@F06HSbv2t7t7>R` zxAs(3B>|)YpuqI>#t6&CH&^mNLhavXzF)kAJ?6fG-rXLpbVOAC zhJ@e>9$WpIn91Ar=vVnSmO$rUP)yxkdfW^{CPyq^Mj;>(Myz3=Ye zns&rt*O6=L)c+_ns@Pwy5`o2YJ^C~E2VT#2SuAY90+obP}aj*5&V&8t0fLx9Gj4s3R{hfdY4JqdzV1zN(+2MqRg*y1}Q zsDnS<-m?g}4ehoy1(M34-M;wtoq~fZnwl*#l)BO;CRcIk9f;xE+gzQ#Na%vYJr?L# zuk?hBx39(sXIXfVs2OqDU^lJy7qk5)*21&8tY37;DBrT<<&3EZ*yd4dKkkS!Fg z=ltt8E!>4nvK5EmB{vo4+lq=8us~i>-X6R+at!AsB+wjq9XqX*QPq+e_&>Vd3`)PU z3JMK|h0K*Aof;>|HdYWA4DOy&a6rK~UPN5Ex4t!~&ss?hl;yQJL)31mC7f-0`+Nj` za5C7&1zKg^8QE?s&d>WTGeCR#rEN3e9}j3PK}u>|JhU0l{``o-cCDOt&%k}d7DjJz92^{Y^q}Xt z)o)|Fv)Vw^2ja@$!_)4CnRX?Ka1Ikj(7XPOxJLzQ_Y$e#5L)7Rja(LT%it7y+UDN2 zRZBwfh)7e<)g*XXbA{Xjgj<*5YLZDKN`Fs>NzOu4m}%#({fXWgyFy2Zf-|XUYL;~_ zNgf}dzD%w@T%hFEyRWL+BgCiS@CTVII3N@c;tqFW?*5 zxVXm9tSm*rqE3sgHf5vDBNZrQm*0T6BC^(a@z2rzN?8T^h~g(;d`xFM;t3eUT>>%l z=*x2L;pv-eEsV4+^v+2Usi}5Y%^dmFMg2lVH#ft3G88BqW}Z=l96Ddk-tU~;(mya0 zq3X&vKa*=+hg6x2l9JYE4Zd#Ys1LCMMq`-dG;DE~ne=78ex*Y;3Er6yfD#>2?$n~Y zhyIBx#YW_0WK^&K=B3FJRvCgO#>P}(l1IA_7q-fn1O)}}=IfzDcE;Shsl=Q$OhhDwbOe_B9XOxcn(&ya%`|yyO ziz4{xOtj{+313`3`-wUmTXhwcI$TDNx_Vs34w1Q}hQ*;`1cV(XzTRrfSXNT<##}(2 ziP*eUf*7yBVZL{FX>Gb?1K1hBDDJhqrgxpsh%KdNkaik;FB1$iM*yMK1+Ay&Izzs< zvr^k>vsG5G;s&lgUf7O7A5se?oBW+u%p6dvoA;He_hl-F<-`9k_v-1o&1ZN(tndK( z0xpsA_L|9k?h-9y*M9 zY$$?pX02YkY|~{DtJ@5Q*cHg=B@1`wTy6v5l2X@!1lf37TU!Uq&b62{BT&sXDjq7m zMxmymAq{bqVM*Iq^G33g+xFs#W+<=G**gIQlQ7irbPIsyJK*7p$sLB>|ez*=cYA#_2x8uhGXx`yjiiqOac#sgZ!gZRufx2A=Z8qIMTp zw%rLoB7kaR2+O!RIZZ~&pKdM;hQ;c8#RJT94Hn)WV)2R-ZITjeLm-hEpgq?d3m=8R zALlnTNUu=@lMtLOb4@*>*jAiw4mIj|F9Q?Ebi@y;qg^+5bSSPr^650i{N{Dbmo4fg z9v6}wS9&Sy?hH%3K7#6A19{zum>3F1`l+4$H5c*D($FSD#PGl@KpEHt8}8-!=+G6g zrO57{|Mspy$Q{Sh%Ia~Uq0GTH+;J<2mbP|uq{G_&XT?+9gFWvEv<=AAo}71iBpw0; z!eJq?_v^}->s)efY5(|_8V*iQn;ff6b#?W&uV05}KkvhU)f6144gQ!|r-keQmNNvf zWY@jKXhLb|MIC;8d{Gu8t9{0LV=g;0Wq5WQfS!3h-@X;}??FmRZ8exTI%^~WL$+Zs z>P?sHEOlS4#|`aD7Nb?l?1K#E&Duf-A#ChD) zxeBvjCnYr0BfuZ<4$PZ7*nsM;)mg(K5pAzKg4REH0HVl1D7ILzE3Cm?y?QE&MbQv^ z-I`sdp2wO@43}#;}kK^$%G_K5pBO*F)ZmRRoNXT`#+2X8U z1uc9gQF&7B!>7gnLCN$*YzHl|Ucq%oi$j(PbHiCqRP~!Q!4I#6og4&siP!R?Nc~?L z+nN%-G><9hUI}a7Kxwn7)?BRhN*yHNcTYie&3UABi!^jKpt_{+E-|!2rr9&^0B%{d zWM!n{VzSZ>k;zs!Ut*_=o12=BPDi~T?lCMXSx)~~NN9c(n-PIpH!RFSA3F&dnY5FW z6S_I%<;zQgf}iz_@GmtUv+~^{zm2!{V`Ov`tnhtx^+Bpq#@GSu`7rbfWc9x=W!%2L zz5;e*)eOaZwJW_D3MH2Puv&OprPgu~xROd;BZtplda>&qj{TANc2J8D6i3M4?%utd zi%HMS6dPRzT)d)+N_gqP#CEU$c}hbbs@1KnCc{FN2M=Vlv}igL1g|hL`D`r=iZvbY zE#yPuUpG3M48smjOk5~90wkS62fbDp^_CiMdqofq|CB#_%_9q%AG4d3kv? zHZ}GCAgUUD4Ww;MOju|=FVMV5O=VO}5V#~NngC8+Y%w2R>?=0C02Yw}%m*)Cyiie5 zxg{rej+d7gW*h{h>S2zOy6PcQH^-E6hSCa~e$P@JsdUU~reoX`zH-HHdkHf=IqBPG zY=|kf8Qxo8e+D&`Uu~@<0|Nt9XfsVW(ZN%%sHiA*4vssSeHL>yrNeWxv+Iy}y&qh# z=>JG=SM!GjVzE|rTpU$oRFs^eVg@8AR0L;{;E*ilOeJhfH#RnQ1{W93qHc9;XlPje zYz7~Oe=oC7q+@SxW~L`!Us7CL92p@yJNvN6sYeyhuHH=}advhlID7ia-H>m4@sOlJ zf>sg-b=~J#rWeFt;t5pziEoPwX=-XxaOt$J&$L$nEcs%SsKYPf!93mR)`%NhAttbYcdEt^$LGa@P$OtlES1^N0I8nLvh+ zB<@NIRtk$w4Zi742u$77?Cf1HFNqw@{5;-TllGWGsGuph^*a7+%)JZ_p01cnnTBKs zr_QvPgofs8M?8Pwkab6bU^{z2r>POba068>&@K=%N_2qawW>U}{rBWm}?d{XB zai~J?PEAi&c8aT`zd^wk%z#sQ6u(pv``-5eQje)naDK>}B;CZA0&=9Cp!tJh&#%ol&3a38j# z2F}^DqK)_j1R79EYH34i@u1f0uw(|3mznwb>{9EY_ixmGgQeiBfU6u9+F2Rb#Ky)3 z;JN~P#&-yt8rIgI8VYNVkKA#xAd$#;qt?^Y^AW7U8#4|R4ml8n2H)j6uZ&s#{+>Nt z)Ml(^T3j(e1>FZVpKF|)hnQ*h3=K!e&+FUU538J428OW&fp*8H;_cg8*p^VvYhj>$ z^QNk*s?=I2F&df+!oofRI|#3- zgF}fMXp&pq`~WVqmW4m-Hr}O_M-LxT&HbedW z(ZGMT(WfjavPj9mkmqUpJ&Oby0ln)toR{hJJ=Spa^z??2P7M~Ft?$xM@tpqbLsixK z&sKv$At4UtVId)()Ke8%E}lM1zyz#0P|p@QEolYLIp^!wb~V1d$V(F{V9|Sqk&zK$ z8sOkS1tB%rQgQtgEc>kJ`X>`(XmJS_7=GsBas!e;SjbFq1$lWeP%db} zJgbf#!n!55W zB{fwUoYBIYe5K4Quq4i7u7TjUCuV1XFGQ@w1%}qx(sGf8=9ON)v&*}_C^im`X&CD8 zdZAH^{nMxKpx2>NA1e`4Hli?DJPr6kxNFUjK+Zy8cT?p&iWwtXw(e5Hzd%m_DkL11sFyIkgS!EkmT1V9O-)(gH`UeRPD{fXXvOXN zPiCNe4)gZH-#;QD;Z=UVT{7+kurQ>{4iT1=f+C>b(ggAg$c^s3o}8X;06!HJ7B&}e z2J8eQ71tjZy|{EI0IR@uRP<|m`+QFtF8E+zSNR5&yXeg0#EFR~0Yr>S9v%aBVBw>|XGuIwu^BEg z7_af9lk}pCYHR%278TE9a0)6u4YriG8#I5{)GFn0I%PkW1F5+Hd3E}c6N41bNG z#Wv=;GaVNOuy*(Miaht7po5?+D~ktdjcI!fC;0VKJXQnOb#!&-M=JP_j*gVNiIDu+ zN_1-u*AF&0-dcVn?0Kl%7PbZ~VV0+ArA(1r3=e+3Er55Du_Hg?^)R(^*8Kf7-X)qd z@lue=|MLf|2Y-LOB<;s^8gUpWf4cDeB&+*RXZnBn!trU}iq=T-^-rl-aLCChN$1^u H^89}R9~s&z literal 64022 zcmagG1yq(z7dA?F2uL>wNJw`#sDuInA`Mc~-CatFh%_i6UDDm%CEeZKb>;!TZ~g0> z@0`P0uGd$dd1mgJJ$qmK+Sk56zfq7uM?c2H25dXPWRSt6OHP*9hCFD1oPoD+9uot#xZHn%U%_okoE zQTY20QX1>@4=)_93f9Aq4H84vV{KVKe>7J0xO%v||7RWD8@3g4X5XGYd>7XL z-%8(z;XZya=%+8k<0D~+{rAy*CGbYobUdP`%04Zxtw|?vTd0>9$$!>9ACe*0V~?xc zEua1(WK}XrAmS;wxVTtZQ!|qB8sBku>K$~~OWg^!RqY`{u3BOH$VimsY;|N*l=53E ziN|Mu)wPJSh00RfxX|QB$f^q!M#Qxg#xvL0(&FcGyry-+6%Y_Gx8A?HnVGWo_k$G;GjljRDxUR9CszH%QV5DC&*L*IDPg>Ob9{89USUb9Rc%l2 z+HcMcc@)(GO_!l@`FPIHU%x&Z-hrFoKARaIqZX!z9a z@q}gDY_oh_ms*igP*IW5(O;aoo0vSOr>Dnv?<;J$d!?^WWz}$d27jL7re)gCXEDX; z?%@$a2F^djgYn;DUV+8D-tLX#m~oo-sJ%U#hJ%NXo_6U7Cw=Ye>N>Oxo_*EP^6}iN zSn1MWZ{EFm^8_y>z@Q@>*X?ei*uXy^Aj#<_S;%by>~F=4?du^s)m&UCIyySXor$+6 z)!>6zWMtYqiO9&v_`Qo;TVHZ>x1;MxAHS0xK8Q%n!N%s7R0tlEc5USbU+!4MXu+^{Ik|}n@ZoQTs4+(a*_Uv!{wJRUs6(1 z`lP3)r@jowAmR0%)U5WIr%Q4FmY2sAh(;)`p+Q6{;P{N59+`)y;)^rtzb!|gP3SY? z;P+4K>FjI-Cwp>Y@9yp%8czN2d!_8}rOJGxLjNwkl1KJ`ulgIY{GFpC-Bp$|oySLI zU<*ok_VQJyksnu&-dwKr5ieXoqj%6x2SnDmPzAcj?=xe_iXN)3W8KHSFgQ;6c(P&> zd&$HZ?&lLBsuKDO>+zdjy^gt1m1a>4+HIH?5#~WYuF|Qv#bA-=p^bSkwN6|xd1#*M zbz155KVKF5zkOA7yCA!!`tn`sw!6ZCpYEI zvF?w%^6{sy2BB12W9#I>iX;+Rxd=Xi`Ml>MX>hRr4wJK|U@aH^(GgnMquDB9(RTizRAakM0eX$7SQM7}`T+>w4a?x?s4USs`HrjnFNcK_DFq| zH@UDSgnPA^D5!e#WSw0;@K(N2I44_}cp*c`kGl^(f*S(AHR@-Pu$VCLs|dYT@=tHq(@czZ$3%;31+P;kMw3&ZGm zz^LX9bv=A_I?-D(+?tCY2l`Z;7Dg$%PE84{E}ZE}-28D52BCt(kaa|7r9&VBdnF8| z&|mZsHk1I4c$_Fn?qPfmG_DGLzoDgId8gYv_! zrO#yl>|S-K#M5@3u74)4&Fp@TYxt2U>DA->1i)9x(qKJ>QPv4m6!ES`Uz~V*eVe_= z75Z;m-}y_w$yi~++Ze-Kil441DOm`hKj^wX%lH@i3cSJZPZAS%Vy+8r;8mH5Mbt8d zIjt;Am>v!`dq(9=#?F+ZZ&QTW5%a;RpNAU-LwmhS*u(b7(r5pCH5n&2xQkb$LFrO) z%RWD^+Wg~m(74D0PxsL>u!n`RY*%}Yu4x+T?+%7)iZ)Q4m!Nqo2Q~~JHbCif*3Va$ z$S8qxu#G*$;UvCvf#Sn48XS*c;gux(yKc4IGgc=uP7@gT%Y*(N)?HKHD9e9_XJgHf zrF3_5qc@CdJpgq*%(<=Ba&WzP9`?^Vun>RyGT^qD2MX*5(6flYK}t^v{H)m6Fh3NZ z{V=_)82EzXEpBhV&x7S9x7wovBEB{)6kKipmbat}Heji$rX}m};2>&Y3&G8?Irw^U zJmo(di~&|yki2c_k3ScfMbO#jgWJ$JSt6Z@{qXpRi;$aRB;KOezI`z1_46eMukBzx zle{cJtekY_g8^f~n!>#+5DtOgtH#vdo~+;)UW~&!Snbd)BTA5eIAydnUxs!YM<4!E z-F5P!Tc-;X;hlK{dxnP@*n*i4ahGqG9j`l09r4sHtSJc1q=^67M*%yo3R`j)T*Zv3 z4!HxkmjglM4FP`FKL>8lB2^zx_{jcqAumQqn`c*HP0g+Cyp^!u5N1oH#DDHrE&y&M zijvRJ+zA8)cVn)@U7 zJg$%(9D%LL1l-y)@gB!B8dJP_#ATW0uI2yCU<+o54$8z2O@@;ogT+^yC?50d+K*rT z@9zN;iw^06qYywXxAdJMNsIanG2>2LTXueL**Hnb=3bt~>4Beb1xfg! zgzKL?F>J7UG(!f`u%EA1S9j1V&U~{7uFpQJ5U?TD-->_w{op=T#DNiAR#l27xfXeH zk?_H#ctUkV5dJ%aS1)5OUX2|ViY=@`&&^rW!XDZFGWtH0{pcV3!NYB_#{FDx*x63o zn})5bIy+Uevs*}pUPxzgde{J&->=;>wu;q(i<`o^mKN0{r2^1 z}W+!vv0r+w`qD+!XOGM;8st7+q_zCIuP%%+)aYwqcPCa_8?Qsb@D zp0^${{o|l#;`C|a3s!!mI9^RLtx9W3YMF4uW`E>7ordI#3+HNwZD}*JE%*pbB&3Dx z%w+x5?r8J5+Bkq&Salnr>aX`|^gA5(=aSN7BJhNSZw^{=4;@>v{Qa9k#}|JH?4D=e zT}63tI-FztJ3Y^yDbW+ng+p6d?%*WlRY%QsOaP_BfC6!>giHbiCoou z=hbL6s3MJgNoi?z^9k1WP(tNYJ5H;)L^2^)R+l5gMq%IhA3xghb==?nmis?Lu3}t2 zC5C`U*9f}#$LcB3jYhkkxG1rZbS{Cv!Z&*W$JwJ zMYvPXdrOXbV$l;Xg!*E=KQ6q1KW+Vt^Arycn}|qb=W=lH4M5(^SJeQV)z;Qp1Ar>&+K5!rTE#EReUa^5iNcdjZ z>J5os1*RYe=@lltvGGJTvNW1+SOei>luU1hA-=|*Xx&e}mN!B&+mg{Wn9s%ELV5Q& zfU>TxZnDybIxa2_z~Wet(qQA@w3Ll&qc#ei&nVlQgIPX@grq4X@iV>u<4A-SVq#QLadDXGatnj0Qd24T z(|vt?eIyhVeXteyOj!j51(iAJDwuECSg$QEE(L<~F@w(hQbaB;CS}wf;x)uH=htWTbq5O#3msNX#cNLa0w~e> zdXMb4X$W9*VRz0$%FQRg@jGmNO-SgenD^`f*MDHUumMBV$cPq)P9fcRAQ@yJ#l{0< z$?iul^$iR*|K=y??JJXf&1GyI4H!3?Hom-_&m7DVy14px;&4SVBkz>GjHkWMe30XX zR8lIN986~_6b`?c`8Ebdug{Ixfh6{9Yb<2BBZ9;8#u-?ltgI{rJ$<&xQaUUmhVEU@ zH;VV~-wU1$N|5l|BRM%a5pkL{B9gm{7HZc)6{#~pe8%~lTSRFoCy3*fhwa31f-ZlU zm!ps4PTiQ#^wdKOV-;z z`Kj{#G~{ugHr~~pMKs(KfiToBe0KVX!O*@YL@Kt|%PCmCraLQ_P1I!UIR71OOR9nu zw6p@}urzWc@VB9o)LZ(zZSbZTfwxLvMzCV_6&S;rn51`L!0L$NeBC(I!g@t{ zab}kv_mCE@8uir9=6UE5L!sZ}%J(dy+ni-htv&@$)BRiO1IQYPxXT941oq#>@?)?M z|HJgrGk?#|{}{EaLJ^&ONgZ1bvp&nadK}b0j!9bwRfp)?hRl6~K#kB;{^BuON51N1 zY$h!!`RwZSH+2jrELWZnK1+CCC7mi(Ztz&=>)^1k&2V;<^%C#Ox=%^SBg#(yM&C)_ z$}yU>t!*OZJT0nOn-~^u|1Qp)dzROUk48&HHK!`Eq{xU5WGwR-NN`S=)^=!i z?W_)IYePL|xx1Ut@#mw~wwkT)Bi|euw3Zl^v}b01+2LnlnaHr$w)GebhM zjfud0O-e@EcuCegimk%>l2)!+^vE#epsXzSo+#t1G6(E10S9qi_<%CKO169anA}{c zCn!?2o`}icTAyYouRgWM%#m$lja%q?2_X3(Z&N)^M=^Gf^P!AkN%8`{SR$oZI8~j=9A#jW)$b%t#kCdk>k@kRRiqDw&dxwX% zi{4Y_ysoTEyi(h@MFI30?!Y7=$i8m7iVk@$&IMQxk$F9aA49mlw?xD5KZf7y68}~+ zhhpF?TVty5!Q-k#=B{5^vM%Vk>CFP4K7+Zf`VZ6;{AolGzW94abrk<*O7TmF&|u$& zEQUl+?|1JXagnxVB9rw-TSF3OyL%Pl4Tzc-9(2k-tWpK4K_(L>X1m^`Kw5^t~n6e;K}J6)ZZNtem6*0}sV} z0yj_x=X3^LLg@Jcx&=|}$nw#nbmH<}O(VPU^_5{yQF$wj#4jq3jBKc5$b+e{V*Adx zl8g)B+0!~K0rda)($#1Xazuk6ljawe3YN_BB69wegrxlS znc{rYpqt(*OZyrm`G~|mL~^7)`zz}ke=%gL!Euwy1;RbBgYfQIShMls`6yRz;=hG~ zAd`MbRw7>)O`0d(P$#)MjV?`1zBnjMv(+Gie7;xT=Ov5iKJ?%zz~xWE$zgNH9?j+m zpROX~_;&DJ`i&zt6uyqJds;1;!n;er+w$_$(QUY}NRAgtLx{jq*Xb9!7SDiGHi5R}`+UE?2f^_+ZV0S@(1 zFZe1`my0%69G=PoTFGh{u)b*d0k>ZRy4Rgszsp$lpO|Y~JwV?`Gdha_LNJk7|E8e3 zLG6ZMKA~9HZD{zrY(O@ta0A%z7xi~N8l~RXNQ@|%7GIuUKN~mfA$B(=J~hYTKJCTF zM`w4KZvnPk{x&T9-6mw5Dx1UZr{9jXbDk_)YAKDeL6ob(|5nJE(APddJ#KsE%q;vi z**^Yn=+_IVG=q1@kVVGj5~GnLMufpTIbGLfM_~G7h!8yBqx5d}IJs8LY-64ElPWmz zgzUs0_)&eoO+{JgsHtIfbaaMCMh*`T+4#dd12V|`;&3QjDm-dh96*%2c70$uY}@hz zxB=p%^HhXw+|j4~nS3So67XvvuT0NDLJrt0Y|eL@-dEPT;|Q%J4<~zMH)JznT%IMc zSYF5NlJA0X=1P3|P++C+KDWV~qx&FpG_f=ak62xq$|pYqdtwX!N2&kF;vP3~&LQx{ z{vHAj+~_$MziKpu8^X$llE>Dyq}rMMs3YQVuZ@HTBe#$_x%yzZ3=qTJtw`iR{BwY0 zleViYU;14R9^%E`t*)XU_E9o5*WY#_9!x-~S9CvK{AkIuLlV4G9kKR1rWrr2O;)z# z&VD`Vj+|j|A#?Z@S+a1^Kk$gF((cSbS5-aQuZ@YZ;@TgRMwH!$Jjfol~AU`vnf+uxzGI47Ke(cCyN7kta(PfVJv zF$h-Yu($)mbMD_cb+$_#v=CW;aC&}iCO7#4UGRmh`IMH8$k7AGeyllucq2sb0N@Yz^zV|iiANau@D z>ur(#=SQ1okn?neo)@W%A4Si!J}ZqGi6!GwQ9w@zr4O&_McUZY-yXl`6H5-7pE`dG zyfuKhC5H3`b7&F4%6NlMic2eczh*gXMyoP@cV{<&nbIo{h=AX;s_qkx8~(Pxc!)@` zTlzRvxBOQ7NP3>o=ct+hN5u{-x7_Y*YET#Q4(6qxqa!#$;1E8nYW2fW} zlA5d7f}2=MGWmo@1b=G|FWYvDLXH~{)AmR*F_Dozg@r7eo0}IG7X+j-D_h;NLDYy% zlWq08yQl@s3)@x?!9G%np_lO)j}ZAMpRmNJDkwPaqc%fTzI+p!U6txqHA&{a4t!u# zgVxt)0xV4rs1oNjr?|a6!?{u*B*+UgJKnF zW%V(nuKdZnRQ2?9e}U+!u(S4DNdNFwW39|GK4Xs`nbG?0UTXgwlVw8c1Arb z;h&O6!ppa8u${$#r|5jTB{os6lxQqC@cv8tPCCj;=Se0t)kkCYrr^wla&2AimMyH{7pH`DipBwFT%Vv|mVK1Y`Jh6ZbD$zw0HxeVrUsplUo*03(x@H#X< z1SKW;33Kjn3tp-IP0c^yiEVuY0SM<=iK?_$QP`13%bW1a$$nxjjg#=@7Cwu93l+Ez zxHFQWACgHO;nm-bvzOPWpm}=(svabwpikeD8wJz=zdR?BSHyV3pALx2)GMDi_JmcJ~_s>B#(NG!5*4 z`;d*+FPT*5Fkt+EzXMOP*yIYFe@I)KzBM~NDyWBM^Y$~d+CLLy8}hugvS%Wh!VC!b zx5h>=*I9tb#qF#RRIA9Fm_k<41!=@5k!C;T5wqrz6i5+?i>xp!t9=T|oj)0w zL+nrp#HDKdijvFSS*TX@g4fN1SG-j@iK<2ze7;v(xrItKjutaBGbSUy(LepotJ)|| z@i-#{X=Cfa0H&g%A~rU*^Zo642&uvUs!IZHNb;_GfLwn|Og75{&SB3E#NeH|M}jsx z{fOfj+Jv9=hY{v@N0%swxfTr8%4efqD>m=3D8_VVwqwV^cXU^GgELUxLbMs||&H*0&XvqC%zkCnhI!E-fqYIgn{I{*fyI6B@|2Lj^js2D< z)+jS;V=SzN@g6gyVQ2rQ*AmEP)EkSPlm;rFCmTb4T~T!4nZegA9CnZ!k7m7vO3%#1 zAtLI&xje2~Pj>5f^RTpJuJVfOq@kwv>+J08VP;^Y%CJ6TGS`HqTs+%t)U~#O##DSb z_F#$E3jA`;+Z5~(iSUg)?Wo3>vsD`#?Ck6Zr>Ax1fFi;gt*sUOoBu&3hFR-NGDkw6 z{pN5$G^3jK*(s=Tw}s%B7<6FpJME!~+S;;%0%%+R=Jxh$P(x;R?Kd6yy|}&o;UqXT zw6@uamTKL`DadhLwDtb}R-+7!Yy-U~hJffb2zVspKU``qO)oS&olUs@iWAolF=W0A zlfWGXx&9kIxV2`7tX24hglI-B9hh?PflbUzxc=TE#sCd!{ z3Ds@b94s_3x_qFrrQiFP`IJnu8l%+S2(Bb@J*23-U+3|6^!h^cp#WrPDh$W(PX=?! zM_=Hao}C#jw}%-T8U1lS)CV^4QcezST-(heu7CZZg!<_+@M&ZSN8Cc(x?a;8m`j9W$9NKd8MytSqdh7oO$@3a;JP{&yyiRj2 zbPyKgxvQ4x06mpjToewPJ5q8yig3O4&ht=G1W+srcgU>;CZH)bEi%>7-Sq(~%gyas zeg|+VA3;@FOH0)1WZ)3Y${>#cYWr$S$LjfiLBTXNEe#nJmC>;u2nz?Pq3C>9e%x^V{%(gBYHLO*irXMzVQW|4nju>j zOau+NG1FEJeV`WKQEo9!z;FK?FeGRMtWe(d9@p%k44t~1DWA}eDRR>|SLZfaZb4jP zJg|0qKA)+WA`As26M>lI{om=8FTjRpv@1o)uHG4=j zb`h561ugpNE^GW-){0gS4jm>cn~>Sy+2-%cEAZ?N7*3dGfQ#Yvyx|2T4jm0mfWJT7 zw{PFR(DLzHFF+X`r_}L-T67SZYp_HR#^TL8{&mhYuWcLRY z4!`4$tdbJ8rKP3X?d@k-WZ-VMXP=D27zur9SaIqm*cigOn!)U^E|md@je)V3v2}9x z^C#nSic%>k%X)^)F`t%vzpda`)kYD)Dqm+bo$WAgj?z2?%7x`T2zxP{u)qNZYyMhE zr*;mk(sTTCFS4&S0;?txJchj!^1V{v zZyty!q%j?Q1rYGkJBiiOYMaW}?oyJ>IV}!@ywD0M0QcC@aHY~ZyAnQx ztg;Cd3;!~VXX$YwmUm#4VbTEM*d87SZKwl+s>E1t4UT}10Ar8m;hKCOx=RT^8VLrY z%tv=fUIo2Gu0%AekKK|5@(~6)9j}8U7~-?HqbHotpR+!Ax9`I~H1szo8&;4J8wBDV zU5CyHxrwT35M07gIOPC=a0t_Mibsc!#HeO_@oA>I;0{k7JU7)8{B)0L zR?Sdxt0)nGC*6G`sPPp(0Eg{b-JwRD1aS3)JrpZrR&@pvyb*-`D=<<=?2w%U+z3ct zqW%781PSB8D%kMwtZRA`6&>}nWr!zUox-R^VAFY@e)<)rJUvX``=V876g?$ASz6{B zO8Q45$@D85TVGR_=@9xx%=tzf%*G~<2iz1XLVCLkN31>D-z72(b&#|9%a%b30u9YT z2@FxXaieQt6-ay5hmmIV4$JfaDSz=T34rUk#ImzPuWf#(kiiRy!PSo?MMbY7b=_Mt0#A{f`k@DS zG1h(fBJ*Xn7Y&Fja9oFJBcp2ok90iEy1palQXsJWQh%hLFxSRKN`?=B(`6T1ES zjFwkauUGsP_V8}DHvY_Q$!!BchUS+T{LySgXff*}IKg|gP!cpcr3Y?LDLZ3VNMiUW zF3Ecv5-4Lux@cv3Hc*NV4kqXpfvT-*8bcQpTpWFQfLS_l1woq`-;xu%QayXRgp*Ne zaV$Exns}yqHq;@--!H+O<|r(*%|0Gy`qfqub(I=S0D9Z=gH+)arGXdi{GAuyY4+;N z=E3TVHj@>VS28gdUxJ~Wuf><0kwS{BSe#Jq!KIeh}1xT%5g5Qoe!RnfsZhPZ>t(o)S zVU>}8g%V%%A0QCGx)gB2jJ@U792u*>?K1|%D6ehjL!yddGC6^6NX8dp>@Se?yA@|h zdR3)c0Wy)erk37>3Bh5h$5A?L7wZ=E1^vryNVV`rYWa>0*xQhe5)9U^I1t1{|MzVA zl6WyV=o*ug&UVX_bT^jIdVD~RnnU^N7kWusYnR0)@F%*yKifT}JFpRdI{=+r_v<&T zz{Txtpc`@IX&_MV1tobs&oJ@gEjN}k{nNxo{<_whpa{amuU zou14Ot%w<Yqbr9}TADcErL^SC6;#XZ~e#p$5< zRrVk$h-9GP5sHw4RfAB11)lw9wyp;LL&fP|0G|-t8Et*;&41bmh>I`$pRffFp&(KT zAk|3MG`}|?r@NQ!XzPeO!&&;g_uG~MSB4tMk5(yJkzo9qMu?luM7y!Fv^s>Vz!GI? z@W!|jONESsYiYl4?19}YF2yiIHUXSJeKBD3Tzl(D&?olQPEX*hbROW{cX5yjwQ;B}c1&fz~qzF4q;czs~1ol>}oFBSk*`SQKnx3o_R zUmciaR#gfZfZK}vg8c-^ZqDayd_qRKK^Z@1XYCvdu;dECe2&5L_hMY<`rThA!>G4#)-F zNl>y9#B=+>c0s5mkQ-{~e%y@OzC7yBAo<{h?G1w9e@7UyH}wfEW?U|8!e3q%xgj!X z!(F;Sq#cnA?HVS_F*d{#*SmUv%<1C)VZf59kORL&a1#BTY6(eG>z9HMkkp*!E}l-Z zI>z1}>3|)#)h(I2INe0wx!ig}%TY=)6fAxJMU@XXD78=;3rhz3DNI>vQwz=(m#>Fg zqZt2s z;Gx{=0ne+j!%qf~%-a&l4c;HJi_H5tn&w6~*+2+e-4i&xrct z>`Sm|e0HqFAiNNrgtss0v+>7w(m9aZ$paWd9z^y{pxNpnEL77hgd6M^`t-yb=0H`Jj*m6Q-R zs7EVj3qsr%Lqf1@>?N&zO^CR~wR&Ja|3?~a5!fdKY0pS%A&)6Ee0 zW@|poRf1=+i}Rez90lO0{dejo0T6}A3d8hGKl9(dSp?BEw=`3>+F#w-Dz6@%C8_>~du!n)1ue;A&q!Fe7(v4Na z>t>G|&KsU@2n9bWDxRb~R|LC_ZQmCYEc>9YRg6uzzb1Xl6+p2QYfv8r12O z!4ABH>;OMt`Z6<{yn}W)?ks2FKy*IMeZWsK3pkrTAr%~DmPl#0B{r3aIf<{vR=&cY zj;ZNn0JV2zRn-vSC;sNWw;M8;_q?_M^?Cn>29dkFJHQF7)-GS4??-eQGMsIIOi!u- z9Sf_&kXHkLs52n#4MVYsjDq2~99SSHvB4oY-^R)oV z;9^xPD?m5pYm_ZTt7$_wnw4P_5_T2owGeO^^?uaRQCANJk6T!KgaWcu_#NsjQ&Us- z!!~@HZXi>54f4bxM<9p>8gD?zEH5uBU-8gTEp4bW`|%h_sM7M*H2w@)4D_0i`5+~^ zk|R)gLLegi2O$cXUuZlu*io!9H}MtCj|cvD|D!;(MA*-@)zxClS^jGKO{J5>N%P;Y zW0>mlHhYWT8i?OOW;P=(V0(`0fP0( zxv${<4;A3l9&nFZ=r;78hw&8|RYC4?PKHE}(tAO3bZ`{E`e2bP2tk}53;dt73;htE zbOaeh`d9pIy3WlBk4e1|XvJObF4x}!B|XoqJr2<1;|q2GS^7&wMHW{QLFb|!t5=fg ze~{1u*R_2Gu0_RPU!MU9ABbMrs^NKp{QzA2W*vA1*e8B@i$Jx?prK;P0wRFezh`ca zWFCX=gJQ!j?3tOn8~PE5^5(?me<^P&tE-o`a^i+0(}~y<7L)J3reGp|TQui3pG2yu zXc5_m32EE#r=oiIcW8|6!gIq6#V+5!3@v?m6t0#^MIpo022fl-e^M~vp#tSSIB}yNYrXu^#F$+>zGrtb5LEFbqp+WM?4(zHelANE_m6e03Qm8;(13C)E%sw72 zwUvGv-%BloG(`Y)4J|$W=N~UVXrCPeg~>m;jW%7XwP>C%0?6s$2 zlD7zV3nK>w?^CiAs4@eHgI1y^owtpz3&Fq{sY9SGK|ZJ8sr|H-teibZVhK0)P=;7x z;Vul~Q(llm;N@%bkXRtE_|yj=q!Mp2SC|y6>erY^#pQZ7&OKtkiap>z^B!m!s%TM7 zJBYfZO-u~B_L>MN9Uj#sO7w{{$qK`wZhYuj`x3JPW&kGMhyY9q*lrz>SYF~iQaC)i zi3?D3H6ho+#fl8!FXQk_hi2@QALwW(;7Q8lqAv0&1h;?$A}9#{9tK3R=YiQQllwA# zvLLMKH6@%yz5`#k2Bd_b5~%=+$T#|Rn}T(GK4CYZ;WSHcAW?gz8|24!IKP%1&S*^P zui${boL&YJewJ8KY*8-v?xI%`yIXkLLlg#Ro{UZmY^YOV$birwS&#_o!Cok2q_BH? zfNdfphk5Pw0PiKNZA%8T6wy2#YBx_bImDM>L&KjfedP?XLN>wE0UIVOgup>J@j9mq zZbUn90s(Tz*+xIlk3g{sBp_uKx+!E_4KdYIQR#<%eG_}fFyqRjIZrBQq_xLLH8vb4 z@!oyfi4WA6pc|LW0IaM+dq~@5aSe+n#%1~jf?&J8MkD8X1yBd=w2kGZM0}AQb6m6L zow^h`(Z;1FrL7B`|sGrIR;asS2J0>TEKMyx~ z94rcgI+sF&`s^#LasY2@gvRN`vh${a`Fe$|Ijy1{y3QUBpb(U;>Qv~{ zd)u&TxHHg9-5LgjFWHmyqu`LDzd)=)Q>efaSp4nHVnpA;l8UqKbCM~Dj3bhr>u z`26D{*~+URRjsKarotX3&Xbt!h9Bc#QyHJI{Sa7}bdf=uU1}HBrK0qwc7LsM( z6ppi)yBp92RGp;~jkXRmOV}Q5&k6ELg%0U&7`4`0cwK6g)Ixkq`4+xb$_DUJ68` zm?1;>DuRU#z3cRsi03{bxgO#fZ{!83sM@;*7#3O&RLI_K4#dW;5N8y3hD_UoYMgwG~Dk_uvYWw%6&`Zm-PX$bvBYE&NE2Hfu=YB;!jHDCaT zi^ZnyNk%eZeDA!k(AgJ2<}`tt3rUh~SVQ`(_NksxdRJG-K-MPPHPeBZkcqYRKEyFn z=u7edV`qlvo7YT6AwHYk5rD0hOy7D`&*jPLG?H;h$j}hlFNkl5mNAFDSl2px z`JIT{$L|{SD*^SRk`(S5?w^ZDE+C3ZUkwga*L(rT4cIqEJKA$jx<3(bdMcn1IUJwt zy-WC%>N=d$9yW?<9v;%xw-FpTOjA$u6GF$6$Z02g96f`|9rK*rKjrZ$Dfv|l*8jYh z(eSWno)>^XJT(qdI+}@nJ}v+NCvTIheY;-Y2LR`#Xzz?#(&c$+iN3EslT?SMpjP~9 zDm$kmsT}aOWtBJgG!4S_2ipS&XRle$uw?o4ffLAvffVeCivMaWX!Vv7PW#6uyi-{1 zcHzC&g_WblA*{+oI{re-P4TNcW@LDf26$v87x*A?a}U5#dARAW=n@*X_qsn!blrA9sJ4G>y8HqG&Q5ftFeOx*@FX4 z;P+IhfMnoxvSvs9euTaw`_NSvE$2ptEyG8<=LU3kYC@st#Kq8uqbJ!R4IiEtLnBMe z*qJb7t%CA%aA_weC)0obURqz5adxf*J~!w0Kji>Q zuMy~RvfQ`0SC?GD?oaMr9sFak@_Tg%#8M-=+ZsxmsARiuag2M$<6Y>2W0xL+iFMG{ zPDixO0@Alo`F^frK-Z2JJ<`}H3R;W(?3|nsDY&?z!Q>!vDq+PxYYaKwp>b#-x;W69 zsKk>NgohS`&^(9+B~!e1ybzY+Pk3^h$loCEE5HsZ0YQOU_(w8|Op1iMOr8;@9oL6j zy1AWIdLrN$&_8RpwYaEfjh)TZ?~%XZ`7sh@rd>Wu82J+Zucrs#C%{b5T;^t+Bk z^a%Sfk{RDnQQi0N^{SEu*ip!q)#!lMBE(tfq;$4p<}^W>n}a-q-=sOWs@z;}zv7u6 z;U6X2;7b|#XyvNBn`TYvXS1TNd&rthdz_dJ7~TqHmMxP@X4ci+iVzf&Q~scFa9+pF znubz}5Z`-`gaXko5wrqcX{+jm`MouH?9a;QY@WA4XO%j0I0;fOLN zcR{UDw0H)*7?;P^;#ztxeNPA^@Tzz`XdqVBnt$DXO-2x*@hKFUaW3&FeJ7a%57Z1> zn;$Nh{S2Y71OL)l7J;vg1qF=b-NJ);5p5&Mn(+g>l7WwdW&I5VgXS<~{rD+6GTqYf zV`5LIbS0P*pZimwa@xW7nK4r-^*^w1*DEhmyZ~>vu!b;h4h1&FX|^>JKE7(UoNg z6)?Ro>%h7`#$5$%v}mOK-+|l!GzPy?S0@17+6I?Lt5O}K1zN;WUG{SZS0|fL?$^5& zm6er6p0`)}>!8(`TTDz0^xb~vRlL8u1!^ooP(EGXb-P#$0{?TeKYw5A0dn(J{o+B; zEOUIeJ6(Yp)z#V_M$B@-w?2^K)pWkTwx+r?L#6bxt-^nL-v=R#k_sDxoRdEiJm6n< z;*N?$1PV)QEo`!!peP`xy6G}2`D1>+Zn&PZI6Cgwv*>{8OwM<6L> zGwx4JT~)WWwY?bdx|0BO0rN$CYpY}+IuJA*i`ONuKs zOeSi$6)b^A(p1$(aJX51@3tbN`C`wx>H=%+-Smd~SU8Fqd}py(ki@E8!KnC#d!=Cq zb0P8`&GW3s1QpOOI)mjFA2hXkgh|UQDtM09`qDmBSU#hpvpZN2gVg*|SR%=W?Xj;>Q8>rz1M79?b1ee{5g4TWtd=vp z+*Wh$bH(7YFf){{lYyprM#tXMah-uAr@5{UaVF3W74>nRl*TjZz0 zx^l@B)E(+ZuauR|ncG4tCG>zXZ^A+#pw=70FIsT}%z9e8gnb?){6F!^2Yznx)1Iv|QHWj4SW&uH#ts#EZp=o<5Z{-^pm8 zCl+*OeW6hbX)a9tG+r>{vYsS$UjC!4(FfLLB~k{;8IY_j&T_zgz{A70(MtW9GzYxa zQ8#1Z0uWH84t(TJV7b1NOpgch1RqR^S!M{wq!~3x@}F*ZJ8g=VY-}FbeIwiM_w=O+Wm0mbz}RzEU3w((bN=avNI)$ha-4+ zU!rnS}=QV0D<-8S*dT;@z0kqPw^Vv ztQuE_zIsjp$Zm@~Ei7j=W(O2Z<0W|c$>#ncG1BchKxY;hRD$Uez?Z(7uB6+S`CCy- z9~N6hf%L2Acf%rL!JXG#y@D1gPc{>u0D4}v6`O-jF?j{Nqe6e7(WkYoZE<(E4``m^ z0IgOr=lZGGU?7ptZqD^L85tQ+))sl)dqSj3dGAYtzkGpNfHV>grAh%i4UEz8B=jB- zxlaT<;2#hWuvbe!W7l+f{>E~{_0@JEpT`v^5DoELrI!Lje@07-_d)S=zo!$5({hHO z=-$ua*QthtxHxOV=`nGn*+2(AZLfc!un*>X)7mNPjVFOH#?l9fMwYo9uJ}GQ{dA+f z(zS*lNxI+<05*8L$q^-!(MF5ok#SD(x&uU^X7{u&TC7@o$_&+}KC`L3A#Fq_v(6VV z?+m~Rcw*>dM5C$kn+dc@LUfXLYrT2{$wDjZ>o|b72Cokp`0)GV&BY-g`06L@Fa-~w zfY;y$i%-?6aRef#bd!{zAVi2qn)+1uqI#4^Na)s==1>W|5`(##1zam;t!m8!_Bjv^ z*bUmzfTPm14|m(ETCZIO@2)`-1!OmP9nAW!i0et#j}$B{0f6P|h?nA9dOv@49Tkq} z-^H!;eLpCbeuKM$hdncz(yyF=<>En50HEmD&=)_Q6Ex5TJDMkzJJ z^buPihk{;LT%n~>8?Psiz@BN1DWN-pItV{$98&}0D4=yWTuE*ne-T`oxSVc8y3ki< z@ELWtRo>wmXNl0%UUG3bX{(SEk_;*-6<8h|Ja>C51YwDM6@|U8!WO28fnG-G#qQ-i z<&SXfAT@MMetA=AQ4ez9J63eBFxK*1V{e)T$t;ekXrquzx|%n_kC6_Un*IL0|HJO6Y4rASOR+uIBC;aBBNLl+KI(a+=o?vr6m$XISnobw# zEvx_a)W2CqI{(t1PB_k(&&ZGkBE)hZ&%7ZxY4@wmOdtUDJD>MT+1M}vf;Dw*LNFIe zL>F9=Wl=;rnE(oSd&3E<|9IuiC#jV$G+s{rG>Q{Fruo~=8?0;?=c2Rt+GD$l)9rtk z8LNb^$S^+c!2Q%|cHX++$(j z@AG+4;SH`iMvs1RVZ_x2!L_3!p1C@#4wHX#^Xmpx$!_!erL>!y3k~xCZmL4$jN5eQ z8Cb4DiFYyIs#5eq_z$nF6#wjXMnJ{NE1YBr1h-S}zEj8zX1}Lbh+_|csA@qpAU0kX z8UL|0_zQM>ypScv8cZ1NTfzZYPD{(810f(oh&|v<6x6e4k7QUM{G;OOy2E1*&u!+2 z_N!$DPS6j0V~+SIv7y4rOG1#O%8U$RsP`&JUUE~lHz4Dc>}lk^>b}XWdK9v{&mDtE zo1T%O^^z8pzPstEhK1h``*?tN9Ds6jU|2asJha+e^8?Wmx&So&jM%&qOr`|d(YFd> z+$rWsEyK6>t6doTPs75`6bTedb#OG3X3!O$<7V_yXF_!r5`rKi(jka+Nq2Xbv~+hj zd~@ynzUPc@jPqATo@cE)=DcbiszDmV!SAS8^zL9^zQvl$No+*9&R!7W_RC$Sn>Ptj zxA{1Lx{bxJajv1el`iyaX|SSi75dG(a(p~bRS;cU>eD`=ftw~+XHXvSjs64c!wczpQ-aym}m zW%#N8>E&fQx~Lsg+0815zb-k)`vab-)Q`e1)6a+UIM)d<_}qeEb)YO!+hDqy)ncTC zW@L4QA4N$q#yPGqgBiPVv-+|tT`>bue*%@l(d|6=Qj<3GtnnfPel=d!X#KdutLpp2 zbM;_}*zK-~#D#K>zv7z>)A5CeBJlz-5z(fs_?UKBKg(Ti&d=nR{1xhFt*jl5-R$1O z?pI->uY6k6wFN)=>!hbZt59-s=Ipd6oDZAio+y+5Auy2jlsp|PHZ8(F{ni{zX9#!Y zK)NChbP{!SbxVJ;sGv~e6#NBDDtNwkY5P-TF{eN~+t}DRU-2dyE)!{pcY?B-p{u{z z?Gnc|+xk#I%LMVecekHH-w|tf0c{lIA4G_`T{xWnl8*Li)YVz&h=fQjF*i}jN=WWH z9|Di!(Q*BpfQ76WB##&?k1)MD(aQ%whx$(*UdoZ#)(h+|QX=Y2*_1S_qk$bB!SCO^ zCgqj64w~J5FAk6*?bY_0*SN}}<}bVBsB%gIrk2}vOMbcuTv{_i@B4nf+@KS4b$%nO zQMopTv#Xis7HYL&l@r>mvyk7zj}N|~*Yje_3UD|fJPuU4w;36IK$V>b8e|9!c(Yal zsZaOqx2ANv9h{udwu0Txyg(`32gy(%GWX5MV0Am&#*`I1=Ye~PiH$8&AritKy2>}J z)YeL;rlwwQ*x9gG-L!)gs?DlXj>BtxlDmuN*M8kFLXvX-;fo4 zo!-F!LQ&5VT)V%R+gWR3fx;o!@h;bFs7AxnKuVMrEwepw&dS`vaVOQEF7_91eQ{AS zfc7!YCHfd@a&GgJYQJ`JekEC2@B9QXh;icNruw5t=V!a!0j7(Ki=iW^WGBkl-^& z4fFNFBmjOIYZzw<9&@`VI!>36D^&e4B2M4o8Ru!&UQxe2dk z=HZELS;Jmaf1|J40F8KomONmwy@ZV(-%1nAhI6MY7QrvDG+8YMNA)Sm$8@ffaV!0t zV%6y>QF}8sDaYyVMYmp5c^%Pw!AJ^R zOiV|u7v}R9FIa3lz|eq%zZGFuygiPASO|DdO^DFEUsg=o*7gCAoNwX#LIQ%nzyIFG z1eKwoq2u9(G#smGIH3PXgMb{b+tX`rAl=4wz9ZT?VRpY~TM$%*X`lxcn76O*EQrm)LNQ!u zJVc_O*%1>H1KU^>AvIy+0`=+vopheV?(yN{&$J?CsXcK{(86a9-yhO)6G0pSbZ%$& zk<>g750A!!(~}dqYS;7jg%hYq16<o>=M1Us4VUdF0;wEgLW`q1~NW_y% zk)Z**OqUP`_(5Q2eS=09r6)y}PW0kPkBgg|GrEusmPgm@2Dqzq+A&nhi8SNzF%KcH zr{NwTPV!@1espr-#s&p96XJ4uL*}rFRdMnnVsb~Z1*{A>Q3{=@u2Wsl0nxDH0^vXa zlxs{-NbX>2HvC7*fdu`Tjuz-_jF%#w8o)%Z6A@Yc-G)e!A9kC63(O~J;W@^^p=MUG z{j|tz;sx{{C=vgO2}B+dfDgjE9o)!Ii(MR{L8cp*VPz)4h261UlQ6C?zPhtpr|Q-~ z!Ay7ML2cN4ohyM+Fs%sERl?Dr3za=$(}Abx3oSDl%^@_Q#A6trT(!CdoR98-sl?vi zKG$S~YXg#AbWf4sKBCX*T6PmQ6&EL~5@T-FhI^Z*kOI_IeJ2|lQQ@r`G>9YNMAj@Y z*P2_qE&zWGq{;h2mJA9!YUn9+r|UlAQt~YQc6bRA;5knz#*%p%NH24ZH`3&w7Q+59 z4HC#wBboIM?Xl`Zxx)k1h}e#j6T#UV$*p{>(Q9Yi&ZXxzl<36_H6nrIbtX~1lMizZ z@6Z^Z-{51CwqgiZUhq8Wd&x;MR)lb7j^B_PFxspvt;0jpei|KstqyloG!%QF%8wSJ z%_I2CY2kVn*gSH(Je_PTnsivCxj3D?M64kv2kQZ_OyTVapYQdLJFaG-u&Ly_!-hk` z6LmwEzm!G4ihvX1}bskVjZVg!8zRqxg~<(h4`qH$@qxB5GC! zGrG&QPGSH|gH`Y;v_IYrFH?yXN*PwgN9^x8fHAj1`rk(gk%Sp(sNJmeObCzfu;9|| zrkq6bx*q3)z}Pc14DVH^X7`sq*jt)77#bh1#p4+UeaMR! z*hqq;VAH?(khxa#Z8)R@VKfvmt)-9Kgqea)w6;jXFKmokRI|&Hoi-e&ZPn1#_XlPeSj)(S`QlYrq}>L z3yHJ#j9xil8s`3by*mo*4lFfqSsO>`+}KUSck6IC)h`mNp-QZWR9EC$0?$|0(lLC< z5D2^i7zQF)yP|jlnB{+M0ZQBVdp=%F=Wn?kClp&?io|O)u&P{$GKPqrDZqj&OtSw6 zEog3TP8qI>iJ|@)8tNYuls$|U{xaf{;Yicx$HF$pes~K#iQ4SEQj0&tX>APblSM@^i zl^ZDZKDE7mJJ%Ajw>lII;tp*q2I5O1+s-dmkh}{Y)tpZJ^~ikKkZXu7DWq z@(1)O5{Fmf)Pnooa@_}9{FhYZV?Y1`zDI&9gJ3$~9!Fcz^@J z9Y2D-QW(Psn+?Hl87T$QjHebcVnbbKk6zstOVVqVP%%~NVB|jjSZZH>a%1gv=(|fs z_@l)0DDC^oX+r3Y9_ri5f1uW>g^RVNy`9yu3z}Fcfxj&~!&x{3q!l7p`}Pf*HKJ!w zB}UCH!BH7;$u)5S`A{;NnzV4R8s_avMcnf+jCUb*|Gz?EpNA`df;O0l7#9*MKkiNk ze9SeXSR2Oxgt+o4aF3;_nR}-s64JW)Hbz*h%Gxt8itsWmaJk!?OVF;>9MNz=dxW5oPVOhh($QA(9S53K9KnY z_gL#CcBTWa`6)I?EC`q7>6Dr5l9HY?DEB$NYIp8E(hC-O3dmSmS{hQx*sLnK9?z4h z7MVbo@v_ZP74cj9`$+4UCAtViQJHz3J0Wg`pdvpnekZPQiE|LWh_r+$-KI*55sZid zMw|Ma0tn6NKoP*qrVcO&wkB5kmIX?ojP(jTw@??53=NKEWKV$uZnWS*WR zw4_Z*!J?`&SYdE4{0s!S(W-%=VQp{y7c25#Vra#adRkRd4G#rU*5`RlWf{#-IX>7w zh*KRhc9D{_I$66<`?4%(FXl$zYJq#rrB-!;VUpyw)i(Eo7zH(eHsCQfjEzybgIY6) zTHwk<1qFrDOb2E}sxmi?)ti^=jI}n3k<;bfpAsm;FsK6RI3&_#S;O!jLr;T!Vwtzr z#YZc}H>OIS!t`4X z&qEi%S?oU8*}A^0yuX{JUP=_u_!uf^juJ6W&frLH!@dd!Ybe>a_xBk@MdMQ9UCWk! zo4NlR$JpicVe@aLg2P|ORrc)4166>JVe12c7Hikh6)RM_|3?iAqV0eU1@1=E_VZt8 z04yeKh6pJsKSf7VfvOg%I{~#OLm0cW-5ula8iZ-z)YTJYL|O!J;+;|ab7~4wraK1D z#h#{<8CQ|G@6Abpn#Ht<=hnh6N{p0ru+FVvOqsYcV)hmHixi0=99)WO@#|)>xK}x< z7)-bNMzih zlmki!l$7$z(Aid>?cl(Uo=y(eoB>@dl1A7V1m9W++5z?hgyeV`#v~*Z4WtNiPY2Li z?{@OZzj{>z7h40Al77L#i|}q485rghb1ZFbe*w+x4EY5R_UDDDa}UPMxpnHib(@cm zj)>a<{<)BwCnL1Hix*v&Rav9!v7e#yuRBZrImx&1$Zo#F^EUJRqObA#m$Zzzc{#Od z>720EGD!%wYKF4j6s&6C$LEm^;)fJ(y^9V{BO7=;nIBNkvdd5feS(025m#;

Cgo}hKrcLaX#B_=7C^z;LHKOqXUddIrD=nG=E4mrHa6LM&Cs< z0^YG+cs$kCzPZ0TWLWEo{#IZAH7tc_^Q!01o?QbP@b0#Q?dD%;FqaRhTTACHa&vS0 zfBHlZb)K4eWmuM4vF2+{LPFo`YIKk;Ti$hGBlo|)xzHCJ5Nx_hr{4G<4c^8wf0#Vl z&&8OVmgn3*4QT0)_mn`i_^4R$a9iBBm}2})VC8BwLfGt z%@%cMvyUEb*!UbCuADd9{FzFbhlPrkHfYd@-KMJ=lBdp&W`oCV$4u>=ob(<< zLwfx!NOE_(Z09_isB&>arVBvC#S@rmi}?XBIzt*)23|5yp1NIsVAq`8%>{6)TnfFO%;zBrV>6s$69S-gre zc=wDOy-c1R`|G{IEGgfdD2SA=h zq1~Mi%Xxugvi9=T4Kb%0)C z-vaeZYgZRX(I!H$LhwW*ErIBfcJBqGX8?%j$=YU`KVlDS3?75d$Zvh9&wZd&{;XzJ z`Y}mz{Wj`nD!!(FAvJ{N*Uiy_d|Tj2poTjpm~`I7%Qxs`83k%u2pWAPV*=J39ulTf zTU(151eCwM5pVdRZg(3DBI1n?&G0*7u{mYD@(sZh6!z?q*)1{Aim0Rv8Ewn_o{j%l zE%#Ue7ynTc1fs%mZM6l^4$Tk#8Cbe5w^mwCW>-050t<GgAVrIwsW}owhayse{4%wc_QHeXcr=(p@Ynp7oeenq?u_b zT^9fWfb}D1ePB_xRNp$N>1Xr-w`%HcdMhqOGp5?Okjt2TZ;vbH!N$f`f&5#D(cpM6 zTKX@`{>k9)I%1514Mz1q{fO)B?HH;;-spf!pUBRI#CG4L#6-W(pBWxJ_)f{oAzE1p z(K2FUmxFo)B0L0L|?Bz3`MnhCsf3| z@0cE=DJ|K3$6EOG-pd2GPvD5`5sCSyC`{vO6ZTY1dWr``j08{?4y#$kCG+3aENpDp zyG;h`8lS#4ReHCrQjcA#urPjYF5!{a);_x^x-&2Zh`68@lkRPUAE7f`o8uPscu4sU z|I_s5W;dK4ZwlV^IwS?b1dc`a{h7HraX^<)fK-^@nywG8=-`8#k8j_;CBAM4FlB0e zT^b}=*REYl0KDnw^t3-mOROoFF1Wm02o}JD*49=sjdqf$$;%7AuC6W+LJ`C2`jf5E z4$h_J!3?slu7l@jjM7o!khkj(4-LegPyqb~#lS}O<;B;_1uz^w*k;$>5I$O{hODQx zF|=DhrsmPg)a5VgqRf+T7JmUGy(_LIStdB@D$kyxK-NP*QTHX?>blt@w7a8#eZDE0 zdBYHgcD5-(RQzb*zF;CaWUL>#9E=#2u4b2mh?NztX8F%Swc{rvyjw$xYEsvSb9Mg^ zyp)pq2`;e3F!@}v0Saz|T!&qQnVA`t3j6!W_>&2{Nqwj&RI-#H;-z%?S2X#3UGcmj zs5)Z#Mj_S61xh~rn%*Qy0gI^`hWtths71h4-$4f?%!sIEahWxtY^QUd5_ zYj<}FAk)rpZGaU|Yp+5^Mg}nrt&Nx7i0*uM7Ic% zTz+1fIYk~*#WOs(>EWx^+4PocdX-YD`e?gsQaPP1bbT}6&G*`!`S$m4AcoOA>in;d zbT9Fgwi{mYEdhZ@sNo?%3irj`F#jq8IO0f1>t6Qj9Csf$DH>Ml$D^vGvxDV2SvK2n zv)K2(P~^KqDeC==Ku8?C`Cmo*1GOOb+2i>`r12jge8*pSMyXvjz7|D~zaj^6fj0fG zKLK;~hZ7j;8+lq#tr8L@sjzKr-I!Xzw(Oj4d9;P&UUL(8MpQ^cbfqZwsGOv2ntO}L za|Tx5yqqt%^7HM+qF1NAsd|+unWg>wPM9XXS1xn{ zGj}0l^vCN1{df2@?gjE&)v~v^u(LO_o#ZpHAkjpB_CYSBv)+3H5ojZRPhE8H3BA9X zLr*O=*@}qYO>BQicW&619TELk{4So&a()+y3+Lz%SJl9M~oVQZq%TFpIRgp507voq#KRIc$8&n z)0ez2C!(=k&E-o#w*Y9=ZGQd|;Tac?UmWaNVP2hzmOJ0`|f`1YT_p7wT-emF8kQDs$$?Z z8x5vQz)1?bRUaTpFg<=V6oof&KdSKx#G*Hl-Mo2SCf0lV_S7u8DqrCzD=;&;KBi{( zc`L9tzYI$YE%;jI%8b1VNlcuFr;NT z{9|-Ajv>B28pN?t1q94<<$Qa|TtNE!!)3~ur8Dm#4~2xP3=0aNvHdqw87?+{K-*F( z_(CwiJQ61z4ljt*O4O`$l;{RsG!PYLD5A%6p}%AP+=6iz4t;=bDPV~?<84;qJCsgM zzmGpImX=JCe@=m@sAVVH4uZeF7b(N~Cstto4uiEA!C4N;$D%7fg>g?}-R;jN9%JoY zt3C^mNdNMcbbw1MrxzepaNP!o7y{wU^PULGe|?cGc!vrY8slboOZc$5oG$zZ8|&gc21`B^ zORrU;OKp)Dbw!zWdR9&^L)S8|ACm?86CsVTqtK={nr=HJH0}=UWSE;g40(~z(cXbe zCra%Oy_i)qjop_oUmoh{+@f>dLIrQ{-5h6RceVTzHQiHzSHXoAMB_0bl<<`ObneAW z&x4BJUee|pR}z+MRH8)G>6rM=OT)rIg|Qr?fSrZDCQ|wF4{sUavKn3f^H3@OZwir@ zMF=MYgO%=s$`}PfWuf~RDKsX7-an7LS*bf;pTvAkT`{^+>0#z8*vw$*_(PUAM$3)PWnY~yi#zntw;2*mpo*WTKy1H?B#?jb;MZ-b}&zRik4UteF_ zZR4=eC>uY_i=j`>tBspOmJiBz7TBwSh{%7;1p+%{E&?2{$donM)Dow_u$02hg+%co zQScDtbrlm6i1-d)I@gwV&gu>rFZJo4<{T6PW_i2iWo6%4WCKXq5j}GnNST47of$EV zpKqcvzat<((XQo6bO{s`DQh)QvEjnz03t%^zyQ+@5LlX$*9hc-7rUB6C6;=w&;TZy zGNo``LZW(_tMmDEyj^W1?lWl*>D8(8;x))hFojr!V;nd(TeIGy@RV`-ECln`v}#-~ zhCTgJ=+0EN+0~janH#}Y5KuwkZp-U5Wx_mhC`P}NVs#$g(%JbLn(1CpvFr$&hJ}SV z?R=dlzBw87^65q^HghU6k^rWx0f!7%bREKv^O>plUItdEl6*%e6m6~O8*6;(r9+= zhm|T(DY~Jhja9QzzSUd@t)Rq2(`FiL>hz75((#Vqx+14}{j;y17n9^}%FTcn&rDqj zj_P~CF`jHYI4?!prze9&>@+hv9VLztW*V~fA3^{CIKc@J0`U8OJ%QLy(9SltEo()B z-rS`MnlJ11!lCa+M=(PG#N8TD_4o${vK4JY1_0yTyMCZ3i4Q-0Ty?U-3IIkk{0CAn zr48o1>8uQ-5nrtL<->c1HT4Jr{$OozV&YTZwS><57$*R|Ny-zn(i(@g9xh0vLRxy| z?Tnz%_%PX%zfv8fp_MUE41aG3AJa;?B$IyQI>mYr_gBhn`i-FEM6LCZTi1Rs1blw_ zc7tR9`@>>$$oR449g0%73*WPmqVUq)*=L$sr*Hkccc;HcHWp#JM%KjANm|`=X(pLR zYCJe0+|PH$|Gi{X3*10U1=4TlqEe6;(13OV5qv^JmFEHsqD^m=bubWur0c-{q`>M4 z@7xD)hosUKcyFZrDJeNSmOlhwa~nM1yYLWt@(pEa9hYut0vPZz&Kh7WL`Vpo(9U}C z*2)m{y@i*;X9XYx{wTn%dUF8qRn! zjB6lgn!ZxRAWEr{S7IIGX(OeSrHG@4o zu&Wgc+{Q~R1F87%VZ;RhGv<~1q%d6%1nU+@TRH|^F-R6DN(q$FpEQBmk%VUf#QqF$ zQ3gE;j~LoGz=Ar3B+}kmWF&YJ4X3-UyIFUBI`-j(;)#5j7P6+2HERRF|o<*i6C?&{l7UdAG8XfP7 zO$t%s&;G$6(7i8^C+2e6sHrNo`3tlQadxXuQNaGB-}N2HO`tsUo`--B4VcUd(2T=a zHo0Om4d{|ZUr^DSX{ns#H0~mo2+YZ7k6EThq9M8`!8~zxetrx}rsaw9L-b%I`T|KH z;NycZnQH({s1$6fcWrH1Ajg4p!2nVZ$jKp`%!9{HLGkf)`zwQb(CI0k#UW<|Xn!jx zze!=|yn7dL z5%i8Yk!YyANkst4gBtcKo$JvpluD<=1-J*afgsdB5uS%AAsAZG(ph;VQclHZ)-X9q z2i+csZ=fA!cZ^|8r4js~4PQbf%k6J5v_Ud(L2|0d)Qb8K0QvgqMJf2LZv~*Ah+LaB z95y@?am8)I^Wqe}vKrQzag(fQHy`ax(DmOi7Xx*9br;C=pBr~3ed9nefcLCsaKoqh#8L zD&n5b6*!?m01zK5WcM2)J#~{pw6(rNKbJgg4aYM$B2e#v=og<(v;*{C91+H_myrts ziA9;3(gue~1K@F%c6N)1y$J=RAD8^LYviV5MU8ONzytGugM$l3GQO-@1O^iE8*B~h z1>c7o7cPoM0KXmfdL;vbD0q#CVZI~|knq$3R}Z2(Q`^ z3YhXm=%szWA{N}*?iE%&>=q`+Efje_QW~<)Vh(0!Eq41yW5|A=Y!#o`&N+#mxR5GE zlQ8Au+`q5{-3sJR>Y{|MTdi7O`~Rjv<+%t52*CM#gN8z(o^PjuBlX-3HjhDb_QRH z4sm$}y{BkXtsJ{r*OKPctU(M|TU8*|!YbUpIHoyUwp9L3BS}ccK$@08j*w$8?E+>V zUS;{6@M1qHhk`H!r={JiSj#)U`gB(y6w9PY%*~V<6OGOzm3-DpumtU;+*ZH={iYNu ziYD*4<*u@Th~aY8<<88CWExdZU@iNFx=}WWcGTHU#NPa*4=YGmDMLqky0`!w;WKZS zg1s1Pu_t1Ot3{L3$;--OY7BX9+pk@n-{NT<9*4#Bm)bu~jkyTxG^lTH48CH_F><^- zM;eptW5@Q7V~`$SJoFCm*nYDm17)d783w17erRGTTm5>~I;^>bDwAZFCsiew3Y%6@ zS`jb%HVz>KqE~c>lxtUJc9pax^}xIr%(E35FuCC_J=woQb;JBNq)y78vTG5M2gcsP#wfM4Aq^OJ$Z4d-Ilx*Jv!tZS%!wT|*xOUaw!HEUPl3@P#<`GtXnsRHg&8tVwRDNgu=8OsMwh@-cPDbB zX|*6oe*X-U@@iose8nG{g~;b(Nbq$07!$kBU8!$q2>L@a3(7Ry-}(6-V%4^g5XA}e z4`&~T??iPRNG?ze|3>}m(kVK-35hvkml^Sc+RUpmJM~ZgJA5Rln_-INwMhGN2)9#Y zq3$(60EGW;NV6H>FoyaQu4~?I;O<+prY!9gAk%2UCei`_G0ss1jcT4HWTXHQ^WVUDPeM11`|U#)57 zP5yx;JBvZkDmUC7pb6Gi7L+#jk?mX&idxgPoV92&+sSgE7RdK?^kDbf3hF(4OCR>- zdnB_*yR^Sa{>U?!6wA)OzTzADq8U7Qxw-ewQ<&*@++f(Wv*P}F^Y#!;DIcHHq|`O1 z?%YQYB?u)~Yc!Hqatdw2)3dT{iW*1cG8D_Hv&Pc1a3qKo-rju~^7-MF5ho_Qm`OUO z(mP+?xj!_kJ3Y3K!7N>ji8-yj|F&`(A(k zoNLSQR@(Er;+LgPCY-mwnQ)TNRm5@aVY>S5Zzqw?v5X$2p@UBc~q#{d64E*;!!S{y%g19CG62~nR( z^YO(KSXobn5==#}Z&fSnEZz0P?y6B%Q|K-imzO2PdzK$3|*RyyFH!`YcC0R5}{k4==Nu=hUw zpRDW`u#Q?8wpOY;w;XX5H_{A7IRAXD{&m&;%RQ%H+!T}?bBDmsALF+-Io${zri#Se z!n#2sBN1f%Kkuj+RrYqpE=I+!;5XvP)5jY37ESnfg}G~JCBg)FE38LS2IhuB9gMK` za_GjBlvXE{OG6`i#2=gB|7I5tB3HK z1cHv7w`#}W?Q}5LX#WitT*W=Q_;@|OXIb`5Ve$83&dYC6R&zEfKC_n1ks*TF9+vY5WP41mKS+qrNZDVdV z1?2LLWoA|#GIj`)bX8s(PmA68Fj!hxaaun=F!zTrZe_;XNpe5cVrBQ#Vp#nMkM1L{ z0LtDc+Q53!(Z<_1LbQKk8)2p*PB$xRZd{dp=CehC;lldy@EB~jqf^41BQ^O~&12#0 zDJnJYYq#vKXWOUQ60|+qb~{YlXgc``0CY z;-q?xdXfBDOaA@i=fv#mF8i-_{lU|I@EsiQ1)wv=YMZTAyNAbrygz%(u-IWdR#ygn zgKz5#hcP(@oqBOp`Wj{3_z$T{Lxp036qL(}9sbJ;Bh*&H%2Jz^$vjn)pHC0;9-c*H z(?0ygikEjMSU2gf7$I_H+UN- zsjI@NtKqL9B2Kvcl=xM7WSh@dbG#H3S~s*XJO*rJ(@VZgZO@E&@ZjwwZGRMR1ZzIvV_#O7xZzVS*!p*Z{MJ3mEax7OWX**r@_i*8i4Tw*zv9k% z$J0sngupU;j)OMV?}Ox{A1_+@S!Wf#skDl+j}%hX_qrvD*cIegnP-sOt#? z7s2uhQzHvTfqZc$*7AUohMJEWzvO~!;XL(5O4O;x3Mw}A8*fOxw1pdMRYhEuU(8Q1x3t)>8F0pI9<=Z57?WUg?NXMqO}DjJKN7nqx=xIePT4m6x-4$aPfCvd^uzp1xKx&1XJ)3E#JpbSBu-Cu=PhmC z`Zmx&Xp}Ku@b{(P;e&_u)Z8@~_v0shJB{jRjc*RnK2?3|)|YsqL*Bz=!2iIw=ZuA! zUPQd-EJIFRJ+OPRe%-9nGj?p<08n0EmkCgo?dWOfm$JeJs)5v9rBL$kwJ{gUQ`q-UgOBkz2S3lxDY_wh z^OKSFl}$f04%N<3W7p^Kc{ZZ=8MD7!iz&LNIa2UNRhEJ2urwm@owdOELL)$z;y(+Y z1_T^_$4@Hxg)5mFKXOiXW3$^Qh1N^?0)0}9&cKbJ&NGAWo&FQ%ZZ{jTu@`@=I*)u& z&@vjEx*5e@R1f!h4+mvlX81jG@?=b)We0~fmb0+c+%wpd&!E?K09v$kB|T&GEC!Ke z9Pch-(kd${!BAYwfo4Y@{&kKRTe99eU#LS`=K}lHXbz7kORSq-u4Rq?HF|_rJ>5+6 zH@ac#!;6)jgs$=Gcg_98f9Adr$361OAq^Mtgo^KYHEN7JRyb5k>Qr)yGCDwMwxIl3 zz*=zsh9F}O+zodkGTof1B&gc1`R8)aXTNTUw-T&4r?Wq-ex-D!`y5Tv3AL+|ysNY% z!M7c+O`2r<+QbIz);Dx8>m9L>f<_skf z5#$*7)Gg3FkBT%ee{fwD$N+H`Ft~?b}#6CRX&8w5p*mxZ7%zI|1e?0GTSov=yqejzZ)n$u%b z17))k%e)d>0{u&Vv$_H^L#N3b>%c)LTn(~(Y`*pipibn#=#oYJzn(9PUP zsKU2hcdvBPZXdGflKAprZ>&&(@4I#9m^^a^>l9i4g^ZOrBg!Pz2b-x&H^LA-hIdz3 zYJfP11Va#Ljr72+g8)WRQIy#wGuS8`)n`_~$shs~ZH`PJQhwDm1Cyi&Ks>yNo@zHY z7;SQF&?UIahFI-Dg#~hJCg9})IPv4&^Z2qb3s?4ESql06#b} zmee_u&MiXk;TYla>0)mcnwURsah_o2y-H$U8QeIONzZaS#>3i4Cr*k65`oXeB;ZIrb&N$>j>?AbA{5SVT`l(n$1{%BZM-XNK7_tEX=N=zJp;OK)ia7WRBZvXxxe`nVkU0XI!!)K^khY-?gVGzQ z;QI^=3*uA?J4NHdUOTP$>BN zF2&(8ONo-0FeIsUY--kPRVnoJ4I%oEu7b95;6f)fCU?JhqZ!I0S%c}fZLVlAQc^=2I zu(E<>;#Xp#XKHF{Hf@(>O0Tjk6n=u{c!PNJ6_=g)-~N!?vs=O&&RSscG&euR45)U1 z&0p0${)6wzf?Hkn(G)IJ^THq6=wY!l4A6G@cm}@-KP0RV{e>~Qg48EiT1mkK*_Sbu z?bx{jSyC7K*D$))KQ}sF%@`jViaboda<-b2Ybg>)OR%Vg;pId7m;YSTb?1-xPP(1t zi94%6;Us~dMZ;I>-qWpSaOb1abSkhgKku;~er!4X*q;%V-mzcoVp^$Lr0VGcex*Ow z`xKqLwVYhOqZL2vQrH$(aMm)o$eL7(P8E@h6P?$|&xV1>h=6H;w5v0~@Wy=L>_#Lf z<}ZA*KXb1JUp<8#G>u;=0I5!xySyjITfaCvELL*4mWyPrrJ(%aSmL|BVpL0eg%l_A za(vt;kcTzvc2mS@wS;XWDOV!K>&+}3twH<++@o7gZG6^N@c~O@LNBsr#P6g+wTueA ziMeLHucMZ}3*#cUUYlWD~n-J$NV0%U@M%Q)eDH5=oE0`&DGH-#Q5#c`wkdoGc znf-Kpu0gWE1X%})(}n&Q-n7ny6R2|XkD?cks`C!Hgx|BE*k*VIral_ZEb5|5@_Qzv z@QCESZt=(KI%CyDmN`qcF}zF79r%nW3ZdX8F6W(F3WQYT8~;95+Q~DYct=^}vHHx6y0A^0WAnzn;2=N9uW`5> z-E#Uf=TZ}i=GKr|wZPKL&YCal;&!|Dhb7c&&fj-Q%iF6FbOKj~e3BstX1D~Yo4yuN z(;WTG&EkD4e6Q9>%tu7(<)`U+L+HtWszO|!h^K13<}Zr_o5=D#-~#CsAOu_Vo&ys}rb1tHr+sJm_SYaiv zx;76QSIbThhI8L@4K$M=3^9{HRh+x_hK=;`y3Sqz)${6-kgTBnV5&~&@=_1~^i5?Y zXQ$DvO?huazqJ=c>p8jgdN%E5iY`^M&9VLY=QWl~7K_hrZl&&=R%F(-xyLbLdyJ3Q zrw1I?_+eMlTkc;sBDg(3YmhCD zyXQ~yXQiZh=vg4QzgGMfC(BBJ8cn`-<9lmDBLbXE@fi8M&qEKyUi`fMy%uY>Bg}7o zx?*b(&4l$$yF|UYflH_Dz5fU{^-$VL73MX96EWnE19^r{r>WPd^w$$o=+=*4h zt^7&w=ZhYlOt|4?aCOc(FE@8L!I@M1cb=HZZVj2ek0GyKo0)}?Y&rMWy-?P~;g%Iy z&?6xfAcmIl(ana1o416+ytf9tf+hrZ(JMp=3jZ2WR`4P~*hg>fq(g_{%!ObJm;MWy zRDYMf8!3Sjw{3n7omX#1yZ2o+HXg-?+=-a?na=}jkTSC?EBiT-<;dWB1d>)a04Q3R7*M)Ku1w(DHkFZ8&z#I zu)`Wk$tyo$kn_UU4nx|wl~!l$Ff%mbxR-@>SgHcjcEcm-+8)6Mi>Ks>auCJT8Xyor`B+8^-f$Y2KZ6y!Lt@| z?=-sILD_iiP~mAwN|E3nF*BZ&{dh@fJ#=W{3*(I7O2(CqdLi|Wh&jY%>x3%J zvg%HH^{oa{qSTrz!ex%4LNA7_p(%(QJk*8#hn=2(JQcmz;z!#6$Q|vhGW4G&kbRnj!8(ZETfx^w=n6dfSoP zemK&qUm&%m@g;!oKm|gi5(Bu$H{KfTU`S{ z8f^em@#>05A=KUPw+7+rn~wg?`6gr+KQH@^%=)2Mjl&^Zxp!Zgvsuj1H5Xl9v@OM2 ztBbr1zCC}6uJe=%=~NNwjK(&hu}lB%O?|5-iaXxPHiIv35WZK|3-k5lWgs?B*KSZe z&l3tZ<7dxooz|jq4W2Ms4D?V&KX5wN#DKi)Op%`VRqBQZaud*zRQ(G`KU}@x_iXVs zodV&q!jD@z-aczNt_DrG^FKw&&}p5VKf~rLu|1<}%^H1VC2laK0u5LSd*EF|>QY4^ zv{S9|qw8?I@vrOPK94}q8o(sBW|}Z5LapePgG!nHS=QqGy8c#8X<0#j)QUbjuePOm zbv9nH91cvqxTfC_<}WD{bA@RcR^3Uq2xG!UmkmKE351M-&>O%B7OjjB0 zx8Dz!bg6IKb-o}M9mP$rf9i2DK@y@Tj;bgwDB;)n$gi`uVQ-{nO{p0G1%r(*(Wypk z^@jGTyAff-y{+7LvnM1UtFYizsZu%@nlN9)Xv}LtIb&`^w+8)2GQij622~A9bCJVY zx18mRLU>E*dc@3#_2guPi#S!p9W!l$P4&-b$H?vaugftp5%r4^IW6^K!H~fDIRz6v zZD&#^*5c`0U#^r(5?tw+maU&@{Oj3CI~AA|Jj5H$D7Ks4WO1H089K9$)>QY%InKqn zb3ge}>%(TWk{UL>1vs=Sgw-5x*EGA<%T^ZqP*g5{r5qt}3V3hgS|2>Qg-*N4aY^Z} zU#>N~&mPRxCK9U>P8BY4MfurP9MR)jFjC04NleP{QsqEQIzqA@&MlB!&mIs`ZGLFlb5dBue5=iOJEJ?H@KCGEXYU_jJF_s68ia_FNUMM(f}< zxS?w!r>WJDI=2j~D`<3==Ig+Rqhs@glIs_{!hz9O&>a?vIH}HDBW#I=_cMO_ec(9H zfGfbWQTJ9G#iWrI+}=pN<qB$dAHc7& zx4(hn#o6_C{OpIfx6R+2=TH>}AD;R0I=noZP8DJ{zk78mWtLV~`z)dcd-W01Ev)RS zR@|QsrwK((nVF;{4=qDVS91KGG08n738AfjZ#P{~9uX;Un4kysuk~PrQ|GDnx#mj6 z-~f-(J?8TdZ7bM*ADUjRru_t(1RnK>+?hZtVWbEAE1%%#Nin?Y=~+(0%$v|*Dg}h) z;3)sjH$n57X}*8=)+%|mF5xn+mRNb{;9+zzK5kh8->jSHw=Y{==Ok&re?*AoRQW&E z5<#17zQt{Q9t9|)5mZw!u7%B8yje7c>Dydq4CMm{W3!( zaYr_E1wsKc9?aqIfE?pHukAZQopi5!QW(x6GsV2D_n8ekILZHZQRZz`SG9YCQjXpo zvUV(qgakrRhExf(_9VS_yFH}I5 zB~(BKw}IOV3^Egb!Rh$#rQ*-$ZI{z(S425+#;@y4X_rrKs17vTo`VHNl5@pOozT)- zA1d`W{8>i8W4{yyvWE6vEA&q5tLu?G2}zU@J?TDmiSmSikeZ*GhdCCSwAZ@vtTt9G zX&)u-+0_n9*PSVJ`@SM%+RY-%#b70(`1~RlHT%?_afvuFY3v$wtW4pWg{V^d+(zb2rz(E_O(HgUoC{8?Adt=au0A? z*hvn+*#(Z!2f#A`9K_#u2?BYQy;(a2EA?qh$9cHf1*l&YC4{_8 zKGBtR>b@GXmo`v{fLfdJ674V4M8<~*VC9+?9=s^+HB^@8$ve&T{L}Z0FY^%I&U#HS z`aKSF(5H!ecFwrEb8yDy;O&y^KIAx5^6N(+mQC|RjR~JB-B!F#O}oK*?`dCtI# zQfbbDX7?qc_E1Q!X(^nstLJmB_fN4S)$EF$pIo%Jt^W~8N@rg}(Ymk!A(X(`jGScX zUiS#SFm{rHnvQP3*v3v1c{r7}MgN1{)s^aQhtF>wq>stV61cK=L7B6{0;zLF)-e9h zZna=KuErISD|z`%$LB*PP}pSyxAQxS7Pm9rd*u557koZ0~q_~x@Y{$!B$b2SA#~T7JAFXa zI>~NR@{J*ep!lS_IjD54a{mPdlVK449bdOyZa?GqJ1g)tdyAk~*^&Ef(DIJp=%l*B z@|nlYbEb!1$PS%)o*riDm{S3yU6AD8 zr}%C$({D_Lvnopjlds73Bd0FtmQYo)0JpH z1>d=+^zO;g70K~+E60@?cyC1O8M11Uxae(7dGeY)1g;d(fVHqJ6^D!(`UE6}{Fvnp zDc}SNcx?=Hv^r+4x4g|M&sdgHgkww$dlEh$ZhyVCY0m0_NJQV1YTrQ-J+?F1!e1z_roxV_w zu0!`mB=v@L&vxkrG-VweZ0xvC2-$7r93-=&=1rL0B4ekqu~PRG!e?rDLj}i(4KHxH z4tJqsvGLG%A1Sq+zgi_BFW;J)&pp@e)4&Eo=dzAQyz^dAX^AQiG|YWJ)4iu=iLa1H z_xk+cPXKLz)7B{f8P;bWK1;4VvB2l2b#xv4A@DWeNJ(~=J1PKPbSE@1L zPVRlST)+X~6C0E1D4W;BXxw$H*P9%&54x;~mklmmaeVl)u=gj|Lrjokj<~UrrLJXR zB;YqGK_tkh(Jj~(5YQ1)d9-P)w|%=L>-$&hblUhAWp#ODL2PMo-6nPn*9$--kPJ>{ z#O}x1{$g7DkXY!A>M^%foIk8MRMGQOOX%c6g)#XCon`&}E#Z~v*#rWXS&>rdv#1WdE1#Gr=8Yrph> zFx5wAa@3ML~mVpe#2N}yUWmWfa1Wa)!hmMX!?tT9Ca7=7#@p^ zUk`X-^}l1v(`j6J4_;`Y)P~5nkptTYCo)j{8hp^uWi-CSt9>!c`)@(VWil!J!~`HS zEOoz?*EBo`kMOT%2~xN3m^psg5b^{Q`k*mcYc;`$T}IXSwmG~xFOqKlf^dj)+_k8| z<*F2SeD67%#Y3xCZ|yCNeUlAiuW|+$9#f3NPOIJQ) z%r-h3D-bthM-nP`yJfW~_cFB^ake1}hf*7al98ULFXQTo-S?L))Q5oD6JabXcJQls zoj?AS>YS}-N#P+r6!*ByX-L*BPr?`dsuWyy*j(0ikM2(OFD@yWT8brJQc3u}1W^T; zmH>u&Tzke(Y%0#khjrsi1F}H-@+L^uB&4*-g@-jn#1)&PXct?4q|V+;s|+wPlbkcc zyeX0Os$H`%6HEYjC)G`V6dYx<0V@Cdb}Duw29PW|&g{l@e|>n13?&sU@KGF8+5&zK z)5lf_1{(+j0K_C2`QsC`;(U*|FnvNGyXA-h+yr&c22WqkS0`8E<L%qcz&a~_d`lNanVXcnG zq~N$OW}Ip0@f`&>>#TWeJ`6OBD_;FzZNFb7pd)NQ^?!Hp|(#oB4dceh0^J)IPBUA9J z;I2*o%Y}e?9Zt;&7@jnn9d#pRPOdidetN1!X(-=jt>IH;lBJE-bL^h)wCqCr@hbi3 z-Aj%3&e58+agq{D=WQB)gT68t3&5|ui^HE0uE43BTKr+mYYk^(ka_x|n5Dz4^7!~* z>S|;|f~R(Iy%g@z2ZDM8FweLSk=ZLU>n)c#2`;-HG?8DH0}u=$==nkVSnDCZ)-K0H z%H=10%5&_$l6MDn|1qgR)1Bcu|mimlD2*s?5jrE8q1NcE5Z)$HX(}m5Or5A_G zkv}>F9o)d<~P;QM!fV-a;%lPhtK)M4dlbH`7Qg^%-7cSJ+Xp@5guR$|)?#oTU- zgx_y1WYF;3u9>r&wP2v^^NIC4Cn}WN^ z9FZx#-+=8lS2o$S>>{;(v0?23+xJUfpA+4CYPECoBA=kM&;TJPnq6?e7G*O)0o-S441z&8?y0dbb zzXnur4D5zKMGe){+F^Qa7zBX%C(h!B%;b%vc>2q~ttt0@`3l`-7r>Ba14uvjGU!Gl zByxY}W0)k8NlY%rZz?G&s?lU{%Bq??PKv8TF(UF8%rD&j+DwI8{CEg>=9byrFs=>* zcFf6al($I8#83GA7XMy@PAkWwn+=I;ml1Ocdms21951lID}MDgGLIJ-X+yvsjPG>fOBqH+wKZ61sfU|j=x^Q1Q^Z9 zZq_n-Y;@)AF@7l)0{8EB1eEs}v@w$e4JdSupS>x;xVP(*?n=QAceC!V24uaF(Bw^a zx^?jmw4Xxl!C0xMNv#LN@^!7T&gHC+>^`^jqz_7Cev-1y;eU4o0lfCJaIOzHT0n_X zZl7KK=up$>Dsc42ePeuaNVik4-KPzH>F+PSxlahnF_h3~jtb|KMwvM2t{pq8zD4nB zkp5BX_DFTP8InpkdU3B&ne^@@8>JN*2uO(KcsVodV1$P5S#$|XDHjqx#`j-kU=KcnU2V5`76zKC@M6(_n-{p}Awd7i-l+_Al^F`|@K*9O4O@UI*|+&2^b zzy=^{U@}&s`?NsDSG-6{LHNESF;92|DU~~55ku{Xr+KnGcPhXQ0BisXGo$-?jPD6T z#>WDHx0y-iwnIra2>TXTu}tGjfp4yT*HeO_;7tmsY- z-#pQoaWeGRcAXRLecIrmtk-IE-&f+9uN7GHPSg?%Omii98Q#2q5AoE_bWIA7%8^j) zp19BFMnkAr|+lL*us5sk<TmSJqh*<@I>3k(6mN8ckHnyw;TZJ4n<%ly+8FImWtTw4**JEdrUN&i^`w8m0{_< zE^Bjc-#Xm;yoK3wB1`}UhL4EFLV;wO&)vB{B%#0~n)m9)8JN9jA%b3W4zb~5JwET#N&UCY)bLt zyYSMIycqR}?e86PmL+!VMd$hUrXmm`Nk}ZSA}&nfcrNl*qe^WlAa1ZUkNCu1zaJme zpO01)SxuXGIUAf8%g75Qqq3p4i7I{ghy>SLTXt9i;SM0jvXNDdg#L z+CzrqCpW@HB@g8ACbJ%@#peQWH|S3?F@w;8he-5$U)z)LV-L3vrok~$NkGAJz}8F9 zCv4#}Mow@yyEv>7v3QW2Q$MDW3!#54h-UmHXJYd$@2ckcC(HLC6H@W)_a^AtYt87S zaF@&hmZ?K8cT{)v_FvkQ2oZ1G!vsZ)4zyDR|1=;B`ZM7VI7$f#;t~>yA3usJ#jBv> zVq=@CBx{Qek9tURsj}`b`~f85G5LibJ4o$$Tfbh%zUy5fCy;~G(5wWD8#;U4!m$T( zx`R@a>7`3Ndq%F!{3X5UrxEU>zrylN=A{^*M)% zyGhB}Qb6X(wzr|kQ)75LA z(5JO^LHpxLRncq_kl*kWxjHWGJD$T^jL=@VpM@L!uI@uNDe-WD2=bb!Qa?8Yi=U?u zv%ozbeh_9`%ePdfHLW1JrN@7%AAYZG3xAzSuv&VGO}t6T%Si65BCyRqCw`97Z>E@_ zlsoo;ADJ!#W~Onf(@H@g zuR14UlIE|NnTDJ6jsGU!|LJ=ST1z{s?8;$g@=8fe0vxzI#1x9JUpq%Hvx{&Zp~xY$ zqJKyvzibTiH|Vh%h2M8!58f}|jBaltY!Y_C~Gs-~O)N1i|tN3C2CY;962VV*YJ4SDE4(MSxka7hl zfahgAxQ-=zm_-$FsX}#DA^j<%=uEAkwIlNq#{vyr#S`Vh6_C?dFV&e?Khq7i;=X>} zZ0A5F@xfD`KL+Y`o}}JXy}R(z5CNxt@2)1gPa0G4fKY1XhZ@X)v&zSo!nAm)(A+Ok zs@4iI2cH10HqfrOJ9T>*kqKw-T>+js!j9u z?e{n4Ky6w8{5ya|0Lkqrq#S5P;*^-7?#>)dS++R-q!$oA*G`F}|RSK*?@v z!Gf<|XwH z?$*ZagqQ0`LI!;E1tEsP;3h~JdHRo!*h-2XK&ANyl<5q5Heru$?|=}B4d^sI{iS<< zqAAP`*yK>L8t|uZtZW7}Zh$0Gt?)$wwXr%ZIA1@sKZ*k*^-kAPcAFi|zt(%<&0Lnr zXdYcG&+Ei!)>3B%ySeF9bU>>s7uqn4Leg=?mlgb#24^urqKMPNms04r;a&UxLT%2Q zvM@2p%Fcd%)KFD*Qjwtx92#|48xytrzjbyUpz*?_EFXa8!4t5x6WfpP)n4NLuAv9;@TzqF$p9<8UNXN{X zfp$3<7javWp$J+hny-jGr%AawO2WKOb{*p_%U@$^P&$dw9F(}k_V*Wa7lx1y8nG7_ z7^lH=Dr1qMe*V6JPlie|)j6JwwX(Gn6GmDE?$fzeH)~}G)DM08f$<0H>HuwO$Zakj zEJIe33g?QqoeUp4=DdQD%!u}3e2xnagXvf-)RNAd?yg{mOa2az2rl+Esw?<85(t4# z>vXwRzq(vpP7BwY1pNa0;6@H=zn_c;1UvzK++YS+=>-8UZcQ`H=%1#%vF)Di@#YB- zcU%Eh4?q%zCMYqb-;rK&EFU)(B0|Kleg)7 z3^FAP4>NkaMJ2;ZbxA_-xNZ zz+73$Zoc2#=!y*&j%@xl;gS5cofKaE<|t<}0rer%Aw*_?pcZxgHHwz=<{xCvmIC;G?6G zcvJKu=KIB9ZXLflQv1vy4EmuUd*-0r?&fsaHF@CQ5wu0n-$6YK+*0BBNf+|ra^W%J zg*urEPH_Lya2POt*vM8vu#AbF<}4it=^H|-NxZZ?OfBa9bb>ndyZ+GBjtQ+@^tjKi z>g$H0>Rd;BQYH26zpyT-&wX{;`EP8$KER$>DY&IchG zY=`11t&?7^TU?mrh`c7cYvV?Lvs1@2Zy(#ZWr9n9x8}w@_85(dnp4bl1+`msAI?8y zlnM^M8~vd+x4MEH;fR$$lnr+5=xM-Pk#^tTzhQpir)G~E`CHeCnISf4X$!vL9fmfn z{jkmXY(1JSycN#Q7m(7z_g6^Rt6bEjD15DQsQ92MRMNKa4p4q5(qtP>GHgiBAHZBJvVb^pIvHOOuF5?hoO_K-YM-B zZGg}s$HwzT5YUO)SjcUam8G+krdqc83RWkiCjWntE~36U%gb>10vU9m0_EeFrH#_d znEEEdZtLIXMz7KFBH}$2d-=b<>OUeD{~WXmUY;G)qRa=-766O&<9T6;kLrWvg<@$b z+hs3p2QNXVl>Oj~E~>>hu(i*i(EO835TDy6;zw84_;@mg9ZlSZ9FTMlB2~d{u6gQw z09}(f640-b%r7YQoznHeT<|TDw%1kS@Hm7^@=TmjRnA36DM)8fgD)EKaYUEj^M69} z#numU6e=lqxh`CHIy8F=wc2LhCM|Jmw#Q#us)WmO<-20vK=;?0iK#`vLn~bPJ?i@R zjkXFKo>eV-QQBgw^ytZPqr6~E1ysyL(QNC7HX4#S98~(<2uAGf=fuT=Yvs((SH-zu z&Ob-2d8vE~Qbg^+2%+L-j9f!T&Xtvx2WKJ1uy@&~@oU!%LCW*<(ubtthq4DaSstQT zMLdP|3MlonQ$3?rqVWqRho>`yH$M9fQ9*{?8tGA^~Ux zBh8hdsHi5_hb+~D5vc-vjEMgiDO<>yeaC$x@h`lfE+Bjd}VRdMCFkZ0s4AGG`6go0>iPGJJiug zR#eXDO%iSND<{Y&VN$fAQh3A6a&;a)pgFz8ytcYw-Zq-#tjU;kr-WxX>TG|h|Bf(s zno_Bn5maeGh`)4696%dnK#16zIxurJE(^oNg?cRZO=>ud-c`X5y3-uEV?J(hor{D1 zX;b>n3~QhpJnd4z5IoohGB;!eXv5rbeZW{Ec_Ayej~ZhxWaw3I-NWieKQn?FHtzrc z@IbvD8VTrVh%DbIAZAR3KPNbcrF_kqrbAB~$H5nQwk_3j5v~MXrUPd4Z;cZZ$)Xdi zOW%!`{Ok4io+P;wp^=VG?Jz< zsB6~7Z{(;ZMT#wEry@|O`0Q~{yVP!yxZGz}SaDw6ZM5C{4`%T>ee*NJ{4NB}NfO-4 zJ>6acjo@)H?cOQlq|54qW05+73s=qHDFX^6=cQ)qt}5Y@JT7GeO`*uDokgOUi~*4H zdMdvg9)+_@#FJN)AK4!H(5Y&D-&MJNt?g1I*igM9m3cr{q}l*|xgjsCDO!%?)LKbf zbnJD@g`jQLwkeHAv1f$PgE|fOvSuD>!qPvLzY?=(kyUKx03WvQ2U73-ooLF6{9$m!M<2Xx6>!$}Gv) z(ddzKeD|-BuKw_$zyugXjKD?V(eK@{!`VKNP(RKrME-7{6a34LgYy);#aQs`<`yqn zYhLm4xIk=vMXg$9C5BL?|AHpTbsQBPA15RHLk~zo+yBV@%(I&mtc+MIabb^_b$*ty zrvNrE_BJW!#1Z7QVojUp+9ByR{5Qive9nl7jc@Nq_ZhOBs1U|;x>Q>_{c%g$@T7KqOtzn$lBrGkvORBlNI7aBrNS<)7^3;> zS3Z-~d1N&8%O{u9Jh5Qo@QXgKD4{*ybI$p{4Y`DETIMRMrx&7+BwytRmU9l20-PFf zzp73f5;SY-4mhRT!R>DM6gV^Aa!1B=9EvL+Pa*r9}5L_l3G3b8(h8b z!AFy~KQxs;0Px2GgVC^zNZe6}%quFhB3FKoS#xY$n>{{=mIr!j#G7?*{m0BWZ=)dYAJLSUGB4o2O-f^cZ9 z=w%iq#l45{-Y+iAQD~cVBVnv!vzx;x;=Dg36j$E8%&nbBtGd-FdPq16PIHevAIqBr zbwj$_7iAB2EF{hnt7wLP^ljpu0XqMEbNxiyZx{NX>bBrSZadn&#(tp>wMkU-QTiR5 znVrQCLDqGtP<4gZ&o*>Wh?2E=`FMTc%mA%T(2Mix`II^HTKuYS3p`_mm&sO#oP65( z(ygv$-MH5+?yq01p$3cx<@E z6%3<1FzE*DlK&|ShPgv@ns1;Hd35{I?!1#WNJ!HL6ywfI^h|wjHmK=|jM%}9 z9nvH(FO}i|ya2$OHE$iiMRTv}h=*%=1^U#>Wez2dm5>UkmjZEAokajarf>OFDiB?W zG1Nc!%<3Ti6=UBeADly6`E?uDzw%qb+7TNZD=qMOSOnKuW$?njA63{(>RKLZKfh0x zM3`Qc?t~}^U7z#4bW*N|P-N@?C!V20PZuY^Os?vu__#N(YRr+K7VQB6YEXT}hVVIa zs+ycE`d`#0VoSCKSt60UtE)UDNETHlXW(YWBxSivcCXTW$@@jacyfSSoj-qM_Q z1=w(nLCx2>w}p(BdWZc8z)Qx0SPtMb#4m{pr8jQ8Xij0y zwlUjpS{u6#!{s_R8TDrATpnb$gr9a%H@O9jV*HDNw_gf%qZKx%s!&;BRJp_#y8f-HO@)eS9EQ z8$-wesN{AY&b&=G%g}b4t9y3af|io$D&KSstk>)IVhIKrfI2m?6(iv6Z*Y}Gta`x@ zcvk#Eogtr|!qrH1@4&y#nzLqJtNCSaWofH%p{j}5^1wM^RX6jeG%`4ku065~{qtFJ zdf1||yr!Dma+8AD$xa1t38)nJ3UWn`n}*UvgeXI8Ud%ASDKuEv3of=Xo1Fov1XTTc zdVJ?Gva=u4Uh?|?iac&FyM0jF)jj7|eOnjqVCx#*`rMUy)4cIn+i=&@M4ZX%N9L*~ z_7GtIi}+SIAqK>?d*2b_t;%3f(=IN5^5l@g;CiVCEuY76&C39~|KmF*wTy_6*FjNE z*jW9V2@2_HoCLDBZ3oKx;wdYPREs|id`wkEBegu`+Djy2U@13q(oV5HMS41&;a#Yc1z4}9(wFTW|>)N z>2;D6LsFWn{;$^bDY}ws@?~+`G0q?_$*=(Cw{L*O){p*gbH!XJ-wxu1ICCrOq284e z*uFgWec&(CN0_VgSA7oln-tg6Z93RGP@jq{z|yjn1-U;-=3UST1xISoY_|nXL?ksh zRA;84J?No*8^6Dy0UTYl`#;)1V3&t|W;bkp8uDU0%nDAElgE704b-bC#dNE#29sj$ zU8KO)E%~5WgkpLu+M+WWCDdNuPi-7QT9Op2T6f_}7FX%LWsrH_4=Fn{I!&?u9q>Bi z7bNou3VT=A9^((N;xF4)U2)ovmJny}ub0|QoBG?KA-2nzJ)4z6o8jIi*=@+NqZo)z zBtcKnR^e%?qW`7KpfIXOspfY4)!>Vs#XdjRO!FPsgsBZ_i>i68t-@-TUC%u?mao7@ z?cL>K$(`Rf4guK^FXLRcy%R4rG8HO?e|H?!CPFMxLo9EFX?9MzEm28wqe^o|&b>SU zx1|1e%iLX#tD%8i@^baiA@fQ&Tl?rcuv?%;{#F-LEtIDhvCP_(7BGrHw$ZRMNa9HH zlGyb=;PQw&CGIQP$L9_GDT>ZxvXYO{LQICqz8PSP3J&3L2GiWW? z?MXh~4ewy-s|c?jmS!>4Q}C|$lVic*9>4WOLMfz)my7%A%Ac7F>cP^NM-@1}J(7Z5 z&sCoRU%oMo%}}3RTN_RZoKp#XGlF^^eM!6Wvgdx*rN8 z-wM5gqB^`31gxjawmj5ggipjVq6{|67*4%Lp{buNB@IL>dqk_}#jN>--z%Xk6irK! z1XyMA>B(XA%H_mK#Sm~q9!S#zx*Am5;N2S_X{Oh3$aZ!3i`AfHMiFmtyIp^o)wL<_ z!6`cL%E>41D$Kz;!M*6Gl^J~8r7Lof^MkNEl+FIzbpypCQj&l9MVZ)+%ntWpbW^_} zFoh$txLS9&{ub-boPG#eiId7x8-?9N;k>;dfdH5prVz#2e&CK-!vjV^5$o(|nmaP+ z@Ii#EMynj}iv#dsUKO~6g{HMJm0Pfhp~1bC#?qF_1>HG`{0@8fE;;7jIhmGk>6VC( zqXtF>SDL{r#ivy~J@AJ7-dm!#oN;)ZwOzA`ShO^r97@@DZ10UOlbQe9>NHmq30xJI ztI$jWYl7b|`|DYDT?Ki2|A@P4ISn5>>E*PG0v&C%0JD&ZTO2WB{O!=&w5ryPH?o09 zHKQ*syPfaE_B-}2-Ih33Hlm(c*u=kX0G+xXsSpj9I|MLa`;=VSr@-WD0fF_F$tKWo z|0)vuUnL30PiBCwm?dn?oV!wQ5Pg!NWiS|G41(xp_ zfXeG21oQN80AxL=JkA}F?82KmbqBvn>3V3#TobsC7ad+xOa>%Nb+w)k=0#+&7J7#> zy3)WI8Fue-itT7V_^!OM&txA5g>$Os5{ToliLKahy z8o{a>Fo1GLPfR6vXOihDlA|GNdu6M;nVjJW-z-??5W8m^6TU-?5vS&56hlxo0;X2- zUY1~1OIVa)n($l^s|-d%Chy7%o!IAs7@%9lgBx`43t(=fp;NRPm;FtxC%C^vxw^BN ziHh3A^H%=HAde(#AISpML%T!}S-h`TLX4DYcIE*2KCDTB2@RFtmmg;~B`K+H;%0Zz zV>KwYvWh;hg!G6jFM$W?OruM46S1*uBjB3Bz_{ZCI(MXltV?52OY_`Iqs5ft2weOe zCDWx5f4)ZKrXo3TVN=^s1sM-1rWexas`qvlv|7d3-fa{2S;m-}r> z7yzUG%tIM9rolcCa%+`ZpEf&7Ri4r&w?{elg{_-LIw!lzWPqTUzA7#QISPgFK zc@;24FE50>PNIx7Q%+g@^>Z++{1&F4nyb8-q_KH2^@SaD1kf^OKze*Z#gg_sKN9*bpDIB}*FV{ekN1~&Xa zazs?R8nRU6KMl<(LAvyov1I$sqX4S{vaD2^`bJk`{X2pR_x#4_(J7Lw2TJyW$aIs8 zW;b4_2;B?60Gfss;w0AdB`lJ)|JoGz`dHDV>s1sQn^T1Hzb{)JeT-A>|5mIb-&&3@ zq4X5Qvd~mgxKrlCVu;mDs#4^uOnv6Lnps1{X|2Ofyy+B-zjFBcZ2llSEXLxNdl6aX z)cnv55_y-ndQ2S`6cul?x?)(H{5K(F7e=WMF+_d$!od*%jOG3dp3P2kfbb>z-RI?~ zkahakIpy9pCeHkW$+am%)Y{jZg@w~8UB;bF3U9jhK>@i7ZxI~vfy#AuV2+zjX;(I2 zW~)#%Cww2ayO=B&A0RESZNI>kfXZ5UEEVXYQv-O#>=x$KpjqIT4=z{b{U&<*W4OB5 zyhRrtN&S;wFQS{Pp6dDwS1fK+#PSFvg3@CQ5ugz^K%-|z_yqD1BiQ=+Il4OAIqRfS zy9*A4=~ko?5v?_UY2k6=iZMegOXONo0n3Kce=i#U z?SwhKQDo6FL<$wM%MT6noxZw&H{*tu^)1axPAaTjvw0nXFW7lc^0Ud7b(_8c)+Q>V zf663U;CaTl6mmcxPqRx8RdBzVFHdvh=Rg28m}q2~MopD;9h@IvR`kAtv!IsQta+v< z=CcN$hhCqikfz68+zCu{KRZCHkxdw^Ki!h>0-^@}LpToF;XTRao<0}A(idCEVw`|> z+)n|{+Tx&>c7tk6ScdHNA1zxj4GHBZaP^$s^)d-iFq7VB?I2+qrKYDj!Ihv(T5aA> z;queWbd%q3fYjG2n14efESw1@ z5*>rVP02uEx5oXRvAm_r+Ut}A3=10q)0`U~?r(X)s66<7@2hSKs8Dy!P1;PgaWzl| z#)tsKoTlc{QoK*z@p2au2)Lf=h_AeMw2@_v1o>c#=fl|hL>u^(K<4fDAssyIj7+QE z{~U?K^=MwI>diJ$OcIf{cLPe;vYACdE#q@@oB*CCH;z(=SuS?y{BbZ>d^40jLl4y1 zp~5lH+k<(NK#m@R@1c4`Xcg%08UbW`%*PfmVcik!)>Rq z!!TbFwMlYh-TX}7ei|-H_1=rxwKxnuD(6-ll)TvU4`k)2IG~uIU-B;$cruUzBeplX zD4yc3wBR#haU-c?%I^iQyqo?#ec`xLy1xjYYQWwP^f^QamwlvwQ^S>@*?L(3RV)M3 zOa*SXa$v6Ryugrp=tP_Abrx^e-`4~>F3&kRIa|PVLSIiXdeHz(4iPx+dFG=o`ig~R zGlF|z>o*}WF|mosv^Tu`=g+i2Znr2)TE2L=7!=GwsEQZeT$D7HnI2ZV?e%9q{FFgW z(T|@oqoyzv$h>tPpfp|Pi?1=5o{5zaIB_GXdGBs_zZC-bk2O4-3@q1Bo405_*oxhJ zY#ldfYEycV?45{)X&UQl;<^00iFo7x>q@%Gsl7^xS|(H;F~0D9bt&dbZDE!VM`9^>bw8D; zJpBU$ahkUFNH4jO*sl6t87G(wVom@+D%t`#Gh16Wp-jyB*?F_}f0AI9Ub0}iLh2^C zkjOKgAf{>V2aQ0SIv7Y>pA_rfg@GXk6=3*)1=p9DOJ3+Ai% z4?FXvH%Tb_z3VMAt4b}(1y%hme)@zUJIpc{dXOZ5#tGY~aC%P-DqH^?&3SiFsUUh& z5)I*Ktp~tWiPM3pMvrM`y`#&k3(;DAt63F?75?yB4fJe5T4q@J*DP$Fa$$DH3pMzpR>5~ zk4i|LXngHCz9nb=GYN_cmI0J(lsa&pUKPLxthC zBtZW(R1caqgML6Lb}%0{0Vm~TPqNr&3rYtN6zaU0p9Ps_c4@jHfAbA7JINZ(}E!8NSD1kgn%h8*#u&{>JNPaN?+Zb3T zF!h|F0!zWkiA!boUUxkILvj}oT^s@P8ivcg&KVKW2s?o0JNA~ZS@p~npi=g9FzfqfRO!Y$PS*Y3@AmE`<8b`F?LFwG`P$eu1aPu z)4dkdf`ZN(JiLQw*_P*`t=EK?qP1#+JNey+mB9@nZuS#(-?r}|3c~TXgQhk=pkX^EQzn_U_+^AcSFS0@OBM;R+ zpe~L>>+M)GOsvc`#S*rAWNNkh?oTskwQ5T_vT_SGW>U1sQX+I zQBy-Xz z#)vn}eg{ScNIA?fVHx?eQeI_)s-0NxX@Gt4i!sk&^5Za|yTNEzNVK@e^ z*}UI9BDTCec$=$Ki?^K&P-n!vi3dCJkdH%T#|$^>7=_ zd0f5XyA58;KrM<5PB`URF$X>9GFe(<7n(3Ofam5d0%eZ|DD~0O3h$YWN zj0onBC$;2oSbsX6#0|34BNjS}j8Ou);0+i7Qgn5tlfpw3Q;u&YxNOQxYYhdha=?Rb zvmz+*9w=>2##WbrY7D|!8B^EPlJP(~H7Gfwiu8dxzUgwVj0}yf_?Jf<`$^1j0fg(a z#uB4`f8N}Eseed$wkj{|FdL=1Mlrdzwml@isLrnCkM)9`Rslry*W_2{H~^3X;n~v2 zMx1mPv%v{cpz6F5B>uRrl9={-6I`cQLQ}>fITS@HDw0++Q+3~Z4LRIAkp%L>$^rlUzW0Fh3EGwh%k;bBW{3P$LP!V$ zLHHAo46U-za6tal!s7$PCF^sw&o4w~%55xf_Y1<(;<}-I@0Y2N2M^8N%#EVbDC%NJ zoqDn*{WRADQC?B00|@!Iu>quHpvnnlBB-l~+^67x=9j^(VkEewkcv20X%t()ddN(a zoLe#hkpQ?y4s(y4i?XKoSZkf~yD^7PnM4+he`Qdm$mDBF1u54i$>nQ@gufJ7{xY-B z9E+W8o>EcPSIZLI0owd&ESBNc+cb>xz|n zU4^!4VwmvxH(kF8fz1ObW{)7(W2GB(@7d=n&ziwYr@&i<H^3+ z^;ygYq>Bd21*O`3UR-(F0wN#)kvJfdP-9_EYux4n7c}*kfYnkO=VL3?AQ$V{e9u{E z2eHBa%14k9hByenDy|C+zG@_g-$~7<;#Ri&rBM<+H@Wih)nVg4SccSaNl%HWSsP_b z|46u^CuGp<8xLgPjFez0fM!@}BtaPqphq*Q>78-H+xGErI6_sZb5R4;D0>iNxVAi> zW=>U^&7SDYis;TBn%sfiRJVjxT&Dujecq^?WJ$e*s5vod+|h){a3Koi1q>myHIX1F zA)^H8KY6nO$c3lZ{<=t!GifRS1By+$X{3{lBaSuO^&Zt#69pib&bf6UZ-K zu~?vd4+M>6h>`mm@#eC#2vqKY_6M_25-WHmAr5@S2x&fJMzVo|xZsAb+-Fs8vcA1- z&aBgTP;yoP*5)?zDQbxY4^Nt3;|QF95+b|yym3=G`2J@R%H$cDO;6j6ALI-q8`5+C zKygT^%nb3p4#~&;4-VM`STcph`xiggWiDsylnX7@e+pKZX-;<*mHMhLYfr(fzQJ5Y zaE1kkOX;7j|Dls2XBZePRUeh*rVFjzZwW2Cn0WxIAi^6{m#X)uqyRMxk&JQz+ce1O zpjLbFDaDlMC1)6>EwP=df=B|jit4Dya1}tDH>#~&u``HSVDK5yc=8FJFK^V()VNDL z8)H#`x?E^4MnR()iN60Ac&~{2Z*7LK=kj80u5^npV_K#4|B-rD4b%GFJ_XCcD)Z$6j~^pU?n6B%t8DeE4vUcxYo6N= za6ACFP%<-7+$2p=(fRT2kyNR@7PR)}l|=6}gT^-&d#oe(g-~gH;fg%McjhzzWF8Hw z;w=epuZRH~@D0`8S$Z6z2xOdQG>bi8Fst)ZLReR9 zrfxvxRy$M{AZ4LsSfPxap^R+MEF1c}o2Gy28!;w3qHp*~BFl`qHLsTMpcM2s21!FJ z9z8o1qql3H08CTJVxH?^jHmV-K(3%nO(XY#^0UDsr3<`+C(l#A-`2!lbAkU!1T5~f zG88<8a{GYteYY{zm~d>!Cjyw~`c8CrW;~%e2B9Q`k8T>Qp4|tAtP2=g&6gn*q<86? zrJkQqf%5nJ^^6piTk6qnAnp%v(Wi2@%hEQntO6Sh5dcdBSFR=CiY4Vw{t9z%gCad> zJoNrAoWGzkDJiLH$sG(B++@TcB97xvC^odk4+wIq?c=Wm_eMhx^4gQwzMlVfeTV}u z!njqDg#_)RxVuF)anou$FSMg$wdWIn#B#QN*};@Jp#p+C%$cBI#CV|;v{!_V{eP@E zO#vX{h|TJb7+t5609iw{>QmGpiX!{n>A!Pj9j?Il0`{*T0w|}X)B)rOT%t0twW%+_ zc!>V`(%a$Fyao2K`^8@!jn#+K# z02Yhb8tf`pfWGOI|4~o@*fntkpkD%95r$4lp z10>`??w-Fik|d}TD$fgs3p0NW2Ls+KJ#Q~^u5tdYBZz*R-C&U1{y((p;~joqLr0!N z<$8gv`VxT7)~+`*H}|SXjP@b5kCQ=>$X$FS$Xx@BGhBm&Ja3Ltfqp0y-2xM~fgn4- zKpmKn2%`O0Szltw-p|aGt4&B_ifkE9=73*tj zgg#)X8B~55%*urRh2O9A+qV_XQ$2Z^V@nH*PhgIr=|+X@AQLLwtEEC7%taWneg+VMY`z+GHfG4K$g zu&QsK@T#93N_?dW^vuDS98ioOSb>8uoA6Cg~z!c;EOOm zIy!O!4DDw4)bC{$B5MBs(cGDb#k~G~d;*SgYJ-^f?fgPwOJD^pF+3r&bMxbb(Y32rTcy{nU%%cyvk(%BEQgBb zIx2O{w8nXA=s*hQbjU}k#evy}FBNMU87)Q5Vcz$liAhD1KmRBXUza^b#khi#helD` z>tG=^4|yc~4kPwqBO`#fo_dl=pC7;Bt^Pm^2nIk%+Jg2+xZ)Q@mH}*Ayu{dSMo~wE zrNOad%OMk#R^UL7mxM^tz)XyGEs@LzLd<{Q^)fy;l`$J*DJ~!MRRsx_rE=b!XH(Rtyx2~@4X!3+e;h_Y* zFGTQ08l2h2h2u+v=7_c;)i`%}*X$f*BFRKVspgb&M@I+Hi`T%9mHB1$`_ zB1y?BuWh=&eaZM8Z%RjJ4$x?O_U`rIxLQPL9?$hm>i1+L6V_4p8Yp6bAWVA>|Mt|?#y>FR^{(i27 zxP+TQVz?S7e{tf6x=-5EaH-$PFbpWv4;O9@48?IsqQF`&t%;MOe55p+>C&cpnZS zbIR>bFepf28h{8^?#4h#5XE|;qvDpLMZQF6Y4MZ9*kASa^`qFEEt%4xrEYJh zpdk+)IPkWU{qf_+EvG-O$1Gr)XX(KIIFWaW_Yw-r*LNpwLC)dxvo9nU7$0uX1~{Sy z;i*Qkd+f9{1bnwx|H1t_*QLjj+1-A7&);6DMQHOSckE(M#mC1>oE;eNNtJVd0}kNn z;l8E@a79W$MhrQUWF+JMMprK2I7up&S^;RSYiMnKe})8}My)HdhP_qi+VT@sF>0)S z--2_Krdf{4jZWFFf=M2O&258b8UTh|ot)k5d$gvmwzllCt$zQgLJ_`n7 zGjntmN+x=-w6VDMag!SksRg&E?OV$cQ^?z2RoK2ava0WFy@XtTh97?cV^m0U{9R~H z+trN}@3t%Jyuq9vLwT!wGh?jMcDo)z_ct7#8x$*HL4(}b+)0HB^dJ3lDca@bJTrRv z8p2zL!5r#)zBPM0V_+3 z#mi>jV`y;lhs5z9^HW#7?=|yk@*o8&e++cSCnhp_USKkiKU%8U`7Hg-gRHFE1iGU; z+&FLEyjsVs3rj^dtY5zZR`hbpCi;45abZl(twZV_5=1t})NrC^rXMqK>2*zr{r%_9 zZ=~6l+GIDRHS{W)W`)4_nU&Xcy@u^DG(=W&-;7M*2@J-qS5P3AD)8f-{`SXZcc~z2 zLdhV)KZK0>d(6c-s~6_vM1~t`+*zp|)Q|m|cD#I%g>Uy7pdvbpWiR|wK$tZ$HW`S5 z!2^cjqu=l;%4_ws1gyx1@^$yB;2^yo=k^FS7ZxsWN~;H+mi;Fq8h;9KboA#nnQ6!h8yg> zl97?2k~9_ZjjADtd-D1d{NS%70WRXoF?)deJ)uBtn10Q1Nd6 z6^Oi5VE(Xo|3`63ylH)bpDGT@=Jv3>xCdrJDZGr|A3hi11L`K`>e1SR#d1?OV7De7 zo40Hc4aC-644kt&!x@tTG-B1iKIive(tHIMuO)z&SucPi2)u2s{bBPS43Mv;(V}7T z{ybj(uM}B>111^v3xS2-MrhGKK0XK?@{=y@IeBue$TFqxA05EPCR5f=4#5MZ(+=V& zrm*6r%a>P7@>&c{OiYXyJo>OrMMZXm-Piac9RB^gJTGU6jhgG>rj|D`Y5;9pSKQoy zQj~3W1L$7+m?M~4+&Vo4X&nU>QC?oIc=UN(lUrYIPs)XaJSEiNtE#Gs+B>@+6=FxY z<~6-~^~$A2o!83sebI5-6slidT|Fidb@#X)=ej>HZa9?i6K<&gOR-6oqe)Ubu*k=8 z*KjjhJ@a0C|Fd$vl9IUeJ*wMUmbsUVYLok7s25Pb@~T;gU0$$b{q`9ef(G=9@31{s z*+1_9`{8K%Nikld+X5^@USDofbx;2Ix13otl~y&ZHU5bLKb{I@bMyapbcfx=}>Gh(Y-X?}FwcE}?(JX4IgvxyR8_ z5yRz$lfBOHFkD_QG5$$Xa=&0|lK3zU0Rgzj<2AAB{O@*}#Q?EA9cN&N5c8E|rbJo} z0CJwm(51lQS;AgZp#F23oI2mcNO{K)_r{PheyH_so)^c-3k}?Klm^gEre2M1{fImgA+{EXz zHSJ*MVXE(>zu6g#YAmIqvXa^zA1(m}VCg?FJ9z1)2Z+2xlyc%eZIAWol!U#gjMz+i zJM7*38DK?t!wma$-M>WYiFa_CLCZulua+60Mj>J^r4n*az-NE$=x`mXR+V$VmY+{k zVvgDXK>n+Wb8{5{IaEl5vZ&D6r%x3?Yc7Qut$^y1#5=&JJE2OGQ`|TOJUSR!>4B5J z0N7Qni7+EiQB71XV)b*@62t^1YuJGgpU)qx%pdEFLMimJN6%;1>g}wI2_8c2nXv&Q zCb8aa^O!jCA#f!9-oOPp{)+xNMWl5G(eo>u20(bxK5$s~@7rh3b6`pL4Gj*C!u&T( z)^i%NLq8a5#vm?8w=SL|%iz0C4TLiK5$cV^6{bU0jZ!VDi7=3*dZQ`uPeAn*?gN$k z@etWBkCT(nxap-9j4X%UZgi_r$4d!|h!Bpv)%?Lg?HUpop+MLFE5gF}3Q-*WTt0ea zh*;!cFV*IHY{XL7j1PC8V^QI-1P(uxo1JneEbLt$3!RkpRtN;7gD^NRNd!WycuUCs z@U@c07Cw)VOdwWRYLme41uk+8y+fJfjheW59f*vnd6E~WIjDv$@?C11{SDWb^VZFh z^((NDr_ma{fjkn$Z!*vGlsxMSr8oP{fHzIY*Eg4Vp|J20ux_cY-<~99`St;mC$uHY zsp+&tkabn0axny`%8S_yPF=fK;e>foKznJZYRZewyG8A|14;P2c6lr)gljV-Ak|ZE z*jq)5`;iwpems5vVDmX6GfGglmi5j@vxm?Y@~UTzkhodL-rl}-01oP@T1ORIJi)mD zoZ^sToq3GNR`Hf&f`HE~mXx)%bqR=FpHI__%{^|pB0wkiYZv2j8{j`<_bv~KlD`=2 zpm!szDFoQJl;M>Xb9lld>LazbIz-7$Onb}7t;{TqDpVzmuOcQcAhd-fQTig`Je=X< zrf6N;r{HNhWpd!yC_ghwI%sTchixTLhSCYCsHjj$rQ$Szb{Gps9u-EU;R!)%>VBV^ z;II)RSi=Fl6mZSDILJD)PvBhM>$%nD)#W1FsA?T(M4Swgtl>QPwftOYucsP7Tp}U1 zK-LpS5BE4L>#qyKLK$~wM%}u_O}0&X_H4DPYQ&R6iCOiU9^XD{`&JV*_ch$`Br;^t zjHxkxuQS8JL*RrIA91*eo_Y7~9m1`H=H~jIo}NiPXl(hVAD-SEdu}E@ujwO;b;!g- zvX+%(ycxW&nW5_pV?$avc0Heyg|E3`w|)HlnO?CWF=M=59iij7)CMB_7XAZ!bwXuH ztWZJL;7h9ZZ^D7Ss@U&{=}h%sfL5;n4=ed8dsE?@>J};CK(VtIn3l}SATcT8IG7gn zA*I&No2bilSe6(~pAWAx0q(S!XWa=J)J3n+DZI(IGWoj!vMgJ9S0i92vRR$z25JZ2 z(K^Z2C~5nai3np=o$JAzm{@e+csJC#C{hupwG!pSVq$=Ib7~!c&Q3d)EV_JKSDf1=aha>Ilxk`d zajB-2ehP~hFD4*4D5gS_9G8`h$sWs4@964ajZA)^2`(BI7KXS*Zh&h_-yuEf&or7S zxh_+Qq^7uU6M~b{FD{gmj{*V1r1cjG`NI%=Z!U;}rF-6lb4d1;PVcA~Y@3B<$nFv^ zGkK&24i=K6vfiyTU_>h)><#vY9lnAz<4tzJ_q0+X``SUGUqTst`4cBjnE7w#iQUcS^vmgH)*(mvVKs-+?@fvpw$wlu0k&o}HrRn33#Xsfm(xz*gc2%_ z5@KRv(=CcD*VWLm%ai$(Qrcls-D0GYm!JDK=Hf3Q;(PZ1ZSzRA1Qog1edUpO`Y?zFZD1d z`r7fw_T%G&{@C$+4nrXFY;A)XcX-S{8oi(J3eS^ch={a{Ks1&vmAr3Oxy(_VezjdX^M~&z8RH50`RzJ&q5Hw((6t{xE714-neU=1-0^pbJrW%f^e@ zO`cNny4R1x6vF~R*S(gPwL@~4MC3`vsVDJ7{IBaYzdTJ!X~V5(wmHak#rpMG^ZJ^G zdsv~bUhOH$&-Osf@7R!aZLz_Qb2u%=rBucXaK-t%^z=lDhp;ZjeG!pPcv-C%mswZ= zmrH5%AF9R$gT!TiwXtc_;w=ciT$Y_KA>1sn8j+KFg}GPLYczMgdvYiVRmJObFir4P z(2!}noI;_@v7R!wz3|XOONBx?`qN{4MKNb|CWZ3cN^3TSVx<*FK3{QQ#y{Vkdl>&` q=`02OEi!Wng>rWGx%m`I(Qf%un-{45?D8F7r|bt$C1tnO`F{iV#5U#t diff --git a/api/_images/tutorials_nihcxr_monitor_api_12_0.png b/api/_images/tutorials_nihcxr_monitor_api_12_0.png index f4dab633aba949b7e1669b8200a1ddc1dc9f6386..f5cd4037afc9553b4b26d5b1f75145994999c30e 100644 GIT binary patch literal 49591 zcmb501z40@*Z0T3z@r=$43rQ-qzw?I4U_?-2c%I!O1h*`kD?$o5(X*Vp>(N8t4Ilm zgaXnXL(jMN+~YaVd7t;YzU%Wk&!vwtbKiUKwbx$jzkX{!R#LdKla`Sdhr{i}%Un{y z;b`zU+@>qrw!q))sQPXPzn!y}zGkm#b<5uAx~&oJ>UDeT+gA3sO>eL|8rj;JT3Mdv zKg)lTm(|4H-r7z?K)~YfAKKY1R}MVR$PjXT`+{E5d;U_VyyIt-b{~55=)28c~*ic$7spN5FH%*?Kv150p-NIp~0#Q=ww6nrP#fk6P zhpTNi!&{(V=jx0^us`8&@;BINus;VjAHZ+G{@5>g8RmiV>zrQ@J@zLlg`5A6AN_Pw zg!N@dUb@5RS1w6O{ZOOlpQ&G%2@! z|4qC4ukZOi2ZGy@)nt1-$)$T9U#beQEqrftc*#vd$nyI&X2o9$LC>|R0~kA2ZS%&o z`IvL5UheG<6^W<@`#tO&d$wD2muS8`W1-@^kMERY$t~(6N_~}!SFt^OWo5Fw{NB6h z;lrz}e{QQ8ogW#^ELZ0aA-0VQMa(^2>^+7J#ZbK3#!yqeN-z0Yy~iqvSW9|j^#53n z|83=LzZ^6UkIBAS{o-@YwkL7ecjIgsk8)vuoQf)2y8P8wK(@#2X3^&PzkVhNawfKuD$H3asP5Y=hx@1zQMr0G38&&^P>avE)H$FPQwL#{;FpWt5^Fo z&5xvJuJ=#R4mN1O3>bDUC{U2>-n=b?F#0v!NyH<{eL*>ZS$wYMXu!~1vtk&#`1)cW znw%ns(Y(Hb9RelRiBT^lJBrh z=Q=L*DN0g5G2FI}S<*Pc;J49L1cxQIka{N9r_I~y+*_1IGuT7etH;%s*GTc|=?g<8 zt~X#DMZNcSIQ|hwY=NzXZ-NI$2OYgKacA|pab#nr=bE{$O(g@P*qy9f4Uv51J(*XS zoiByyxg_gkkjYik3_R*4-`<$IjHc(mai0Cfq!E~*`TADo<)#oG4emXUhw{tU#uWlM z_iSgf`*_lI)$RFz7?}}1=F0?&=TJ<};O7wYAtlY>H;41J7sN?2-ppD~e%~aB3lm+g ziPhb1vsZ=8zse6rI7KRmO@Ckt$X~vmCcZNE8aDF!LVh{2!RFM=vXtkijVI;~@7J-u z3-1)`I$5fLHr(ybuP3Vy$6jKae#*ojCimI1OHn99c6@O#C50Q`)T}6(9?GXZVISTz z*;COY^7;gEBesr`)){45!>1d9=PUQy?h=s^>Gcv3*B4}L^v3SAF%`NCK(h{}S!IN2{f~HFXj4DDR3;)fd zrwMG(Y<+dftnt+Y@V&FX4Nl)o6Nm3^W&YA(9F>0W-o~ph&s??4cdd>Z92_(sYtLqs z^eBP3!*fQ&`S{S5t}l<8wIl^C&kesOk*(kCi^on8)YOJP zo^EI%a>%t5*!02cG%JW+z4}71(KyOIpMIgG7l^g43R9XZllneRkzyz4a_-gV~2 zhi&fUHImEJyRBCfTb^IzO~@=?*MeyXX&CGrZs6wOY0c0Th2b3NYSSrq+lHBiS5X!k zutSS-!f9LP-@eqqtMBacR0Z8Z{AnEN_k#VA#Ve@BOYrN1E|CrAgj;V&7TY z!`1e*>-7O-J>L3L5jk?0XAG=N%Qa_U6xRy1up)QoF))gT^2l!JKb+smhxfT0`%rGG z$79uLrms9!{zGEtCK!{{zFA&<{?YP`7dcI)g&OH9DFmL21e_8X&c>OU8Fb3wRZblE zIK;Ex?rz^%_!8J%PvKwsZH*@8Ur-;Le)!5d&5m`_^?H>eUC~YFaR%z=&);P??W^)5 zevmP156G9Osju&xo;;>X9d_tULzF;|uRxtmF-LXBbf_!dHuKuMkT{&JzmcZd_kwKj zuyOVxpVsg@U-QaY=8MK=vaapMCfx7{X)DX|$rtAA`0OJW=?|TdnrKZOD4&#AA}?z^ z*t%1tax}Bv^jnKH7p_GztUiRH;_#`hebR?w6{@Ad|kYkT*zJmfkDlw82r=z^`ARBKE2>l(c%V6Uhkv3n8Ga( z);C|b^39y~yN!3Y0uGl$Lw&*BJuK_2h~yjE2X z9IoTHd7Kx^u)ZFXHewbp;;3f-^HS|#=lpbN{D|vhNLNYWck?!GvD??ya^Vq1)JN>- z*YzwFs}HOH+@KLxa81E?U-{zc&k`$1X74th;}3K5TuXHu7;s>r1*5=XMXx^w*QzDy zpNVP^=_Af6CpRnhj7ME{7*820up!1N*<|bRsJGyc!dpGTjP}&CT+4_H72a~hpZoQa z?vU4sM&pfkACAc@&1jSp8GO0QH3YbrGksxlbM{f^D#c#w$B~Qu-*Tjf@6)Lpj;L`R z_&z&mQ%uM;xI1=lW1&WdTK8Yub9>NhVR5O~9}ER+j?Vh-1O?V;8T{jL$MJ>b!thW& z!div)!lrU^X^EnwuJ&^r&QP4Xf>M#f-AYrxUUJ|Y8)HMpI$l>bJQo|~t)$(-fsav+ zHB8sl?i<{Ui#~##pI(35bSFhzke1H5t^K%X^>X&R`y3kMtMh!PEMBNwIebLJD1OG3 z6xuYb<*WxoIY=GKo@!;258Ddc(p8HHJkqkVajUD}Ts_M53BLR5w{IEHEYo>6nvq&M zxCO^5N8JZorUkCC_VkeXt49fOahDvucjbEQT8X}|CTa_b?}>8TWRSI zALj{Dn)z!l{h`yBXYPzF1i!w;<=%VO)}lMj8rG?=Wq1jPt5KtF=nWU1a@LpH#*Zaj zW#Hm@+8l@PiV{5B?cu4CsnM;WPw34k9$62EXRu<=IPsB`C|OIMs<74Jm-g`ufwRX& z)M+^>mcDR73$J3mY+u;pn%Vt%Cr;{jh;m;?-y``8GNe11da^nm&ZWX1VDJ88@dUzr zH$?7u?3D~;*|OIp;s^v;CWqixdymO@c&<5J3r&IWp|r=t)^pbHeZ|98Pw;75u&MPr z@@_OU%y`MRV`<4JIJC~Rqv@J&bKK*UeY}BvwzZ^>r)R{cyt4Pb`GS8VF8VXoM8uJMDakD3=KNC$naIjQ!qau{=9CaLc6J(O7n$zz z)k^E#@EBj}V;&EF5@sk_x`kJ<@0a0lT@ciHV_wTFj$9>?p7ET@*CL09zBpWxC^olB zbZL`is!2&Q>LTfvNE1FgnRyFOtz;Sojb>_$OjQh|q<#1BY_k7G84BBL@}Yz1G-TWe z=H7C=5W-rDxy!}h+t^Gf|2V19x{0m^*?XS+yF->IbT{LqBB=XH$+;QMqx+S1$4J6Lfzv+bC5wVY~8 zA<+6U@!);*9YXeK=v*&ITKKS)PW|VT(}o;RX-T7;1j2I#SokXHNX~HV>72Z%MTl4P z-sPk4f_-T%A=NCvDA{E~r(&&euapNpX16qYmXhB@53u1OR*Q4}8#X~&t=U`MO#l;`YNYQS5yf;K_;;d$4()&_Z zxyOGEv*U0JwA7KSQLVl^ZSMS5E-fA2fq~~4DXz=`Df{??yOM&$qC7K7@K5Dob7g5z z-|OKNywrsv`d=_)H7j&tdIV-`Ph&W;@qk!v97xiQ*~S%cJ1Y!S06jqiPO zkQg`gXt(Ubm}x=MI)^7ov=Sou|Frt{)0ov~g{4iFYb0eUfz^LFXng#P;iLY#Pvy6y zEep;kSI~u}zPhmFzAQ8R293p0+j2c$7@2)baNlu3v*7PNZn5_Dp+3REGBh*^sUN3T z2n0QT&OZYOOG#)Inx%2Lu``%=Y~Qgi?c4AA>)<)&fL9zGIRO&i?1?rDN4%3LX5Twe zJm5UQP=P+dO#Q^gi2w-|J^W*Kt~1urd-m%Z796)@&nUPsy@Nl{sFQX-L+$c}D1?K5 z2Py4)sa~F0V`j0Bf#T)mHH?BsI;}K{9Lx*PSgM)4#nsx#!(N$sopXyl;>H)`CtGyp1KAz{na+P$=`_Ul#x%9Zt)9+x@*J!Oz31{r?DzHKQU0h6Ip_}=1Jn`7eaCm9y}Q7 zDKGaIn~~{)M6j;DzWM!w9iB6b{JKR$U$w1TA%Ea6?W0R*(`z&}lb-SPWg>m~2scMYNt3nmFJC&Qln=ubt;{%Iwa&WalPVUvT;MCs5q(NadlrxTH5#F9q|29yJXnu z`FVp0)U6$UeC;F6!Nt3qW7k=PYdNwtp%n7gmQtzPL*Y zsp<(&a~?LoNk)g@P0bm}`CvCXaYK>qI4^S0^ifmYYp-wlUG`&)?;)>~Xg6;xUb9n8 zkXM$LuJq4@EWG79M4&h?`Ci?eOYe#&!DUnjXqXB2Jbp+Pm><>WS*X}L@GwC>Xw+BW z;}%$a{Zk(779eYUx6D6tyFIJ9@6egsic@_ z6U6F1Ws!*W+Njx;HOM#{74+eWI7WW+HJ1kucR|e4Ag(c;niTa zw)+7@V|%uv{V*0deKfgYP<8NgM6O{iktqOVN)EZuq)|N&Vn33^=p+`U>O=WDryan! zhf`8BnsSWl`yGqTc_>qsmt*n3`;Q=VnDNehjW=grGHhLnmi69lx_MJ4qk8zfY_ z`)d>6_-uc7Q^dgO36rS0`^rMAO*K=Z{@RE}QJ=r4nyzm8`r3*d5fbKD^>nTAf^rkK zpfA-do+W)zZ5g_$M)jdwhj)$kLd5IgQ6^$Pl+}FhLQEhe^2?F|C@-tIdRKHZm^2VJ zuz4f+m>P*8)@HnBgJr91tKF~T<%%pc`vlZyo}3OI>u9!z7^dSSQO~i%2qkBAb#)*r zxFFHRWue2^$?aM52;@h$Yh>RWZRy&HHv_~St4XJgKev2*e%fIqIdPz#qu?) zW*0hX*R6M7wqLa7XgF7Gty~c_)}fm1u||JfKm(#%!eQ4m2(_;oZ@}4xg9dX`giV{E zuATy!da8Q*&vm3UN^QDMP)lk|POJk%-jf)Wk+L!wMoTMiEX14rj8;KXcLF9cMU|5P zO4bL91{^CV`Uc%%$CRX`6GfRutKt-WI=cI;|ApAgXg4&iOlHcMa&0oz-M0CS#q^DH zcfG)@x$iVzMGJ9`8eVzy>X%$AD_@oN?@TwrKOTz>I1|xg(BXaf)rhub5IfC8kz8b( z-f5l9xEdqu3}CHYtL3cY;SXi6+_FpU=PTbo_6xZ^=E+oBEtxg!$a}wOYu)m?E7+CS z;Yuw04tjK9)0P^a%HY-3O!`Bj>N74^HH6$C@e-X>`^V2d4)}z_9e7Lm28sf+D!Whma(r;TJB8MlOXm=P=6k$W}MOq zF8*2Zkjv(qX$}$pU}YgBB^8B9w%aIYve)-ud2Wc3bUO36<~_-YLveUwk5v)3lV)fN zC}-f;Z8P=KztjX#rWe!gq!eho@5CZ+vfZ13i$4@1(BZi7K|%9`6q+6V*FsknCAfMj z=w3o}(Z3Bl#?DpGzTZLH?Viuhb;_ee#W>QmV4I|Dgj>#y*vok0g{Q}A=Lf^zJOK74nH1a$+i+i$u%O*!D$R%Xfv=BYe6wu0;|o{`yk-6{@7TkdtHNCFLov4Qu&Oj3o9s@~Eh=72mwljBmfV5aXS)jMCk^q7#9G^KIyOWMsq^WoPJ0vto#_L&`s~ z#Wq(Sn^uBPlv5;cr}~{xLscwu@dlG`6_`6Cb#_>Oqr8#k+E^)iRK$N1`1 z=9!$1yT9FFYtbJ4^l#dcZ z!s@~4yZ)eA8vHB-QMCyxX7_?;yAvZ-3}AahP~BfE8*%5=FnbGeF1wmr3o?MZ;&qoo z$;G!2j{Z*6zeE?5t!u?J#)58AFQD;CL*VuKB!}#niy>n3YMPJ#dJh3yYiq(&(A6*> zAypA1&#iOqIAriDSD2Hjc2Ar8X+Wj5#5o7#KbZXom;Fw`Yt`6N2lAwMZg{3-B_mu( zCWyG_T)Os4g$qnJ3tbunQjb7&PCt1zYQVLBH*yoam^2!FeyU{Z-aQCm@jg!ufxc+W z$bUgsF2dI5#?dRX6wA*w3;Dr@lgh)^K5#zG?+^pCh#HYza`15F)?LAH!ZD0ov>#E6 z7jYmGbknUf^;Axo!m0#5z-G%(7}jb?2}O1wx=H)`#w*p>GmQ9F$EG~kG4NN#jN5YZ zOo9TM;F=5ANOH7Lilu+&JTiQ6kQaBIjQGptR=#C=O2=z37Wka|f+hr_UbibS-(_Cd z<9y}aA**0^Y44q?GvRiB?0*;Be{S&j*TevJF2UQ+(smv~QFsoP<#?qT64Z{v{PKjT zywVn~^rj2@ZrQAP;<#<|Raq9>M>;*8nbuJfL<{6447Xzj*->p1EbN%}JyoOLvhhMt z&Z%=KqBhVvkz|2{lg<6^gG@BHKB7djW)F2B{^S_%e$N^FIZM*QN}%JIiOBYY?%GC3Tvhzna{}!joz<})J zAk|J59$jW&JRt>Xe7{XK*BQ(3{`nUf7ZSiB!znVXp5Fg0>wL`JO&rxHb!l)l2Gqw~ zhLBw>%7fcA%AKB%=jrRovV^CBG2xf})F3&i9uJ+=Clfup#gL`^fmsSG&z&d_t-CW& zv9g~rj8_n;z5VAYy&_dkSWphUb8|xN+7EB!ik|ymF0#rl9XxZAGBK{5LF0ILY8Z^f zw;eK`NL!z@OBa4fxW~zS0I$Nj33Ej?w`=1-$+9J=b31(4jq*sEjR~oNd^-GuE~h9E zcm~#&%^zG2Kjm37xLea--Z*+$hInBwXWe|O#;yA>!4I%; zT+RW*1^dr0lX6P`lVfGMY(@b_xK-qlYI!`3xDRcD>v&Px>JV-rjbFbfT zvgqX2Qei{BK5)E5kHDwJ&UrX=@Tp?3hR$ttlpdkJR`^?SQVl87vvzug0rE)jy$Mgh zNVQvhOB$Id29t-Q%X#7)GI@FGaUEL#!70*?z~pxkC?+2hgO7C0xB+KR(}K3h?REoj z^#)ie)$7T1m|4u?f3~PHu$;VLTYS|xW`obiXE7l1)X%SxXi4Kd9eI#OdYz}v@BO~x zR%6!+q2l1^yU!;yw2tfe3Ec+|xev7DRr(GruFaIKR3S7q_^#QQtO^F-rpH6N!g3H&pB7Hc zJzOsMnxMy?nFfpS)!66Hj0*VHQAU~Y=zw1 z!6HAmNgq=T-MFEdP~*TKmNHSS2#1la=X|UGZWi2^DQt%%IlX&n6-r9a@Bixp%q&y{ zs_gf$;%yf?6$!J0_1U~jzf?Ja|YKW?r!+o=!|D=;sZt!)J79Rs}OPkT7-Oh_l4{wRcS_ zAT@Z2e4y-*XuZw9K8H+3k%RkYQK@1js{#^!$$HD?%LJz$K0NJr&vG&HqBlBubTRQu zY4AIWq`Mrzp?ryv1v~%2W~U?KGZF+_E)|_L2n0a8T9AcW8$;nR6sD%~I{Vj2 z)0dx}<=hWfFFD=f9Z zhBU%~wK8EYvOS4GA@*{L)*BgQ_mX5T^6C;=&0K11n?55k`()#e{j$VYPdRxUW@;b$ zdVLF-Xp(MZvE&GH8qc+LUxi}{Cv}x-mO>d;Wy&V~GGO?i?@xAhTJKg8hLRPJa}z%2 zr_BIq_^5O&dV&yjT^!?7Xc-u43Cb}oKfHNBE1};80olmI`goLpb;UjYo~q6zc>$zaWW?cKl5?h24Wsz=c$6T*Kr!1(p^jus)@2@u# zq}FC!C^8#8aj-9dftTkr99r!cF?YA1)!Xelureq)aHkZhQVzUg8>>$*AsTs8ah>Q60Qc?KoKRf&GO`x8mtUWHQpV87A5kb1cwy>B5%9paIg@ zy~k=w%|gc37F6Tjs44VSC8TYx0ZJ9>xGb0fikHWfNub9TZ1`P!eYucSE^{eaA%dPsQg3DnjQn|Rj+(e@9&jvS zE1gyhjDj+@hnopFFI`N-&(faBD7+jQAVKUZ$Y$fn(UogZ-EVtg=Dilk#?rBu9L;my_F}jtkyxEN}#DpG%b;ACq&cP-3kG;`-i1 z%q$l*Gf*M>oC+v#b1IdPDWPyUP@H1@KOa-9e}n_GeliwNyv>NGSU;S%vP_Q8*i;i_ z0Jh?0EiTYWDI$Axtc)EcAp!o7F&wH>`q+z&sZ4#<9&n$%dd}I|Cp5T*;`#$a!hd}t zxc9gd*~vEpYF8Hf&@_`DQ=IZ!#hH>BpN;ul$M8P>2V)Hbn9)!|#n$X0S_ol(Q0*UL zK5vHN2^MS{FS307^@)~_nYZ31c&PDW_A9p9N_`fu7myNh0Y`wWf1*`RHXd17u=LU4 z@N;%8c^29<8#gd{u1+Jk#?g7~3X6N3FMp8?$g&|unn+?=AAC04oR}&X#$VUa(B`o+ zo;ceesSg^aCeu2?)TBbK4?np4BoKtN_|7-VV0E8HKxrI^o5P=kds^VRnTDs5PdA9Ewzjr9EJ1JpQC@?jRiqo7G>0=a zAZLOo#ZqLuiPBh}1r%v3#qL5FXQOsg&5{ZFtjWSy2az4B-5{p; z9XJW$i{g4m6pT9^^yl=(*em2Q8z9V@(1-y=!Xxm>(%~NkN+tHPpW`S33BBZh>E+4$ zxy%KI$a9O>#)0xq?6eTsVG=m=aHnc-;}s)e(^o!i`eBqP9T(mGKSZdIxW|_+OqQ)= z6gf?n^_>i>kDur&9`zIMPRgBCQ&W>6z7RCcslWMix&UAir)7i}Fg~&9M8YmSa0&F# zGiLOgxRkuv^1D;)iydt(x>9~0i(cU&(?^FviEQvx`Y&Y^DIMb9A&pwFb~*<^!u}Xg2<_U%=0LF2(=Lr99*lP$bZau~rX0B|!!7 znNU4Q1^sDHSn#72S=TG(et5HtG+tp@>*!06fBwqH$A?MZ{A*fr;syB5Xv-yLceQoN zHN1a)JOuqs)l9}B+iSKD9}Q6Je|U%;|4!Q~WMw=b{HK&9$lh-N#<4B#`Uc;t5Mb4w zbv=xw?hWTdI+hIMNaxD}kpAvE+v^o2{&kX+svLV+)E&9?j?cL_9zZf6i}|SGc-TDO z_khmBftE>@3!xY3U9c9QdXLO5wEz^zw-lhb^4daME|gapq*KzeGgEcr)Q^h!K}oVE zpj7288M?*aYG~lwbL4pQpzIa&NCl9up~Y!pgK-gU4Idok=j;sgO^%TAd$<8+3to!K z{sXsDwkjZwi0TrEpYz=>@Rc*l?bVTs50i?DwANNgVeIq6%~wGF?yzwK?G{AhH@7=Z z0Z5dtTdWQOa&uh>kJI7Px7$yM&waV*viQS0Bq}NslzH>D<$2&_=GRxyh!gsCUDL%_ z+*pgFrBG^1p4Wtmvv+ercFI0JA}U0Gx0~V9f&3L`>oah+V_H)2Q>3_dez!|1m_z1G z|8tjtiVX9YT)%@?$+zr6z9A$mOpaIvkW^I3sks(a#a4jLj^lH9M>!i_n>4b)J6Pqv z0HY)*DMb@f)u+F@!iyL(P4({>s65LC1XRO+VUo!}?s)`|_#gp{qi#G^8Hs17q zy!gD)ptDYrq~qLk=i>0fIAOYuM}^g(h!!^@pYSA3bJ`KT0xtJ>h>FP<*21zCh2)EL z1b{uZsIaP19kkz}`n7>Ds)M%ONI9YcZ{7n>J9)?o>d6dzTtRldcOl?e-I^%9gV692 z!V}5mq!L9j$Te|{5|opZ)%%W~JK^s0(-4?Lbh0{b1qQpwRXfqez$A7J>VTr^8A9eD zSx8l2L1zCp^ZI>24H1nxW#@)st|*8dwV%cEi z)4q9b5bCgbZr|zHnU_+w=7?88!OK!xIpxi;U|!G~3R@vgsGi*3`%X5}vkdCVuIx6A z(muM5&v~nr?@SqJz7z&2#cK$TIiya-peB`bD`PiBw!iJ(_8_k(s%12Ur(}3%o z@)CJ!D^Nphs)^iP@xCxOLV@e$WL2uCunb!1azdV>0?XV5r7}Wz7+#z>Po$r0zVf)9 z9|EoDGat78q4e|PX^`SNdmQyOk+{XUnKE0^F^{VuofO=Iaw8~A2f9hX{F>dzir;)% zHKmpjp!!;Ss^F4nsBiUD*y4rQWVrx!qw#6MAeDT>tNaML)-i{}ot@3l{saSu^|D3`iC?PNGNTVjp?P8leu$ge-pe;x1(h z-Xy3?6U|@PMTts~(O2#ll}Ow9yO8a*h1I&#Vy0}pDBM5^$&D7Bkn||gg|Cq`=1WPk z#8o;;UdZrngU#n)QEA|SSY~NLZ+bqY7LXn+756~?tQ18oU-El(e+vlhH>+yqKM6w= z!@7dSSDGKc6%l@%zYjHzJ;ssA?a}9nzF|vJ8ISc`(^beMPg{%51nbFe6>cL~lN{R2 zNHBV@+mH|S%ibN-E9X&9|!$VGN1 z)sn_u14aSc#E8W?4oqcB$N0D8Wt2PLEwmeOo|c9eW;OGeY1#G>S0pZ z_?dW!m(ccJnSTnvDj|2?~TFx&5%nr<95=Zk5hJ=>xzvg+1Vdl1XSYBoBz>2fyA4CEXVQbBoz?>_L3h8qA-RHNE_`P$X88CztK zLD>BMG3Y*Vj%K2iiu74_L8Z2aJ9)2y(ww)p!(TqW16tYd(J(L)f%U#7^mqum6|i%8 z{CMC4kcwt#$8nq{=NXR@Vl|5Z&puTT5T?Z-y2G8qc#pv3CesI7=|as%)#K?Tt_3Bl z#v6RGXYjh+@0bdxVFwM3ZKh6g2}=eq4emBp#4${Io2EHaw(ug{z@wc#*EHtRQe(%{`Z02t zk87c=dyqQpn-F~|DF=bp`%}1F`Sz4SZKa$OF88PiBKnxQ+5pv`RD25#rPAEod(32!OH!g zwrudajx9R4u&KKL;dmc?w`?R#e__?s&I3<|yNL}%UWpJt z_4aPgp6wjPjsz;+L=$~C^|!Up-g=N(rUfY*9%q21xq*Mve78Q)12X|2I+#iSy?^*7 zI50&g1;MZ`WA5SM()!|+B^KvP5DFr?i9Di#J`p&le1!`TNOrEXHy?hVEHwrfG{QnT zs0{)~>jfA<-~k8UD)*Qt1Jrlc{gu8x!9(4;a2#3plr`m9z?VepVQEpqhdu;1>87_d zUf~hBey@M_dB(;-Ul1Ef-8`=4YyEn~>OZbm$iteKVkMG4YN7t)94ZhN5rv8us0huu zq2@Y;VEu97H^J(=ADxFTSoz{W@BiReg`p;(0_9X`&jK15lM%H-^)yr_n7>cS?UIZE zj02{M9}q3;-$WlR&g0LQC(hUEugR+OCP4fYM`8L}&S3|YM0_(X-9fgtP(CDmu~k;8 z=taV|T_k_EB=B8BQQt%ePl)jKdyr@)*5r|@OxTj$R_AaGs2N|P(Fu0j`?OYY$Md})ap}0XI z`T*>?cOJ+x)v4vttFR_ipl{@v=evzd>kGm_Hh~t9BWiyFzOeWc;0lBu$CvC}Cyf2Y z1WFBIC}xBv&lF-viX zFVaHDc4ePzr1iZUH>+fr17L>Rd0PKLSf^Sw4n@DGrsuStMC3Gi@ z>Yps&q%1Jy(Cqnt+dM9pQ^F*0Pgik0l@m%ig}wzlMOqS|KJ)&9CV>jEa>{y?!$^|E zAwwy&GlH`SQDswE*AskyQ-EH8^!?a^A$|W?y;Qp03qj@9_YdGWT7qn=Y%4S6WwArI zWzXbn1J7Awe+X-?-%~LTN8#~^!pMic48W=o>HkJq-*#h?yxHCP@qF5~snF&{n*GPS z%gYTlAErV=Sb0oAEk|xYKz)dI{%Hd)h05o7y^u|0U_NyzgHJmc)>=AIA!KF-v?Hmm zf1|8VkD*|ol=@yuz5b&8?gI?x?s~Ds$LDnBgK&hKuQCOwh4lR>o>puzy2NwI7uhy- zr|i75zGg*ZRi+7b_j4+>k>V((T$6*wAD^8ESi$fQbD4LEfS=DY#tgsIkZSl%rW~Ko zUPR#beu3-_{RuVmZ9EQ(KmKL-#eN#rVEAvlkyPSGTzP2~41f(}Y01%V?HO>-`beoL zumRR&vNW-Gr|>fvOBc43V>IMf(lcxGnZUb&K4<7OWB}IpvXO7FYVdHxJ7~nm(4&33M^+Uz5h`D`KI|d%Bq3fa1@rvtP=mWdxxRu-!*sKsVEG1 z`xndVv4^sOr*_;E?mph&I$29a*Xl!IW?0S7UVWK@^((9@O7dYas}~tdGFJbXlq4tj z(y^S~16pSCL>HRj1$=}(5jhRw1=WO_T-$hLT^QAowd3pZJT0o%AoAg-hCZKW=nrmO zjRJyM$G&Sq?H9$sY}a9B9kIB>!^eULL}An=0%tlXN|?8=(F2xsKOga5EbH4{*mNmw z`|g}rB2W$hhY|#76n-1WI@*!0mF)8QFeH9=xAwdLI*5#z2^+gUg=9rVJw&oby63?= zo17(IM{se6;P0d8WA_&#HWoCQU-d+6uln8OA?$5!=1_CT79 z=ks(G5Ky|&EBvX%uLII35(8*G&~*vL>$ccwVjBuPXt40DClCY=gvjbRBO|KO zod(S0?6@GcL5G5w^arLL#1DRa9t+_l_n+H_7W)F)w5>{W>u*Xf4;|G7wAKuiOz7TY za{8`}I!=Iy5wRsXyC>FPntG&26{AbCfDu>cd<7##oNBW z4$T<@Z_H3uXB+u%4ith8Sk7~7JeQk5*-OsKQUVdIEeIeP)Jy5??5tH_{X>ztCthxU z7pT%jt26ZjJ(aCE*Ja8x&X$mu!|tIPqmTTv=oTxFn{en%#kOR6rne(l;Y)w5t^4!? zn7BgLzAH_a*kTX^+Ewh-GySZ7Kn390`Km)!Eu(hOD>yvC^vsrh^l0ty6RkzM) zTV`h4V7P>P5iKpPqZ@RgyJUW*gE_ef#)rC&-rzy4Ldp{5_`uzcYR3p)+H1iw}1ma$Jg$cbE@{1|dI2p>Gs2xZ@q-F9F(x zquZ^3XdH!tz$rN*RE)o7Mgef+R*>c}3MrdO7O=JROKv0I3txxwYUcEv?92n+b&tdN zH=&!6d*SV#*QX>YQR#NmM6NUTN&Sv5KSPD-VU3?Kw|o0_TOf7Ht@J4|VDtu1bk&Ge z{!FO|g`WOdx!nI$QP8mFPlAREs0IQg5-e%U3 zW29ARJ76iv3D0HRMr{j8Q+6S*Ax0a>Pbi%_YOqFAc^=IowRgkK;8{$(#1b|+RvU%s zLWAm=nbiGn7{x))t>;Dy8{hm(QMHT-G`iV+|2(n)e)uv}Y zrvfRC+RR*Yh{*J%W=$O9pY=8%30%rULMJpU0;OBIhOpC9fh$iHTauvhF8dj%CtQ#q z0{Vj{ZYK=vEp92wMRvhsCHbeHaKE7CZBQC^{=0Bc**Okh<0ZcD@p14}Y1iay`E`L5 z4ZTZ`%Xw~;y!=@-M4}f*1@a${mf>2k3kU>doGUA5+!mgX9lJ_j`it@0rxz$2ZBhGg zQdDXa<;3&aQcdcAN-H+yb+}%|u#P^y$WaI)sw9r#n*jtkYKXy3YxB0{gsdVFKm>~v6Lb`v6c{mQa)RP;iYKY0sNLHQaCqY!KA3)$C+ye40@Cy zenKO`h`AawX#5E!Rqh8Shk{`*8bA>2<#LO~+A9S$&Cq~|Pnz_Eyppw(avHM&G3TNE z?xiL1A7X9;P96`Z_zm|JK>sSd>$S?eAsYiG2V4h(5wT| zlu}d9!7}=s0N{r{9w^kv3@s(E`viy7B7TSlcY^QFFL_YiLlJ9PDo~4%NKh#|LniWl zx;k=;s_pj)z#Ych8zC-az1R*d>LWnE032O#5rgJf4`BmIEs$JObA~c1@y4bt$3b<5 zFc0_q7zGq{&7eYa6i`&^AtjHHT6lDc9x-#g35H?(K7NNd5kLf=sR9XWFhVxpjHB)0 zPFl!V&-p{za}XnlG>>M!QHxZR3@L4pKqM3e6UDKrLjNx+R9fb{36!vsOPtYAPGIXu zGpVY`r3647WNHW@Qb0LYjrA}TvH74ca^ULAW6&Xt;*eyD4F^u^q-yX8y1aq&duc#c z#~}oSbg8e8b{jIcf%9X0x z{_*+I$sGbUh?(OGa<4gpw(rirApT0ZMKOB*;K9N{(Bo=0Q$oX<;}cHZ%2TLH*m%7n zSZwexoOxakk2!xn=QBUShwro+&$)gdyifubf!(|o5`vtHY<%$0*Q?V%Dmd~x?e_uH z>?0qQF?Ynfh62qEAEiKZSU)H0>9c>s(R^CRRn(6qQj)aj7}_nlSVus~WJ&DXPr@(x zH&U6oQ}_O+MDszJ$q{u#h>1z>Sj8^Yc`7qEQ!@P!y%@#j-=1wtjN-PcqsOa^jiiPY z^zT9A&qj>H50IYg7==_I_J(^f$~ffuql6n^ z5nZr!^ComOr%O2(LRjFOqrw?scm@#1*G&)`T+2|7toQlcd&6a02t+ej-C zLGeDikYAR%Ks^B0Uqqoq-Et5mTIL>)C{ZsLN^0)49461Lrp8X8q7TOm_19v>yTDPP zL_b9d6q~9RmM_Z!XAQ0~iIcMCRBCQKe}GEOQ4AhOWH;_{Cph%D+w#h-SF?nXva4ZV zC2hq%qY=4ZUky|Mc6<=jOaL9a4J}?|4upxKuJQMP$zYf$RbFd3WZrxXMDLJ+vp%G; zl-5S>%f0LhVp^Rnr6WK^HryrU zCs47dBLH<48dm**gz^mN!7YHAQXa^fNmzeMlBj=dN%qZw^%0(qPcL}@g2#*==X&fP zQgl8PBSoe7FfSZ2y|zx8Aulyh(IJV2Yj9@a#u%XF$nac37nCd^xd~4);ACFkC<(gP ze?W7f9Y2=iKMA6o)Ta+CbIPxb6(O&jfxlLlegI~gi_u280*nMybZJZ?Mu>2Uc$6SK z8rn*4fq?tkmJ2G0`nLM+f2Kq#yKUGnEr2pwo;J1{Dflfe405Pt_w7GwM=qT({GYpWdoxVfcSphVb68v0yte1L?Dp>|$cyP@FY+~Xog1*FedAbdwDF&qG|Ryq>p$q=*<*az*q;p!grR#2pkndyK)lC_HoP*fC7=aja|rd>xx_q5bo4zT-hbPTd11e6 zpzi>#0EOP4PUWg;SxPy)5V+!6UV;->VG>2oz5wo1K-`=G9cAAeOm+Yu?Ojg+q`w`9 zto}g-I)Rh)^)iw0i3-!J+4th(6X3nD-7=Q@_Iu&X+H91qn*^mo=lBdIH&3#V>7%1* zBQpKj22irHI4P%4mIehFU7M!@qfU|FKXD&XefoxmE(et8ppD^cl^>iLW5+0CA1egY z-?77pSD4_q*HcrmaluZC}$-|1-ti7vH65@vc?Ci%RPKPhJ!!b!*!e z!u;D!wyPe_WY7jJOIsmD!%#af@t>}X*Oyp4b)as65S9oL6hX7b#?eXY1feDd8mr=~ zRMXeTJYUzZ|K>$;fzJ^_H(lIQOU0z?WWi9W*qo!{Z_4C9EuZx?v`!f}s6);(u)LuC zz{dxA%yns~1ROwfb#?tqLq|LO4)LHXM9SBY!2~u!hYw=cs|SdaOM?T&WDj_bBQ^u& zH7g%a)AC+p#Y4~?2Z1mw0ghEPuGn7L9-UA_FUr)-llNdnn2MWlP zzL_8~G%SpA;}&>fCl|L5k9Lc!%{2?5=3US(MjB(in}+TEE@8UXs3Ex6sVI1J4sxqA!MrsV z0nxY|?U6Ul^h{^uiS*2pdKs;$;A$3?{Vsz*mN(?JX;=GjHr)563CViX(qNPT9^Iy- zAhBeau2YzEED_#WN<8O`6{Te7AN#?|GnK-UoR-{xOG-8|O;)+W!j}rS&j3|T>1t4` z2oiiQKVhHQctEUHP!Ac(bb=+>+V|5Qqrdmj5rm!DC>fTBdf^)=jo zL*lqE(d}EAlc0|gw#l!Cu)!!Y3MeigH3jNu4z7tZt$K1$tIVx1qwp7_W@tP!*`Yjz zPI7h1vpWOMo^z&>cy4TEAcD)OU#y1>_94a{y+?_AdA+gkIj^w;2;u-4o*y;K0aY!h#ST=L4F zNfb6~q|iAAP%K7>(9wVW9>CGH-Byy|1P3U2Jp{1-#_0;i&ooO*ea?Xk7Ui!Prm{@t z7MZnj3z@al*zbZWg5Iq7YS#OsmuqYa)!bLcW#>ka%;pvT1FpP?*}k{Gpeto{R3Cuv zO8Y%ZR{y$S%FLc}MO03dc_r-wAQOOHpI61$bzGqK&$Shv>CT=yD7j4Z=%=KCzwbZX z5P7%+E(v3d06_VS(6Td(qb29sZK$3f-5u{QuHFcD3BkRDFuuY{;CZ18#~Hy+0pLsm zQ-G?6v&2a1b9-#i8`SE*Fhf2M?R?xJ-%_K{{^+VH{>A7lv8n_oHI!+;l@y{w!Ir41 z6rCdN8%zezNDA<*$v3#WXVX>?M{KK@{o*XXz3CXGIPd3`EBWPI*5ox%us=MOg|;`e zzihQrec)coNoFf={Y&1t$4ym1FA}tT+g)N`AhO3T(kaaT zN-3L^z!S;Y)&1_PHWkuR6_g5p;6<^_l2>m(K8JxlJ1M(>x}4w+hT#6;L>>{tM{tTe zra`U=o|-XFyohr+!wrZ@xcM*D%`nI}SeN&RBKg z8;^pe^1ichYs0X8(Xqt3vmqfNa4p@J6hbPx-LLr^JgoTFSz3MPc*Ny4S$s3;JQ^@% zS_q`W21qlLdxKRC2^u^icd}jycLR@@M1XHFYs-j$tL2_dmJq?6jkL3Ch%GE}Hf&Asgdp+MGbp%>c!NYvQ z0AQ(2gxH|D&){{8G+ibN2kra(ghv7|?h0aO*tc&4UDg0y^J!)7D`xP;B5<~ua~yz? zxK=?;YKBsmJtTImcD6zI8=Q9w@;~42U?^U-g{HEpz$4&|L17X+E5wNJaT(=<>+$gL zWvhzog*}sP-wW*+;OyygXlw0Pd-30wVKgw4t0mW!y;(d8V7&e!BgfaqtvumsxYU#s zLAOO~ChNBwXt&%KfeZT_CQC_Qli-pR*1p@oO;Ote6jW}{nNZpT;Kh{sziNkAwkbft zlpd~+Kw^&6eH9ov`1JgXU^ zpkh#5(l89id@{4Ri^==Hwu}6HbkrVvG72zWh`TQM-_-M5bC@6R)aWX5P=y;`L0*po z&%FMVAqAGW<2`987WJQ?Jmzoa3KzYl32G8GbS&TLOXk&~J+<0;_ZRCH6LyQ{1V6ak z@O9q`VAC}=hs9?)oOwp5nsV|vj&-;gJjs}CWiEG;9kta`cOEp;gW@j zGI+^TK@^uQ9|$gcf$%e@9z+qG*SA0ajWnOx(Bi}B7nd06k^+}@9JOfAI!|nQZLIj< z!jY>HB80uisLLe z7r|__;Wo}VV61U)N9{ax7TEpz*vOR_o>L$CpTIb2#0eskB-QCf=##z7hFU9M^;OGJ z*fN~bAxPKke$_zR?S#W9J+s&~)aoJiHMLR3rIsTs3GOdMQh(gIRe6+mALQ6l;#VrtX^$cf& zfjL04pyz5IORmGHI+M+Z-RQ0tDDS|OeR?7Ev~#@MCU+zNE*y#8SA6GP&ns!)C~*l! zKeLgRi)7HHIquZJ*1_I>$pT zI$gWqCP)Kfu46hB{$$`XJ^i#hJ!M$&3+KQAS2GcHi|gPLik{T}!`xd(RlT+0qHF7R z>&8}4QN&tEsVD{^Wm3{5QU(Zuf^6r@BXB}BSQ>OONV z+~5Ary?5Mm&p3Y^#`yN|W3hfQ=R4ng-scTr_CkzgIf} z5pwE3_-#o@PFA0tndXpo`ZZh@$gN_-CT?8GMRY@E&x_jOj@XFKZzd^K2a!PgPVz8> zd{IR~lrEUSmdC+4kAL+_dpRl%yIwY36P|U#CK~JT#PmlVvH;*h84RAli7D?k0^*xe z$&s$5hNv;i{9H!vlrmTiku}mxJie_1Ouw;T9&4Epici#+j1xOtw82^uDrETx2g>T> zo&qD(k{GNdf`qjMRo}*5!5MhQm4xqf5)GV014hgYbCNiR@Z$QML(HIL-BEr_L&rLZ zaQ+aIT%6{pzm~IW8|H$TS3>9S2Ag}Y%wBEbT&D_3my)Xs5$~Xf_4S3a!&O5+q-j&W zB3t`bDW`-6as*siD#kgIdoMVF{#mohaX%04>X}`sC%wH{fLiZmmc|*B@Eb4(jQ2 z)qhi-RQ;?PBC9{v=%R<_4|Nd34uf*o7-VtZTxO@MVih(`ccF#qF<2%kQ-A&kv3}n= z`0TM`OQL~EkNmm6nyc!;b;9XUmz5q!u#BlP-g<{@e||oM3zmONGa123{_K8Ms?LA6 zlF%79PW=!dCLYW?!cI`lX=RJy%5M_#As7QJz6_`VU>E`;%*e(Pq%Ycf;Vq$|A+jm0 zIuz?AIO)*hheCguo1k4w`*HfSJEFf1X&3K=ghD!tSbj~{J3 zx@4bV+5s9mkJ2+Ie%u3$PV#4TfPDGX#8BF$+5=(sKkhmVmr17C^nCj!498nSelarm zV{7$3G}!6^SdYt6~L+0kT5>*Erf)`;$WZD&~r+Y7itUq)(P+F^>S?xHzN|FayP{Kt_smJ zCC;sWDzdJFGhKRv(=D5ra0)!Dbpr;6;I*^HA2&;%g*ml)`!}Z%=!IdS2-y~^6dtkj zut*N07YCepzww>W{D3oy+9r3e*+~a@ZaMN&ocqb*{h733ym%Q1lhw6$VpqPpk-Q%8 zwKd-BNgp%%JxHc-^I}2o4T;9z54S})y|@A;4Z>2H;XX6r#UBK5jX?OAl*nHD2q*Qc z_Cu&eNCyOVe)&Xl%z!wz_%_b$VwQeDTa_U;TX%V-pS^KUMUP8mu8WJk$o@Nf6#9n&?2TH<^IVRKP8o~3vCd)HYg4(CQ?6B8!l#|~bM*yvK94MURAKkgR zgoTI3Y&U+!es;if{;nVC&8L26 zzy?Z?WoT}>Z~y4*^@Xy#bYBn;Wo6g_x%h3qfhG`tfcuoW(JO17He;N1q2iHo#Ur^( z;@AfXQ$`bESFIVTStB%NG`fI)Wne-z&F<;_S0eTeE_!b+Q~;>^zUr5hu;q^vP>KmJ zB0x&DnRC3oG^DS_klv9C601QevWt;_0Q#pflB7wCew{s5G}P<`UWh#7OH}Xtv)@t; zWG{(s#H~xrQMe|prs&Px2cYOK0@MYN0z3v>2n$m$I!-=z{%Y-)XDmV!gWCb~9)N_x zXswwztS<01=AnDexdVrzzQG$iyHrmth|oF7Py_D@Z2hxmAZU%i6Vsxa$i9R#P^fTw24ZoSKn4e%R*O zdD3`XW4MVftZQ!^2By68ABy0Pt*>vv3lylkd>z!Rjx;ysJEn5Lv<8g}gAW zPax+KO<@X`Mqr}$3Fe4T9h#Bc6g1ZYpW;li3czApffQ2PHjIJAmJNZ6(is8M<+9Ow z_c~Qjagm6#u*YV$G$I#fQy5oFGjBN#mOm{*n{C2;@4|mN#NyGQ_s9~9zJ_3Qn84Vr zZk>j5H4pzecL1|X@E{q;$L2IMO@zDXg8f8w;G2oEb4~|Ot7}n_415`R78aJ{V`=Mk zq#12{?GbEJ9PyUzB_#OOuYF;f(H0zfA2uZNy9d3^0gN`P1wQbvK1krVAD`?{D-Gk# zvbQ93qNtr9(UP42FZ9Efn?~rT6LR9=cn4`D_jJM~o4$1UH zpwVuibePwRY15d&Qwk!25YoO34QoT#VZj_m*CSQ3o&|`vtdns;LKR;MMnzurq|Ztq zipFdRU2NjFfp$2C`T6<3AaVPwetxE>!}PP~IFmEg{^3kUQxS#IKZ~}aQ!f>54qdH- zDmR<5!#ai~mc`blU#zi+b)=mV*Z!j{T6#5-R#J#GRA6wTr30)gkC%|e-6Q?~^XhK7mTl(9J%MWPnVSxWHReE$K)5-g|vh=BR z(=af$hlS-FKr8Ez^bXk`9P*G|IyP5G+>K~(zo!6wP(}COr5nt+X6q~sYF?n)!b`Yy z63RA^2Ek5MQ0p;$jNk)r7fVX^_Epx2UQpo`a{l@DZwPv}GV`M`*LGIt^ z{B~3F0qd-K8S1Jur%net0@fx3AX;OqB5sQmt=M;F&QU1g5T&I_v^yWWMpSQo+r;=e z!kXPSR0?MC4xW9RmpV|Vxp_5`>-L1^psOA+kLDMbW>Hce`nuC63MkOQ>FGWI7-B8~ zAf9z(A<-O^tbDMS@d&mtqYCyg?c_5!)DAC1rsUBC1Q@cWDxk%{zs~_rqYD5mxD-Ax5UAeHqc-$V3 zwJh9a*;&Z#lB)EjT9{S_US9FuDi1(a9w)1J{)}P?+kI$o5*_S_FW3PGt;-<&ioIY7 zU_bEDYNg^idVx8O%WisP5RCQ^AksTW7;v$Qan|wy+sVNI32vj_EKg%|{-Xfb^>i42 z97jWYghqe3BWx;gzrxd2q%cRZ=B!Ffd?;RbmTRAN0*)m@gHbx+zr@Zbgb`#@gYlZ& zrg=!z2J9%l2){#OqnF&BNC00_&+cghl}mmLZoxplE2?xnC;S)aTPt6$qwdI+TSV6(L0g{?1QfsWp{t}= zO0k@BRs)|ldKSYCikV-{I8+>aZAvdlgZ&n~Vw1Ivt#%?L*ne=Hya=VG8;lE@sezXN7x6OycZB$vfqZ|>CrxE$7gSVN3qtoX7t#%_W2D|g`9Me}VV|=5atLZ0 zWnKVXet&0C!{zHD#lZl}H=?14-Wi3*S{f_8nlvH75YF<)Q%cJjepH&=^@-q{jV|{#duskrj%=ZM93R`>v zSiE_10mfxVQ%5)5`RrFgBOu{YEnY*oQOdwy#7D14NQ_#5@cipQm^_wN@m$9@mD0I-o22Gru+>3-WqimvSLh{ml4a0SPReiIj9vw9yS$~3y!=||_W>E{ zbEzD|aQ~J8E-;l%#zoO(W#7rsHwzR0o9^6#-jCo){da>1or@GZvJZ5m$%<2N7sFb< zz5W-2_W6SnT^|3N@flpCb_8fkX}!^@`798WPsyMZ1Rjs{0)C(~k8N%T(2HlRJ)+q3 zn=0w`mJ7W@^y7z(6BG1t76Tu~%4N~J0+|=0lTd+*bhQFk|K}rs^Z0YC1onQbqVGqE zv~73XhyB%3G}5PmVBFoy&xE`;p&}hY*%u8L%^+5O7o+ts$fd0@y+2i2jEn_k!LL1x^psM&17i`#+d+0b^=udjzl9pnk6|^@4MpXk}#&QJ$c<8 zit`z_IQI zM{TuU;unG$x(_{3ots;@8i%FnMB7sKq&k2@@_W?BKlrCk4cx5R_TaBA7|-Jx%FQeL z9Ti<#K-5%8SWv+I9SauR6(xy+lED0jA3;pUyZ!i=yqhcs&fd^pcV5A5{WbcnqEBIb z#%R5*1=SHO70=iygY}FnxQW zHhSZ4TD|Eg$%4fht?}Xy+2MbXU-`xSh0JitYgWH0Wi0hd(2O&EdwS%!-OE()s;%63 zX;g}Qg?d~++DClo_7bmSqt&`9A6#ZlMy2}Ck->_J+x|pb^I?FzX@P(O^1S?I%y>8h z-j`DrZFPhY_+s->Wbw;dJ(^Ocw$pa$zB;+{)N?=V^_45H#E_X*N!H7DNJCh$^Jd-y zq|`c)3f}bsiM*V$rRZzAb!!o5-s4e9629CdVGxE_kD~?;Te-pbOBZE-|Eq1;rd^sl zwku$%Toe36k+wf*6Uc%61Q)NpJ)}jvb*;Y@hHlBo%YPZ}s7O0kuq@52QTOk^{}x7h z&!Y<=)5AB{7n%SB^DVJxlU- zJKn1B@b%RIC;D@+xJc7#d(=;yxc%OHL#)SY&NW)%U`{bOf4&o(OT+A4<*W-@aWV~QSK-N_pqj5n0)^G_dMISi1i)2 zQ)R3cA?6fFqbWCAD=RBs`68=)`0zE`?Ajg_YqMh(?|LbLB_z|rnp;{(E>xw2cJCf< zY(>WqQt@{`Ga6tWYxEhm11nR8< z5Q1uV?m%sati+hYi4z|+!?6y6D#5pxxB*&C6colRp{}a`?5-#>Rg@EfBOrH3Gv??j zi%Jl^c&F9kuIQ?%qj-X#H$678G*gUpsJAQ?1zx4%oyTfxl#T86eDrA20o%E;PLu7i z5zYw-{)qMpmmE3MQcyfvpho`4-+b?{AVP+jDKMrdmDR)oBIWxQ7R0H6d zD>Fo{4QESTmwBn2(s6tYY~lUF&qai8oHR@(KS^{US3^U znYJr?SeX>V7O&Z%c>eq&)2yBY(#mJgK71GzwSVZ{nod&EL{+#F>2!kH$sTX^`h|i@ z8d7e3mjDEtUcb-C&jA!Y4cU$+s2Do{DM03v?UhFu8F)-R_^oNKPVjxUHrvkV`>p!i zf?pX{r2gcNBJC#nduqEdK;jF^Db^U3VP6ecsY?|G-t99i zVI!%qQjwwCx)|u8gVL6ovon5Bd-^O3w?GLF_)TxS(YC#5T z5iG(Zxm2*bo>#bG{PFBM_cNm_W{Ntjc(!gm93LP5N*t+(pdI6B)vAu;msz2#0X1y6 zwUTc1DB?|^Q%!rM5VDeOM>|?(^CxRGc;#bNo<4nA^x?zqw3LZ_d1&PoUy~-scrQ+Y zNUHaf0I%6kMazXyo34!?Soa>E$aX0Fm&H(AN>~0P!7w8J+YGFQ)h>T`D+=FzD7E%e zIB|q#-Wpd8xJ=9T{r~S%?In zK(ePoaV#$~-v1;&KeKbe##Clz zt`rTvwg&sy-@3^-GU@JKjOv`H>C3KWr%Xd1pXjO+M~M?qb^T1-7Z4oVG`ZF(DHVkt zkUM_#Mh&TuMLx0+w7NK9!Mg0`HRKh2G@pG8U$lKI{e9ldptzJf8oK1(ry;TEo?3>^ zFc!2;R4)=)DR~3{+C$vj+ZFzNwgP^gYsW=Sr&Obo{_jN_cE4`*z^<&|8gyT#*1J^T zLo@8$yG5G({8;1dWVI-k28O&B@vGElK`tFJMHyqdzfa-{t{rO(#0G9?mzAYHiY0$k zxcg%`liF>vVkgwFv}Eb)Mmo72zwKjPx`AP$<^drg4A|k4dvaSg2o%kvxZD+8nXry* z=bi22Bh_subF^uJqUH~oGHnHHH{{_^}K}0fNGk<}1 zV>4C{AMnlfpo3O%bRTf@=eFA$6Q|fk^$Uwt?9M(63^Ev%irY%xmyy9C7BP$HB>7k- zq>G8mly`AuHEBO5#@0fA{VV zT_sQ z(omu8Hqr-7;2`(f+ru^k#-Yl_18k1;LY>&Sy|Me4tK^Unzw z@-~(WC*J8%`XX?!d9CGby}n%kYfll_BYJ~(exe^}K@Qs!w|y`eMcQI&vXRMQOb70R z0o`?$F|5ted4RGy3_Y|&`Z>`>bYcFxGxQ$mTF1H#NHEG$upmRG`ho<3#?03U;gV3TeKWo^12+ zR35F2=ij;&B1OIw@mX=BR*trNeR9*K+SWUwwFn;G&^M_3#?)ADYKrEzJY%&lNXzP2 zc+h=qis3ud=J^RxkDJ)&or@99#)C)W=##<~xsx#K?TN=~4rw7|di%^=_R`f;Q+F$x z$X<0N2OxUrS-DNW@WXDXv=wv>Wmi+flsj!hPD10;C<|a0n3f%&uXR&5Y|@oM>5R|= zLHl>goxw~1D16m83VpS|8_R_yM4ILJXPN4hPWm0VXhe6oCERv*R+bI46&rlL$W-&> z(5TCFakszXAM|%RyZ}%zw&GxES}LcU@|(60EG$+*@u@b-uaj>Ua!99PP}~bq#}na; z484c|@!TGXjbH|i6P3ID$31cuGUh{XP=cuK$ytFe6K$!jZQLSzl!}V@9jW&h(BEj? z#01j@jE}p$gatEpyRjTM^XNv_wdhP*=Xixeaed^~i<6`F0*haZ(+!B*qA*ddH?=Pc z7cEx7TK{7T;#804xeMo5#gphkLszLkK@FR_moB4*JB^0U3t>VL)qs;Tu_@F9LXQWF z+qxjzfxErrAcypKpi8=DrlD^49wK63m~YW~>#d}3aQ^PV>hu%~u-NQa^NhgADG4V= zTMKz^c?JCYELhO>;NEr{-izHQH7hFGj2pBy|Kp@nR3A5;-l+HD#PO4Nu95i?Dv$1n zt}OB(%T{uyC1O_fgZonc!-oU+TPM^#J_Sz^H#*H^`|P~%Oltso-3`N)K0Ef^6n9B*5~x>cHK)86C3c{k<47a1HQFVxm< z#d8H|D<-DE#;BVX@4W*q9(YC|=9Cj5Ku>4`e%`gog-e86+9C@_(SRNiww+tYlr^SX zGujgX=#2roAfrrm7~e{`iPPZHE5vG(bxnNogpZIVtijy3R;6OjBgPBmV+}w9iYXV8l$(+gPrqgpz#_4tJF8UCwqCJu>Twuy-Sw=Ss zF?6lSAHV-n=(W*qauSH&6m{mvGfDcc?vIk+xDh!3_fL=fFmHRhBNofR_)-OvbIVep za3^(!RY0AAZnG$}O_{^W1`456>4cH7+~OC8zJ;qFP|1nAEb}G8S@|nz^s-pEOttsP z8Q4Co^?1nrtUmP_gOEbny~O@^N4XEycKi2p(hq6owRvv!<~NgAS$T}=Pica7dD%_6 z;ib&v!!v@Ghp&gNQ28o42H}~xK?FgDMcDBL*#HO@iKWYu?lLrwbD>eCR6)qDAZm?9 zih6%%6+}CLeto0)w^9F`m7WT=VX7M@Yr?U^foGzBV^6T2 zi`sacQtCQ)0+1Dga#44_gx5j(0UDC$<@i}m{=F<>R&jv!j7qH_J34i@_VJUakQs%L zM9sYzg-ptDydv z;pW9D)qT3xHU8F(MlIM|%4IZ7oF8%*yBeEb)t`CGvCQv%)JPD@kej`2V_mWL!9$+E zn_2Aq?HxCl-xF1q*hajG<*_Q?0Y!pmI)(WzB^Vd_iQ%wGcn8rBLKtUPUoJ1AShSFK z`_EfL?jz;?;0XwZckWl~J?>2o>FrEwhSwTbV_a1}fHcc-sax05O@q!gh&kbL}Pzz3B26)K9*?^Pol7X_=`t zyuQkinm>c-|2M6=sM#WZ^w!E$!Lakb%$JFp{xkJHn_HuE)(%Zg9)PlH05M#!kg?7y zPQp3bb&6^muswBV(CaPQvH6!gi)G>>&o=Mm;|mqc&kcR+th;#NC$V~OVEAk+{BGY` zv=KN)_o@WHkuH|Ok9%=1Mf$zsn$jC+Ens%18i@D1GC2(IrkkwIPcnq9l}9n~Df&rA zg~9ZX4FQ}?Z1lU_ZfiQ^_Uc!{+um0yw7`RxBP~|1=J3jIEhNIzdV5pKRBydO;U~48 zGkN+G1Ck4zK+C;wd8p_q?=||U98)4YZzP?3@Wip#KffoKnz3F$9qA2aqqxEVVp#mB znvaENhATY52=}5=wW_C1bB#2f`y=Rw8a_WbuW)kP(*S_PDQAT2K6CoX(BP#Pp5JTE zL+wG>Aw-zi)1o1Imb7z!@YPeT*J}bN0 z*vPy5AT~J8LmO62-t(9ol|VQA8k?iMP}w`=){#|`!0B5kqX5qIM-QnamA(fEk9`-sq6>0 zOIxHFJ-GkwXj{F7*KPNua^YmYBgJ?bdH$+fZ9kQSW+oI$OUm8~uHTS&|4iPkDDt_Y zG0Ca?kB5qEA)o(AzpdJb!O1=gk&!@7pY!Ksw))VYyM}(lKZ?zA z?VEpAD6Gvd8!8!kS9Z^AJL7W?`sWW-MTCE=e0$CIhid+?bZ zn~l_iqgR_h?>873>AJ`Gi%6nzU77SJMl=-IK>Wmb-0{E3+CHpwlaENwgxy9Hfk9!B@*AXVD;u-&!6w>tA2*; zkfNd=psvaMpY{NfM<~kM?z2;x6l88kJ=WqC*yAqLy--e#sEPflM&E={BRK#xsUx6Pzx_)$2+kR%Mt?eXN(;kmXF;4F-$( zkb&FP7lB-9=geeZHAyPkbIzy4t=VzmLc&PX^@Q4|QEaloq@;80z@WB$R0Emq|D*xWSq^m)iwrVwa6gNJ;yVp>L)|)eF zI)X8Pz}ssy<~WTsd+~LWK9TYmSq|x?>-Q-lwRj~*^77>;4O)@hk(Bo0L#LNYw#+Mu&X39iL7VCazhk6 zT$8>$^nQx}OIYalgPDqSx)O9V`c)D!DB?qs3Y6mqEXOhPeF7S*80x&~4E^vda%r;? zW?8xNK_#qkyh=g0Iqbj_HsMz2@CgMawoA2NhQgy58?Za*zoh&bG0=ltdwg`Q{4G|k z#t13O+@(p_Qppv3w$1;^YUbHEU|8ozO9 za^>{N=|8N*mfgBafelD~hK+KSIf7NWQ?x-+BRMc8QUXfk!FA+5hPv67E*G#rOtxA= zPLll1+e{aivXZjZ=KFGwENolT%f`WY&xA$(%oN2K`1i#FU(coHj&Gg2^-dC2slClK zi#WW=@x+!yb(Z`xpN*pC&-KI^djIu4m=1}U!S`ir^#b$TXw)`6hj>n(2D@#HE1VX_ z3PmcPR8jG=@mce}Og=2|;Ke(J?M5f>WXvaKkaC$g?TQbQW+x-?dc(hkXf1hZCM9FG zomc)@H94|LhWWp8XSuCruDB)X>M%km{w!w7s+>40fc1^cWx=cOg^2w~HF>E_! zmPGu4UL!X*iI@+!g?Kd^UAdyf_E@cWZjZP&k*7St_-hPJ!Hx-Xbd5DSHvi;Jfj6>C zM83@j2TmY!#pmWe=QB`(NId^XNv5q?S;?G<-b}%}ZFE7<<{&e$jE%uKDK% zGdth5v7buAsSb0uj3t{RuBOcPsjEgMccidDc_c;StrB!|TELwJY%r6^~s!XoD4V?2{H=DVg%}A(xN)jXD31a+Rcs zf|8)G+Jdk@BUN+za{|7ytIXNjoO*~!O33eL&qOLpV!<$<~9h(kax)WHkA4c9HC98=e$Zv8!~II{7i%$qvWoN zh|hm?Qd0=l;PU!ITImkWKOf1_%}7UM9#g`e)3W?RQT4S2PGAJqTCKjI*u`%Yl>nXM78NgWFRv%Y5x&KBZ>#;c!SN-#T zq=MMMtE3#v2wh-LA{{1&(ZFkV#&nah*-vpE<i)R*}I69{eDdP{9P~z?`iGm?7G#~zEBHAY;!?-7fQ*jZca)+C_RSDYy zvzlfhW;X5TmcxU^4C_F7y)XuiBd6Cfp(Rv-O-_1%ZO$mV@<*at zl^k=(QjNjf5?q!EoKKmF-|bU!H>ycNe1wf@nYwOcPPpK=?1ScX@01ew_kurMUG^+l zaH*l&BMMu!Y{5d_zRWH-)mj2`+rYI}W*%i05Af}I;c7|o$&Z#lTXBgj6rMz=!~#(I zC2?e{YU7)YlxhD&g%pwvcI_m$4}Xm0y2#CI*Mq<`c#JQRlcD`wnUIiF%wFey4Kv<< zcGoarjz;MNzZH#RztycP6LgEBDE>lxT;hS{kMZ|qZ^NQ=vgTBb1WD!X);Plk5k(=< zaaq`{C?O9Ii#bgqLBiJEH_vd{<^6>N@HEfzgDIb9luqUfhNh7S!q?+Yxj$$cYaDx5 z7Iskd=G-p6CIt<(yxq*NoU?K2A$tOKO&(DL19K~TnhCE~q_$2H9`xsAo$wLL)+Q0*+qZ8kpI=bn*uEW& zmPdk|*1Nj!<1Qn?ox{D4zj=5t{Th^Ieej@&Rpewznn_UF&=}t6diq=?p`+q4K zl%=JnralK2hcreXwCVnwn39u_?KsxyzQHuEsA67%c)Hdbkl_nwJ0MQb(8GUrrZeX& z>7F9Au82eLBvLZ1Ml9A7ihdv z;h2OOY6RAS3ckz~JLg8W}N{o>3+UfC`|s?(W6}Z_p70gK`3wU`~+_D1letf z4MhPOKW-G)ZZIM(ZDIXWVjanfka7gV$pZ(}Sy@>hjqcC2Qz(D+O5{>wjt;sG2ic#U zdQ6Zsz|P3Ll9!S3qy+>x`5;ah63rcJsvc{lzbm%fNk5%k#b{(UyN zJG&1d2;P-;s`S2)%5ubotoQ$DTFBG_mB;k!mkCj~asu{ZeslJYV$79$D>`VWxVYYY z45dD^j&yWuc4h+iGSMw>Ega_Q;Suk-@@f$rkM@sBp9LDFek-xp&1?Pl@$)MmxF^@q z(IHk)QBi>=A+=^}ghEBnb9VdnHsztnksM4@4L4kqMm~^KacF^|AwFQfb#MGK* z$CQ@C1c;gWTc=ve*HX)hoY_mF{d&PBi_0 zg@T+tSJ2CIPd!;Xo?GS7&o>Jr6TDC;O2WkM0(L0o`3oHye!H_2MebYCt~EG%QxmB%k7NelmDOFHA9OE}YJ2a% z+`)DwRr`<1ijjUHx`Xs1v2rC&zqQHlXCP@}wVmR*Tt2Fry&71dQ54yaDn};Cvq(Y|#b&PrETsEzl-GB$Ah7}Ww3sEAvjZxyVISAGfBdn2 z6MSc1Mn>xFST5YDpMKQe%P5E2&Fm1+KmwxmzNzCLJ_Tco) zFGB{L_4od|N>GnAao>&tD{^S?c0?}OZEN64AD{Ce7wtZ({HM=-wwl=?c>hR@W89(= zo45D=-%Eezs+4Ca-$7)BAH~Yj>b%z@KQR~WQWn`ARj$;I$tRu_dLs{Rn%fh2Z^rC% zZ%!#97ua@CYqULF<>yd!pG$6LHwGU7@(r_YZitPkt(*r22q**tfdy<54b z;GyZfR0IN=L%R39x2U<**WLeI7!}XifFO>7!8Qw#3F@3HLNP>1Vb=eyCbJ~4vDA#H zhk=&GJAdEx{+_Me3ArCn08SNfu52qkrL%AQ``>%sRC+5qE(ZrDK%wYYR|<_3%fbbP zt$sUS6qajJo}HX~ReTI1$njq(sRKm$TwqOcmBCt%m`~X$u}${~5JUI*LD5G38;rmX zA0MK+O~`mg$=zGi!zS9!_FJSR``DKwX|~sXQ2VDkdi(wdGGg9%=^QiS*`Eu z(}#k;Ci`eq4J)gEvI77hAl8C_z}c$ z!WZvw`W(1q{9EuA=^s^AWsiOK9~YBS#q7__QrZ#N(h)0aKKxTjn$~sS((^z2F0ubG z^;o{SaNEgDRUem`3P|&Y9}^Of;8gCZ~^Z7>OX?9sN&qOPK<^ zi-Sq?>ESb&3*%M0^9Zf&ow>%)kN-p%paI%Ud$_Ln&GiNe9{YLmTe#bMvx4>-2i`vJ zeIktE3R2>v)SoSs7&!-WxmQ=8`yErBVbNGY$O-VH*n%g$-GwgHlTLl>-9K&DxR@kO z8Un~q&`l}NvncEth|RntAi1yHsMqMDAvl$uj)WhL4G6{b#3y`MMj7O7(aiILL2>Ob0kTn(SQEjhe)0N z3@@@k7rs(f|2>{6$0cj+N(otxW_y2&zqTR00%)lJWQsgO9|F|czUc+2OqTURh{F`=xNBV%{pIlUkGC?9uNvZIM_TpcANlK zy{ND-KB0o1@&t^B-|Nge_nISt$Iyo$Y~2}+N0z45nWmpTdv>2`ouJ%(!KYt;9l~IM zy?a&6Ft~f{B$}L=*RGA_KviM)5-=jEjx{)@fEGhcTKV{KcLW_tgxwLH3t~MdP*GXA za^)|4N~Wux4bj@MX2HURj=3ep#k?agcuXEs-EQ2tU-oTk>PlE=uhPaZe=S^CeDcEVv-Ai*n z!zC`Bd-#j`%>vQVmB;LS`kREByT1&wy|FxMUp>fXZex;|*Am{oD0~|=d>hjM`Gvht zlhDIgCi4e`n!i3hm)Ue}aiG8d1FS=!!*tOa{cpCrZvM~4GPG#a7h+;!;uRvq8j81V z-Adxlz`(#&+b)=zCZpn&t#=R==ko5FXHM)=ZXgz#he*>QH(bc_e7u4kx}cp+wP zn_mJM#V~s39deyPF8AE5F=tgZmed41O${k}cHb8`!GGsS4vGeu*1O4BfV~ZRFkY=P z4QTtJnQlGDp8Y)-u~C_Z&`tT|$vad+XjX=pSyl%ntg!^$YzJC2VeJ90oO!%S0h%>X zmXoES0|8v^0>PO!Am0;izi&yk??oDM(lp)#QkslT0u36N7Y{@<%^CuWuYz8GsQ=XbG%7QON%u^NP7Ie4_so()w&ji9E4koTB;WaqR-3mCJ2rb(GugBD^_(Xe4B`! z57%4E8w*QUvWrOC^|LA6XkWCP{%Z)@!$rS;{T<@w-#Nu*p6RNqHr3oVI@i-Nw&}_P ztQGIhosZvjMaRU1SvY;44Q@YRSaLre-93E~ckbNTD?I14P^xa~y{el*8p6}Z=L?Q_ zWtxdb-@rn4I|=Zl?Rxt9=8YRaGup$4CQ^1Nh>irZJN(>&h6)n|LWJXutOe?_cGXMR z1Qk)<#&Yx6+;eG=4uy1s)9gZl&qk)@%lTe3oPBDS{z+E2=fyM=7w9PD+_!#0m8h|3dS9|2Xgd& ztmRAhy?s0I(|HvKhs@G};bE&|$BqTrg~i3isU-7FHR2Z$Qla7D$uD2NTxC{4kEb1T zcU{SF`Yy|Gje*;11e?;W=vauz?r-H#|9W9pu3!t5QHrra}1WS_*u}*tJ0D zW6NobDmP;G=P0|HF(c&vmT8?>I%#rW24`fXLP0zpO+F28mqj*{zM*&TexenIf8^7> zs|l~CH^#AvyjUUiGIxH}LSM;0Y0t8Aq2A9G_{2lS2kq9WnK(ubif(Py=iuPzD3|3^ zBdM3uZ|0Fcrx&%R0aR!N9%12clkOh~#hk-vcRc3PB;pvO8n|`@lyHQJjwYh@4ojAT zGkg@JZlo&z2m=vNICVJE-Es1i)JFQ_<;Fl-)P$O{>wI<|MXzXg>-h^O^-tZ$QFYiMJ z0sXafJ(q}xHl{#n5RnUoo|Q!^BM|*Z+S=M4ja@Mzy2{$x_d!Y(gZ?0s-nxv~FtgHd zQKBA&mk`SVUEYb)=o)oZfu10Bw7?BTZB_j z?jUOY>3+Ayu~u z2dpACGIBFUpZ7ga_vqZ|*VhNkL0qPF*CQ|q$K&rgk|%~5x8dyb<%~C9Fxw!wnq|Ol z3I%)OEI@3z_U%&zBTN}#e(ZL{zoa(`Tlr!6A!I2q;1M=rdAmuA(0-6$K6vneB3`sLgrcg(M_R~FqF6h0?jz{-A z>%Ra@v)|}*{a*YN3T`|M4*Gjz@6@7762b@gDvEK1M=vD#z(dCR-d$v7~>DqyOek+XcB zik#iWpf)xcehh+wS(GHxnb3e44{M+Zf~A{d7J#9A{;Y^@I327;z2_%|* z4cP?4;k`**7a7c~23Tm75&`s9?bLp$2qr~heZdX;=mv^Tt*v&|fg|SD{IM1BNEDyK zT2;dt+;7{f4Z;=|g2Tu*DH_zK%&v+X8ylS3m1f(g88xtlPfYKYLMdr!ZkuUPYHomy<+Hg0O1}55f6Tw)gU9(S2+O`C zy;kQ@4OkydMX>y_+S>|GLUb>fB|a=!JhM}=w~w>-rFqnrLd=2_FZt;>&)|EX?_(MS zTF+%VZA;CN^0FPt14tb~sA?vER@ivlMn3t{ihAB7>XtGPQ> z|EFr;GbfQX>-V0&U6y5Q)>lnv8OvT=(u&v*vGu`pA;r!s6GHm_v!@(Ch;WtKTg!Sl}*qCyjiQG_TQm0dO)<;Dh z+C}jMyjW^HdS7WGvoYM_;*IUOU!SA#6>OU-GBPrE%>)DlG?v}WYd>jZ6bEt$!yYJr zdE5CSJcaqj(Cs+9|0B2k=BIu8$+*2T?E=FV2!X5Bmddj9e| zqHCs3kP~KwC6JZn9pz7k3ad)di^!FocXV@oV{s=m=NDw4qoLQx6gINw;a3I=neH$P zrg=JunAW5cS7y+@D-h4O-?Z-K*Gn+M28Mj(eLp^}57*_E40Jqky& z40-Gw(y6B&6AaSZyu56e^B?ahooRFgH@sN7Q`76KOj(!4`Fi{E0eC}jr<;i`PLNG; zeTop*QxKbohTG43QLOUH{_juK%7t#P-(S@J;t!8WM`>cPd+W2hXtKM?Zv4HPtWRLa z{8-m#YAbyUfD-H?(*a=#tudJ(WCBwb`dpmY_in5L2X z_T@n9$B@NVfoF$eiU1)y?L?NG-DPTkzw!9zyGxcto+odYy-Co#M5x`)SMt~~ZazK* zNniGn2|i_%EZQ9AUxp2dwwN)KV?e`^MpK zixrVF^TUhuMjqoJLfdtL?>yro64m9tI7eC|HgmLql_BwJbV(rwC$cDyJ zg!)hrXxC*J^~8BNjBoTjvc_?KZa{Csm;D&Ltv#FidIC&EQEC(zooY}sf@MS>bHaIq;L)0fh1#$IBJB2GIB zBUeL+xJi|zTGvqyzaGuelY){teB=lL(*fAZ1?($MDrwIqsRFEx8qUl>Lka9x(SivsGs4#Nv>3qP06+gQxMTdKwxEiH1ukWu72U zhH@jJ7(@qkBD^peY3VZ2vAU=SM{W)lACOOkI+nLx#sSydn|KA@Y(mP=6-tm6GFYS@ zF{xPAOGIxbZEbBG2zsj#PP}Rd?t~>yY~IMsE@?Q)pHX#7Myc>an}xlh7#Imy*x8d| z%#Pqdb%L~jZQ0E)DS9cad(W$WO;&9x+~wGTiwEwFiAzB_ z$e>_dK7YALBv^^NKrj25=tAP|Ro3iS?(gD-fSUp47rm^ub+4y%O2ORDuA zAGbr^wmoB>Ct<8;K6Pa5vhw)iS;oDMwJz3bx5-U zQnbo!!wfeZGFVs+U9*<=-o(ivzQ()!eAe&ZzaK|RqYNufGJ)#_ zy9`m}d6&MpGGRfkh$=TIOgD5nv1aCWPkrR;y(jbDXfCUxX$^VkILBi}j4OxH2_R;PB(FA&^siyvVweh}6#R<=7x-QNXyuh0DP2 z=Nk==aeHds{LX_AuoIpL^cRpuhl;D{`Ch#`3N9GNf_axi=O!cI;yBV7L&881Vpjl&Kyu|e=<@iMWt)QS z=E$l~UXCdt$aYuiVCo z#_(6;>`ZKb|K)7xyv}cFiDM2~wtZwC4}jtb40u6rtqvH6`0UiPoL`;1NP*hpwKOLB z1hGL^-{U_L-qo+{EsxOrLqkt>ry}utgjNRqb2dbppNi&~eY^3TZKB~pK?a2I-JJ@k zm(6=fv0*n3oa2Q5Hp$!Y78?EZlTJQ;+kPN-YEU-MG<^f23OgvyE4ympLg9rD9-$4? zS(e)Sieow5sV#gi6JGuyA?=nMLy8S90><{?)2E&0qvdddTQKp5*Crd;>T{r*$KQhC zey2@#ICv3hOT6;WioiCBg}_bSK)Vg8C))5mNJaaylOiKu|3n0{rSK){5l+b(yh1WAaWcf8OVu_A8H2Gf@hzK&eGetrMB_y1RI*BaC0 z8HLF-x;Xd4P~t?_nvIK;7$Tc<$fd??86TH&r(>38Vi@DqA|^!?uVoacGYd!FO2LSV-Z zAwfs=IYC$99UEVdN?crx4@4dTJmw!)3q)4kgHO7wxG++cyqrzJC&r|^)~9$cP~I^-%liTzUOOevJM{#e zUgbmxDbE+^mQ%f0tY7{rBFM9ELE^g+gM`rmZK_IA%XYUk+89{JNw?rANeEP zq7`Q`gVV;wWiT>{T!g*3j}u|0>RU6RqzwJG@lg#Gm$q@8xtV~kzW4mc@SsoP%8ODB z&3Q;RJ}z^_8jVI`Mt+!Pj-gcCfB=Tl2Gm6yi!(H&28x!-^bsVWdfW>-e&=j9_;9mO z@a}wl_0n4vVLTN+rS0y(D{?=rR_iOm6s_JCu-b1_@K%aa5>KA*#D=5FK_~2OO48wC z1PGdn%x?l)CAekjK>|`FQ5&7dgof|6cfivh%W8M2G$(9^=S4r-U546&(G=BopX_V+ zj_3T4LK@_PCWKNl$HE-3MqJ~&A2tA=Uk&=K$gv9YL?XPQSi5#vOVkHO99jm9cN zNVvIJb!eoRauQ#3u4bcMA;%#Ub3H(vZsWr{Z0PziDdUE zdf?jGG{fh9b(o)%p|{y=8VvVh5`oP5#T($|G-C(FLS>mth%bxZQvvj_*Ml_|G1i4n z^2$gwy$O&%=5D!U6zd~`ZU<=qY;`YYu3I{uw5BzJ1l$;=!XDBsKXGBWxK~^Nr0rwH zkdCF0e&`Z3TjEky$|<6KpOVj52Oc(UKwKzGBc_h1WWPy29P?}T7wx8O1Cr%iz2{4u z#)klBX;4e6=_UZz|HS`Lr!a^#K!)TsxDv>Swmz|vWvQwUO22TN;ec8U3M+axJxjL1cvWMScq%C##_eA|>^A9WI={ zOiD0t2JI8s`oagWc*~x=Ukwf2vW#n*Cg`PJU~=eiiiC7+MB0G!DkmT`^q4?+sjh#Uq3F~`g8O@o?ON6Iz-yOD z6+&FWB!o(zSPZDfyN|G-YRcdZ=h*HUi1@ICsXA#pVKR4GhxD6%h3CmY1D8MtBkV+e zZZye>#7;cZS<(#fz^1#L_|2wcFk8cfqGWK2Yr(<6Akc48XD6yALl6&+a{BA^*UsGZ-v8Ef-C5UhJ`X3eSEq_=N{KiT=I!w&vW*k0&w!OWzod`d_#or(BS=pNKH>4a8g+X>$%V@!1d#|H^HY7;Io8oX)frLLUsyRoF zcDmTB&A$IMHCQKpKn54AzHgsY>UO$6kC-vMKdMIG;T>d{oO;A8ENZjS0j`AYVM(0h zIhM@_XZ>I2yyo zl51i9@!{?ygVGY-nln+Gu)j-UsIbZQSa!_0{q+)GM1H^UVM4MYd}h|16gIRA`-Uww zRj*Lv5wq=|8S^Ii)O$;_BXY#>lR6rU=GX_g$VG$Jeo$He~E+;zsPZmA9XeXv3Ug8l4&kg0QsLj^kX|Ul@My$FWxy?YUeB{o+f|P9W!>VspnsM&BepU2{X2vM zV!zkE;5oGGdEI-yyONUn>6+c1%c=VxKPb{qA0mnMeUQfnmvIZ|ugpvd6;nAKvbs>u z9#;QbjSMnc_{H|Gt27lL);$-HvuMj!X4|JUKi-++Jk{sn+SRBiak3_}DbK3AbKHqp z`sSx6iK3cP^)JP8Y$?@DoZGOWf|43;;XS@TGdXwX+bRE}7c^MCRx(5!hDlw;Zss%J zYbBP8nv*q0a@#Fc16jm8r*jfj&aVBUkJ;uYup6m}o^idr4oy zi(vbupF>O{_6fFjb`C$kN}Jb33e)*qa$V?sG`|#SbS5!5tw46mmMv!Fv`$L{J7(## zw?2PKP>yYiS7bfvHk#o&no*H`{o~f+g+4!ll}>E3xLZ*UEm}rrP5*l>yxGC&4 zkzKAS%cQ<~S(h)ub#63K%J1OVtc#D2k68oh@$~dGOu4V`Mp$U*=-hK*Vd3Gf;$?k< zvrPU;DJggIj$q?@{|rBPd zS}{0QZ?5qC90A4(%hO2J9-GL+49;6E&oU~-XJ?$l$km9La8kKUL20g4cba)x{uR5y zI`#ff{>ftwkM^>rH8eC-x3}e(Cy(V|H&LmUS-LIXuGF$+wAGf?@o9%i^vU__kE))F zxs@7R4#+Zi#?H<@?OI$g-{sbvW3CA&q8KIO&`>y0Qdm(@A9X=9RVNQ@y0Fu$iaml; zLZWnfKD~JExq`&1y?|xMHTf6k)uY8de$J8&CURmumSHFCzFW>a3^ho>MunB;S?H*~ zx%##D5o;RU!I6djK(fL55_xsWQ#H84zO3YS$GeOU%e?boW9_Ri&ReKt-KzDRUPv!p z(@xe*Z}DN&zvj{%xE?p{=PKmP&N*BEp0 zezq+|Hea`pb?{rdfkdbKOs)1i>sNK6Ggk=>^W9$QWPLYzujTe`Zq_`zK?U^RhreaS zI*xvOb?@HB*%7j$TsZGymHBuwm+G4zRUFYxDOy=gB_3|8Gtui!FueWb`)woHjS3fH z$XBaVgdpFmJgEe<>{XwwBg2@r9mEdQP1V0;?x!UYAHRt_iOinH^pnjMjwB#1r5e zh)n%;AjflcDLQgG23Kbuq))dNUgt0M-@?`&>H*?c-27Fakylyh|J>d3ci zE^@K+SfoUVe1Cd#t`H2`Yo+!1(6{}R^ysvKCJF+O!ScwV%FO<+7x z)*p5}KYjC|<9J76M~5z0r{#9Xtrvu`U4|AiSmo4?N`25E=!e6VTHv6&AMIH0-Rt$GF6x5ASPt2&J=a2Hwn;U|@cqUu z8}B|}IEZ-yr5C*BrQ&mG#{+`I+;Vlv2K+qFLi-(SJbN|_{dwFhO_|~NkN{aXtKDOw zbiIU0&@x5bW9i30h+iAHC%T%s-7kqdFC6(DnRa7cp-lW@_8pwV680ehi1G?HGb@o3Lc z`<1B*O;3-JmQ=XSKHon-i&a$=Qzy>3{+_^!+zB|Nuu^^=9#tC~8_GnW_|omgRnJtd ztP`mc+NB&2k7yBCU_9vZK+~kqQf$5W^3`zTA#~{un?%0ax|=B>CPp$YE{^H+jlb%} z=c{?r)sTatL>LUi?>olKcON<5baC5JQoh|_5`uTCeY8yFxHx5(=}(Vpv2%@v=Jovk)eJpVE?D@(w-r)<;u-VdjKp`EfIMTu3l zqayZS;QKdgtINsoak1;Hin6jYMZj_HJGpc%he^PU#K5C*yUcq-p+_yncIYw3%P%MM zI$p!Mjr@5$;LDT4XYE_GOvYws$KUnuN!2gb_E`F=*0=T5)zxSzeSLk^Aw$^C#mtr8IBn5cp#F%( z^|rR2)%S--EWhMhw4d`@b8qAl089DNZdKY0`-6|J&ub^c5KXxjI$`1AOr7Mp30Y}c zxJ;@ASDF-X^uqJHO6Ol_$a_OT|Bsn^2@|~hhR6^a>N{1I$?LJcI{)S@TfpD&ulK*; zU&5voxa^CA62_?pRw7$)-q{~9Ok!F$ztC^?B|j^3c~1R)T@=M_#io&fQySr|A@&O) ztVOq05xB045Mrh#HkF`HFj$yF&B@F=g?;n6sVUb#3caS6{A5$uNhDbd-FdfpeWb$c zgv8oeSt;F47PO{@r^_#_xVJU1YE_Xs%FAW5@0cdg;mo3IC@P%v4RHDKg!hK0;sSL) zZw~0^WZq+56MhmuvHw@3iO6-Nco>jf`X_G(fmwe;nNO zmQ~SXADs{PdMk;W_7^k*V#`vr7)rBwwF=ixJ^#_6wMRO5W2I!capJ}MTfwnuoOw2| zLVBnb&YssE)gT?T_9q6W8$#z<*MsIi?xifOww*Q)*JWp~hG_9pQ6g+4Io*iW=E2Y( zxKke}wsGaB9yPu9(m_jPJIcPF&YzW^;H&SN*vF_x`r$z4a$Fk9BochCJUPX@9VfYD zNIfF&a|3SQ59gOI$vUns`3?-qN$5A{zf}q_u9|PrvGrPb)hi1-wh05Zq!-rLUJ*j@ zgs;hIM32#oFauc@yC*jo4R{H3{>-NMy*O|CUuSvZlvA4S5y5K9hCjX*i4J+CbuqID z$Ocp#pCGbNuk^D%hhl8kw>ibk!Rwz?u3sG zXdm~9`Z3nb&zIKN zJ)2y7eUm5xuxn1VIowFeJhSDEVgz1l>uzFaiAPRxuE)3QzWN?Hc&>AfDFZ^yb8TQo zJhZJieb;Rw40bB42sF)lUBuWI2n##U*B`;KFPzZ(WhCeGMbcZHtKOqu#58o zhxE9B`GD8tdnPwl*yjzjWo{=|hfPbYy~A^zu}_HHy4!5DICAukk5!>On3Aw6-6QkS zVi??kHuy1QN<7chR!AZAfaRFHN^k4G9EIF*Y5c+#K=Yrv;UcP)V@{Q;Z1t=3^y-+E ztuCL`^fZ9u=U%F%29)E{vc!#h#qh8JW@}=w(2LmUhR^#s)vj?8e4{;b`v#*l&8?0W zj-Fu;5W3V7aFp&KeN)@=MqH3A=GDtiSt$n>tuI9|r|0!?s+5+_b#;tsIFp5jy}lpT zGAFlmxoyG)9ix4WZ`ZIUE0Z$(_%-^ToHY~s-E*$h*JqZXyMlRZZYwT+%YdD6S)b*1 zSzA<$Jqb2_g7)>Rl&kOE#)C0)dUd~-t!n(s#jhJS;R&z4#Pg9K+lwZqvQ2 zTU9v@$;4D`E)nOqLy@w*7bZgcXR2meO{PnJ5{H;^II}I-c{iOgZ#=Pu#aR-wrOdeA z*X!2WxoQJ#=In%5I}VVH8mxcA;RFJ)2w&?_V&H?KG>7{ zv^{xlp~)h}RQTft?+86-9;r4`b6_`Iy7fB3EJ0$jHmYwaL5v0uP*bn<|OyVtVRee8kN_H zs)k$eoV)P=%{u8QZPsk-v4Pdat~sL*ck_Uq#tpK5{IF$ePz%4H+D(9qP8UFbj_E665)f*n)2viENBO_^_osDr}O$MktC!4GEyUT7o&Pq zXHwYf{CpxQ<-?__+}(^Da7tpozTP~MFWpiXC2Rj9=9>WdXFJYPn= zw50bnQ&3pkWRw&5rL0?o3yz2OY{bQw(dNwLL${NikdalVvhrc)ZgNxP4@f^+3vzUU zU=y-=O+A$dw1FQFj^$B2MotQ|1RlHmQ0A`p5b1gUEVrm*3Z857+s(}LR_B>FDdSGuV6k7?we*x%rw-Wu(d0~Alzg~MfklTOj?Yk zkswe{QCUp8{%!ulPFs)FoL)8@ZV%0-)zn4PzC74LB>kX7@U#{e_Qte@2(8+eyZsCb zli{S9(w^;@DX9emEYB}pyyAF&D}!`!!I_ajZOWD{L_9dy4!Q6{U>b(!C`*ee z82k3Br_)I;>0MvpYO=xMJxLx_3Q_c9jnd)$oaf9!(RR$yqPW^c!#d{t^Hv&}E;GJ7 zZ6*nm3Cgw|mM)C^;e-By=zhO7z&5!Dr=^p}?cD7FQx5vwRy*&!u2Dc|TGZ=J+hmEC z`acl@Zl2$c^Ik2(EMps|kViqv(F>t>y7j-Br=5X`|zn)#oNZ-BV| zW`czkYn(3l-Sx?jL{jCKSGIe^zgY*nD1@BwT^V;Gl6nTJRE}ML2ZMXi@Z&Z%AyZdq-W=1$D?pld7CMpp%Khe-z70lu>FX6bszY)W z8Wt7@xtaOe%3`6|t;wGEnY`wC?ZShRs*T-<+V?)k$Sk1`o9y`MurJujP-N(V+FJEY zsh#<`mg?5SYG_(3ud@#mqFufphWzvD&5D5L3RbTag(#6kr-`n%B9|E!*6sx5mc>gbo_46DRxy2i|r1 z?m2vH%l$VYDuLbUlRv%!Bm|JOwC0A~*h&%n=y=8Gv{#oOaSIA+O0#-oqug7Glk~_b zigVQqF+hk;acEMO9(wz6PounGC+TLOn8rlO^0;N-%<`%kFddXs;E!^q#?X(Jkq(Ge zx_B4Q<+!%!J3nkJ#OYAJG^^TIdE9ucBeCb54LarpE#SI7-8g+xEAtOAx4D#}dWvnL zN&QQpdcN|DciS*CFff>w`!a}(Wj8u5w|(&0*-RoFaQN}%B3aKVD%Y}8du$c`u;Hx} zJn5BLMvno8eO+;{8WD&JEzsrjaoSzIW)dAX(r&eT+XmcQC-`Ze^PNtzCqm5HvWG0^ z1ufdtfKhPs&^I+r9BxkLh^~)^^wa>piLMi09<5G~wyP6He6X6D8VPZCV|m>z`GYT$ zjn3p(ko~U2a`W)CkD()GyNusYC;ya<;5#=G{}+Md@E%!@DdczlI$%r%zNW}M7EeFj zlRyAMklYX_mvggX4_e^2x7UG+j;a&t-$iKf-mr1-1C*&(@~&}2hq^U$w+ah0Xl6Ubm7nIg1@UPoU1(!rUQv4SiTO-pSr)gH zA#NPb^VrF?)GlE1@;fboNHxt{hLw|U)jkKh8fp+@?RlDmbx{r@sd-RJ@qB*Hv_YS> zJ5BEbVqB6nQrr5;|H>Wj9X*0(5TsvS!w@N|MWint=5DQEzA41%frtAr+F@thdR{tY zBThv_`w2-rT2ZgS9_S5aibt+RGVqujV-?c6ciJ`1F?GU5r0T>2Ih6#glG{o__k^aS z+mtH@F7yRinwD6bA(*id{>A`?@JhIyECPqL;g8Qu*>;!xBHAg`pRuQUwUS+ zp4_ZyaFWoLar2R7>8fM#`r5KKL}y=LUsMsuvFg@`D#Q6{F|=qIv6lI6o>O*j0CYRQ zjm)*!%^1hJJo%BKxQ~vYa(nbzmCY^)nr{oUg*i;u*H&|kYYzG!K6?eMY`7yo>mctn zC709jK+{&v8Vqg*;ypgCbj=kuK;gZik~E78iN$NhW_F_6fH>e-m~*G~jM&nT*tT4Y z7jPwB=@+}2t}ILeS$U;|%CjVLoVxi?*BH*(@#*XPTc6btbP#@A&mSCET(Mi!cfOb* z$9Fmk04IBm%>qx+CUp&sH$XWsFfz`3b%W)^?6HOYk366d#Ncl>NP@)QEfse8ATOuV zWS3jmoyIG1evERKc|&-d_jO}qW8f}RW##1j$IVS=Y|sF>1dI1oA;wa%vi8HIZ)u8g zy=79CC0dS-xgE)xHS2>CFX{lD?8l=+VARM(_z4-#)1~yBUM@LVP=f>y)Sgp{|Sddt->hfB-+*R%eM2hd8quegVZ$gGy@^mPL4{xul zDpqNib^*dXO1TR5%;;idSC)gFf^o@Z8bDz6uoe$1z5Bo#~N&twcE2hqqa zL&om2^_5vSd`6dM8LH|dIxHIr4iUzQMUa#axKSALOI8}t*df^1-guvnbn?&fa7Yee zqc;NunAPUl6-1RYUWysF=4LwTecpk?9l%y7snS#L6>i>trB(hp=ko{-ba$TYV-ZvU zh6cgq()pJV>?I#!a6V`X5h)A(tn7r~_xFwS%uU{L+TjC5WHV~`Lh#1^Ozgq|y~l8p zCw_gt@vKR;x^|LLd#>*uCL#=tY+HBBI>82wP98q=AG#)RMxg55y>$iFyIe&g1C9PY3W72ZjH zLeBYbBITRC!Y99#?}C{}1ko;Sxm9-#s>hXVm^Gat4gztuyxdKBr^_(-ahK0kj^BCY zdV4>z6YdJzkuuLf%=EsBAzii^p@4gUxJb?uUB1z7X}xSKoUYC4vbmyULz0z$Z4^&KZGei^Twupi*SMgU;~l9 zaN!2K!i8GveQTNkW5a~zu4x7TdFke-r*OB7Xm)zIe10@*n%962F)7nCKnL3IU;Epb zhS>8p(#`>VO&FogBml^ist_I;nG)H{HY)#GdT+UcgdU`IU;g|Jg=Yt5>b>=T@|*L* zbp)V1Cg1yhrx3!8MRrIWFB<97E)nbwU5*XhMTQuB2D>na-*fY*8ZOzxu|T>q)_#QV z13$rWG~q`%qa5+lacL&Nq)o=OjlR^=Y$;7 zk5#Fj!YR&rUxsP1MG`X6qqL6|>{4~P)>jrWjLCHF)R70P-Nzs<{#@Y721wdilBY}f?4|2R6jdmO23$1VnX!e#e}3EF&AZ7 zZ2#2l_A;2t0H>RTi3Pkxs+PaMm@ZjPqtPhc_WP5n2UVRvA0nt2c8O|rdzhe+HEAQe z-O+iE66+Kz19k<8PV0S1a-)5IVM0r{wJtbu3t2`|_XM-*n7XOe+4O1mwfx8wUSv*z z6)?D8O`J8j&8qbdJ6i@ugpQlGUpVcpC``mf=7rN{6@_xXF*l$<@vQc4fh~yCC*I z`IM&6fvE}}*Y{g8VXuOZqm;IRW~m~_g@EgZbfgv1*!$aF)Lq=YGmzzE1%)`jI!|$# zkq5-!eeM%xBnoe#oZNGF8*m;)qQWP2nD{QqX8{!YIh+iHO2$o$tC69V42B={WSeGI z*MtcTbC#zSRNL<{BP;}57}&gV+I=z3yX6dGP>+9LdSPAKBCpM%PQW?Swz#305j{b1LU6Zi2D32Hw0dGBK$szU9ASH~1WG zI_Y=pf|=G9+b6E@7qMX$HQanQ>VfumBNHCmb_*Z6s*LM|SGwa;_Ic_uTX$=5X4ki)O=%tV&N-jHnw`?yH&*jM}WaaYI-j zGZ$fceX%~%a{I}ce?F)Jnu$Ik3g!m zlQ!q7`98mCUY!#h^hrXDi9n|8c$44B&CeNxUySzDZYgj;j&JB5Hjkyp<@7}(d<2zj zFE92&hqKHN)P9?2mYYh`GcLbT-8MS~m%x*D39|dWMo;H!riXXFeT8@$KZ!O&#u^pp z6=wo*e!?qa#E*X$VE={<5(ETSWcXojLKe^QTq4#nqsIf!!Pp@}y_?HjXNkt`)l8>9 zpb)d0wm_b{tyz?|OsT5ylMGe00#Wzr)oJ+CsXJ`B(+QcL3eEJguUoXf?pd9eBfh@; zu+p@-+WI$@Fpq&?-`NR%LN$|^wkLxZ?8ap8i#$ir z5KVI?r}@r~fLWRzvxQ362sxtg-L*AomeUaGWR$UstMZaYrvRx~A2Cc8)O}#zd+ts` z<;gs7PmS?%UlUN|=cYyT>3a~ei8oAMCNB6eGNoNCc)aT<_j1pD1k>+ItbIk3-a?zS z=}V`s;E7s6inAz!?^`y$2??^i^t+GrlOX&S7I!6Xp0f~;WCUmvi2wpw3DPG$=U4kp zqAi5B4{^H!(VuIA(pT>_~?&bKje$s zfLGrRts{a=;GIbOvCk8^SkguN_+7y|9VaYdWIoULTV(CWdH<&Uyy-tseF7W%BCD6~ zxK&ATXUs*YbnvY$+~dyV4P!hgOLXTi#*;OHHGzTYJgbp41-Uwot4)pJ+bwJ_{hqIx z7CP~m1Nrt{Gy~b+Vc`CIx53&m0;&okgs(&v23Eqo-yeKaQ=$s*Ex>z*bhL@=`*&J| z+33$o2XYng?D>Lslnh&VQG$0F^J9kw7s;gqZvDH3E%Sh(R5^89WXH4Dw9*;(m4>4i z&^^D35$lG)wNR}o%B!TW*zL%kOK%?UVNNhg*05cjynio*1EnR0Fh;73^S{W02Uq_l z{(i*Lh`$62%uqiQ@bu45T_n2=w@2sw(64-wzJlfQDdRuH+poX63U$eNxi>+8F$Rs2xbtQ!CJ z)q39AR%6=UV*Q)a@2&Y+uNn35H8w)e>2YT;Hql#~5sIm4 znP=GdUby=8;(a*R!W}4jj)l+P-#f5ax_%ZsN5Yo>sroAxpF^S|a++Rq%*9QRDkg#m z=DCE|nq{C3RRO3Biav&2Tbr{?6jOEcGvAc%h9$Gb=C`D(Vue;n4?<2n^z-g)9c$xq ztrZ}WzPz&`_CMVXFyr0-e`+i&@R^81(s=Q_e(kff(yZ>2cQZ3Hn+lz*q>cr*E#<-_ zyq_G1JR_xXF6obW1>fC=0KR>Ton&2OfawIp%27h$)`Y8{tBC>*HSw>T}M(2#&X;71kjuS z?UV@B{`d_*8EAt<%huLbO;g9}X_k!xJn16(CIlB##|1hV5EH3uYn#~{$oU;7+{}0y&a3tMrI?#W*Pv}a zh!Yi0YG?mojGhn*06HW4Mmb%SW1A_F^#3kP^!8wkJarKY7hSQBZg?z#=k?TBczDEU zaGHV7*2mh}t%3Gyh_GtbmOvglM;YTEdQn~SS;WCkb#^>lr)MR)NiueHSj zAPMc~T216sC^K_|0*Hi(jEt<-0cI&_+5$1ths$TymZwi%W2>N`G?5Mxt_>3W7!`}( zVp11cU4sZbGg+W|wk3g9O}oH8QG8|ca;F1X4{0(F^65I4r3<<*Sc4EnqpKxNPsbwz z2A0(OE(Fy_8R8A#>>xvXc;DOOz|k{*R6*IZtw8;~X(Mu8W->6YKcs@~V=W-TbSy*? zOdvE{^`p@)f=9;*g z24>(!&iMn?nxG6+YxFwr$nper4VV5mCl+PjAYK|^(e8UCmPi7<4N@Kz7T>~TeD_yf zsnXn1wqPY|KsG8riE^Pr6#9=B%hn#ll>T_MClex(b%zkbw@e^UO~fM>8LnV+Y@m1& zr6yveU?i;(IO?z$FL(${Le?=4_p<6QF2G`j`~|zd2zI;2qOV@MjelKPoN<_K)|4ai z)-==#cBkw(Z~|%(1}!Gh9&he$+Li?JFr-R+Yz5UuTtbL@z36esssLZ4L$Q7AeAMPq z);yhFy?DP#iRBdF?@>iYO)zlC+oQSE%gdrQQwjvZ$^^n=5vTE#EjtgY={uX&J{Pdf zU&~q?@5omr8+aAB04-&BDgkL71EIvdG(Tam_*7!0cQ2JPE1uH^QJ{SMOV=b|)M6yr zlt#LtGLBQ?0E$H6B`=jCAx4Qntlo1K6%rMNE&_$az$C14;d?!xT3o`F@P46yp+D{a zVZ`h_ks{r2@5cGgc7*k$cD_YNc#l61|;wNN$uv5ra*nlK>DzFm&61+;X}@qOV$IKyMkuNkp7GvV{K)qtu4krR!=lKy{o zxMu;6Md9NMUw`$8I&In-bEe!EUb&~2aR1BY7WiQLMKbvMN6<`3tSS5cfjHA78cLeA zX5O-s4o{fsDrS(F*Zp`=vep++W}&Gnl%vuP$!@@z`q8E_Su*vo$nRj))FRaTXF&qL zL4fCw+G1reRDYw_@X6UtkgoJd()fb{BNb`_OwD@7&cVQAf6h*%4}jV^$DU<{|;J?0j&~Ug<@9(We^7%pGDP*cr&Y%A7QdNHd zK-;FY1(!iCn+}`I*UCOu0?$M26vAN`A_+e^`O!9AhojKurqs*~J1EmOH}Ta#NieW& zS>IDD&1=0KW^U+(&0NS(L+jZ_0OJtBw^mtpcUk{tc%=_y92Z7-wQ^HwY|Zjx>aLV+ z*xBKht}C$;V>HqNTBtiB+fH$dT1GP05GSC(sh?d5(acZ+vl1aT4Z`D%cHd=)kUQCG zXP?sD{4`8->2^6^;Z*v2!omu%pW(FU9&A0y`Nz>A;zh9!&oE8&uz2 z#25c~sc9epi~J^yEpqOKIYoAHus$MtgtOt{Zpcs)-&;1z0+@xe^)Ke{Ek9;~qj_Kc zdQ2r%fY6lVhjB=ulc{;tRnYRvigt#q$VR zt!%{3efjg>q>3ic0@NIs^d^PZXQD`zNdHt!2TNNPglUWPw}4cav*B8IiEN~2K`$Fy zj#PSycGcy*Vdm}Uw{R$;V_!H-`}pxhx>wlXOg+WOSUu9OsUN6$()n~v%FPO>UI&Vu z0D%Xh7K^V_b!C$^ua&oOD5NY@164FQ+a(;TC4XhjsF|P)FIvm1CSqr zOvs4UUI~iKCu{8Y2eI(VQ3@4Qd)=m_@-R5uG@4(uRU(zyA}$? za?cMtsOl8v7=`WKo`sQyN-u#jb{pnGQIb|=Sb5+!q_Sw>d@;b7ix|z{oNOYpBjG^g z33>X()d_aOdoERya|c+HB$nX3-S$dPvo9dpAsk~<5_CS4E=PfogQB0Ou-2M|7y*n{ z?D2B$a+T}K>kfxpf*8TExcVl=JhQX(c#1!AiMnQ znF*w?!*71{yaycz7r7;sfwgcO?hv-kF~o^-M#|z(RpD1kkfO2#f@89rUS?ns(0dzZ$RD z2-6aCPeI+9dE|V`yVu2j5_~v;YKn?8S*l^BUW|i0+4X1rZE>n)NyzYWxc)#^IF5Dq3 zT{n8y^K%FxpVybS!L@6%-xCyEUGW5hbQO^7qE^MI+;V0QHtKs_RFSGY4r&+AlE_c~ z;ED6;0RFQy0sbr>JC&`CUU;>G4l*^kw zM*Z9GwtC~GEDH#zV%F`+v)++U-89<3l{0l0ri&NfFb7Hp|9+VyS!TZ?Ywh!@9AiIVbKp*SKf$tI zqeBxl{54tjiIIkH`*car0EWk{pWLT}1<#IrTE*-zW}cOJNI^k92*AoSpV(Ol-0xeC zjJ4G;(G~0bTr17DZ@)lPX>!3XhHSSA#{TW&S;W#*AYQefZtKFe!SMcY6Qa&myc6P|r~xA6>ni zS4tiF5jBb@e54X7S@i(+78g|%Q2lM&2g}yXKCh4e)XjzuQvGAho}FM)H8%7Y`gfJ{ z6+nRZ=KgcnkrPk~LfRl2<>!ErE=tlaYqR`|Pz4WYPrYrKM!)O1!bYVn3LhWRb-QQb zxj>ym@Be)FMsE>J7?t1$Ec?BU1eMX18HR~Yz$MS^B7nOPqkxeq!-tTd52R+$fk`zgiMdS~Hsr7}ZkWLy-47MYd|6o| zL5rkcbc)geuqi52BgbErV;k4YhLf?PeSUp)@-n44?Rb8^ZCfrFRLlu>1u^xEM#YG* ztK8?@-=U$QX%x-l=x;Pmr9DTLTH(T(U3~YiN_q4xruLRR+M}JPa5vu$%CIZ$!t&1# z@oiK(Labnp{q|4o%=;%61)4TMXo8wDweIe{0XC}XHIitFvbaR>1`o2XBda#W>{P~X z+-qH@1TG$x@CymK`EI+UMdn^HwXg5*L#YEv{c5*vkYvJQT!Sv;n1Cyt16h1$hk#1- z-ar%j%`|J$if1wxu;nq$6s?!I?>tyZlbrt!ofo^T_lRHXJz@zoF9`kmY=HI-(#O22 zJ>@^raokgC?aZI43f0c$yHVx60W;K~H$^aRp>qavsR0u844#eJTt;%8r7!8<1Dezp zUI;(nDT2glLx*1F7V<2@bGcTr%SPJz!g(dK0m)B%#C(jrSAtW>7}cd^j?m^kEw-91 z%A--4W>5-F8&yla)p};QsA|7cRxcp}0i7u6irHR+yif{=&A^z#G`U+7L(tgx{}9Xf z4E{d}#ZVuSbRdh_x3{l=t4IKLW^G{V{5{{8FM@wQGkN*-?e&l697nHtK+Du{Q(}ng{CH~Z z3&Dx0shx~`O$?g4uYj?T1Fe_}5G_r~n*6Dt?a8Z%0!33BNP#G0iSaL!{H?aZj}~Hs z#uU2GPk$%)?qb3h>RkZ(S4D-&K2qraW*@ynBhDWm`Z?4nVE;pj^8NepkJv!eR7Owd z^K`d{g?ksCAR#N z$*IHU5eRWI+P}EMx&6qfU{O_84t{g>+3UP+Po2S+ZfV4-0TzRs4J1N!RaIgUkb}cz zrO-$L2^YEx;CO64pN1Y0A6Tj>o2Y9xbDmDuUh$woFLA9MxP`#%Lxg11Oz8^ki?bhg z@^kLnuGS@CSccQH|0;!AN|)xwk~Q^Rq*y%{UIFR#u7Z46-2EN!Z9G=ye@lU(#Xn-w1^2YRHz^{Do?tbJ=z}0Kg&}A6ZaoYC#XWH2g=tFHqkI{P*ZbiBc>kNf9Ow<{QZiQR~U-P{! zJGuG4XWy!2vVaYpo`M!~4c>#QrJk$Mo;g$94xi%*mU%kRK-MS)>A-R5qHu9>8E%O4 zTU!JWGBJN-kp(zM?{$ht|85t?lf?cRb!MqyL^%dM{Pz|R0J)N88O)Ee&a)sWwxxj0Zo+;BC*~pLCI&W^3^+W>Q{|OZ3*0 zp<_6ue`mUw33RXvMog&GQy*baov5h@F>9*|PQ8CV*?mBUpwjc|kr5OgU}t2GVm_DK z_YZEqx5v0_%Nd}52P7vrhl`_`HKC$?+o5u$_HyD74#TD-{QB|0%3{l?(NF#iwKXBU zkj#1)l#OXDrr9*De?FVpk|qGjY~o!iRFXLj?8v?Oj^kA41;je6IYF+^Bs$eO&l2iZ z#$!thVmKoaD&$}*-#lKZn8xanJIET0t!b zlJ+H&{(u@V1Z1QT&_)57k-fk{HO0vaEI#G8<3MzI+hEJ1`$dk#25La_4*ZvdkJS|c zVF)^=dsWTUdm)|yE2??Z_iE?J0&0PgUt#?g+a>jGIsJ(F;k^M0AE3|ehaZNs!(to# zZv`WK(0AC!@iO6CTm+00wBdtO7Z+5E2eax2Jcif-ARA%=@}P|%{H~mzu7Q36I1(-% zw0XOFvY{U!hYW)311Dst>BuPzv7M@goPjqKUtTY+Gc{8OycJu>AC~!2(AQ_n$XEl? zYk(GI7|B(3YT|`eH9SgSThs*sY8ARIaA*E(jJb;%OF-2S%_nsX=%Sc845^=J&AnF` zaLj*pDE6s?^Ar*eAYD1|qX^a0^ho#Jy;hS&qrLbzc#LC2I{H3JAHro8tj425ONw6(Tp;GFlchNrbU4ol1||%A~(&ja=782 z|ENun>I{jOBu~sZs{zjnQkH>`%=33np`kJ0ed?d~9U3!&3+fw;PXEiMqRRIVdZx3V zP@=;`HKsD}o=tlzQTxs#=GOqF!Sy8=YH@cvoEGjzpz($e*mwfX`cGz|MYr(&Lyq8j zB=&Per+j;6Qk`kxL)GsMV^$gyj`C`C{WQqZxgBSl;Rt#-{4fJ1R!P2Kxgk zF0<7b zJg>~`CgaNZcXm6zh*XjpS5F>5Ex9o6P1=lmTt-g1K*S6nCqw56{r0CYuE7Aaeb5JJ zcf&d?Z=j)XVM7bl<}!fF0fcaX-%;bvKHO+wsebyB!)i**36#%7e9jg z=A@-X*Xa??AzV{ zL65M$-$433U9%UZAa^TRLULTP(8&5L50E6hDfH+CdSJPT^w6_8rz{QC2=7gdsQD;B z_=<*5%9p37QGTP1-4+4-Dd_r#hMd;SI4IPjR6WTiUrisH>ZXe)@97$NfhGc%w3nKv zDsB3AibUrK-$w5wIbb0B#9S+7@${IGMePWdXKmdauNaYI7r$Sc`4v@cvccO-l}f%G zWT+}Odfdx|OJKp4C}5YWe-hj;Fv6&Dr{f!NUuw}tP#K*YIu0o&lK?26aB7&YC+7JU z4tXL&AWv6L@{I^Rq}EH)qp^63p9)H8aZN?2(UQvJO^9PW9y6v*iAn0S@i{?N z02f}Z8t+7ieeCh~@7%4geULCs$RP>bgb=1Qm1J0qcD^(Yt#_T^M3F*(HEV;>zEXo; z=oBQ}1%<}!>O6Qi!}X~~P*dTQ7%n(zun030FPXKLE`=dm^ME$6P@!p=e>8mGXjv-5 z=I@__fl+RSH-F9;{fX2j;F|Mw=@_9Nx&nQ-qTyLS;{U65_$!ISjBeL&f&aGXda zKxR8RgAMKhnJojg&>WpkEi~iU9R5oQ?;VXL@1w^jpt3mgRhmkZOyj9GMdF2bF|eB0 z;j<)}zwYeAt?Z)SU*M}~efg-jq>2MVsdp12ID5y&H?|gCDL{h4Ju^(F&7{X`m@8j1 zl^7M33f^^~Pudi>Aa&Qf8Z_GYMOJqu$n}85HRNBYLP^*HJB324nR?`m1{_5OyYwft zT>h$y6$Vsp^H#%*WaVC2N4{-XXr*PF8W56rRJg(oeFS6%QVs5a>b#b8LD1Q|VK{DO z7wS@{Ht1K?hBfAubWLSZQ>NqcOkjc?BRrKD6^^bT)UMyG&8wQl`|T*JIWU$-HFmo&;Zr=UJ3irM9A2%39uSSFawWpRAdf#3?9wz zcB@BDE~!CA#Hvg5sMpGrE3^bT6|SSlFd+3#gg&RC208v_NZw=Nb(1(H7&GR4{`#ub z;!97U;ZY!_a&|IaRj~mofO1i*<`rm#gL!hRnc_X*2^sVzQnF5-W!O9@$E2SNn1^q? z>kUs=#lm9}Nzf;wII*A@xBUltXUUcq?Z6SyiBkUVds}D? z-b$6otsS2G{ShZP3+R0JEc%OU2}kng_9wv{n}2`AoCz<_6wL&H~$>{BehCGH8hN;k~Ak3Kk?FQa?iIpIWdSWb(ff zyY#bB(P6rZqlU6nF9+J3_t5BOr{0Bfiv$KFsDOrjVNWmg=0G$M)CqQxSN!Qq7H>hk zXgkMs@GRuD{pzN8i?6SJN}xThy1R6BuHCnyUu1D0#K}z;DQtwkios|qdS?=Q7N&r~ zfoBP9h7-Z5#*F*^X9ob=M;J`3|H)aTl#zcasuk_Il=vy&C{InMJtX|2bMNXU)>k-K zYY=Io;y*DIPtnS_gr30oj#Y?p35A)^axSh5rNXn))KVc^2#k63^oqS*x8rRSl|5O=spS;*8g)>wBw|p@Sd)a09UfJho zwifMgj9#3_O4GPAe!m)Ce)TA@9dMZ&d~e>8lGyMf$Fj3PwjS+v(uW8wb|_(f zz8`z2o5+I`o{?9P(9;4V7%m0>m`^;(~`~VA|eoj35>S zhvYe3aT$-E@%tG;%!LO*gdqa|eJl2_34DgVeNsB8!BaJ^;Y z6_Dh?8v^$>Qd`U_>8W_FQZzty>XFqy?E*M&*8l2sIE*PP4p%IHIx@|tjjtF?2Bi+- zQ*qzQg%=Ectloj15j1eV6#&XAH!nLVG!(bKvx(Jr9b!+tmT?K>e71AeLPf?}=sCKi zpW<-!8{mPdRNzb;hMNeeUs6G+_kox=yzG^a`XzsYE0QA?*blvae1Kzo&bh({QI)7e z4+LwCT=9{wTeD0?fHh24;Xrrk8tr=iT}Q{2t^4YF6>qc~q;*xq{E!!f{6nci-34Ea z6lKd`f@=m|Su_1IW?CAQiDVI?_{`_CNDhX2SI0XG%|AUkJlt8Br;&0Ez2&wt@HaCW zqA0Ef&AjmPoN~H;@y~Kbg9LaPjY#_S!XOe&fe6d&=Z~*wfRdGIIe4mTlO=dL$>Hf$ z3O~~PM*AxiFzN3BtYF`oWH`II~d7=+N7G57a)I1sQg0YwJ?y zgl9aW3sDy@ddU!)4~Jm4pthRq0DZME1qG(;k%5|RuifUyhg(u#jF+x^5{NJxc)!x} zUGLUTm%*sgg%x-&@Zs(w!)wbEWOzo6A{2mH1a+*6)$=+XU*HqrT`9N%@KoE(Im0q< z1NYj$>7Q#bi)|~#a3NyC|2S4X)TIZYm!3sLt(Oo&((}sLi<3E>@zfSLxP|r6?p1}} z50}u5mi+e{T}KeH`+ij`JPy5m2d~U&QYxC@0k0%b1nL-gF2=z_Tck&*!VsEs72kT^{M_ zhyAaBKr6Q$#q6PvP`v$HG&6ljW&>N;qB|W3R0(vSUvR)nZNS(k)FhoF^63{{gXZa? z0;h=*Dpy(iQcMSq+edxjNHmy^LY0vU>`mv`8mRq}NF<|Z{r-Rp<4SNM+|plJqw^%v zg-sjqK$fX>Y3G>bly;+lv@4^!nm$q-YWIiF$($d2waq(}v2b8Ndw_^6yox{|lKG@^YRj4y-+GO+sd!`QlABb;L z=-mw~wSw{j9_i@d>9%KA&EN&KZ7bscOVn5|?gTBs&tVGsUaJnM%{Xj+eW7U8MIIP> zP@;BP!eV7SkT59A1SChGHKPiHaNjhiK-NALq8JVtANE{;gBnZ$w0aYc=P0M)@q-GR zpXfcct~}sSsc#zsY_Khx=$~0^ij#}z47id5k1t6{i42iK=9Y@U)Xkuu6}=o-;5b&$ zPDWBX)RjE<96Zia&;7lgbMR6RF39uOyEs2$848EFA@+H%Ue}_wkGTBZF_aJjM-RI? zwAAOv&mH(lbbVze3>x!)JAUN{U_i15==#pq30>~?T1P~#UfdTzai+*$0s6{uU$jMU zB_eqtJR8bR*tBg=6C4WcK&BT0M6N$S(}(NOUR5t|7)J{m0fxXa3vFG$mQE0k{! z$iQ-j*%Z}Zy0;of41s6*3ccaYAW#-CYm#Y-D1IYo}b!oPJ%mF}5vQ44F+{z9to4hoIAba$Na6rG>yq_nOpO$J2)?UM_g!Q{Hqe=R<)nY?1nO~dL4OL?WM^0^k8nmb{YN)|;{#q1M>6V+3$(0FUYw#8ed%(Uey zQiZ9M52=O9Afi_jVER~Nd?0v$xC`U&F4sixr>C8OzaC=-opgGGe+B+cY~s`+D&+;M z;GIdgTBgOpI*>@k1SB-bxWe9;!{e(3z?nLHK3#!cYixlBG{L87=y||UWu7x)>qYY26 znFXSLwZ+8@(*lI~G`;%>20IVEY@y_y^2$IGkcn3VQJDAWi}hFJee*wNnP(AAi=`$` z$G`SIAcg2LkQpT<-)!^e4?y|AKv@Fs{&@$wF6F38>paPxDis_d#y3N;e#zWhKJSH9 z8B-`b9w=Q1_d2m)d0zem5yeDh>sID-L2@h)8bv`X_iOJlx8g``N?4EoX+&fSm2Id` zWg0tZAFSq!pGI@j+K_ThS0miJRZVF&yWR-j)ZzTOCDU##F}&Y+_2feNy+m;lG92W> zEO+Lq%{5&@MId@?@;?Iz%;Jd>V~YDo)4KTCA+jf5C2p!c*($>r^gl(JwD9o$iJ``7 zN58%mL?s%+lv(r??Hju`_mVRkKrbgUMn-q&`q$E4Nw+M5uNiQK`=1iD<NT-%EHZ_p<6Ed8XF%$~u-X`VpQf<*zX@-&_p|?}P))@! zHdRiV`&>I*5|Rz-f40K$d9FRAn@ibccOz;1@ynx=kW8)oafC!%gQSLpsW5trBJT3Y zKb=WiCg=>>+rSSYfEQx6Pv+YDBRil2W0{QP*dsXnS5n@Vb@>lB&51eo z_3RZ{k4)U#n-D6`CPw7F=+N6FrovPqPbDeMhP)j)<@*ltc_vy+jHweuI*O;vX>ow7 zZjzvCG;|o)d1dsdlX<&wd%-KEr3xM5PpcFfofgnaB7XjCVv<@^6c2*2B-Vfcm`<}v zR8wYb2*Xw{p%V$H0;hz3Q>0236R*|(iq6g+3$X|@>(dL;g^VWc!LQ4!r5~f0acz+&BPgxm| zw=*fg>1_y(36#04B<*g2pVsoVY#*&;T|(Gn!Cfj068BKd8AX{d$)t`kF&fZv;g|y| z0j_}Z=@!w%Pg6`iYv!2*KarH?LqQ19P2%w*e5wm&zVnkfD&L$NKM7LCp{gj`N^T+J zTs^vEHJ}52uKy{W3;U7kOOHVkIQZPTv@t8Pe^E}H{Ka<&p99v*aHS`$#O#R#cxJC+ ztds=UE-V92L@_umH+&Pv*~4%?J`A|vhe|YmmpSq{pJLUe(ZVYJMXW)hn%IgQ(a=PR z;_;jig~?+?VH$$KMD`rjM4LUC2XUYt$}A^?$SayK0G$bfJt$m*B4ZP369Id>1Y1~N zTLo>q!^2LvO?60M9Bt;M8g1foHfo)zXkBirdqJcMy}!4N&$i`xILYOj`Sd8>gL`DyFz$Uh{7<4626g^*rH+5Er;jR>GNk=I%)1eU|Q2i^_BSulwi-BTfK0tZBfQ^kM++k&G?eewVc;n{Io!;} z7MRNExSZG@#g}t;$7Q}Y^(c2}Fi8T3ukH1YJ!_`Xek?+v;w>`}X0=r6qQt|IQ)#F3 zTYk74?y6Y?tgYfvf9XPn_e81+-lTqEQ>Gvda_ts2evE?zyAJqaZC{^yZJlY$ry|o< z!Ck^G9T@nItaa5E)0qd;WwtW9%Tx8!M3vvc-_`;=wr5PN zf$CzQSN!^xHrtEXjDur?qEJVXp2KH{G>_ICPq3V7Cq~PAz4S*LymRXA0oOQ~cz%WI zRCKdcq;ljg!UPt-i43p^+ zQymq91{A-@#f8+h{K!Ap_A1!SHT-XHpH(cYs5bW(YZK~jqy2;>^L!B!KdleynSMWy z%S{dW<9GdHIye8Fj>zLg{TkbBvN#(~5t%ijUBq@_#hS}`uJdW7R1ScYzuxV*=9Jx6 zWe6TEsVUgK1hhHn;{kG&(T1_3vlI_eDU<;121E16wi}_4F(Aqw6b)GMwDXlM`Yod! zLi#2W(1`QJPQ&7Bm^ zJz1>$oUq`Xn{nIUVr6-6xgEc}u@xdFIi|8obJ$7JtHl37JsYV3r_yFuHp5uFXHi(+ zi&l>gu*nU_1D1@FNVd_1t4QlyN7NR`R$FPvitmoFG+U48;}eni;E0hCf#486h~@{v zTT#bhogN_ZzJr%x8aK1%`rb3B{Z|gX*JZf#DqSIzOyxY>dQZ%Jgr6{{HkM=X>k#% z5SR-6VPxDa4*KQ_hyyay_pXA3Dd83q&L+n4^nWVJZaJ_9Bi(cxSsv&y7@DOZflVyD z)L;KdNOA2D36NoB9XGH3`FaP7dAWqh5L0QblH>Dc>&t_;Tt4-ie-bZ4C6MEH?M+I8 zF6GRWTN_y$Dhhtca->1!kmAL+#qO3|M@)pKMKj>*;oTv zTL??YEEu%Bc;d>#AB|CSMG2Mm zwIS!|#8Lv&vMK@}p{-J)75rFd&XhWP+$aJ2n*L^@pxljeDV+FOW7!;j1~RV(<1QsM zp#sPrVKVInCFmu3+;X8f7g=z zs`C31U__`(aq9pS@d&eMY_$EmU=AaHWqq8O2Vq?YSw%AJd%qNowLrg-NGENg{CL{8 zW60$|0)z8d=X#^7TfjHDtw4?2Nim(lF$;76YE#`kOf)lTcZk9}B+GLi9|(MQ9@o#W zqQEZ!GXddJrCFd5=^KJ0L@SZ2)bWIj43Tkh$=GKlHMgXQn(h+6qZ#{z{t-{wvWc99 zBP!S2ul$>d65tyF>M&_~0sw2)^l3nMP0uZrXy~vk9{xJt)T=$|$h(^tP;ZRR27b&- z&dtxtbJFV_z#%@kz>lPV+?1WZ?j#Jj`T{Zc_9Su%tB6D@Uj%;zLe-~jX`Sc5o&A4R z&ol>9*uCqM4d}I0ZMXT5AvhFUAaUsFjRc164`ckETN^(^FJlVqt!$!ul$1^_T4F>? zcA4m>`zRs-?pgaMZH&Hl*W31Y$+q8LCse$A`QZ)NR_JRZ%*ob{3~NJkbAemOO@f5a znEgjsV^3p8hnL(+sQ#rhKR$47zA{Q8u^+R`v~R_ua#vx@j*506RGcCrcO-)11S>?e z4OGL349^l#_`gVGYDb!Rw^l?FxDoA1l1W!1k~KTB4(?pcHz?T>j0_YjR5ZM;8V}qA zV(<%xIs;Z338gq?>sQSDVx2UuGKy4=$mQLssNXNBZ@g=x3xJd7XNNl$38D?}01s~R z9<+mKU>a!bpNf3P%;J{(1I+VV*8Ics%c59H0q?nsCfubT#S?}-t}rau`1uGvRoe=p zomq+EQjm(%31OY|v?20_u|S$0%3J@7IGxIU4j$DD=D+YU6ROw^IN}vT?Lplge15B7 z&QOq_ZcAdC$XbFo3qJ3su1Ns=6P-$z2MtN{3*7UE(IUs&_r<@V_InQz*DI=>`$Yij zYBVp;GzI^G7Pj(#s`_fqVf?=GaU`XMKNVvTutbIx9d8nkc*pU|x_>7fOfX$TqksMj zN55P`w8K%@H5PyJcg~fT81&l<`dtMWuvK*=T#o_o|0b#heqcL&V76AeLEeCX``BTT zbOP{|1})6;@j>S)q8{qnu7g$`AoZKUO|I_}epBaAu*b1@BG(|xECYy^=2CMX(mE;g z!Pnq@Qmo?CbXtc`=bSYc=TqH+1>M z??U|{hnm~l5T%&3_9XAQdJ{XR9jW|k5b%Xm5wyJ{0{s4ymk<=Lws1iwUrwl(w z3?yaUaLEi8-=P>noTOx`ahw(WiXY!lPHS-VPb(1&C2VR4Mn4B1d5R#-mqJtw|Bimw z^F4%7aASaPx7@W|0R0MN%g$@}-@JeNPQ`$tpEN{Toe`m0j7mbl6u^b)dPQ5JeGt~=K1H6ZuI4tnyM@4 z`6*lxc%ih)u93dTE0TjN`=r41Em~T)Z`=wHUK?*Q#woUWQ#-$a*KL8|S>Dphy~5M4 z2Utu~;;fveP3ISwsgheYq`Y4!Ofle;d12k2kUFCAHO)rJm~&ypxVkfYP#>3 znvKm(K?r-V+j(`fE>MPpwOgz&PPdvXL<$uK899C8(LYhS4t(VFJHTE=Es(veYYOx3 zwaEMSawG4Y0AUjA+@4cCKH`GJMqR58|3+Qr$Zll_Z=0M&@0$Jh9TEaL&Uo%~i zFvSD>pIG$XQP~k~dQ+t?_w)?>cKKE$jqS1wGkc0I5>r<;jj@s%!B^C63RN>(b98l> zRRV5#toP>FRvUb|c@_18b5@33*DgI9(6Wnqvrm)Lq=XIQM77C{?}TNHEj_|LTs)fF4@UrrN^;P*^kTna;E94hbT-%_~S};4oFm@ z*zhB0BGFu>z?ETac--va?y_k#e$Qc_3f@gBj22&rQW@u7dO3qGqDI1Ey0!f$`qcXr zM&kY~vz(4<$!l=)S~z}uHhQz`LQ75Vo=I@aF(n*iN)#D=nz7=xW$a2Ijy~$hlH`Sy za7(kRsHB)WUfnKaR6OM%wJ6MoS{TNq=4$g+-%%UYk?Ngy()2e{ujWJ(g78Bx56(KN zMto2n{&p?W>V&?2>iZkw0g$b5#g;W_qbL``70a9IE~4+9CRy^?)c0|?tThp?LeXiA#w_olC?ENE;h3XD6xfKm4t!uFz6aH;Zp*c~ zD(uua%Ae&%Zty|h3)gZXHi+#sDWbr}!xP#FgU4F-6`6E@5c4~MFc(RJdemzi_=S{wenFz*)T6Ca>J1by2!DC55c*1Hd45i zg?GpM``6moxJ;t|+N((UiB5hiQK!F-pYrS(2 zyhMbM-5~&k(oBtyH#`)o+`u~z!KJ!dFmpCLsC?LNKp5ssuaIC(_}!dn}iQ(Wuul-x^>@OmDs6C!`#vYoH7QA3lTX;&3v;& zQ}27Q7+qE5p8CO*N@2BXmK!SFO2GPDW7PKb^$6$ zzHl4$h3t9otui4W-_<8_>9R;(J+Y_(9E)sUD?W-mPA0&2^o zbr_tT?^VM$z9PMpXc38pkZ6fv2vmnERP;TbPewkSHS%WPUKp=Y)$CxdzMjK9u2(`Z zDQaP+5A&J0!APH__F??B+mn;VMTEUO z3o3~*;RmD^<4o*%)LqZD_3K>e$w}Es4G!9zAl6R#xwSux2N}34;R(OD)!T2q!j9jy zR2e;&tq)F&BsVE4e!Wg|B*JreIzE=8eHZp@V^NOn$4z9<@~|g}WooqyH(RxSt5870 zO)164zaAe)V8Aw;OM2vBV7@EPI38Zd9>m&LAOeJZNLw&xI>!=f5>Ff*|9MhQqDa`L z%_yrNP%85F=7q=Bu_Dlht$^N6Gi@HV!TBF0onJ15jxxiYcesAkyrK5h1MJwK zh0(BsW9HJulb@XU`FmML^RH?^`+Wc#dD&-q4MpkbkUNStd#9$f(j$oTS=C+J!^Sg{ z+ORvV>X+2?_Zu_!dgWh3-TT;ZGkN=Q>g|t)W4+W~fku?3z2nh~-Q_vdj98s9 z&A!g;E;5EU^?j9yM3s|3eCG|a@+$l&%V+L^R1;hO_k$-gR(PY{%S3f)?Tq6@EwAAC6PF;*C5#gRdRCzP;Ma zRt8R>aK|-`)^2g-hj*+iN4q3p2y@P{W>Ly-T)UwyE}A}TbTHC1g;9&6#=q(mng%p| zdubK8U5$6sb61}D7u1GTp@}S%;}=`5KMWzid`P)D;}X1nTfFrG6jg}`H;e|tE9nZ-L$6EHF>6b6-97!ct760*_S0oK@`Fa~=U(x{_iE&?K+06}g1{G%( zGZKH!S}N@GMu~V;0XvEPhO;*IPP292gV$sv3Dij|g@Bdt&~>Gp`fgm_=s^;Wp-d0n z?2x`cdL6vAUpK6RGd_fk(>z6`wwVhby#73c`f z>V_syOPrh$+sr@KOs`<=+YQeu%ESHN(p7chp=TW;{me-K+dOur!-H+v%Qv^wJkTx@ z(IpoO>wIo_CTV|#=c=UGzT%=2TfO1G;N>fd%{@u?5+9<;(_sL&ua7k?i^OD&i_qGX zLC&Y?{Y+|S$+5Y2rGAH=O87;=sax7O6wjzl8?kC~-jai@-$Y$LJF~fU9HKT>mdU!- zLsqJcLJ0VFgeu_USzAR|kVj!kyys|@YDKZZCDXhd)~n|uh7(A>CLp#*t0HU_UcHO; z>cx|9Za{UP?f&6}*O7*-QOj29bYnlztLhvpvyVhJDF#Th_EkV%T2>42fZC`e#W;DL zeOIV`HE$=#Pzgt?BDv0qShc;p7I2Wdy!T)Ebq_u;l?{|Asv-Aa*lyEC1)WScnd3%7=Hki-lblfi^z51?e1Hn`Q<=XMvvNVz0w;cxe|c){l6Y%@=pA zwFcH?utNgJj?6Twl(@x4|6|X~iN`=Orm&M#El~&~9R@t5n zoqV(yWkkqWoB}MTF_XuP`oNo~wlgUjpnG@v;l6LwK{y!YF;tHbqGf!<+VjxM4ZL%t z(y2B4qgTG~{I%lA)V-0S*sc4bsL426i=&3+dYhB9o;wMA`AHp|zYf%G89|W~ zeO7^oVY;&=2?1z{B`+n#uph5=R99mAv`dv7*g@Qa{Q*;Nlv``=s=k4DiMBxG8VT@8 zNvS9x49=c#<;1Q!oF(?qQzEK-o-KqPwyV=q*-8Q79~T zdESTJE-do#*@fPX8(|f4IzAAGp7wy%KVRuwyR+sByuv*k*Xc2691E$utn_qo zUu4!v8|qK@9kaj!vZi#cdAv znK?Oh)grV`Q8GM14_hSE-co*%kp2gLd{8IM%A4pF6A{5lY77EH92*MrR`0$PkJ|3% z9RpFU7oV^kIN}*cT0MM!r|cdndI;8u#wkE8|FP@og>p%M@E(B)`BCAcx*P%m5Ex8F znzq-5J!nVQr+b9lv#>+%9viz}- zJ#CIQ$7xbCyey$gx|<+9kCF=ROJ;Wt?LnsxswIvtUd6A#YfMXw{VGnXOlU9>?dVG+gA~?8LH5A(clzGA-WD5ergIDA{qO(|w4WK6dPIm4US9b?!(I*m zuux1W)ZCi%-n&OXT}P-D88M48J}Mw6+13l=F@@$QAJdXE%zYjeSZWDi*F}Vf69{X0 zS2f4iu0c%aJR5ipP!=PmAekRd%)GTdAC0-v^i*Fp`d#!Gb;T-iP*8xDn$NrB%53Kw z*WG>ym$+5ow_i`&tL;gO)R~$wqOISSm47%2-S-pYE))+Lo7s7yykIQ#d)ev*6f=&7~=QODGS1l#55~o*(FVCtW=9%!&WYYnDH;2sk1W znh)5zj}Z43Hxf@ZKxfI;u1$d`*)$M;R-34DjG7LiN4b$XeRjdGQP$%#IYMoVh@#Kw z;_#t9Lm6_je-W(nHr9}*0T>9!Wpi-MhYi)Nte}k+k-zuGE?nWFs%lUhw5x;Z|3Zy} zCsk#q2#U5CCk)LqR3K+Z?Kyc*G;OGB4o3$-&xT{At~_7jSx*c6g9Rii9=h4`Wf8ch z^o0c)ytAP11rPYkG?C?-ug#Tm;&}uogD04P0jRv;>;&Czi6&qcSoNRtAu(dXC03Dl z=t7~Uyp0UIQwg=0?8keu%US@sW`DZJ^}XI0*(7*yGC97aHXu z@X&4h4vpN@h@^rxh~pDSl{On*t3JX$=`9Ywu&Wu{$;IUq=Ce>7h-p(m6Le}mQ_SM&OIUh4NUY#SnnmP_M zT1@hEVj;QEYVNJhirQ!qyiM~Z^b(CW8a;~FIsFITAk6*iVZP03u#i5lq}fdU@<>!b zvpQ!b;_+mzDudJn@6CJb#J_)vHG=`Ry%wGg{^o!K6nh$e!2ybwm)O+mB)E5xqSJcM zjcek?S({~DU6lWS!2tm|VvaR`)kX;omGM>P9S+CNlBXt{^CFr7w4zu(w<>u*mfrm; z@lmx7DTT^vB&20U(UZ`VxHh+Gr{WuGD8Ygp+7(bKP27*V>TAxYDQj(I-VnbnXY0y5 zsHUKa`xbm93;kPv3{y3~^>TJywfQ3q(O>2EOL<+$xHcZfExG*d^()8q3h zRkh1f+H8S5?U*LRXFmMx?1b$Wcs1xZnZj4M2Fh=yM8z}kCL z-c!vSDsFR2yS{80+u(N~XRs+2YJ2n>Aag-)>~AN^W{Qg2sG%r1r5mqlYz|dtP}|Dr z9c2lhaN&HsnZ2N;CPzsG1*0J|I4MY3YbFqnoD8`-ljGoOFsX+-AA$GJEF6lp3)*q~#cmOyrWrOH%I*bT~i>k0NjOV$njh^m19_*MCNHQ=u^zq~6D^M}mGV)zex_J1p)A9hy z9MguzdMZ(zZx^Zz#F-9B3}OXc)_5_?+0e6=E&>BvYD1&G&wu9)Ch5|_=Kdq`xsmlU zcC!8aS{JMouWMzHB55yl6?G14p?04;0o#ZqmO;V^5>dUgA?~$e9+z#6)}xhMfisi_ zp)ZrvV#YE8qy*4sO=pJkqL2m6!LIMQdgUc-L)c6vdZ*t_T}->7ng3e{RgT)v)VGer+H zVoA!&o3(+|V4tE**QdMXPW*IgH-+8hQJ56&NjGAlR$}@aR$vwR&jw}|>V!9kT)bx) zG+ui8a>z+K6%;TGDxeY)yo(E3JAs)G9#cU<%Qq)sM`ERhJ{Y#{eF$uczJ#n~Sj08; zXsQ#YyA+8rb#(U-Xi3GZ302b%^u-|jsxx~bY=i14YC`yc0T4q%VE|2m)D@-3IA~N+ z@3|#q3_Wj5a$nf3q%WY}?fMzjbQA5#EDYeG8D&Op>-N9b<;ownfS^qTME}dSF(@Nn zF0?$7WdMW4IBn`NLQF}gh{ty=ahWzrqthi>Zj1D_5}UtQ|!g zTqHYscve<{1|xzI30`T_PT?N10~MKbe}WX}{QoUm8-Y+I3y zdFQMZLe6hM;+Lyi_Jq8=%9UYm4(OJ$BZ}*5xWq)AAW2D|iV)E;i>*}@zE2G%&)Ukm zawyARl|jW~A90^!TAm`6pqFm2R(gwlaPh{u!Zze6#DDJ7L{lG0L+lCNTgH+E{GmDV z`^dMF2K7w&k;L?3uyf|NQoB{Snx}YNpoa)PPDh*h0v9W4yE?_g6}xfx#xCksg?M;# zJP&0@TCe!`9|o1|@!EaDt|(D$@8qloE-iQGB zNl6rl5^$2!q0y}AoyJ9A^=`yn(|ScMC$pS*RT+Dm+`Bl7hApU=*GWZO-IKKc{@ha} zR_4*TjQtdo+Jh15nInCzW)HM->oSPnGeCjW0XsOQCtL%eL<;KUdzAB+ZIh;4jf%Lv zyNQ8eY)3Nid0rblVb~Z3;}>pqQL|;dWeG;2L5;+v3?d=~aq4{k9@kU82^Ag1pL!Cq z)ga+jjF4&yTJ;iJRWXAszE%;S0EM3cz(mpDB01&|K`m)&`*7Wmo3&_USNHu!oSs%1 zu@J(Bh0v~V%PJN%NK%_LN@QpEz|$31_txi+lz9QS3W*@NRoM683`83de090y3N{S9 z`(c5_g%u>#NDFw&@x9U9eczR95SNv;JPkYO#9I8HsLJ4hOzFP+nbUvaN&z|t4KvdV z(V>w(vPLuN#5TP9Icr<(xBo2MNK{w;72?y9);g6gfFWI1c6tGG&t(f4c8))(aW5T5 zp~k1|9q{70@+ZAmJ4-4tQP>euDhxP^iPv~akB8l&-u?J!y4l*Eja7KJ?^s2q&Qm*n zd?nA8N48n|n*?`+WEhi#7Y0r_1pG}@6mVAfb79_g(l#6>md3s&T0IZoGo84&q~jq! zU4S}kudg8h9Q$MoOGp7r1hk?_eMUrlUFF@)oaxh8Q9j2a${-&WA^T^$eVwRJxe&=M zLs;rJW`!b--saHLGgiH!*8NoL6$SHd&%T2NCTs@}siFE`1&{wlclmai?VgPwAk_+p zUN-YTqMm-jNg%A+=?Ur*`ib_&)PCK+uioD~`;cT#(mLlaTwjD_fgL=NFOZpysIr$1k@NhP;ZXvomKd?0S> zQpm}f;aWoN=v8nX1dfWfz7%vwK)3m-A?e9TL$f!K2^5Q~O1`KeqY8Y-;dq(%V5dlB z4x5iF*h8DZ5T-@Y0Q{AY6iNoEh}swtSc>`P5MRc6lX zTk*8B_6}iafDh50mQ|#4arGY3q=Kl)z3wG~kEol7ynHz&3!)2Prs$zo@t(!g;OWgW zXx)v9q%s9k{7{;WOYX~l`^I%sq}}wFfod`L@!nsbSY9yZP%9$hGTDDou1W#85QpO9 zh{TI)Gz}Vyd{LnxK}0b~)tHWsPCu9*OJyb#f>!FF0NAx^>(KWH%^~lehYPy>NJ&P^ z6PsDjJRh2Ye5 z4-e8&d8FT^SM7ae(jD*+{0X^^@c z1tBN+#o|9^lWN2-m`)yfboXGQj1wm~EgFSB3&_o&XvFosS~ELUzjeHM;mDwr4SS95 z_J~A~h;%kB*GE0={M}hbcWy!jVZN^hn$!A~d7%F=IREM2Ud5z=sb=%&#H@T2@^W3+ zH9w~9(t68?*w~d*w+yoyR;^ox)39g~4N~nJGhxKp(0+Sq{t z@4B|XRf{z4#`qz{Pj%@3BeQb~mCl00rgx-;d&N zH^pY5_UD43dJwGahhW6g(Fgw^Q~{->NDV>tze!h9{})GqrYPW45Gm<;i(W2y^k%w% z1C5=&Q}svhvG?gl8&TyiDZiHc9D%9GuSlq}!QaPw8U2su@Nr6;G5n?`JSHH1LIA(= znScU>9_LvE%Ax82*`O{l{agEqdrsp}x@D=Xq#?DIq)vnwi7-L5xnEug)Thz#x8eB)cm|J0z=E)SF7?1D~pO!0UpzAZXNAJ8(CS z{M=EikxaaHRyLc)vAYGtZ21mx$}?O5oZBkQ3N?N*JFov204BU3HzRnd2|s$6i5weg z{nU%@gdn_Z1omw=@lJg{_Y?}^1?7Vy zoSpB2PQWLp%~^}4Mkk`pL@RTpuX3{DJ}X`N^$6`7&`CVcjoCo!n<56 zCTgu+e1{X@;q9PI^5quaNl$725vA;YSCWvP6SNlZmD==A;*ww`E?fS&l-@O){ zaLG*~yr%QYX08WNl41D2_)~;q{k6GP)2O>uH~r;R!ovWrWvz*(o}h1F-Cfr7yo%OgZ3ki-5|SnI@piOSnl%=|^8pw7@Q9z_6io$CkvV4kDrp=sX2x8;Q^&!4}Z z2AT@Wchk{V+TWR#EU$NilT75_U|+hat<<93R22U#k6R+DZDPnumWNCsIvEg%nqT!4 z#M_4Z-&qBgsx2c~&p)Y4^F@w5@~hGGz;*d5P3*h~lwo9bvc+4w<$#V`hwwD|kvCI8 z#x6pmK*LX~|3KvU%Xb3gzqMn|-ziUOu4zXB$|FtBigK4(BXf$CIT$JHdJD04x6-+m z(P7JX&Q6!8xZF|>)tYUg3Ze$t*MTRfXe3h$ucDI;r>XO;5`$1ypkTP9$%%5P54E(4 zSfLTG4hS<(HDnO&VVlqk3a8CDh@5A}-c?mA9C6i`o*{A9pMRq!yA}|}5)?}5V z?JLvWmamsmwh!;tDK5n9r5Oy)!dYO^fV~{)}xt5n# z2-Sf`n>Fk2l;`?lVWm7}0`#$qO%3!MxmAe%&z<^yGXr)MN=qT;U7#{(m6zj2d>he;8fR5%*o%VzExPNh8m)T2_K@toB2 zZ>{T?XppJO29eaCXg*06pT>C-U?0?G8Et57gL353<68SDlag|DYN*&n!bqU5SsVCt zdGmV0ouUaxsiYaO#dySmtwy0TCv~XxQ8U~mIz@8nUm)=9^3jO$f@pJAI}SSm?yEv= z&N?$Y8Fn?6iO>f=NxBw471h)FYoo4<3>Bl(*i~TLx$=LAs_OhePd+d;PBAD1R85ng ze~Lonpm+z{+N6k~lsqaYZe-osYSap{+(-`A(-(SDk_l-i`^N`(sE}z2$KwGfIZzi% z;PAhFL19%Y($L#$e7|Do%Srg)Rk6XmzIQ2`Qj$2v9%K55ni! zGB#7sBnqQZEI(QhNm16ej-{tBSn(p&_wg!*+X_}!$`SiUm7QM+}pv5R_XZ2+Fe1) z-LIPWgZ1d**BjWhNop^dk}qMNX1@A_6Z;=XiqqbmP%L^B!b`;`R~MW-No^JOJ%0%U z{TPV@0pT!utCIu;Eyxhp1DKR~&=%_`o`Ul?hvMk)aP*vC<}x{W)j~h*Tb$AnBg%@? zg7n1&cYw=I1@+*5!rgNo@G@IwbXlO*%g~-LelBL-)(|b_wu7j!c|>_&VCd33b7OFatJi{_ASM6qE$p_0mVlGom{b174X2GQf4{0 z>K9A(b7l;cA|_CT)@*5>iWTd(1ELwwm;RW({_31DDrFe_5~-@s=mP6rfI~mv#WE=s ziG+#$IVTD3H`t266ep;A^XU>2@S2wrLiKM9g%)uD5OqvhRrgS1^wANQ(&M)&W@G$b zImg0Pq#w1$9(`g9TPYqXP59k)NT@?sKF99r9o0%Id2ri5A#D7HGIEh5m-ESnwWH3i z`i1&I({-~WSdhXLO|eFz2WoDaMmGqPqFTVsX)f7*oXY9ig0r$78vFzL{ZZV6bM1?c zeUoRGpr;augR+BrDW5Rl3BzM*BIlu59+(fY)#gZa22x)*)-r~6um4GLA91(53Wf2=Slt32(puD)uf_u~S;49)gRqXzo z2hPehXbDeUT2C>m!Bck*Ymi}#u9)_(opnBV?2WYo8#BVy**CZL}}Q40r#FrDj|S~?-Z_-1EI9Wxf<>opPYS+kYt1r! z?1ZoTA1rY4X8u=wgLN)z&DYiS7{aW&Q0#nQW=a2Ify+96n|YKnszpwF30`WizwP9w4w4b^pyw2nj%vxd(R0XH@2cpFiM5C z8=4BKs-f^X$G-F|V`=dO{tK0jhtTexvDcw}fsSOm~7!X}EiMuwr{@()N*aQ`<*Kx3%?rhqfg0W`Ff(a<4t$6rnf zst$GqZ$a4ui$zVNsh0iDo-sAA&}W@IG(%_=S-@Y+{2wAz&Kyt&MS7&slYeK=YHOKb z&$dgcf=jD}wCF|KrtL-@A1{YYrwI#9uD3jh_Lgy8slQ_Z8a*q5vvmQFu*g*GG|1ob z2(Lp;WF~5<1n&~6 z+rrCB)7t${GT+hscQQYqg`1?_(A%sgU!O|7UDOk=yZJ$8ue7wZnx-aEtkci7z#X7= z9vz)TH`|ML@b}z2WE|Dvs>ZH7UfM8Wo4j%I!Nauu|icCQ-gmaj6E zc8_aYxvX<*?25QHhpKw($*r;8{C%HoJBz*&TkUuBTyB@SK%(h)meX)ig<+uAESes%Ei?<2$^6`-fcz`Y-KgJdHM`_ z2pwJd>%a*jlA5TxWb63PQW=n>&hbn^7ws@A@%G(0bYVGaWB?qsL*OG=!J#e}4T<}K z0vra_Mg|Io16g1g;vpHHbGk?&%jx8nYR3!T1B=M$fmW)%dhk=G`s>4+rUW^{?{)OW znD;EVR1%nqxLI%^`}&&`eP^FeUM{LDF1XpVc{TS~+xogFi|p}2C7&mJce?z)S=CLw zux*obe_8d(vLWzQhvLni-uwdj`-8{ohc|FD^LstJg6`Q)zWJ{3PR(l1Htj+2z;oiB z^QCv>-`+49ul{2q@`chvjrEn*@2vMMm8pNEe=xWdU5ipY8lgg9>XZF=sR;|c36P?o z-Bdsg%))^vX7@wGYBdl0y9)>W|?lM`dM5W6MSi==_dU{{?jP@+`r8_&#|m#*EH zm}y#Yu($0H|uR!fX3|~~g=HiFSBKBR{ zJ9|X4GEA-dS0>%P=biA-`uM}NTlF`de9Ro_GSllxrfcLf_PtdQn##;lw_dP)aj@}Z z_nm|5p7rmLF37JD8j!DO`^sJI9aYu6P$8nHDF}MKcB&vOqD;Nte+4l(^*dk5s3&~P zXf?X6DB{tOQsO(*8u#AderEgOR)fbT7w-Z!J_0HoxKXQBgP&TY8fL{h6m)H=_n(^Z zzR&|L6T;E*pBiiIwE;1U^jzNTJL(F#7RbDQ&n)PETQ6I6vlgPwPUC%N z5^FNE10&uy)K8k1Y9w2XJ$Q0_4aeE&_XmP@WcyyT@#43v4_6s~6|^{L#~a4-6&EV9 zkH&fMTi##~5*YilBY0PyeJ@O1%?uV`m1#u@goy%@4j|q$nn$I0h)@f+gqg|rqxd@=hh^!dkJ#c5N4{NU zBm#gJla)0FPx72XY;0^MS|J_o{rWU8DiJzDkM{pH=?3*_x(&2|XKhI|4Uzu#Ckn2& zP7VN^4*uLkSf{?D{b&8R0<(3MyDEsw0!pL`^F_bc=M{m+r`Q}t3>>H36Jp{PaR|v zc|BW@5Qp3(xA6FoD{$tt-d7uaiOd*jEd4wir{Zkfo(br`btD0`bm>HnCPi0st3HE3 z-yNt>7IWzoLIw-kb!v={=|(q_hQi}o)lq!cCQP6}8Mt zJJ9HJJhCk{mimu!68G+QJZNp(`!Pc)gm-VkiBuIG@tYnewymux+s1sD5O$fLy}JbmH*a|pDj4g- zR1Fb);yja_p@Q3?!*j;Y_~1vfL!Xz)f8{Ia5p0-hU*r4szT=~5U|)2N7fVQtotfbJ z9;E(vw&ucASr1gn_Yk;0P=1Z9Y{BbZXx;XfdF&B8@*);Yii$RLUksev=8f%ti z*s#4}b-R1PeBXkJ*x-#f#V^$RmPOCC^qAN$5^Cwu7*2n@H>gy*(=9{%{5|nBy=Q7x zmd1zp!n4HfDy&n9iwy`2-Et4=DDX9&^mNDzERx+w5K#A9^0Wsc_y^#`E%-X&zF~%zp+Mv zaSJHR!V5c51R&iZ-hH0LF%ixQ9hvWqnSGTs+gIRjKkhY;;reWu_4mM~X0IVTx!LK9BGIHJGNa?`_UTM+-s1s}WCdVm z<6OHpMqtZ91LJvHAMao*0aEa1|E}$yAEc!JlZmqLf1JbmPl^KM|HUACS4avy*^JPO z`V)Vbq*bUtziPJ0KQopSY=`^_NTiT2@{jx}RA@*3@&5;pUa52q*m$wRNt0u9jG2UxMn}Lj7A> z+oC|sn-L+4K#sVX=yoTmpS~AmkMVlhMKh94+RraPHNYz@TeC8JH@lnfeS2g4Qe9kG zEl!sTHV9iYR!$EpO+aJ1$F6_Ge@@$*Eii{$WqEp!V*CEO?HdmG&Z%I}Ri<*g|5)Q#^glH^In|d!6(;vW za54pbI0Y+n`jOV!qU-~7Z!p8!QC2o^ue>kR4&)d3pXZg$-P@<^ zBDS#3z&R@6ud9-d1~}+?h^h5c^;9okz6`My@8hlA=ypj60r0EA32-j%+gTg+qGN2v zLb-S%Xe}ZllB$=YlVCYGE^T2H1r5ifiB~J6{uIjIy3V}F1W9&%$kDb8jk$exE^7x( z<5S1IZ&h(w#OHw>R_61)8|(S)^2E10_QsGp)Q4NyIyCkn(^M9btLCg{oYn=RFQ7Sm zgDBXeTnR-$@6fVwzMR=L-)S7`Ihj3ArK7GW`1>U&_#^H;H?W-WmQ`_oyVB!jrPkkg)dxL7S+B9|nJdxKv=V8Fp{ZYIx|K25TEw^a__?G91%( z;^jdYvmfn7e}F;o9{mvqFH8JqITM%6A+TIX!P82(e>3(n8Aj{qQ3uT$j~+exAz{ZH zxT#KY&AZP3nLzPh5Le~S@ZzN>GjH2-SubOImtiakg+vdcIo{ucX1Tanv!S(rdbs(` zVLiWMbFwvX(cZ7}T(zFwH@cE75W)n8gl00vBZ+-BT|s@gnWm<$Y8Ohx?+FdX=+2>b zNC1(}9Gk#Mm|pjZDEt$v{rPAWVF(bF$6M$uNg7QKU3P>L`V|?sR8m?+6eZyi6PeQK z#}$2cJKs;M2fXq9#Qb$ykh3AhQb!;A5s;Gnbkj6O!R}`J;qq+Ju8#oU^o+y{@-TpSI*M_Ki+8aeZ#EL$AHuU{XDVi!& zo{L;^R*?GnOY2KDG&LpqvrmrH&WwoIQNPk753x?y(W>t4}k-Hyhks>Z-65)he^*wf_npv2rRWb5GG z4_W5s(5YHC=z~f$A9?fRHrNZrQCsJ zyi?$&;HqhnLH4#)R>Ch(&ZeKDBNXHQ$)?u^2kc^L(`(`>T=&#+7pfff<9Enw<;KeG zA+ZK&4FE}NfxcOT$%(mT7#nxZN`!%h)ywPUTD*x!c(48#CL{tI)M6>40Kfo+LPl}zCJ3VI*oG?OKbEy z@g>i$i4|6bSYuRKb8Uy$DyUV-#dmn$b!;>Pk1U^%o%V{~#JSK0-Hbtp?oiQ_sDuY( z0v<4Id?hmL&<{=GVLtd!lLRrk)QHY*n0D&t;QQNdY)>-dD#;uZ<_UR@QRst*Jh$9 zZ2#%*8$)wn{Z3E#7s6knj2+&;CGwXImXrQyBhWZ{yHMknrx=yxWCHEXN_g9X&=isggbcCm!uT z+qz@Ka3zWZqncp9ME`PBwD6U9LG-r2UAF!ap{wzR^do?YyT4cR+H`h(7!EOm^w&7q znW)}0b$T@Gsb2%)QS<#*jUG5PZL_X3hEJgUe797 zTlp5EWShMD52H>p&1>KX5%i{0d@!8fdv>)s!@~@(g6IhUc>kB1tDh8S;>J9?b}5H$ zPDan1G{hp<>=dqv1IE#-^$MFl?UvP_=y}wQb2r@*z+MumLA}I%cIREszC(Ud^y3GO z8y6a2=WcRoQJHmeo9Dv@j>~IqCo^hR8bVtcj>`|yYYSfId^rP@I8OJN+qgLtD~9g3 z9XUwh;zz%Ret_Bbdo~0@n;s~E)2nR3HO!9gf}EMY6i-xyfB6O9*4lwTEAEru_7U4Y zQxml7nr3W$h^p7S*V%hDUyvjM^;QQDavm#$$#yBIC!Y_mnJzLF;!Jh`em(o}z%`9z zG-DA{CEb;9y2SLe%uE@sFfx2!-*RTEMT&Y)eARke8TceDy<_arzFfP@JnUu1>$x~o zQ{?Q7$Ba({_3ga3_U@4nYQ$Rx+bji$i7Es7yn;_HvZoiz#rvp!9GKXT4Y)f}%x)X>=^oA{s&~d*g1&XDDeN92UCnO7ex5S#KQy*9|cHdOk7%A z?1p#@#83-}$yv(`eLhM&zqM!v@6?YB6!R5i`3u33%G|pOzKwO9NrW=0PXQM;d&gzjSnsQA$aynuWJXwngA8*&aEN3(Y3RhC-`K+g+bc z@jIh`fekioKAml8?9*zL#u(O!MfrKwA^OKO5Z4%R4T5HcK6FPZRUYMMnA zgBe?(zLRx!xu&SP`YSB^6K*(;21J?`1u-|(lq>wG!knNcT@j!Ik*2Elb7f;(_|a~-Q!7Tlqe zv)@YZNm;qKm)Br$YsKuSbt$X|4_&&0WA9|$mrQH$x_tEy7oQ)?+AaJSEEdd7#I$3m zxG9tQcadvOVmk^w`8bwhrGZb~?YiTi>+6iY?|^Z(OfZ550i7BAP9Bz>UusGUN?_7? za9J{pYkXeslW*MV_VVPlhm)>N`u4z5%4N-vS&+d!wrNCGQTk@8RMJuyQ1z`o9~T?d zRE7a!DW@pldGi6p3laJ=&qe2Rp%ycfnOB3nwb-L5(1R~)$x+nUEWhA4q*HV1)-ZQ9 z7X4{S{t30-F6s7<0x{kagDN!#jmC!baEAX3X|@Z09irA^diNN(I=EKgjf$V6+6&1A{;m~~a1mR!A4=&goh%rT! z&jIieGM*P22DBOA#}RiX12setg-R#)aAOcOM$<*3jNa1mX=jP z?Ilj6f5BQ8m)z9kNCoBT4tsGDch5p~>aejM3vk#qqNsJaysXsoh}N2AcpIDavk1tM zwSo!5VVWUiA_C!-RJR70;77r5v>rPVu+bHE-sz0;s-_Yyhq?dW77HF4)QQ~HMbAcl zzCoN|{v9QtCS!Yt7M4U=?ZOy%DO|D^rahv{xi6L@s;8OdKJgF@WJ&l_&e(5=Ya1FG znr`p-zylTcvHFMhM0E;q5oaId1|aiFQE^H)N&es`o#2TniV{+7;;u$Vs|scz?G*zR z1bohC20qzRL+fMLE@F^k#af$NX~8vL?nRJTkGT;dAd(F9?z@$T6%z`Ppg5eysm_L1 zSj>$(pe?|T0162qL{>Q*EEkuJo~JJV?OL}FMVdP!3b};@Kn4XJba)a(!+oo&>V5q> z1KX2K3f({$d0j(8Cz3D&DSs7R`~br4u(%C3gUZtpA3A*DU2~NInX9Dx99u{#!%H?| zIf;NMHo$|>abOox5diwY(o@LiC<*0a_=Och(4!H(ML<#%G{TN$ZE(2zCi#j@14N~g zaAU|djD||&HVY*=0~o^K0=K}Wxt{b{$ZuVXj=oDk^?sN%lf7bLn@@A*4Km6!Mu5(Q zE)<513gBTHkwo)Esk`oc*{Y4s1b#`alN5DUpxPW6EkgL1ZtqU2F7V{75n_2iU?r-L zw--xsHxV@9TS+wBC7}h(Cz$mA%YjH%u1+gXwIGJ+u9^^k^Cl;O+srOx%;0O}Mw;}m z=fjkYQ~`h6&cO5*>a;>cPj^c#*tAMSE`_zdd7k{if<=*8?7T_~2xR%QCXrU@ZbTiq zuXXO`vbUC|E0tG;*cg0P&|8}jwB+#V^G+@v zDFdQX(fxdU982h&<(2|Tj&ukUj8p->DJ@&G-gkKT$&k`=jZAE~;`?JXwgfJ%A4cpM zM=Vhl_)DjHkd|-bSioAq_Si&;L1ms4$VthA70MgC0OJ^}BgOkmUY=4p9~L&n;a7gE z4}ZfKCS%CO>i2G`aXhzKW*_wCgi!DaW;K8-nULkx`T`0Nat@=t#7pq&hJwkMwMW<=+C2qxDbUtq+2ejr z&Xka2C7Tam_69(`@%yDKNYE8d0x3Ireu2UflH>rAotqPYVJShzZUUM_vfvk@GQO^i zuiYc?#B*Xx&CUt)rAnvISQOc({7KG7MZzmsQM1R?bUqSgdlMktVKMu5Cl~!Q7}JYj zsh;$6F*fGmQ!gwcnY`#&VUpvi_$uP+l^j>S`QzVse>L<3N8F}q%FC1+x3L=2_mI&V z2b%W-T7gYH8*3CKLPBtZp}6ed#Si6OegedqhsYm-Ux3>!JK);2y9wv8QWHfojr3TL?9mP&+B z=r3&pm zi1JNt`|ErI8`hTVWqrr{iin-JM@VyuWfQJgDBa!{_h^4g+1~yRNvXz(aXSz0Gbh5d z)?fS)R_L$Yv8cvUU>%gUMnzdY^jVhLm`>3mDinI|_@Ig)kW_LTz%nVD6%Hub?q-gO z24aW8AEbM92o_Gj^YvXGQ~#+qo*yXoMMQ|iQ8WXg>|YXUk6~^1XZ%bB6)e8M6GzE5 z`VB#356B*X{j53syA2yRS_9eRbRyA(!+yz}F3p5aDC}?O>;PST@B||VsE_~^8lU?P z=LQR&hJk%#2{po}yB0ONU~AsQ?No@#c=gkoFYOWf{vc2X83CP=KDam+EYKzpv(twn zE#9YLBNs@`KrK!{70XJuY%$s49cAqrAcB`3h5jfmSR+^Jk*b1rQ$Tk_e%%S};+f;d zw_sGj=sM4C8YS!iHz9@#;^6gUo+iMM5Z72TN{xTydUh^1PbO!M_}mUTlzcd8COdZ* zm?Ovb5-t}U)=)w9igh*=ZXShqc@z|D5ctB_Da*}?&1TbOGx+o4Pb6TrOuD{bk^f!y z9zcnGAbJYH3@5>vsy7dR4J0j(*l}*;rU8L6kge{=3bFI^%Qz6yrT8wae0rL4Iz=yz zT-dsGD;2$Dpo8x{ZgIikF3X;tp1!iNnno|Qin+#MMQVL2PlYfdVDEeZFY%qDJ3uf@ ztM`hr6oCcbX7?5YzK~Sh*KsCJ&{~claIibc4(H-P9B`my!kHG?$OzOquXYYg0U8o< zHT}TPqT0&^r_F^Ae}lMu9~`PmStUCBdJY?pWA_grTyR{!QposN!;FB`Gs>wes;K%* zzwIJe68^4dHRa`ru>>a&Nc_gR3BEQ901`H)nM@?yR39*bGp+&Y7L#lvTBSB`nTNBe z6U>ik(w(r5)~iSDfm70+k4d-<%Y>R8dyahfcsbVTwrG#0K@(gLg*B=`e-!ZmIek*G zgK}TXG)4a{eITXjCiJ-6WPF9NGalRR<&~QB=YM7|=sD~``IJoh>wkLbj6kiFr(7}_ QtS|qN-8Q>KmIqJ$1Nq!T8UO$Q diff --git a/api/_images/tutorials_nihcxr_monitor_api_6_0.png b/api/_images/tutorials_nihcxr_monitor_api_6_0.png index aff4a6ebeefbce552f0481bb3f02292f2da0914c..a84d09528ec094a0bfabea3d3717f0e8a3350a47 100644 GIT binary patch literal 39262 zcmb5W2UJvD(ly*zk=xSf2rDCT-p-{Bym(J;- zP$UH?6mc;nIsD7^lbkc~OV;zev8TS9ou`kryDdt~+7s>U=IQKk{iwICyN83DtGKX? zu$bV{o1UI%4>=JLm;d>Ku$#NRNcS@a1-Qro^d%Dy6zZTg@@vS>I7q`sUgOpCuRxFyY z@4OB(7GzdS;89P&l2Y^5pwyB7*@WRoerp^izl!|U(-Y0nK>j@;jK~1_oy15}fc(Z{ zuc;)%Zyw&rq;o8ytmksC6crV{@95yA3_F){0{Po;4MAp`+3vinhK7f!N&>TbF*WS) z9adTQ8&BHqBiB&x$CdaXoyM#w&k9Zi_)7`E2^5x5ZKE_M) z$C+b3_xE40u;4;5F)=v>36T`R4J6*5JN{q{ZF==;(sy^BGveYz1;xd=6&0Q(ZtInV zwMo1e449S>5D;iizLagUwo@(Kb&g|y1s{j~lP_;hZhii1bgF-h{(S#0@14KCWO_>Q zuF5S|Z;j~ZK6C=AnS{rRD)e(%8s(RHO(%Tw_TJ`b(Z+J<8HaA3u%q8c@7}%3D(%YY zR=0d%F}15PDe#pX#J!d=9;7K-Vc9Ru1+OTaZ`L3Tut!Xnkf>9WRMxx`aCC*|cc+JtLqFw2vzJ$-#|Gi5yn zJ$tkYOG<3V>ii@mB!2sqX^PY*@##PPE&DJdLtgaA<@t7kNoa{)uzCiHxs;ycAvY2+ zQOazwZ!I+;&NW)`9>0g`$A-?oWYfX?`sLoKycf7OXmfCGex8qyk0=NJ^J#zo;Dqc3 zKHP7$&xq)zv-7th`)u3Y?LP~Z1C}V~y5)C)lN{s5KkMB+JOavczwNtK6ef-}aDH;P z*3yD>ZTrURJEg{BH%g~GiiL!PMm)L{og4m4Gcqxipxfma>u}k7+x925(n(dcwdrJK zWfgWeCKqbvOR@R+WuqAavl}#si(pshz~FPVX|G?u-u~&+I2lU8eUx!iFza%vXlQ08 z=b1BS2Ho3)hU_w2Ql(tjQSbomS&A959@DzIx=mFLt3txn_%Nle7s4K6elx2L122ET zlUTTA8#ujVLr$p!<$KDn;%UW`eRMJ|pHt$u48#J3Y*xntv=+*{lt%pLOHhI)FC)xc zUq_PA$zW2fg41H9$5=7*WsO;4Ht*=~obz3*Ur&|u;%_|?qOd+5qD&t`zFIrJBiyC5 zB^a_bJidWDvfI>WWYxjtGxAx!hYH;(JM(*pV(?lxZU3`tCDH`Hb)cjS>uc=r9=Lp( zww2>}$#>aa%*K4J9bJ2Z_|VW0V!8S)pOIS>fByU#3Eui)9{guYWqYXC*5=iSyXHe- zi;ocp7^=5_wFSi6-?;I7Jb3E`{M`C{o@IGwF(iAoCx86__U+rZL1UU9I?Mu*Gi-g5 zvq?5`c|1fcM0i-a7QIsv%}z@6SoikY+FEklfoL46n6rGf->m1$moJN}4m-EVz34rz z*n-VUN`lJ2YJM;;=NY4SNb5!`WYYB>7DqjL^r*MD7qx5_=vFg(($v&c=6g=Kf2)L) zlpcf%3HGT`pYf?~O%dA|p;!1~s~vt?T3XIqZw_Vpe!b(|xU=?cdiqy<$aZ*fSwnjG zL8a=h03nN-iuL-3A3lCOE+XQFSIX%()$7a|3tZ{A$1ZvI-aVQN@!TD4B8_$3FRI3a zJg~^EQ}l=5aLlb=cXTT;hJeZop@QXdG>ts5SAhb2)7Y z?CB+S^<$?_MSsq{=&`dpP(G6t@bbs2VRx{&nC(YK*P7Xaar-W<6XeH}l`W~P0+9|(iKCuz7Sf6racPVq{F*V|LY>NdW{ z6nn+KdL>m;TgxVP{ap6s%1l>&MMaWO)kuQAj$(3DR8+EMZh3j)^z^in*-PJ&@6U(=dD@&yE7^qlO+&uK)QUqierPj8OA0Gxh_p^lsEAR^lY(ux29G-afaz4dKv`YF_V)Ie%eVIroc11X4m~l5=&58oh2)J7*DrZ3 zKN7PcM@}*29gnb@4^gI>wn(H0gfu&*( z6uzC<<=Vf_@j^S@n3xziM!o(0YqFMRW}1F}fB3uV*SJNK!~B_L0xnYn||1 zTiST3VmPIJ<4c7@{bU(fP`Kv% z@t<`o+81Kk&ueMXN=iyrR8*iob$7SO&Sc`och{tqwwKhvDO#H;jhwe)5rKlU zb73rd?0a4qt#pYyM=AZQo;*1YslJuNt?sk^$V@91i+%q20tYzLRXKV2fY#oD0S`!h zFX7)FWMygl`N`U}#!da1$zJ3VckC@t8Zdp;kt&uut~?xlB)Ga|eREqXV9nXJe$|kQ zifZF~Zv19u$QOtF7jK!(KK1vLH;n}>js{plATe`(L1tv>$NR$g9+>lPOpMW{tZ?nZ znU5boe*bCtXC?SZ$hMe+gM)MJk5>YLLAKcwyIYG^ZDpTQ#B=CwJw|D_M~^?mo#gw( z9!|}U&-B0PUIKX(J0Zjzo{|;bqm7vtj_f)0cAaA5WE-5qD;5@7US5(b(;X*xc_T>< zDxhEAD!1!+Qd5(T7!k>jTaYnxxuHg0B@fUC`dOm&nG$WT{ z>F=<(B{Zxp|D&R>)Tg)LN_)2Qo@Q$-r|iqFfK0D`6X)^{sh~J6uih(}?jQLOgo4K= zYR@V908~OUIf4wHJ$p7bssHryV^{#>j0`xyw;)P;z&U#G@Zmd%Z3r@ZSbTyxMhpyk zQakgKqvM>${3FExsf*lxJRKb!b-%kc1vtwWy6`K*$D%oZ&>BEC|0W!<2&zGN){OWJB zlPCJv)+W2Ry)tAIuUJr4mJbf$W3H;Ix>)_-#6|a|W{Q=$;xb}z^Y?&D+P43!3^|q6 zqXvB^WBX7Xivdn`eLcl2HG)>N>&*P{{c~;#$NC@T@YQCvUTYpnOgYs=oZjh! zxUZ+T3%G;FP(MDOGlIB?4gUPO!GBn!470Z_5Zw8at;e>pVO6Ah;%;B@qDH}Z*Cm#nN zgAczxEW+9I$&;W<2D0wIy)W_Hk;b#oY*pz(78 zLVjV>>fS^|vDCP?Q`S|DKxHy&=B3T~vXx$aon^??3P!{NKC}FL{iJ*F(jLu^9PY4sjOj> z-^9cO*>wR<4=~cpYt6)2A-jG^z7K{hyY`yaw+H0OQQpcOp>$%##wZhZtfUffQ3KWw*r(a3hu`OE=}rdr@6p zOyB@fc^FB*VruxfxMb2!nUwR1l8BKibGA~*0_WGRDXXGvjK>&>-TKW zRy!#(3(LA+qlm|BUW)tLkp22k0H|Z;UVR1vffqbnyu7@`Zhbu$r?_SeAVWl3c8ZZs zVMzrFgf^wgUn?sCP9YFRh5$Vec@0>wf!CveF5nE_m}rM{!Jwn?z@*&n*0%>2*P_1X zX9w3*CA!(!)%|IA3)wQ0lat#F%rX|d05BfVhc!U>?~1#G6OZBlg+tr$DSRd#5DfLH znfUG~lZ%S$jP)UY$fMqU^uddCE>RpGJ=I&cnVl!PlnrRJ8AmH0AyQS9(~M8*gZjEE zglqde4JKcW`8#okY%hBiAy}}xyL)UWDTz@E>ZD*=M+p9WF)Sj};6tateh`TxAZo1u zt`_nsUO5BxW9F@QY>2bh!LyTQOI69uViN}eyZXTy^qq)gsh&=E^6wggqmWYDiTM8f zv+{?vkJh7=w~zTiq`?R_m)F$2HL9oU42^EHu9f&sUg{EYq*v8NXFr8E%I^dY&h@N{ zq&3wC`FV(141 zfW5iHFyvTV@^GGX+mD)A5D%B1+8W z^ikj1kS+7!!NMkiM`&Nk?Z>>IlOcf>TDjEmZ7;~ltlR7Up6wPs&%3;%S<3O8*A4|h zP4oPDG9Y&DaVw_7nO{T#$pW}$&^xUxg|xeOsgOi*@^WgE)UY#D!%Gy9n%;l-U=6jF zdC1P{0^}Ja2AO+)K7TpwOk{>@O<|XpaKpyev30Xoj{<(aCRzJqmC50| z^Gx0wim=4O;^N8K{Oq5KuL!xkEO@n8a%Zqu==NK3U#78RIsa2oy>DyN^pu_N2&u)7 zoL_3rS62DsebQXwc(CSkK(L4N|Ah!6?%liR)p*T_rEXJt(9h_Smf8BegRyDf`qZ2q zzrAjyUPfN?4innkb(>?V>xXCqyQT5^R4H5}>2i1XwE;!id<_|rB11k&OkpJYB41Lp z^)1F=^MfhUDqB=p`6=*4Y^AMApW~1i33nleqeyBuyobcS@K~O)|>xN1n`>+5tcL`=x{3unsbJV00KK$o7qm#%V zi;CwsmVAqzc&C@DMEsK2H=iS}G%6tD*qk$gi>bV((kCY?L&41#{i7#`qq_7^ur5WV zqLnuR$FIV=cQWB>o9bA8ids>K~M;4rH zOb%bd_c{2ShnAfD>S}REH@?ALMoD_NV|B(`<{5jIn~tX~gw}+FM??lY!jhP5#+G)y z0!m!M=}g0eDUvDy5}*5!m7izd?UBGQ9wKe#uhJBL9Rcwxy`n>F(zmo63#i}6&mBXU>?{1}4BO@aZs0T`LMwiI1(iXJSZ$G09HX)8Y zR&clJn`w37p&FMQSb37J=9ts;GH!ZhY*C3AUw=yJ>oP9O`a?hm$**AGJL}DYgOyb2 zfon`mBx!<0>1b+F_vGt9*&2-;&Tu-p+qrRaMO~}iJw1FPBKA;YbGpAj1_VIV-d5ut z2_7uP zvz4NlV$QC#7;-Bwu#E+O4=MH<4F$Hm4bs>L$b+pfTDjXU9tnC=QZ-id(PMYDEMyr_ z*ZqeN$yILM5`)+*3Zd0L`&PMqmmSdUH}-bct!68CA(H<38YAKk`4aj01$5yrh<$E( zlYJq2hb=Hs@pbguFByXe2x+m_`mAK8A*%J;+0&OiBf+D?$1SY3b~LPp(Pd}e?fM%r z?-V}(PjQK~x&DCl#ie^Q!lo*pjaK-^UZF4)>pRMF4?TsXcd>h%BO+cQpQ{>oT%Zz0 z|7_d~MgR@))(<%laP=TDQB6nZAW(4;XOAHyRF|XtEDr*Ols51rQbRWwuD@XQm~Nkl zV9-9wX!^%|6fpx41*eL&^)VEbn6~}TOw8Rs@CLnu5B$s_a|XrjOdJfk2IP}*w2o4p zY? zypQnzKs2acww?n-1MJGHEi*xi;MtAk$pEWy1oI#yo1_yn3hG50sQfQyDX?J>-gO`U z4+71Lx_$0AlDGi&m#)hpxE(g;B>Ruyxc%~KssXu= zB(6kj$?+7YC2bGYg#6I5mjQ&!is_RLo1@7M%n_4&@2SEtkGeMaLo$DT)oA@0)FDio zy>)Tu!OGfv<8dP#Fzka+L;RW53Hb={ymcb_NT+4Mk3Rd$-riCfZVj^Z*{dVg(Ojvr z9(Ic>c|fD8C!RzKS>e~;4%>C4zg5~=z&*`yrD{TG;Nf$8l9Egq<=y4@z+WFuwJ9#L z-#M2m?Z&OxJ~aGx@ap3%*y>B3f0Nxv6G3*4+3n0Ext0`DCpv)ZdKyZna1 z!NtX5Ru&dXEnJPE7O8u#Gc$(ZDS*Jsz#aS=w25DJh^uHO=Xm~SI-?x7wPGuU&Gx3;$2>TI2j1+ z`84>?Nkzp+I68UfyqST4ffe`%_m%^voFS%C14dAT(BjmLy=%w6%TT3Uhhq*^% zXd4U??)$^}IQ7W$Fu)OxQ`v#;i_6cR3EFjKbwGId2tcm9dqrPQZ(}(=q#f|osQs%| zh+Wq|B=B;2w2R%iapT$V?b@F;F$)XMYY5$KIqWkY^r5}|8-TJ|MQ>ml^sij`Y%jk) z;xX{sX5ItZh|`WqR!{y9)KIg$$XIGltP{Msm-JE8{0hx*{;5~OkVbEOhX01sybVG% zO|$ojr;lt`c^}>T8_!RiC1m`i;tSu`TKQlPy6;2c?f!Ctfx9F^QT!-*yJM7%6MpBP zjDHmNulLtkv>M;GGwBVAB}?hc1yQyCWPAxMtFGi}&Looft4(wcpJ>g;DfQ=aYEBUl zq57N%WD@o~zGdM?`)M_QRGAloM7Efp_W@2}k6Z95y3u`PJRZKpuZm(=nP@mOD9H5X zI{Nc<8K*-M7Y?1~WRT3?u zn%2Scf(21+ckyOvcS?a>cDNRavj(CI`h_H4=Of5f@8gRk%->!YgK{3}A?D;@&@y%X z17~s^KWQAm|2{h?Pc3ZBXcaeI;V&b@(a9GfxOfoSsA|SQtf{zNNU~Ma*#ay|B6Rr9r_mpBff~;M-y3vhmbyN5 zCpS<#dx27zFD$4WZ%?bs70Tdbt;e02aIkP}`M7#QQ~@kUyXvaOhc_8VC9w++4#XR@ zWU%fUrhp!OvoZKP}6p$bUhuZc~M0hwdjS5aICIndouP3_MV3qx~5Uj zNIdWpRD)u)HKFqy)*4(_*LiBrz=!Gr*H!xN8>SPBx8YBb-REv{LeRTHAMq;+;2#qb zV&Kx2^i9itXe&17hg3hrs(r;STaaoVC)iWH`wVOoM=k=tQj@5y@o9u}TzP8$+JO5+ z6Aw4dMlKHr3*bJnM)u54YW7r|XF#?vL86XLS5nX=o7*kN6YU+icgIlX3A^RuWrDT3 z(RM0*&yx>@&7NN>K75)=)r(a7StLh_N);{g$k^3ROp*1XS=!P~-i71?V%OI6WL}Z) z4kv&AhBOBG1S_ z8$k0^Br01ljQ0V7s^X#5BERaubRn{mEykdtHl!;Y#xT-Vu|v3 z*i6m`HW8njNFcu%v(NV-I9#LHq1My4fRpY++~Qs-6J1#p*`qrp5V_Ua`C;Mg?o9P3#-x5g4UYPv$B6*t`Y-3wPsfRg(MlTq%RE5U0dr zGEuw3B(44bW)&M)I9Jdq3hq+OqwdEX)sMx3hu!|M3ONf&QSU(weSDmrOfjmP#J8Rr zfa`drO8XF@9a_n%n-_eT6z$ACVnuGH9=XP9{*txxS@b_<;Z=se?~>9E4`{P?2ea7A zUkjAnuKa734;>hOT1*m3TL3d;`&^Yu;=-hOVGl=+WI6%mW53-{Nhbd!HM>l%5pAc2 zQW#v4qmq0W%R~0_bYwZz*RH~b&t%a?I0hkl4}zQF?h_e6ZvbPn zf)91y(BSucgSU^FxaV(tSl!bL*{)64kc6fSg-gTkGGYf?nmoAB#*zv>5BGg|wH3q9 zdk2kD7RJchKDVZlI6rYJ=9)iA#f87eX9?DpFeJytU4+5CJci10j#bXsG`+ZQ6!M2~ z^Rr+SaTfZKm zH#Z_SVpMfS9r@k#LQ=H$!12zf;Aak$;AY`(s-1nSi5ni$DK^Dwq4k8WuI>kv!VvHT zRj`VyNTdhVBw`gNx18S_dbedWK<0u~?S!p91A*OrBGi5GIFsCU^z31oTyExzgutFq zu?9PGwDJo7h#B3fDOFbAQj&K@IB}OdrI%sdrt;vV^wbnfxx}gZG;KIjV)DOy?Rwhq<-xv9`#^9Ib^A9e*pyT{MdcQy;|b9` zy5JY2HO@#8gH;734y{w=L7`j)hf_DyPtIH{`avFcZ(rKiJ2P)grJ zCmr#fCvVFT9*hTeGwS)Rp`}Y?3z=XQEiLqQp}_9M{X0*w>E<0Pl_3k(r(Ak9ct6>aAjCk4J?ISXbw*qiupUP&A{?1pJn^WMQ21jf zVATgOne^uR#Nv04ijW>zL;R%tA3srqST<*~=j@B+^j43iM0+q?E{)Xj-#>X#awJ9A zDaO2}GR=vRv+pVKRu<@Uk_t79*Y}+a1B#&%U3zG=Evd*lr%`c* z<|CN{augBJynp{5>A%;3jzNGc0NRq}&<58vHogSK2~^!Cu7QHglTdU$eexu%z5VjL zdu%vp9?5??qQ-vs!qXPTDN$ZHe$-sRtL%=X6E;kum&ZaS23u@8Y;L zFGf=J6Sy;PH3P_>_$Yhq8TW6OpnoNS z0A3MA<->R2;ofUWkG=t}?#|omp!Ra_H?hA3)Bwq+-rjR2CTvjLOamg{?RJuqmQKvh z*3s8z0M>SXjVMpGRDgUyIO?M5q-J+g#Khg>gR&XVn7~dw z0fLNFVs`DUmVwJ}`)V$jnQ@Gcj^1MxBgPA{Q+?>QbFfH0iezHxc3UK8r#x}N=PFJa6J zZG9tgyLLRZ9A}^|KXJn5$D(v52z#`&wCabU=;)0%&``UmO<5`&%69%fOW45x{2+Vk z5a}U%eWad?O5o1{lAM7q8Wd7LJnCM(dI%gllomfK2hP~MquKqPul!PC(yF*0sKV9ZF@Z_)1`Ys`JOl{BE`qAyKR4c$ z%8d{b%7kTJvU6KdedxQZ1!nxfUr5Z~ z1Ol_yuq>c=>D=m9ne(&!`AbSl2-Pn_54n7)7+XdZAS@Q1hoCG!m3txf32@HPDF>Mi ziZToXl}RG>P&3DOe)?>$WbfVh`sNPeP4ACI^L#y_p=L{EopD;lCbw z?&eL1WqL0)YP@t4AIt;LSuD{`?MG272XU{;o1k}Z`-UR{i}ql+JJ(fpwJxKciDoL9 zGZe)5St%$k%RKk<6E6qE9ikNGH}+a?LXiogy%+J{sW%3o)f8o6ak$$#Gb3m0(dLbZkW+1VUOz zrjDqYILvs`SqE0;^AkyO)sAAGglDR-WYgt60O^ZHxDNlE=%g`bVOgp=f!QfON2OT5qwY$irfT4wbK~BKj1~qnZ!b3GL1x? zR-~F1aiEDVv;u28&^kXLKWNw#ftaMS+1g;)!~lUu5KVYW9`~X;*@znXBD+N;&Q0{n zrM_U5%hUo7F?E9bnrh11ze&kuOJN!hdCogFyWUYsXu3!kgS8yEZbahmUax*i`Aco- zicVlhua)%K__oiN;M#}a+Nh>oH&G&|I<4rxd@!UmK)TGD6WA{NhS~(k08}+(7dO$5s zgAJg#@pk=)bLa^te8+wtDv1W1pdt(UP&04Q7Kgq?<0rXg9y7Z-MR2F&KHyQurNUDm zzLD+h`;6GT4MVwY_v1h2fi7gvz~Q7uLrNRs!k<462&dLt&0cmsRMci`VlVkLjCEG$Ki0Cu~ZAUf+MX#AT= zsPg-plVcu_BGt15De}i3K-~^dViB>4VVzc%R|2b)Mx-iX5gy1sEgCkh;^%h(7o z8>@w5!q;3(r? z_7C+OSf!gjfxXEj5^)ql&(ipyk%USuQhf7$K#m9H7e1t8xo8Jgag7A4jPG+H4hD!- z&Vi@A{9jgah;Sv`Tm3yOO>Jb%1j#z$Bu_wf0ntY3@97CbF3tM>Ag)XU|K!kprl#Rh zw5R0A0L>L7oaiMWJ}P>M6n&FU!JKY5Pn89&bs|%b!VAD1u!s;r)p6Q>{O$bzW)lxH z!b7qDMAk(UNh~9FB-o5D1FPahBYYF%G52`CW7&;{l!CQ(E|;ioB#!Hd-HQ}0Q&h^> zydFR(fM$RIhLeOMvxQL&7goH8@WJ<*}FC1t@_d#Kx5uG?DD7J_M|)o0fUM$3zR@a~3vsZAzfR-YyqM;0g8(vbO%(|I*OyevX)w zx1Bp}$(VN`jpz!#(+-gC*doCye22gbu@N7sn`!gVA1L3`;YVFlb!pcn)OwM47R3Y) z#>W>ZLcuK@&DEX5v2p%Hra6V=erZ%90=uc#eOfb8z72mb@DhpTj|g1x#QHvMhCK${ zlez{l|EIp;fI=<5dNZc^Ji#iggplNL6wa=?xLQEh1ty>s2*m$5B*V98d+7kZX=o7>@(yMg-pe{8HOt)90S_kNEl4{ z%}pJ77U{aPSOwmCRJ!xCc2Up7JcCC zk>2+K@)GQUf*59@OM9n0ycig)FFl+K}EDB4XkWSZMCf(=_t$ zOg6Gq4-O7qlyd*}zA`vOy}L>FGzG+e#EYsM4n6Hv_1dTDolZCq6SKAEq#PaukT zHZZl0@{R=PrxaiUNkGvaMCcNdlB=%JbNuZ8%s8Rqq=x=ii{P&I=-(*I`Fqm3n?ckB zxa6R#o{lj!H@_^y`SjJRS6$1{4l`G~R=2pYrg@-qQ%*`e>~u91;5G2g3f2XAy$&+@*93l_-e1T^o12LDPT( z8T(rhiE21G3BY(4`8BB1FK0-V_yigmv4BYH8uYI{y}Xt`oXUnKd6-gpE_7|Bx)fGu zjs$NU6RBGwj^_414YKzG3@4whcb!sa_eGizl;UkUXJ}%PxDnisa@prl4S9J#lLd}l zxyW@sC`b|fKnykxnc`@FBwtl^s~ddaK%`PzuYrNVLPd{u{nmhGfDrNnYzYgfGAQuS zS+xV57>t?e>glzB3w0twe<(2f=j{`DO00(SaX2P)-(lY;k`47EL`IA_IsvOR;CFd- z>0^e@er=QZhqFrT%GKyT`rBOIyc-phOOHzYg-;5+L`y(bINY3F5w_;7Q35vfdB8~p z!vg`fXK7OVXrQaHHA=`FLC_gXkP!S9h2K0}?M(WO^k0q2`g3qQG9&^U|8doZkti-i zn$&Qp!HT+XKTsiY2B+GK>Arn77@19==;h1hnR(#BV56m(fURA`Oo^ z)~CXM`#{}G(6Qj5b^70(F|NgJ0cap2=-OdW6Z(t$A?oJ6mf6*%@_(8@Q3v63_3ST7 zieoCXc!=8!NZhU)OGC;icIZwg@C0dJpnS^GT&9t8nzZkb%nN2$bK+4cT}ZVm$f`|4 z-3ZLS5it8hnsC@R+z1@D!*?VVRvi8>oiS`MGLJW_`JX#u4mXi3UcpW{L;1`q(75$^ z%W+z9h?oGc=U5={CK&3|H{J3>hp+|mGJUZT4HDbFaY*nE;bf3Q2MER>Zca*6S8<-4 zQDxn5LgKdle%ubvfStlt-ap*rK!&zwbG}auUYW}+?0|Vi$Y%Rlyn^nPX1uhn91rC9 zT0>y5nLSS;{cZ9S$hGHBD`H||@K2F;;s5H4l}I5U?|jQ3v% zKx1SVui_R>_mg}ZVl)X%7%HwKe5(yFQ22>ET$34>w)&ihpkUJwMsD689@~Q-b5G5r zu*MJ3Aqd-rAYkJqxWc@;1}dMaY2nP^Q8M=2<+R>e+E46SNDqk@@o(&^bH;C9l03EY zzfGW;9C0MHCmGK(>Vm@B1jNHKz&lDS{rSd#`q{AM3ZjD7!F<{Y*vI@}vAh3fu_)e8 zF2MVDi&pj%tvu`=C{r_GMxs*`077*)#k@dDS8oB z5y?>?Sw_bD#wL-eG+#)ITX`}75yA=GC1sJYOw`z7sEy+_Z-#S7lJP~H++{QxvMy5@6pIw0%;gEZE!$o$apR_z<;x!$J6JeYwz?K(D7MoV|F(t#aYRI%3q!>sJ z&tY&fF)^{ns**Pr=CDD1?cnGLLyRJyr!FN#J(iZA*e2iD=$W~4usv+$g32p_bj<|v z(7ukV^PIZTB;e(IY@YA%>2H^eodVUXoViT9a~e+>W;cP z5fOqD3z3aF=GwSmbv2PA(j=4-W(mHEa!`FDki_FK`fQbE4xXjgzOlA81EKs8Z8hlM zk5w`ki9-myQ7%E1BGF{^WpXP6+jQ^xhK4Cpia4An4j&jh z1K@5=2`i!JRS*AQy63$5j>B!C{7B5(g3{7y$V}596EmJ^f%<2TnmF}7_4r4O2TQa3 zC^RKEJmk&wNKdrfDb)p_Uj;Lju0YZUt*Jex=jG)^L`HUiFkt$0O*8aE6EYkduFgYV zCE2`ScN_KRSoICkg=9j90+&3WvxY<{2T}iWhE6w3e8AT&3cF^%6Gv;uk1Ra^s_^g{ zGPbM%)D=#RNmL1G(!JU!FD&!k-#h2nEY(MHUUQD|J8wmTU%Y#JDFM5i%-y8(KN|;q z%(#xoBP=TENKupUo}H|hsU)c8xGH|!8{$Nwh4{p0jSUl$cBklohb=2V(6(aE4;~`j z^}8!8UqZf*{lF9iT44YN5`FtKO>!ym!Q524XdeirE!qC;ezA0WL#=L4CR2V-_* z%X#>S`sH#!6CPs@Q!gNPWuS_rj6A#0u=Ug2Zz>s?c-b+@g~Y1Dk=If`wX~x^Nz&!h zWZk!v@(Lk=*m?O+hnP*tjh&!%; zM9I94()0;J6iApq^HLdw$m<7_zC^5w{t`x3L6Tj{dkV-{0;ts;kT9CipZyJ&uE?JTbkFCsiHqaykW!wb$YyTL0C0;5)U+jX;jbY1lPAnKfqb+2>s|JvbNB4KmJ#a#jQ?sU_9%w|gCb|kz;0jivL zAQA`3|0Lk_uKtB0AD>aCD8^eMa z3C7FD(VtW)U}|$LyAly29EW|q(3C1zT|hK<0`1PlnMe&<5Kp7W0HLEQgUMIdhTUdv zpNK} zE+Wt_i@Lu+Z*BqI`>(Nyy90RVodb>7xbJlt^B*D73*$zbwYfRMr?dRV>`uW>4;XJc3@EvGPlwAIA{X~tE zkinDzpdj;sP$_KYawE6gZv}p<+c-lk;@M>VProbSEg%ede?}Gz(?-NfeL+OCFF^l^ zysY8#$jC_cDj4t>4`&k}(r4dq`{cv6kqUk8dIvA~h^I>(X5Z_Z256@6Z1s#d02Lt) zmx@F1ng&^@n(LNYsF6WNY+>OY`z*gG*ruFDCoR^Lv&5q2l?h8>HM*}!;OBE-ti&p>w6wJA#Zk&?m>o@%_xbt7 z68w=?eEj`wk&ESS?>@E)ZaHjLYSxV!B}Bcfq$@}~sr40VvPpQy%bdrE$pt7#pT1N> z_oi&G93$_&fUoRa)dOmk2ys5>{W4(60;dExy$7w4`VL0je!iaJE^XMH+bz<8`!K{9 zdVEOhgVA*MKse5ZMn>g`0y|{Ki&@aP38oPJV9N7A7zR;0C~r?3MBc`L{M_S^E>(7d zF)lUTTh$@0@Q~S+t_c;#xwyEHCi4P=`5wsSKMxKLTDd)-C!9+>?8<17Z#mXrXYw0| z1G=AbL*t9TfL2099C=;LBKkU1CJsBP1LQNpclUzN@2MOhy7JW`=wN%)ktwxV)A55R z)lIG7n`Ln1LWZRU8j>!5U~!!kqQ*(S1p!H*q9V6twsYj7L9MPtLNA=jQZFG%W$f#4JW_)3 zW*gH4kCRtPobAYe6eN8)w2%>A&0Qgd88OS@fv z0_i#{A!J-aR2>?{@C#q4k(x@)rW#1wcciyDejeXwfgmGN#EB*DL3^V8?1lx|y|ysX zrLz>ACM3#E7=I2vb-lAl`PBVfKNGZMxSgq`RnOZ*Iu$MJMfm;;i0tvKI(rtu9D`p3 zX@f1us~$EP=}mG4ySc^rYzO)B{T{poIZ^Hokfma~)M>A2sMbv`Za7~e zWAkB04Q9-u?QRr$psncBe<}m2uIPggLROC31!E7LFrNlVE5aezp2Bqa9-P zPbAx~c*icymJ$M|-X202LxBF#W3A0*u1|A9A38~(6R5ZkG17W+N-SrHeQP;DNpobN8R0f` z6Ua{?7U?$qNYkuCHQ~b~DkZRcu$V;-;8S%4(VPnwYHg5bK>&!mtB?P9y}FUpTRWO{ z$yXq-jLOv|0?KNEBy97sS>pewqS}Jwn*nq6@X~<)ut8o1{?RLWMIjjQWrKj>iu zqnnECh4HU#5%>Rx8pvuN*Q&W|1re&KNlG8w&`EFu2i-ZwJ8nhql|z(%bPK?l44f+Ok_%NzM! z?sVG1rZ8=;t?2gT7BL~;|cXf z9r891WVQlcIkgn)78s7q*uyA0%;?ZGA>*X*&Z25~olB@M16F!GuzYoW&IU*p}6=U58gt6?~_cE}hZ@bBS!>R?;|CgC%3?bD4JcCEg&xIU!-h zH4S7d=2t0st&KS&+n8}M=wMz8afFtO5Q|igGB!Pa4H+OalVXS{aF8T_pf!W9zAqUG zMx%r{LH?lP=$PPap@xi%{MhoZK5fvsgMMY->-rJ?hsS~b<3Zf-dt$y;?FNgJTyGkYlEG5B8WU?m@O41Mub>?ncvpzl=Nq{~WtMkV8a<#V zv%~-`RnM(J5TPLyv3j?A!$Tq%)M7fX%NCU7=H7^QSpQXc6EZIqC8dKZ%H}BOz+QU8ug%db_ zUjkE@$Au;^yW2lzuf8sZaI4~^q0ZZWHPTs7VEW=jr zuhn$u4DC`m_?l|FRKmd!#yEX2CxX}0~Rmm{S~4_OJ)R|U-34yM;6nEvTm zY0&^a&Z}hW(rQ()NjyPugy$vs>BP2d>kw>7%4B^ruB9&)eUqu(DLhrxVE;{wC8tzT z6gO~_$!LF~Z;?6t#500n42~14oyami?{7|-9z+Jj;d9-;#wPFfktI4=J1Pni9R4s& zp@8Kh-qQiqgMUFac#47eS};O-v&C4e^FX3EMYJ8j`xN|QtS%+}DHP7teUw;X@UR=! z)1JX|aM_4mYX1x1KDcM@)sI=Fv_oI9j`T8GrB8n#_&fWr{crFG*fpPELI)pXjJ$S* z5oS_yo$zkZKi4K``vCLLMiBph?Y(tWmHqcNcnFa$2}Nm8kbX#MkVZm4P>@hWxk|5hGI11jeO_7{QrtnbgH5cZXVvXde8lG$(OpFQppC7jUGGv%hhII8bID@*Cl*o* z5*T^#_H4`)3%D-x8>4 zHAeiUhpO`3`jJp04UXy`$db=vJ)hmuexMYJ0Bpo?vDe4@SRLWmP?%;i2UeYhpMTD*a=#30aAxYW`v@w5!T|u!1;laz$>Qjg zg7rW6*EQs!$ZE^={5D)aqQct)GjGlWJcPQn8XKWfLe;!LmnsCrpRIQD%ipjYt^~q3 zO??CKtYPXQ;OvIc5B(I<=FiW}s`>DhH|VjHO^}BUL(p>>f}S(v%u3%xMiHNXi{AT; z25Xb`Wm2Tk1Pxl8eebRJXe^Yyi99RH1Ead)DR$`(S8&J6WKn#TyI&j>0m$!LBRFe0 z@N6{DVbtHBjru12{}8aO+;Ix*?Lkh4ARf5E@AGzZmfD->{}8cYK%FI+!#qiw%bYBJ zZ8wby?qK`4uEK_TSaX?*5fBoU+u7Xq-qgxy+-8QdGpkrElIfF}=ZxvMRC*Twe$uEz zj!Kvma~{2SdZ$S^MBXIF3cag_0u2rK)}7d72(o*H&qhPh(kO`?&{G#H0-R;18?nGV zaJfMG$K3AU53pRT52%JKzo>XkQeQP;r$l{}MTm5V;ifkr)jM#f>EDT=!xNS|+5=)N zsHKG>G-$xHWn?xFJM(sF&RS9E5?n!t9W%>|#2ATYNbHyw)^AZr|6@Tyc4V#7FwlP`$eRSv$;yoL6wlk9& ziS?h5W$zKqFU-Qii_p)anjPrv0+A8x{`sw-MN!r7;{BxdZZo}ovoIMiydcnV`7F`K za(+S-SwaJtGE;Wl>;e>Ppsk;tg^JI3_(nE#kRw0HQubkef^N<4tp3)0$rtymm8;+M z>Z@$DDxDQ1!PJr(jcq+wsL8kt4J4NMHfDa{{fY93`Lir8pI-ro6tmD)`>1TH7%!O{ zvy^1d9OIfE#_0m|rJr>&A=hBPR?p+QA*a+f4=pYL;J!Jp&k7@z2INZ1NNp0BI?_1$ zJw^JXeDv0*EvKJPAXL0d5Gx>A6Bcz=LkISO2?-S`AXF?=7H;+d+BNrkc9x7t*Wky0 zU7|+hs3?J#CRTY={nJkygmvX-&`SXi2^DXjZ*3(9XyfspvtAmLp;>SgoY+%{CwM2-B~A}2jrBfpgRr5te2Ps zll%Hruw=!!$#j_fBvAGa{funX$er?^nIXRB01P1kA}>Rnw%_MNA0;eQLx|Mt1opl> z^O$M$H+eBl$pLsFp<=`-v=Du@fWBr5S+GR?v1hYG^;1a$i4_ZwSdnG@J{$PVI-7uJ zA}2Q$&zIt(pKRuK?pMYiqQ6gL@=ukfO3L4=^DTMpX~atopJrPg#`7nMm? zuNiHpAdm+5yYVx>T?0cFoVW&_7r-e-LhT+jLE2sLU}N;MvblOq_d?wn@Jic8s-6(w z^;K){9xD`HcLr_?j%*{PEsWsr=n?&X{VugDVZG6nxQ6FW^Dt4MS>-pIQ}qeW}$8xj^(5_Gmk zA_u<-^3HrjfLBxikiT&1LJv>owEafnj%lD-%8obs{=~L%iIuaeDb>*gWxXn z3+Fd-hPyObzq1GCX+RgLCF`|4obfUI3Gt-t?(_9dWhY`%Uo&TCLZTJ)2#GY1^=|k+ zEDGszgB4O@fQk01GpLPi=KH?`uZP(-RPP74D@#VX-Ny}xPLR9=koY2pDqM9(n>X7e zfS3p2XMZ;b@l8`Q$*^wt|DBnUYIb{ifnI4>zhUQJelu&_1%KH`k+ge zGv9^x41o?rE9L*L=L;wg>VYs<2somiLu-)Guh+Mc|MrIJP6kZJfr|`|F8)lw(L?R_ zhCMt997bwmLuoiner+5v%6ruZD&1bTAZP!$rL~aVaF|#XbK5ej1^N(#N)L@VOb%%z z%S?Di1?lY*huH|>B^DsoMA)d@B36Ot7)jKQ!GC&rq~~4C7%aIC$9c>Hw2n|YR8YN%3k`CM zVidT62%Q}loRi^pyFxqL;j4>KySCymJKvq8W^T@ku#F+@MZmqwmiHfy)%Wloqr@r(9rA;)hS-Pxo92WteUCfP+VZT*nnJ@En#24iRfGzD5mV}yGerlTV)3A({FGgVh7Y;9~H#SSC1d>4rT?TiS= ze_#Uj;;#F2+csn;g>s0?6qKE!muwaJ{r~qxVYH!d{zdfoM>UtO_tyu8CYOQR$d-U!H5FxLv2-9RCfnlRv6T3TCbGsv7`X+6RP0v_nlp7@6j zOLT(5TYS5fxsWe@0e65FiUiT`BnU?%6&Jv4x<069YY)q&cXYHJ2zt>F+Tgwnm1S!0 z)+?q6adAFyC&GE`sogi`*mZuOffG zFgnh6ty%|^*v&{wf9!VH7OdM>@q#1tGvcC#3zX~81s;L0m_JyTPf!2}!*_(>3|Py7 zLp-ghC=ytUk|4SCYHMrj-#b|TZFvQXiH|-L*jNN)V?XS}hTc@5c`E0n$0pTJAJpp2 z^N)Y^@ZuThFc9Mb7x3LC=(n2f_Jjb(q=Nay`LxK!F6%33>BHqy-#t$af!o=2WXq`j}p(n?_yKPK00_TREc#m2rK;GXhQL}0gDf#$@f$L8$cnIP()^{Xuf5hUn@u`I1SqK;xAT7m2AQH%G_kahEB~yXgLv(-& zmXVHfa*Lc2&bjO3vkFrR)Ki|>A%za@N}mVH0QqUnf^4p`=INZF8pWo`t~f~0JT$d*WeO(3cG z>1L1T*`(oLefgjP82ZAxvd>1{?yOP`pbze^0HaZCX!qFp7J%AQb_e|VZ}3cr^z^_| z)D3*8g#^!>{;Pfe2G4vsIKnG?W47lGsf4ObHF#vs&XWgPd*B4*9-M$s8>U>hU`%&D z%d~E!&$36#x;EmE@!67%7(L$71lco8PW&|*`oHq@2JV;AkF3JeqE$t zo}5ti-}_L$LN8Q947+~q3AC+$0@yEHgSG_i&NI_znGZM=QvByQ z3T|ZJ-%ofInNy8xW7To`7Nkj2+L`iRyMKX*BM=$*$TJrmc`!1>J9FajB^SHBsfR3( zEw*_`Jz)wNc--^JHAi8hc?e!j%nE>$G3edjt?!rRuAn#>f#~@yP$it%5p~F9&ou$S zdJX^!Dx-jwQ`J+nMfyT`wV4E z;ayxPl8sfdvm+Os!2R*)GVq8YHxVW2Zi=KVY|vg|L*)Xel@AX8x&wsHdUfaD5oH7k z;V$I-gC05mD8CBLITzSR~2@TcY_(SHujz6Y0pcEh#<9AuBcNl)}ypI2Ub^!%tL+|+a@4t0- zXTs4hwD_LOYM8%st)K>&GPQ#T8E`0AqQA9%M+A86Pga)x`Om4ZLPZB0CYVU-6P&My z7Zjllnt680m-@Y^Vwc44=?E>QJ0q2HRgQZ^R7_2@lENJ3f!Mp>^lbqU#kWl}v*7 z`JnP)lLsHVJpAV@vj8-jC7N#4dbWj;Lm0{I*JuUrpJP&UV%&=x=}(OIUsqb4t~Bm_ zX*f#~LU(pQoJplWQ9_8f&4pZJ-aWX)`hrsuxzm!Jold_R-q{H^O4*;?AO1v%e|f4J zdyeRO=_m<}VqeMVeEtJem}iswKWUaAwYIQdSy|6-K~b^c4Eri7{g(pA`91$%$e#TF zm-uf9nEzocf_;Kc`Isv)&#a*-R=-s4|3o90D1&f7f*tGh5mw-EEr@F)df)9{cZlt? zo46O!M&usEyvBdy%NZjOaBTETEg)QY&Hr-Y{n-0_pDg}#sC_nAys2*OgeyTs->H0? zIINjeFBiFPUItL0#~IbiK=V2%O+eNCo7mXc9$kc;?gpXv)6zEE)8o#OlV2Rz(mh9Y z6erI&l>;;}8qFU`FVZ)DqL=VIHA?BSxodesO&d$$?K$$rPB#Qd z%Cg2wF?|xduxXFe1;nqf_E~0l3JBEDh2=)#qkw$tO*r<)67G+7J*S3r$df9XI`iIZ zcgs~gPBwe*@v@vFd8V^o>%1Zy6)o!m{x3?sAJz-*YsUpp4=T?PDFuFLbe*JygaC z^q<@%NDp+!a3=moNEvSUg^?un6F)kmdEVM~+RW-Ny*yJV1DsK75AUQgqN4?9NH?eO zXgFvLp9)ryF1{pP3?W{8Nxb-qbTOQC^<|`f;)r`#$+%XT__IqXVs{xPcv2?rrik&t z&+r3o-R6jz7*M=<@=JInB&xMJ%e!~uqzAb9+nZ|Yths(>+1Oosg}#BM)`_S0V5>k5 zcsJ=;x#)b!f};{cP_7C#ywO#^K{4YHVpVDVFIM8{Iv9G!GVs?Oj&n zi2dlUt@rbE{}||1+57wGpfCAh;RC`d)v^5DaUC0v&_6MW;=Er!_CLSh#iC?dyk;{j zQg*Nw8uCn5hx<15^$#=*RV&335kMA9eE9>w6uy!x>K8u}JmY#W!)`(Bmtu{3nLooJ z{ZWRIR@YKpx1h4N`$~{|)b?# zPp>JK>&UH7BdjYP2RiO;oJWoX*3Q(P7|x@nQWaM7BsEjYs{{!$RjHn)nVJdqP*tOG z%9Bhe&Gue4O!g71mUuE=Ybj#l0AIVphd1(H9hD5!s%{7b8j3Gy9-g`laZwku3(<;s zTOIAbx%@-HgF>*EBt4TC{l{fs0<8JyR&d2IwW=oAOeZR_i{(c?wwV6LgZYvVwWm1N zI|&2}7K;Wp6t_mHnNwMg9Rnp{a6Z}@4nD>s4X@ zG0I2XA|y3wBq{0@H!LgKy611z5(`epImSKxH)&$mWGtQ?S?)HB-=sKp$C>FTmsk_E zuwwr7VB@n2ZCOukmScLiNakGnzEv?mM!Khx)M*H_p+D^ep18z5WsiGDj`qsmhKh*s z=%lw*k9I5!>z$1mlzdrLOktTD{jb@ z+>rizs_X78)Vu!lQs|Vyex$q}ZL#?p`%aY_`>)ix{(L8^r}kJ^WX&-@`Uu*1$3npO zO{tA$t3L6Ub(AbI?)~*;m%Z*|S})G^pu_QJHQml4Z+918?Ob%s*_&3omn0VPVN{UC z*0s5{ro5iZD>E+0TW}}N++gQ}6U@p<#;uxe)7_HYo<5RA&r@}a*JKii4_DF#%YG9Z z{bf0)g430y8*Bt!N$o6m3}-gTAG}=)ohYBMk1pVPZxSv$%iCYW+eN*hSL8k_;Tc}R zCfyq1wC8jraKoxS^sx8pbSq|Th!Kiq!(xl!W9Uz6%&MLy8@u^`5( zSo3TC_Z5-feR`F~Z!RZ<>6dsM@LT1qCTDW=-gx3|(BvJzs7qDnd^l@rxj(%aeQ|31 z%?Ozd%_%F`VUAy&?h^MGhieM1M)w+`QDX!OUwuQm=>3=+}AYjQXCHzbB^zAY!A_$ z=Y4c7pG1tx$jJN>xtvV;29S|duPe3zC--P%&C?>Dc#UN%qAY6P;?&;{%DxgyqoiG@ zmS5lA_lX4%H3!q3*XfoU87d#7-=IKTljPSQLJEo^bL*VG`S4cE*9eqj`K+rpSgbC;=*;}Q)+t(G z?ygpawZWJ|Z_Y%v!Xn+}IOVGHUNna-zc!tkDKDV!u#3@s&>$UaME%s&l%sMo+9zOn z3|&25Z_V(?KR9Dh2{nHG7J8n05C+QPyYrsO@|D=550+UfBy#VpRHjXG{vnIjF7Qn= z4&z0eCyY%Q;J2cdk=b%@Kt+e>UMuh|zN8uO`Nuv#vqJa+#mlsd`8z`0%ywnCTZwK2 zku;UMtNddc*0zaxd_Q&~_#|_5gfCd~(xGQ4Fy=aI>xC89d@CjG!D_h`AAeEieUF#c z)$*?TT<3oRWP^CLh$>W3>g|tTa%b^(?u0iRE%WA2c3{5?)67Xp#r4~df1aG06zrC`l*mU&+>q{7ViCFPTkvNz`}^zZ z-b-b21yY$ft3O0)E}_zA^SAq+ed6!jPI9q%d(Ah;M$4_MOiRyxx+!Tq(Y~yX$ZEL& zOG=u8MO@?e&Z}bG!@Qi+Ct}A`OE)>b#vO7XYwU&htEPHWH%Zf<-4qNdY}5r?GBU9* zGV4dWl}8VxMKC|E)(?g$UH!p9rZY93|HHg$d_W54!$5dL0BMi59zBy}PBfj~g;7HD zupiW#*J><>ge^Ygm1@Vv+n)}~IaRPVyLypBGa?rIn6R-1<4iAGZo>KFgkcPP>1E+4YOU z_}A5A;=v7c6`_z2uX$a!j!RfsGLXJF+^eG`MbYKn#t;h{==(FeAeSBrtB25dv{FS! z1lbX>R> z?);{N^k;rpwhr$qcI0vDoid&{-%8xjyl>^2nU7RG{lD@5^L<}wnrY};zLc|=L*AMTO}sBJt>!NiW1qAPu{{zrP$Tk$)dYNy{AY2L_Umn8rzCFLCcl}8iYh=Z)Fj_ z;;HEWwdT57s2lnq>2oxipofqGL8RcFi9p9P)9eIAU7S`svFjcQxQaQVI@NQF4?l>h zrwDYGU2Gqux)Nw$(GqyC-hzDis9F4|Xpa5P8!Uy$0Ivv_yGi%ND-W1ndh@ZhMPn+o zOSDf#2GHy>OIt3dt?p$=lbueBt@58z7Mv8a4L=C@$!PL=iG) zS}v)LyUcl>;vY`JsmG}f=$Ng)shP0se;T(O%`%v=7%eiq8SOd4Y`r(oU@@AVViA>; ztdMc)6|9p=X?bdtk&Owxr$drnyQU{*t<3%uPHCrRD03ZM+^SQ@dBZHlNBW z*>xgO!{UtQ{1z9jcTO<+OJw?==x89Tnj@OHzALZ3jsktY3!Nm-SCI(go4?f*N=C+s zXT{giIEjzIW+>`omYaa^>RxwHRdsA0`s+X{ArTi+0h<h8U*|S^E;=mf z$ke%|lE1D`qmC9_tDm}0n|P~^zD>EhT`y8DmzXH6w$4|lyb2fM85a<1uBXHWw|!;o764`jo*h*usLPkUuoGdK2kR~VTC@AW9rMy-G%++ z&D`qr(U+%_v6^ccevH;mb=nrX^q7NUB~72jcZ#H09_Pmw`Bxj#+tf8R zmJ_wnw;H?_jxsU%SATG+r7U?6tnB)&jG;)Ac`fX>IW{atXRqSjby?+ZQRB~Ho+xbW3S%6! z6>L7Qc0pO$N95Vc7Bv|J;dttO+LS{nWz}7CLUslcnqQ<;^mNQW6R<9L7`K~O#X0qu zG0S&c3SAl9{58KxF|yfw1EW6>kMbvE{AGZ3F)}i89XjpkZrvKOJWvzg$3!~wp_}o| zyLTa=f@chErAr?4m~eu(4zfPUX=#}LSOkqJvZ1fvy<6Z{ONu$Yv|b?S>pvyz_ruZD zmvSDZ?~Zz#iQ1s1`tBDJqDv8`jb4(7F@L~cN?_iuuGM6?G&b!q&-0-z@AA^+m)Ua9 zFu(I_f2Fw6YF9(0wHx1y1Fmf8Z)X>^e>AmtVCwt!8qQ*CTkm&2b)^=I#+(hb*0i|; zuU->#!(%xej=UHi5w9!jG zq39o)#(N}TUekp0;_$*q3vJKVrrR(CZARCmUpcpP1}H~)u&obdv(|`C4sR5Uaj#VSRZAM0Hu8R59&S!a8fM#+2A!)Dq4n0WHr#`j;7LqzUYZ_rS>{&K5^ zDAcn$4`Ne?P_c{)J{vhfITEohHBQ8t4qa|4?tR`tQl?rqk5}FH>B4PUw&Hh)*n;Yb zvoA8?xEn|WBx$?T=Kl#w_a`AX@nb@(2=$VjyfJBeC(PBGPWn=myjHFLCL>|>+Hq_D z0yFDtzWU!IhsgrB?HHca>sq$_zOh4}Yi##cIM7Npve58?XY)&PHaqBIG2ZyuvM^OA z0gWv_$a;k?AhU_l8jLsAV`YyPdOm*r{=FGm?n2U)W07Lw;VKudO6O%P6e2za3d9@0 zJjqB;kA^IB=qwbuCiUfbV@LHV#h1$?+ixS^wUAu@^_Ht9M|=G#S&#aS9V3 z)mQ7s>c`Df?>|0)C?U4>^}dc(`xT$wcm?cCyN7Pbg#~TSYI!9 ztY6}j3OQI@QYr8JyYu#kSE@9S-qNu*&fR*9{oqBOwNzfKnuc35MSB>Ia&+${%O$8KYt=p**C^<3%~JqtOk^Im29Q8~w1*m1EnR2qg5w%X18 z4lk9H+wZ;?zFjsIf}-p2q1U>oSt8Y0&R5WDf4iyd@y^_3X=m&ZK`HF?+m%1Z|Jhx& zQntn3y=^D&?JSZwVX#D&EV7FCK=JBeC&@eVr<81YtSgHjb_(dniAX%JbqcF_IufQp zi9wt$VLg{ta8^UO0^f%wgwqZ=uZWAFWw6ZM7peHo?)7cc%RhB&c4Iw)pJDCW zDoY-=>@kX5JwJh7D*f{Mx2&hO(uUgFL1}4BQ86(LLSKBJwl%gf-MA47jpExi0~X{w zJUk4%ynV(8K+O>Xh4T$2x~C_{Eg*SF7eFi>V?shr%>nGIvd&(LiZ8e?<3AoLGNJjK zo1agSo}Rw64CVD*!BmD&4-ZTo|Mfr0jhh@C*4#8(pBlz3EG<8qcGIL~WMud8Q4xTs zE~tIXZt#Nm73U%vLY!-H016%-3k!RgRTLDk4|dnq_`888Hy|J&tKiEQp@_whv)97r z#wSzt(3dZbN_9!d$>;tNyLl5gn22^~FRrmsI${wI4{u<9$9%H4Ul0ghK(h6=r>($y z5=zQ>UKJ0OZV4O}-`!__9G+ul+a~oJ(J-*1_uT9xRW~5~REge5hQb_<55J%HTB%x) zbv@qJOendST05Hj^-VUEKTc!q#FHx;8?wKylKosr|5AyoA$u!%h^@~$&2cgb`M43W zQ6c}|{5)T+r&vcvbbhy~_bHNsQ^PbE|MKr+Tu=W-$nO05d%BMt9?6oKG-I4HDs+Bc zs`|GjAKFP7;e%Xlh4dC5CaHj1@nZ^eCO+w1%7g}+16Qvd8pK3d`As)B_j;*X zqGOiF5VF4uX5mk!b{T~F?T_whOJ-Z{Jzy5prIvY}Y96Aci;jJTfqNL<(UHpD5kCr+ zkHlhVUVL|x7ekvZz?&|)+?hsG593q&-@gI`Pw+`dm!9hxV12W=+jZ;EUfc@3hUEwDy|%ER!^f&OyNcCf5vXPG=M(?krhP0- zp`E)b{Ao*6*fmMB9&b$MF56hRs+{;FSmOJ{%b>sh=ukB9nZW#d*W_tto7Xh14E z+pot0`K4CWZHu3M|47?n;+J{aewNJ64(L&k^yzcCV{(Dc-FvW$F@dH~qVjPm`aN)DRQ~Ce2puA;P}mB%PIML(e3<=Mws|Ym!$8rx4SrNc3i!TX=b&3?QCG^ z@ekaFu({?PFqY}i(Uuh#4ZAenw3xoX~Mn;=Ri+W_ajatvwQ> zn-{#6b=`pRm0Vj{Zn0!G_gHPJbiyXbgwC>x?#q^bggGJybkVs;GRl{PNw5&-VHr^>BehqhWAYR zx(UKso%LcqTx6#(dC*m7%(W$^b87d7DMUNm^d+++j=Emz(I1|8Be!MQ58sB2JGi{< zIxOr~=FL2#B?sPi3tH=YUD&x^OZih1ExQ1W0rxQ1xaw%R?UbGS;*^pdvATtp7gK-c z57Zly`gitqo)xfhIR{Knv2H5Yc(;|}Vqg&*uXf1F{K{!;BEFXxarrdbuEvqQr~Onk zZF)yi+Ao&q^x5~Y>bonNDjtjs49No)_6H@)34K6;%_uzj*JmAcLiAzB#o0}t#T1= z+@L@{N!+v0>)6dXp1tFKotGHsx`}#SXJ&3;7DMIgm8+^Gy?*VpuwWL;_p}&zomST4 zGrL3AP)DmKMuSr*cW3V$g}LJovA3G>;Ts>Ge}xp@cC5f3Y~9s_H83B?UfR`^#1@S%9@AK?1JVmGY4R^_tR3eq}6sP^PC zc-}S;zzJ?{mT`U;_wL>0SF{qf721D$6-i%qo?}nn?BsqKSV&zE6xKHX4fieP`!GQU>Ie64OSbJYvjddpTJ^ z8kogUbex>|amvzXkI?TB9UV>2#MHd(q4&`< z3^-0~LPDEAKZ!|7v5yb7oAULm;;SypbcWBP^J7K4jcL)@jU`40M)HssFMQ=@j}6hvDl+@Q0H^~41`uWdDu;0g^Yz^y#5Oq2v;$|F zDE#?iU#8)phih(+t?z$-aaWg|o11W%?Nqq)^5Dn(d_th=la`eYY}?W+w~^J?PZ-Sh2kS;`7|s-K4+Xg0Nf* zgaa%<0KrOe9By~A|<`b!v$7mu2PUVtRE>zy{^K#wby>Yn|9f7Cbr zkdYiG0_;RbH8wR({5I#K0*z{{!=2S8FogsUV(hmT?jl_NvuzQGdNrp-9CVNl7n>3R zM%0gqj*ox&;lqbeJ(3hSa=q5{#G&(gJbhQ=?@ zb%SDnKadDMPdEkk{%Ht=nt&1mg#rcER-ir!L`YjeSo4Ng&SO%N9qKhhod`is$i}o)_85Q zX1LT+C$;zQeR{(dROyAHsf2hj_cGxySlsl< z)SbdUxtRK6c%gd(zOngwErrXOHj&1j!1Yc2YIBw*K>+IfcR$SUT?4xbX|v zjE4Y20#;w5xF;2&F^z1l_I4#v5MPchSqTZjHY?RF?~+zc5)WHgSWs?%pT)Z6CMNuB zB}ClwfDW9TqM{;FrCgmcU$K4&f)F%NPl;9Iz8j>P>93l38wBVODu)FpVHnwnq*<87 z5ZG)hpi0*;Qfzwn!Gjk-HCVKWNm6=Q8XE*wFRD^)O*s+J@UuDwQBCB`Jzur6^((?Yw59jbp@XGIh7>eLwJ z!<#|lEO>nU;r2kets$bc4dWQ7o#T9nA3?r(&+6wGI7^zn*{qH41cSm;Rp0)Rn=r8$iIQk7WuVt}~Im6E^D+oUKz}@El60?O*|9yJR625Ks|f$Cf5OMM#`nhPdsSyTG{* z$znG0SxObK9t{8`@j+`h7??@-H8E5@EQJ>kR+0dN(85UZ4P?1&txcT@a@^b()LT2o)mjYPREX@qlWt)E z{uUb>ThhRQX0X6;YP@BG6#&0jmTPirj*w0!VQ}C-F87f!t zuL%(Yl6i5PYstvVGeSzhG9EV57k(Fg0I`7a3u?;+xjbPL zK|fzHFCEDQqL6LI;z?cytd%Zngm1qEXy@tDgDxe!P(ENWXP`|1Kq{uRv^2NXF!#zt z)zIAENT!+9@~KvEn%Lgn-cEnUuR#7m$l(`u5D{&-j}HnN5cvoi=dp{R=PB^>=g;Z2 zwFpRwB$t%*8(&#nejgY2A|L?s-JR=9%*->ufOT)4l9F;3vd1z{o-p0Heu?zbC9yxW zk|T8yqMO*^v=W4hk^P=))?=oori{04T>)GLawrX#)I`xjTT*@t!lR3Ber0?o?kNmT zl^8|^1X3=-BfR4?C-w95>-lUfpQ~RrxO{-XA<*67rSaUls}T81W4X?xg987`KbY6w z;@I2UgFsMrWdv#($ZVw_KW2dS2!7mdIj=l>IW8d~42V%xI(a1|rYx_(;-^NiTBVt8 z9tA=JHu-#(;De~^X5{8*;Uf&y1mVEW_ky#)fh#2^hh1Hwd$D9Z#BQa5I(yte}fcpFeTi1^$Fdr@XJ;NSo7{Z(FY&5!?#SFo_KNWws%(ld5JPreOsogb`K3O4QB`WOzq z{?!WiT^ne?Acs~5SuiF=MMd0B3+m2dApB_u43VE)TU%OOCt4x!@}+}SfNgGW{u79m zNu{xQjOtN5uA5Kj1Bk)Ll64t!flUH@_-(GZp!Og;BqGA)8ylE^aMaGanW_oRujz01 z?^1-yVq#*3m~_P8&<6-TTX~0~100)~0s7>ZK7am<rG3CfSljFc{9Tw0hkyY#ULSZ>eq2e z8arp;ChUx6V9ENVib03OuG^lfs^KU)fJG^)0GQ&y=qw$+dWHXSz@i0&VF%1Dhw{m( z!sNh;V$(m|HFb6_UEkfM94oVSWbKB|88&29!BfLJz69J=7X5D6Gqv4;>(#4>j@FM) znm6b>iiE8}ONfD+TU|^Xxos>Wn%u5(+N+@0u9Zm+7e+DMxY1@A_j7i(1(>Lo%EAFH z)pe909$Px~M@V+|&5fkfBYDh=7x9WmR(QJq1D5r#Lk#_jAEIHWZ@;^fBH+(xVRct7 zh*myZ#SLrSC?x~404p_TtyGsox6~pKLWVCMoXpI!$9kE4A8n^JSq9jLAg0qwU={?LF7uha?%0y@$Kp3ncpDkX4N_iCYm?N_@N*T|%BW-K zUEtGUAb>>l;>8O%E0D6Yc3SWOAMz7e#x`}8l_BvlKY1ICgyile0%~EhRQZTj;0Ckr7Tf*uz0Zu#;*xe% zWuB)k@lneG#H^!z-W$z*l@_L_(Qz(2;{{fx@rTazy356{gtx1o(+f3V+dL#5?x0D ziTjd30eG^WaH zf)uup^HS7-7eseGW_%0%pWf{&bhpgW@%#| zs=8;Yb+vUsj6wn-JwzPJT~l!e1;GOr&T)fPF1B!#)ni=)NjU5p10u;!pVU-TTA&Zo z2Qht6>kWaC|B&d5kgSdKfslm|+8(;we!|qb#EFBOMG|2M1G!Djwl-wJ9<7d+LfBu+ z-l6}+jvl=Bj|xZA>Vu^mVApI#8r4wHOZObEUW3YM zkVyW3cmuLPq9=Q^+;MkQ#^?+#hshx$10`coj?25j2MvSUq@C<&zuQ|*QW8Z-BN_s? zKLZR&%}WD08vuHcAQT%9uPL72lCGnOY5_98G%z)iUS8q|wxgl(8tG7xablh&e+!AA z_pnbY`9H0USMW}{EptFJgcxGN;R?shHX0kQL0GcfkZu7y^{69;0~k`d`X`^PmL_WF zkRzEDm`EPa1E+wXAc0$Ehz#OWNUegfB0c~Nd2MY9=oQ6-{DXjS#Pqb0)nxS*un;XE zlNbhlqPR$26`mFYb-(Bd&dboyAFz_{d=MgmXjv9E_j@f>TO?A20ORb>K*X^pRi3CC z=#LHhBo0@KpC2q{z5&Pw8)g=9wn+K_;2%m!Wd>{ufM_CoFg0K)z`E7_asXRFVL6!F z03Ux76%_!+j~Hwh7r3ZT%3W2pFb?3vXb~wq21Z6SmhLjpDx3w5&w6mAJvlmDz#Ya5 zX+AU*Jnc`Anr{jrVeEl*34rM`jLmJBT{IL}e^`9T)+D}iWpU?-8{Eeo(rsFNz!E8J z?GRlTS`1`&jF!ZQK(eR)zq58{X}7c3r|<>WS>!~rk2(1NdhYdvcIl$e&NDuuFciEL MWmRSJrH%alH>ByG?s8dhBO+3S(mVZ0)E3b zC&>jrj$53*Y;n=#hK043*>#MJmW8RIiG`uwwY^r?&CK;ojCnZ)IeFOk-n6hVH5cOI zGWz=moF-ft8X4Xzj*9*e_|#vg7YKa2iFMxls)qi~x$;vD*aN>>sk^iz>$b2R!%aMe8V z1b$+7l99%upD}xP%O6A^Aun`cLqFLzl+18y?tOnFIcKWXUh&eUZTC-&s(GQmr8+D@ z^SQCHERaY0Fk9n0+o}jmi*=i0p}PIR&bOT-?a|M@DE-;5ys34}9}68KyBH-)6&n}l z*4x|LKHcfvX1J7GDJG1uYk4Ubp4T#wvoP5dEZQ0@VA7gnJJwxJ{Kvr8fr0e4)*F*- z8NAV(XgLXKY5wb(Y+P6`zBH{Ao#J+!wScD`oBXQnT|VjD9i%I`FkU_LmPJfLPmeXd z%}JOg%x1sy%twvg!d8aH`FnV847a;ccjtMPb~dS9yng*4#w34%|AUSht$HYNN}?Pb z91rOQI0F*W4s9coconSQ$a(SQ`HuGoyuato4U!i1q;|f0)cMVmtGnz-(){OA-J^RH zVs=cmSTpN}TJFLm>sG#uiMe0O?CcPwudk=~EH?H*clV87i#rf8P_9T`i;c<74i;Y= z@jf5S&yk)G9eq!)`sGN`CN9Hzp2nsoTvYXDdj9zON!>78chSkOZr)Dg&s9we$>Y_s zt>Q|5_Vz};c=4iM2JK%>J|$a3U46aZ2c77cn4Z+!moMFGQZpTx$-HXAi(+!9`jL~DR+deNRJ z(XunW#fpAuacHT6w^Bq>PfyQyF8)fgS*PTd<98&fMIU=Rd_N#E_KBCld443A@keZ2 zVq{tx|I~#0Ocfd#Vez6oiRIgSTTeZ|P#1rt+F87wk9^cv z#KTuv1kVk^QFyqU$5o)s!Q7MN7?byq{Pq`AM}s!^SlD?mvrN3W%$_z-*8*RxaGNdK zh0e1ikWX)$CoNa^Soo3%4L|N`jtvj3n#Gq(%+{rh*27#&qg*00-~G;qiOfib!}D6T z1{zZzGKpr%^=@%>fhDT0si|Qp^|LyC;lft?pwVPwRi8}7*O z$0FAa$M{>A{h(G$mgT1)-t{iY6+)h`wM)(V64KY1!h)K&Sk{j`XI{9sar>d~iAu1a z5s{IuuolKSBWGlfckMXyh_0kiZp6WS5H&us)x9H?v-?KFLPtAVM zsPZcNWn%GHQy+|Umd@oKhD9WK(Y~%%FDmqmni^xhnl)pba#HtjG4+r8EMf1D$zIJg zyPnkJ3E!RGGdS2?b5U-z}dqNn_b;W!?w+dC|b>D;+U@=4493F?%6l;VXF# z$G0Ck9}yqVF1Pa>y`_c4t7|2cldbkc>g7dfyB+rU^hIpZk$s`~Y}oz+tRv}@)vktv zCJ3|md81tXrln8)?nm5oE5l^4+dj0oQ!`gQ+{0@#(-mMoXK3eq>lROEsdp3@dtzc@ zvzVo&B|85PnZ?6wL@J^$JP#Ce6siM~2r?4}c&Yp8r<)>YOlMlCkI7v9_( zDmzvs&Bdcz!BF<`W9CeEFo|H-Z>>j{JT zC!U(xS{}3SXEERr&F8@5cm?t5zOm?0z&w5Wbh_NcsTi!T_*N<7`T}rpB^RU^Qya{c zE?w&OI)F@+`TLGGCmOQPz6--DDinh^n?*uSW^n8kNpAFS$m<;Fb(JtOGMXRu5ZC$k z_P&Z*^~6NI#t-HE*`46aNYL?o@PLvD3|GC{33+=xsmv|CR$s#`i{^FH+1e2m~^h@cHj7A@+lr77#|?Zj~}^zE#R&P{+PSbo_I(xlADUZKb$NT};V^ zmClRiUdOuw)f~DSYy9(AU^oN^Ge$+D06FK`YIc>hhu1&)k7Tzkc=c3AnSev2WvnPv&DT3G(4q|w(hcjlcfhOtnFmwv zgzDIj%1Y6C_onY3{H*JxQS4J}hj}nRK2ww&#C$`KMOAgFW3EMbo!3{d?OHECL<#gub%tVkpCmS zNlu}RK+9XFxq(uW^$Z1#sRlDu0eNo&^5?I^KFPBkIWkksyjZ|!-CPKs&t6p7z`$TI zlm9GsTT_S|CptGjxg)w8M(&%k25}^~37H7QyUl`^;kFyUxmT6q#?r#nk5chPp77b4 zD6=`_JU3J(deI$wpzST{pX9vIw}Y1U;)M%^k6ABfz!+zm+7{0Uh2DTrgiembfPqHe zger1-@KQ@M`VsCdMlCXYVkz$|Sh?TE_7cwM%7S}`9oSp*^Itu|?xe_`Huhi~_?FG< zaNv^0YtJOYZR1;W{?50AodxEB?_9#kbC{d>bsE@hy9so{#ID?bQP| zrnm7F`LN;Kf>2~tka$nl5me0~Gtl^IpyHjWIIgPw`yK#OiZtr|y`l+IZtFBz-j%(mkjw2Mnwqc@a zLsan9FQnt+2CPjxw6rg`=trn6S&kg)m~`u~iIbRh(+X~tu#>J-V(7_r_9eMmg}IJE z8oAafi@C{Qr7h2;BZOV}K5viDAGs|quqSF`6vdR`Xy9g_){0VNHcZyW@ci5pQS?#` z=Q3JOMhxt8(uAL z5|qGP;m;)3dL=`u*1#QTMgBSTE@zQXBRL_NUedsthN4Y|bUcylyUf!0q$C!B*6){t z%P@@eMdl>#Klj_o#Vl%0wjnJj_0^C8V}>I7hbAf3*151KX-TzkXy&*+JK_ zU^~gNZDXZaw`{lZtZI|3dwTx$`t?;V-0>8Kn@iOCOj_cpzXU(bZV(YMna=WfB;jCR zarQ?Ar^z41Yhbm5ijhj>i4Vn+-KD+kI?o+P+uK*S##%3$D)Cbc+A0 z2u$s{TEnAyF%u!nYy&^N)}D!}u9vr}1S#*glW1bh&yqE4#xx|1OT%<8r)4xc+2+gUI}Fab}VS z75zJ3DW(s|Ux2fH+QiiG-T5>h-Stm_JRx?yG0k>;32!?)Sng$I2__>l&1HNa6W8@qk0D#-&0)Sz9q!WVc7Wkfn zJr+-SwBK<O3hgj}O_tE~qfkLRcxtq>l1RVg<2s?BL`n+j`yyQRhfH2=w#b@kt?(kRGCBs8$Jq7SBs}x?aJCtdGwTt;HKOJ)21gac@xhy`soDo$9W@mx$bpo6Qyoj z+7+MRw$;8MWND+6;~Nc@p-MpRFj*ReSIr^U8*Zp{@_%wfd9rZ`P>c@1dqTCIx?Rt~ z?oUCIwzkIsJ@aCsLd+;zT3XPS0MZvj>kG&~*=nFsy)?7uWw78>v$?%dTzq`xeM!!hKucW4yTb{oj$7Ufd)RFkk zR3vVjY{KxbZI#rmahnLom`duw7cOGW1Tljj$PoPWUD zH|Qrw(4Yj?3?ggtk1+c;nuV?$6g4tSR9HRk%R%l(dW)&`E=qUI>)4z*fuAj^t2jyf zV893tCH_)o^5@|5or@}TPC0|c;U>S=XR)SXq+@PADXBQSuktd5#E`hg3~%$8WyXNY zD<`3WOWrD32Ii5Cjg8YC)XwkU-rv4Q%whV{l>Nd){Y-6=Qwczt+uZX?ii*RK(vOXJ zJBtVmSV!y@FlK;bMvYFw3>?}sr%#_A{50%OCQ$%zxil^*uMCpuO$GZr7>ba`n95&T zP$!vyL;Zbw_%zwvQ2x>-@2T->x$4%|iWI$S$llq*r{A(5l)%cxHIz-uiX(q{Y*Rp; zg!HaM{&&<4`H}uC_QMXu=II~u-`L(z@oHa{zwDbc8?tAd3^9(U1R^G*c;#ACOLdcn zCn=``;@V$2w`43hhi&92&z)Mx&)1RSxSDbgP%)-1L8bKPm*-bfZf=E9=S~U(tOM*d zK0f}rwzfo9eC`TzJeUWbp0;p)ku}-2-(D~H?cM>w!HmwpV+NO!46cx%^czx)r|L~k zi(}z{_e=Xt2ORY(LXJE95N_*;5?^4I_GfRn_C9ZEac-t{Do@JVS^&ILRh2^CY;98a zpg3%JpnwTe+kCe`45XB)sZYRLE^(p%PoHVtw2NI6(rQSqw}?$^PB!Q=JI!}8|8OFC zRp{>QCbKY+%bb&gL>IC_(Z#;}MNh=DeB!M{z<>C&B=v+)#r({ed1ZPBzwPMv zgu1E9rTNNC-jtm?cgCw`;{9ZWV(QcKh9UEM4H?k3`(*huR~77Zuok!#6)w1@YloO(WXK(@`$^@nhAqQCh?Q-X{yRxf}dd_w?!&&+M! zB>PkATetDH@2OdwC=Pd;7E@N=FcjZByI}9-5oa=xJFv(+cvY?MNk9Pat#5Ce>)Ym9 zr=nwHzd@eDnci$BZ9E5As@a_5_;cnLuyfUN;-Qc)98AxJd}+I^;BE9WNXqq3a_Bmu z>bx+KTS4Zvn2ia zMmj^X<}2$FkQeaeZumR+4(2Zn4Gn!0WD+O%gS#MG(am3&{AkoR-gW{{5gVRXNPV?< z#8!!0+r{xFo^aCAVZZ9R8{F~CMkfa3n#|R1rtE(3pr|K@Sy6FE>rx?WRJKiSPu;2g zTOT}l@bl-_$<$=}mrsoi@=2*hd=NPn(Axk>0MK@#W*W4#w7gdRU&W~O1zIe&Q&CYh z!zn{)mS6b%o#W=+!w_4H_-k$5z&trKzi$I>u+)<)FHnV|8=PXt#qil3CpeQD)EornZ3_xJ78VE)*&q%l+fC@J+ji~b z%$vRjZc%XNdux3K|FL7Q;rHnLhdEAOG0y5aG}&Y#zD2MdQcYjhZ)iW|G7j1J_fvhnQy{rqO&U;pSB-_Gv?G%3@Wl3e zSiMaS_V3ekCvVdaxqdXc)6o}TwMXpe{H%NStkL~FF2Ja|0tvtiIUdC8q9Nxcdo&-D zw2Gf0$IW+(+VMf|#)6)>p3#Cvd}*eVm6P)&P!5Q*1)kI#Mr;OQ(R?7a-fS@QhgqBB z6gUU~e*yM+RO!H3<+Q1{rCC^7-U7GA3lUOQWaMr0Bs|l6D0j*X;h;u?B%_IuVt1-e zfD+%_>5cbhFZNqww{-xcc=XYuM-IUFwswzkU4G>P2hP-!(J6oUF4yql+|XEZ_yT*n zQE`6Z%XFaqtfe&4ume_%R{~Ym8zgh*2^x0uG|#Bu2?_Ur{Pp~px5WtvVK|Flnw!rb z4eGbl(A8!67{H|qBYBx(L0cJPZCzZ|Rz&cY#2MCmz1SBgm(OxgkCu!?HFZ~*zDL=H zWO<}Z_3oY9w{x>>EOEbxtFl7GK0&NHaAWX( zOEOc_&E1zIi{$9>gn{oW?pR#!_8v@kZE@`8np4GIxyP)seXs)FxhSY+@$ zs}r1#h|2JVe%-g%c>Fol8v9;bw^-61IP*|*qPG_FDNIy&Dg%$-1~j7yB2R&bBoX}X zBRT!UdGQBF-H03WJm7m-N5_Rr1_M8TYJPpCg-B%J49f?@xwVRRX%qu5n3n7;3hUvs zvE5+eRpfg2orUxIyOr@nunMH1=xm(+DD#qN1W{-4)$i@EQSf!xs_^jip&-#3wS@{oDso@=233Ky#7l zb~k|Mi_@jzW^j4`|@NM8$2Cjvd@;d2Zy>#zC=;$YT-KO@{W zxVnIw45^kCHcECx{-i>5s#(1WC>iVNq0{)3g}er`O6!xG1A|=;7(IZECJmF|z&tWZ z8=j^O?*HFb(DWG2y-JAf`h_l!#0~Nri7%0^U085C%4}cp} z7^C^<2NsiE+d4-CpPzYj4WO?BU>DuS6utRxwE38Ji0Fjp&)pESm&=6w7(&8;SVN5J zvNQ|VRfvq8M=x-@uSy(Yr1rJq0Iq>Nvz|JnadVlg`nWe~LiSF^)r;>rwnYVTX80SRm zN|$or#uvn|L-huE^dR7Z!6JV^r0j;Ax+_9IqN0d!8dh)0K68_?-iA`%j~x%s z-D}(d7AUnjdf}(eBI~ihjSR;y-!AXEsNL*|8DpDga#&n!Yi|{tJ5A+1a7u4%CAH=9*|5 z{Rk<>v4p-I?fTdNu4<#JiwCn)Af$A`k&y}EZ(-{BmGJ&4wkPW}XUBWcd22Q;rplen z{`TNVM)y+#JEOUoO6LklYLYi4sp7{a4D8z92%RPM>omQv^RW=EG`_~eLFL2qj`d1B z-`e%}Gmj?8hrHL2ehVif0J-^7`wJoA3Fa6a`-2D}NvjZ>GlYDzm^CT{pS^TvyR0S@ z;=UtRU327H3Bq#_vN5KB!nzXeMd2u8-s>Di*=TM>795x$k@3%xI>`;{mEz8e4*nb} zb$tjFiY?gt5S}F-*ksbSGvMBZ7xetzK|JgLoS zGi_Q{TZ#!|$yd3-F9uEG>|)O<_2;=ECF1luB=fB|E~y(v)(#bsu8dBvzEnBLj<>VO zk`*O~c`#b-2K4-1P2;Mf;#7kD1FxmINRxkH`=f(ID@-iYp zJzE8!f!m-izP#dL1rQc-WH*bZYTUAw6 zg4iNtna^@^LOQ+0os#Fg#20O#V1rWHz$Pmw-|^Uu|5QiN!vW!e9@3RzRzds$nFP)E z?0YBctEx@{A5vakj`jPXK4ocT)tyyse8d8m?b+sspFOEfQK3o|cN79~9?v@ce${=r zMqE>wV({o@2sgb484Ge|xkKtuFhSscG`uPPYP1yp`aN9KD z^S!ZWk69WF{b7?KJu4|$obn&P3%kH)Mt~?~W6kgmW_xE8hb9ws87B zVPLfUkWJq9YX!|a81yaz!OjF@K7rk)HU9GpAVMZWb&o^9^L?DVJTEAI?{~y84@Mac zyVaRGsPFuA_Io-L4!=3t@i5&ZyOwaQ-U*w39kbBLN&I8oup5xU-MfO|tOQ*kgNJ8q zM2#F7p0KXH$rsMnS*cy!b%l-W54qfDSa%OPu>BTA@SOtc^eZOm<+G#f%;U7$F6YHT zUE=`4NRn?|ciF@;Miv}o6|D2hg|E^EV57HTT1mLMjlqkE&f4`AAsZt8-p4+dK2eR{ zOYVF@2zCd(>_Hs)d)UOPy>)-U8GFtkUq^O6Hs-|4u7mK#lP#L+qVZ)XWcd2Os%RtA zB;f@($G3qT*jx;kmBbY?{fnk&McR}AXBi>1Me*#e(ePKHdl=eF#eBk(=kOFnH0Snd z1vaDGjSdRc{v*|B!dDRh%#ahE;oqmv3Pe1_3=impMK9`G{i-;mYK^+h!7^005$Tg&t;A^yE81d_+Xu zc)@i`ABsc2QjSnHJfF)9{~;J$jqlw|%UArHIz6?VDBWp)WP=S@J%Tzif#lGJ_IDIE z$Ecoc4OF3;dxs7iF1rE^3zHl{4p95BDUQ-BRXYi0hcGdp%X}>3pvjifWWV7|vwL45 zc=Me_+7`OKE3La~?=|9hZ+^NX<14gIP;i&J_0wTBRXpGO>AFL3PNdg!Cox^R9&w1y zsz2d1dIZf;c!XksE5_Ksg*H2aeO)T6AT|s^%3fx)Pn2I*U}(2MG>dhqgzba+n@f|~ zI%+71+b4hy8u`uZbcxX(o4HeWRLGtDWXgu4`;PW+XJ8$>>ecleR{}4u8&mLk*p1d> zHk|lP_+@Zbg9v9EMTwvCG2t&93#B3Le%XFDcs~yBPD6aix0MEE_3Pp7U7Q&&_Aykl zd+@UD(+AV6qCw}GwQ~73F;Zuaira+>wDLFKq;$#rGDSg)%o32Fg2ZthR|MZ`n#5 ztsok0c0*r_=|H2Y!?ktY*k@m1NffjwYD^saRL(=~7+5l5?g{Kv!r&aL#%g;Vhcd!x zwkOvBt_BY8ZwYbxPRo#ehBms z$!ADNWn`$RMaOB9Z_GHsgOr^H0gt5>huwLlKJb5m21DIE!Cyt|%NKUh33`A+%1zP=ASM?qXO-l%@@ zVsUS6TzcPbWz}2cpg{RRUPa~IL=B9FWh?UK%0 z-$tfo^C)rnlgpyxo^rH;I}=@n-2PJ_RTzD|k&NmgfKKe||GcernmeEFUBGu_+mtF2p%UcL2?{R4w#%>`h;MB_nuL4?(ib@EvCUpCI2xP&pzU$8=TG(_IOh{jWmE9b^H2-64;^;w~TeCoL`;6>8lHcSfZdRV0R$fkcfDiO} z8G~7UmviloLBb&@Co*y>@xzz0Cr4P>8g0H!L6M#x>Px7gm+NH?M3i|kl>o*Rq&t9E zg%BnL1xuiiB^!M3EvH%(c<4HIeK+P5_s+3cP4|x(FuTV5QzA?P_ za9NKEv@1e7pCF1yjU=0z+Fx7J{57MPO5(3&|EYYvf|!GI{D3B5MJ)5|BR$V?cg&B5 z7sgZ*g~sG~Z;e<%!HkxqX*u=rD^}2jpidbUuQ&z00w{c?UAwR%q!$uH?XH|=ash!~ zr0Ky^h<8xPN0D%xWLauC>%|Ihj161@iHpS=vEmsbl&b93h!s?f=<#(bD>ka73_h@J zIL;~~|2RXXY|)Rheb*pR;jNCq{PfxL1|N0};Ki4M0+nRdihy1wOnmf}s*Tpi+&iy4 zG1b3|JUbgw+*bLl@=3pRwUTEHc5x=S`LmyAzirEU_RJVUF^vT7Z^GU97_#5%jX(eb>7JzUJU6iZk_uOvO z|0>{*5Kff`5Bj=La*km|;ZwJz6-?vN%;}J%m>|&w+@-U*;IFjq?aQ-(LN}l#i5OXF zOMIH>oV%UWK4kcyW@|wq4*;NQBQjTVAdNtWpk1<6@>)OUo(h^6X5@(%AT*SxcF&c3mJ4JoiTy1N)^RNh-6Y@|R zM|F6`Hu2p=^CNv1$v-V&ASjkZc>_DD;tdEZ z1+;@~mp5H)kFmP9E`ZQ}86i%-Xf$>5o}QJqL~#rbbWD3rD^-0wRVm9MP1$V^sG?vA z?a&h>^!|Wj3iG&q9ocYhC0$KsKtS%hGKs;vZ${s=cMXq6XhA-VZNmzWr}rN1>!>k~ zrMY&um#$J#%uXVnIE7N0-bRwp2z7k7ngs%a%sbqsu&hVdDe+U+o`5 z$qz?2iq1`o@k(3TNrB8e-460h<9`W2EXtn-&MbF#vfzs9#I6E@6EQ0?O~L?L^@*Sr+ymA~9PPGT{Q2UY z6Fwv_{flOB_x3>YTeSs^$?D1)yF_;rO+)QZ3ZrnEJLwMs;-f*wGy8ihku12wXz%?7 znMNZH*^I184TbkF9C2oU{=``T2*_R=S-GqW%c(kSZX6G}u<-(Nkpwj~hk;kiU7i$d zc=mhm?RWxX)p7tq^dWq^k-;``tOgKRs$J;$Rx9EXc48koCD|e^Tc!j&Iva4)s>e?m zLR7@h`oQXrKSP;j-9P0Td`&5uxsm>IWAXr}u-@sd57tO&RjPp4x^wt6Ks9L;Hm^68 z?UxUBmHdWK4VLN#8q_WhL$}g839^h=bT1nKa9}5R(V%!&!iQdGbPBmvG6MJ%dNk|f zYXDunXtaZv_hiGVc9*}9#_SJNrs^cpJUF^@Fb^zd&elK_5`pipqDgzXo-@vkkNfx*S|y2?q0M+KtK9tV{WwX*Ka|Z8 zMA@i^5Z$mmz$wDMH9#Jg$`Sx<{zQTaU}3Uz($YakuT$nja+sDiq_H?kiyXH>pZ_$RX7Y%Lb-nqZltA^*qd@6y0aYuL zO*;v2YpA4=p0R{fF#>rbR5!|>o)%$h>%Haa>AB~azTzPNwYT?(-}`yh;Zod7c__ll z+IkF?r6A|+N`rKO$EcA{-KOKNn$RTD`$DhIS71!1OP%MXE+wjF#&w;ma#>bAjMQu; zhZ9VBc#Xc2q48T$Q1e9vlfoCKWHL>1`?~X!(@^wuh_)I8=zR|EEi~N?iEv3vqT(iW)l?BTXZYA zaM?{O@Ei1z1pd=U@^2QGRT&nQknkuUDnrmQViz~}w(}PLgASV2sg+j6rb>RSBpn(R zP+jJOAB%a-1*uz55P1c;5L8J>3m|hZ`TANrbD~b=_N&)bP%5l%o`yE5>rkWzdXyV# z_ZTE-_`nj5WD6ybtCfQKLJrt=;2SC{Js%TVbXG<{JmqBx@){@(KKd=Cyp*I~4#{f; z?24~JNQzn4xd#vU!^RzvqwJB=u9Ggwh-px@^j*Q)4%(z9$wj~CO zD|?Q5oy@5qHkdRw?QpN&tyQXC3~$gK2G_xN4^l#@I154{N(&>q%GW}D%Pu$H3@YS{V3rN#b9MMx;0MGyCc2jF# znXn_Yh8I*V^UGqc^HXVnYX#nX@NB|g z3GfVSG-3^LbXYW~6Ken?>;xkk6wL}?gmZfcafD(e-;bpd17FT&y2_XHZGh+*K83TuwBmw=B+?-bw$X< z4s1cs=3ed1_n|z7TnA-97h7&v2H6`U1dJ@yrOi{cgc{+DH_hW%y@p~MQ&O@U;? z8qlaQ7Zytqvn!?G;s6afC$8`{!h|?U6j?|6|H9V~T{N!|LZEYnKYuKhWLGJ;b| zG!>KHKb3VHn+^=Amu1x^VU18%)@Z7QI48YV>n zP>fX;Pw{j`qKHpxl3ibeR0QY4#X>Ouq*aql_^TLq++NSrj+Ax>57H}#EPZDY|4{WpdX69nzUAMbcn}I60QKI$r$7kM z31YJrLwhLRK?h8>f*&Mo%ML|Okp>)kkAZP1knWusfkrvwv;`!?g|4rL7m--Kh_ipn z0F+}F=mh4O5E&Vnq<>`hzk;Pt*2nRb1wgL;bbODAQZ71JOOuSO zrD~Uv$;-yBBQLJK-VOb;*ch&Uixat^8Beoa0)19` zvWGvxwf5;<>Ar}Ao3=}9s#E@w_2Bsg;SU|5jA!QhhBSZwT{kMj%4ze4@2at#!&83Al^IrLdAmV) zlIc2Pc?e>)QPLk+{BWqDGBJ0uF;65O+tm`uZ$tQ}>I4et-f9<0#EYAon`Z ziX{ZG^y-TaNM1TQE3{!9sNGA@Sw-qrHO}*R%H@XPxELo20i%$UtOkyCc6~hvf>EqQ zu|6&_OFv+fAHiX{#SD#pQ-#?zJ`G)rPIZ_W&5M`BQ=X$KctkaPq*%B&|kdV+a=(seYv1IAt=}R~{Y$4p7pI6`1j}1}%RVBerWHVAmt6ZJ4 zklycv_v1T}`%m6}Zr=A0gg}*k`4f(_JyCOUTX1FB%P33r4g25^n)=Pe%kmc|l8|a+ zaB#3W?JTwkfJjapY;?<^KP1`VPjV8(vIX8ME_88v0@T`}Tn-(Z=0O#*f7^W;GLl!f z>`V^%^#oHMj0s=MZ&Ha0i`ot#8v#Jly)f0r0tI}a;O`_NV{1t$sYIkBc1$6cPHvAk`M?Ff{}5H@CyI z=`K#yue#*t6f{1PnOY*|UvcZFIQNl*#E;^9H6`a-#6Exie1h#sndK-WI}}+!Q5>0> z8KiSGXvhpZ5NS`>;d|*GN&Oa&r3+z0D9xlu2ax5MRo3=Ot9W+Q6cYVisdqbewCAt| z`o1?2MF;U_R4~@D>xjm!<9l$VWgpc{%_RlHu58g&JZWJnGYw6Ibf2w+BI=+URr}rM zcaP{xL8)!q^CDpO4JWSm;vb&l8&V7nj?0|@bC~c5U9_1DUz!O=t;$HnjB*x+TW_~A zSbUanfL;#Wk_S5-FGpero_eu=N^ncPvRip`K$NCUxO)3uFz39_x-$4y+aHXJ18s|s zKtMW|1LZl;ppBPkZE}@?tp3P`_SjTl7ZuO6zw9s#sSky0ci<8fu4Z*yRfIyjshy`u zK|Zeq&q0-@60L)J0US3s7V8nqi~e2NKmlNl$~nnvK!^Gi>L&qDpVEPkkvSTq^Cj|h z4v0t`mBO(DDN#)wi`}Lo!W&rviubCJOG5;ZZ|I481)>^hNl8-FK8kjoCEVfYh)oWc zfgd4s@?Rjx1N=L7XG-XnXn|%^QjOWFfat`;!D2J4Uj4BfMK8}Xk}&LW%dGVw68H** zO+DU*piwgB3=snrFGyS`lw_c$0PIZCa(0Gq@A!w~cR?6`AL=*hTw6ed3ADuInahp8 z(;;~Y^TEu&V>);e{uCGB7 zFKDv}2e?0ZS`?pByxJ5PjP*C=j177RL;CGB0JAu(4xS2DrNHsI5$TcXyi( zm`*cy%_O2ps=Ub!(vPZ)U@|QrK_%SWwA1^yB8v=zs%@xfJk}`Sw2_t|x!_+~7H`!8 z^KD4hH6JOV9RvCHRO8^4Gq{C;)j@0duy;fAC@fJA`R^u*-)$DHHl0-aeK)LUFvWNSI^Ji2J7PQhPde_h9}$00Edk_9uDvQ_=F@>Ja_5~jie%6T0w1vr*x25?lIFrA zi3A}hJAGqV-yKL`Tb~ozJw7a?SzWa&0SImebQ6ySR)cP;E9e2QfAd_dM4n3=xJbNv zitC)oJ&tn2hcKS3il-NKp|Z0 z_)Eef@GBQdbE-g5^S4k6O%QwG))Swh{rrKzp24jlSah=q29#g7I^W#_!!Yl9qHH|& z8m@w92LtVb*Fdti@#lY4ag5Gdc(c6v%~JxP_R!z$@Qh)6<8AA?$8yfF`$w*>wZy-C{YmbFTJ0s=pb;i{NPcoG)! zfc(F5AlAT4dhj=FSn}=i+OKzm`t%yeU^9(i$<6oqP>a^eeCXfh>v}C6C2iON( ze>dtP;T2Bd8C&$&?$p%O5XdwT8hY*}^Z>Fa56iwfbQJ{#HFqGHC(vV*cVv7Pq3N>w z9e5s2Xm))LofY@Dvl!R&9GnP;#PlXT67F|Qzj07T(D~#gd6Efej(VP$=+&2)?S(o? zLGL<-?gDwrkN~(ZGV&3NV;gj?h)urs?#j!9*q8~gSQooU>$SYT>0c2ayN&w74j2vQ&e)S+7@NKh$$?*+?Ne{dU$Zqd;Hx)@{ zsEEE3jVh7&6gTiDRv(rpxjJBQRkFj{1VU(?@7+c_Vj+!~ z87M@b8xh3=ov4KbszXruNRe6X7-N`WwTx<4mOMcp{1!&*c{Lf_+w#IRo&qWfgmRsA z8CgvJQ&5=Z{12|Wg_0;$-9Y@m5aR!>AE08|uUf*yo0V)t)n}mg9*?amc;cA<*e>j;^8sGg|GtBz;Mg=)M7A z8r4gb{ue=1p~B6=8%Qh25i)KsN@g{{!EKqi(~XMn8EIs%ZRHZ_-W> zVe;JpTCa73^fECZo&anW-N{vZv<`$P?)UylSWfs7*H7^Tn%t|Ef+mn4LL%*^YQW$B zwP~4X6C?t_%}~5Pk5R5K9%VYav+(+#sx)9AD3wsW2F55;_8!oBp+w09b|*Is_AJLr zVCOjT9wF-3WVW2ondRd#IyG{bcd?iTCH?P3~ z20&8g{iX^7+S*^Xw4*yJf++F8(G{St0w(4^Tl#E6^uR=sDV@uzeUbpjL&d$?mh@-< zeUQFiZA)%YRi)dzmMzs-qlbeM2fSV@)Y3BI|CBs|Am1bZf}|Zvo{8J9LCG@;iB&-k z0B48I)U&bO_g@t>HYOj=^Sa5^#zetN8mstMTl>qHoa5o#Qt*fmo+FQ5%bFCHU=_(h zTl+u~ZKT>v`%kqA{430mZLeJVZ`GzOr^h|wG2uIfhJ{2Pe_3*3 za-_EbjxKq`a-TQ!7<@5Jr<5jZ<$q{!en$-wO#PyG%btVCgI-II_VMWmesYg@M6m<@ zF^Fqfy;p71KA`Tq{%ueDo$1gO!4#NQ6R=2o`l2QN7`;`$(Q=j?Hv{Hm^?Xfpx(lkM zfiqM5h326&pdSz}A!btwfPx!kcBK{`Na&dUFYi`(2Gh z3cfAW^e>3GNW|>efup3cDQ>Gas!9`LlU2bQ8x;;V-lQi({RtJPe}VQTHyAEKth3ZW zPuN1|SsGLC3cp9iNuk&yxu)MkTD!)@ZajdfQt21UfwToH|2L(=8{4u~ecIid1?*n8ZYnE+m@z2n;apm(NAA z0QZ!Y;fd8`b2QzX)!QVm>_ajE{YSgdEp*UD57pygr~w!U&n-cRCAw-V3Vw?&Cq(_E zxr5VQ*2isbPc928u?@<_Lg_YT~6AK?}Oa%or|+SxOUD_oDp#lqpd8Px-6LbuJue8dwD1 zy&GH|XkW*m9_a7BQmE&d#Hakm9=In1U0efK({$aK3%6?2LqcD;SfMM;5wzJq&{cm> z?7$T9Mnlm8HB$*IU6hvIq@;v062J3@tb2E}ZDzbOT{Z`p_2ChBVX1=Ol^HCRF;VE9 zbK!ppy}xNAU4Z%=DWr*x$qV7o%n4V#P>aoe@ir?Yr+o!C#w65z`BTxS$lL1@Ojl%j z6)6ExVGXZ%cI~?-M|j}gvBl2|x}O3ILEB#Rt;91EI$v#}F$@*|p&L*|q#IJ1b1;iR zez?3x&EYy58I)r`{3BBXk;DtZHuC;0AZ{;vM1A}_4Z4v`Y}D7Ac(KI%NU2HMl9IC8 zY3N`b?1Kt|WG`lFH4{l#5OMmsG4mAK{Xlbk50;)WkYnMGh8W<@iWpBbJM^8nqFt-C*cMyphS@v z9XejowE%FnYFI#hbjtz8f_b9g6><6HK7lpp_BN{XvvC+so8I(8J3C?hP&Iuf>`(7__ywjNAlBS zd--l?8Z%munaUG;&#a+(2t3U6Rt<74bRulHNROe*G3k&p6c8t18S-U3^Rr)-N^Fey zZh588D}fgv92kr@)$f4nNrHGmB-YyZH{I;yk?+C5r&7$ugo>! z?n8LS>y^1Cu^Cc{W({xezJoM&)OcAuZwrE1SNUjfmRGl2E1a`3Z;mbtMvkxjiSfTZ zO^^(hxWwkHLdSGf@Bz=&(Y(s%#)(?vsWZRO@juaAGK@qiTWMJ|ccMjmQREWaa(InB zx>^Zu?EkkG@OO`VcFU)#tRzZtRqJ=l*AD$7P9Qn`EBcLtY+)h})qI(b7St#Rif`m0 z`gNo}jcrT00X?eAJI{a}grn)?yH*Z^yZZ^=y0sE?^+>|Qp(wQi9pfoLUOQW}8g${) z+(?uhZ!F&=Em#hGn%{_oBasnUiH>ok_hAj$*UDkgjTW(LX&~z}{I5R{5L_tu3(hrc zNsk4Vu)6ijl+WTR-!>`-kEyw0^#qPS*sKM*#QI`;kU|&zPB;}YRRf~)vt=(t z7H4#)CzPandVYSehEvi~;39Mi%Gv+1I=^7E>pKAzn|aU5;cn+#s)FF98Gdi)kt=j< zh9AtY!@buxPB2EU@RV#A6OlCh()_pNl)M&MAF6cnD>tuXdZAzBj7*o!?>da@RhIq9 z;QGr>_OGTM@?_8KJd2+VCb7JC1zie9>=tsCC3coJ$~J_ti-zvGw)5bL z-9j2F)4M`t)U<{TztV^mCrL4=mh&u)@*Gv$W0&=2{##L-Z_g*gk*~Gek3=t?Jt*^0 zWncCLo%&q9$%UnWLwNfq7Zudc?9KXI zkZHg>e+!&d-iR&xmSu8|`To#}vteD9iv3Uhe%G^izE6)fPqwv9)DM5UAt?~rS9}9z z+`^&v&fyxi)XCBDXaA?srl!T5+RsN< zxpPW}wE^A5k(W~YwA3-nJ@VWBGN~t9b>LA|7KsCqi(E23cc%jQ4JQMAJuaD7xrGx1 zw;tSf|5g9(`uoaHH$ZcftaH-Y(a=>lIF$Uin?BB;?gpfAQOd z52b2({FwHl`CD#`t6@P>_o7y3N~626P;mA}yLFf|jK@OIbuvMT>}13B%$#ldKMkGp z{k&!qo9peJ%&;VPB+Mm;&-=^s?>`gy^5GlbTMs%fM83EnyO^$h&#*HKPo=9Kv3%o{+`erM)6?gz{Riv#O55yrB$y;TAIP<8?92KY-A8a-;816LZfi?V z6GpPwDWK8Nzu729=uB7G#z_$?>O+nbF3poK^HcHBtmUCR{@4jF(q5VsUYndFxT2~d zW#no(w~f^W{x^>|R-f^h(^jolhd$jp_29CzfAXCwty|j;bUuE>{=(4aA^z0HFE(3Gmz+L7SNB-Vz6EZUzy&ZA z`2EQHY+&zm7ykYENXWWV+NU2=dGmHme^C)pKNR{b?sc#sMO9xFf!_YB?z_v4Z9|0I zJio~);U2xp&$Tr&$`=J*6kn@Z%G|i2xL>Yvno0-G0D~-jMX03=_k0A~8Rp}WmFn5p z4=zI371aa1Xt+~iuzUPna7c1lcsw-O_dD_V+*Ud(QtoAI^vK;jHWV!1b_YuXV?mW6pcc zF_idajSn%jg#C)GpOo#1xRYz)!E z=CJar2@BT|;Bv28kMzpd>2F2$-bl6B!!VE%oN3kE+y_4HnOZo#m{v@Tj?c;)5+ z;C174rHQo1MeE%e+q53WlsAxn-hgjSuSp@?`7P-Xo_8+w6AU&pjQSd zt{2ldn*9T>a`Ks^PfjxKHx5a4*yog~QFbuYPiH|+vmQ2~AU*oL1e%xAbQn>!{TZf>_q~x=P$`7dA zqcZL@pQ29tvejqfynOX#FUY6g))PK=?Rfg*NoDAq;e7pBwCTh2t&;a_bXW7;yx3Wy z*!sN^-<6ztIA@3cc+R0tk>eMCxBGz2?0cu2gGb;?!lmUdKpl&fI}roN`wdRVTenbc z9{e8UcVZXXZQ-d-r;Uu3-P7MCJo4Ii?{nFIV14_>*)PM^ulE|GQY%XWh#&njHkF|J z@UMEl_rG3{sk<0Wz^=bZ^YeH5tuAcX3Ro|fe{3yAoPTo0OU#Q^%y#4VxaYA#?>93l z{msq%QQ7MBa(&?N%J%yT#?(oxUVnpn%U}RI({D3M4Zp%`qj}9Kl4RNos|>TXttq8(zIs zD4I>w?i6qkA^93;p}Elm2-)ixrV**9^GV}@hgntReghX{Kd$7h?DYwc(MkJF_tP`w z>wPARn{x8ryb~o8rwc3QO+!Hwb+_!U_ovwQ$aDB%4@z47-*d6cHwQ9C)^vM6cd5(X zpyV%Jc2L~yc@a=6-#O|~xg2X?et)1k{| zY;jb3LOoCU8I?yO1*1e2*l7$?@iVf{`gzaJJsIpdw4b(jg=oZx2-b}FGZB?qw8!vP zH#NoOwbb@ExX{@b2?NrN6b6hjY&B?u?16Pq^B!V!r1*6E|ru=w}_IuLt z{^!?)XplbcsT0O)tg`9}xKq)fZ&k>$mlpQp-4oL7XY#`a?*4{%qGbiQZXD#*-A>ol zOO00hWP+DS>TEjyg`)F4MN+7Sb^L{q-2RkN_+X!Dlxetsb+pNi2^Xqah+lsj=rR9v z9pO|uXmx(IHAZpgzh3@M_7`wU@sJ_syiDozfROt@NLhrk^s?Rq{F;vxhQfyb2n;vJTT15A%ej#|numC!R)zu1?6BJ&Z{e@$;9?SN0KV-!ny0BMUAx z$iHpRClcc4vk07*gc%uaGgcHPIIV1DrYX}Y^X$B|>9$QTWhrpHrixSk7~LH1k3BKe|*6>t*=k_H1bC;lb$1KI0a0Bbw>JQ;L8Y{jK zrV5GgJ5f73@tp(&h#=m&g}d7}SUsIo*wtIL@~zF7#&HnQLpo@&A|`sRsZ-Oey>jbO z6=ELKaz{&V_TLGrJ>J!`zkM=fyPEdE{t5A?m~PRI)!HUQJ#>dKk?M=FX`0xra~zBB zS|GVcF?h($Nq7aw=ZG7>r~MNU-D^2R2~WT64Ua|HI4mg$pC76{K3>6i)^N8P<+=U& z0k_@W@T+&YzRHB+R@fs!Gct(@J2Sn>5>YIQA9Y&@6x8HN`=c2x&gV3kWk0jYCz8Zc zscAOuO-0%_H0OV4C%+SwFn&+crSFoj!!+5N365sPCe_#ezX#g7+QskpGWPcrm)!ad zQSu{Qf^>TZ5>%V#3;vS<7QM+?`S-gAX^72czB?nTOIH4zQPH?qn)S$jCM*XLBCP%y zk2=5Io@#{E52=ZTH{Q@D20lm=qtcerR1h_y`==A@0C{@O4_4jy?F5na+de-wlJAp? zi^qL?LocCX86H<-AQIT2sOKM-C!lNXZEJAoHxe`#>S9Wn7TViwI`i!sun0=uWVObC z*xng0(tL4YQGzrUkKCkcHMRRv-b&Z!`OITPeRfYm>?B|yGxrI6X_IGu?(R=`ovj{| zjQt)~%DX46<0`Nh=z#fW-KflDS-@!GP^5y9LpH*s#>Fo9OeO7Qn${~N%N({D-SS@~ z#u9YKcO|_R+&JF^U^rPa`4tkJUgz2?%Z$s6wYBB<(BQxOW9v+y)Zp-Rk2~x@zv1`T6F=Vqnbt7XCidKoZNuP)Ant!Gd;{<-|(do+WF$Z7)z@KcK{fZB-nN4pn|` z!T(Ki&qlWO(iJ%6{aGLs1(Is3Ntwp0gWy-Z;lFUCA<)}1#wIWG&EolOiZ`;?10*Qd z-B(e;>py<&3^j~%kEox7zrm+SqS&5voLcnsJWbl^H?LprNaK2c?=*P9i0UHZz z1+i<2S{U#Vw^F(_?&z|-Q6NuEP`P|NLy1QCmj|Ey+9TnGStbmtvemhQ-M}+UgltZ@tFyZcx-n@S@nRZ2!@TpudFe}=58@1$aV=Qmen=6mP4x{!#n>F49p>JDF( z+_M|;kJmd}@SwjN*zGUP^k15dsD0pou3c|f!)@tn^Q;4G>3TUw(V5>qUj{SENFYtg z()wuymtDg?=sa##JMPnJI6g?<&Z2(^@yIs0biVh(&$nvNxJM3owfH^>;6%#tdU`Xm z=|nz64M>QCyyFn9m2^n9A?CZsaR~ z!_E;mCuQEqkvwLY9_iBcfV^Y9fQ*c(eO`r(NfCBc|Kq3fA@`SksnCl7g7wcQb0L)_Zi3xUm5 zVXVQGq|Rclea~c-uAqz@4EtqQ$5vfTKGh8(IOicN4Z2>DAudqsDQ=zJ9mAtq%KF(vq8DlvmciY; z@SIpbhJ9x%pN_OD-uhP?X!W~IGvqH{*CP6G`FbJSaIwYlDl0-FOP zKYfp06KdEWJg_Ff$v7juYw$Exr+RxJ@NjP^K8?_2!gPSn^7I>q1SnhRw z=a)i-l=F%B*B{w)-JY+|77fo-ZLSu*WTcF@1lo^ea#=wMj2Kma?->z4}$7o=)bE zw8#L_;R?LMg94{36@xf{ZjbMiaWT1i`#W53Pba*QznE+H^1}pE7q%N;eiX&4w8_zt z;a*#D!-_AhBO^b*1mwpMqbAq7e^$ECsq~$7XvZ7z=EYPvR%5Dz?CZ}O^~yv#9`LT06ON|R^NQ-dt9nEc7Je62vh)cMlD_M;=zm$6 zLLD>{dDy+RZBrO)3lc)mWd#Y#+BFlc(D(DC(`R)V*;CgA--NBrilSvRq+@!(rGMfw zkxFFPxLKqBbG&@P0#ZxKtNY^qm=WLKK2otfq*)O^UFFpC&m8g`bw%M(Qd04rwiX)p zKA%}dO~gRW;6Zb`mwOE4WmY2H)-6H|=?bf9Nah0Khl=l*JChbC55(Bg@C1)nqy_){ z#k=29Bi7nHHDW6|{4U|0KF&-Fw@(CR%W$Kbq4U#3pzZ008Sh;+BGS$$6+CTIp{}A3 z0SNF+f-XBw1297@Jdx+ zWFywV`asxR1m|>i@+Bb>)x1Aj`{`IegK*j>0|8NHR?L7rb9tOZLzp>aYh5#*OEQ@c=v07>F$X@@#Qo_s!|-id)|UyqGk+Z(;HG7mY2JJ z{;lO7owUs_s-Ova1HrGJhbES4Pgfz|^l>oOg|p+EpZzZ(c&S7rHvs>&;bRrn@y3!+Nse)OIq-V`g!GF1tz$Gc;$niE2e)ET2tVM&v0OfAEtm zomnm3eQ|p!2L*c(%J+6>WNcBdoE6Cai*(83AC!Bd-RnDtXnAA2v|b^{6N!io3*_6IkvMksjFouTF>wFj|F-4v2&rkbh=p3 z=TOgib?epZgYQiY9)q608onJny<+rH%D6*Qzb!z$y>d;?πxq(Vd|I}JT+g&g~K z;hu(#I8V~2g-DaLEdd7b9HNSnft=KGu>8=X<@4E~z%9~C7!xJdy2-Wurw{~n%ORsr zWRCupSLMd%K5*!RU*cFhaO@$hr)zzp*pea(6^Spou5aU`dGW$0it4UO1m4PG(#Mbg9)BiAZBuk@K;<(%uu0q=Epd8PB2<&UmL z$wac6#faElV;9`{=dWayD+p>1YS9r2OIFioJXKUW;H#Veu%lbn6&JxY`zXbcjpF zG*fSDJhm$I&BM|fig|9n#Ia?y3-l-LEvM{M7K#y_t_BeT`Z&I=#dykeL+~oa?`%rt zH_K4XdXW%aE>A20S;P5p;Q6GjuDy;K72PV$8Lh{8^ID6T8-L?a`>sG^_3uS1zY-Qy z1vlAqbWt>MRO!t>+B=F&pV_muOOEH5kD2<8+hGx9U=2zerR;H38noPbZf7nNX{ASm zKL?U>)-ya(wX6G|PK~TKznj7B|78VeI?5%4@=!Z)VM4IXe_3<3iiU*_K_Pj3-%@wV z0XFK0MbDCEjQsFVc_f_YV7$+NpRdz7(k)7^sf3$Ga-Z9AmiVBtQq0X`zI2}8{9=DY zq&e#D1=gWu!hQL&zj?U=a$j6(^pjjDbAoPuTxDFXQ2lZ_-o=QMOZBR!y|b2tgfV3w zrKEugWlr?v=yAFF#97uymp|O07|T=YWA59GuO0|z&Yia@%sN=*E3-h$1zW~lY6jWn z`2Jt~pJrd%JE6L^R({|pIGwKFBdXQ#tDuUA|)k#K$j$ox5=Nmg1FXN|Z(6q$uPc-d zVpnQmD{_B1>cm%rKYcVsHJUg(Q`-K13`crCFIb9wdT`Y4T91-;Tk+SiFoA^vLju(T z`IMsX?q3IsmuWv@V$k{jnd+xOY^^RcuBG@t`C)cj;As-+nHTehk02%@Tij7%AN6L< zL9sxq{fR|r!T2wO%psi+{toHFEW5&-p?ZncqHsO;vg*P0S^4hmkEkZrXYLDieOqoL zoj^h%(TSnEm!duQNZ8J)>n>ZNAEiKBcTbm!_J$LFJOakQ-!V;!U2=Un_@&_;l3zXh z3r#%uiBwO&YL;Cm=C89vM0Y66ZyR%7DKfszm$UVl_q&!wQGWSY9$n~pBZfk3`!74e zYL9DlW!m(Sv=n|g2g#{qSc4YDg@ciz_;J&ngj6JZ5j=lWQ6n5y$dO9?zN_!wmH#Sy zYX8uEQNo^{K>C@fVu}*x8xNzes99Q1B26vR#0W|DdQEMbbcOO|<}T4LEyKP$sxLBK zh1!3saN?vON@bs-6euz{ zCDlBllzIfK`UxHd6|}=yP^pYz-V3J)u5m1`4UW3HqL)V~X&#-o^A;V+Eu~uo&LMjE z_Dvb`3A<)NqmL=m`)9}SPSpG+f5psvzu@|_^9qwde-um1-qt9ZN~)`uxjUdl;z#qT zP_GSVad2Opd`Z8J74Bn7i@7yqa7+{qt%DIP9XWTNr%z2U8CzF6uamIZs8Ah_Yn_ya zSk?(|_##>L^{jICez)f~4BQO+6`&Dk+j)hFk&*G;f?NV~opwBuesE&{!t?!I?3~Iv z1tR4a+==Zkb;2t-DSsXp&Q}=s;B&mJy5M+>x>U#K_fBNH)e=wD`Zm+u^us0AkNR54 z2>!vlSBu-jFpBTNBN3d{or`$n(uR#N-@IL>C6#i={y_Xj1z~1R^7cLWQ~mQt$e;Ud zPAMFZyF}e6-`=aDP4+$7Dsyq-{GROal`oS^byYLjlTXwjyT70?M466)i!9NGb zRt2`>dQPRaf+Fk;88=Zrv$ju>+wOwTGAqVIyAwG6o>|`hyGY2^d#8#ZM`M?M?e`U{ z#zD5z{=1=ZB$zmcq8MgR?Rhxa5w%x!y+Z34J|b^4sMvFJbDrl?IABnF*Gbw?6R4)W zJ>A5wFxxjd!M{T{q}vo@m}nowkWYa4Gm{r=Pwn4YNlj5G3RNhQNjs5V=PKj4*UiMMdHpeLUD993hkH-TljG9AYhi|u zyIga*BT9j4#NlLquJqos?TJlrQ42ObgM;>L+wo+sw6V^oH6;19Z2o%zbd6|)(NUr3 zR#7Q=6y*Dovq7nz#sNdOuGTGVNDnJl7GuhaTZX{SyL0vNzwtrV*A@ODv!R=0=6dm3 zoTf*Kt@%mxyEU?=zeQ^X}@vH=G*`~FXK>NhDHcwv05%P0J_ce&q8U)vdgjq%r;{c4WC;QcG4qKzBiTybi#+5&3CtoYC!=X^Xlfq3uU7{Ti)}J@lES(ZFyRB9rk)P6)GsP zaetIJO;=_+&-KC0=%Hlm<(6BXchO9`mZPe0xc9;Q<7Zf^Ye${VMK1c|cQW|BVI?*O zzWmMe!n{RWV$~JPtnJG4!c7m;zVVPl-ZH*-+PCG(E>GmFjOCA>R{vrNYw(Y^j#1g9PhPs9ZFZ3XT94a>0Xv=78UlsCL z!$qLS1b(#*&M5EUMaC3iPp-Hd;&C9AFH!W{uvXcpiQdrAkd1>QSUDf*a6aa6?4>Va z(vDiBFMoRf!*42F`?5=hC!XY*F_Do=x6CgtHC7P_I)C5E0wv)Kk0pYb41`Rz!-_5$ z=?IC1$@R^ek7QSpFu$%C?;i?V&U+ejMi&+jMbVPQq&O!>Smbe#^NW2N01!DPvRmg7 z3h?x8L&j$0w~UDA821Ywdg$p<==exVVBlFS4L-ak_=mtRFU~!BsyF9>b;JkPx)P z6_^xaA;4`lw6#?N?H}s}ty^V!`Kck^f0xv}d`2C~oLK9dPZ>Wbwq$>7zu~Tud8t+L zHL=xio|-14GKbwpy5^}j?H`AF;SZxotnS&TJYV*MD&!m$J^V=rvzi@|&h@n4R#cRH z<|EZe0x%GW`R&^uEBD(dC<)EV&XfI;l71HZQz2|txkk#&CjJ)sMo3gwH!tJU1|*7xRf9-=yx9}AV% zSRZ!Ok?s`kmaDWh8l6v4#;U8nQ|gDUAPI0iiLc=diH+#2A6`vp-b(ea(dZKrHnAbU z?205xej0+oHD!+A;?VrfuH$XRO`%gJC`jbdorG}h;Yk_wto%+BtGa$Tv{P|mEMelU zP$uF`t3Jts?3^AwD?4I3#WY?a(LnYgYq2a|&kGGaaUf!^?2~X_eiu@?W~Z2NbKITB zz4(rf_Z;Fw_mykHpSw{tiM#j|RDqw21dyFFnD?oRjyaSAi3^Ge7KS_}ml|)^ml{@R zls1{EFE(hi*~W7tzVt2LOrq$ZCBvRxHAx3-P$KM)Mxeo4+JrA+aI+^Ynx`ThloI zfwup=0$FI0p1pspY<44sDjSBt!KfcLR*>xldySEbcN&+?(IEstrKc=m?ykj!-J_;- z>49nHSH7te8RIS4?GGGT51eB^{K4|bVl3`zs1$~4k8xtlR^P3U*Gc<(Nu{zYv#)%i z>QOybd_eGk(uq)08Z~qmQ*Jreg;u4G^i(hkF@tBc&?b))a&c%57HcflJ)1(;?pu592}uwU%!eft5vvh&mzVPtnAiG z$**3$b@h(!vm}1UNs<0~S4)Oa60qu~M0}p^h$z|lyNXhIoO=J8!`u1!d9W*al*y%E zchmUD5tCIpT@d`xpdS(aLqi)F*L|E!`B{Kn{JpO);@dMRW8-WsA7kU2F0QWYrLWV{ z^c>GqTVmPo@$pdt&g@WJz3L%-B8`q(GBSjVi5bj%HPDf52A!fijfQ1%PoAU<+}}3e zWo2xzj`c>)TI>qxPZ>^rwQC_At4teD*;{>pJ(Ef-HTccw45e>*-Pl^Fthiauj$bd8 z7%TZ!GhdOm_FytgXo#6>ZwnR&%b#}zcWTG)67lO#*z6`IVccS}aj;Ny(Xw56;%QWP z@zDTLlBQp(SzP;J)vcyCf{^89AxGKBg^)Q)spzP9NMg`FJR=KdJ=HVkkZx!8}wXO4U7lcm^OzG7+$&D7zhs4HvdqOX*eh=0#GcwvV-Z8?QXW74yE>lHdoVW6fDPu-O29(LH*1kG( zB`r<9+-ea@jN)9PRl_dO8tBCK@$bNN&9|8;(k|*R(Gz&~>{*w!Mb&kH6h0Bm&2y=$eWhplILY)m|x#&333qKDGt^^kf>(s>C=Ds*1PICus?{XBipKXr46Zy{gTi3x7^e7obT ze!a`(-GyFh2L~=wGqYEjnOvSOZs(`oY%8>LhD|;uAZd^S9=nDh zW$cgtJ}fgwfu?Ne>y?J_|8GC2sbuhcK>`;8@pE-gNuT`RgS}hGzm;4VRYGeLG>QPU zMg*0Ym)|PI`}Z(vyIT7C1l-)*5j`xxP5sb-*K5Ad?}xUcF;{h!D|W3=wi75aoPnKR*!&o_>n8ZJX_mD!RJV@J2WEEIC-$ zH)<~_8wVZJd_`)=4Cha|#MR`H+{VJ3s4q zXF^^~Ol$_M+dj!JdOinF-G`c*iD;~S^ym@EYgUy{Y4NBl5AKOcx~rp*(qCZ6{`#tG zYFH(p~Fe{8Ugm_&d#yh@a+k&Upqq^nO+8`uUE;-dm4Q1m%EyC zq$5n1e&!IpX*oY$McW!@`mC@cTEPur8)PV^K}53+pS#g1zffMrZR~BY#pAbkFE{xf z$acojtuNpa5q$+a;r?1jBXsZ9aFr!7`W8&TMAJ+<1O$jZzD16Sg;nwk3k%B`kltI2 zmzPv7o<6M2Si;JRP3-Ki2C@ySKUOHN&+#& zYNCM;bVCW{6C8ZcnxR8$teNoG-xgI$7f1Ub_}x23Kj_$cq@W;WVUgEyGYP&e3sOg8 zaHW6=!mrk~4?)e=Nd1UZ@=MD(-cX)jSm@r3ii+}r{x(T=&>`Y0tw(iQj*mao@rtU$JU0nF@LX{T*iIw{uR zR5^%tT-7Pnm$bHK=Q3>U$|IKV3ClKnI05K$jjq_g)~!Nmar$0TpaE5vNG=Wjt&e2n72r) ztCKZ&ZpPKs2|@$dHS7?{fQzgpk2L6m3@4(C-r91aprSH^I6d6#FWh{7Y@612%5@sx z?c+1r_tyc=Wlrx0FGDUr*V4(QBclsFfofFbQn&~>62c#_wzk$@rs1~>VwP9ZEXqqtNWk>;^h_7?rw0D2 zWI&gnkeL|=#SCH^0S6gnWg;m03=e8aJ$uG{mD|uyv1e_nMI03FToikl8IMIx&@@Tl zanWy6Fg;~sW3z(J!@HoxCD6D5z}la$as!^fwXbjU>QLd4uK| zbuMrjy#nxJHTLNa5Rojb|z z#2?VlmH`j%YTY{!n$W@ATm0U=dllenRsVf$%`U?ICL^QXf7T#-l0xI@PS2ADH#D?* zX_(tjG*G_bGH8#Z6W#(DDkiA1c0>?I#K#lwua8B*!(QzZ*^TM-u=tT41@vkbMiFwX zPLT6<+FQ{=NSK%~ps5O%LBpRvZ6S|TROAc|>0$KDwZ1|CBd*bnH9&fp%y%bwtk%K} zp)Gm6_I~R)uMP8}*$=VE79!wuTMi+CUg>U2LGT?+tgJYoqE^n1{vlp;{~Dmr3m_Jz zC;RJOAcVvaia-D^0$||@dv1K5Z1N?gqznV1ms3|aT$m0%_jo`p+CU}`?Oi>)-Fc%E zP9sBLJIul@l1Lc?I%=5k%u{C^MTb$+x+ml+T94G!EmPwHJ*0uHBf z9%l$q27;;XJPpEi@y8b^l$3k#TBM73lW}Sn2eq`cbeQRok1x*60V-k<#h-DvoCc$B z23Uch&tEp};wR5R!3l)$4kLOW>>eC+o}Znd=U)W$!O(&CXORx~Gjns3tv_vOCvJ$Z z>qE=Ced2P!C(xTAJ)L%LZVpi{vfKm+z6C<@q`*`<8r)aQT^E&)yy!)|NI=4>Js4gj zKK^SB&+^`=C15AuYiFk!Sf07Og_S}S&r3==!T^-sK|)cfdZL!hQIj~~bUZUA$3bRwp04p}ko>u=2YKw6alu8-+t3Q)(kPfQs2K|8k; zE&~u0RzzfV_5BAbT3SiCgoKp9Hz=fV(Ncg>K#TS4PoP;JGf2??xSB*NGBos3f3D)2 z)eT1{r}D!^@eAvuq4#pc+n_wyv&+lN%gDm=#pF7WKQe@jhsVBqEo&&rt=IC9DMiDu zsw-pN1c7#@zRi&;IRpu`tS1kMogbRz{I;1tf)phOoYz3WYreWSO#nYkiowOjC6r`n zv8u6AzplPMY69u0_Z#g7cNG>@3fv7O36Zep3MEe%Lf0QqwVzi6f?V1|q{n(FNP!K2 zOgIw1 z@YP^d`Z@68#3*NAIn=PMR?k98Dj3q8$_{%tk~llOlms&|3L}HA;?K@~do7?Z3s0S` zI(S}10U!y{<=d`8E?Gc8K%L)Fy%7>5i+;rG-{3kuNg85+>!)uKT{Quse@{ zii)bpTRvee?``h_Hmc~uhf84D-3sGwpIl=%qJF-%u`&7Qu4A}*!DmS2%6$(U{GbaS zjgIHgm~S%G>~HnEkP?bKXs`nxxJ$4nep=l}SDBVYK5jS{;LWY&@-001t);Gxi8urg z3q1&&aHWBxqaabBGAV*Vov>vVYGL#HDlQ?y@x;e{?=ek}& zJn95pZrFtm-#j4Gj{EqL4Ti)F1Z9CMwSvh51_C`Rt0lEtpfzqXRQwdO)Gx5E(TQdw zBv`5(NraO>zQ4WqDj^}5-+uHa5K(|(E_A*XFLwN~&3tXFmKd1ZH4!f!-D<1n{wMp> zkZQU}&_Pf_r)>Z`5wI=cPfV|@jMibz1ZfvN1mbV#zo)gd=L1!FJg{z;g5s%?p^AzM z`b-NQ??>!pLE{6;F`+QFk}zE`lIUt4>~km);D8T>F<3F~1dPYPDx*iAAwmrwZKHx_ zlI-m4P-#fjBHz+uxO1cV%rpoWZXb7)i~~y!9F{ z1cz8QUpa%vyqf}erGStXuo^PhG~vJm-orqkrx5g3p2M*O_8XYUadTieFOAl4%Er^jg5pOGsItTs<}*P;`US*ZV<0M{qwLan{k=)Q zU8RU4BM^-Ko*_(CP*4yV7xxuhJ0n1-<4TEc4W_ZTx*&+>Lb>Jo+3{Wo00bz5I5uQL zMui@c{mrR(sGNv^wzL<>b%W$%dK%Y>E|`={czE!`*+&RaLqxKt9uTqZK+vRF8mr}Q za9a+B9gW_2h(GJ=v3=qfv{={#5^iqy(PzQ&;^)`sgxnAa^b!E@hl+umghWv9Nr#M# zrntQRi75%d&siQ&;2V%X)a5D_L8-?9M@*9CKgGEGRs_Tq^p%d8cKCl5QvdvStq#or r(N`BckHr7Ozrp&iqTc`O4_**Q6(h2HcwEB}aLGSZmMN7o4*ov?Y`U{% diff --git a/api/_images/tutorials_nihcxr_monitor_api_8_0.png b/api/_images/tutorials_nihcxr_monitor_api_8_0.png index e3ecb6e6cd0935799175da67a59c574a6517b554..457e8a836703e47d084c83c3d82fbaea379a85a8 100644 GIT binary patch literal 52002 zcmaI82RxST`#)}EM7GF?Qi#luO-7PLA$!M-?7c}c(h%8OWMm~WvPop;CS>o(xRJen z$ED}_{KxnE`*^*)p67LUU)ObB=XspRdmP8<**%q8Bt-N?SXfvjw-x2pu&{7bv9NIR z2=U<)x0j;M@E=i^o7yhw_9z#36DM=5yCyCUHuf$yR;Cx+%$=OA?Ck`2M0ohQE?By_ zI5>;(^4k9A3q1Bt7QDUrR1$EL(+-L{a5FL!>oNH#G#PTvjD?y=e2~`{>wnDCiU3nWC`q6zT zNS1c=((a*SrmoJrQs2leKLf2oHr15N?wn zvYh;=O= zCqLy=E@GmNQ>Px}X*M@acT6YF*6v8S{38GU{kvuh`N>xtt@pQAvvof`vZ$^bp-l}4 z2zb1!fQN^tlcaDmxGy!CnVID0&nFw{CEu>(l~PstL_$QQ_RrYVt<6qS@diiIf_pFVy1;_?rw{|I=#ADB>khgKr~sU7mXJ6`f~;A!F!EjkqBgVqG&m#x>1(YUMUu1Ha2i4etpl-DAdU#42GoVV-MffPv2#>w4l#lcwNgr}5T^ zOT|MrXU_4Z)vq1yZwpxVTzIcp5LR9;EcB?)xFe3AQQEJ%-qYZ-O9QIJq+|%Qwsw(| zGc2#DHi7j{Owzh8d-wjT`S-UsvGTQxaS}V-Wb}q4_I_n#`xgBkC~85KP%tnM->|Xa zf+ueN9!TBV@*kfbEPnVr>GsKT!OG|m#bnE^%JKcVBH=RPv+Uc-$a@!8 z2M^=pT7rsU>r<8AH93Ztr|k`s==Q?Y6NY)XzVOuON zosUl!`}5RGP@OpQuNXxs?d|Pjxbj9`*m~NyjCj7c}lkllilN4p|wknonh*q>S{pyPa!PCl!5F>*TWIqkYyr-IG{# zIucy>Oi5B{b)a5}OdwFboTBUTM0D;{in8GR*}2`Mn{n^OVeQ5|re7WmZ_IaFOw%54Vu3l5fOn5oXfEK+`K5xpVjfyo}M1GN*(w6H)tnSm1N08of6dA z_gl=xZp%MSy?y_g5BgmR)p(VPUpLky$G=Nd%otC089X34=yDEuF>GI#e42{wgZrxC z24kLPvE_Fb&3x?$|E^c(#T~?w1#Jc~rQP2@n8;C5Q9TO}&vu$^v+&_2BO`-(b5~0D z_+3zLT0Tt7I9%e%USQ!qnoKxz8;tc0-ai)UD0moT=i@f z4-e`CMz%|r0%^E)srN)rqG)DG!zacun)AV1_th~j?GISl=-aDfHK)nQq?aq_>4&(^ zWTQRXm?FES_H6>JDzG5GaQAJ%>bxq@E2r7p%)Xnb&=gFfQ)V-yLplSlR8(dgv-0V=DJm66laE4@>S?%EUc^z=jmx6F2!Mudru?sl@6YZ%RuM1P?{;zhY& zKEDGGL;u4~SxGiAvArmt<77XsljqYaSW9)k>BRSA3aWC!1h%<}sCQc8vMkM2H%g=y zgf?5i&S>rGVq<3yNs;tUaq`#JJ}2q*$G9s=6i;j#=Sy?*T9^20Pr3cLx`N=b^<-nv zWi~da>6gMZ+?M?Df>xBn<@Vjm(S0R=%zF)Z#YcP$}4#JWt_j*xk*V0hQLSHVGr1zHD&r++te4RJ2B^{3sx2evaZH9m*PD)KlQPJ0DtgNhL z6mfVQE`1bdk?I>W*%X3?NynLIV`ZhFrPZ3yHa5O+mQ$m(uEwMZ9|sqA!+zN2dV;Wh zSAvlBuYn@w_E=taPR{rDR)twuo;Xf_U7LBMO0($mH!eNtcezYP4?5jAqmR@#9+br{ zUB7yKmYQ1r-n|~W)grxe9_xX^cbWyd$QJwg$y&hW*S*hf%WV*Px!T310UPt3iMJqT zatx}j3y(P9CJNi5)~1>};sxfT=9xqsEB>H^U=Kh;Lh(K1=#8{ zcEe>alai7)yy~_`-I=kmvFA6>os23rI+-L-E1}4)ZI0^|kANK)D{IiigmL7XH>w<6 z*8~KHN-W5PtbcqNC?|h@t(&F$w7*$Hu>@hc+?~`&<~3^3H&X}Y+{mi4wk|vs$}>K? z;~>G*c(tjXqG#pp+oJZXD2u$@qq}IkJI_Y(ZT|?@B2W@at+`|uC(UsEcvCgqQ-UeQ zhnikEP{v*ErEZLZ1apGh)sr}y3NuW?(-Thk&CZ^ma`4&wQZ-+Dg8t3SDfN?;|8iE8 zan7lByYkBa1nr8-cooFL^-H>Y@CDdIc-x&6-6 zrJV_G=fj^;4x`)?%Otj9jh~IuTnRAiW!E248X^h9fce`hDzNDjo>8&mkTWpoO{|%inCScM&K|6_ zFz<%%Zf~!T$NC?;?{BZArCs=0X4{^f>gV;NCAHdRp?CI4Z4t5pYD#`Or+K9x7P_zC zmye#V_4|S1L~%;p2}GZ+J35uI*MwF#{)6Q_tn;zpO-4qBPN^jY9Ua|n3q++SL~*WR zjaPs(_m!2D-a^i<-knQSj^hh({r#iZX;x`(Yq=el zOyY)<)4Hd$1#DN2`0bTZ;>V+Q77b7ExC}l=xsQ3WAM?Yl-;vvRu$cchXe9`9MmVAec5 z*6&-6bhzZazn>>>_!%H$>F1~Cu&fTlw&mC#%)U{+*D6x!Ob{YY5_g(Wtgfj6_@MLi zo1=<>41@k?e&^9ZVds};RGz!Du^Zjn+uQ8du2DXI)c^i_x*P!nOMRM5;4gGG*=Ut} zx3uu(%a@NwA~8L3WWbo(x0Z)@4-8YjeOom# zGrJ5cGP^sUI={bKXYuFP_uY9j6pF?}64_ObxO&13Z{A$wrA;V%lAdw#%HW~~tL&xJ zo6+(2E7~^%jDIU^#J#zc%wA_VMA+SVWn_cqJG=+b4&inC?o{d209*nZ5%!B01CVv1 zxTG*co5FrmLBRR=(yqPNc9Usg`;xohe2OzFtr;2?Tz)j>oX;<0?xO)sEv zBlGcNED6awa{@6y-o96RI#&WEBSBKeoeLvCQOYQ&wO!d*;Z>((U zN@NR6pb$lh)K!JtUB8k-MypB#KhE> zr?na-yY@rRzS*vvR;0{xV@^HmDCJdMoixzgmiG4FrQ6KnZZE!kLGpq_*E~*~fCXt$ z&6aM!Ll|`Si&p^GROI&@-pkE*CGXZ9@7Em+LvD&S@{129VdyQjQvVvx?EhmxMM=qY zu`l=3sZ%|L22~{}ui0p=^;>z9sjDUm3izZUfpKx?_WmrW=WL&l1s=}oYo(UNAzMwM z-WT86bQ`L#>3jtsdp1_%T>=>>Nrk<}dz($-;7@8+lC@b0AAC@Dyd?Z*sid1GE|@sU zEo$8bz_R5>fnN8X*Zg$ZuwA=7p-XQh>zz3Mj0r*)fNa3Ps}4(b8I8sYk%xze2&NH` zGG1U~n~QQ5b6tEI5<*~QW!3lo!Sm+lv{VpOKa`JanU8jvR>o=)y;mwjXbn9A!p>f$ zS(HSCOX%~TB~*o#bP_ckhAHMrVcl=N_BR@nh5arw4!Y0nUp<^hzZA8nl|<8>p%)CT zTCHVx9Bb&c5ViliFE_9g^{_pLTOW8+_DG$1I}HR@u10RJjuAUAZ#b-C53ntqmP?l| z0e9@es}2;%)5xW~c=4hI_q}6o5s{rJu55 z54VQZ!&c!n&^h-nH8wU9x%5lwWgUy{O6IF)lOl3L%g~b*sDspR#Zu&5D$-^y@0jts zRG(UMD+yBCOqlo4)=3jey*c|^tK#`6l|&cDb_>IIJVCTkO`E1wWN2n#@dkdzXXeJ? z{-FK{oaZ_?dgy2`@bJ8XJQz~zyPu+_aX8QzM0{IWdFCsFeRW#(d{a|Xpq^c25b_PV z5Yl8P|3{BFA+nl}J})dRfS`N)mu+bQrF4aa(KJ%&tSTxDAOowLT87~Yg9QHlv#WKM zYN{buH#@R@-T{KQFb8x?KMo%kAi3Rsd-62k$Jnp6p0sC`ejh!=cR!g>Is2b38D6#- z`WV!iD4hCnYdsUz|4nrC&F&OQok}NGkmnW)z3(8e1m@)As1qgs`Qrj&S;S!itL|W( zm`rNt0#NOC-mgd8930OoDk^YdOG`^}<^iDtVC&2q9UW|_V!?>z0`W;iJTMb<__ z4ZAALq!graayq(it^)=wGvD5*>KKXGk4emRCWe5b223xt8%=;G_f8yu{e8ei7&52?XQIOsm1&y3b16%z!u?vGy_su*nuRmXtyntY7chf$>O)sIkCcTN3Q{qH!wBcq`8Tyje?ww0Xz!4oHSFch&n=&u=4--^$bQYT| z&@$OQjyK&{OiZ(DQfGJ-bBR;xuT%*ej@+IoA?w&=un)|$;~EHJ&-sTMav0u`4%(he z{H--gI519RX!rx=g#Dk(+S_I^KcCNem0wL;#lox=3r6PM`_~_0{81P@6rT7y`E&hw zxrXlUUd2NBe@4?9^s|B~B?X6+p!5-0pn~j;wEkTEurSpVG8#c#{P1dr*C{8bG)L!i zVl=X{1uC;n|C(de{SCf+zBp#68_9coOH71CX0DvEGghuxC)ZMxpQXo-zSKD|xh)(0 zNR!=32b7I@OF3I?+i%#&Sc#oqKbSPBRNBw9MgZx=KXdNh#Lm&-KAoT?IpUNJ4=2(K zJ>o-koO{JAZ8%X4l+(Cm=);iB&dv@wD6)PnqfSWQDxL*z<`1_&0$soYksi>Ay2Qbe z+q$|5g1^(>P*qjc)YPQF8&fc_MT(`*XE!lAi(N1` zqE8*c;0{X->gCLHzn2NbUjy)+8BdY+m%=3=<#JGwmBlggKNPy8@S>GhLN)Bgiy5Fx z55YtbN$x7C)jU2rJWWC(x%_ANt(Yjc@b&9k)lBpA^S9jG+>Vw9jQo=k`wZLx&@x0c zT-x_?=B;|tu(k9ZZytH;*7-?-5StqFUgf^$kwQ&L>0~H+!tDVhq>gr`osWbOF%v;K zH%oF?S2hUCvhU2JffBKZ;ht6tikhLtc7ZXiB=jt;0rOW&Wq5=dqWIL&9+V zGCzOB&W;DCR-w<=fprWf4G<-pI;?!m>#AE-O?@#!4z6u(yBr)IB9^A1q2av5cILSM zakBfkZ!AccGkmM7z;?g!Ua+q_bc3zd(nKb$pR@TIF-C_zn(ubIu4|hlt<+eUn|}w} z7pJ9mXX-glMl2SY?PM0yC*l>hNQGf;{QgDN+Dw;}UCzX!sBh{?{LOpmG4 z(iI?M37?*1aTlmeYl2aj_Tg(*jzk&%!i#wi%@0&RL@K^q)A*khS>m8{o~9)y0lgsc zF3o#u$bwk82~VKl6W_n|*mDe+Iw2w91z?&>OEzBHE1iIi*aAO?ODwt%wta!AJIyD% zuaCNqe+Qp&!%KC3Us7z;+aCO9|N{`Cc2zJ6sSINm8*Y)FC>RV5|x`F!rDflZkPwq-9)-{4wx&JNdGzu#V|Yf_1$ z2bW5RY)YBXuZu$RrKT$lQf$=Iw11aW-&zYg7>2A<0Y*Bu$HKcHn;7*E!l>gCz?AcVf%{QYq>@eBrJa@8eEKXvRn?smQiw{nsFDl3$^#`H38X`;3 z?)jnB2a??$Ykzhv63qLWqY3RPpDas{TO|@a6(&jd8VHq@Tn+lwpGP}1G&D0a(*sMP zz5=Q^<5oBmSbNzwEc72&REUgu&YuSx!n=#(Juxj063mcp*Pg7?1OZWVUF^Ha#>Q5M zIkmHxR|J{-l>fmR0n{_P>#6|&5HBc6ui9qxbM(7Av2%6V;6(R;JV^1|vtlG|;g~mS zjp3hf0$7Gfc@q<($ytQZYc)G=FR-buGw6?;ee@&Xm@6-`@q4SqX>s(gY&3R3iy&9D zK^EDgPZ?1+%H>$X3?9Bz-RYG_cSvsHN={Jgxx9335J=H{Fx z>aigwJWTQ3(g`MGHcTVF8ux^Yho`W<9m1ntL?z&PkB zGLl9rCmI@ko^{(uK7u5U1}7e;g+b`i7s>6BCh^tkCMXeMw{~{2^6-#`G&QVEx9Aj` z;-RzdX54&EGva@IxLb+1KA+uJRRC?{MI2dR178plitd&^P68>l2HQHxy(>RIU%mDg z`!>Vj)N|ewtq-6JW=7M3%Q|=w8$eRdTC%YsOuTssy*-)X-nsdEuTe-iFk30-ZLfPF zwY-7;GwWD=qGLlI%fJu8tmQv8>VSdQzPt0^C^&Jx^r<*ud!~)KPGm(seBje9x9gm0 zey%ERyInWxiVb-EZD(zI!`{g08!O&Q`S3DKXkZ&IaMkd zvCWnS`QK~g%ED&ySgD-v5@)XmHlC~YPAT9aNFNK()q;=u2>t#2S8BEmw^ql)!GHw% zF#Bo1aQc<_%9Y;V&mgn4iu!D@R&Tzq9Q&K0q!u9ImGKM^Y_PBw!WG04Ui*8T;Yse1O;G$HXE^%4* zoLiwMPB+oa=2ZWO0W0phIWQ}qC!GkwWe*O30+e3X7*h zNAYAD=G>b31ZFjrUW9c!hrSSWu2H2)V=biCq8}rTo-jc*5UZ_6-fE z#GL^6D$r|Sa*%2+e_A&_>I=ApIzYwXr!VJzAW-mESBt7YYC8`tyB#+0AbUcM z<}!QZ-EuiuUQ73geycW;*hRN0k2O;SH$iCXl-r#L#Lc$oPO(T@Pe@L_8_pyd`ts#0 zY(BH$GTV+s;c!snYAPo;W8vwXd>lP4+vupMbc&43a`M&8?EcoW)o>X% zWFP$cNe3vTcjnyBI4A9Qz%kzqOd1iMNX_iCwS}f8jgF4aZn?UeTIj1+Y@(v^X=!Ow zo|ll}vP_93sc2)a`Ba|L{S;Drcroj`CF)_Z;_cfP!E;Fxif(`5gR-#L00$Bce$>H3 zu+$LO9LQ+u7JsVm799wDGtfJ*&^?*AsZbqpGKPj@bVe3)9r33K2vXjy3FETHdBY+2-dr$WCeePhx= zBuBsUT2bvDC#ZI?%A7G1GATamx1o8$=VuG(u8HYs^|sq5IyJM;_gJW!zeRu5@$8=k z3$c+fR{gAgp@WE%-Nz84@<7bP$%lDg0Bb8Jk zO%eV!u%r;GH-k=^G88>G=T|W!XB@=R?%smp3l2_!%7c|k<+am%b|WGXnJwTm0sSI| z9LCPg{Sy3K90VxXl;d9eA7Lh&pr(xU1t5}!x9%X4P5{LR_IKXclam?Kwi-rxm{QKn z-FOqjXLjZko?fz&L%LNt7I-(TpmA=$VS~!wEnxE6pIxl{sNTZolap(zHH;8xkWo7U zb>yI+9vT*A3Qv*PnF!RZ!Glc&J5~vbTx;ZJ<}#zfd^U_vgW%Rjb87oOy6GRhd;eK4 zaUU$EN`gqrbOn$K4K}$ftX<1nyMGHt93OWwUdIqUc;A5We&F%>LhQeVF}2G9GJIxS z^769Ddz#r1=zraS6%OvRYLOR(X&Fg#?o%P;IyxyJYxHl!%l@~vCoSv^av2xgVnwqW z(eM6EgWGSStrR3nN*WfP>be%FT%HG6_IFSCIXN3+u88=Z5i`QSp4k6vhEZ_+Z_msM ze7S((qUdQ#s`_qbo|X5F=)3=#8QYjHYYawvXGhXmJnQ=4a*RS`h1DSnuySd(68!*KCtGG#%Hs5C2ql8vFMjfA1}bdo1HQAAY<#5fd;m z{m_<;gYusgKb7#~2!~h7j-JHzGxZ(`p0sqH`tASJ+y+V|JDU|26~~us+EA(_wv-g;r-isQ~2=MFir~lnn0SH?>Q;b#;ZEX zN?`&2UP^L{w5g9^LY_#zC9bhVNeCXwe}8SE?PH0_rqafPlUPW;5Qwd={fBR1w;8oxJ9Xkk;nl94|fT6s>Ql;uM{+TTQLdeU+0cugg< zK2GL?pY4MA-?8vKr>U<<$83KtrQZbswLnhA!un@n409~ux_p4N=W$h z;VqM&9v&#p%dEO@PKv@aKE7MnK7U@te{)|Vly7;Q&Gs;c_UEJK{xV%`fwPn4shv`g zY7=~=2wpxdOTHk`WYhd{iorRhPWn$3F;A7O`dMTGzqoQAOMC2EIoHe!_1NdcL`G8t z736C8d^TP4RCBwYzmKQuj>WtBWZQQ1lyk}xx&6*%FA|e4zV`|g7Uoa(u4rPa|6_~n z#6t<*WxK7yA}HB$a3ZM@TAt~y#rNHd-!HchC^rhMuI}wV*<4O+ z{`mp(772|dqc{1CpAvODDK%${mki%s+a3Ac^YOgCr{tHFYwE7f&IKwbHu&sl3<+lD z;p8SJP9C9>tKR=#}PypGriC!v1BARql98zLZ~=;)+jA=>V#*Rf6k+$ zw|BWzRM>sWsmHv|s;S03G~fw2Y7#uFg^Y?v+3mWAm+Z*Jk}fJ`UP=zy((Y_(vl5x| ztHxW2Jqv2iHqF=0^)qYoXsNTDY>tE^MgR$k%|YovMox)YK@jD_*a3Vi6mfqpYZRLL z-KgfHVyYVVQ9IECPEuv|!F4|xnCs$Ea-SA;lNI%&vPNTKt;)0CyupRoj%Ajyf2d*8hJ*9^KBJDfdz@0wE6yt^tFQZtPeubVcqNcJ}E8^%+)(0OCu;dt(U>Y zWDDw7kqbm6v#EN~^^=b?9Otx^Z9fbbbh5_uB&c#!=PdF$Uq3^Kdlu)yO4`sl5k0++ z$Sk#5`TQXrkv>yqCs>|0pfSlYpII4gI%tDRkZ-xup~>|iui;1=vn`Bv&Un}%da@L? zuoS2Tn)+7-4%4<1v*zY3j#Tu!QBX)o-zK?N5L{VfO)%n4tIR;Aqw@oGlEJJCwDF6& zuMbph2miLmV`jD%cs309ls!NFP}hw8JV9cJm7ttenKN|>^oW?#L`b%n@TM%48TZlUE;lu-3%;yjQp5w-RcfgA?dFT`U zwY%txD`~rTK=n)Tg-;4_3yI*wiP|egfrkO%u;zFP6UjREg}3nI%TjlB7k9 zjH0SQ3s4AH5WIq2YHN)%fzJdckG^GLUW5wXeI|&*2@x{&*~xkG*|!fKlhQ#J1)qPQ zBCp-r_fh(0IZmfr8iebO&A|AREI!`h0?p@b{HoEvX~(H|k=c0pk#-%;qk$03W$1Ph zi;m*wlzKO_vy;GVSXqe*&*_%tlkU52|Ja*NH(3Q4mdc}_L|%p@4>Hot^#l$zGvgMF zqN5~KRZ9%h{4Swi=jdD={4`4a4vAXR*?H@8Z<;?G3I9TOcWCD^;Tn!X4l3??X{?cTZIol3Z) zAO;aP=1=V8oHotsFn@*c^rw@cQXJauq{VDWIM+BjSInW#rl?H`E^Fpb&f8~=yVZ7Z zp^R!M6*fccYXxm<5o(=jcJN2Cdat^2>=V1bYX;peHHQhORI`}h5#PFB+?Is=&BX6L zS}8%#9vUAT{$0B$$+}}4-Y%SMbce)m>5hZDY-&URyqk-{Pb>@rr4Ad03EXS~_JbR% zHZF<}FS;NTVBR!WH<8Pc_3d7J8S0xlQuoPZyuZd#*kBhT>^H|e-h za$N(N-Y~lXx42!t88f-2EIyZfFI&Z22&%$&PM0ON1YdZO;{;wjB2@OoN=e23cKa_^ zag-+5YAjttJyT!y;`3qD2>SrbCF6J&!?teg<^-B0R74ncw2k3T) zBAApXf_|!|)u8v^HM1iTaH}XJ!sbIgp*vlmM#57^be=~}H_XA-WHJk%`K0$k1S9*%ORcD1C zmdlm=;4>2xw8e9!k6W?T(a|MCLf)x2LT)Z_zl!;(TXMe2B^+SA?q($o<~7FaR49Wh z^@X;4c6|86oy*%K@zVI`wX;cqr|by@%t)(z-!Ly`!@) z7VT*!VpqHMkax@1KJx$Iz;iIp{=xN<{LMTJb?jVZ^E}jl<&~As)YjIP+K;Dz%a^n^ zf=5gP1wkTxA79@)`~?;HX~q@D_dPslG{PQ7nR%e-l^N`%E+Rb3Q7ccYam1o?vuiZX zS{1Vi*{W5vLVvCDe{~udp~>_`_-P`dDUgM`v7qB)Oidje=vV6j+d0wDfq6s>-&q2TCOL`$wXg1r~-xmNY zSwQM5bdS@~#rs3fz0&+;il+K#C3L?}zaodYboESe)dha+kJtWEHZ>8XYbjh7d?{Nz zxm$@thAejV@4~u4L;D>cx`Q_f`WS3Gs1BAu(M>>#2mDE>nIiTEcx&xouy=XbfuX^{ z!GXu4_Da5`UXo1C?18iR3i%5t*Gk!MH6eS!@j-Ew@mIOm(RiEm4IdoI>Fr!OBV?U( zr#7HrZf15i`I-|Q1%-_M$il#{{vxB)-HrK;h3wRID5^|5h#>8L&?h6ZyenYQby-A2 zNC%m(2p-3Vz58O{Gblr>w_Ppb1K(P`D;505>8~%_>!3B@Elz3m$DxUY#Jd(1 zI~gdFUxmv+VLz6ny_LF+tT(O0(iP=O=Eyf`kAwuKbP9s|bLG1d@0?AYoSYn7c7vXF zwTT@tKSN(|jj)SD4X4y*C=z<^Q?~q|>g(gsmHuhPxJ^H zqXz;eKfD?^Z6B|oZeDltTsFm1p9xd#o?kzpL>58e?9yfkk&Ld`f&>U$WAERC7CUPEph&PWRR70~eFS(9Jq zEc-fO#%|83HM7@OI8GyeFSz<<&=_=vSt_ZtR1lw(k?=;H-yxW@vPZk>S;{70aV$YM z5)1)p0V{z9c6>4>n|?iVcT{=P!|of$RUL*p-tJ9-m!Jptb%cql81h(E35m4!S#m}q zFhBFQG}$RDFYpL0)1=vt*M4bf5wPmL4Al_J?{D$$#PW37%fc3vl8`vcji;ibqPu2B z2yXq;;NV`cZ2XRPEg%5RkO$6BVrz|`p*6tgmB#Zwz&G+eljr{!^z-!~h9FvaYUPEs zTWNN3uxBlM1{VccXglUy#F8~bKBy@v5j8Y4T!v0EYHBlAM#r0VM}$S4!C$85+=f;7 zJOrQSUPR8CP?uCocz83pRGgAHW@3N;U_elb+VMUlCVjh~1)=R$<8+4lSdxX;GTzo5 zp2;An*Gi2uB1ZzSdG;^}vm1i>^YC@z!@c`Cn5b*A&Dn}3J9`ZV4^8H5LSF^sD?{Tk z+epEo3?Opmj(*=+mb}KZ19Hjui=TPTp*LlVf*>JH$BCycPSmIKyD6?I`uU9;t>CRhQS5$Do9sI{G%f~%Ta9nmx6aZ90Nvq$+3h(|d*F@c8#T9B3CGmgCI{ECbaOq+V z4W00uh^d%l5;XHQYso-aV~nNck6zfhF`#JFe!{|=V@d4OgL?L?#7quj>iJsROHNRk z8oK#%hI=}m&`S{gbSo8$2sO7+vDh_q`G1;|PQe+l^S9aMgo|j`D^kB7K=4Eaz`s!Gi{vF$RZUSYOURsXhFQL-W%G zT9X@OlP$C0eL_ZO(p_eIdrT~^|E#=x7q9=w6djc&LpAuxz#7>tBe$PlN4>Pze-82= zy(%MLI;Uem$-7llN zyE0%a#1M^h2bmkiwVP|*s7og&w{(?7wu)8rwb1-M)nc9U03y|hpdS%@9csj`-K&JP)Bxd-6kLb{lWpGRM+zZ zivx|ndB0Ay{(F`A2ENBSKlN>a|iaNcYaZ4ZB`*EF{8ZpAx%M)U zRF2~GAb9d%*W}ZhWihSPy~VtTFsTUIpj9BgPII5;rIjP@Lvg7H(qnuuO- z(LLX&1Uv_-C~uOIl<&RXGLO90wjem_P*QSnu8koyWMF_gC6%Pq;FKgX?*`Vm2 zDb_ar&_FUF6IdM9F*%kyejJSAMB%DWbi(6|vLJ(~y>7ymKE`@>I_vxEQ9A{R2OeS6 z@sM-YzYLJA_*3)L{Zy_osG?UOdt4+HTrF`T$SPh58wFToH6FxvEXVzvbI%T?jz1!! zhp=F0dZcHOXPxU9A z@%7yhJ`{Pr-oujs?fry0`-NF3i2X*1CiE$WMJPxKt#ho0r~31$JG`OnSSC%L?7EK< zfa+kx$E8^2$%R~U!_yF9pMFDX0D@D2_Yxkl``d-1x`O<(fyw9H!#ygSgC?7PWR^4! zcf}=y;q(FYxCzp#O>(F$AwD(>&)4p5pQ+(xC6G7Z?v0A4sXf)9qW`;}Bc@7h1tj=S zgJib4gO1`w`tn)KBNe1>&iq*vdWzlD`RCH(PXC4;y@}<4Qf^3jQ6$AxCMR6gm7&pK zI?WW^NclD{NY74g4e9qvNI`>tEK#QLk{E+qv9Qq2VX))2E@Zw-$Su3H64c5GA;y6Q z{Vm_s+0>*g_h_(hiOP$mSzq>Q!mG-LbWL_(kQ~+1YnVaY*HMHI^5SRNzVjm&Z6H;R zpn=_MmIDi^Y-fsU2s7~O*N@c^^Usm&+ikvC84)*XIMigY4gHYF6|}G^TX&!5Kgwb| zKS;1(g;_^qFy}-nx);r0WEL?oL}>Q7ajk}Q;534E28Z(11*y7zL9qQs zl8QjDj-&!q0-I03=BCnE!(mo|uQsdma0{)PI)Ib4^D{_;(a}~vJidY}ZtLrF@)lN| z*`XD$ax9_xJj6^r0kjaKU4n#}qT|nx*uCgZ!#-$i>3aaTevXvS-et>T0RSG1{sJeA z?ksQ;4pM8aL?&DT<|iYJ8|m4psSu7c_9>bKSsb84bCdB|9BXujOm85}|4!?*{neq3PVG&Uwu0ER%qFVc|Bz2l`A+ z^@hs}@EbM2cneKJN?ML2*BSnNrZLnf1c31!s@1g*`H zXuh)#{TklZ{Roh08Irk)=O2@NJ@ce{Eaac$`rulx$(~#m<_uBr#SF;C6{lhMPkpYg zG3inCFy-mX#~sqa%;jZefTJ5FjTEfR(4#-i;u|A8YQ4ht0%bSU~M|`=H|Zk=agZFC*SoBQ=@AJFy?Vvw?mL5#n_p^9or=4I!nYYEd`=Vhdt3SG^Uo(P zWmqEmbjx(7r9~ruiLi^ZEo=)r#p3~Z=k-l6XC`}B?q$$u6yg+D)lYsvmXJETnb>5+ zcxTzdxk`Z>9jYQf@(NiEBdJ>8V;vsfeQ;7@35JE6ro-z~k`ZDNK^*-C*S{d}k4vcd zsqg#~xzD^=R+Nsn!$S8r)&hQRUSOpg^E~gTM^bnEsLZO;{4pIXg!1;Z19XR*v>Wy8 zBmDrg<`K5VX@WH~b0!Z#wVIv(VOE5g#n4kCXL=>JD3OAsu%QFM*dj{c`tm_j!>%B_Mn{%a?R67O`nye8EIUPGN|=7dr{b$e-p zGpRN9z+EENxxwl5#ZrsB!1=R7``LTQ-V_{2Gk&H|E;Tmfwuj75@b4;Hj2H}eM(Jmx z5zlq@jv5QNqpzA1Q@f#%R^Wv^hH~nEv$v=h9if?^5mn*{Ck~@+ZcsS-(;DHUQv`-f zu$D$iw#fqR>(t~}AZG$mMt^OZ3`E(^zvl1xkPG=I^Hk-3Gq>`?pF;}`G+$>xGv>P} z4f(dGt?%zi;`{B>nYuR&7s>b}!A<1b$~w-V^{=?mo;uYq@xAALGIHmqaOd3)fo?u% zHwX7Y5$OyQcjq}eIzn2;UxY&gC~~%Hy10cY1I{SFi_?^EJH=~X;YvO-LRPqpo12T` zw6iN5n$ZV0SyiQM$lG(64YLv0;4ZiS99iCX|JC5KYm4H5KO+$j4SX9(MbNW}F>5�mF z53b{^Ry=ak5eK*_2IH{gCVuM`BZtEQG%(65qETS3R9c8*wdL_VG~UJFs4NtspOyq=HDcxPGHZtrMxZtV}k!Pqf&Z z)Dset1}qA7IuTHCXz4Fbv%#N#Kza+;XWKWzMHxx|`J)u7qIJ+Y{-4uLg_U#k$SHLA zD+h3-iKlZ12%(T2X?JG`gB_kK@8C!56}mI4b$FtpNFs2wwaUeG(mMQlY;{ee03RF= zKtHYtwM(g3;PGYnA0NTFpkNsP8geotCgy8>04_FiavqK?!{H(-IB1+8Xr(r>2A%m> z*^IQ{C8eZb>crFUsCuk94i@8$8CgnwV|Gm4%A%qWrQ)?eC-&9H!Tpdsjn0x~Hm3b- z>VNCoN#Dd~F^zuTZ~T?`!@<=O_FtfMS|xivv7b3-m$eucN|>2~#cVXl484Fz6Usn0 z5KYsIiD;c#af|=-DqfS3kHY0RYc?NB!l)g5Y%|GA5hY|Ljp<@Tt)bUHXE47V*^dkiQ%X}`myCgcGku3 z2@jBMAX@(8Jov5-E%$!?R0oPl9fr_yTUuy6{C{`xfZ8i{69SBbI`^=xc*9|M0?PyW zFVP~5S>Jjhnvm|7iQMFU`L-&MvU}|c@?Rd=iX{Zg*AxojWgm~D9nX^@fPFAMeKV_} zC%|{kZSx$E4kyDuRC4lP&hG5gPu%ZWCTi{AGjP~mf=*X-M+S0IFig?YZRtw&ah6q# zW*xu2E3StpI3e;QFCcg*wA4yo?IuLpWPR%N#wJ|~GMS$E2lR z2UqJal}t?d37i$)d|GL3L#w88i(s9A^<372;@+?kvbaZ^v7u7xR z@tY?2!45dFk105a4-PsNoBQTF_VQo2fFRJud<0YbOSHK~6V)5z7R{0xGz3fG8-xqI zP=m!%i}|-hN#@1{L0j_#%Gp_+WMz5%yM{~>!so9an9#?O&|76KKM#!}2cFJi{&LhV zth;hmR=Yx!rmFqL6T6)zXz7^}lk#T%k&gql`s6m&(at_!I0Jku4=_9i7kJ!cJdfgQO%OI25(k}?Enp(#F^gG`702(xo_RfDL3EmzT%y`T4f9QG( zpeoy_YnTv_7D-7(B$WVe!W9Z|TfVj#14U=3;@=x(() z`eC6W{ecdlffjr#2`ZGx@0=9g96;pDnytTJ45dO#6wrhLeE3k^3D^QvWx_gr-Fdj= zL@d(M>|)}_KW~EE^>u109a6jjOl1`4lkgaQ4Sj~o4E8D+4@ne!rbyCIC2bF{E7V{i z#Ic!Fk-@XIb%l34XKfsv+=*{hgzZng*^x$1o(eQ!BWOtaChoA-mOE797#~`G(90WrV zpok$QqFpd{B@AFS;4*lG=b&9?X*-6r_10N2n_azq6im^(!Dk(4V9+;?Ee) z+NCdG5+uqJyWBRHrg{ml7R!7PSzTX7;m_V_s*wZHe5u2-lB$}T8R$1rQ8xxf@BCk< z9c-LFG*6D(ji|-{I z2-37iBHutF0#-1(Kl`C=##TDoC2Oid=6RYDKXkA~Z#wocnFrv14aP3d5t0-jthv5{ zw8Bmh1}|G7-hSwWNijivAe#(={^C4(I+KLvt&h_b;a}tLm6`KxZV##J5V0*Re2IyO zU)ien2I9-l@1rn_^x4eYW#gcMBCAS{iD?E8r_J5n3`pv%ONXzvUePcQtDhUJ}^qDy=*^}p>G0pb+0X{djXM4ls zduGy7ExIG?Dzz!s&Q6WOp4#vmlKd|^7tn5|Jk?ys*8lJMT9rp{Q*JK=nVHD`h>^&4 z`_0y)GN31Qus%rmEUE3n8TPvV91nn8zT7+|M%8_%U(bXdO>^cqeUaw4uz2wg6y zQu3h=AqgxL=b^E>nT~{#fn8_CNECIC*}gdqsaCIApPiM2u5#5{NheaG19G(1t3?@~ zAS0B;9xWwCh#OK8y*xs91KMeB0dTh_M!)WD{`5k)uYcTHLZ?IWpkK=hJ{d{KX>T=o zio}I7E(uaYUH-E5 z9*CvmzystptunsVe&~!CZNdJr6L)j7HQ)dM3y<QJirhujz2ByX~X=Wi?c6sXnYHg1~=BRk~bkpeykEJOZmkB@eAUD2GV4V1`_2Ovzob36G0Y2o0(mB%!55pnX)`~x}Y zV)bx{6f6C&_T$K1r2ZRr26;w%>oTx5s=?%Cw8#)098zKw9h8--yFovh0>zlB^XNLF zCchc=se=}?2caQga_hJ5mbc*O*YH4^7ctDI< z0Iv<;nv|OLGins*$br}vT*0KdWJrjjxO=3X;tmYb6T7a~pL&Yd7~z{1oUh(vZMcUNo@h}TEZ z4)Fb5mJbx$*2JT566v(co4+| zgTG7K2wHHEtRSNDeyZ?H^>ErFp7u_^Tfdv)UTzKxK_iDG!rx&w`*+va@;Fwr@sqe! zNO(fK-AWX#xIlV!otKxlVLo5@uV5%{Vc|J&Wb?v7$zw9-*wnFDv}s(*#4Pcf3YbKI zSnGV`%bhujw{6b1wbI|Ln@Qe;y#{4s&a*Skd~lGm2JkZ|h^lyWrf*|&?p~>ANH->A z*FxXtPN*MeI2vapuB+1~p$$*u!S3rQqmS?;pcRQjszu|CZSHHSh@nM?TO*Ey4cjwGm@zT|FFn zo_iB8=Bzj&m25HKewL}no#2I1J*)8#t|}?dRrE`1+X!sA^ifL@%9}U1$OPtWR}JY? za5F-r2^7*YU{7Q^QN_iB=(^6&UqNy6owDFcbslv?xN?DZV+ZzXdv|-eP;^j`1rEL+ z>tI*=qs)$(Mf|pT$a3uw<*WDAolJ*19G&)eDxrHW`-!HB(X#j7E^uuyt>_O_K*>47)+1}A#D{inSH zEKVfedpie*!1RvjMkZrKJ?;(!8ohOaIu*gO8cozbYZbk6DtWgJ&j8xrNEc3H}9GyM!i>`U0zspYbWN3LJ`nsn7^PSrO@urWc11F@?Yybf2D~ME7qD5>Y;(MTO#5Ysb0haXV^x+UlC5fOrp;1mvaM3LYBy7rs!^=UJaV} z(TJeevPbYSJK)E$2*;i$cuq_>_A7##jKrkC{u`q7hr2@a=}N`LqNBv~M9%MBTu@AJ zZTkubeCaPt=&7m}Ec%IG<-%+^`P@l}Wi|ThY%!JsdR|8q(5(k@jG)va>LihGP6Jv0 zk1R#1%G(mU`LmI5#+D{NvG;W7yB6}jNTyL|*VKWP5BJU_q_rDeE4&sPQ(lvn-DrO} zizLv0NmT4e86f67(i^EAS16`&qXXhEJUi;@qa6G|q?G~e9ZhQG#~aC3yQLbxb4I+@ zsi%{=o}g<)MMXY7Mul4IZ8xT9VE{S#y_1mc;zj-V04ec8mHYH8V)55FjXto5p!GK!1ulfV3No;#$ zb+F`4-6m$;j?n2ju6m(yMRU+6eA;79<>2cagei%rK4%0|Vw|=NIs>i9lZ<`d*9Uk| zu91QcODZ7woom18zp%I}2ObP)A5KT=pVPs1+u4g8^z<6$$XJsv6-o&T^4Q!CKy98~ zamx~n>c<9km0Cn&cs?K^E_1eDCQN3AQ@?CrpZ)e_7wvMiAtFL$e}AY0F&z%K44^q8 zO`yPzYZII|z^G6)>1cu4^S)P={jBsrZJH2&Z5X;Z^=vv@?9O<9V!K>t`QK064;b51 zc+fW}{)I!l2?~XrX){$>+~uYN{lrH*HV>Zyt8vw_6Z8vY1j5`+0Qdq(0=&*E_k4$9>{k zv2yuyf&WcATg`_4j4QtPyO@_j$U%yv5IRA}I96?8&SAJfSL9&A0USSq;Ts|Kh(iUs z^1$x{6Q?x{e|K;+0H>$M;o(?t&I9>i0#8aUIP`%#>3t9cgT?535UV5eNb=p|4LB7H z3iJlz*_F$`Hk5E&Yb%i*i+QM_S~2(o^2-OZ%%Q0`0u$!e+1ZUIbYFI{ZPz}QkGAj` zKbP3y2aQVA1{se(P;iwVEzFgIH5|35)@E!G_>ckQ4&H@j?JvnV^tzBVL=iV`C=k=Z z8xB{g$6ApsVd{WLDS5>ONLYsx%d=ZLhWCRi7!)UM!D ztCE&lD6{OL--y|6!sXZm&yvkilT;$`#P&G_$BkL|AGfy$#$lxTE3C8;y(#!FnrE+r zGZ?tDaCx5|-V=QQht1E)S^@AM5M8eJpS&`tD@dbswIVz6ZCv;E4+{{F?up`?xypxD zAfPPF6BP!|9AaAL1!cLx!r7nvxkU&}CzTanw&wt7sgg^86pp+N3c3ZtIa0UWw=rrK zFf^U`0uvI@zG;VM$a>}U(rcy^=01mi!r(u)eE(Y*ytAd09RpTB;owTK1*R~m`$>6u zw@XUSubr{2;zwK3@;6ala`1Gx>TOuh(3Z8`S%z=v=0cdv$d_)8<-|fpB$%DxH1n-` zbMZmZp`zL=vAbx%0qK3h0u7OO0Ih;FFmN-jci)L!sb(Li$UPkVZ%fycxtVPI=(By2Q`Fpc8IFhO~)v z3)r`VYDh|28d@=6t7HPMTVQ7Qvus%m%(9V1R<>7o$=&TEn{W{(D)P03-sbZ>#4&Q={ z6a8VHG7lcahRp3`bhX^}jxUbV)u%3iGSr2sSri&M7_nvU257c z>@tmu;F#d2aM#Pv=kG{p#+sQej(mp+RNPVxgg%617DvTJRT>kp;xwDA;RExbUhyR` zmaO-5dl~iJ!R{_KFpL*>S^2PM69_pn`xg)>&u<}!YuB#m<7-McRg`=t1LO*XwoU)Y ztz4}?g$o-Sy)>9&<{a0UMfL$gl3ctT^eG?G#Ei?q6Sf~SLa7A8K`{>C5EarF#-UgA zftD5}Iu^mD_xcUqFyUMdOA07RQz$4fkXFNhM0tXf6fzhgeZe*A@hg$O>V*p-KDYFh zsAZRjnfR|(F5OMlxe(nu`T8B9aNqOZ0KcBpLZ11sU$!3C$xDRsJtYFD0Bh!ilE)5y zB;R5J8Hge(rQT@X?|ijsp)to1_6iyTR$+cO&q-f zY#Ku;xP0MtXTX;T4EJ1t481a5S@_td(F#LjXL-)-&Qm@!(Lf);uR{mVM$Z-{$3iV+ z&k~I`i^lW9nSo7!r0bILoH^^?URZ>he766t zpq6#B1+|;0%Wu3zVw`$yGB@@Hi#^y+bU%_>NV2zwzq9?q)|PO{&<|zTIH^H@9}o<9eza$kP+f59v#0d=Zhmb%@UX|&X)cs8@?`jSWYG`G)hce9#bSK&cYL1BsKe> zF{D=os^r78(a-Cz1h7$)7BUv2otgb?9^@IWyib)I^J@C#3Uq)%J09TQ0xLeW$m^6g zl;)C8eyLFW-DG6pzt5&-IfaC3($BP{rGle^l?83yCO*mN6%aMGmB*t^;U~x!`x>3w zupE1hs$DF~$Vr5VXjnt=Dy;{lOjzK110>c*`(imO(Mq(1QYm{>31cSUqVcgn&L;GI z5L!Dhz2ppL2iO{l$1zpqZK#{rTXSO(HCHGWZR~)%F93b`!rlP7*u=Rupqfx%>Ux;v zn3#2T@M}ooo*h) z)BBe!a>VWMQj3{d58GH$UX_;CPRtboEYO?jM(>bz= z2jhH7@;cL~&C5 zR5sHDH%f|Icc|ymV$->%>|KOYNeLTUC&_+F3gS)yfQM06p|lM1d>7Z;Kr_GGc1~}W zz4D5RVqLlIK?0GN+$-c>&`IjY7WYJ-CAv^R-P;NLB5@h7f?xaTtSyjOvcA~#T}5i? zA?#b3jal9Jba?xzQeaH??~SDh^2(^UmO`^KP6Z0tfr(eu@27Hx1SR#Sp#%E6pBgHB z=|BvvTT45+!;5AFSF9d(g*8^7gsZXq&DTLy!qCc$HP|WoakxLWdsKn7XPp<`Z9P8| z@!)9hwc=fSKKv)J4{|j8W>jQFQAeLf#v9ixfH9!`Wm*pu#!%n+tt(gFBjY5=pB=1I{lQ3dczwfp}YhMw8Vos#av$a`Co3Tj1{|a?jrL zjON|f|HH5f(gf0tChG@dY3t)0szLTocuFJZvtnXDx9%iPjb-ws0f6D~=*eG6*Tnh8 zg@L+{=HBO(cWjZ#_&}vi)&_P29xc9=FtX8~G0|71tyt@H4a-NY|VYO0W2|OjwWM1Wck6J58?mBc4v*0$bOXjyQZ|IV73{M>pmZSZJ8x$pS8h#4SH|r*Z~5!*gGY5HR~+pZA}&!*=%6c$ zD~I&MGAcSN-kh5+@(8Tf%?~h>RWD4-EPfc)j}0LpGu1Z`3lz2mRXurcNntCbMJd}^ z)ZY+m+5LFWRCFgozHfITc7=NlzW|M8vQ*>c;aNM2g56!vi?P zON5@TXqJ6JnrrQ@5PmLr41scv9@>iXf3_*Zt6+TJP27VUqGB<>zZNWZj{DFXY6t(B z*qCmF%n6bSE|f6Gmd6dT#Hl3u?OTjhZ@%Heb==`8%Rh!6^1z>mnV_n^R-NZ%jjKHs z(i*jnLTLJ(DS+RIYL0l$>Q9(-vZZ^DICt&?~AB$+JD8EybQck2P5cbk1NGmBOUB>qn- zga-YEDY4Q>4fXS?b;~J%XHO{y;>I5!PA~QSz-HS@mHd;dQdE+URps~BU)0lY6uxfV zP71d_dm0?nKKeKq9Fo8f#dLx?I_5eHwD!rDBKSDXQRBIXz=i5(Mv*OUhL-#G+|&_)y5k1T?mx%r zPAAq(mMgk}PK$MLzt#5gWu!pk4-?YP0*v%89@ZcFpV;n3TynmcmZTO`+Aj=BKhoVZ zbvL1b^K?-~Dg%X(@NxvFVi2?;d&M~W?VfmHxl9@j`PG0w?3gpRg)qmjXIWE#;dS;Q zIfl2@!q4Ns<`{0I?Zkw2KhW!67TH=j zB!7!)2Bi%p3+g3|*w0IHkReIo2jal7FgoujG`fGT=k4Q-8;?Eu!tCLIn>#LA?&Bh4 z!X47l@yfsOOQpVVv!M*J4Hcefp>w_$HxLMK8r@*NbWF&jW|b@TXS3?4HQ!*Vgxf#x zkH3CjPNd~M)kmJD@TRhT8|u`81iACD9~kNMDTFW)pPvu;BaE9)M>%J$gC>oggl@7B zWr?7)&4HTNbp#1lRuP4HnlF@g$&Y#YdQH=%nS1bfb+LVk8Sq+37AsOov&78Y#!YaFPW>KmJ?4f`?Dd4HLz*jsK1J$ z-5^!u5<0svQj)gIz3{v_CL*D!zn2hm8ktJBDE>Jj7FCab;CZLiy!<>(jrpa&SE-X| z&upTB-`U2C@g}`}a44Q8XB)};N&++v4p5#&uQ33dvscMa-y4W?6x@_G`*6DvAniL@ zW|jUKbETfbb^8>#bSEJ#G)yQ#rn*tNQ!AEsfP#^O1nI=6d+*Kj!!<7o-ae8Kt>0!} z#HI%PZosTXl9z;jyZ=N770r`$P-Xe6WGdbr_8EH{PAJgI)DrSj{-$6B*Xy+b>Re#X zRRQe_kV=Jby2mV*hv)$O2(}(N^sl@EZn%GTH|7P^ZK$cFF|#(mdC z+*GoYSz+inEgb_u@>ZZ~NG~1I8-@huT(in;x^QZ&2SZGo>+O8cvlnKxeid|!ROX9DU~KN$(zpGV?wAW}FmWiT`j3dHYaPEEB^f}KZj?2so} zG-QP|V4)3B_vy|dW8a(t)5Ip@4J0<$l=w=MN=d5a@%ji(M5zCS&SoLXSs)0udu$kZ zg{g+la6pTDhirol2-5ypbEUB6Iz|_amy0)Att{Ow$lc-ziXxjpNHdN9HNe1bJphCs_hOO%Wh$n=X__GT(LaO~KcI*AldQ)f-#FA;lQbkxHO6KUrEJz-TQZp58k z0-qo22kI{k=K-GrwMt6b>|0=CTTbJ3kAL}yrO0y=#0^y7Z!HVX3(VYCOJs%LNdB6| zt8Z8q$bkeb@U`M&2u`Q5{n%{p;`7y%GEN;P5IhITr&?Ti8MN^wBYO`?yTZH+l9MF4jay5Ri1*i4MHE0dB}yv4U{I<puO@+~fD_ilN;?{TMf9vF<{joM!ut7c^+@sTb z%75%0Wnn2|4m357`@N?my<5)`UuWqR{nt+&?5(3pTKb2TPPP=yT($3T6PKXKPNdxH z+aP|P+MXskO(7z(7atMyMvazs$-ZW#oar~zOWg9}i_#AzR2(r_1qx+t^HHeXl+Inv zsB*Kd!2qdYc{9OCqm7uT`0HO+dh1fs)3Ku0)%pP9-nJ_Lkgt*PN^m>L($xyfr)OMJ zDF?D?2RBl{(;iBYiX$_UH{998-Y27LJ8o+qN0%MG%bJd_q~3$CHW9pkben-RRaJ}o zD)*7`u?+IGvVAc*?uWR)+GlC2E8+#0z!4L%=)zjsAP2c;U0uEsj2pQG5b>)h8iMN` zy=w5EaQsrxY&L*S!zq^sm9W?pvIdRnTVBVfVgCaxg@b#BEKBZ09zEdMZ`SG7je0L= z7@&0kT?r!fbTl|KM9y{_GJ$~*^hOjkUd1n9u+J6we(t$5dEW2NK5r9XDyuPYt)m1*ykYF2$H=9Y@rqm z*Ac5S+QAnarQ<|b7L_&Z333_FzGVv(%(T~BLY`Fcqk|N(vS-K~uujyKQQdhk)Yd<( z)HFm=e>ffC=`*br<_jk>5GsM0KKD$dPQ;Wi2UWmlGK^9*=LLR=n!VhZ8(Q{#jE~4) zs$wc11kv&N+tZ)t&xGf^#g(kx*&$@XcZrFOc>tde*@qU*BhZ~mWqgO!t*WYh$Pnc@ zBO=C~GkH37vSXI7EvV+>RT?^L8QX4@5aK_dostIs8XWp_FUH&$@{vS@wP7LIWi!XhHCKM*(D&#tQ7!+T^XqIdZp%I?XZ*9i zb>0Ol6A6%LF$LvLtt$*KkEz_~i|Be~sUcPs9)|1u6aX;zStvt3uUPBzhbp(H0twTP zW51aCu<{Wuj(laXFWt5k;=@6@ThJFEbxMh)9^+;X$~Ub~bEu|J^-vhB6=!$q*+#1j zn8K+8Td|Q|CQ|UcH`kmw2w8^+=`)nB2YQDwofk5ACzrpDC^!!H%MC|veE8`Qgh??D z%`QyNav92;JpAg4(mmN(-AWvRc5ZTB_O42%0DPj%GF4@$mE!UV@ z(iZu&5{cE=3pR+B!e&)O%7tNhW`f2MZwG&Wsqbli)qXlVnCUh~%|E{gzS}p~mmiMQ zAk!~~0wY{1W5J&fZzkH;6OEvX)+$$Sto04dU%N7)tPEvn9d>;AX#L%x7 z8kRwibZ1V6A@ue!WD^!2S3XNL|GtzWa~R;Ro%F|Htpl!FAY}GQfUQ8&z)1&f$Ey_#JM%Yvt^m}il#TP~&j3-zvWb!ZzZwNG zU{##5e@e=xVGH!PZE*Yr&kA$!yQ~JdP!J$f7AA5QVZdUqPBFZKRTpmc@YxC0iKf`G zK>e@E;1(JdWR!v*f#(i2BPufgzmA@Qbg95FFg0aHS`7nOxhx|7zc^GlH8ZF5#)?Yr z>=vn`T|=$KckPo#MBX>%0~}a`D%LobfLyj2b!?UZy539$yJaL@1WY_dFXG?=7(kd! zz~0y2Jsj@;fSWWwY8KC#{qF7Ppucr1^NX}pPgm!33}jUE0UYe<4^M292u8MhXs3Q} z<+I5C+le@hVBrDH)+l&O_^6lj@SWf?J3!iLJvSxcno6zrFU~6Cc}%WSQz!WVo4$T# zf__obHVmae$CYSuxs2(3g7_$l;OY4(+5fC!>o5JkP+HAk0+BaN!YI$Iu6m3)fWIZu zI%3-)tkUk$i5jwl@K&~^@`fBy9 zYqYfCa8m-v3^2m!1npn7x3`yy?Zd4j&)`Em0Z@e&!CL6@(O*~4+iubwY=j(yTH$#S z{VNP+!`R#0G^cxGO8i~ZlE{pg`#og5wa6q8gxUU817+I(Z(%|2VHHz~t1sMZQ{uRy z3au_R%16?dz?b&b5H@|8-gP^Rh^W{VgLNM5!_DB|Bb6U))fWFunWyciIbwr}Dm$br ztUoR}+-pY$uF*>W3%3R{)EgJ4ZFD|K4`|(9fsF|mSlovT{lLH?BP&a5k4&nArnWMf zja)~nO|E+rdyjF?Kxi88AgdCFl52!K%4E4<% z`0+Ye+l9KyAl; z{OOZ}F7Nt=#Vh?PWX}u2E1`}xh$7!8lG2}k9N>NRF{Jx=Jvnu4`3#Pe=F{W_W8vFC zCxxF|if{(Jp}gqu);YKLDA05zYAi=;bB49UN0`h#6>XUM> zy8_;J*VdVM8-?3L-gudL3U5DA-Ov7a_&f|kIyK*dhF8LFp(0cgJF8vzuE%5FlzL`0 z?XQwjT>{?5q;_fq@>{(jJ?>PJy1hue(0YqU`^Rir)=?WUFj8A%?-&g)V=*t|S0h(N z2Od%zcoj}@BoL+&hO>6+DGo@0rrpJFPw&nM>hYxKf6tX_2}m?rGF`FUf9wo~^IlWO zs*S+f@?qRw2@~IhC>I$YXZ-I3qDMZ{9`dF#pZ8n>-h*Kud)_u;kBg7AolG_upR}F) z3)j*hv6s@(FnA;WdC4hb*@EVB@FxiXrpyAlWg~jakiZmV_DqSTNiIA8A4-tPOuIvg z(Kj(x{>vZ(Lye4zla|ewKubTp^Jn-~y#aCQ(_o{YBNJKU|23_H4wr*&r>Jv>n`||o ztpf0sIT~5ROQ%Y%tp9Jjr1?OiKFQx)>aS#@(ztZ=qsx7#W6%C% z8J9n4Ga%$g3&*4k>vG8cdy-@d@erb^k9UVpnV1Y_1?d$>RJpveEZ6p0(aiC|9SudT zh{=Axi87sN=hW*}2nlaLdZOZ~ZAVvbqVT0NhrAM+4MKnGUo?#Ls#%}L^J^x9-v~ba zHkve&N+99x$+)UN1;}6Gl~JLtx##qYrC~v%L0Aj&oyb3Gjuu}5{P>Hz2>~ON7P;?__6`R54nQ5 zJE5;mu52Tz(93GzCwk!$MCk6_c?>1wATWj(U@{3 z%raJS1(h}rzGPXB#Nm6`8|W8QKTn=5e9J7%d+6aUmO(SHpe2>D3sP|;G^my_ zVZR_GJCfkrKl^;~m3X^s`-jQ1uumSky!?b`i>&rSN=$3L{;AMx!qZH|h`%_NZ^CSG zy~ji6u=3L)_#xrA_@s53!F-y7Q*F21sgH*XEv>QFp3kZ1$#eb7uWlIfP@vMmURVHE?SL<{NtBC3D^nIw~jv7%ReKA;$ z`0`W*J&K|dZpQ_b}@i~=&W&r3_5h_RUsWzOZDNOJz6#tI?k{U&cZ>U~KE zZTa;$)Sr5D$OL363_$mtyIY59`;FluV&vs2OL z*S~*-Z~u~F&wGI?T(_55MkNx3nvBom+UeB9Odjeac`WD{wTUI~B!3oZ$Wz$toKh0~ z7XDw4UZxO z9-W>Op{&{Q7kKSG>%+>Hax=yay&sjpHn$qsd!+*qpB9K^+e7Dr^_Aa0cVg-Esl!HT zV3HX8L3x#X{zIKm)J~g4+_feZ7AwPa8A*0rJcoNJ#9wQ=zwi_%W9sv>;W@|C;nN(% zKb^F4QX%Pzro}_Z2@J*4-O%W=FHAqq7a*d8 zWj)eoO5c)zMF!LC&f(L8+Knx_JJihmivY8B-8z@&ATj_E%}*XP_VOGb5f#9l`Hgj)G>Rhg-}AE{ zxm6|jrdmJS#P@=&@s-x3IeE4z-T;hC*`x)^J8~7HIfMIsx&7$ zr_rM%BFEpQsRUvu2B;>Enxh}Ntd`TLcfHO0oOyPt=D+<1kEw$AgTX|%3wHHnv_ z#F4q5S$oD8qb|kHiIJM0F{38clU*W8TIV(I^NCF$-G3_9#boZRn!&jBft&HwPCWE| zJ_^5*9^%omufC(Ae8Xn^I0*{@czii4>fuKQ>20@5r|76J?7w5xBYMi8g?n6^<9*QZ zYCqbX@l#M4>3<(lImS)MMrLXFdmM`k&A>_P+ezxn1s^6Xk0hDWpilHDx#p_}*0g4C zMjw_YDEitbbF%c{i6!IkXTIE2P>qPcW7VzDccbU{bB15ickNqa^!BvO|5l~O!^)&* zqxY#;Chc)v9D?Zkv|FkMPww?b69elhrez`S#$+Df!7*Q`08N~vWD2f~pkW@B>YGo| z4g#|Qjg16eZ3Ra**I-Mtw<{^b&z_v zPbI#0;sIrXoYsT^}sJOo_$%t=U0xDwG9YYcR3_p`VauHH$D&q(y; zkqgo0ig7HuSz`HwM^5^Zy7Ra>MDK-rIEVNh&hJWnYVwo~re_WdJAy8c@oY%!&uaK8K+JN}%AMO99v zSPb*JtpgFkPiLuKC~7}%OQBCiWvox3Z=<5!3puay#mDO6_5bD(jkle?e6^-c+Rf?eRZfHK%6hi-0GTjf%Q%j_og~f<3?tphf^eKZ>_c=! z^+uLP4})USC7yJAv_4dV&w@Ami2f~^t5$Pv;CZ@xvvmcgk;=sP2PacfP2opf0%jG1l8-p$-GAco$eoO>`u$K@v91vk z4Jl*$Hx@0yMpQ~AYiVJ4Co(>;1{)_^r9A}%$k;U1bBD6(FfF$SV*9KML+U1sUm7;9 zEooMcCi6e?7?aYv!yDsRinZ@*=)=jJZ#nzeGQqP0)CthT!etf$RM-qf+x-oWq4iRq7+oIjp9XLLI>O2r;E@hfqdOS4zSh&j-$yc1%^!OX;}QyK26CcEBg zjgWJobevqzS(2eAfAeoTi`NFGaNc!Kwny>0 z{KcJ+m%7#r15>EWz~Oljk5!FcQE*EJBafV)-DGAw{|3Db zOFD$G)V`67m2ep4yRj*bnh#e(8THwu`A;}6_$mDQs#X!?7DaFP?>eY)$ViWIG;=1<61vLvRg-paIJ^i}GG@E<0Xt^*|%6Q{D@&lEM+9Vk7 zXm=(97pJL;NU>(iXIEJ>C$-3{pLD%`8Xmjs%f;?M^3Z%~Bg5e)yA1 z1`c;D3;evo5YZc(33T{Ql^BUs{`)aPY1ui~rN&Os+@f~$uce2is#G5Lxg>H>7%hGU53kmpqNgA&GMBt2R61{P7 z&kWbN7UBSe6<9a+2-aGwKc}|dk%+g_dd|#3c>n3a11i~$aFaeix99rN*VZ$WpU|QY zVRV|t4mVB7JPmQh4ZZA~N%K2k)|`ZaKHrf+y@DzUqE<(I2EM#Yzq;a$4>P6ZaFoh= zRG#Fc=N*nBM6$a+<_)(_#+^#AfAhMUURR?0m9tB=`a8v&a#|h~{9*&d^?Re;->lnJ zUME2jiVv^4KV%}OogkNBm_IE}+3^OEJ9kg$+P{NB$hYPp2OHf~Q-J`1!6AO0Gj6j9 zfx$q&pB+QX`TlwE3qcE>GALu=&^H^Jp&(&W2GEO z<1&nLL_pfC#a&?pdZZ3{sB@F1K*q;1MX6_9uVGK-I~8$IL?X9Q#pg$ry4?(K3GV&d zM&VyM@%HOIf(9E#I^J{ar5$8W%5?;{z5NyXt0w%!P+IYf;!S@TrPpo|Mrk5@+?wxg ztdTum1*x%X%C?LvOYm@&cV(IJ87z(Q8Ge*+Huir|Fq@hD%lTJ6o;rD(KNKBE;hpvq zKiuN#2w}T+;5XaiWLJK)K76gHQLVwn!32iI8YU4T&{o~$L#!UnNKX@K_~oU6L;5;A z^~6i1FBl$975egrg6iwX|8|h0Bb+rY6>6s^wQL_np9bD+?D;t!$hl^5RwUH(n=SsC zP0^bQ%pupVYIpp-(!}`g34`?a*8D}kCcTJOGCIzdD*Wy^6;(DW^o^0}B_CYwVdyry z61T51TF`>>-?WC@$7o}TYk1v%!ip-pk@)3}+tF^)z#g%_$zznEfuY}%A|s|^lELK= z(l3$Y*_$b)1hvPzBI7utGSmkYZ&L0yEA$17{%BOJ3@jy zg&ue=X#`j~Atbcc_@*~43T6vPe=dKdJG+Xb1WD3Z@W1$#{Aitpkd55ZuvZ%r7*1nv zF~9l&EDIjLm5$R!MoGS+4;3r5zb7plRkfHD>~kN1{@-7fhEv|T($yfMQjA%29NwPB zrF4Dl{CaB2e-C}SGNiV4>cQn#|D6iuNe*#DTkmLO5k-U-ZrAAHHq^t?w;w!I=uh8$b%#v#m5px zxQ%Kq8E+n(cmB9xc6ul$ca`A?(xV8 zV3GDTEHy0lI%pUqNA*XXQ8!o@3l-_iS5kkw{(C zJVqO;E#v4lVG|0!hKb5iQE0CA*-3RVrg0&qXug18^0LP;&=k@L%3Vlj)|82Kl zW&g?nf1|Md6UX9&MnnoOV@)?XA^!Adv7+6}7~_2N`f!a8sihw{ph}#nAOt# zmyt|bAM5?_Gt~dB{Og6(n%#cIsRp2rG@F=RTiS`DOATq(wI+#jLRGNIveEjSmH)l* z{@O>5yO^0|8Uqs2=?yXmZNGqeKYQR&1qEHgk>~9eWRn6eo|xAjUt? z5_89i2t*8^%2~NI!-LZf(U;DD;HQ;L8mNqoLC8r)l!`bRfnU|%lH-}8G>QfWPhzLV zjBGm7EHB$a4b<|fO27jSojH8b&@~4L)t+e{cnT)Ami+E-p6RPAL~wO_u_Ky zVj6^yZr`Lyp7B+sAyv(TO_Sf|<^zpX6oW3^``<3C!#iw2{!#Y{Kd$#};%ZmPq{_Qp zOCC8Y=ZW=sl-iVpu~+{+S>>02ycw>qk%|(Z`}UeOq+i^l7*E${uuDztu>A`+jJnqE z7mwU#*bQx7Dw|VKCxiBAk9ad@>4!uS6-|?Kp9b=Wr+0c8Xs#s5QJP!6NsrH1_W$>A za^GRjgRJE{aTWGgMP51A zW4v`r-(fwEFwk%zufpa6pDHqTo%Y91bX&t|gnz8b+wZ=Z!=)~vh$EtB=*N6~c1MS^4`W_;>HAub##f_DcohwG5l+hFbArZ0 zR0j!tZ&w;pUQA}1SP~JvMiy||B1PNRA5&)I~hnHgsU?w05J?%w#OxlY4-2K>Zz)jCqfs_ux$ z03JCP*Y4=aGqJl%g%^ia73ZFnx9oR24FX5ke#Z1L>`@g>8S&rlDr#gV9~qln4T-}R zlb4s@Iyrleka_pa7=cjL)O4M)UWS$?QmZrDdp{o7LQAgr4nDG`cn=MApJR!}Vgv}@ z5V(tWYZ^oD;SyhG{Lh&WsiDsgyUx{V^Dt+g8wx_T4Ous)UZQ^{&u2v-BCH2=K_Y5XcL6^2t~Wv>fe`YkI1ZZq_lPr19Q zdg`qKCN8#{=|+|(^LmWEo#__VT4k|dfYQf$&ADoVAeL!>&cd2;#hdO8mhZfQ=cb}tS67mx97A`AJP*{Qy)bffT-?)ipxQ+-s^u1l%cu3dwxgTrY>DeX={MUQOy zKFqxu)$^XwfS=?tMv`Z@~?9CB6nPQ73Rx+DWtV&L^zOZH}_0)|GNxAi@E%%*RX{aob~7aN{&ZH7G5H!O?*(sZ(8tvaDEcoGrE-JjnZO`3=a zXtXG7Vso1GP$Tb^1@pXX;@%=~7ePi&PH>`4{k0c1-aCoAzXn6#P7V}A%mfCbJ?hyx0XlWPclad1F$+`0U{V;`i!MOF#Y4XPsI9RjU8s)5Y3y zOK=>HSi|<)Lfg|ryQQAwPPp8G0`7f>)+~;|4OVvcujctaSf`*q4yEK{Jv}mt5dDh$ zZ{U;K5lGoMcDJP&0uJ$abX$B4Sk{MxOh@8|UOp8|{LL-=HOx-3gc3tqxA(Q~(VTW{ z@m_=nvuAaXo?6YLnne=yfyPRRF7|6-Na<}%n$18&SswU3{Li$?rk}7SP@9i=0@gohNHKa z?!NVq@0KVvM4@!wuNA&?{BpTkWl1ewIm)@2vrDNA78&2)f^lQ83m4$;$?uQDe1$GS zqOsHKm*?$CHQ3hW{9;ljlgmv{OgA7y%FPM7!&ceVf~oQRJe#3!x!Cf9T~(|IRn6hX8eVI5b@nSh(Bx$)L1(d+_+_$%1pmg&W;@4T`4W=AKs^084Ly z5G)(GD9}|-R3%H%Ft%>V!6>bo zh?T4Bw}7@KdlL!j`R-5_H4@|TTXa3uz^}f;IbnvGWTd;)fDNU4cYDnUb?aj_EqVAm z{xfF*|3b1K2OYEuRpPNNw04j5kav*1Vg~33ckTreMN827Xk9j5R|w}j&t1%0{g@iY z0-0~;xF@P=t2P_fu-HgGKWTbN7!iFiNxgl}gjHKhgD(jznU(k8iH08tTgIvAkqYyS z$loLS-H)Ye17BQB!N&ZxtR(OYcw6i_C8K01jxTY~MS$4njeP2gXc-e^L>c%W$E}bc zl%O~sx^qBDA|K+ZRkLe9=E7aTfHH8uR$tdOQppIT2x#nSAT3>by*`k#i4qB~@wNLJ z+2UJh(L0L#f=RL}=ptnE9qlINQyKgCNaabQAlfbUhvRLi1Q?0-sG7IQF!iSc&z~GT z+nXOB*^}X#-0njL(cQ*xnlukff!L>G+TqE%!_sFi)=ceHB0^znUFa9!BcVe^@rxI| zMj<&&XK00dRaAeEc=fYpQ-iSg_ci_B`v>y8j;|+ zyd#DGY@)-DWTXf7N(`Y@^U;c9)u^q~^P%KdNsk~fY1(Ay@dYW6`Z#@FG9kJS)!wMr zz9e<}4t~@D{I}$8g!IVqUt8KjcLzgsa!f+Uc~LE?*=;TNki6_GJt_!xm2(ZvU?qa>ekpC3+8yDs_tq@lU+O2@{a5R_Kx zD0u$*AjjmOLSDT#$6Z{b^>;~q@Hpuw$M$<4_8XO5h9s5LJpYZix4>E#K85Z5kug*M z9Y5F=;68YZkHS{Y`I-Eqf#}gFxi-Thq+)@0mm@nRdqifkT|CPx^Zg{>wrOux9X~0p zqApNEr4Aq+P4!=+$Q7Xg?@(`TGc&tRMls3VZq`y^P)a%l71Pw9nXyafJX&!%+=!%Zo)OSk1so z_i2ebIHXYH3)ZFSE6*se_wQ+*bX+Mu^yWC$+KjcH$*Kz}vyzHZ2S(vFYG`Aop1Vk) zprH<>pGX3#<^*SbTh0Q3woB96FnGW`VzX_o@WD>D0pw5g?cS9U=jdr}i!_K2X4@+f zFl7(|T|G5AYENZO*-$ovUhTXjwAS9_pL(T^J5S2w3Zi(2KTAAeAnysP|3y)~|F!Ew zUs@`$bb5c3wW2m0AC=m=3p+;6m1tl-gClLU`S~y)a1(e%?$rF3(W7k_ z6h=QODuAV~iR&g?^0dEp(BbU9;Ga05=B%7L%CG4fAC9%2z@;nWH99#xn5-t*swpQY zEBZ(VURrL{8fj@1UTE;q(JfH?xj{8B;Ty1?PV|r6$GFZ2_5wwP^5##0g%$w@x!7fh zNsbVc%<~4=Jdbl?q4I2A7z^*EC%q7>Jad+1v!P9kYeHM`TpGYRr=mDUg{NtSUNjR5 zx%YYu5Qn6j@B+%r`8%!4t}I>@-iSLYeDa*)Om2l$w{AMDZZFvU-rt`1mRETG%6zlz z^fNc4*7&qDNyzh;^zTKvh%1r{N+}~Hnnor9->Gi=Fdb%W`Lvbm|6=e(gj}m((NANkzpAO|7g1II<@Ovb z-sN%2|GFi2*?$6euE9oTzq`EGn=CKjKLi~CSPws{yXIiA-DerKO`QMZn=TQNm@!RU zhD|eS>FP~BCcR1g9L?g+3G2+X{Vp810%Bq!v^+HCP?_$5!lbT^*S+O(t#1~#Wfv$Y zEU!n=6Y_KQ-jx#5%9u-idjlS1%!T*~QWG~?rIB7?JNKmuP9#Uj%Rx&kQmAJp>DT zAnh?k433_Pf8}!5NY)$GBHQwAC{OZ2Pu&6f(e6Wa*-Pnxg|`42`(RAYDA?u3|M|k> zc{t&2F7HaQ(dQjfW^^(8I<)lQOribpU0l?aR-;;cVpigqo|PR5T{;`zN$3sn^M%+x zt)#jTBozg%SR)6`=d|y|TJ4C3^~PF~ONbw?5HwIYdeLW@C$K@t@M*JFbsoM&fq(q~ z@sJ)Jc-)O=w_HAg(G7MIQfq9x%RvGAm^dtV!!#j-UxVoJ(5F}FLQ#@)^X!Vch<3|n z?{YD8$&2-(&lLR4%k8ph3$^5XzxD6^AiYy=@QGCWFJAFf+KaB|5QYJ7RqkcIqP>=7 z2UOMH*=1(`{)F<-<~>@uTA!yml&{%y-n^iDO<^AkM9T>>#~wv242A(HfBoJxnxCnyE|e?Gt_A463WZOL7XiL0$}eb8IAuG zw~Scy2^K*bDvB4Dj=%5%y?w{y-=3vZt>MaUZ~ zP^{KQswYlQQjp~&zy=mXK47?k$q{mP%m%d>MWH6l5hvBfS}k z(IO*}+3ZwHRgDtwE_{JZGJDf8W-v>IXIYsNLi57>_=B&cTL;7apy=cV(f@xVt zF%LKJ1D7%;6#&{)u4SIfZHDUnrVq!)#;flF`%IV%q&jmVawYi*3=AY~J5dFeD-vPZ z!k2tlI$Qrfka)kjw*;MiFjVU3QRxm&!hzWz(A^t5M>PF{`u#L8De&4}^s{ZJ8BGT9TgfxkSiwqkyeT?vjIXII%rV}dt8*L{bcEK!8;rs zzM|Q(a1;%Mm%k0h=fgWQjxIy=()mkdmXu{Z&UbEuN<;N>bf`12>F_PSQWs$HxDV8& z!yb}K$kSj$;?2fuB0%cZ=Az%d^P=n3gFkNR)4?3EV8k!YDDx}2B2gx#Dg^Nhy|&-_ z%+KZiR;ITl`ww(t2P(&EfPq}#FY09m21Ns?!~g?i5k2UOEfgrZzxcsg*8OHUM13IR z08#R?O;NbtUc$ik+!-Xlo+)!1m^Ne%|7KkRY>5J6i1>inWBTj=+i%TZ40~b+coK9D=OVlzuRSY^Up%n?=+v(<%_WW4#fQ_6NG)dwrV9(=yOc-H zSQqiQ)e_#^+uUp|%XYc0{u&{2B?;rUsG*byC8`*~ zi`=CnzJqt~VvKqEZa(we)K$?V$9mJ5o4JdHt zhY+fIRo&Os_N3b05r?-57M1v=>`L?NsMM|S5hri&i=6DMJd{W+UeCnHI*6o+w|GJQ zyl9R;>X+|7?H)sa3KAkmezsq6Hs%B7l5lX-QzhrK&j%GWl^W8=ms94euDv6R<(%Ii z3rXOT<$5YErginA3EhvnEAbF%143c&Fg8H^T}S>r zL(hZrm1l%*j0NI#zg+l|-FArDDO_RN2|PFPbHm6Im3Gl4t>n4F!uNHq<-G1Kit%V4 zj#`K%dHZ=*Y-84j7~I;4Jh`fpsuHQ2-whf&XP~y7)%Ex350N5uZ|ufytPD&qyUO+3 zLEWiSw}!;$feT?%PZ(A9UEGon;kkFGc++mc$byETzl>!VVzVEzkSE`B@QQBvo zl6Azh^;D)Lh^75b%=ApN^$*8m-`b8b*jl&Yr+ZhgL1X`NiT^zKKKG=WsV}eU! z&wsE@sfLmw%s$CY!o(O)t^YSc;#+C}KzY9j5=cime_moo9N5{d_?}RXqec7T%F+ZP z%<|0EnDp9YJI3_OZ=V|4hFQB?X@SVS?B)=(Z`kSVI17$suf&H>^ z#y=-T&;3W1YrDG}yw05oo`HjvTkvyVo1AD~q8`$8>{)b@H}jSdNmdeha1K-K*KoCx z9G7oBX`Mmw5qMP6O8U{7esC+}YV~Dl@@44^V(bd*v%cje^{}CO?8I}->jl8R=8*?c zDAd=RQ?4Ez?tWBPnqD=0zTLO>nv%xi>SO1EI$<+gH%Wxkz;( z&?#C3faZ-WJv)_7@2i5ZTsZgKrg86h2oHUyAVE7VB;)Uxj3uZUFQ z2fM5*ZU;AC>b@hq%cfR8*!ZA?=(9|&fYw5cGR-0GW1Lk;LEP;3N&OzV{fSplB+ytU z%k}9rYnaP7bkfKZ$eNre73L)LCmoiT#GfXcf5?5?#7`bT-`5zGhN`p|WAl@x^egw? zA=5s`(|fEv|S!4m`vAWjsksAv&1Ul?1Wt2cxCqIea_C&mW$yd{X7jpSxNf~=m(89A1N_& zO5LB0a@2m)JG|7_fLL(ZUg!O{cTQ#$SCI=H(b}g zcLm%<5{knFsFFpcVMdGcAEJ!$qXICMDGGPG>1@I;QdouUlgGswl~2gI#6NlUjhkl> zXkR1k^Kvc*F2lJ)KT?Tb7;G)w!fviaI?L9X5^Amnu@+giGVy7X*&Gk+g!&<+ncL3c z)9tG-Ot(2olyO=llKsgOogALE6FFPPOSI2mO#l=`TyDm$Pybj`Qdbm3=do+J|M{`? zU~BQH{>*HQ=+fs`;%1GkE#-f0>eVpUs*9AK4eondYmvLtTF=E>2K(OBl~4&hZDv@n zgtm2_X8jABKldvqtA-Z*mDl<&#CHk`MlLZKw@l00>pN*sx-H&p9^<*5&>qldP-kva z#?3Rtbvx}yX^rxk^h*-gv)T!G=;yD8i;(Kp!1R*rz9M^r^&d=r8TDOFMd?Wv@uj2w zTj?k6Lc+}^Vo+;g17e(K-}aLfpyc+C6t2x4kkO`Fy0}GtP_aoP*873RRC!+tz*wek z*6CRA=We|YE{PW5zEIJQUpqP5BCuxAj!hoY33}A&xp{}Z!8j&8KrlU^U8$2WwbM+O znT!IrXSwf{&fEo_?-fDUb>^`1kDR~u5mHb`r@w2w26n^L;OvcoI+_4l$(`ADTSocr z@x(>g*OUNG3DHkFFA>{)_Ik;HeO^m_aaHI1-BI^>JMj8l*2U`1;yGDcJp7O2NJf|K)j?a6FI=r*jNL-kMK9wH73iE} z*=V?V6FUb!=7%x7xQ7e5#TzUjH#?@p_0zKV1*K2LuP&igAhpjt1^eGh{CT5+6RG}B zK~8kMKx?@_$}Zt;bCuDWl7d|{YJhz0LPsq}>D%s$6poj|YVe>~ccem>eTla$s6$Xt zIT3mY=aHbzSNoFBTWqlForz6L^wdo&eXoK{{}bWnAgiwl!u=Mm8G_oR$3ozp$IMYj z8lj~Unk_yCD~g5nfiLknJ?HRXGbi4=qJ2+}X5HEHN-!n&&>~mdU)RLhX}~<@He7My z5}OVptJa)YxOFBn2p~|pnf$R6A;J_F`DQlDEB}3c&5CKyxw5V5!U~Ck!p}Y&;74e6 zT&`g<%I_Fwj7igHt1y4D`MxT+-&GQ0XYL~IYGd>)NORrfF(vDZQCxyf)M}2oGf}n* z0dw(hg7<0_H?p`dUVWycY{ehRNUcItdM9{E<{`8nY?+4aZVTAm8TLP*Oe+1QW3oy8 zHd+QHP~4Z6L2JzVMoQA?0pXXjzc6xNiq0u=aMu_(*RX9TcnC?BMXf`7YQTg7|Iu+i zx=7yo>&`1$JYi;I&V@Q5r2}RjffKRGg}@~(Q$rJqgqSqMGVTm6c!*=x%IHN)>qZte zZm_-}ib->4@k%9lCLDXJ| zBJbr8CrJ;O=E3m8G*5$KBf6RpRzNk}+8DcdAfT<#HuX|{12|(;D+3EZb`&{Lq!nXA zkGsh8+w-bgDy^F{X=1YOK5sVsb3Zf_HrWu%i94md$J4oyE+gKO(WC3xIS zh!ErqYNXqS!2$F%pVNDPEtMrJ>t;&-kx`EHV4je5KL02!{tM4jN+}n2uU{8~JL`eA zn>X}>Ka!?yLxs8P{3A6FhqMev(S^}F4A;mGPzz9{N!77q8i<1fAq_QyXk!Py9vcby zHfOa7+5GA6+XXXWeJa-zC`(39_-ldwrhVL78d&9n4K|>l@MffuqCDfz_+6g+WsH{k z0%H-1p`p54^soq(kk^>FpfTH|M;%zY($T$8=hIUeT2wPMmRevQnA1$I7;o+}yrz0k zPbntpPZ{!DGs43%z_W-0(jO9=mWWp^aWkCfn!yRGFt4aE$LQC(Zquh1@+aiwu|Ioc z`dd>hMG}a_aPT9j_xQQzjy$=d`a)Xew|Ap9w67X+Tnx|uaXF+o1BKlwdOhv7sJ*>O zxo-gmVlk-!CpP%OLBi7u0vRlLz=t>)s}a%uKo#MXwbAXN<&u6l&>^_Lcv#8hpc!nj z!uv230(t{lo%TnQIw_^XP@)SM0OwC`%G!scrTM5anpMw(yG5B zHO)WglF2CK-0&w?g1feCDJbtp#WSb`+=D7Q)D-5*3FU7YiQQ)|PO87ijRN=Qsi{<4 zaJIq5M3RkHrg5a{=ZW(E?SPst!-Dq*%f18Jyfk&$8At?Ta-jbLu=G(ArM35FQwh5& z7`@c>|2z$1=?*Ol$45ziWEe_kWmIBN*xKt*jvCYj2wFS(8JW_`kgy@Oe84kLw#vU* z6b#A--+90ACzV$3%!nvZgvvU?$DrJvZkOTN|&EJ7#9axK;s^&xi2iKJ{EFw|>jpLcj z@7abeVYH4gF12+JW?EuleCw+^zYE$9ojk|@Nu=qW^|B<4gi)e!-#Pf*J1J>tLG<|P zbOfknK%(BAxyc$}Kw&DnTptHN3c_L2pcI0C^XkR-NlBenC8N!t$k9J@nBzIiqN1w0 zzB6p|Hv9#QsfFh72GCr11jeV=C)Qo-;kbBgWKz;7{y1{56iRMbyZtRQP-=TwDU{x3 zz4+&kMujumudnjN^aWZ!WYHo?etvUUzZ=)DizO1<_Nl5DxgPsnxC|#aFQM+jv_Rxz z=J7z)`K6ZDyYW?KE-tPqR}+&vZ{ED=^zMYK#|xjpsp`&T)XC8<7w|CFu%A1y&7sst zQxo~vhuyz_{~ruSbkXg>4Nu*R?6H?)+xuo*L3;r6kpXl#;1iMF*53ZoNmn*{)a2DG znBB_nzV*6s9S+&|RC(;0)TDdtu3#OjPah~y+ZBFCFiEaCgtFnoZJGL(v%YvTF{}nX zsn6k#V2~z57lB5lt6eY_nWO;*@rK;NxWr+u!(gr>E`;_`%=&aof$ike%*@Qvy}5)l zxH-O>=P(RjBUk?np38_G0Zi1L1$7Q=0s4p)CgtC^_?Jgr62;z(xsx!G8~IbQ<0iMOJMw*&+PD&cxq z?r8|J$Y)5cqjRtFCp`M|=g$QeWvTx2>zTk}l3j+5IP!@IgJ!|M4_+v6x-no)d**;1 zefp153CeJW?et?M_y5@!m%4Qy7g7eCdF6#*G`GIalaf*2MqPb*K)=1aSOZR!Qj^S@7+l_8!WcT1Wy!4LEGROir1*hOi(yf5WkJC&Q;{EPEHKx#Teq3= zHZwB|_*b*r37zRRaSZb=PqgI2qjwl%P->=at^qLn1scA0VMO)2ooix-e%|D%MOzwX zqC*Fm%wMsi&G{P}_DV`h{J@UtsBXA*`d~d&ZJy1XvF%NjZkx7c+TFVUzMg-+rgZ$T zw+Hq7)Ayd*39aaVUoI~~e>?pQB_cj5g3NRBvffQLwosTyEHWfR5+ryeB4sge$6%U* zd^7a|VxTBo1APiS@W)T%1ZG6Sax=0}Qa5rpg@JQcF!4AP*6=mQGp0N9yHB*9g_8=9 zUO+E@9MilOvGW?75<)ynO=T)~T5NXe*8#WnsB6*6bE{iY+he&1hG3IIPXTB!gG+80 zp-n>27HnE}M${f*mV=XS|1Eo7jK~2iyi$;j0devU*l?~uT*E9{&F_9Ta>Gr&1+pB% zU&C&@Z}Uf7hVvhf(p_T2QiZk39q+-S!hG!;th$vHIsNU?>blQWRaFbH950IrbNYv8 zaG;%m?EL~gWmQ#iZ*LK}1=-+5*X5%Ak6fl#Hs?BxM$4UMuviE1RCXYUAionD@`of&B6))7hs$W#jVRtr+JK$R2;&^&=&v{-4&?2QZf0QZ`AjuXH->QM|BxIBAeE zGzeM;$8>rg$uRV2CW?4b`D|@%-HFxwp*H4*rTv|whe4bZI6;q{rOEtu_UZD)?CCL& z)g!SIO?CAan0Oo~;^p3G_2Sgm`@xC@dP;lOpw;!fqBAq^!_A%MtYM;q>34)M|udyQb2$qzw2STs0vV5Bggly=HwlwD;Fl9Gf0AFRcegY_^l z!?StQeRri32#u2Ia!JxB$473HZ^&~sSgoq7PY$u7R^HSM{shD(Z~<8Fco_Yj1QSeP zf=3V8IR&^LJ0i*v_Gm?aeX6N+bVUu7M8|wBSjCyzziX?j2V!D9S{@dg+Pc&ik>`Q| z=oiu%da{AC|x<-OjLn#K?Fqq4Rg@ zdUN*|$%V11gRkY*5e~DCf|UHWHxU*c>|xjen=_H}#jc2T#}--i+b<0~kO-#(Il30> zk^-1D;=TP{&!A)&*pi*zr?-c=h!fZq{N9KBeSLj2Laqw8i5Pm=f%LL8Sl~7t%I69Z ze4#&QoD##q#x}dr&S5(L^Yh`+D#{eddX+mv79)T`(5^%<;r)S8bMC9w4{Lewx*-N{ zm8hh!U%d$UBfd(uhByfWajy%cVnGh*8O{i{sprw6o+&KnfMxL=y)P|6jrXHRn{QSX zK$mSWOS8arZ#H(XMfCUyxYg1WMwoC@T3Q!FYHIla4%VrS*KgVO(*N$0BU-(I~1&a z5v)-Z`B|6MF%=b+HF(a=$+z?ytEiKT*0O!C`9v7P9={YMFD3N}8H2JC-9Ig6s8u+; zEWNp$1!8G72ygMQYIP#Mcb^b8@K1lc(eM*)CANu^aQZ2Jg`qiar3W|IHU8J}RrI z{M}>-strWly3!g32DeC=Mflc&Wd^tV^KF*?Gk&n=S6?`bX^p+6}%=|KZ ziv&@#sh8vXWMsi_-qL&XPvIbz1vME4^<<`4j8(cZF)`&DwOol|)x5Sm+ZY7{*VlVw zI1oGyLZ$VAB#bFlO#3^_?e%XiV-}s{Aetib%$2&JulR2Wj-Pd|aGQycyvxE8yra~W zP+ndxe^`Y0-jrbW6tGor6SG3unMcC~ro_VTTlyO_tw6q|tr#7fNtAaO4-S-S`Gmys zcpmVB<$p3wYQkan9`0?nwzbvI+CQ+Lks@Q$x?VkEn1=`gfox8Ali?(CTRZNE zkhHynLlBIphdqI04d9;f)N*t?Z>VcOk&wW@ckdpAt!Ssk-{PKC@Mn8iG&bHM`<94E z^5_u+c!EL9`Dw)EI8&{4n9ldK{YrM&Ws& zrUnLZUu3rolV{P-jt8>i6e6DdqPRNZyZ7!*u2igA+tc2@eS5@pI&{Rooy~H*I*C~H z@I8n3dN2jxd2#Uzi0goLF##+$Gc#igVhPHMiX?WzqI<3KNJ7;LuA1WEtBZOEL;bk1 z-Rc&2UYNsg0Uevc0#ixPPB4c(xYzoZHdRfKHz7l(O2*tRf*jBh82?Zo=PkxH!~h+$(l@xMXvw0P`UtqI=4V{I3xiX=#lrcc#64!%;xJbW9K%ychxJWfi*CkY*3vkex2sV1%NT3T8nTQvgT6ae`G*k2r1C>X>hr2Nf|L8PHC zt;@ixH^6%Hg#^gc0?y@v<1>uaJD|4034n;yPRDD1>%pNn3O6uO=N}4aivO?-gXOw* z?OKSst{d{l10^=-GZgTiY;iO>{T8o`jVZ&0HUbSO0@fqZhmEBhZ7ht|2N03)^&uiR zz+Ze6bjo~S-utb=~fG7ro;e#OFKZP6$`HdHnl9Ey|mJGiK zp$}qY2)r*APeM*Q*9qS>?1c*#@bxR#>Mu_k`gp8Q(+zFtkhg_Y9y?j1pZT53Z^9#Pw>mq7ON``n6Ad4An@#ojq z@byMgdG0;B8h}|6GzSpmEr3e?B|W_vH#~l90yzxz?Cfl(E*9AHp^sKdzcdX)4Veq* zJwPg*kC3FB+^sng9xkytY3zUCiL=f6z5f;Q$>0nd(8HFz<&F#WkPa|ZTSNI_@??0~ zxjBrMTDJw#(ml|0l9H7rL=jRxJbyEV)v4p-15@pnaF*vSF}(>05s|bYillPm4v^=7 z=8r&GS=oqf1JNO@Md$#>DLC9rT74fG`Ak~+FHojYQBzYw=DP_)@-=w^c=@c@h&sr} z^#1;>q^nCO@*98;K$08Bo^UVc&z=EW?0%J0;j)@uULMbqUCJ<3eb7LEe6@P~co%gN zi{O92s`h{}@;&!9)W(U4c&b-RY{t8g8cLf!+}u-RV`H)36_Z|9-7UGRiGA*b#}*8h z+A+eMMWx1FFUY}2E}jRwqgU6qy8s6I8N}`pIkZE-nbr>~fbfsaHj~7IycQpHbgv;! zXQk%EyL$VFjkvZ+kye9o+AZCjl2#{vny^3&8<|W26muSb?^o5-Yy~T52VK3MnS5~M zf1jY=zyJAX@sJy4cL$Smn1Iz(?v8mNbLbA|B}ENq+oHD?`@;dI+fOxKO7`4%4!g#` zebx|`;sw<@cctFbCt40IU9;8Z-}3XX`Je!hlAK}jX`el-4~3+q@ftJ&)tiFJ9RPQ6 zL9RgOv6Saf{zKk<9KF20@qE?4txdXmw`$c6b~;~K7NAG|Bsn-u)&eNwA3%LABV`V5 z^Pk^>7vjmt$iN*hcp*#k7U%#=X?7T3%dnAoAZjTYC(JQv31Z4E+>$VmvS-Nao zeK_jS2$DdUQ#cdKH+E5P97LMB`qcG0A-dR=X_ItDh=fi}8A2h2=GYV5HJCp>G2O__ z2mq`}`?9<2?AG=*JR=PQMHcGFc^LHZ7Bg~S4mkuPU)7~>E-fHD7A_qT6(y#o_WNt~ zaX_LRvv-Z?)BqeS8U%H!$W@PtT3=X=+KyZ#@6kJ)BDWkW3`$917=x-HSq|(aEqOSb zMI!KhWJJ6AcspnFyWY|LDO{o1FC-nQ!8LJ|LIl->7zWx=?C`wUS!cA{93>2;q!4tx zD=)Nu9!wF5MR* z3xb0YMAW=%SkaTRzJ4UY0{*K%0xtTk^{BZ4zRAOwG4`PNMbYs#T3|d;EWgm$8^HLMkzTt z69D5KNsnS7U*ZJsAw)+EGLg=>101(?)wUY4%t&b$@~^=>BLd`x;T#)@@gVjYy#75n zM~VBRUh}SfmVuGc|KyfsY&46yl8TBLq|FNp3s|pFpmN3?8^S@9?;U8-n&)xTKR-X) z+s;9Cf?s_G&Ikgec`@k{^EMnO+Jyfj(P#{$%^jkUKic;9DHQjt?mEmytA9vHXoqC~ zxw-it0fO_8+CG9R>m-3F?hLpxWO64&I5fb6!hJy~KqJp{8ko6XUnLe=!wVNZ=7&5C zZvvt-Oe_k4Y}WzcDzd+RLELxHGL=Du*T`#d;@Q>v=Gm1S(iIA^p;^N|nB44&n#o0MsKy$JApkU2jjWa}07Hsf^!2)JH*xg80jD=c@ z5oE}S=v^fQS3=lfJ{7Cg)ByH!4H_Vavxqz@hXS|>*_U+_S|lgpqjR6XH3p$=Q)>kd uPxO#Q{dbl3e-;AU{&$A8`Tx4MdvIcz?3;LhQOg$(KF`JF#Im32`~4R!@cNhl literal 54447 zcmb@u1yEM+*ER~$4GN-2D2hl(NViBzDxiRpqI7qIAfX5diZmDq(($NtgLFwtcX#($ z`|ITAt|LJSNHlKb+~Y8V(;-!U-G zW#Z$)C&ynt-GToJIm&1`s@oVlx)|EOz)&`Hw6(Nxv^0Bm)%k_JgPDyr4~HNJH~Upn zM@L%+VNOn~|Gt33#@>YUPu2xdScJe$ z69(hIpHJA2{(VUM>bwR8`o|7m;eibL!@6s?B&q&=81%m`^!r~IT0h2nKu1YQX}dlD z@c8&RZ_x5_&~@~}YS{xT&MJw*un;x}$6W4vR>|7|U**EjU%qVSbm`x{d;flx3i_^J zdFob~gZ+~d7QonQ+uqwN6r@4lG-8p7k1wjRvGL3BqUVQCA8Qs~l%JlS{@2qr&p&&5 zv-igR|2+Tyc&z`rqVAe0Sw=AOgF{G2*x1yRFH9UkII+4KmYHc$%pgaA{-r!sOH-5K z+35+qh!))&`2Yf9;v1r($6rFn8$V*reEqur zR6{t{gF@?(I}#uNZA=8~hv;ZISy^0oiT(Y3ExIuIfc4#7-0}U5sh)K8wAL1{9lKEE zspP4eJ38>HYHMpJ<)vBs7RYq$9UNMYFa78F*&if%xif}+XFOGA`+q-&2=iNGq)!VB zbW09+#`KCi1fJF5Tk>Do8}(Sz*1sa+%+4PlN^xEGL(xg+XQ{U|d~bq-@kK>NO$YL> z!J{)@yY{)xP0W3}${1yc8eHGrPSGoOAGWO}$qX@hVLC?bAYQvAG={{V6FjF^$<6b3&%?=%em!JtV$l zOZl5N$c$jN15>VTC5q+Fok&>seQd0@!NtnRoqLS)#{1A1( zy)}h6J%^bn%>tJ-y}lgXmUq{rFtkdYZ^J`f6&5b3D>iBftFNu~?~phvGsV8|k4s|O zpFtLa$ojS0UaHMzH>Z0JZ3|`tkN02rmFd|qOIuL<5FiUT;fYr znYk5jMyyS$d@)}I1}1F{hdh#3thFvo=F@j*iezH?czh0G!iU8TVW-8qFgg*1lVgXu z_HXd0o~H+M)Jmx#Pf^Bg+D!)wOkMVd|K)7cFLbR7euC7M%WX-PSbx7rw$?{(yCU2!mrssLkk_Ve@m4$gv;%q$_1JW}e?op01| zzAz{#s5|BU`vM%F*E9mwt@B-9WAD5m1XHw6U%hbovfE=%6Aq`34&C(s!YA>+fsJnC0^4`?WiuE^4-4{H<+00;G>VXI|=VN%qlsr{C&jREXx|s`X7IMl}SQR za%aTd>VxG+N8#T1OV8UgdjxfK2P?chx;Bd0pZ_jvBT@Iu-UyapSdnM zhHnrYTH^(B>kckozFgPP@IE@a0j$jJ>|{^7;5otGhzo<5$1b~_wY~kFjg1W^>#eP= zuaC2z$n^W1>}W!Sf0Hw0$^Z9V2Zv=5@xBZ!JSD_8!^YCM@_18WbPsuI`wN&M?% z)8tN^?YX1`lIWj-56SM<%6<&IHF- za9@HeTesEqz>jEa3-u-KCzJa-Xjv}M5|Sxp{Ed;8PEjyxeG7|d*$m~bFEcs}XX808 zY z6!K}818|b|8I54FsC=+jFJbOUoZF$%+1Jt6mlq^0b*ZX8d2~K0SgNJzWvG6<1lwRR z#dQEF!yaqpCSF#{1Nj4%{IYK^J)GQyILB??a|>K$9@@uh$7|X9D*%Tamj@!q zB#zhp_9VO(ATbtK3tEh{)0_k85ph{W4TgP~dvBQfSusX&O)IXm{l+ zY}E2-dA!T0TM&5q`teo=%KOB<#Cb*G*|TS_x8Mbpb#!Pw_Eu-g_eQ@y%6vR**FXmj zIh!S@=Qcw%IXS7IV_mY4O6ZXYSi*6sFSK9ZClO%L=2W=E=1#vpk7?)Co62$03JT3k z5~-DyXWHCnkbN+UN=h~tGjj{9M}$Y+m$JVcy}cq3Ha>0udFIh%e#QPI5v;wxjOvhA zRGcbV%3+Immwc*sv6B7CkMDIx38(bdg9QPZIVEp~tV=`neNLj_OfHU?KrUiR;^g31 zO<zgl{yAxDGA!+lb&JjT=7dYnW<-;G$md3 zf7D_y#OdQ)sv?M~+8)^Qr1m@BC&RA_Zi{TWWs&6`dj-xbPaq+mtNQ!X0`?HItE-Et zoen@5Jv}{=j9fiDusT0UV!^NFAUeg0dkM2W&blQ$*3b|Hxg2A$KUX!HL)WzH3l1dz zXJ8CqO=QQJ&Oak z-YEH#E8e5eSmjlsMKpz`3sgMh~?Dx8?& z06B#!^&UK^f;YN+=ehjr>1|$pef{BK*0gp3>tR78$pC(Ais3ej5puX`_4h~dxR;8L zk3(}&s|Y7&c(lIv8(Hl4OD_8ig2 z%t+SWq0TGKXP0nrY(;aXt@g+QdK}pApEOXvaDM|V=8n^1&zG6>G4G?>nVPxAwSgou zbKoXdN=H-xAnBEi6}(W4jEoeto5Y4Ih1ML3i;6n4v{9(YrfPq@DfizUVE~X4f41)H zczSx8j+P0nuCC4a}MIJWm_3X@Lb;UZ~3euFu7={Bc8qI*ko8%b(IP0G=DC#KdN z>YEaF3%yzt#W%o%i~)p|9WG`9+XG~F*VJ@gsH0pf;0N!rv&b)=Q+-bDf|R;Q{qcm} zc87(Y^a~=+%SGc`x^J#Y1yb^H3tO%H{n?tVUl6%6H`fp@ajG@>izllm{IJ|9=h zSd1pttG9g0cQ1S3BzvHixf2_{Km6)C{t^#EtHSd@Ti@nS3IQ;lm7zk1tu}$=ogMfa zAZ%%P3(kGfgM$MkGy>xMSR@8M1ySt76jg#g{1zx>nZfy|I(P3@Y3C-PRV?!<-dy}bMHZ=rPx!V%{C>o|sR#{g$8{D+t+EJKY zTx{N585;a$HKgq!srvMn<>kS_!MeJ-bx0@<^PSg#R>+N2c%^IRj%qhO0B#Q8lvdm` zX07rp34F`}SmZ?}%X%he<_ioA`je4KNqUnBNRr5YT6j^{`}DvB1A?bg$i>@&5UAYr z$I9Hcg5SPP0bWsddbk9~5emQ`1+)x_ zS6n@68}n0H)LvZX>wBAcaAFdih^bnRA$cuo&y(@7*#JJh58>$^UDgv)=5Q%_t1X{T zMun_HK`U!(KGnGbR)0U-e)@~cqK_Sylve)PGe*EA!;am`t#N!yStns^nmNyBnxkA@ zUC9AxK$?fV(Iym)pFGHS=_)_}FKPA97CFVKb^W@!x=k%D*FpA36mf}+kM|fI@b~vW zI6Yd^&NIM--IxIP?(I+18r|l6w$8m6uQE1 zS=G>xHgB;v>_7&H`}UK?r%%!hj>?t&?V&7dGQ+0H7jGZ<6 z`0hQHgg4nrsc-4d^?NDCrT-IqQ>}HADcKX+9wl}zm1LwZ_G|`RCQ`ym^~X~((f7K@ z+1^@(&Ld&6*) z9B8JQGPyj6sW|(x979+a$K~x0TQPU7aa z-XI<G5s!)z5y^X(CIf+BsaZW!o;rEYT&h?j3iq5fBLePFDJ>x@aQLrm&X+ zcnvptFQ@-dQO0!L?%xiq3_YjHnR%U6jMHXdn=2iX zz7@!JKhJaDF^9}qm+>f*WB(E!8T~ZKJ(IgbHq89|A0aH* z!Fzw%0{se!Q-eP(s5#5l&w)}jb+R{>20)1^X-jQ;ZR{*-txIIB466!6srivof$HjN z&)q>2%dv_?L?Hwb^iOwptf1Yq*GIj%`pL{mu3ze`qQ22&)g$s?&^u?sS>=FQJZ049 z(gw)~!MzWoLUS2fwJ_9IgRnf5|C}@`HH=EJsVV(Q(x`AX;7KD*#mbwjm7*PslU_3s zIp0%P`6p?wnJxGE+GsgQsUHFGU;u4=Lc?o%7h=$BhX%01pdh?tpHrdH(NPT8WM5#F zT}5_AsjA8CZ>ZSbwC`i(uk4V1DP@W>@W+pAuO+bqHYz#r#_nH{9&ekdNg)6Ik{;fqM zcHe@ry6-M)JBH=1C5KMy=<054ZDnq+34KQ^4&Nf;u~ggno6>!*5*Oht_MwC`Hq)sI z!duT#Q}3TvuCHEsEO&!X$69vOjni%LKxS^m`|K*i@Fs%_U2~P5fi;Ty?qap0c+rf+ zvgcm7nwYhAC`hSra^L0;!7{*Up1*cDf8oLb5Wb?b)1#2c?rzXtfe7G(v{P+esJ~wP zk1uozMIV0bU0|xhBc&}$Idb#xc>jKD&O8KxC9o^!$;qpn`gI$?$ev_0m;ur1*LBhD zviJ+)cIDZrNVw=GLM?s(<5GNs;)Q!a0z_=Ba(+zmkvcjUa}h3g_SYn zEI)VBp!#ZscgdNotfc0~_lSp`J2aVJBWV_Q*v_0rb9*cK-^Ngv*lrd+uSh!V7V5~K z8-o81X7jUO{UE-&y?Gbobo6NKIa6Z!+mjqRfsZWh|2T%m>3;2vn*V2(al7N-66E+B z0MRZmt2_Xxza<_W5<=7#$0x!TODpQim6MahWDTA&q}}qiqaGM0XmC@jtKMA>sz(z+ z3<%F(=*^@y&>I7_PyfSnQaa%e1Q%{{fv&E$(qRc(1IFssWt3Qv&D*~77llGy<}$eZ zdPw|qf9m|B2fk+AsoYk7c}pA@YJiyT4~?B70T&@1^RO&%qU-GJSsHd47tvJ#d&5lq zfZR&1sNdIIY9EPZg?)cUQiMag8pPROjUrNhA()Zh`|x#wdgF_m8=?nKH{CkyGG`PT zUtmUElmbKzx5mh=IAjIO#l*rTr=f9gcVPP>Y*IMXp>PPGTJ2dAXAIMiZ(Zr?%+AXL zc3oTEpg?+hc{O!(Ff%g;!9U8g9K2Jd5o+}8*&Dq*0E!*DE+h3|7WctrIT!eJ7x(6M za=k#C25ly~DBGkXiRt45ENnbHYPybifpFNG^_gh>0-(%EurIS6$sHhNv{7m5*xl!T zbmQMkdh2_hTPuGNW&S>X@MMdBcH?_(7A>eH?uJ0^vL9hJh!7<7N7& z;<)F(jZt0Ro{HjE$~Vg9c3lgkUca&)Kdhjle*XF4SJ{m!EHaEd&x1`=#c0a?3s7?z zDzurKjkghBT7thZ1M~s}s=w~GxwSP|?je9^4R#)`u7V(3vox?36~UQrfsi`^L8B*N z-%%;Ie3u5mu*{Kw>KK$2GSry9!#bRQQA1hUJQ%QZlAtbdxQ{uMJ4;AZqDn6IXFOW^ zGWPY|J96vF6KCWPytyh|q*dn14Xgc?nflJIvU^1qA`NS6-&u8tVw+v=()h>fUL(l- zMa9+A%vXPq-e9U3PG4MRd(=MCuu?`X&><1+*jHM@|2Z1(naEUPSsTv1T>KQtjy&*v zH;CuS2??}N9ee%ywb0ViwQJY5SB9d259dfX==<*PyCO6MmxRW#YbFnQqx<*o4}(ZF z^QMp;sdWKugET4A#8L&Av%#9vF;QfoPSD3z9) z4hH(C2D2%vV^|&Ryhk=Nw5wHZf?($oqk$j$6%+WzAlK+AZ;`N(@;oAj);)-^b`#uW0*Z!t26+X8cBL$^@&5A!(*O~OtKg)Oa0dD|OSgs3!AvybG9ZIYY_@Q6mJrhlzN@Ob zi=!~`QqXY~ly2fIl2+`J!~ocl#^ zq2Ut(SdD?CEIT$fzxv%azKT~}xw(rH`ruAtFsT$HK(e_xu3_HhwxX8Z0|p_GQ-1M{ zPvA5EcOM_^t@Vzb)l6B&{geD-_$)30gt)=Y9RXq)sERicG4PqhjjHA-Htk}2CO9(C za63WC2Mx)govFsenFKdDH1tLD2Ns$B+~U;dwLF@dnwy)OP-QllYfqe>oz-h@!5JUO zH#%O@KbwS{C%$CC!ND=?xz$#7yxH=WPUNERn9o^aiPO>~RD||I& zZ2D(-@q5N-QsS&?JPD2T%hCoMRqA5O|5=ciTES>8D} zv%Ana`LrpiRF|y=AI`d-=?U7k{&kg>Hpjocfk>hfZtgWF;W0OUN@-?(&Ht!+8@0Au zTz^wi_xKz(_7l3O;9&KCxlrlcN9Sh8yd5H6Yl!KM+}PN6C-2KE2Hc)wSh~i@NF{}o z8swD=Cmb#b(2Ac_>DZ93c!JwBb7C0R)p&*9)i9D5Gy~+$sG?ly1u?|DB>Rkq&LX^C zvRvNQrBIl$L9OzdIr56X|-mcU11IO9D6!-a@-K|YkRKn^bf;F<@a#6|AGZ zn3*y$qpMdN7r)cSmx?U!lc>F)SkQ_&Bj&Y))UHNSTwFXcHB}3V*4D+PK}K=$TO9OP zJb(V&_ITg!9F%#*U$GFiN#4e3Lx@*eWUQfaA}((2id1z!*&<(_aK_>_0cvAqU)`Z= zg4h=;@lP=y%Q5vnP*EX0+FMKe^r>p`fi$awL(P!*5ixTv5|7!h|vf*~mm z3vbtN%}&sXFizjtNuxKYR75G3D14NNfZ1SFBj)JG?n*P$7Su5yBR`pCQ>h&pDc6bW z?nWytJ(SKOS)PA+W$ayoDE1_SI3CMAI@zao-c8)ZSRTP?Nq)7V-X{JiLUDX@(l0tX zy4NsRkn*-GH3daF%cu`t#eUrlHJ?(VoCPB%>0Zs}l%k@wo}85j=STIe(5Hs3CCMwV zkL|4QvN|014}Ct<=Ue(wChYj~noI1I%j4>^3KTy*1qJh`F(rrv?W=pqh6m3ahRX$p zotcX~w645I71@#NbPus7>j^WE(&Y&=Lb<-}+J&B(mS|7|1Az2^`d|#o{hXK!#BRs= z&X*9%AbH6Ex^bHd6;MbpDjWjQ^Cra6`k|qCaj(NX2wlzIm*IweBFA{_aX4n;@w`Hwg{4On>aXU!y0SIxmuLv$6kw)Tl|2l-vYd3EO z0@+I5I)>r{0@Z(qUV-4MkMOwba$(b`4skYNlddl^qFb#zNaup(-yg4^{4|GRs?_7h zj~|t@!!c$=f56{Ljg3tsxl%nscJGsM;$uM?x;CHzd_0&#NXKPstR55CwTO6xVJe9g<0pEZ7Ua+hkoD; z@8Q3a)1r$A4z9hmLaPy!@o9E?dL2~O&a{qXT^wBE(&vtomaX9aW&*yvIGpj}>C#z~{X}un*t*L<&C9!q_uLhzw(un~OZXMwN zA4rtGUygK}ji9R{3W~8`S^zCKZxtZ7(F^w`Cx5=1;9SzYXlfpY`;ff1k(NQsau*{c zSU$a2o9?d6`qq}wQeSq;w{Q7S$-1c&a~A{wNQH8-^c~&Z7gSX{-jIMWlai5=CTYN> z6lWE;H(>c#P6Jis5p(h#{DrQv+V91K%Fh5-gEfdqqdo-&210IVhBg3&VejPuZXgXE z9ugp!#_^h+y9+i7Wp)wRl5M!lyf+ZRufS`W=uyD9sLmMSv9k&ep1zMMDT!MOjXQN? zf7H_7@3__06sSCg2r4X0K~E-^CMF~ip{~-~tIG-p2j@TiF&_`@pw;P39IcF;+y#1i zy-99$b@f4j<4j_yNX>WXC*8-^fWZsbPH#!~^k=EF6?;_ua7)!z8w#_X{)A{N@CJ`0 zabma(&w==!2IW4-#h%yS6r({CZEuXYj(G{H_Mm-S=jXr3MG^|R{w@@*n%diE->ZsG zgbIur)W4y^0M&%veg4{Pd!k}@sxs0*kl#QLoneTU(UcL*0uUgdaZ$=&c6rl>~#?)>!B`=>BE(6hUb{)AQri z{zXN{+WX3?s&k+~&aF?>LOrefiwx1I=aw>{K@G=tP+8?wRZUuBxS=}h05vQW)DO$b z$}*03KxNZ-V`Rr=o~8YShSJ=LS53$90>VxIZgGuY++SJ&h6>sltu<-Jb=H+uh*(g} zO2mn;2$=s3@*zDv`Q;Z*8ulD(xq*dxKx<>}P$SF_GS{PwC+%p(O|7{jD9vahR%?IG zW0s#OEo>=OvNIcxlCmmN$X5FLvb1!&3_2e=ZU5a$waAUX!fRnBy!&RVU~v59edA&q zx)L57?2m3Ln4E`##3@pc*rBPK-yr`2_a9x6`n<%Kids`wt$OIROGSZ3(36b? zD8mUQbx9J!KoDB|O@SuAF+f!pu>>S~@ffsI%B!M;St%$K(R~DV8aOz4mY>a1r&g>! z?&x*3FMdy9baSoxaX?Ov?R{#yorhSkR&(1T26)l5sIyhjS|zuxd(eo{NB=il1cZSH zs!|GsMMZb*BNukr7}c=;vn+(+b&sneMDDt2+G*|V?B~pbYEQ-9+1BXL2q5>5U`<2o z@nOHM1xDP%>HR)xn)aC~PfVWMVVw9{S=)m*KF5$1CNG`R{BOk@9?n%zFH5V*zdk`R zzF=mhq~;`AepO;@S>n_Tb&z*YItBON2HaY9c3sd$wQh|uNZEcjPVD1N6FCZtCm!*r ztr$T}Q0*J~00ar+NpMMm*hFgIl`3t~rn`xXP5iAGe=@*29bTTA!3r;fHV`{XIZ{8L ztH)N9(tN*!Y4V?FT$fjQl{Q<`Y?2iw3ymA!LvkS!L=h4i)T?)XXW_MYVXbb@nl?kp z-y-aePa|9FB%lp(U;djKB5u?vtY!J-iu-FO2c<~A|NbVSZ-=JH>bsEljL`m!oW&Ht zg6C*4Hf!^sVg1zH!EW@6aZk@ykX)ln-wir}J~B*_-JF@VCiE zQ8B|q&u-}@S6cR%^!5tI$q)Yw^xK67gHy-GcE8ly20dEqTaeAtN&Tb@|BBi=1X)Sc zwzQxRs0MvN>8uN8TsCo+>CV$*er50zoL1kCWF2C9*^1q*MI8GtFsP|7*$e3O)-DF8lsMSE3`&!FPKk|O z9U+B2{cAlP(1w#z08+QaKNTU8C}MMS+b=dmNmF0IMO}s@JP$EZd$c{N#cpnXQgl&Y zSoDlCPE@ETB;=1SFIBpbGv@QM<;hb(>hiG**L5I1G?Tkry2CRb?ltRP8W!io8pWK! zopnZOtjsmyB_o}|f)+5SZckvh#^HCs^k(C9&_SrQm0iCH3G z1bG=nCEqM16ldN?&R4IV&_(oM`&_{ZjlY*zVr#(3Yfi`?k7P%k^ZyoY>nB@HHrw8LbTr`Wlo zCQiJJjNekxETN3wlhi_w=Sby(>OFtcM_F}Gl%G_2g~v>(O8EMmwfwP_mR3-#6a#|P zJQdAgSg$@?Bqvd{V>7;LZKcGB(Z3sT1ut$YIw`=a5{Y~AEa($u$@D*(Xc{z5k&7p_ zoipW2p=h`>ZCzBrGd)-RMcZ~V1_@6(|7^QJUX)-fP0~1U&_?)B5|M#eBO-Nl#wRX6 z$bA{xbX0evvGoUXu3KocvQNLm1LiI0R^zxtcXAcMW>JmBZXUI7wbplnimvCm@+0lb zQNfKu=xr;eJUCeIp%u*QZxx~AyBPNqS)VAA4p)87FZ0UrF;>}b8S*p<=#qcLALs*` z>CW5nNu~G`eDujk04g#piL=?`6$G>U`WA*KX|S1$_M~VBR#-Z584ppdGWM?=!5Q&* zN*B@iZJ~?Ix~Ppd*OTVgnX#29Bcq8eN*Du<#C#%}VPfUc?0#;c)LErpX68@s*B|N= zjmFm*Y}YYvFh8LS4VEYPx9->ana%_A_4QXntJp4N5HeV6;UDZ*R3fwFC_`6HxHD>O~?DgM*O-p}I|*Z*!2q=bIOY*IOZr1$L4-$?K+(=qL9e*2Na&X}dicC#owHBinsd2|a3e=Jri z-_T|K`s_2x(*cu6b>Ew}KO`u$k(1+FTd&V5#B7j1e*r!g+;bPbZ7N6BSXr)w#$xBv z)ILjo_$aK}4Pmi|7J0~&+2(e?frfD{TI`^> zX^pAp(r+jBB$wFQn*DIXC2Q`(Sx3;^MQ-1t1cvL#zC371Q~Q>NC>tHKrfi)8UZXx) zivgr?xEV|41lnQ*k|NS$^*reLeJp;P6PMx%qbX=uL)yjGU_Kvuar`p@yk%#kw#bb3 zdh?|4F@M!jfd;G~$&O243qr|x_%X+?(!ZbP5sZ2^Ee1>1y+*tzB5vmBEN+pd%1NMF z-?}?XJtCwyi)8rZlhCOxiRVec&yC>VZnRtS1&xp{iSzn6FOa&t#UO((a`6cD=EieY8(Mqtg+a`5y1=odaza?8iMW(r?mx@L@KJ`Av*a=<% zDm(PPbix~CL+q>v2e~{L%Zhq59*hiM&B}qet6}4`RBa;xvbsT&4nVI6LUe;*!VuY& zwt~^zekq0Xh_E5e*#6nh0W~dfo9etO;+BF00-0D)JxbSzF7$sIbXVT0r~uX56)YIu zGE}o%Z#?K}A8D49l4``Lrh*)Doe(6cnR4bZ$+XO?8TrPEZ!~^9&c4QTA&lP7|LEE+ z>7!Da6diPxH=*OK!oPvuPj{$w=a7VNNh77e)kEs;)#E8;*KIv{1%&jc|3)Wvhd~t9 z$5#Kuq4A;ItD@&b#j?W`>WbZtsy<`Aiz9ZpnTg5`{t%0Pclw6OtIoL7&!te0ZI8IV z&saEVFt+D@>h#)Hx@*rpy@*ruUx}C zmakm&@{vafL>@tYCmN|{1zyK%(<>_d9h)l8sP;3*6z}WrxT&8uwF3IukODMB(01<5 zcFT80wdR+8RX34rSOEVDJZ;MCqR;j1lMo@j(;LepFAxvPMtjiWN}{Gx)bDznz|fbO z?g-l+79-`bFnTP|nv8q@HIn~(UrF8k4!!5htgM8boSecgtF0jHc6h9U#JMn9E+Q!@ ziH(EP1p@}Cb_VWe*!=O?b>E>&_1 zs+m&?OrQnth%m33IN!r((Z^+2gAEF5J@jzMLsxb1>(>)d4WASBf!Yl*y=V;7Ti!tP z4$Sb}hh|jhgpq%}1vP0^9UUFCke>b~8aQ6mOoMXX=4FRr6AT334QGLEo@%sEgDNiD z3AtEtE*(xx=R=#dOI9)^C^@MxSpgmA#J+xh=RhF1EMQHmo~l$le*(?p1cZdo1`A#g zU*RX_qUxERehyV}f3^B|iHXY2`3Jh-Q_`}sP?iLrI{Q|63v5;E$hp>tOv?EpG#8U8 zos&56yl5w1d5rIn7IQLLND?3-i|n)3RTwRT=9G|G4WPSiO-)b$^ZuloEG|=swC1I$ zGVoguYh^TmE__u$AbNa!{CuI!K;BCjDd+^%cC~a({QUXz?MIjXr?Ro@2U~96vx#$t zVfyFXs{7rh^x*3jUQBO`7|P18acL=f$xQpvX85_oxD+DogJLY#pQ9UMoy==?{_LQ` zX8?%048s&cWSMXTW1J^IHzwh1yq#JFTj!Ds(+$-Y}-1VEHzzGf+OFVE}Iovero79g)R?Qn2ssl>3d25-LkNKN^!iep@D(?!UdzjB}$42Mc~Z+BiL3V0CIo2 zD5nT#QWL1Mzf7=fY~eXlvp7K1b3uI28u3VIkP#ZBTNNsDNc9C?jN;-&+$!i1wPV@+ z{T!r~>FH_PA*;eD*97R%;`Z3J1S3G?N7t2~{qia*H$h|ZJ~`wzX{TM`p`x&J^jY>_ zcekB>m!9Oj3^D*?`_+=ygPPv9m1arPOGJhgh|EG-^|@qUIOC6V0`%+$K|q1H4FT;A+a7_h<*@sXAEtv#OSMBaUPooLBoJu5vHs0 z?H8TlfY|K*T5fgf*%OH6TK5nnqGeM%mp9Aj;MsjO_#hL4XOFZ`F_ru87%D1NPOgzM znH1SB8y^aa{60>Jnm1{!cH!Q(OXN_a;J-4x}=RQ7Q=}n@It-kX&ZTGN1$%J1` z;vb(gkY#suudW!$vy1=`FHeQ0etoufFNcESxbFZME7{40y{El@61d)|1c3VcZ)4el zU_r6?ksL{N>i2PRNac!!g=PQf=qX)TaIizL#NphP_TOz;h+k+v^V41=>b&~Iqemtq z9fnen#xVKb{Go|Z>It7Q79pyLKLn&N*YO>WmsD-%eZNfv%g>pLGq~OMSXrJ3wUthi#!*f|p9XSZr*J$J>OjmL*v(NTK*;d=a*6Al=RUBX9e1q_c zJgQ!bAyF(!+T($uqzA+|*1O)~v;!6;dwn(-qvGhisC@iTUeNIOLmV8CO^{7sF++wu z1p{k+s{R%l`WV(<&&r8Zr(lU+$2WBg5K>X#MSYN|OGhW(=JyHMTWPgJnd1^?xMvs+ z5a!sZse>&|y;DWqbInR_GOC~pRT^PgO2LVw4O7>CkUB15{;WlmxP+Ibcq!lFvauBB z5bSXQz4=s}5)6P+fNJlxMeIqnv_RgMP6z-iP=0muHb_geDgo+%#V3i;h@u|&RF76MOg4GSLf%LLn#7f`*AH!Pl+(8fOPY*OY{R*B{R7?k`_gpSUD?E@#Ce47TLS z-K(v^IAp2=D6FKXmf|-qM3^fgW~-5~#$R=XGj0mAuxdxZqAxvIBL}x@ecf?Oa-d(o zD#!;B*jexpE~Cc%>x{62gSSC*$9HIrH&h8=_0tAxF4q(x?wSgjss`OjagP!J=B2gE+x_$8KJnh;lVXwy>FFSOy8@8 zQjw|4-#?J@zvWP7!fbig25LZxBXSIl-_!=xNAg+qVmhvdo@Fx z@kW_&eL?&^IwSgViB*9Sy6~|^C2{ZXh7$x1cROr<}Ygm8w>d(ZY)$O z@VI7AKc1t!cJ*aWKZ32~4~E5ij@bbSrzQD*MQmOky>7AB;kDx}T?bF3u~r!NBx13{ z*xydQ)qbp%IEDx3PdDNOglGbWI$0CZ`Z-M7a7<-gq>Jpco9lmcUZ5At#HeLWY4$Wk z%2D`>&;u+FOvf@p+;D7FRfO-QYe`mfd5J?L2^$-)|Ay=~+V3aB>SGn|sr)hv1YiT36Im2WlBLKgc{; zTzAia{KpFZeP;NlDYEuxaV5X=W2o^(1N+G0(M>{RL*v+PVJCUDv2V1s@=9F6@`nvg zk$ng{Zc6H*9S>AJd6@6Y;`Z2JSRW3nNt+AWBung#H_!#1S^eOrkD!r-_#v-MMUMaT z_>;F3_)C%=vUQV}baa*Zoa)c2-=iSUA`kGpQ*MTlk#Erd{bxNaL~A`yLD6uY((>^~ z@c!3E289+xujHwaVu0HFl(g9LM>#pO?ylH91W0nEkb91*-Z#th5r6}#80jpE1q%}t zLyS3{#onPUs~ec%m=C{A#bO`g`xFf`3k0`0&bFk=^}Tr=K<@j4oMt+~va{9(3>)nIRiHE#j;)GWtg0E~HT18AJ=qtn3_rc`g;Bw^E>FtI?kC{Ti!mwz7fOzK`lhjlw!oG1(Q>6kDto5Zj_KIy8zY}K zMX6-NjzL1+ZbHYWAs~JTVxlihQFMWloz$w|YB^F`s5>~ZqI8@;ci@(1dNV=P5Q0>1 z9AeKV5s46XKc9t?Z)qZ-FrAQtW4+Tc*b?7LBD{pGwj1L?A29r z3bRwd&KVOkB>64SE|)hnG4K#S1cdGg^ZN|BA;B6Z+Oc`h={>ioj_1Z6FcX)7h5*$U zH@EnFJpeZAy>lQ~swpF5#A=CdZnbo^6O~I7xrHy20mubwWq3=)9B@IugIjT@i!ZxX$J@!OU3fvz-2J%ktlgZeU`RP1VHI

XH&Y)MFILPL24PvI#o;8bcgo~ivY*^m9h3FzdNZd;) z*h>fopA;zlqMC>p&iqjx&*y^keR4LjRSObivToR*S zltGeD@P~j9BBdBJ@36FQH3?0#b7jFF#@`VvZqBs4e)FcLr6mNKA5hRnwUtx~6Wk>( zYcT#t4uS{FK+a`tLDvC~NqY)#J*4Ujj2*s`KzEQ+N;+kEbIWkSbD)&S{GbMGebXNC zp@_}(-N4I4t^2WGgC?39dIvS9iAkeB^t^T+A$&eW+}PZl6%!LPB_(BiZB4&|`WB--cd-zcOUA;m$h390 zmK12O(g`imOXI~gtIK<;uk=o!)Rht$#h+&XozNV5kYJb?3u!PfX@iM7q;&?yN7ck+ zVQLEcp0M%aZ!$uc60^8?MV%2YHg;#R!`zm*G4wA2iech_Z1tP;c!dL%5ZVT5$d*-Oetw= zE-c}fuUt{Qd-rY^(;YSC`_d_dHM=WhsHi%J1jCQc?&3{hx^7URTO8i=lXO#nT*0 zN&uU0f--iDJ-mZaR0_3U$a~L(U_B`*DLW^pnSuOBhtDwCC+q6EkF!?ly7BBHyH*tp z?x{fQNQkwBSEZtx5~wDi@+;~9itYueU4xbOu-4Iy7)m>gAWRX`(?2Lo5^8Vp_sM=_ zqMzPH%PP48OdVzv1x2XCqY@?=5E75{3I>tVDR|x%7LEf=<$QQ- zTwHUiay-X=3~Y6Vwqkeo-l`qaebNPy`VqjnwX$a=MU};WAf>TS89QN^#QlFzINt0= z9UdM|E-k^N%+%)~`e&=d#k?>@23`O39?RU&Mpd+s8lUAJ%g6}xJSzMtiGB&RroA-( z%HqlO?lM=2qR>jmpA-xmnFAD@99ieJ_y z=n$Xy7UmXA@rsKfN+aTbg#0)3%f*iB5L~I`_Xq}s`X9Ov))2_a;j+8* zZ$`sdKa3$ToCB&9qnbE+E*BJx+gB!5q7jIRF4U(JLlxz6pI3O*_(N!;07$_&Nz7qG zDl0r(0Cs6h8@`X75{|M~ZA z5h-5)aUU<(PG21s#s)bj{|=Zll~s?H{Cz*9$ARD4816%L4=FRUzKIs#tt38o?sG4d zaqc^Cu@_K^8h^09!QB?wSMjyIViHXu({J4;Fdlrgr)R8}h+LHUlp#qQ0}v;StxYrc zaO-98Av$gIQYneCsXG96Z?~sx$UI$KstIvXacq{LN>;^?o3a^zBhhDj?$jxPq&hNT!QH+_FK13_DnEo zJM5pH6ZtsMN{hEw`^U|gI8>ew`I?TDANCGNd0ao-$M$WAV?5^RmM>VP_jRJ@*)Zg|VO& zif{R|d_34AP)P|3%ydVJqrr^E zD*?4@CVJJ|A?T)JD_r!`Edr1B}3Mg43bVSN*jpAxS_S{})ql85ZUDb`8@VA_Ag>lF}gE zjWkG0Bhu0#-JyagAV?_&-GX#8Aks)kcL)eF(joAka^d7;pF3hgVrW~SSjt1O@2?0L6fa7SssVv~PSR{#cbQe-uWRD>IgpQJqXtTF>QFxSm=8MAe-sCOC@9||hxq{%RyTLc z7?q-R)E#Wu)sNg0{vN33e%*#{P1vUA8o(t{{6Nq%LV;HSe18`Jw1DX~OyGmbEVT#; zr_hoOmO935C$5qI+;jl8LbJde)AvwNS;E19^kg*LxEZ{gU}nDy&-|5aps5^gP0AY^ z-vC}f`}p|D#r?e8Tws~WsHzfxTnkDdk78pX7}dnjmj89g8%%(O^)CQX9_#KGY$5gZ zL>C8o`{vUQd=V*R-oFlqkJSgkGuk}{P9qrWdh!{n)Q|MG8==HT)L zJ`qaXy)3>KDn(B1HLQbYtnX?U#zDU0!H*b9vVy=g>MP=yn(v_6&TA_%Iwk^y-+~Wv zjv00HqLaL?H#mdQF)-keJHEfm^T!!tkY~Rj+5;#ry|Az_2v}|DRccpt7|Dr3d# z*JYo1#^x+t6ossdhc&39i)#1GU`qWlK)StImPRV|jzMzo~g?y201yWZ9>Ja76V z22wv$pN5Se4F@4>Z+?F}ONQ}3MLWiBjWbG>pakP&L%8^1!`7!znWA8b8Z})Kz%7$F zoUo=iDF++`;UaW%MjU;K1W~%p z>&ng-K zAq!Bry=-naS;_IO5zo&K28mCNxETBOv??or>p(<9MHZ9d8pE12psCq5V~a`2Dog6h zbwp9%L0g|LMRJcsc81LUN=Z($4jVk<9HKvV4idn6t#0BxdCA|RT((_wdzoRZ6=ntS z_7*jmUAz5$w2g(FoMfW?y*Jw#Z(ZC8ywIv$QnkN=8p)%cna(33aT-k=D% zg#xPn9kT=ioi!|PP?tb)gi!n`06%LAV@fqO3QJqGNGfDM-##X$%ff0plYe>rX?_`m zJ0#pyXi_RMRSxB>HC{*fV|JPhKQ@PH=K=`R1!6jqRJC*DlIvo3p!tr1PQxF7(<6cS zwFfN4kq`2?(5Tf8yZ!v>>-O&mIQT&7kHEdfq(DrgK=XQ*MA{BfjP+C$BQ{apW0U0d z8e`76=o+6w2LpOo`7w6wsw=2Jso=xu(ai3n7=?!ZF7ywt-nj7`*rGsnG7UNy>-hS0 zcOil_rT#%6ENge%n0q)jtSr2~L3|##piHOE z7FZV0Od}vf-P{x2CI7w}P(?qGq#$1~(SoZ<1I+0UW~^W_SiwLEN=wsAOG~54$;*rS z@83bGB7*GJ)=XVxJH|D#y7yb0M!cBuow9CE9pdyXAZewEf>-<58j!aTtNx9x&Ev*KS6;O#i(8d};hy~@37_1>*toa-0>yN%Q zhdw98yNO;~`~pfHc&`#IjJPy}RaPAmTv*t)e`5Aa3`lb4*1S|P4(SmhPCy;cpIJW- zkzs7Ci!yZT8lgOQEtPn&^3&OM4gwuzw|OV3hyja_-TNUJ6Hw2NeYQ1koT<9(vVxTS z{l#i#JO~30w-$LqP6&Z{$H2rC2?&iLP#1b0KX&*3Z5RlJ#frokzJsh%kkLj-8n3Br z1dKZ&V2cE&ITyLixemU_Qt?#A)%aF@k?`0?s^4w&Bp?XAMdizYRl3W4X&w8Gxu-vj znzU^W#RPd5X#OH;g)^tWpeOVFJ2lV>fr^Xb+rYO`Q1!vxFRNma#Xg?CQ|tcfYxh$l zCT4mm?irJM>7Bvpo3*k$^y@!~H3oILxXQ9BE&VZQxJ*d`t+{*!@B({gaC8)Un3(Zd z<}g*B4HYv>e8!sTk^HWc`IH&Iuo6PaB}<_o%vgHi)%0I3;o@DPG4KO=%nh@gZ9zQ5 zU}rWQ*7J&Tni?0U2ntio)eX=&)x$|g`VZU;Q>iev8`&@G6thz?&n%}zpsY)G4hVYK z<0RQ%MD^38El_-TK}{uv!nsoCa<68;Co?(XL^n!T^s)(Vxte|cR)XCRCn66`3zDg!);(voP)#0%IU+O2w^;{8FxLK|5ToOq81|Enw)o80Iei6o)t^QE zF zB=e)uHsv@z3y1hq392;Cym~2GvoG_xDTkQwDCO(14EYm&%CF!5iqoz!r%e`>w$5I- z8KTvSS{5^CcDckb?=3VCFKiPNzKcM0u$U=}b|v#soKzHvcC1hzrG5n5irD#rbg29< z-2%0=$w^DkFeMFCA)XEO!d9$v2h?uRb&T_$ZVW(dN$RG zcSOs*Zm4p9Hi{=I%6l$5(bDC0X!bYUKyu72xf!>rc4o#D)F0X*@Iz^zfovqjABYXK zwJi&C1D>R^irnx|2$LHIQo5at>W1I+hEMUK4XWS^pGu8j!1$OFDD0KsckcIKC%hx@eX7J1@~{-~FlQyH0b4cs5?V+`$+z?+=D?)Uu2o zWH#nYCS~T5Aa$@Y-y$s^O|%$&)1`G}r1ImkCmyWn!w*3LmW$RyKmEb51BzP*J#lw2 zD=I*Zlu~W@qt+nTLD*N4`kF5iTRytX<_V7VXa3Wc9#>|xdzmU2bX0(A3!#C?M=9Sk zz%d(r96owqYFd{#?b`Ad6b~xC8aYFO;j^*}H_eReMVt$U=IQNJWqqi|hrmy?^o5T2 z6&S+yk!<{65cT-N{V}eGr3c0q_l#vg6;&Tem}SrfvyPvK2MC7&5_wC-d1MYy?$7ld zlCnYYHw6?1P;wCz)`OY=?7Rs3*CN`j5@1T$WdCebwLc_Um~$R96{f;Ey@_Rp?txpEPk$wjP zmdS^cScCofl6>y&UoY|DvoCU4QUF-wBVP z8r2|RwU@M-kJqpI_6xjjE^At**5KXnf@s7FN5N_3e6;9D+z=tiD>nNvoh>qp?39 zolq(bQBY9d%&7H=+a-Q&6{R{JhHKD{0=p)c#fag<9d000xC*zT)D=`|lHQ!HUMf=nvV8Qhcl zf*JmDV9u$eU3by#Wqnzv03X#*=uyGfl-6PHdlvOnoD+eu4g=);P7go@vhI zrXM#0_5N`1yHcf+69n-u{811|CuMxu<|bXsb7dwO8LLNRXlOqS${J-Qp{K;7lZK%l zUVoZ^o{iF21Qn{z`T4A!=CgQ6kJBMFzSzsU)Gm9s_t@Wn$|6B^f9K_5RL+|30x$os zQH=&th3DdFq?hUuMVNfP`^bABh zEW-iSW~BkQJbU(5&%v|s?xnHQWCb&{D0tj6pgIeQo+VU6ZGw!TdwRGnl$B0-P3DZ7 zcZHidk0I4@qnFKX`Tq3)j2~1ic^b1;ang-+ID~TVL%5jp^jG~YDut^e@*L!;H9qQ1YcCb)I%9+-9oK^#QHlY~YaEy+z3_0131fHnQLGV$9%K z?He;6Y73Al`tB{f?MnXn$M~G%B$LQ3P2wM%Hb^1*G)g|zP%+qy=d(%hQbPd9bAe6#X|X;7&L|}A zlKH>~Me$Mp!q`v-3>4@p0*+ij=>ybVR-SW|z6Vs`7nj-ei}SNLn|v^4b@;{ukh}xH zIX0kS?}GScu6mkB+nJK0;vbj>3g&^l{&$iYpePjzPfJ;~!I+9**IA6G2|vhcU3FgU z8Gtg2P7X*C2QAJGmkmys_=y(=9e+>uR5Uf4*OyoSV-fSB z1T&`rIQ%~rF{e{18Y+AMNFhWJ>r+)60IUT~q=m+xc6N42Z{M1ENeT*9nGW(Wqzbx0 zP58$H0~XUU@*Bbp$L9)}9nU0=d1>dgB5ENYv5guV4lYbF;NTXj6>klE&nt?4xY}<0 z%ytlI-F9Wg(L0i1Y?PJ}d=iu#IfH2^OL#d-v%lsKb>1;IH%IB|LZiogH%JSV8(`Of z+h=wmB_srtGObN~0ZQ@@1TO_#=Q3++Md(8Qxyk@iLvefmtsJ=%}FGtDkv}FV2A>&bw8G1tGpv(sWmf_zu|Mo^*&o`Cx+vN<1!#<{0i{npFt^S@7?mo#o2F6$|T0$m(LbOdP%eajVr5iqClot}#0m3rzyYEaaL$X`7?o z`UafI266GNr?_*YApoRP?e;h)(=$1_S+MvT<+I;HRe0dSz2&KZDGL3AdZsnMh5slS-poV?#y3K^D67*~v z(FMM8v3>KE>Q~3~(*BGN{ZlVpR&zebI+@3J_Elp1RNO>JqiG}VU+{{d%^d6i%d3=hPxc9-jlWT;kz|jx3Pu0)- z6rZDL^THHWHm08lYy8~j1Vf{RBmi+F{Z;uws;XLDMPqzM{VxWz+lDIOtIIUh; zv)@phI5zA=aFpV6ze=xXQORO`6I)la{RfRvI+2AfnxT<$Hz238Xe& z<@G(g#;F#T<+)HTl6oCa_-u1N?VDoNw&m4PZ+f|iJL^v(Km`RG)w)?d`lVIA#O4|3 zY*FitSLKgS0t=3b`y%ClpnfPdWG7}wC1W|Z**^yR%Qn(@$MJdct2twDSnRz96hdic`gg1 zFBt#eil#CEd1TJdfxBo{B(7?;e{px)jik;#|7NXS(+tsZCi9?+81mhmi7`aSFG%+f z4XX5tYxr;GGPTnCt@+ctrqU6i7v?_CG%;XN4?-h3M_(jEuI&ATxp>g2YI6WHGr{v) zUt}6-hKoN4_=Bd-j~>{_sv^dA_a~GdYE-SzGCcK$V70x zcSY12sfKkHpZg#u)q zq6bgHT1LZ}KOl8zuT!8M%tA@r+P$W&!*b8{ODP8vWh*ADr6$IsYo>oM0P<;1n<_*) zGo!8r1)oYW1~#}jL`{|g2Cb|rkY&umESKj3uDt!bgl|hZx$7Utja9m#5!_S13_dzl z<(&F&oS{)F$outmbiWDqce;xBch44iqYX_L*JhifT^f1)*~OxVX>*TinDPmkl;vdRQX z&3F?+baBYsv*#n9+khK78 z_?r&ZM;S_hvf@1lw~C31u3pLahE`QyN(*zA6f`MXm+_G{xpj1_IG;ZZnM#K%Ug&9~ z5z+gzVD9o-p}=<}dr1p2bVM&=zN7Q@(9i7en0GYZ^Yg{&dxtk0(DofMlwUA*znfVH zy9(9lMc?uPA}R@eQTiTk20V_LnUuU)^4diwbZ6%$MABBtA(WznaCKPbp?4-W@9 zWgqWb|9dZ@o+`t87m%!`r{#1Oj5WzBh^3D> z%M^;Ozgk&>0pCjjS{T|{XlVe|*wGz8_S z#Mq&$^EyLUEehNLA>~J1dQ7I^bUu(!7NxMjhjN=sze;Z&hV4VuyG6CE=-p&bYUmaxYyHdrb(|a_-PYS1`Ld^<6x%pNgb$l z$gHmt>yj^M(@CVGo%35cmQx!t>M%wrw&o2Yx-LWMh1&K{So|nrKDAH)P!Leblh|vu zCZrG>f>grY-p>fT4YxtQS~e1MX`93m8LHaPloBR4&G90vE}(0}Zp@+OTf{>GG*o`m(H@+21%(4axX<%I*uyllO&uf$$T9~8cCv&ud-8Y0LP(wha>v|PSw~D zJp?)3uo>Rv7LE+!w!eP$TrZ950WTwZ{LhSEHD~SeVGAX9qec}hN+W(!W-Onvrn9K( zFn__-S5V~vny-dnx5J~?4$re!^tfd;Axk(Kwp4>0L6&<6ar5+8CV*#~i{i5!E{~B3 z)f#hq9yQYCM&KL#J^4if0A!OFJZw5ew4EaXd$Xj&FIU!S1B2?!4>v}s@9Xvsgin%N z9g*OXg#8&=s1QO8xMKsXz{V?`V&kc=!n8U=UFKK5F}sfQUk+kQ7TNUKt&@6TwCJ;lqF`cW z4R;ATx+bdOk@se-sbYW|;7GVSih}TF8rVjwXm9&GbwNEZWeWmgde~VJX76K2_Yb0d z3R9lznXvBmiKNpLUWQn#q3_Ax8lIi1RVeJMwpjf0%yx3e!ZpU~2zv1&I^o7)P;MBR z+$YYIz~L(89cTR1D(}>=qICu*mOcv=*tk)b73MGu09Z-T0U801Cfi1ENO99$T0kX4 zu>DjEC3J8c)(wrXsy`y206_uB9+BkZPe|k};F+GpM@wP8M=8HN!~9l_IBnN#lm;gr zoq3;2AIN4uy+o*3vLd(Z*8Ewud>Itzl~jm7J5mSkqSw|TD$C@yd5ai5#BT62GW;}P zZ7lCRm8z|;Nz}EnfTD27+xuM3hL2qxoX@MTxceW>F1~OxN+#gYwe%F4xq&+p4)qFs z-Og^}7Sg5V_bQ&s8u!B;Z~y20+}WY-D;*U0-X+M%nymK`MeC`0QtG=Rg@Z&t-hi&L?)R(ns1+$}%B1lVJkeOX zVpsEo3aG^;ml2CcjwdqMsLO2l{?l;(;{<{!*U#T4j@)1=LTkQLoZ=!0YckR$AfZ#G zr!cVM5)l*ezJ^p?9RJ>))nEMMSWa znK~ru8XB(8(xXs!39qR!t08>1v2$6?)ds)Kio3Sa&t}tHc8r+ivlvD|KvSGa_!Ar)`@Zhbw<4pFvA%zvp3q8q8+G?&cD))30`NeB_S0FDr3#cld<1 zeUAIo(qjw^bWi|6w+O_bZIA=5*L_jRCNna3r2wDy#5zl!(0IePh5N?oOObcs5QeZB zaFuKmND_1*zCie=z;47vWn^^oGzT%mB=Q;;v268PdWQCWmgv$WjPQkD2gt9nwl-7Y ztNvR0-Cvr_Iwome#$faJ1wXSbu^c^L_yzDdoiLxDt?dd=MIWY2ohM?J%G}dRrNMHI zX&bey6jpb=rkGu^Uy8jm9#v|d+q=`FSIa-=MM&k&PTLUnMwmuS+X!ulq`N2kf9Ba4 zppqNQi{E7Vm%ZApuar=m58SFmyD&52IzNbWbkK6GtkE0O0R-hN34Ja?SLKxp?h|k? z*Ozd)Pt%wNmTF3n9ZdYRi)-SR-#{NoZyWA7RMtq!z>Kv`TM@W*<@b%El~MdH_8F5? z6|roJ;LLS`FFZ3QQ(ZUZ_LEE%IDvYh(L6Lpp39Vq2+%{;KMTkSS3 zVss+V*mC2BPSqQ}tZG`oiS*p5M3d^}eYW8Wj>Q`y zj3zl4wL7oX?{an`=vVdXs(;@f7K`>*jB}x$`cdF-&sMA=AJ|;%8XDN+*?I) zszf5P6^_sC0QmRe6M*NTzHoOU**XOooamC$-Ig^rY%Voqf_k!>&`qL)7^g<7VU>ww zLeE6#0{co}$&IO-7dG67i#zDof(*Bad^fT22tJFk=Y9Ndx|fiE;ySYEBke=43C*ZT z-DLQLCMB&^^~KJrYTpAqK=zFuNCnxDs_ZN1!9uBIL_tmuXw#HMbMo3izsZP3;Ayy# z_aWB{AVI1^tPSR{xKBMPj&8=abllYvwl-q=0hp~njt;myNvRMITLul>V$ig_Cj=c| z>D|7AU@2a%>wg8+XK;L3l8Z)Nv zvAJ-UVBs9@#IkaeXv_c@t5~U93{P<}=HO^_7>eN4;r9g@*)ks0auQBl>9~^eshn?Q z^P57?2Ny|Suj)zjDjUYez2{?OqQnrxjE%KON9(ecpWMVF8ZOqwt!BhsqZ;6Pn}pW_ zf3}yfbqRl_Xc9zMr<<@dX!gwFkVh=$h+X+j@C=*x5UWpx_r;<@VGhSsnq&c*(|j~- z3y2*g4cYB8jOp+EYU`)tuqw5cP>&NfUBh=#RaVT#arlY7 zGZuxdf*kbnm8NYTyt`~auG{P>n&YUEw8j0+X*|~#|5YY4h3%_76LZc#$Ml0u!Ud#bzn8$#Nn5Q`9 z5Ry@al}t!9wy=&1-J~5~-{i!LvZed+m05@79;v(z2ISyMFL6oF<+)2C$dKxyD&W4j z5CZ~AZunF+0^SBm$D!jktQ|Wco^rf;W z=WS!(-MKj^s{qjC%`C~Kazsw|nq3JluhbQsldxE+rbQ^^Das+>05!ZCKy}ot*U$2v-e;OAq@Z3}DD?aVy zNv%8ZxbGj!y!7<$u+@dvNNJ;H?FJT=IZRLHQ~`uxZ^5jQ!G}u^Jbl4kZlUYcXyg8f z6|9L2LVohad1_v9tZ>tkc@hJVrTh38kU6tMPsyrGU zr~fKNK-&PU7u|~K{@u@24#-LBvEh$RIdfOu3(GPvr1Vr~d{uGHmXo@&fKeI#A?D>+ z!ZXv31bN=oU?@m%&n_mU3HsoNuDv(7#hkBWgJQnD-kAFJ8~sR%X#5a(NqL@yMyzvY zPz(Ed%|Ok}X>ErT&|e28Lh5Rv2*0({11Vn7iMS#%cO#RURA&=xY+kq2x=|U&L?#{D zlAtc8Jg~2Ig!M;2???5y%HZ86;qw;iq)n(faJPRG&@R2%zQi=bv5-V`Y*Fp-ezd!H zb6sHor0)5H*8m{>*z(aeucogcn~UPo-5aj0o7AKC#O(O1U#ZE_T7Yq!4PCDWqpC0O zGE|h$3XA~=UgA4pY0SI-CoB!$O@jWnBnf6vzw!;&^UZ7b1QsYoYUi&pyfee|{w1qt zUG&LA*?7r>05+OFgEWdq`$c!Cn8Md7Qyr9akZNGj_dNB~0w@gB&QbAM!H>HHmgWqB z=~kuVPa;lk=MF;>vAb(|r~u;Y4)4A|!jLceHmC}>3WH5HS=D zFZe;^uNVDe!%#Db{D??2&<1lCr(D2tjbg5EIkV?T z{+rZ4@juht1*B~=e!U53{j0rqJNGH#_@}h`a(1w=j2>g2#byz6Gb(S;yVF2heU3qv z0G4>>N4~=gqpAA_1)YZ}zqzVw1S%%xhHasA#K6!wv0ctW{7xmBQ`~oIAwi~g%&^6y zGYo3|Gi07LvmFJjB6nm%ik$*r)$Nn$n{0@y!jPA~H}yQGVjfPxG%_+uvCA4^4_yYWeC9<=^L5k_v!B)nT_>F0?vHt>ukUY?R;=9omHFiB2(gNsHUM z+Gtqyt>m}es%pj(R9?Kva7t%EkGvIw1H9bGZLa0fqfG z{$)O4Y~ljK>-f&>me$*w7~4QA)pX>1@&o{mHnDwqr+Zmp(J#O&r~>M~fb%~*>Lk8Y z73e+M`vId>zW~bDJa-rNBU49Ek)vA)WV;Lx$#|$zsWF0rEDbPddSd_*R8Aj9D9}=- zP-wcmmYcBlKjiIqf$`$oUvR6gLDhphZI+}cr7e#>JR_qZ^KjF`TC9Q@a@~s$C?lYU z>41$?2&Z<&$)%TjeCLavwESl|M*<0d9#D4s+Hd)LB)8u9g#(Ers?7doE9){8m_+y+ zuNoGkr!#{y;{eDAFa!U3<4yfW<4xk`scAsDlWfgz@Ji$B5VTU%_R{|*K@$$jXV>2z zLQmaAdt{e}e`Pt(;Mc=@U<+abifRK-JV1yBxx4!j8j_Fa8c!O3UVv^8>ed5j$-`CN zM)h6}b@aN~GfOYqQECvsT%m*|?(LEOnzSr0J99#P-EA}~d)bb@fQLO!}fl%KPr z2bgAydE@fxQfki>(#BMRCtnd4GXOiweyFI_h8Tg9*8c`nK8qL&uaX@2xWnZls7rf6 zislbAJ%@8OZUQkuB>3;K=-}YDZ|~v43Y7d0@YV?Y)Dt{FeGu9rPN%IhKQp}@YY>+e zeVlcvjO7B8oT~>FX=yp0atjA;zPGNV``fdXJ^dRJa6~(=*L3OrH~D++#$4=+TLIll z*CGj)j-Lg@F6ozrhl{v}QsMf}MiiMJ)R&&I*WOoX>wLw`F0Xy%6{Y>gJL;cDT@EAB z)ke0%hv$J3ySIQ@cEX~eI{$Nzmf?k3Cb2DRo7tZ$E@8ynBGTj+CTQjdlCK#H<}GWH z1be49FT?05ajPZo$!L53p@my_0ND4lAnzSU>#u|1LVb?XhTmc?4cpa0QgD$&wfZ}W zG`LERzQWqzK9z+7FCuhaIDMQv=@tuj`L<}sq3;6XVX7{ciBlXDI;46sL%Ip;hK8+^X}mQ{Gz$Tn0!6tN*?Rws109Dy&Yk=BXv=4)#P z+YldC4^e6Y;rLE8jn;b;)_ytVJL*lOOXU4&K|2kYGrwDcO&PPLIer0nKo9OW33>z5 zj$N;Eb?ais)PA09pt<%wPwtjrpJI<|NpXr)0`9bH;9mToa+{9kJ+1?4xqQ+ z{43<*gcXp;EP!$a2%o@uDg*ALjT$7qr>#B943T`aaC((yr6kgdtdFhKjEnaE11{$x zl->MhLGZbi>(AP=S#i%>y_n=ah%_=cYZ{S=+-po4n#y;wa}in7eRbNJ(xk@K(a#Bt zK4YDdgb#hK8@1BL9^D%de+joN^1~fNu=!A=9k>EuPs8I2^!bZ_Y`UHTYy;pVFLw^* zNhLc_pK>dNQLUR*L_Ax?e6She%UM^=Sz)*QIw}2Eml*jsOis*6!+p>Ka_%NwOO!OvF;FP&E1z70lYl<_s3 z{qDJYna>}$8PaeN`G-8>;nl%t+rsxyJ;$nQ53DWom@S|zS?E!brPgf1;VdXl;V!(- zMO@SRS<`d))AGOFAj%m}7$a)ME7`RLrH|WzW(1JOtS|g_V}5a8okl^at(t3XyKu^S ztmRj5G^=eJ;*vypk0cVKP+4A2uN8BoFKqquAGc0#S$CGg+*!fG9C0{Z;?b@6i@Z|~ z@&Dpkg%#xUigrd7qyt~y6lTV(+kMKvk~rM4LUtIGqK}9^iM{&W|4WeP#Z!#JZx(<2 z7rP&nUr^zBrk|e#(2=hjpxah?x!Y9j|7t4Ck$2Kl6I6+SJ(D2Jf^jOo5KnXbfyVYH z!Z61z1mg<{zSl2>@Fdi8{I>m!{#J>q?c^A?y|M~(A#0dL27i9Q)jv~YEXF_s07f|X zSFc_DhkVz?dik?$ia>;ikfp1&?*3_u@grA)e1@~TJ3+pe&U>emRETd$n1|BO^1eL2eK9{|ozY4nrqs_5i~Lv|humMi_E31|VfX?vYud5l?~6mm zsL(forOml@OXAq|gWp}TuLMuJ5amdj8uc3`a7OD;XY|#A@p%4+G*$E}^lRD~2}=xn zy{1(udJ0V0x%5Bs_OBy@;E7}FVR*5kx%-iBo_){%jap+wYjsV%WqNjPTep4jhwszT z%k$w#0Ri2D*fM1b!&T$FoE*3Ang8?`X{N2Ie5aOw3$N>yLf?qn|LK~kxp zaKlysYo9nm+_Nuf_L42MOs(H>^M0G4Y|*#dpF-LD$JaEF-z2pS2slDQ+Yqhpmi%OT z`fBrBckNb6AXsPyM|KO9MJYUz?wnZYesugEkFF<5gS(cOu=GV(?5DO|^10!TJ209r z0jx72G1QtbH?iJWU?$u@3ra17HG1fIH-g;^4zS6;ID-LqC3$d6*^mCgHMd$ zOx(AAyfHU6Os07~2jzgC(%4cGnqGJ2)_US3^w_N}sIL6|wTlEam1>z9?Ue=8J6T;v z_Aw$y*zvquSI67=Fpo~Iz-ibx0)zMc2bgQk>(KK?J;|y>exaoR8Q3i9H=KA^#0htX zjPw&DYUg3*!7O)8m$iO8S-X0d>XJD6o%T+t_zZ7eg>kwW^n6M@9vA%E|5xpW2u*1T zStAk7ljWVx@%PU^V*QR2W;MF%@c5c`j^D8dUE^M%U(nWx+fqT*4>50Qq{gaxquOSE zimixM=zq_66i*UWGraIj!ZUC)T*oL4pa1HDksSn36(R79jWc&_iL-pa^T_XRYuHz= zE;XDD!a>4Se6?K?Y;>f(7q?>1n*Gm6GRSgvU7`4)HURG{|>H2AtSYZyL@N0@#+Xrpb7Ji{z#_KCgY`fZy z+qveJlVjs%fw3=IzB;EEe+L$6DpBXXla{AST8r7>A@cg#O4`_PCY)-v-oS7)FY@sA!HhxN~x{G=xykm1zSEM#PP4$^qTN+3`jP5s$;|Zo-BZM@~nlGNv zPy}@W*BaXZ&ZTO&`0}k8jGLxz<}8f{Xy(MHNw+@m%WvzpNwvF}rMnkD@#POca`x6QH8CctOXmM` zIQN(Tvx*84o;!cy!^C(OY|R5h_$pa}nj>E0YmBmMt^C;Kg){>LktWLvU+_vUxx>Jo zya?|NEmK{XWjOv|TQy2x_tRyukm`4cE9L?uJ@dr5@Wb{LgOTBbggdif+0L{EN*S>r7vKOLz|t zT7G$BY`8IfOb0j4tv%mOx!|X`hG8Zz@78Gtq%wD- zE>>1@>+aoJR&*Q(tYjK=g8Zx66gYto9^#BN73Cl}igLOlW$pXJPNUHWrSUo5$SUKR z`VjBadvr|yd(yQiq(ph3V#n#s%ZiVUWF$oxjSRE-h`2Vbp12@Ab z)l5w(O5P(VYoN}x?eELJgmWrWk}f;@LQ&MK$rrm`Z+wGuv>m1eYxB^^6z7OFU2;Z& z1Q%OR^kEMeXG4K6#`QI>Es;>0D9iE@ilZhJ(%@r-*YOY$DRFaU$TY&>KWrr-HEkyU zs)!0mKi&wVc}S4&G2vWVoDytwugXiohPR}~*mz`05IGvLcJP65Aye%Z)4rRa2`sn* zJMn)3CoW}jyIK^|yWoL_q;W`m_wDRZ_87%FbVBgO959mQ5?%=!O|SH^VVo@QGfxf) zUfLP%^|_m0&4>q(i0@wi_MrS13ObE&t>=~o+<$*Z$5t%t@VPzsB1&HVtxZQJS$^{f zjM}{beYLaE>n7=5x3cPm%_EoO>}N?zGqK$9V=5-$#TbTVSnsum@}{O+lT4?-B_&i_ zY{s&uy$U&3ho(uFM0 zln6U{Ooszr=;nXzH^XsZjK>16CE?6vAo@lq4EAl~ux+wFa*3Ur5gQ><-Yka*6H z;`H+|^ef5pCrb%cSoAa^6>X}#ydgZhzqqz?4_ES2hE;2bt-R57B8dT_!fkQ76Fe5Df~Sl4YkwdL`Ir?{N z5JiJ+sh@4{XsGL;j47Ezw!hdyhy!wgE>)L^KDl++!&5Xp7;=ZVSRB}+wl3CSJnqA1 z9<>h`|FCrrMx43C6w_+oM>o_6PpxG{cA$2XN395_n;k~xb&`?8Ru@v!D#C%-NR`i5 zavck|6w#}w*$>+P!mdn*r!ZxRmY;Vp-sdVQXr!U5?Ip_lgYWkBCwMdcqr55J!vmf6kGNe^lk=T6S?WC74i1Jnl@K zNQ_&C7?z0cjeXaU4D(%UA!E5XJSR={mug& z(>z2IVEYYyq%al5znX+G z3+k6-WcXJh)~wR26`R`Htg9s&m_pB@!mYRQ$iDMl=`G$EieH{!6iYqrs4NY;K zr*P{P|NZEr$CR~Vl;#>?LOz~;9n&5QDYLK2pv{yQI`wVeJvE7L%#fxEjV)Pi0E;$* zxU>oX!iRQWf@P=#^`i;5esrU|=Cws7*xH|byav`|M-6lKu4v{p?VHpYou;ZdjxnQ! z)54u&=A?q}eICbz2Ywrjc&hCAkm=voTdq6|%UD`Gd8Ay`Mpq`v?X5)e+81+HOq2#5 z@F8IlIjEpKRdmy}qJKu}t_1IP;Yj0=)$Z};f#x(_PQe6f1s}ESlSDijfmmbjaORv-4(DToJYNZEu3 zS_um%Pw9Hmg`E4fcEHaQPOillQTWgBkl9wX+VCO$*}d?>bTEI{m+`e&F~?=RHxQnsuj6_npx{ceegisbmMWZmDJu$+B_pK#e@@ja&V zY#On~Y3~f-@5(~`|5GgV2JF(O?Q;~O%1o}&(UbT)_ zneuS{JFW}|1XZo0zP>EfiO#RKqnv!&`Xsdr9UX@t3pzgNSpjh=MF-)WQw z&Lln|;U^&6pzc%-KC+k|x9dSK3#HMcF>#q6mnTNrQrcgoG#^Dj0kU zh;)~Lba$ypNQ#9t3QB`?EbI~jN+Yp!NXIU@)PkIO_4l2)&bh8rs~3Oh^1e^ZGjq>8 zGjj_Ice^9Rsgd7WEWJXHaa^LcOCWDbIzHEj%q@iV>%@d07h5D9DXB*R34iO0h%?XZ zwAamq!pC(A-NtL4Aq3s&NnXcD^05eWb~(Osu^d-AWQFq|^_*4F(`$tqz^NgTC!OcK zw(xDj9a5wp&h%7ONdZBm_YGT~%a_jqt19$^{FE9$FMngqk8+iA+##+^w=Ce*tC~`1 zUa%s6ZX{Vv&~g5e$ngM&8ukIl?_ zcRu9gMiXOB9Q|JB-@!FsRRlI{oT{yNus7^7BGp}pe9aYPf-{iTI{j+~Veb`8A@ z9E8$y14UeS*<4RkG4Ma0`W{`fnJnST1I#I_Bm9>yKN;n?ZcPzRM2TD5yF5tIg$qUi zEd5%14t}SpX##YMj1#HAMUS}%Dd4Z;Z$Cel0Kw!-moAwU4fIzyr;lwyd$8AWI$IL) z&})QPB6|bKM&YLCG0=IsjxIZhg+xYfqOM6^Y!Ey!-S$oOl;r%Ww~hp#31%+&y8E9n|@ zK%8-nb5wm4@3{*-5Vz_9Edb5wKnv8k91Rrh9)EpV_=c~#m4+&Y8?Id9l2R6L`oc*l zfI?pATX9E2gTC5(%Y3xT6aDg4soh9uuTEliFf~)%Vm_uFnrZw1-f<-;H;siBZE)j3 zQ3I9K=55RdemiEsRgMsv_GGBQ{G`QLBcE0^rflM^zmBUGt?vg;PLvOtx*(uiJ}&+^ z)$nnEU=y1*{S(g=P!l~4Mj&dEQeZ2h2TvJ!ZJg`N z`8*`(^s>I-Mag<*a*9vmF{Fj=H%$tel)82PRpJp!cV1{Kvayo0k5?Qnzd+^Z4r)Il z3|=z5T9dj}GoyI?1mz^xjdZ(zw=eaK1r!Gv=}5iM9oJ;gdqtT~|5UTLhg{``ZJtP8 zw%+2kBm5}xT{_CY7E+#BI*hFGP8}+Q7RW+3TC8NV2JiU^lAw&pFb@${p0H?R9gDQRrt zk)4;1EAQi2(c#f!qH!~FWCDXXgTO_wktG#^)E+z9+s?dvd&3DOSSI#4jhD!lU!#IR zVovrwC;q%q#wP~fcU3?CwahN)`(-hE*5W5;`bGY}!jyx)T$~*=n;Of~YTV?b_|#V)yVMuR5SF=g~ZB*DI2uh`^i^C%T1%27YIho=vo9l|iD#5=Ek}y`1NEkmt>QQpMz2k);FKBqUIw;}R*}Gn~mgBiU zB|QFCxCH3{3+MY)SYchg0z@?Bb&bPV_?w^4uGfw{$jUsHq1d)-IQ}x$oMDWketh^o zhnh9Cmqk{V-js8EL~U-Fgl;9@hcSjsSO1yazyv_>w~y_DDezahC?VyI6Ny~E1B6TeVXSf#rpVy{;O#aM_M}X6qa)o-vx~Z+*gtZUKOz{xjCRXMA-8Z z(xxB(`PI0PjpH8NWCoD)Hd`Nx_`?t@czaa%yBD>VI_&`az2ci^Df*cwSYfIWUGK*x zWR+_NulEYCSMn-? z+1gwm7P;TNbuv7eWItFfSRHxp3CltodS~uf-NH6O9cTWuEO`f2y-6K9^+P2Eg<3{6 z1)V6_9KFN76gTfZ`Hx?~dAIYs!?p#d)CXN}ww`$A35g7tyZ)2Q)DkkCxyO-*Mw2ix z(bgx<*i;X&JGWY%y*rteprP{b9H(sP=NRbcG+3n+U;kZOXytVXC^L``M9=?#c0kl* zWIdP8S@`;;#Gm^!J*Q4^(1bK!#^>AX{unNx+VNWWXZSPzhUgz0CO`EQ6wjlI_+uZu zXKso3ex-S;xNL8Vj}7}iqIP`z{hzZQ!paDdh9{E=xmEr%oX5)E8F{qX1~D8frCY>X5 z4h60^FKs$Va!k10;)*bf^`xibAalZrv)=3X<(-2>a~TaJ9gj4|gY>2ni(ARdxbN zPIRNk){P9xp0yd9ZrA%do~g*VygAPAILV(&TSTdEl9h}#;rM7BzKo8mWe{LA2zY+Q zy#LC8eq$01L3yfY=G!&S?z%%6mz{(T;yx4bLv{}&n#RT`vPVLn)iyEs-@R9!TS?^{ z5o+g?{$wyR%MT~{eyNe&JiB*ffY~H>z54Izss}@NA}c@C$^%(G;+d~GB2*gjG^l$2 zB};jpZ?551D~>u*_j0=;n>%$U8uWiPPG0>wc*SFcyze-b+%hgAyFW1dJLdT!|N3#P zQ01-|dq6*}ir+`9>P+pT2+2w%^_m~=;TrWN^R1`~LTP@(s|%dn^}aabM&a_}aED1z zr1|wBdzg zM*i@IZ5piduZ^vsXDX(tWSD026s;V3n~x&!_ttqitC6!~nG?2Bi>W6_7=xZ+&BzTk zGbuEU$$}`BlvrTZFMg{_k@OnpaobV%YBO5ASgN14{DD0tX0Gpq-@DPQg@OqohZv9V z`@K19%mx9tv8Ajs-yhYJKDAh8lZiKuV-x&@B|^}Rd*z95(W?pD8|TJ6h6BrTYIG-Z zQ&B~UA=kKUg@5`4e<$XCmAIgZw=Uq>_+x!A351;sF0?+E#2$j!zHKn!D6qCkiFf=4 zj;75=_^WZN4)VAlL<-h_`CpI6*fyUj(AG}=i(ahD3ldHqMxcFlC zQrY3ldqqdG+kR2~&_Fd3kf~g|lXp@y%p%8la@f{ID)o%q7s5BZjgMpgYKhj=@d7PA zty_Frayk8pZgnQs!3Iya_r*wEe`}_$R91UPo0q$uiTzmisWZa(#=W$WsxjM6Qy&V$ z60H8hS)cQd+9)%q%bqpa8c`J))0OQs5)OOt)H|)VUoG@+UoV;1QvRKD#ynfT^eETW zE39E{)adnm{RNh@)HCur>b=7meJ2w3eiopK8f~LDe&7oSi>}}8caRVMX{8lvKlU@h ziBE%y{v z!pO)@Y9Hun6V~>8B9j%XJMp=y?!IRd73tpd-eNgv%*8ia%bib4klu{Z^h;gocvSR@1&_&5x%VQGzUdNiGxxHSafxn$ z__bKX+c{d(D6YF>w;Sal9b|u4y`G9pH_Y>(^){JoS9tA-4)2AA;r{~j$1-9)HiXsx2^^>g&19g}rEy~4>-?cTDx#yZR{j%ZH z_$rwl!Qu?K*G zysa1fwbnLvKM+x$}e`G&ov zyexxi1|zDH-BCJq zFK`2&Yxc?~JY7DpcdrPpiU=eG)t9HHD&XQtZfM()@g`|$RwQG$M8nhTszxuJj~Mlr zWzKI(adGEf4mWt3KCEk@JDBj{4u+-D$b(w%q8 zRjXf-i|x!^eGmsXLY%=5y9oi{Kxpl_w&-?G_UQo%x15cuK1($>S9Y6z3(Z$5kAJ?oM1(pU>e z|6aB-a!hs1@kNj2ac=Ri<9js)`3S=V$5->Z3n#2GeEBc`Zp3+#soXpsYL_ zqj@lf1F;TP$>j{OGS*la3wJlQ&*3a+Im5bSL--N#m@1Pwa?E1@*RO8Q$( zo?Yn)ZLnHZOtCD`0u-`{>R`62pZU6Lcem{21`a#@+>H;tmF_j#v2Pf36=2rw3v<1! z*!vImC%vq9v&VHy4DzvN4t4du+yWVJe8(I0m%e=JSG*lfr5VkVUA-IQWwIq^^RZOt zBeqP*J}{<`wJ1yXy{ett1b2RlRK6RFL~^pSR?d!BAEr96Eg7FtR?UUE`r<>Wik2K- zj;HY{meD~I@{wwDtJ2`1Ie$~lv9-G>zhSveft}y?nbZTPj7UB9A! zc*KmIwTlC-ZG69|<-4|~5xKPC=K=}VQud?;-QR-57^yxfOjpjWT{2~1zRg&NYdB@g zmlHz$1sZQT&xk4VwOau0rn!EstKIzHen=} zQ0m!JM5?gF9^7kZTrcUr(!z_`p%@KWP{{T&7>NE*I>R(1jiG>I^yWBWRmj|J|8ufXjy`Wr0le8F3-!owmMSZ{Ez80VOy!U2pg3CLTCza&|lwbVBnUX zTNv}YZE60rWfNX7;PH}5bOOeqxMJZME}u6lbN}RTr(~Y4-196|_Hx>M^t(z6brzcZ zn?s|F+3Aom7- zOPYwx&AWQHgqq9tp@~^%u5>$Af9A7T(dnmqS8l&u;z_sCTONHxyg1HtRc`gmR@rJx zHU>-dx+66hwNa~}wL~xCUm9>Wd8Zd1*%lionLPHsJaXpj39_NkAHTWt`}#-YqHMpP zr2tXf;_p~g!Bgo)ss*-|{{1yt`7g0&&||VYZwU7GnbPkI*7}*0 zY0edRvj#O8jj&*f)?U&ON^LvYq!VO%~Snh}WisJ$jcx7FrNN$AEhxB3FVgIqrJb?cMp_+aY_qHYDjGA7LxCY57SHy%5kcQlI{6%2Q@$g}j#cZ&QhE{S_ zG7*+;eA2lMhR1JbdD+HeG0JO*ZA?69JGJc;G;m$!a8_`uCeGM%Z(cE+R$q>o z&bzAL#n>7s_m&&1n|QRH8~*+FJveH@*p(}8lRQp;e5wQ?3|{v~ z7!4d^%DMYZ@|xlSM}VPQv`syKsRvuV)UoVdv=?1Mz)Q}xv$Oh|TZ12n@*k`(gkI6d!V$>!q|wL12$`m!eh# zy8w67w^Q^Cp}ofEzgb2a76->-bir}rd{lqbaj>BO$_AtVY3cl>r@b25>c!fNIQ`fC z((h9{Y^1D>LO~Bhu8VPr_SZq1@s(s-G0p}Br;c)Rw)5b;N;hi81ZOuAy!6Z&%<8S5 z8t38q*0xV`>IO|_6k$ zuX_?oyB0GIWS(H-r1_Fmwpw3;-SAVb?8Lp^)WT^viP9Htk6tfn+|+ROR66@s{?RmX zipQ*86Ow4^5@DlTYk zwM4GrP`j~)14SH|_Lp{FwZu&E4pr==^`PPGQn-!U*Fc` zQjx)SH@Uk}w53wI)m+I%m5JW>V}TQWpA5DS-|#4=vGC64?-O4@<#OK4o+%&g3^|S= zB0jKb&hLLrwzMksf3mNf#V+y?9;(b`?FIY{#o{hzy0Zr0m!6^0?l8ey<0 z8j|03wa;6~v+b#|pUc1jL9VgKkVv~-kceWiDA^dzr*^Z1SkJOYM-v-N&wLAH2xdB9%8if14I^snn zlDa}Uy1jNQO-0Up_HK5JQPViwvd>jnAf8jq_(^ zl7Dr(QM%DR5`2Fn*X?E1GxS%k%Ou}T?0XF%rUFS@(8Ws==3>+@1p_{vzjVafOtgoi z+dH-?mlabka4eX!Hq~_`J$ETM=bYGE_xPYzTpd8Wb&^(1YDty zU(Lnp5-3WsW)P-${ae)adUmyIYai=Ksl+xjdjPOkx{A&^MTxHl9>SlbGZUXiKa56Y zzQT?5U__R?EJ`-_YYnQ3-tPDt>R6wRum1=9{&t4q=?{w%rUhD;JF>^)Q5wXE#oU1r zakOf&z_yn(Ihk(g-mSIT)?W#z%%=jE_){IS2NJ!zi9`J*5;4)rn_PKv8-`L|2R+xj zBCda1(6u;W)WQ%uV>9UbqCTY9q0*qgy=*x~^*#JCV58-2x>ngD1pyh8p6&pj35WK1 zLzPMtUg5_loj~DVUBA&o)=6XXUCFLd({7i`|X<;_}p6f5} z^<8z^T(o2OZ~sfBZ10q;F!Gp}c3D}$BIyyGmnAh&+6t@^siF|t*%Xu%2`-ViJeZ@E zvrRbCpX`uvj{D~ZHzb5w>29c)bNjb; zOkdqP2GKXo=VG59VX_`T5bo!HD!)$KfJw3~5O_t>6^>~(#hVTRZJ`Z*-o zp#O1DdGjWd!R77LkP1_VpF4GKp!w@nXE+LPi_HhT=80M~+c|G-{UBsgwo9>DXmtZq z5HB7ZIn=T!CnMY>S81i}@@7!>*(4r^qk2tcuM?S`gQs--C3%(r+%eY0#}x2s>gdNe`=i_YcUKt!PU+Z?a{s;Vwj3uJ>L?0t{Y> z24EgMUUyev`rG;h3KtBLGQKHxMV@SS;!VLnH=8bGjP7T3JBe!STn%3sQ1Az&fzJ9h zdTK=M4ci5`2tr`Zr`AWpVj3Duay(7f`rzn*JXS&e4_Oby1mP}0{A#IxQCLTwp5F3) zYVz3!EgydnMg=%IYcnCYoc9f6bKdKGB6RH~Cjv~a7 z9{<_Wdk-P<1tX<#5r)DdlAZ=|dy&uo5Z?cL7jlB~7*sm_`J6nBfJNkU;qsryKs4vx z!+$SFqEisW{^xU(<1*>O(m;{rQ0W!ugAA?BUzxSM$2lLkk9r0}UF0dC?u1N)?Ws4) zdw5am0L$(#(eK{}bYD4%{2q)BTh3Y0CV`C@tu_X^RJ1vnSAYT`RXYa15bNf!^iL@I@yg zuB^Mj^e$v7E$Wh<8Go;9_Yq2C5w1MQUkajSYlgP>o7Ob{Ib-5gd_l&H&+O#C^8VMP zrhjkW3X_@RGM`&fXZ@LT$Th?N`{Ve(zP|haIN$#d59}u$dD;lq1SC*$et7urMSXN* zI?sJ|v+P~CfxBUB%s~R=cgGy=|4}jW%=vY7w?L>Ds>e+B)L)#bG7yk-TRO+Xb1bak z>C(uldaxf`N)<?l0HY8P#_%fs!Z-`s!J>Quv$#1qi z^JgF0+Cd2%9ytO^Zu$AO7cyKC_e~ExLHC~51O*5r06RN7H@(079eEmu+D+RjI43|a z-8A8Fq>}ru6j4AF{;%v)A`LA6?C1YlfBsqDsdEXAjZEJf8XPwVEGXb1hd#r*-^%b7 z3j7fP3ge$?3RP>(ywB`{?$ykr&e44C2wj3al~Z4eR3S_;wlYxwT2jvq6e2>_nNQA5r^b|r1qLHVkkZ(|pFzf&=iNsfiONGfgr8Ylu zw2P2_2Q4uI7T-cnB>3&lL;9A0D?Weu`QA!BofL7YXk%%>IhiNg5=bUMu^hslQHxqymRc+wqSck9~QzY18==b zV%qiTb_ssnL+TEUCA_FZX2=0Gg2q8pdC^CY9)(k|dyET28ICOv93mxWJay^8ig(_| zhKnhzy&rMjJ(pF%(b2IHXv7SyQD~}1T3SzlN1zK5+R#GK3*Hp=*A<`M5qd;e{b4|l zVdBT11KbeDgeC@uLZYJbU6XsQrr#*bAS6n9Uh|(lstx>zIMF*moY-GrS~2}zmv&D4 zzx99c>v$I(T?@V0>6QXRSdTU1=5WSXpg43mhqX!9&o`;@)*t`KhnacL33( zrcu)G@gpc~g)(rG8T##9Y+`d~WiasI2xAbq1U4QRR(78zi~f(TAt0M>8I=e_jFSC* z4~B&hS3p)Ezd->Kn0jN+5f$7~3R698? zAC?QMG45n6EcF0|x9^aP+duMgSwPml0_(gEDROvc3~(W=gVDYUi#%9n-$5l%^|Zl6 zd~L=Fi1Dx;_!D@bjYXxaj*a}QBDNEV>~Z-j}Qc~8t& z;{qe13ySlLRKYN#hrnznIJb)<3A)8L1CJ)u<(U(KWOS|T?%CB|O~Wq8=Jmy+oM)Bt zDi?T^ByrdN`RAW0D&Rmd0N#SY}y?=t4`JZ6m3xM_x2zfnZ z=^_l51Q6<5>qP(;+;D>pLQSjzBX&)8Wkn#-Nglr_m)s=Tqte@(K+tRN9V($jCf8r> zEqd|dMaY%Z*XNQ?>k_06fN@;~%5e1F+Wo;2>#~l0KnzUcP8akmT_&oxMol3hwF;P7 zhF!W9DTaeOJ0I?D;#!`QQTYskMuuh+oy)3}mmz`I)6+9?YaZ1p6~QY08riPiY)v9R z;EhQ@J0^sM-hP`>ov1F0+t1%sZj0QKki5vLI09PLW1oQa1Ox}FYK=e(d9JndF1xrz zf)|spIkoLz@dSXsI=iy&5^GH$tL+FmasCM$xo{ceH*pyFQqdhNqeS`t}k%#2(dzj3Jl1>b5-d z`IPpSFafmI>~Dm&O+`mX$C?PhGXlDdKyq(BdN-?m7UU;k%uiWnC#|c})%yIkYdwsD zMo$ZX?lZvGlaofoZ_fkKH+P;q$%uaY_Hj6?_|I)1a#B7C0Bk564(EN zK(Kq-z-x_s{&(2_{{b5y&cwacVzU-{K6)zX5JKys>VxFgrrZoT3aRcevS)VfeiciF zEs%r0WGsm`X4G@-RsYu1L^0B#2yRO-l9j~zs)Zj#9oA3>CSb3$BTMKd zH(*pF;LL!YDCaucD0!d*$mHi3gI}ppGLXdn22>SAr2>*|51z%+D|YAYl?hN|JFnPP z<f@tudi!ykIz-l1Z}9CD;Z_^TiH8n6fQ4hloz1I>!@gT1C6y={psIzp_qn68yywA} zQ3ldqAhH3iOIkM61|+x-K(-Ne*uY?z9#_e6cLFc1@8QceQ@fD?S4ymePF6Y$lWE$^>5im`6sN8&x#XLj&q zT6{TL1<&Eo85L-i1MT6WR6BrUS;&EZ296mA$1@l>9Hc{_WzUL%pg>yp1xUXK_RRuN zzL+LmKKdlzO>M;gs;jS`|M{5;l)X75ep8>7Nq}qrAV^dOz8j52iyO5y7#U|;Nvp!2Y)3H^# zn1`?(K|0D<2O7QQ2d9ymQII6K{w7c;myNiw*p&^rSHbL^M_jQ&o@BAcG7Y@KsI1M{CO}I!{_GX>I8v0i+ zTO3)*_umf#7vUs0u&_r!x>>sH$`7gfO=taw-CJRcdWOiM@>vndm!tgvG+WSIYxW0M z@?*$@r*O>?!0f$-Nvr_IS_f;2;231RU~tfPiyPtOsn}h}wwCUIJ#UQ=9sQ1!T}XKd zrYE{FLlY{Jsp)AUlW#|NH|Fb+oO4lob^u9JkkU<%Y=pKu51u@^3_R9s9a8HL5^>&p zt4#A+WNq*a{h}>)A!caspnMu zMtj?feZ%U!Nj$J?M3{nAY(z0KTMO&VDU?YW|B^J?-j^ffmJV0UiIdnmp?lgv?(Zj zn25DVnusy8;!BTA|l9U5=krn_!Fecov*^~3>$(MwL3P!i`c!n*^&DZMbWP6CC z2RpOL31DdvFbh27(Fl7RK#gbM&6V|a@CgY;L+rs3#K5ubI@Y0Gd{z+74xq;$87ise zQ?Kt|=H|{UQe3XyVu$T}+!)UE*xdYeY%Jx6ccX8VBwiM^ON0T1>Pnxk{VK@B?r6t! zON=wvEMe0|YGBl@0Y^>@jInRNGXP*c&*^t)(^9M6tkEqkdHDq+0Qsy>9VZ)^U|5yL zj6p(B%wh@)4DMcIg1B>d+(Gq&WSNn<-t3q$)3d%CDu^BMYqIM85;3vr;WGqfCy!a( zhaJ&FAkpwJ!BLM%ntDNMQ&3^#My+wzTgswZrmq6>wM5EBkjF}I4V#8DUvFNnC_|zR zjX^Xl5S$2ygUaN)yRp-PjfXhKFi_3;4ef3%+v|DbO3*{qUWBV(l#>mXg`gnDn56Oj z72V%!JMeo_>`^DqoH6qOK|R}5hUTT$hBoSkWxX=L_THd%E@-XVQdPL zj<$s@%QP<0i2&KE7u@qtGBY!~mztTIGe0fx zSpDTS)B|1QCIMgN5}5M=RAFq#eAXk7A^iOLXcF9t>)@qCJb(UNB1-%}(3&8V9ul$? z&jY@nQzroRLr9?nAVc?>rn$ac77c5H|9vRZ*_i99cONn@iiVn^Jblz2yQs&C(HKJZ zjq%&}!EFNw-T^Eb5+1&x4+nsH97|SeKZYjSAn`>oSL6MrQG_ACrGh3r)*9cN%>ZnQ zX;8g|07NNJe}0qh?)c#!a0C>fb_4JahlE5NU>hj#Sa45BlJ?%sOHWH9*{;@v!MuI< zPUYdl@u5C|5jw?BCQ#Ba7{FoRyJhsYgXpL{dQ=D0esf!+)!-STw{UURc@v;b(!hug zJGET#0i;Fach+i2pC zmeYV)%+82KiH@(nR(82wo=($IO3GD~ZGqOpFvNRUhVx*i2mprlf2Onb`Sa(Uyu0%9 z*S0@U)SDL}2peIGk~!FOPV!k(z?V$4peQ2q1(+7Je_dp*G@@&L1Fh9sWPh*HL45BvD0%RIR@s&z z)-($t)GxYac4Dlw7|KN2Mi}itfobsaCcN&ePOb|O$oHY4ny+EP;VTdT>MZNF3B7}H zA=(@XeMtfG*aHVgX3kARaaV19eGQHZocG&+4(N8buLlMN{aW?dD`kVx=IEnJ`xfz? zA4#Dg>#24ov}zm&?~lv6FUJ_Z?gMTi0RWRcvl0^K5WfJ(q4qX|{&r~^)^PGrK>@_1AN77`S^3H za`0xs=e2;vuiBZ32gdew@F&P+|5!=@c;X8gsYq`(0rWN}Ajp{#tbz545C}^%xGG3| z;m403;Ksj&x+vmdS2$>%gkH^gXj}&|MWkj+EU|sxTW;Y5pgaT|gUP&n`SLij!eCu5 z0*7E9T17<#ae@%acYsg`>;vx*F}DyvLe>+a*j*6I1pc@?o}S{M%cGZFS;MXKs}WQg zj?nOdt5pawYtXapP;d}{{KK7@*1efaPl+?{3sz8|2V%%3`;~4hAZ09VlT5SA15c# zTxgS>5lPimY(`1~hbx@vEU{K_mrxH(TmMG={#)qwzq@il3=s19Kfhl2-?&%@bocGp V=Epb=Rgl0(;kJ@|-Yui&{{_0HC=LJs diff --git a/api/_sources/intro.rst.txt b/api/_sources/intro.rst.txt index 125c6e38c..36c728c5a 100644 --- a/api/_sources/intro.rst.txt +++ b/api/_sources/intro.rst.txt @@ -25,7 +25,7 @@ models for healthcare. It provides a few high-level APIs namely: - ``evaluate`` - Evaluate models on clinical prediction tasks - ``monitor`` - Detect dataset shift relevant for clinical use cases - ``report`` - Create `model report - cards `__ + cards `__ for clinical ML models ``cyclops`` also provides a library of end-to-end use cases on clinical @@ -73,7 +73,7 @@ Multiple extras could also be combined, for example to install with both python3 -m pip install 'pycyclops[report,models]' 🧑🏿‍💻 Developing -============= +======================= Using poetry ------------ diff --git a/api/_sources/tutorials/kaggle/heart_failure_prediction.ipynb.txt b/api/_sources/tutorials/kaggle/heart_failure_prediction.ipynb.txt index b921ff863..40aad9a51 100644 --- a/api/_sources/tutorials/kaggle/heart_failure_prediction.ipynb.txt +++ b/api/_sources/tutorials/kaggle/heart_failure_prediction.ipynb.txt @@ -1211,7 +1211,7 @@ "tags": [] }, "source": [ - "You can view the generated HTML [report](./model_card.html)." + "You can view the generated HTML [report](./heart_failure_report_periodic.html)." ] } ], diff --git a/api/_sources/tutorials/nihcxr/cxr_classification.ipynb.txt b/api/_sources/tutorials/nihcxr/cxr_classification.ipynb.txt index 921311294..1c1dbaaad 100644 --- a/api/_sources/tutorials/nihcxr/cxr_classification.ipynb.txt +++ b/api/_sources/tutorials/nihcxr/cxr_classification.ipynb.txt @@ -626,7 +626,7 @@ "id": "d7545d39", "metadata": {}, "source": [ - "You can view the generated HTML [report](./model_card.html)." + "You can view the generated HTML [report](./nihcxr_report_periodic.html)." ] } ], diff --git a/api/_sources/tutorials/synthea/los_prediction.ipynb.txt b/api/_sources/tutorials/synthea/los_prediction.ipynb.txt index 4eacc6c15..ba6c7a496 100644 --- a/api/_sources/tutorials/synthea/los_prediction.ipynb.txt +++ b/api/_sources/tutorials/synthea/los_prediction.ipynb.txt @@ -1489,7 +1489,7 @@ "id": "0d953f1b-845d-424e-b8b6-d782973d9e84", "metadata": {}, "source": [ - "You can view the generated HTML [report](./model_card.html)." + "You can view the generated HTML [report](./length_of_stay_report_periodic.html)." ] } ], diff --git a/api/intro.html b/api/intro.html index c37b85157..edc274a14 100644 --- a/api/intro.html +++ b/api/intro.html @@ -196,7 +196,7 @@
  • evaluate - Evaluate models on clinical prediction tasks

  • monitor - Detect dataset shift relevant for clinical use cases

  • -
  • report - Create model report +

  • report - Create model report cards for clinical ML models

  • diff --git a/api/searchindex.js b/api/searchindex.js index 468bd8ac3..cca4780e4 100644 --- a/api/searchindex.js +++ b/api/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["api", "contributing", "index", "intro", "reference/api/_autosummary/cyclops.data.features.medical_image", "reference/api/_autosummary/cyclops.data.features.medical_image.MedicalImage", "reference/api/_autosummary/cyclops.data.slicer", "reference/api/_autosummary/cyclops.data.slicer.SliceSpec", "reference/api/_autosummary/cyclops.data.slicer.compound_filter", "reference/api/_autosummary/cyclops.data.slicer.filter_datetime", "reference/api/_autosummary/cyclops.data.slicer.filter_non_null", "reference/api/_autosummary/cyclops.data.slicer.filter_range", "reference/api/_autosummary/cyclops.data.slicer.filter_string_contains", "reference/api/_autosummary/cyclops.data.slicer.filter_value", "reference/api/_autosummary/cyclops.data.slicer.is_datetime", "reference/api/_autosummary/cyclops.data.slicer.overall", "reference/api/_autosummary/cyclops.evaluate.evaluator", "reference/api/_autosummary/cyclops.evaluate.evaluator.evaluate", "reference/api/_autosummary/cyclops.evaluate.fairness.config", "reference/api/_autosummary/cyclops.evaluate.fairness.config.FairnessConfig", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator.evaluate_fairness", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator.warn_too_many_unique_values", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.Accuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.BinaryAccuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.MulticlassAccuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.MultilabelAccuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.AUROC", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.BinaryAUROC", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.MulticlassAUROC", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.MultilabelAUROC", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.BinaryF1Score", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.BinaryFbetaScore", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.F1Score", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.FbetaScore", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MulticlassF1Score", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MultilabelF1Score", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore", "reference/api/_autosummary/cyclops.evaluate.metrics.factory", "reference/api/_autosummary/cyclops.evaluate.metrics.factory.create_metric", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.accuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.auroc", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.binary_f1_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.binary_fbeta_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.f1_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.fbeta_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multiclass_f1_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multiclass_fbeta_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multilabel_f1_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multilabel_fbeta_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.binary_precision", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.binary_recall", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multiclass_precision", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multiclass_recall", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multilabel_precision", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multilabel_recall", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.precision", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.recall", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.binary_roc_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.multiclass_roc_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.multilabel_roc_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.roc_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.sensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.specificity", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.stat_scores", "reference/api/_autosummary/cyclops.evaluate.metrics.metric", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.Metric", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.MetricCollection", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.OperatorMetric", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.BinaryPrecision", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.BinaryRecall", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MulticlassPrecision", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MulticlassRecall", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MultilabelPrecision", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MultilabelRecall", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.Precision", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.Recall", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.roc", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.BinaryROCCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.MulticlassROCCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.MultilabelROCCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.ROCCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.BinarySensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.Sensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.BinarySpecificity", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.MulticlassSpecificity", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.MultilabelSpecificity", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.Specificity", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.BinaryStatScores", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.MulticlassStatScores", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.MultilabelStatScores", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.StatScores", "reference/api/_autosummary/cyclops.monitor.clinical_applicator", "reference/api/_autosummary/cyclops.monitor.clinical_applicator.ClinicalShiftApplicator", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.binary_noise_shift", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.feature_association_shift", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.feature_swap_shift", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.gaussian_noise_shift", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.knockout_shift", "reference/api/_autosummary/cyclops.report.report", "reference/api/_autosummary/cyclops.report.report.ModelCardReport", "reference/api/_autosummary/cyclops.tasks.cxr_classification", "reference/api/_autosummary/cyclops.tasks.cxr_classification.CXRClassificationTask", "reference/api/_autosummary/cyclops.tasks.mortality_prediction", "reference/api/_autosummary/cyclops.tasks.mortality_prediction.MortalityPredictionTask", "reference/api/cyclops.data", "reference/api/cyclops.evaluate", "reference/api/cyclops.monitor", "reference/api/cyclops.report", "reference/api/cyclops.tasks", "tutorials", "tutorials/kaggle/heart_failure_prediction", "tutorials/nihcxr/cxr_classification", "tutorials/nihcxr/monitor_api", "tutorials/synthea/los_prediction", "tutorials_monitor", "tutorials_use_cases"], "filenames": ["api.rst", "contributing.rst", "index.rst", "intro.rst", "reference/api/_autosummary/cyclops.data.features.medical_image.rst", "reference/api/_autosummary/cyclops.data.features.medical_image.MedicalImage.rst", "reference/api/_autosummary/cyclops.data.slicer.rst", "reference/api/_autosummary/cyclops.data.slicer.SliceSpec.rst", "reference/api/_autosummary/cyclops.data.slicer.compound_filter.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_datetime.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_non_null.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_range.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_string_contains.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_value.rst", "reference/api/_autosummary/cyclops.data.slicer.is_datetime.rst", "reference/api/_autosummary/cyclops.data.slicer.overall.rst", "reference/api/_autosummary/cyclops.evaluate.evaluator.rst", "reference/api/_autosummary/cyclops.evaluate.evaluator.evaluate.rst", "reference/api/_autosummary/cyclops.evaluate.fairness.config.rst", "reference/api/_autosummary/cyclops.evaluate.fairness.config.FairnessConfig.rst", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator.rst", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator.evaluate_fairness.rst", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator.warn_too_many_unique_values.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.Accuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.BinaryAccuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.AUROC.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.BinaryAUROC.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.MulticlassAUROC.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.MultilabelAUROC.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.BinaryF1Score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.F1Score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.FbetaScore.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MulticlassF1Score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MultilabelF1Score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.factory.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.factory.create_metric.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.accuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.auroc.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.binary_f1_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.binary_fbeta_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.f1_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.fbeta_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multiclass_f1_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multiclass_fbeta_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multilabel_f1_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multilabel_fbeta_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.binary_precision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.binary_recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multiclass_precision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multiclass_recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multilabel_precision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multilabel_recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.precision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.binary_roc_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.multiclass_roc_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.multilabel_roc_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.roc_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.sensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.specificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.stat_scores.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.Metric.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.MetricCollection.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.OperatorMetric.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.BinaryPrecision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.BinaryRecall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MulticlassRecall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MultilabelRecall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.Precision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.Recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.BinaryROCCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.MulticlassROCCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.MultilabelROCCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.ROCCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.BinarySensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.Sensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.BinarySpecificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.MulticlassSpecificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.MultilabelSpecificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.Specificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.BinaryStatScores.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.StatScores.rst", "reference/api/_autosummary/cyclops.monitor.clinical_applicator.rst", "reference/api/_autosummary/cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.binary_noise_shift.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.feature_association_shift.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.feature_swap_shift.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.gaussian_noise_shift.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.knockout_shift.rst", "reference/api/_autosummary/cyclops.report.report.rst", "reference/api/_autosummary/cyclops.report.report.ModelCardReport.rst", "reference/api/_autosummary/cyclops.tasks.cxr_classification.rst", "reference/api/_autosummary/cyclops.tasks.cxr_classification.CXRClassificationTask.rst", "reference/api/_autosummary/cyclops.tasks.mortality_prediction.rst", "reference/api/_autosummary/cyclops.tasks.mortality_prediction.MortalityPredictionTask.rst", "reference/api/cyclops.data.rst", "reference/api/cyclops.evaluate.rst", "reference/api/cyclops.monitor.rst", "reference/api/cyclops.report.rst", "reference/api/cyclops.tasks.rst", "tutorials.rst", "tutorials/kaggle/heart_failure_prediction.ipynb", "tutorials/nihcxr/cxr_classification.ipynb", "tutorials/nihcxr/monitor_api.ipynb", "tutorials/synthea/los_prediction.ipynb", "tutorials_monitor.rst", "tutorials_use_cases.rst"], "titles": ["API Reference", "Contributing to cyclops", "Welcome to cyclops\u2019s documentation!", "\ud83d\udc23 Getting Started", "cyclops.data.features.medical_image", "cyclops.data.features.medical_image.MedicalImage", "cyclops.data.slicer", "cyclops.data.slicer.SliceSpec", "cyclops.data.slicer.compound_filter", "cyclops.data.slicer.filter_datetime", "cyclops.data.slicer.filter_non_null", "cyclops.data.slicer.filter_range", "cyclops.data.slicer.filter_string_contains", "cyclops.data.slicer.filter_value", "cyclops.data.slicer.is_datetime", "cyclops.data.slicer.overall", "cyclops.evaluate.evaluator", "cyclops.evaluate.evaluator.evaluate", "cyclops.evaluate.fairness.config", "cyclops.evaluate.fairness.config.FairnessConfig", "cyclops.evaluate.fairness.evaluator", "cyclops.evaluate.fairness.evaluator.evaluate_fairness", "cyclops.evaluate.fairness.evaluator.warn_too_many_unique_values", "cyclops.evaluate.metrics.accuracy", "cyclops.evaluate.metrics.accuracy.Accuracy", "cyclops.evaluate.metrics.accuracy.BinaryAccuracy", "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy", "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy", "cyclops.evaluate.metrics.auroc", "cyclops.evaluate.metrics.auroc.AUROC", "cyclops.evaluate.metrics.auroc.BinaryAUROC", "cyclops.evaluate.metrics.auroc.MulticlassAUROC", "cyclops.evaluate.metrics.auroc.MultilabelAUROC", "cyclops.evaluate.metrics.f_beta", "cyclops.evaluate.metrics.f_beta.BinaryF1Score", "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore", "cyclops.evaluate.metrics.f_beta.F1Score", "cyclops.evaluate.metrics.f_beta.FbetaScore", "cyclops.evaluate.metrics.f_beta.MulticlassF1Score", "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore", "cyclops.evaluate.metrics.f_beta.MultilabelF1Score", "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore", "cyclops.evaluate.metrics.factory", "cyclops.evaluate.metrics.factory.create_metric", "cyclops.evaluate.metrics.functional.accuracy", "cyclops.evaluate.metrics.functional.auroc", "cyclops.evaluate.metrics.functional.f_beta", "cyclops.evaluate.metrics.functional.f_beta.binary_f1_score", "cyclops.evaluate.metrics.functional.f_beta.binary_fbeta_score", "cyclops.evaluate.metrics.functional.f_beta.f1_score", "cyclops.evaluate.metrics.functional.f_beta.fbeta_score", "cyclops.evaluate.metrics.functional.f_beta.multiclass_f1_score", "cyclops.evaluate.metrics.functional.f_beta.multiclass_fbeta_score", "cyclops.evaluate.metrics.functional.f_beta.multilabel_f1_score", "cyclops.evaluate.metrics.functional.f_beta.multilabel_fbeta_score", "cyclops.evaluate.metrics.functional.precision_recall", "cyclops.evaluate.metrics.functional.precision_recall.binary_precision", "cyclops.evaluate.metrics.functional.precision_recall.binary_recall", "cyclops.evaluate.metrics.functional.precision_recall.multiclass_precision", "cyclops.evaluate.metrics.functional.precision_recall.multiclass_recall", "cyclops.evaluate.metrics.functional.precision_recall.multilabel_precision", "cyclops.evaluate.metrics.functional.precision_recall.multilabel_recall", "cyclops.evaluate.metrics.functional.precision_recall.precision", "cyclops.evaluate.metrics.functional.precision_recall.recall", "cyclops.evaluate.metrics.functional.precision_recall_curve", "cyclops.evaluate.metrics.functional.roc", "cyclops.evaluate.metrics.functional.roc.binary_roc_curve", "cyclops.evaluate.metrics.functional.roc.multiclass_roc_curve", "cyclops.evaluate.metrics.functional.roc.multilabel_roc_curve", "cyclops.evaluate.metrics.functional.roc.roc_curve", "cyclops.evaluate.metrics.functional.sensitivity", "cyclops.evaluate.metrics.functional.specificity", "cyclops.evaluate.metrics.functional.stat_scores", "cyclops.evaluate.metrics.metric", "cyclops.evaluate.metrics.metric.Metric", "cyclops.evaluate.metrics.metric.MetricCollection", "cyclops.evaluate.metrics.metric.OperatorMetric", "cyclops.evaluate.metrics.precision_recall", "cyclops.evaluate.metrics.precision_recall.BinaryPrecision", "cyclops.evaluate.metrics.precision_recall.BinaryRecall", "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision", "cyclops.evaluate.metrics.precision_recall.MulticlassRecall", "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision", "cyclops.evaluate.metrics.precision_recall.MultilabelRecall", "cyclops.evaluate.metrics.precision_recall.Precision", "cyclops.evaluate.metrics.precision_recall.Recall", "cyclops.evaluate.metrics.precision_recall_curve", "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve", "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve", "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve", "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve", "cyclops.evaluate.metrics.roc", "cyclops.evaluate.metrics.roc.BinaryROCCurve", "cyclops.evaluate.metrics.roc.MulticlassROCCurve", "cyclops.evaluate.metrics.roc.MultilabelROCCurve", "cyclops.evaluate.metrics.roc.ROCCurve", "cyclops.evaluate.metrics.sensitivity", "cyclops.evaluate.metrics.sensitivity.BinarySensitivity", "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity", "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity", "cyclops.evaluate.metrics.sensitivity.Sensitivity", "cyclops.evaluate.metrics.specificity", "cyclops.evaluate.metrics.specificity.BinarySpecificity", "cyclops.evaluate.metrics.specificity.MulticlassSpecificity", "cyclops.evaluate.metrics.specificity.MultilabelSpecificity", "cyclops.evaluate.metrics.specificity.Specificity", "cyclops.evaluate.metrics.stat_scores", "cyclops.evaluate.metrics.stat_scores.BinaryStatScores", "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores", "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores", "cyclops.evaluate.metrics.stat_scores.StatScores", "cyclops.monitor.clinical_applicator", "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator", "cyclops.monitor.synthetic_applicator", "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator", "cyclops.monitor.synthetic_applicator.binary_noise_shift", "cyclops.monitor.synthetic_applicator.feature_association_shift", "cyclops.monitor.synthetic_applicator.feature_swap_shift", "cyclops.monitor.synthetic_applicator.gaussian_noise_shift", "cyclops.monitor.synthetic_applicator.knockout_shift", "cyclops.report.report", "cyclops.report.report.ModelCardReport", "cyclops.tasks.cxr_classification", "cyclops.tasks.cxr_classification.CXRClassificationTask", "cyclops.tasks.mortality_prediction", "cyclops.tasks.mortality_prediction.MortalityPredictionTask", "cyclops.data", "cyclops.evaluate", "cyclops.monitor", "cyclops.report", "cyclops.tasks", "Tutorials", "Heart Failure Prediction", "Chest X-Ray Disease Classification", "NIHCXR Clinical Drift Experiments Tutorial", "Prolonged Length of Stay Prediction", "monitor API", "Example use cases"], "terms": {"cyclop": [0, 132, 133, 134, 135], "data": [0, 2, 3, 24, 26, 27, 49, 50, 52, 54, 69, 72, 89, 95, 112, 114, 115, 116, 117, 118, 119, 121, 123, 125, 131, 133, 134, 136], "slicer": [0, 132, 133, 134, 135], "compound_filt": 0, "filter_datetim": 0, "filter_non_nul": 0, "filter_rang": 0, "filter_string_contain": 0, "filter_valu": [0, 133], "is_datetim": 0, "overal": [0, 7, 21, 121, 132, 133, 135], "slicespec": [0, 17, 112, 123, 132, 133, 134, 135], "spec_list": [0, 7, 132, 133, 134, 135], "include_overal": [0, 7], "valid": [0, 7, 9, 17, 121, 123, 125, 132, 133], "column_nam": [0, 7, 9, 10, 11, 12, 13, 133], "_registri": [0, 7], "add_slice_spec": [0, 7], "get_slic": [0, 7], "slice": [0, 3, 7, 8, 17, 21, 121, 123, 125, 132, 133, 135], "featur": [0, 7, 9, 10, 11, 12, 13, 15, 17, 112, 116, 117, 121, 123, 125, 131, 133, 137], "medical_imag": 0, "medicalimag": 0, "__call__": [0, 5, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "cast_storag": [0, 5], "decode_exampl": [0, 5], "embed_storag": [0, 5], "encode_exampl": [0, 5], "flatten": [0, 5, 132, 133, 135], "task": [0, 2, 3, 24, 25, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 44, 47, 48, 49, 50, 51, 53, 54, 58, 60, 61, 62, 63, 66, 67, 68, 69, 78, 80, 81, 82, 83, 84, 85, 90, 92, 93, 94, 95, 98, 99, 100, 102, 103, 104, 105, 110, 131, 133, 137], "cxr_classif": 0, "cxrclassificationtask": 0, "__init__": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 123, 125, 133], "add_model": [0, 123, 125], "data_typ": [0, 123, 125], "evalu": [0, 2, 3, 121, 123, 125, 131, 133, 137], "get_model": [0, 123, 125], "list_model": [0, 123, 125, 132, 135], "models_count": [0, 123, 125], "predict": [0, 3, 17, 19, 21, 24, 26, 27, 30, 31, 32, 34, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 67, 80, 81, 82, 84, 85, 87, 88, 89, 92, 93, 94, 98, 100, 102, 103, 104, 105, 107, 108, 109, 110, 123, 124, 125, 131], "task_typ": [0, 123, 125, 132, 135], "mortality_predict": [0, 132, 135], "mortalitypredictiontask": [0, 132, 135], "list_models_param": [0, 125, 132, 135], "load_model": [0, 125], "save_model": [0, 125], "train": [0, 3, 17, 121, 123, 125, 131, 133, 136, 137], "metric": [0, 17, 19, 21, 121, 123, 125, 131, 132, 135, 137], "__add__": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "__mul__": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "add_stat": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "clone": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "comput": [0, 17, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 123, 125, 131, 133, 137], "reset_st": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "update_st": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "metriccollect": [0, 17, 21, 123, 125, 132, 135], "add_metr": [0, 75], "clear": [0, 75], "get": [0, 2, 75, 123, 125, 131, 132, 135, 137], "item": [0, 75, 132, 133, 134, 135], "kei": [0, 7, 17, 21, 75, 121, 132, 133, 134, 135], "pop": [0, 75, 132, 135], "popitem": [0, 75], "setdefault": [0, 75], "updat": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 132, 133, 134, 135], "valu": [0, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 121, 131, 133, 134, 135, 137], "operatormetr": 0, "factori": [0, 7, 133], "create_metr": [0, 132, 133, 135], "accuraci": [0, 132, 135], "binaryaccuraci": [0, 132, 135], "multiclassaccuraci": 0, "multilabelaccuraci": 0, "auroc": [0, 131, 132, 135, 137], "binaryauroc": [0, 29, 132, 135], "multiclassauroc": [0, 29], "multilabelauroc": [0, 29], "precision_recal": 0, "binaryprecis": [0, 132, 135], "binaryrecal": [0, 97, 132, 135], "multiclassprecis": 0, "multiclassrecal": [0, 98], "multilabelprecis": 0, "multilabelrecal": [0, 99], "precis": [0, 24, 35, 36, 37, 38, 39, 40, 41, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 60, 64, 66, 77, 78, 80, 82, 85, 86, 87, 88, 89, 90, 92, 100, 105, 132, 133, 135], "recal": [0, 24, 38, 51, 55, 57, 59, 61, 64, 66, 77, 79, 81, 83, 86, 87, 88, 89, 90, 92, 97, 98, 99, 105, 132, 133, 135], "precision_recall_curv": [0, 132, 135], "binaryprecisionrecallcurv": [0, 30, 92, 132, 135], "multiclassprecisionrecallcurv": [0, 31, 93], "multilabelprecisionrecallcurv": [0, 32, 94], "precisionrecallcurv": 0, "roc": [0, 28, 29, 30, 31, 32, 45, 132, 135], "binaryroccurv": [0, 132, 135], "multiclassroccurv": 0, "multilabelroccurv": 0, "roccurv": 0, "sensit": [0, 121, 131, 132, 133, 135, 136], "binarysensit": 0, "multiclasssensit": 0, "multilabelsensit": [0, 133], "specif": [0, 7, 17, 115, 118, 123, 125, 132, 133, 135], "binaryspecif": 0, "multiclassspecif": 0, "multilabelspecif": [0, 133], "f_beta": 0, "binaryf1scor": [0, 132, 135], "binaryfbetascor": [0, 34], "f1score": 0, "fbetascor": [0, 36], "multiclassf1scor": 0, "multiclassfbetascor": [0, 38], "multilabelf1scor": 0, "multilabelfbetascor": [0, 40], "stat_scor": [0, 133], "binarystatscor": [0, 25, 35, 78, 79, 102], "multiclassstatscor": [0, 26, 39, 80, 81, 103], "multilabelstatscor": [0, 27, 41, 82, 83, 104, 133], "statscor": 0, "function": [0, 3, 5, 6, 7, 8, 16, 17, 20, 21, 25, 35, 41, 42, 76, 93, 102, 104, 107, 109, 110, 113, 121, 132, 133, 135], "binary_precis": 0, "binary_recal": 0, "multiclass_precis": 0, "multiclass_recal": 0, "multilabel_precis": 0, "multilabel_recal": 0, "binary_roc_curv": 0, "multiclass_roc_curv": 0, "multilabel_roc_curv": 0, "roc_curv": [0, 132, 135], "binary_f1_scor": 0, "binary_fbeta_scor": 0, "f1_score": [0, 132, 135], "fbeta_scor": 0, "multiclass_f1_scor": 0, "multiclass_fbeta_scor": 0, "multilabel_f1_scor": 0, "multilabel_fbeta_scor": 0, "fair": [0, 17, 121, 123, 125, 132, 133, 135], "evaluate_fair": 0, "warn_too_many_unique_valu": 0, "config": [0, 125], "fairnessconfig": [0, 17, 123, 125, 132, 135], "monitor": [0, 2, 3, 131, 132, 134, 135], "clinical_appl": 0, "clinicalshiftappl": [0, 134], "ag": [0, 112, 131, 134, 137], "apply_shift": [0, 112, 114, 134], "custom": [0, 112, 121, 134], "hospital_typ": [0, 112], "month": [0, 7, 9, 112], "sex": [0, 112, 131, 134, 135, 137], "time": [0, 7, 75, 112, 121, 131, 136, 137], "synthetic_appl": 0, "binary_noise_shift": 0, "feature_association_shift": 0, "feature_swap_shift": 0, "gaussian_noise_shift": 0, "knockout_shift": 0, "syntheticshiftappl": [0, 113], "report": [0, 2, 3, 110, 131, 137], "modelcardreport": [0, 132, 133, 135], "export": [0, 121, 132, 133, 135], "from_json_fil": [0, 121], "log_cit": [0, 121, 133], "log_dataset": [0, 121, 132], "log_descriptor": [0, 121, 132, 133, 135], "log_fairness_assess": [0, 121, 132, 133, 135], "log_from_dict": [0, 121, 132, 133, 135], "log_imag": [0, 121], "log_licens": [0, 121, 132, 135], "log_model_paramet": [0, 121, 132, 135], "log_own": [0, 121, 132, 133, 135], "log_performance_metr": [0, 121, 132, 135], "log_plotly_figur": [0, 121, 132, 133, 135], "log_quantitative_analysi": [0, 121, 132, 133, 135], "log_refer": [0, 121, 132, 135], "log_regul": [0, 121], "log_risk": [0, 121, 132, 133, 135], "log_use_cas": [0, 121, 132, 133, 135], "log_us": [0, 121, 132, 133, 135], "log_vers": [0, 121, 132, 135], "thank": 1, "your": [1, 132], "interest": [1, 132, 135], "To": [1, 3, 5, 132, 135], "submit": 1, "pr": 1, "pleas": [1, 132, 133, 134, 135], "fill": 1, "out": [1, 121, 132, 135], "templat": [1, 121], "along": [1, 112, 132, 133, 135], "If": [1, 5, 7, 9, 10, 11, 12, 13, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 123, 125, 132, 135], "fix": 1, "an": [1, 3, 5, 7, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 51, 60, 61, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 132, 133, 135], "issu": [1, 21], "don": 1, "t": [1, 5, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121], "forget": 1, "link": [1, 121, 132, 133, 135], "onc": [1, 75, 132, 135], "python": [1, 3, 135], "virtual": [1, 3], "environ": [1, 3, 132, 135], "i": [1, 3, 5, 7, 9, 10, 11, 12, 13, 14, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 123, 125, 132, 133, 135, 137], "setup": [1, 135], "you": [1, 3, 5, 75, 132, 133, 135, 136], "can": [1, 3, 5, 7, 21, 25, 38, 51, 69, 75, 84, 85, 95, 100, 110, 121, 125, 132, 133, 135, 136], "run": [1, 3, 132, 135], "us": [1, 2, 5, 7, 8, 17, 21, 24, 29, 30, 31, 32, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 60, 61, 62, 63, 66, 67, 68, 69, 75, 76, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 98, 99, 100, 102, 105, 107, 110, 112, 114, 121, 123, 125, 131, 132, 133, 135, 136], "all": [1, 7, 8, 9, 10, 11, 12, 13, 15, 63, 73, 75, 108, 109, 110, 125, 132, 133, 134, 135], "file": [1, 5, 121, 132, 133, 135], "For": [1, 21, 76, 121, 132, 135], "style": 1, "we": [1, 3, 121, 132, 133, 135], "recommend": [1, 76], "googl": 1, "guid": 1, "appli": [1, 8, 25, 29, 59, 62, 63, 66, 67, 68, 75, 76, 93, 104, 109, 110, 112, 123, 125, 132, 135], "black": 1, "format": [1, 5, 7, 89, 121, 132, 135], "docstr": 1, "numpi": [1, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 115, 116, 117, 118, 119, 123, 132, 133, 134, 135], "also": [1, 3, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 132, 133, 135, 137], "flake8": 1, "pylint": 1, "further": 1, "static": 1, "analysi": [1, 121, 132, 133, 135], "The": [1, 3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 50, 51, 52, 53, 54, 56, 60, 61, 63, 66, 68, 69, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 123, 125, 132, 133, 135, 136, 137], "show": [1, 132, 133, 135], "error": 1, "which": [1, 9, 10, 11, 12, 13, 21, 90, 121, 132, 133, 135, 137], "need": [1, 17, 21, 132, 135], "befor": [1, 17, 21, 22, 125, 132, 135], "last": 1, "least": 1, "type": [1, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 115, 116, 117, 118, 119, 121, 123, 125, 131, 133, 137], "hint": 1, "our": [1, 132, 135], "check": [1, 14, 89], "mypi": 1, "current": [1, 121, 132, 135], "ar": [1, 5, 7, 11, 12, 17, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 75, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 97, 98, 99, 100, 103, 104, 105, 108, 109, 110, 112, 116, 121, 132, 133, 135], "strict": 1, "enforc": 1, "more": [1, 7, 16, 17, 123, 125, 132, 137], "api": [1, 2, 3, 131, 132, 137], "becom": 1, "stabl": [1, 132, 133, 134, 135], "start": [2, 17, 132, 135], "instal": [2, 132], "pip": [2, 132], "develop": [2, 132, 133, 135], "poetri": 2, "contribut": 2, "notebook": [2, 132, 133, 135], "citat": [2, 121, 132, 133, 135], "pre": [2, 132, 135], "commit": 2, "hook": 2, "code": [2, 132, 135], "guidelin": [2, 3], "tutori": [2, 132, 136, 137], "exampl": [2, 3, 5, 7, 8, 9, 10, 11, 12, 13, 15, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 131, 132, 133, 135, 136], "case": [2, 3, 75, 115, 121, 131, 132, 135, 136], "refer": [2, 3, 121, 132, 133, 135], "toolkit": 3, "facilit": 3, "research": 3, "deploy": 3, "ml": [3, 132, 135], "model": [3, 16, 17, 21, 121, 123, 125, 131, 136, 137], "healthcar": 3, "It": [3, 38, 51, 75, 84, 85, 100, 105, 136], "provid": [3, 7, 9, 12, 17, 21, 69, 110, 121, 132, 135], "few": 3, "high": [3, 132, 135], "level": [3, 21, 132, 135], "name": [3, 7, 8, 9, 10, 11, 12, 13, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 121, 123, 125, 132, 133, 134, 135], "creat": [3, 6, 7, 21, 42, 43, 75, 84, 85, 100, 115, 118, 119, 121, 123, 125, 131, 133, 137], "dataset": [3, 6, 7, 16, 17, 19, 21, 26, 38, 39, 51, 52, 58, 61, 68, 69, 80, 81, 83, 88, 89, 90, 94, 95, 98, 99, 103, 104, 112, 114, 121, 123, 125, 126, 131, 136, 137], "infer": [3, 17], "popular": [3, 132], "effici": 3, "load": [3, 17, 121, 125, 131, 135, 136, 137], "differ": [3, 24, 29, 36, 37, 46, 55, 62, 63, 64, 69, 70, 72, 84, 85, 90, 95, 100, 105, 131, 132, 133, 135, 136], "modal": 3, "common": [3, 132], "implement": [3, 137], "scikit": [3, 132], "learn": [3, 132, 133], "pytorch": 3, "canon": 3, "mortal": [3, 124, 125], "chest": [3, 122, 123, 131], "x": [3, 114, 115, 116, 117, 118, 119, 122, 123, 125, 131, 132, 134, 135], "rai": [3, 122, 123, 131], "classif": [3, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 44, 47, 48, 49, 50, 51, 53, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 78, 79, 80, 81, 82, 83, 84, 85, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 122, 123, 125, 131, 132, 135], "clinic": [3, 111, 112, 131, 136], "detect": [3, 133, 136], "shift": [3, 111, 112, 114, 116, 117, 131, 136], "relev": [3, 121, 132, 135, 136], "card": [3, 121, 131, 132, 135, 137], "librari": [3, 131, 136, 137], "end": [3, 132, 133, 135], "mimic": 3, "iii": 3, "iv": 3, "eicu": 3, "crd": 3, "python3": [3, 132, 133, 134, 135], "m": [3, 132, 133, 134, 135], "pycyclop": [3, 132, 133, 134, 135], "base": [3, 5, 7, 17, 19, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 123, 125, 131, 132, 137], "packag": [3, 126, 127, 128, 129, 130, 132, 133, 134, 135], "support": [3, 7, 24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 72, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 107, 108, 109, 136], "process": [3, 112, 132, 133, 135], "transform": [3, 17, 66, 67, 68, 93, 123, 125, 132, 133, 134, 135], "downstream": [3, 132, 135], "addit": [3, 75, 121, 123, 125, 132, 135], "from": [3, 5, 7, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 119, 121, 123, 125, 132, 133, 134, 135], "other": [3, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 132], "thei": [3, 69], "extra": [3, 121], "multipl": [3, 8, 17, 21, 75, 121], "could": [3, 132, 135], "combin": [3, 8, 132], "both": 3, "set": [3, 7, 17, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 132, 133, 135], "up": [3, 132, 133, 135], "henc": 3, "make": [3, 132, 135], "sure": [3, 132], "sourc": [3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 19, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 115, 116, 117, 118, 119, 121, 123, 125, 131, 136], "env": 3, "info": [3, 132, 135], "path": [3, 5, 112, 121, 125, 132, 135], "bin": [3, 21], "activ": [3, 135], "In": [3, 75, 132, 135], "order": [3, 5, 17, 107, 108, 109], "depend": 3, "test": [3, 17, 121, 123, 125, 131, 132, 135, 136, 137], "codestyl": 3, "unit": 3, "integr": [3, 132], "built": 3, "sphinx": 3, "local": 3, "doc": 3, "cd": 3, "html": [3, 121, 132, 133, 134, 135], "sphinxopt": 3, "d": [3, 75, 112, 133], "nbsphinx_allow_error": 3, "true": [3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 24, 26, 27, 31, 32, 35, 36, 37, 38, 39, 40, 41, 48, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 107, 108, 109, 110, 112, 114, 116, 121, 123, 125, 132, 133, 134, 135], "welcom": 3, "see": [3, 7, 121, 132, 133, 134, 135], "jupyt": [3, 132, 133, 134, 135], "insid": 3, "ipython": 3, "kernel": 3, "after": [3, 17, 132, 135], "ipykernel": 3, "user": [3, 121, 132, 135], "name_of_kernel": 3, "now": 3, "navig": 3, "": [3, 7, 10, 14, 17, 21, 75, 121, 123, 125, 132, 133, 134, 135], "tab": [3, 132], "cite": 3, "when": [3, 5, 17, 21, 24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 75, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 103, 104, 105, 123, 125, 132, 135], "project": 3, "paper": 3, "articl": 3, "krishnan2022": 3, "12": [3, 7, 132, 133, 135], "02": [3, 69, 132, 134], "22283021": 3, "author": [3, 132, 133], "krishnan": 3, "amrit": 3, "subasri": 3, "vallijah": 3, "mckeen": 3, "kaden": 3, "kore": 3, "ali": 3, "ogidi": 3, "franklin": 3, "alinoori": 3, "mahshid": 3, "lalani": 3, "nadim": 3, "dhalla": 3, "azra": 3, "verma": 3, "amol": 3, "razak": 3, "fahad": 3, "pandya": 3, "deval": 3, "dolatabadi": 3, "elham": 3, "titl": [3, 132, 133, 135], "cyclic": 3, "toward": 3, "operation": 3, "health": [3, 132, 135], "eloc": 3, "id": [3, 5, 112, 132, 133, 135], "2022": [3, 7, 133], "year": [3, 7, 9, 132, 133, 135], "doi": 3, "10": [3, 132, 133, 134, 135], "1101": 3, "publish": [3, 132], "cold": 3, "spring": 3, "harbor": 3, "laboratori": [3, 135], "press": 3, "url": [3, 133], "http": [3, 121, 132, 133, 134, 135], "www": [3, 132], "medrxiv": 3, "org": [3, 121, 132, 133, 135], "content": [3, 121], "earli": 3, "08": [3, 134, 135], "journal": 3, "medic": [4, 5, 126, 133, 135, 137], "imag": [4, 5, 17, 21, 118, 121, 123, 126, 131, 133, 134], "class": [4, 5, 6, 7, 17, 18, 19, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 69, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 116, 117, 119, 120, 121, 122, 123, 124, 125, 132, 133, 135], "decod": [5, 133], "none": [5, 7, 9, 17, 19, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 121, 123, 125, 132, 133, 134, 135], "reader": 5, "itkread": 5, "suffix": 5, "jpg": 5, "read": [5, 17], "paramet": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 115, 116, 117, 118, 119, 121, 123, 125, 132, 133, 135], "bool": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 75, 76, 108, 109, 110, 112, 116, 117, 121, 123, 125, 132, 133, 135], "option": [5, 7, 9, 10, 11, 12, 13, 17, 21, 24, 27, 36, 37, 38, 39, 40, 41, 43, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 69, 75, 80, 81, 82, 83, 84, 85, 90, 95, 98, 99, 100, 103, 104, 105, 108, 112, 114, 121, 123, 125, 133], "default": [5, 7, 9, 10, 11, 12, 13, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 121, 123, 125, 132, 135], "whether": [5, 7, 21, 75, 108, 109, 110, 112, 121, 135, 137], "fals": [5, 7, 9, 10, 11, 12, 13, 14, 19, 21, 29, 30, 40, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 75, 80, 81, 82, 83, 84, 85, 98, 99, 100, 105, 107, 108, 109, 110, 117, 118, 123, 125, 132, 133, 135], "return": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 115, 116, 117, 118, 119, 121, 123, 125, 133, 135], "dictionari": [5, 7, 8, 9, 10, 11, 12, 13, 15, 17, 21, 75, 121, 123, 125, 132, 135], "image_path": 5, "byte": 5, "image_byt": 5, "union": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 123, 125], "str": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 123, 125, 132, 135], "imageread": 5, "monai": [5, 133, 134], "method": [5, 7, 19, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 123, 125, 132, 135], "attribut": [5, 7, 19, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 123, 125, 132, 135], "call": [5, 121], "self": [5, 133], "storag": 5, "cast": [5, 132, 135], "arrow": 5, "arrai": [5, 24, 26, 27, 29, 30, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 60, 61, 63, 66, 67, 68, 69, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 98, 99, 100, 103, 104, 105, 107, 108, 109, 110, 116, 117, 119, 123, 133], "convert": [5, 25, 35, 41, 48, 61, 69, 95, 102, 104, 107, 132, 135], "pyarrow": 5, "rtype": 5, "structarrai": 5, "pa": 5, "string": [5, 7, 9, 12, 17, 21, 75, 121, 133], "must": [5, 9, 17, 21, 121], "contain": [5, 7, 8, 9, 10, 11, 12, 13, 15, 17, 21, 27, 103, 104, 121, 132, 133, 135, 137], "binari": [5, 24, 25, 29, 30, 34, 35, 36, 37, 47, 48, 49, 50, 56, 57, 60, 61, 62, 63, 66, 69, 72, 78, 79, 84, 85, 87, 90, 92, 95, 97, 100, 102, 104, 105, 107, 110, 115, 125, 132, 135, 137], "struct": 5, "doesn": 5, "matter": 5, "list": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 66, 67, 68, 69, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 115, 116, 117, 118, 119, 121, 123, 125, 132, 135], "arg": [5, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "stringarrai": 5, "listarrai": 5, "token_per_repo_id": 5, "serial": 5, "version": [5, 121, 132, 133, 135], "dict": [5, 7, 8, 9, 10, 11, 12, 13, 15, 17, 21, 22, 75, 121, 123, 125], "access": 5, "privat": 5, "repositori": [5, 132], "hub": 5, "pass": [5, 17, 43, 75, 112, 121, 125, 132, 135], "repo_id": 5, "token": [5, 132], "deseri": 5, "np": [5, 11, 14, 21, 123, 125, 132, 133, 134, 135], "ndarrai": [5, 14, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 115, 116, 117, 118, 119, 123, 125], "metadata": [5, 132, 133, 135], "emb": 5, "encod": 5, "input": [5, 24, 46, 55, 60, 61, 64, 69, 70, 72, 87, 89, 95, 115, 118, 123, 125], "state": [5, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 133], "itself": 5, "otherwis": [5, 14, 24, 27, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 67, 68, 75, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 108, 109, 110], "tupl": [5, 7, 66, 67, 68, 69, 75, 87, 88, 89, 92, 93, 94, 112, 123, 125], "classlabel": [5, 132, 135], "translat": 5, "translationvariablelanguag": 5, "sequenc": [5, 17, 75, 123, 125, 133], "array2d": 5, "array3d": 5, "array4d": 5, "array5d": 5, "audio": 5, "subset": 6, "hug": [6, 123, 125, 131, 137], "face": [6, 123, 125, 131, 137], "object": [7, 19, 21, 112, 114, 121, 123, 125, 132, 135], "ani": [7, 8, 9, 10, 11, 12, 13, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 123, 125, 132, 133, 135], "A": [7, 8, 9, 10, 11, 12, 13, 15, 17, 21, 22, 25, 75, 76, 104, 109, 121, 132, 133, 135], "each": [7, 8, 17, 21, 24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 67, 68, 69, 75, 76, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 108, 109, 110, 132, 135], "map": [7, 8, 22, 43, 75, 123, 125, 132, 133, 135], "column": [7, 8, 9, 10, 11, 12, 13, 17, 21, 112, 123, 125, 132, 133, 135], "one": [7, 16, 17, 21, 24, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 67, 68, 69, 76, 80, 81, 82, 83, 84, 85, 95, 98, 99, 100, 105, 123, 125], "follow": [7, 17, 24, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 60, 61, 75, 80, 81, 82, 83, 84, 85, 98, 99, 100, 105, 121, 132, 133, 135], "exact": [7, 13], "select": [7, 112, 116, 132, 133, 135], "thi": [7, 17, 21, 24, 25, 26, 27, 29, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 103, 104, 105, 121, 125, 132, 133, 135, 137], "singl": [7, 75, 121, 125, 132, 135], "row": [7, 132, 133], "where": [7, 8, 9, 10, 11, 12, 13, 60, 61, 63, 75, 121, 125, 132, 135, 137], "e": [7, 9, 10, 17, 21, 75, 116, 117, 118, 121, 132, 135], "g": [7, 9, 17, 21, 116, 117, 118, 121, 132, 135], "2021": [7, 132], "01": [7, 29, 31, 32, 132, 133, 135], "00": [7, 132, 133, 134, 135], "min_valu": [7, 11, 132, 133, 134, 135], "minimum": [7, 11], "specifi": [7, 17, 75, 112, 121, 123, 125, 132, 135], "min_inclus": [7, 11, 132, 135], "indic": [7, 21, 27, 60, 61, 115, 118, 132, 133, 135], "includ": [7, 11, 21, 72, 112, 114, 132, 133, 135, 136], "rang": [7, 11, 29, 30, 66, 67, 68, 93, 132, 133, 135], "work": [7, 27, 103, 104, 121, 132, 133, 135], "numer": [7, 11, 132, 135], "datetim": [7, 9, 11, 14, 121, 132, 135], "inf": [7, 11, 132, 135], "max_valu": [7, 11, 132, 133, 134, 135], "boolean": [7, 8, 9, 10, 11, 12, 13, 15], "greater": [7, 22, 135], "than": [7, 11, 22, 48, 52, 54, 123, 125, 132, 135, 137], "equal": [7, 11, 21], "maximum": [7, 11, 22, 29, 30], "max_inclus": [7, 11, 132, 135], "less": [7, 11, 48, 52, 54, 135], "match": [7, 9, 12, 13, 17], "between": [7, 21, 38, 51, 69, 95], "1": [7, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 116, 117, 118, 119, 121, 131, 132, 133, 135, 136, 137], "dai": [7, 9, 135, 137], "31": [7, 132, 135], "hour": [7, 9], "0": [7, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 114, 115, 116, 117, 118, 119, 121, 132, 133, 134, 135], "23": [7, 132, 133, 135], "negat": [7, 9, 10, 11, 12, 13, 133], "flag": 7, "doe": [7, 9, 11, 12, 13, 17, 21, 24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 75, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 121], "keep_nul": [7, 9, 11, 12, 13], "keep": [7, 17, 21, 135], "null": [7, 9, 10, 11, 12, 13, 135], "conjunct": [7, 133], "its": [7, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 60, 61, 74, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 132, 133, 135], "own": [7, 132, 135], "callabl": [7, 8, 17, 21, 76, 121], "import": [7, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 131, 136, 137], "slice_spec": [7, 17, 123, 125, 132, 133, 135], "feature_1": 7, "feature_2": 7, "feature_3": 7, "value_1": 7, "value_2": 7, "2020": [7, 9, 133], "5": [7, 24, 25, 27, 29, 31, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 114, 115, 118, 119, 131, 132, 133, 135, 136], "60": [7, 133], "6": [7, 24, 26, 35, 36, 38, 39, 49, 56, 59, 62, 63, 78, 79, 80, 81, 83, 84, 85, 87, 88, 90, 92, 93, 95, 97, 98, 99, 100, 104, 107, 108, 110, 132, 133, 134, 135], "7": [7, 29, 30, 31, 36, 39, 40, 69, 80, 81, 82, 84, 85, 87, 88, 89, 93, 98, 100, 105, 108, 109, 110, 132, 133, 135, 137], "8": [7, 24, 26, 27, 29, 30, 31, 34, 35, 36, 37, 38, 40, 41, 47, 49, 50, 53, 54, 56, 59, 60, 62, 66, 68, 69, 78, 79, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 99, 100, 105, 107, 109, 110, 132, 133, 135], "2000": 7, "2010": 7, "slice_nam": [7, 121, 132, 135], "slice_func": 7, "print": [7, 132, 133, 135], "do": [7, 17], "someth": 7, "here": [7, 132, 135], "filter": [7, 9, 10, 11, 12, 13, 17, 21, 132, 133, 134, 135], "add": [7, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 123, 125, 132, 135], "detail": [7, 132, 133, 135], "registri": [7, 132, 135], "gener": [7, 69, 95, 112, 121, 131, 136, 137], "slice_funct": 8, "result": [8, 17, 38, 51, 123, 125, 132, 134, 135], "bitwis": 8, "AND": 8, "signatur": 8, "should": [8, 21, 69, 76, 95, 117, 121, 123, 125, 132, 133, 135], "kwarg": [8, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 114, 123, 125], "given": [9, 11, 12, 13, 14, 24, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 75, 80, 81, 82, 84, 85, 98, 100, 105, 108, 109, 110, 121, 123, 125], "int": [9, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 116, 117, 118, 119, 121, 123, 125, 132, 133, 135], "compon": 9, "have": [9, 12, 13, 17, 114, 132, 137], "nan": [9, 10, 131, 137], "nat": 9, "rais": [9, 11, 12, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 123, 125], "typeerror": [9, 11, 12, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121], "float": [11, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 109, 110, 115, 116, 117, 118, 119, 121, 133], "valueerror": [11, 17, 21, 48, 50, 52, 54, 58, 59, 60, 61, 62, 63, 69, 121, 123, 125], "either": [11, 30, 31, 32, 75, 87, 88, 89, 92, 93, 94, 110, 121, 132, 135], "substr": 12, "ha": [13, 75, 121, 132, 133, 135], "find": [13, 24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 133], "perform": [13, 26, 27, 31, 32, 121, 131, 135, 136, 137], "datetime64": 14, "target_column": [17, 19, 21, 132, 133, 135], "feature_column": [17, 133, 134], "prediction_column_prefix": [17, 123, 125, 132, 133, 135], "remove_column": [17, 19, 21, 123, 125, 133], "split": [17, 112, 121, 123, 125, 132, 133, 135], "batch_siz": [17, 19, 21, 112, 123, 125, 132, 135], "1000": [17, 19, 21, 112, 125, 132, 133], "fairness_config": [17, 123, 125, 132, 135], "override_fairness_metr": [17, 123, 125, 132, 135], "load_dataset_kwarg": 17, "datasetdict": [17, 123, 125], "load_dataset": 17, "argument": [17, 21, 43, 75, 123, 125, 132, 135], "target": [17, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 116, 117, 123, 125, 131, 132, 135, 136, 137], "prefix": [17, 75], "ad": [17, 114, 121, 123, 125, 132, 135], "model_nam": [17, 123, 125, 132, 133, 134, 135], "remov": [17, 21, 75, 119, 123, 125, 132, 133, 135], "mai": [17, 21, 132, 133, 135], "expens": [17, 21], "memori": [17, 21], "wrappedmodel": [17, 123, 125], "entir": [17, 132, 135], "being": 17, "note": [17, 121, 132, 135], "chosen": 17, "avail": [17, 121, 132, 135, 137], "first": [17, 21, 25, 76, 104, 132, 135], "eval": 17, "val": 17, "dev": 17, "batch": [17, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 123, 125, 133], "size": [17, 21, 112, 123, 125, 132, 133, 135], "neg": [17, 35, 48, 49, 50, 51, 52, 53, 54, 59, 61, 62, 63, 72, 81, 83, 85, 98, 99, 100, 105, 107, 108, 109, 133, 135], "integ": [17, 21, 121], "configur": [17, 18, 19, 123, 125, 132, 135], "overridden": [17, 123, 125], "prediction_column": [17, 19, 21], "keyword": [17, 21, 43, 75, 125], "onli": [17, 21, 24, 27, 29, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 62, 63, 75, 80, 81, 82, 84, 85, 98, 100, 103, 104, 105, 108, 109, 110], "found": [17, 75, 121, 132, 133, 134, 135], "group": [19, 21, 22, 75, 121, 132, 135], "group_valu": [19, 21], "group_bin": [19, 21, 132, 135], "group_base_valu": [19, 21, 132, 135], "threshold": [19, 21, 24, 25, 27, 29, 30, 31, 32, 34, 35, 36, 37, 40, 41, 47, 48, 49, 50, 53, 54, 56, 57, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 99, 100, 102, 104, 105, 107, 109, 110, 121, 131, 132, 135, 137], "compute_optimal_threshold": [19, 21], "metric_nam": [19, 21, 43, 121, 132, 133, 135], "metric_kwarg": [19, 21], "take": [21, 24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 112, 132], "allow": [21, 22, 132, 135, 136], "intersect": 21, "treat": 21, "multilabel": [21, 24, 27, 29, 32, 36, 37, 40, 41, 49, 50, 53, 54, 60, 61, 62, 63, 68, 69, 72, 82, 83, 84, 85, 89, 90, 94, 95, 99, 100, 104, 105, 109, 110, 131, 137], "same": [21, 75, 116], "uniqu": [21, 22, 29, 30, 31, 32, 66, 67, 68, 69, 87, 88, 89, 92, 93, 94, 95, 133, 137], "limit": [21, 132, 133, 135], "number": [21, 22, 24, 26, 27, 29, 30, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 75, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 98, 99, 100, 103, 104, 105, 108, 110, 112, 116, 117, 121, 123, 125, 135, 136], "continu": [21, 132, 133, 135], "veri": 21, "slow": 21, "larg": 21, "denomin": 21, "pariti": 21, "across": [21, 116, 136], "linspac": 21, "monoton": [21, 69, 95], "control": [21, 115], "usag": [21, 132, 135], "rel": 21, "small": 21, "32": [21, 132, 135], "avoid": 21, "optim": [21, 132], "oper": [21, 65, 76, 132, 135], "necessari": 21, "nest": 21, "second": [21, 76], "third": 21, "omit": 21, "requir": [21, 24, 29, 36, 37, 49, 50, 69, 84, 85, 90, 95, 100, 105, 110, 121, 123, 125, 132, 135], "huggingfac": [21, 112, 123, 125], "runtimeerror": 21, "empti": [21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "encount": [21, 135], "unique_valu": 22, "max_unique_valu": 22, "50": [22, 132, 134, 135], "warn": [22, 24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 102, 103, 104, 105], "score": [24, 25, 26, 27, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 66, 70, 72, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 108, 109, 110, 133], "liter": [24, 25, 26, 27, 29, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 69, 78, 79, 80, 81, 82, 83, 84, 85, 90, 95, 97, 98, 99, 100, 103, 104, 105, 110, 121], "multiclass": [24, 26, 29, 31, 36, 37, 38, 39, 49, 50, 51, 52, 58, 59, 62, 63, 67, 69, 72, 80, 81, 84, 85, 88, 90, 93, 95, 98, 100, 103, 105, 108, 110], "One": [24, 29, 31, 32, 35, 48, 59, 62, 63, 69, 95, 133, 135], "pos_label": [24, 25, 30, 34, 35, 36, 37, 47, 48, 49, 50, 56, 57, 62, 63, 66, 69, 78, 79, 84, 85, 87, 90, 92, 95, 97, 100, 102, 105, 107, 110], "label": [24, 25, 27, 29, 32, 34, 35, 36, 37, 40, 41, 47, 48, 49, 50, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 68, 69, 78, 79, 81, 82, 83, 84, 85, 87, 89, 90, 92, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 109, 110, 116, 117, 119, 123, 125, 131, 132, 133, 137], "consid": [24, 26, 27, 36, 37, 49, 50, 62, 63, 84, 85, 90, 95, 100, 103, 104, 105], "posit": [24, 25, 29, 30, 34, 35, 36, 37, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 75, 78, 79, 80, 81, 82, 83, 84, 85, 87, 90, 92, 95, 97, 98, 99, 100, 102, 105, 107, 108, 109, 110, 132, 133, 135], "num_class": [24, 26, 29, 31, 36, 37, 38, 39, 49, 50, 51, 52, 58, 59, 61, 62, 63, 67, 69, 80, 81, 84, 85, 88, 90, 93, 95, 98, 100, 103, 105, 108, 110, 132, 135], "decid": [24, 36, 37, 40, 41, 49, 50, 53, 54, 56, 57, 60, 61, 78, 79, 82, 83, 84, 85, 97, 99, 100, 105], "top_k": [24, 26, 27, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 108, 109, 110, 133], "probabl": [24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 80, 81, 82, 84, 85, 93, 98, 100, 102, 103, 104, 105, 107, 108, 109, 110, 125, 132, 135], "logit": [24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 72, 80, 81, 82, 84, 85, 98, 100, 102, 103, 104, 105, 107, 108, 109, 110], "top": [24, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 80, 81, 82, 84, 85, 98, 100, 105, 108, 109, 110], "k": [24, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 75, 80, 81, 82, 84, 85, 98, 100, 105, 108, 109, 110, 134], "num_label": [24, 27, 29, 32, 36, 37, 40, 41, 49, 50, 53, 54, 60, 61, 62, 63, 68, 69, 82, 83, 84, 85, 89, 90, 94, 95, 99, 100, 104, 105, 109, 110, 133], "averag": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 132], "micro": [24, 26, 27, 29, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105], "macro": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105], "weight": [24, 26, 27, 29, 31, 32, 35, 36, 37, 38, 39, 40, 41, 48, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 133, 134, 135], "calcul": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105], "global": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "unweight": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105], "mean": [24, 26, 27, 29, 31, 32, 35, 36, 37, 38, 39, 40, 41, 48, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 132, 133, 134, 135], "imbal": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 119], "account": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 132, 133], "instanc": [24, 26, 27, 31, 32, 36, 37, 38, 39, 40, 41, 43, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 132, 133, 135], "alter": [24, 26, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 105], "zero_divis": [24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 102, 103, 104, 105], "zero": [24, 25, 26, 27, 34, 36, 37, 38, 39, 40, 41, 47, 49, 50, 51, 52, 53, 54, 56, 57, 58, 60, 61, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 103, 104, 105], "divis": [24, 25, 26, 27, 34, 36, 37, 38, 39, 40, 41, 47, 49, 50, 51, 52, 53, 54, 56, 57, 58, 60, 61, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 103, 104, 105], "act": [24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 103, 104, 105], "pred": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 132, 135], "75": [24, 25, 29, 30, 66, 67, 68, 90, 92, 95, 103, 104, 105, 132], "05": [24, 26, 27, 29, 31, 32, 36, 38, 39, 40, 49, 53, 62, 67, 68, 69, 80, 81, 84, 85, 88, 90, 93, 94, 95, 98, 100, 103, 104, 105, 108, 110, 133], "95": [24, 26, 27, 36, 38, 49, 62, 69, 88, 90, 93, 94, 95, 133], "p": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 115, 133], "zip": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "2": [24, 26, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 56, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 75, 78, 79, 80, 81, 82, 83, 84, 85, 88, 89, 90, 92, 93, 95, 97, 98, 99, 100, 103, 104, 105, 107, 108, 109, 110, 116, 117, 121, 131, 132, 133, 135, 136], "3": [24, 26, 27, 29, 31, 34, 35, 36, 37, 38, 39, 40, 47, 49, 50, 51, 52, 53, 56, 58, 59, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 103, 104, 105, 107, 108, 109, 110, 116, 117, 131, 132, 133, 135, 136], "66666667": [24, 26, 36, 38, 49, 51, 61, 63, 81, 85, 87, 88, 90, 93, 94, 95, 98, 100, 104], "initi": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 131, 132, 135, 137], "two": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "scalar": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "togeth": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "multipli": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "variabl": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 137], "attributeerror": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "alreadi": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 132, 135], "exist": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 123, 125], "copi": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 132, 133, 135], "abstract": [24, 29, 36, 37, 73, 74, 84, 85, 90, 95, 100, 105, 110], "final": [24, 29, 36, 37, 74, 84, 85, 90, 95, 100, 105, 110, 133, 135], "reset": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "_update_count": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "_comput": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "sigmoid": [25, 35, 41, 66, 68, 69, 102, 104, 107, 109, 110], "them": [25, 104, 132, 135, 136], "875": 25, "problem": [26, 88, 108, 109, 110, 137], "highest": [26, 27, 62, 63, 103, 104], "determin": [26, 27, 29, 30, 31, 32, 66, 67, 68, 87, 88, 89, 90, 92, 93, 94], "dtype": [26, 27, 31, 32, 38, 39, 40, 41, 66, 67, 68, 69, 80, 81, 82, 83, 87, 88, 89, 92, 93, 94, 98, 99, 103, 104, 115, 116, 117, 118, 119, 132, 133], "float64": [26, 27, 31, 32, 38, 39, 40, 41, 66, 67, 68, 69, 80, 81, 82, 83, 87, 88, 89, 92, 93, 94, 98, 99, 103, 104, 115, 116, 117, 118, 119, 133], "binar": [27, 29, 30, 31, 32, 34, 47, 67, 68, 93, 94, 109, 110], "output": [27, 69, 121, 132, 135], "classifi": [27, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 102, 132, 135], "correct": [27, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 93, 102, 103, 104], "per": [27, 75, 135], "area": [28, 29, 30, 31, 32, 45, 132, 135], "under": [28, 29, 30, 31, 32, 45, 132, 135], "curv": [28, 29, 30, 31, 32, 45, 64, 65, 66, 67, 68, 69, 86, 87, 88, 89, 90, 92, 93, 94, 95, 132, 135], "max_fpr": [29, 30], "rate": [29, 30, 66, 67, 68, 69, 132, 133, 135], "partial": [29, 30, 133], "auc": 29, "automat": [29, 30, 31, 32, 66, 67, 68, 87, 88, 89, 90, 92, 93, 94], "applic": [29, 111, 112, 114], "4": [29, 30, 34, 35, 36, 37, 40, 47, 50, 59, 63, 69, 82, 83, 84, 85, 87, 88, 90, 92, 93, 94, 95, 99, 100, 105, 107, 108, 109, 110, 131, 132, 133, 135, 136], "35": [29, 30, 69, 87, 92, 95, 103, 104, 105, 132, 133, 134, 135], "9": [29, 30, 31, 32, 34, 36, 37, 38, 39, 40, 41, 49, 50, 53, 54, 56, 60, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 89, 90, 93, 94, 95, 97, 98, 99, 100, 103, 104, 105, 107, 109, 110, 132, 133, 135], "6111111111111112": [29, 30], "89": [29, 31, 32, 69, 133], "06": [29, 31, 69, 133], "94": [29, 31], "22222222": [29, 31], "625": [29, 32, 35, 103], "aucroc": 30, "confus": [30, 31, 32, 87, 88, 89, 92, 93, 94], "matrix": [30, 31, 32, 87, 88, 89, 92, 93, 94, 115, 116, 117, 118, 119], "f": [33, 35, 37, 38, 39, 41, 46, 48, 50, 51, 52, 54, 75, 132, 133, 134, 135], "beta": [33, 35, 37, 39, 41, 46, 48, 50, 52, 54], "f1": [34, 36, 38, 40, 46, 47, 49, 51, 53], "form": [34, 47, 132, 135], "6666666666666666": [34, 36, 47, 56, 78, 84], "harmon": [35, 37, 39, 41, 48, 50, 52, 54, 132, 135], "8333333333333334": [35, 37, 50, 59, 62], "85714286": [36, 38], "9090909090909091": 37, "83333333": [37, 41, 50, 54], "55555556": [37, 50, 103], "90909091": [37, 39, 41], "85": [39, 80, 81, 84, 85, 98, 100, 132, 133, 135], "total": [40, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 108, 135], "count": [40, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 132, 133, 135], "predicit": 41, "constructor": 43, "arraylik": [47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 76, 93, 102], "ground": [47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 93, 102], "truth": [47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 93, 102], "npt": [48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63], "7142857142857143": 48, "estim": [49, 50, 66, 67, 68, 69, 93, 102, 125], "shape": [49, 50, 51, 52, 53, 54, 60, 61, 108, 109, 133, 134], "expect": [60, 61, 132, 135], "like": [60, 61, 75, 132], "n": [60, 61, 132, 133], "l": [60, 61], "sampl": [60, 61, 63, 119], "presenc": [60, 61, 133], "absenc": [60, 61], "rest": 61, "ratio": [62, 63, 105, 135], "correctli": [62, 132, 133, 135], "observ": [62, 132, 135, 137], "precision_scor": 62, "tp": [63, 107, 108, 109, 133], "fn": [63, 107, 108, 109, 133], "intuit": 63, "abil": [63, 132, 135], "recall_scor": 63, "3333333333333333": 63, "receiv": [65, 132, 135], "characterist": [65, 132, 135], "decis": [66, 67, 68, 69, 93, 121, 132, 135], "fpr": [66, 67, 68, 69, 132, 135], "tpr": [66, 67, 68, 69], "25": [66, 67, 68, 88, 90, 92, 93, 95, 105, 116, 117, 132, 134, 135], "softmax": [67, 69, 93], "1d": [67, 68, 69, 95], "33333333": [67, 85, 88, 90, 93, 94, 95, 100], "non": 69, "evenli": [69, 95], "space": [69, 95], "increas": [69, 95], "assertionerror": [69, 121], "03": 69, "stat": [72, 106, 107, 108, 109, 110], "abc": 74, "other_metr": 75, "postfix": 75, "userdict": 75, "collect": [75, 132], "want": 75, "behav": 75, "themselv": 75, "intern": 75, "similar": 75, "reduc": 75, "els": [75, 133, 134], "keep_bas": 75, "iter": 75, "underli": 75, "moduledict": 75, "hashabl": 75, "v": 75, "correspond": [75, 125], "keyerror": [75, 121], "some": [75, 132, 135], "pair": 75, "present": 75, "lack": 75, "metric_a": 76, "metric_b": 76, "metric1": 76, "metric2": 76, "unari": 76, "appropri": [84, 85, 100, 132, 135], "375": [88, 90], "suniqu": 90, "45": [90, 105, 132, 133, 135], "42857143": 90, "15": [103, 104, 105, 132, 133, 134, 135], "57142857": 103, "sum": [105, 108, 109, 110, 133, 135], "_abstractscor": [107, 108, 109], "fp": [107, 108, 109, 133], "tn": [107, 108, 109, 133], "classwis": [108, 110], "over": [108, 109, 110, 131, 137], "labelwis": [109, 110, 133], "prior": [110, 132], "modul": [111, 120, 121, 132, 135], "shift_typ": [112, 114], "shift_id": [112, 134], "induc": [112, 114], "synthet": [112, 114, 121, 131, 135, 136, 137], "categor": [112, 132, 135], "origin": 112, "util": [112, 132, 133, 135], "load_nih": 112, "mnt": [112, 133, 134], "nihcxr": [112, 131, 133, 136], "hospital_type_1": 112, "hospital_type_2": 112, "hospital_type_3": 112, "hospital_type_4": 112, "hospital_type_5": 112, "ds_sourc": [112, 134], "ds_target": [112, 134], "num_proc": [112, 134], "build": 112, "hospit": [112, 132, 135, 137], "drift_detect": 114, "experiment": 114, "sklearn": [114, 132, 135], "load_diabet": 114, "y": [114, 116, 117, 119, 125, 132, 133, 135], "return_x_i": 114, "x_tr": 114, "x_te": 114, "y_tr": 114, "y_te": 114, "train_test_split": [114, 132, 135], "test_siz": 114, "random_st": [114, 132, 135], "42": [114, 132, 135], "gn_shift": 114, "x_shift": 114, "x_train": [114, 125], "noise_amt": [114, 118], "delta": [114, 115, 118, 119], "ko_shift": 114, "cp_shift": 114, "mfa_shift": 114, "bn_shift": 114, "tolerance_shift": 114, "ds_shift": 114, "nois": [114, 115, 118], "prob": 115, "covari": [115, 116, 117, 118, 119], "proport": [115, 132, 133, 135], "fraction": [115, 118, 119, 135], "affect": [115, 118, 121, 132, 135], "n_shuffl": [116, 117], "keep_rows_const": 116, "repermute_each_column": 116, "multiwai": 116, "associ": [116, 132, 133, 135], "swap": [116, 117], "individu": [116, 132, 135], "within": 116, "cl": [116, 117], "etc": [116, 117, 132, 133, 135], "floatnumpi": 116, "shuffl": [116, 117, 132], "permut": 116, "placehold": 116, "shift_class": [117, 119], "rank": 117, "changepoint": 117, "axi": [117, 133, 134, 135], "x_ref": 117, "y_ref": 117, "normal": [118, 132, 135], "clip": [118, 132, 135], "gaussian": 118, "standard": [118, 132, 135], "deviat": 118, "divid": 118, "255": [118, 133, 134], "placehol": 119, "output_dir": [121, 132, 135], "serv": 121, "interfac": 121, "popul": [121, 131, 132, 135, 137], "modelcard": 121, "directori": [121, 132, 135], "save": [121, 125, 132, 135], "output_filenam": [121, 132, 133, 135], "template_path": 121, "interact": [121, 135], "save_json": 121, "synthetic_timestamp": [121, 133], "date": [121, 132, 135], "jinja2": 121, "json": [121, 132, 135], "timestamp": [121, 131, 133, 136], "back": 121, "classmethod": 121, "cyclops_report": [121, 132, 135], "section_nam": [121, 132, 133, 135], "model_detail": [121, 132, 135], "section": [121, 132, 133, 135], "repres": [121, 133], "bibtex": 121, "entri": 121, "plain": 121, "text": [121, 133], "descript": [121, 132, 133, 135], "license_id": [121, 132], "sensitive_featur": [121, 132], "sensitive_feature_justif": [121, 132], "log": [121, 131, 132, 135, 137], "inform": [121, 132], "about": [121, 132, 133, 135], "resourc": [121, 132, 135], "context": 121, "homepag": 121, "spdx": [121, 132], "identifi": [121, 131, 133, 137], "licens": [121, 132, 133, 135], "apach": [121, 132, 135], "unknown": 121, "unlicens": 121, "proprietari": 121, "justif": [121, 132], "field": [121, 131, 132, 135, 137], "descriptor": 121, "new": [121, 132, 135], "pydant": 121, "basemodel": 121, "subclass": 121, "As": 121, "long": 121, "conflict": 121, "defin": [121, 132, 133, 135], "model_card": 121, "cylop": 121, "tradeoff": [121, 133], "trade": 121, "off": 121, "interpret": 121, "consider": [121, 132, 133, 135], "affected_group": [121, 132, 133, 135], "benefit": [121, 132, 133, 135], "harm": [121, 132, 133, 135], "mitigation_strategi": [121, 132, 133, 135], "assess": 121, "mitig": [121, 132, 133, 135], "strategi": [121, 132, 133, 135], "relat": 121, "img_path": 121, "caption": [121, 132, 133, 135], "full": 121, "whole": [121, 132, 135], "left": [121, 135], "blank": 121, "instead": 121, "param": [121, 132, 135], "contact": [121, 132, 133, 135], "role": 121, "owner": [121, 132, 133, 135], "quantit": [121, 132, 133, 135], "slash": 121, "fig": [121, 132, 133, 135], "plotli": [121, 132, 133, 135], "figur": [121, 132, 135], "plot": [121, 132, 133, 135], "analysis_typ": 121, "metric_slic": [121, 132, 133, 135], "decision_threshold": 121, "pass_fail_threshold": [121, 132, 133, 135], "pass_fail_threshold_fn": [121, 132, 133, 135], "explain": [121, 132, 133, 135], "fail": 121, "regul": 121, "regulatori": [121, 132, 135], "compli": 121, "risk": [121, 132, 133, 135, 137], "kind": [121, 132, 133, 135], "primari": [121, 132, 133, 135], "scope": [121, 132, 135], "usecas": 121, "version_str": [121, 132, 135], "semant": 121, "v1": 121, "dt_date": 121, "dt_datetim": 121, "unix": 121, "yyyi": 121, "mm": 121, "dd": 121, "hh": 121, "ss": 121, "ffffff": 121, "z": 121, "summar": 121, "chang": [121, 132, 133, 135], "made": [121, 132, 135], "task_featur": [123, 125, 132, 135], "task_target": [123, 125, 132, 135], "atelectasi": [123, 133], "consolid": [123, 133], "infiltr": [123, 133], "pneumothorax": [123, 133], "edema": [123, 133], "emphysema": [123, 133], "fibrosi": [123, 133], "effus": [123, 133], "pneumonia": [123, 133], "pleural_thicken": [123, 133], "cardiomegali": [123, 133], "nodul": [123, 133], "mass": [123, 133, 135], "hernia": [123, 133], "lung": 123, "lesion": 123, "fractur": 123, "opac": 123, "enlarg": 123, "cardiomediastinum": 123, "basetask": [123, 125], "multi": [123, 133], "ptmodel": [123, 125, 133], "skmodel": [123, 125], "properti": [123, 125], "splits_map": [123, 125], "64": [123, 135], "compos": [123, 132, 133, 134, 135], "unnecessari": [123, 125], "pathologi": [123, 131, 132, 137], "represent": [123, 132, 135], "tabular": [125, 131], "fit": [125, 132, 135], "columntransform": [125, 132, 135], "slicingconfig": 125, "default_max_batch_s": 125, "filepath": 125, "pretrain": [125, 133], "proba": [125, 132, 135], "pd": 125, "datafram": [125, 132, 135], "notfittederror": 125, "destin": 125, "parent": 125, "dirctori": 125, "best_model_param": [125, 132, 135], "y_train": 125, "seri": 125, "nonei": 125, "drift": [131, 136], "experi": [131, 136], "dimension": [131, 136], "reduct": [131, 136], "techniqu": [131, 136], "roll": [131, 136], "window": [131, 136], "biweekli": [131, 136], "kaggl": [131, 132], "heart": 131, "failur": 131, "constant": [131, 137], "distribut": [131, 133, 137], "outcom": [131, 137], "preprocessor": [131, 137], "creation": [131, 137], "synthea": [131, 135], "prolong": 131, "length": [131, 133], "stai": 131, "queri": [131, 137], "inspect": [131, 132, 137], "preprocess": [131, 132, 137], "drop": [131, 132, 137], "nan_threshold": [131, 132, 137], "gender": [131, 132, 133, 134, 137], "nih": [131, 133, 134], "diseas": [131, 132, 137], "histor": [131, 132, 137], "period": [131, 137], "w": [131, 137], "showcas": [132, 135, 137], "formul": [132, 135], "patient": [132, 133, 134, 135, 137], "shutil": [132, 133, 135], "express": [132, 133, 135], "px": [132, 133, 135], "kaggle_api_extend": 132, "kaggleapi": 132, "imput": [132, 135], "simpleimput": [132, 135], "pipelin": [132, 135], "minmaxscal": [132, 135], "onehotencod": [132, 135], "noqa": [132, 133, 135], "e402": [132, 133, 135], "catalog": [132, 135], "create_model": [132, 135], "tabularfeatur": [132, 135], "classificationplott": [132, 135], "flatten_results_dict": [132, 135], "join": [132, 135], "load_datafram": 132, "home": [132, 133, 134, 135], "amritk": [132, 133, 134, 135], "cach": [132, 133, 134, 135], "pypoetri": [132, 133, 134, 135], "virtualenv": [132, 133, 134, 135], "mhx6ujw0": [132, 133, 134, 135], "py3": [132, 133, 134, 135], "lib": [132, 133, 134, 135], "site": [132, 133, 134, 135], "tqdm": [132, 133, 134, 135], "auto": [132, 133, 134, 135], "py": [132, 133, 134, 135], "21": [132, 133, 134, 135], "tqdmwarn": [132, 133, 134, 135], "iprogress": [132, 133, 134, 135], "ipywidget": [132, 133, 134, 135], "readthedoc": [132, 133, 134, 135], "io": [132, 133, 134, 135], "en": [132, 133, 134, 135], "user_instal": [132, 133, 134, 135], "autonotebook": [132, 133, 134, 135], "notebook_tqdm": [132, 133, 134, 135], "offer": [132, 133, 135], "document": [132, 133, 135], "through": [132, 133, 135], "technic": [132, 133, 135], "architectur": [132, 133, 135], "involv": [132, 133, 135], "intend": [132, 133, 135], "subpopul": [132, 133, 135], "explaina": [132, 133, 135], "go": [132, 133, 135], "tool": [132, 133, 135], "progress": [132, 133, 135], "subject": [132, 133, 135], "data_dir": [132, 133], "random_se": [132, 135], "train_siz": [132, 135], "sign": [132, 135], "com": [132, 133], "Then": 132, "profil": [132, 135], "usernam": 132, "trigger": 132, "download": 132, "credenti": 132, "place": 132, "locat": 132, "machin": [132, 133], "authent": 132, "dataset_download_fil": 132, "fedesoriano": 132, "unzip": 132, "df": 132, "csv": [132, 135], "file_format": 132, "reset_index": [132, 135], "index": [132, 133, 135], "2023": [132, 133, 135], "11": [132, 133, 134, 135, 137], "07": [132, 133, 134, 135], "13": [132, 133, 135], "22": [132, 133, 135], "223": 132, "chestpaintyp": 132, "restingbp": 132, "cholesterol": 132, "fastingb": 132, "restingecg": 132, "40": [132, 135], "ata": 132, "140": 132, "289": 132, "49": [132, 133, 135], "nap": 132, "160": 132, "180": 132, "37": [132, 135], "130": 132, "283": 132, "st": 132, "48": [132, 135], "asi": 132, "138": 132, "214": 132, "54": 132, "150": 132, "195": 132, "913": 132, "ta": 132, "110": 132, "264": 132, "914": 132, "68": [132, 133], "144": 132, "193": 132, "915": 132, "57": [132, 133], "131": 132, "916": 132, "236": 132, "lvh": 132, "917": 132, "38": [132, 133, 135], "175": 132, "maxhr": 132, "exerciseangina": 132, "oldpeak": 132, "st_slope": 132, "heartdiseas": 132, "172": 132, "156": 132, "flat": 132, "98": [132, 133, 135], "108": 132, "122": 132, "132": 132, "141": 132, "115": 132, "174": 132, "173": 132, "918": 132, "pie": [132, 133, 135], "update_layout": [132, 133, 135], "histogram": [132, 133, 135], "xaxis_titl": [132, 133, 135], "yaxis_titl": [132, 133, 135], "bargap": [132, 133, 135], "astyp": [132, 135], "update_trac": [132, 133, 135], "textinfo": [132, 135], "percent": [132, 135], "title_text": [132, 135], "hovertempl": [132, 135], "br": [132, 135], "class_count": [132, 135], "value_count": [132, 135], "class_ratio": [132, 135], "8070866141732284": 132, "14": [132, 133, 135, 137], "39": [132, 133, 135], "20": [132, 133, 135], "wa": [132, 133, 135], "li": 132, "et": 132, "al": 132, "most": 132, "features_list": [132, 135], "sort": [132, 135], "help": [132, 133, 135], "essenti": [132, 135], "step": [132, 135], "understand": [132, 135], "u": [132, 135], "16": [132, 133, 135], "tab_featur": [132, 135], "ordin": 132, "might": [132, 135], "17": [132, 133, 135], "numeric_transform": [132, 135], "scaler": [132, 135], "binary_transform": [132, 135], "most_frequ": [132, 135], "18": [132, 134, 135], "numeric_featur": [132, 135], "features_by_typ": [132, 135], "numeric_indic": [132, 135], "get_loc": [132, 135], "19": [132, 133, 135], "binary_featur": [132, 135], "ordinal_featur": 132, "binary_indic": [132, 135], "ordinal_indic": 132, "num": [132, 135], "onehot": [132, 135], "handle_unknown": [132, 135], "ignor": [132, 133, 135], "remaind": [132, 135], "passthrough": [132, 135], "let": [132, 135], "done": [132, 135], "independ": 132, "everi": 132, "uci": 132, "archiv": 132, "ic": 132, "edu": 132, "databas": [132, 135], "cleandoc": 132, "misc": 132, "cc0": 132, "demograph": [132, 133], "often": 132, "strong": 132, "correl": 132, "older": [132, 135], "higher": 132, "panda": [132, 135], "power": [132, 135], "easi": [132, 135], "compat": [132, 135], "from_panda": [132, 135], "cleanup_cache_fil": [132, 135], "num_row": 132, "cast_column": [132, 135], "stratify_by_column": [132, 135], "seed": [132, 133, 135], "100": [132, 133, 134, 135], "lt": [132, 133, 134, 135], "139359": 132, "77": [132, 133], "straightforward": [132, 135], "maintain": [132, 135], "instanti": [132, 135], "line": [132, 135], "sgd": [132, 135], "logisit": [132, 135], "regress": [132, 135], "sgdclassif": [132, 135], "24": [132, 133, 135], "sgd_classifi": 132, "123": [132, 135], "verbos": [132, 135], "class_weight": 132, "balanc": 132, "mortalitypredict": [132, 135], "encapsul": [132, 135], "cohes": [132, 135], "structur": [132, 135], "smooth": [132, 135], "manag": [132, 135], "mortality_task": 132, "26": [132, 133, 135], "best": [132, 135], "hyperparamet": [132, 135], "search": [132, 135], "grid": [132, 135], "27": [132, 135], "alpha": 132, "0001": 132, "001": 132, "learning_r": [132, 135], "invscal": 132, "adapt": 132, "eta0": 132, "roc_auc": 132, "30": [132, 133, 135, 137], "103": 132, "wrapper": [132, 133, 135], "sk_model": [132, 135], "104": 132, "105": 132, "sgdclassifi": 132, "x27": [132, 135], "early_stop": 132, "loss": 132, "log_loss": 132, "rerun": [132, 135], "cell": [132, 135], "trust": [132, 135], "On": [132, 133, 135], "github": [132, 133, 135], "unabl": [132, 135], "render": [132, 135], "try": [132, 135], "page": [132, 135], "nbviewer": [132, 135], "sgdclassifiersgdclassifi": 132, "28": [132, 135], "model_param": [132, 135], "epsilon": 132, "fit_intercept": 132, "l1_ratio": 132, "max_it": 132, "n_iter_no_chang": 132, "n_job": [132, 135], "penalti": 132, "l2": 132, "power_t": 132, "tol": 132, "validation_fract": 132, "warm_start": 132, "29": [132, 133, 135], "y_pred": [132, 135], "only_predict": [132, 135], "len": [132, 133, 135], "184": 132, "8169": 132, "variou": [132, 135], "perspect": [132, 135], "metric_collect": [132, 135], "how": [132, 135], "certain": [132, 135], "70": [132, 133], "33": [132, 135], "fnr": [132, 135], "ber": [132, 135], "fairness_metric_collect": [132, 135], "34": [132, 135], "dataset_with_pr": [132, 135], "5491": 132, "7516": 132, "09": 132, "59083": 132, "gt": [132, 133, 135], "16610": 132, "12430": 132, "17639": 132, "11908": 132, "20516": 132, "04": [132, 133], "19368": 132, "right": [132, 135], "36": [132, 135], "results_flat": [132, 133, 135], "remove_metr": [132, 135], "plw2901": [132, 133, 135], "actual": [132, 133, 135], "known": [132, 133, 135], "measur": [132, 135], "lambda": [132, 133, 134, 135], "plotter": [132, 134, 135], "class_nam": [132, 135], "set_templ": [132, 135], "plotly_whit": [132, 135], "extract": [132, 135], "slice_result": [132, 135], "dict_kei": [132, 135], "roc_plot": [132, 135], "roc_curve_comparison": [132, 135], "femal": [132, 133, 134, 135], "overall_perform": [132, 135], "metric_valu": [132, 135], "41": [132, 135], "overall_performance_plot": [132, 135], "metrics_valu": [132, 135], "slice_metr": [132, 135], "43": [132, 133, 134, 135], "slice_metrics_plot": [132, 135], "metrics_comparison_bar": [132, 135], "comparison": [132, 133, 135], "44": [132, 133, 135], "reform": [132, 135], "fairness_result": [132, 135], "deepcopi": [132, 135], "fairness_metr": [132, 135], "group_siz": [132, 135], "fairness_plot": [132, 135], "metrics_comparison_scatt": [132, 135], "leverag": 132, "get_metrics_trend": 132, "gather": 132, "merg": [132, 135], "recent": 132, "wish": 132, "metrics_trend": 132, "purpos": 132, "three": 132, "dummi": 132, "demonstr": [132, 137], "trend": 132, "audienc": [132, 135], "organ": [132, 135], "store": [132, 135], "regulatory_requir": [132, 135], "46": [132, 133, 135], "todai": [132, 135], "releas": [132, 135], "team": [132, 135], "vectorinstitut": [132, 135], "email": [132, 133, 135], "ai": [132, 135], "linear_model": 132, "e501": [132, 135], "next": [132, 135], "use_cas": [132, 135], "These": [132, 135], "fairness_assess": [132, 135], "well": [132, 133, 135], "taken": [132, 135], "ethical_consider": [132, 135], "47": [132, 135], "clinician": [132, 135], "engin": [132, 135], "condit": 132, "improv": [132, 135], "bias": [132, 133, 135], "lead": [132, 135], "wors": [132, 135], "retrain": [132, 135], "below": [132, 135], "By": [132, 135], "folder": [132, 135], "report_path": [132, 133, 135], "heart_failure_report_period": 132, "_": [132, 135], "_model_card": [132, 135], "overview": [132, 135], "quantitative_analysi": [132, 135], "random": [132, 135], "view": [132, 133, 135, 137], "torchxrayvis": [133, 134], "functool": 133, "lambdad": [133, 134], "resiz": [133, 134], "densenet": [133, 134], "loader": [133, 134], "load_nihcxr": [133, 134], "apply_transform": 133, "generate_nihcxr_report": 133, "59": 133, "574719": 133, "65": [133, 134, 135], "232848": 133, "72": 133, "400": 133, "1883": 133, "80": [133, 135], "43209": 133, "42582": 133, "43274": 133, "82": 133, "44368": 133, "91": 133, "45186": 133, "43544": 133, "amp": [133, 135], "47416": 133, "58": [133, 135], "556126": 133, "226266": 133, "396": 133, "1785": 133, "41782": 133, "66": 133, "41657": 133, "96": [133, 135], "42470": 133, "71": 133, "43107": 133, "44339": 133, "42220": 133, "43116": 133, "570808": 133, "93": 133, "235595": 133, "383": 133, "1812": 133, "42574": 133, "41979": 133, "44208": 133, "43326": 133, "55": 133, "43806": 133, "42846": 133, "97": 133, "44972": 133, "52": 133, "56": [133, 135], "550144": 133, "81": [133, 135], "229447": 133, "411": 133, "1845": 133, "84": [133, 134], "42709": 133, "41488": 133, "78": 133, "42321": 133, "43213": 133, "42614": 133, "92": [133, 135], "43044": 133, "44622": 133, "clinical_dataset": [133, 134], "nih_d": [133, 134], "spatial_s": [133, 134], "224": [133, 134], "allow_missing_kei": [133, 134], "func": [133, 134], "1024": [133, 134], "newaxi": [133, 134], "densenet121": [133, 134], "res224": [133, 134], "No": 133, "adjust": 133, "113614": 133, "661": 133, "3288": 133, "int64": 133, "originalimag": 133, "width": [133, 135], "height": [133, 135], "originalimagepixelspac": 133, "unnam": 133, "float32": 133, "__index_level_0__": 133, "multilabelpositivepredictivevalu": 133, "registry_kei": 133, "positive_predictive_valu": 133, "def": [133, 135], "super": 133, "overrid": 133, "_final_st": 133, "multilabelnegativepredictivevalu": 133, "negative_predictive_valu": 133, "ppv": 133, "npv": 133, "nih_eval_results_gend": 133, "43129": 133, "33066": 133, "44105": 133, "62": 133, "nih_eval_results_ag": 133, "47537": 133, "51": 133, "45093": 133, "45813": 133, "38930": 133, "45141": 133, "90": [133, 135], "45507": 133, "44554": 133, "39816": 133, "46799": 133, "46125": 133, "76": 133, "male": [133, 134], "1200": 133, "600": [133, 135], "showlegend": 133, "bar": [133, 135], "slice_": 133, "itr": 133, "enumer": 133, "among": 133, "112": [133, 137], "120": [133, 137], "frontal": [133, 137], "805": [133, 137], "fourteen": 133, "mine": 133, "radiolog": 133, "pleural": 133, "thicken": 133, "remain": 133, "arxiv": 133, "ab": 133, "2111": 133, "00595": 133, "inproceed": 133, "cohen2022xrv": 133, "cohen": 133, "joseph": 133, "paul": 133, "viviano": 133, "bertin": 133, "morrison": 133, "torabian": 133, "parsa": 133, "guarrera": 133, "matteo": 133, "lungren": 133, "matthew": 133, "chaudhari": 133, "akshai": 133, "brook": 133, "rupert": 133, "hashir": 133, "mohammad": 133, "bertrand": 133, "hadrien": 133, "booktitl": 133, "deep": 133, "mlmed": 133, "arxivid": 133, "cohen2020limit": 133, "cross": 133, "domain": 133, "autom": [133, 135], "2002": 133, "02497": 133, "medicin": 133, "lab": 133, "josephpcohen": 133, "radiologist": 133, "scientist": 133, "inabl": 133, "addition": 133, "poor": 133, "qualiti": 133, "artifact": 133, "geograph": 133, "region": 133, "ethic": 133, "ensur": 133, "divers": 133, "regularli": 133, "human": 133, "expertis": 133, "address": 133, "rare": 133, "nihcxr_report_period": 133, "detector": 134, "reductor": 134, "tstester": 134, "plot_drift_experi": 134, "plot_drift_timeseri": 134, "shifter": 134, "source_d": 134, "target_d": 134, "25596": 134, "61622": 134, "dr_method": 134, "bbse": 134, "soft": 134, "txrv": 134, "ae": 134, "sensitivity_test": 134, "tester": 134, "tester_method": 134, "source_sample_s": 134, "target_sample_s": 134, "num_run": 134, "detect_shift": 134, "chexpert": 134, "chex": 134, "padchest": 134, "pc": 134, "source_slic": 134, "target_slic": 134, "48963": 134, "48737": 134, "48178": 134, "74": 134, "47483": 134, "49872": 134, "50100": 134, "48311": 134, "49791": 134, "rolling_window_drift": 134, "timestamp_column": 134, "window_s": 134, "4w": 134, "longer": 135, "v3": 135, "instruct": 135, "etl": 135, "postgr": 135, "cycqueri": 135, "op": 135, "qo": 135, "graph_object": 135, "datasetqueri": 135, "num_dai": 135, "querier": 135, "dbm": 135, "postgresql": 135, "port": 135, "5432": 135, "host": 135, "localhost": 135, "synthea_demo": 135, "password": 135, "pwd": 135, "get_encount": 135, "nativ": 135, "sequenti": 135, "renam": 135, "patient_id": 135, "birthdat": 135, "race": 135, "ethnic": 135, "patient_encount": 135, "isout": 135, "encounter_id": 135, "extracttimestampcompon": 135, "start_year": 135, "birthdate_year": 135, "addcolumn": 135, "new_col_label": 135, "stop": 135, "lo": 135, "conditiongreaterthan": 135, "conditionlessthan": 135, "get_observ": 135, "cohort": 135, "conditionin": 135, "categori": 135, "vital": 135, "conditionequ": 135, "groupby_op": 135, "groupbyaggreg": 135, "n_ob": 135, "observations_count": 135, "observations_stat": 135, "pivot_t": 135, "aggfunc": 135, "max": 135, "add_prefix": 135, "obs_": 135, "get_med": 135, "n_med": 135, "get_procedur": 135, "procedur": [135, 137], "n_procedur": 135, "run_queri": 135, "cohort_queri": 135, "to_merg": 135, "extend": 135, "append": 135, "to_merge_df": 135, "639": 135, "orm": 135, "readi": 135, "733": 135, "successfulli": 135, "finish": 135, "execut": 135, "570902": 135, "542": 135, "544": 135, "809629": 135, "584": 135, "585": 135, "167578": 135, "815": 135, "816": 135, "225515": 135, "900": 135, "901": 135, "085219": 135, "list_column": 135, "payer": 135, "encounterclass": 135, "base_encounter_cost": 135, "total_claim_cost": 135, "payer_coverag": 135, "reasoncod": 135, "reasondescript": 135, "null_count": 135, "isnul": 135, "respect": 135, "larger": 135, "thresh_nan": 135, "dropna": 135, "thresh": 135, "length_of_stai": 135, "length_of_stay_count": 135, "length_of_stay_kei": 135, "5573997233748271": 135, "obs_alanin": 135, "aminotransferas": 135, "enzymat": 135, "volum": 135, "serum": 135, "plasma": 135, "obs_albumin": 135, "obs_alkalin": 135, "phosphatas": 135, "obs_aspart": 135, "obs_bilirubin": 135, "obs_bodi": 135, "obs_calcium": 135, "obs_carbon": 135, "dioxid": 135, "mole": 135, "obs_chlorid": 135, "obs_creatinin": 135, "obs_diastol": 135, "blood": 135, "pressur": 135, "obs_erythrocyt": 135, "obs_ferritin": 135, "obs_glomerular": 135, "filtrat": 135, "73": 135, "sq": 135, "obs_glucos": 135, "obs_hematocrit": 135, "obs_hemoglobin": 135, "obs_leukocyt": 135, "obs_mch": 135, "entit": 135, "obs_mchc": 135, "obs_mcv": 135, "obs_oxygen": 135, "satur": 135, "arteri": 135, "obs_platelet": 135, "obs_potassium": 135, "obs_protein": 135, "obs_sodium": 135, "obs_systol": 135, "obs_troponin": 135, "cardiac": 135, "obs_urea": 135, "nitrogen": 135, "1126": 135, "198711": 135, "sllearn": 135, "xgb_classifi": 135, "los_task": 135, "n_estim": 135, "250": 135, "500": 135, "max_depth": 135, "reg_lambda": 135, "colsample_bytre": 135, "gamma": 135, "407": 135, "408": 135, "409": 135, "410": 135, "xgbclassifi": 135, "base_scor": 135, "booster": 135, "callback": 135, "colsample_bylevel": 135, "colsample_bynod": 135, "early_stopping_round": 135, "enable_categor": 135, "eval_metr": 135, "logloss": 135, "feature_typ": 135, "gpu_id": 135, "grow_polici": 135, "importance_typ": 135, "interaction_constraint": 135, "max_bin": 135, "max_cat_threshold": 135, "max_cat_to_onehot": 135, "max_delta_step": 135, "max_leav": 135, "min_child_weight": 135, "miss": 135, "monotone_constraint": 135, "num_parallel_tre": 135, "predictor": 135, "xgbclassifierxgbclassifi": 135, "logist": 135, "use_label_encod": 135, "reg_alpha": 135, "sampling_method": 135, "scale_pos_weight": 135, "subsampl": 135, "tree_method": 135, "validate_paramet": 135, "226": 135, "4202": 135, "2469": 135, "3766": 135, "61274": 135, "7772": 135, "8877": 135, "8219": 135, "99": 135, "8451": 135, "8763": 135, "7653": 135, "7818": 135, "7408": 135, "4477": 135, "8098": 135, "8521739130434782": 135, "9803921568627451": 135, "7575757575757576": 135, "8547008547008547": 135, "9531539888682745": 135, "8035714285714286": 135, "9230769230769231": 135, "7272727272727273": 135, "8135593220338984": 135, "8669301712779973": 135, "8629032258064516": 135, "7926829268292683": 135, "8843537414965986": 135, "9339430894308942": 135, "8529411764705882": 135, "9285714285714286": 135, "8253968253968254": 135, "8739495798319328": 135, "933048433048433": 135, "8584070796460177": 135, "9669421487603306": 135, "8068965517241379": 135, "8796992481203008": 135, "9315879097488293": 135, "xgboost": 135, "python_api": 135, "length_of_stay_report_period": 135, "statist": 136, "goal": 137}, "objects": {"cyclops": [[126, 0, 0, "-", "data"], [127, 0, 0, "-", "evaluate"], [128, 0, 0, "-", "monitor"], [129, 0, 0, "-", "report"], [130, 0, 0, "-", "tasks"]], "cyclops.data": [[126, 0, 0, "-", "features"], [6, 0, 0, "-", "slicer"]], "cyclops.data.features": [[4, 0, 0, "-", "medical_image"]], "cyclops.data.features.medical_image": [[5, 1, 1, "", "MedicalImage"]], "cyclops.data.features.medical_image.MedicalImage": [[5, 2, 1, "", "__call__"], [5, 2, 1, "", "cast_storage"], [5, 2, 1, "", "decode_example"], [5, 2, 1, "", "embed_storage"], [5, 2, 1, "", "encode_example"], [5, 2, 1, "", "flatten"]], "cyclops.data.slicer": [[7, 1, 1, "", "SliceSpec"], [8, 4, 1, "", "compound_filter"], [9, 4, 1, "", "filter_datetime"], [10, 4, 1, "", "filter_non_null"], [11, 4, 1, "", "filter_range"], [12, 4, 1, "", "filter_string_contains"], [13, 4, 1, "", "filter_value"], [14, 4, 1, "", "is_datetime"], [15, 4, 1, "", "overall"]], "cyclops.data.slicer.SliceSpec": [[7, 3, 1, "", "_registry"], [7, 2, 1, "", "add_slice_spec"], [7, 3, 1, "", "column_names"], [7, 2, 1, "", "get_slices"], [7, 3, 1, "", "include_overall"], [7, 2, 1, "", "slices"], [7, 3, 1, "", "spec_list"], [7, 3, 1, "", "validate"]], "cyclops.evaluate": [[16, 0, 0, "-", "evaluator"], [127, 0, 0, "-", "fairness"], [127, 0, 0, "-", "metrics"]], "cyclops.evaluate.evaluator": [[17, 4, 1, "", "evaluate"]], "cyclops.evaluate.fairness": [[18, 0, 0, "-", "config"], [20, 0, 0, "-", "evaluator"]], "cyclops.evaluate.fairness.config": [[19, 1, 1, "", "FairnessConfig"]], "cyclops.evaluate.fairness.evaluator": [[21, 4, 1, "", "evaluate_fairness"], [22, 4, 1, "", "warn_too_many_unique_values"]], "cyclops.evaluate.metrics": [[23, 0, 0, "-", "accuracy"], [28, 0, 0, "-", "auroc"], [33, 0, 0, "-", "f_beta"], [42, 0, 0, "-", "factory"], [127, 0, 0, "-", "functional"], [73, 0, 0, "-", "metric"], [77, 0, 0, "-", "precision_recall"], [86, 0, 0, "-", "precision_recall_curve"], [91, 0, 0, "-", "roc"], [96, 0, 0, "-", "sensitivity"], [101, 0, 0, "-", "specificity"], [106, 0, 0, "-", "stat_scores"]], "cyclops.evaluate.metrics.accuracy": [[24, 1, 1, "", "Accuracy"], [25, 1, 1, "", "BinaryAccuracy"], [26, 1, 1, "", "MulticlassAccuracy"], [27, 1, 1, "", "MultilabelAccuracy"]], "cyclops.evaluate.metrics.accuracy.Accuracy": [[24, 2, 1, "", "__add__"], [24, 2, 1, "", "__call__"], [24, 2, 1, "", "__init__"], [24, 2, 1, "", "__mul__"], [24, 2, 1, "", "add_state"], [24, 2, 1, "", "clone"], [24, 2, 1, "", "compute"], [24, 2, 1, "", "reset_state"], [24, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.accuracy.BinaryAccuracy": [[25, 2, 1, "", "__add__"], [25, 2, 1, "", "__call__"], [25, 2, 1, "", "__init__"], [25, 2, 1, "", "__mul__"], [25, 2, 1, "", "add_state"], [25, 2, 1, "", "clone"], [25, 2, 1, "", "compute"], [25, 2, 1, "", "reset_state"], [25, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy": [[26, 2, 1, "", "__add__"], [26, 2, 1, "", "__call__"], [26, 2, 1, "", "__init__"], [26, 2, 1, "", "__mul__"], [26, 2, 1, "", "add_state"], [26, 2, 1, "", "clone"], [26, 2, 1, "", "compute"], [26, 2, 1, "", "reset_state"], [26, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy": [[27, 2, 1, "", "__add__"], [27, 2, 1, "", "__call__"], [27, 2, 1, "", "__init__"], [27, 2, 1, "", "__mul__"], [27, 2, 1, "", "add_state"], [27, 2, 1, "", "clone"], [27, 2, 1, "", "compute"], [27, 2, 1, "", "reset_state"], [27, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.auroc": [[29, 1, 1, "", "AUROC"], [30, 1, 1, "", "BinaryAUROC"], [31, 1, 1, "", "MulticlassAUROC"], [32, 1, 1, "", "MultilabelAUROC"]], "cyclops.evaluate.metrics.auroc.AUROC": [[29, 2, 1, "", "__add__"], [29, 2, 1, "", "__call__"], [29, 2, 1, "", "__init__"], [29, 2, 1, "", "__mul__"], [29, 2, 1, "", "add_state"], [29, 2, 1, "", "clone"], [29, 2, 1, "", "compute"], [29, 2, 1, "", "reset_state"], [29, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.auroc.BinaryAUROC": [[30, 2, 1, "", "__add__"], [30, 2, 1, "", "__call__"], [30, 2, 1, "", "__init__"], [30, 2, 1, "", "__mul__"], [30, 2, 1, "", "add_state"], [30, 2, 1, "", "clone"], [30, 2, 1, "", "compute"], [30, 2, 1, "", "reset_state"], [30, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.auroc.MulticlassAUROC": [[31, 2, 1, "", "__add__"], [31, 2, 1, "", "__call__"], [31, 2, 1, "", "__init__"], [31, 2, 1, "", "__mul__"], [31, 2, 1, "", "add_state"], [31, 2, 1, "", "clone"], [31, 2, 1, "", "compute"], [31, 2, 1, "", "reset_state"], [31, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.auroc.MultilabelAUROC": [[32, 2, 1, "", "__add__"], [32, 2, 1, "", "__call__"], [32, 2, 1, "", "__init__"], [32, 2, 1, "", "__mul__"], [32, 2, 1, "", "add_state"], [32, 2, 1, "", "clone"], [32, 2, 1, "", "compute"], [32, 2, 1, "", "reset_state"], [32, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta": [[34, 1, 1, "", "BinaryF1Score"], [35, 1, 1, "", "BinaryFbetaScore"], [36, 1, 1, "", "F1Score"], [37, 1, 1, "", "FbetaScore"], [38, 1, 1, "", "MulticlassF1Score"], [39, 1, 1, "", "MulticlassFbetaScore"], [40, 1, 1, "", "MultilabelF1Score"], [41, 1, 1, "", "MultilabelFbetaScore"]], "cyclops.evaluate.metrics.f_beta.BinaryF1Score": [[34, 2, 1, "", "__add__"], [34, 2, 1, "", "__call__"], [34, 2, 1, "", "__init__"], [34, 2, 1, "", "__mul__"], [34, 2, 1, "", "add_state"], [34, 2, 1, "", "clone"], [34, 2, 1, "", "compute"], [34, 2, 1, "", "reset_state"], [34, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore": [[35, 2, 1, "", "__add__"], [35, 2, 1, "", "__call__"], [35, 2, 1, "", "__init__"], [35, 2, 1, "", "__mul__"], [35, 2, 1, "", "add_state"], [35, 2, 1, "", "clone"], [35, 2, 1, "", "compute"], [35, 2, 1, "", "reset_state"], [35, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.F1Score": [[36, 2, 1, "", "__add__"], [36, 2, 1, "", "__call__"], [36, 2, 1, "", "__init__"], [36, 2, 1, "", "__mul__"], [36, 2, 1, "", "add_state"], [36, 2, 1, "", "clone"], [36, 2, 1, "", "compute"], [36, 2, 1, "", "reset_state"], [36, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.FbetaScore": [[37, 2, 1, "", "__add__"], [37, 2, 1, "", "__call__"], [37, 2, 1, "", "__init__"], [37, 2, 1, "", "__mul__"], [37, 2, 1, "", "add_state"], [37, 2, 1, "", "clone"], [37, 2, 1, "", "compute"], [37, 2, 1, "", "reset_state"], [37, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.MulticlassF1Score": [[38, 2, 1, "", "__add__"], [38, 2, 1, "", "__call__"], [38, 2, 1, "", "__init__"], [38, 2, 1, "", "__mul__"], [38, 2, 1, "", "add_state"], [38, 2, 1, "", "clone"], [38, 2, 1, "", "compute"], [38, 2, 1, "", "reset_state"], [38, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore": [[39, 2, 1, "", "__add__"], [39, 2, 1, "", "__call__"], [39, 2, 1, "", "__init__"], [39, 2, 1, "", "__mul__"], [39, 2, 1, "", "add_state"], [39, 2, 1, "", "clone"], [39, 2, 1, "", "compute"], [39, 2, 1, "", "reset_state"], [39, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.MultilabelF1Score": [[40, 2, 1, "", "__add__"], [40, 2, 1, "", "__call__"], [40, 2, 1, "", "__init__"], [40, 2, 1, "", "__mul__"], [40, 2, 1, "", "add_state"], [40, 2, 1, "", "clone"], [40, 2, 1, "", "compute"], [40, 2, 1, "", "reset_state"], [40, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore": [[41, 2, 1, "", "__add__"], [41, 2, 1, "", "__call__"], [41, 2, 1, "", "__init__"], [41, 2, 1, "", "__mul__"], [41, 2, 1, "", "add_state"], [41, 2, 1, "", "clone"], [41, 2, 1, "", "compute"], [41, 2, 1, "", "reset_state"], [41, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.factory": [[43, 4, 1, "", "create_metric"]], "cyclops.evaluate.metrics.functional": [[44, 0, 0, "-", "accuracy"], [45, 0, 0, "-", "auroc"], [46, 0, 0, "-", "f_beta"], [55, 0, 0, "-", "precision_recall"], [64, 0, 0, "-", "precision_recall_curve"], [65, 0, 0, "-", "roc"], [70, 0, 0, "-", "sensitivity"], [71, 0, 0, "-", "specificity"], [72, 0, 0, "-", "stat_scores"]], "cyclops.evaluate.metrics.functional.f_beta": [[47, 4, 1, "", "binary_f1_score"], [48, 4, 1, "", "binary_fbeta_score"], [49, 4, 1, "", "f1_score"], [50, 4, 1, "", "fbeta_score"], [51, 4, 1, "", "multiclass_f1_score"], [52, 4, 1, "", "multiclass_fbeta_score"], [53, 4, 1, "", "multilabel_f1_score"], [54, 4, 1, "", "multilabel_fbeta_score"]], "cyclops.evaluate.metrics.functional.precision_recall": [[56, 4, 1, "", "binary_precision"], [57, 4, 1, "", "binary_recall"], [58, 4, 1, "", "multiclass_precision"], [59, 4, 1, "", "multiclass_recall"], [60, 4, 1, "", "multilabel_precision"], [61, 4, 1, "", "multilabel_recall"], [62, 4, 1, "", "precision"], [63, 4, 1, "", "recall"]], "cyclops.evaluate.metrics.functional.roc": [[66, 4, 1, "", "binary_roc_curve"], [67, 4, 1, "", "multiclass_roc_curve"], [68, 4, 1, "", "multilabel_roc_curve"], [69, 4, 1, "", "roc_curve"]], "cyclops.evaluate.metrics.metric": [[74, 1, 1, "", "Metric"], [75, 1, 1, "", "MetricCollection"], [76, 1, 1, "", "OperatorMetric"]], "cyclops.evaluate.metrics.metric.Metric": [[74, 2, 1, "", "__add__"], [74, 2, 1, "", "__call__"], [74, 2, 1, "", "__init__"], [74, 2, 1, "", "__mul__"], [74, 2, 1, "", "add_state"], [74, 2, 1, "", "clone"], [74, 2, 1, "", "compute"], [74, 2, 1, "", "reset_state"], [74, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.metric.MetricCollection": [[75, 2, 1, "", "__call__"], [75, 2, 1, "", "__init__"], [75, 2, 1, "", "add_metrics"], [75, 2, 1, "", "clear"], [75, 2, 1, "", "clone"], [75, 2, 1, "", "compute"], [75, 2, 1, "", "get"], [75, 2, 1, "", "items"], [75, 2, 1, "", "keys"], [75, 2, 1, "", "pop"], [75, 2, 1, "", "popitem"], [75, 2, 1, "", "reset_state"], [75, 2, 1, "", "setdefault"], [75, 2, 1, "", "update"], [75, 2, 1, "", "update_state"], [75, 2, 1, "", "values"]], "cyclops.evaluate.metrics.metric.OperatorMetric": [[76, 2, 1, "", "__add__"], [76, 2, 1, "", "__call__"], [76, 2, 1, "", "__init__"], [76, 2, 1, "", "__mul__"], [76, 2, 1, "", "add_state"], [76, 2, 1, "", "clone"], [76, 2, 1, "", "compute"], [76, 2, 1, "", "reset_state"], [76, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall": [[78, 1, 1, "", "BinaryPrecision"], [79, 1, 1, "", "BinaryRecall"], [80, 1, 1, "", "MulticlassPrecision"], [81, 1, 1, "", "MulticlassRecall"], [82, 1, 1, "", "MultilabelPrecision"], [83, 1, 1, "", "MultilabelRecall"], [84, 1, 1, "", "Precision"], [85, 1, 1, "", "Recall"]], "cyclops.evaluate.metrics.precision_recall.BinaryPrecision": [[78, 2, 1, "", "__add__"], [78, 2, 1, "", "__call__"], [78, 2, 1, "", "__init__"], [78, 2, 1, "", "__mul__"], [78, 2, 1, "", "add_state"], [78, 2, 1, "", "clone"], [78, 2, 1, "", "compute"], [78, 2, 1, "", "reset_state"], [78, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.BinaryRecall": [[79, 2, 1, "", "__add__"], [79, 2, 1, "", "__call__"], [79, 2, 1, "", "__init__"], [79, 2, 1, "", "__mul__"], [79, 2, 1, "", "add_state"], [79, 2, 1, "", "clone"], [79, 2, 1, "", "compute"], [79, 2, 1, "", "reset_state"], [79, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision": [[80, 2, 1, "", "__add__"], [80, 2, 1, "", "__call__"], [80, 2, 1, "", "__init__"], [80, 2, 1, "", "__mul__"], [80, 2, 1, "", "add_state"], [80, 2, 1, "", "clone"], [80, 2, 1, "", "compute"], [80, 2, 1, "", "reset_state"], [80, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.MulticlassRecall": [[81, 2, 1, "", "__add__"], [81, 2, 1, "", "__call__"], [81, 2, 1, "", "__init__"], [81, 2, 1, "", "__mul__"], [81, 2, 1, "", "add_state"], [81, 2, 1, "", "clone"], [81, 2, 1, "", "compute"], [81, 2, 1, "", "reset_state"], [81, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision": [[82, 2, 1, "", "__add__"], [82, 2, 1, "", "__call__"], [82, 2, 1, "", "__init__"], [82, 2, 1, "", "__mul__"], [82, 2, 1, "", "add_state"], [82, 2, 1, "", "clone"], [82, 2, 1, "", "compute"], [82, 2, 1, "", "reset_state"], [82, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.MultilabelRecall": [[83, 2, 1, "", "__add__"], [83, 2, 1, "", "__call__"], [83, 2, 1, "", "__init__"], [83, 2, 1, "", "__mul__"], [83, 2, 1, "", "add_state"], [83, 2, 1, "", "clone"], [83, 2, 1, "", "compute"], [83, 2, 1, "", "reset_state"], [83, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.Precision": [[84, 2, 1, "", "__add__"], [84, 2, 1, "", "__call__"], [84, 2, 1, "", "__init__"], [84, 2, 1, "", "__mul__"], [84, 2, 1, "", "add_state"], [84, 2, 1, "", "clone"], [84, 2, 1, "", "compute"], [84, 2, 1, "", "reset_state"], [84, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.Recall": [[85, 2, 1, "", "__add__"], [85, 2, 1, "", "__call__"], [85, 2, 1, "", "__init__"], [85, 2, 1, "", "__mul__"], [85, 2, 1, "", "add_state"], [85, 2, 1, "", "clone"], [85, 2, 1, "", "compute"], [85, 2, 1, "", "reset_state"], [85, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall_curve": [[87, 1, 1, "", "BinaryPrecisionRecallCurve"], [88, 1, 1, "", "MulticlassPrecisionRecallCurve"], [89, 1, 1, "", "MultilabelPrecisionRecallCurve"], [90, 1, 1, "", "PrecisionRecallCurve"]], "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve": [[87, 2, 1, "", "__add__"], [87, 2, 1, "", "__call__"], [87, 2, 1, "", "__init__"], [87, 2, 1, "", "__mul__"], [87, 2, 1, "", "add_state"], [87, 2, 1, "", "clone"], [87, 2, 1, "", "compute"], [87, 2, 1, "", "reset_state"], [87, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve": [[88, 2, 1, "", "__add__"], [88, 2, 1, "", "__call__"], [88, 2, 1, "", "__init__"], [88, 2, 1, "", "__mul__"], [88, 2, 1, "", "add_state"], [88, 2, 1, "", "clone"], [88, 2, 1, "", "compute"], [88, 2, 1, "", "reset_state"], [88, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve": [[89, 2, 1, "", "__add__"], [89, 2, 1, "", "__call__"], [89, 2, 1, "", "__init__"], [89, 2, 1, "", "__mul__"], [89, 2, 1, "", "add_state"], [89, 2, 1, "", "clone"], [89, 2, 1, "", "compute"], [89, 2, 1, "", "reset_state"], [89, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve": [[90, 2, 1, "", "__add__"], [90, 2, 1, "", "__call__"], [90, 2, 1, "", "__init__"], [90, 2, 1, "", "__mul__"], [90, 2, 1, "", "add_state"], [90, 2, 1, "", "clone"], [90, 2, 1, "", "compute"], [90, 2, 1, "", "reset_state"], [90, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.roc": [[92, 1, 1, "", "BinaryROCCurve"], [93, 1, 1, "", "MulticlassROCCurve"], [94, 1, 1, "", "MultilabelROCCurve"], [95, 1, 1, "", "ROCCurve"]], "cyclops.evaluate.metrics.roc.BinaryROCCurve": [[92, 2, 1, "", "__add__"], [92, 2, 1, "", "__call__"], [92, 2, 1, "", "__init__"], [92, 2, 1, "", "__mul__"], [92, 2, 1, "", "add_state"], [92, 2, 1, "", "clone"], [92, 2, 1, "", "compute"], [92, 2, 1, "", "reset_state"], [92, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.roc.MulticlassROCCurve": [[93, 2, 1, "", "__add__"], [93, 2, 1, "", "__call__"], [93, 2, 1, "", "__init__"], [93, 2, 1, "", "__mul__"], [93, 2, 1, "", "add_state"], [93, 2, 1, "", "clone"], [93, 2, 1, "", "compute"], [93, 2, 1, "", "reset_state"], [93, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.roc.MultilabelROCCurve": [[94, 2, 1, "", "__add__"], [94, 2, 1, "", "__call__"], [94, 2, 1, "", "__init__"], [94, 2, 1, "", "__mul__"], [94, 2, 1, "", "add_state"], [94, 2, 1, "", "clone"], [94, 2, 1, "", "compute"], [94, 2, 1, "", "reset_state"], [94, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.roc.ROCCurve": [[95, 2, 1, "", "__add__"], [95, 2, 1, "", "__call__"], [95, 2, 1, "", "__init__"], [95, 2, 1, "", "__mul__"], [95, 2, 1, "", "add_state"], [95, 2, 1, "", "clone"], [95, 2, 1, "", "compute"], [95, 2, 1, "", "reset_state"], [95, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.sensitivity": [[97, 1, 1, "", "BinarySensitivity"], [98, 1, 1, "", "MulticlassSensitivity"], [99, 1, 1, "", "MultilabelSensitivity"], [100, 1, 1, "", "Sensitivity"]], "cyclops.evaluate.metrics.sensitivity.BinarySensitivity": [[97, 2, 1, "", "__add__"], [97, 2, 1, "", "__call__"], [97, 2, 1, "", "__init__"], [97, 2, 1, "", "__mul__"], [97, 2, 1, "", "add_state"], [97, 2, 1, "", "clone"], [97, 2, 1, "", "compute"], [97, 2, 1, "", "reset_state"], [97, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity": [[98, 2, 1, "", "__add__"], [98, 2, 1, "", "__call__"], [98, 2, 1, "", "__init__"], [98, 2, 1, "", "__mul__"], [98, 2, 1, "", "add_state"], [98, 2, 1, "", "clone"], [98, 2, 1, "", "compute"], [98, 2, 1, "", "reset_state"], [98, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity": [[99, 2, 1, "", "__add__"], [99, 2, 1, "", "__call__"], [99, 2, 1, "", "__init__"], [99, 2, 1, "", "__mul__"], [99, 2, 1, "", "add_state"], [99, 2, 1, "", "clone"], [99, 2, 1, "", "compute"], [99, 2, 1, "", "reset_state"], [99, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.sensitivity.Sensitivity": [[100, 2, 1, "", "__add__"], [100, 2, 1, "", "__call__"], [100, 2, 1, "", "__init__"], [100, 2, 1, "", "__mul__"], [100, 2, 1, "", "add_state"], [100, 2, 1, "", "clone"], [100, 2, 1, "", "compute"], [100, 2, 1, "", "reset_state"], [100, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.specificity": [[102, 1, 1, "", "BinarySpecificity"], [103, 1, 1, "", "MulticlassSpecificity"], [104, 1, 1, "", "MultilabelSpecificity"], [105, 1, 1, "", "Specificity"]], "cyclops.evaluate.metrics.specificity.BinarySpecificity": [[102, 2, 1, "", "__add__"], [102, 2, 1, "", "__call__"], [102, 2, 1, "", "__init__"], [102, 2, 1, "", "__mul__"], [102, 2, 1, "", "add_state"], [102, 2, 1, "", "clone"], [102, 2, 1, "", "compute"], [102, 2, 1, "", "reset_state"], [102, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.specificity.MulticlassSpecificity": [[103, 2, 1, "", "__add__"], [103, 2, 1, "", "__call__"], [103, 2, 1, "", "__init__"], [103, 2, 1, "", "__mul__"], [103, 2, 1, "", "add_state"], [103, 2, 1, "", "clone"], [103, 2, 1, "", "compute"], [103, 2, 1, "", "reset_state"], [103, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.specificity.MultilabelSpecificity": [[104, 2, 1, "", "__add__"], [104, 2, 1, "", "__call__"], [104, 2, 1, "", "__init__"], [104, 2, 1, "", "__mul__"], [104, 2, 1, "", "add_state"], [104, 2, 1, "", "clone"], [104, 2, 1, "", "compute"], [104, 2, 1, "", "reset_state"], [104, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.specificity.Specificity": [[105, 2, 1, "", "__add__"], [105, 2, 1, "", "__call__"], [105, 2, 1, "", "__init__"], [105, 2, 1, "", "__mul__"], [105, 2, 1, "", "add_state"], [105, 2, 1, "", "clone"], [105, 2, 1, "", "compute"], [105, 2, 1, "", "reset_state"], [105, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.stat_scores": [[107, 1, 1, "", "BinaryStatScores"], [108, 1, 1, "", "MulticlassStatScores"], [109, 1, 1, "", "MultilabelStatScores"], [110, 1, 1, "", "StatScores"]], "cyclops.evaluate.metrics.stat_scores.BinaryStatScores": [[107, 2, 1, "", "__add__"], [107, 2, 1, "", "__call__"], [107, 2, 1, "", "__init__"], [107, 2, 1, "", "__mul__"], [107, 2, 1, "", "add_state"], [107, 2, 1, "", "clone"], [107, 2, 1, "", "compute"], [107, 2, 1, "", "reset_state"], [107, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores": [[108, 2, 1, "", "__add__"], [108, 2, 1, "", "__call__"], [108, 2, 1, "", "__init__"], [108, 2, 1, "", "__mul__"], [108, 2, 1, "", "add_state"], [108, 2, 1, "", "clone"], [108, 2, 1, "", "compute"], [108, 2, 1, "", "reset_state"], [108, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores": [[109, 2, 1, "", "__add__"], [109, 2, 1, "", "__call__"], [109, 2, 1, "", "__init__"], [109, 2, 1, "", "__mul__"], [109, 2, 1, "", "add_state"], [109, 2, 1, "", "clone"], [109, 2, 1, "", "compute"], [109, 2, 1, "", "reset_state"], [109, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.stat_scores.StatScores": [[110, 2, 1, "", "__add__"], [110, 2, 1, "", "__call__"], [110, 2, 1, "", "__init__"], [110, 2, 1, "", "__mul__"], [110, 2, 1, "", "add_state"], [110, 2, 1, "", "clone"], [110, 2, 1, "", "compute"], [110, 2, 1, "", "reset_state"], [110, 2, 1, "", "update_state"]], "cyclops.monitor": [[111, 0, 0, "-", "clinical_applicator"], [113, 0, 0, "-", "synthetic_applicator"]], "cyclops.monitor.clinical_applicator": [[112, 1, 1, "", "ClinicalShiftApplicator"]], "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator": [[112, 2, 1, "", "age"], [112, 2, 1, "", "apply_shift"], [112, 2, 1, "", "custom"], [112, 2, 1, "", "hospital_type"], [112, 2, 1, "", "month"], [112, 2, 1, "", "sex"], [112, 2, 1, "", "time"]], "cyclops.monitor.synthetic_applicator": [[114, 1, 1, "", "SyntheticShiftApplicator"], [115, 4, 1, "", "binary_noise_shift"], [116, 4, 1, "", "feature_association_shift"], [117, 4, 1, "", "feature_swap_shift"], [118, 4, 1, "", "gaussian_noise_shift"], [119, 4, 1, "", "knockout_shift"]], "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator": [[114, 2, 1, "", "apply_shift"]], "cyclops.report": [[120, 0, 0, "-", "report"]], "cyclops.report.report": [[121, 1, 1, "", "ModelCardReport"]], "cyclops.report.report.ModelCardReport": [[121, 2, 1, "", "export"], [121, 2, 1, "", "from_json_file"], [121, 2, 1, "", "log_citation"], [121, 2, 1, "", "log_dataset"], [121, 2, 1, "", "log_descriptor"], [121, 2, 1, "", "log_fairness_assessment"], [121, 2, 1, "", "log_from_dict"], [121, 2, 1, "", "log_image"], [121, 2, 1, "", "log_license"], [121, 2, 1, "", "log_model_parameters"], [121, 2, 1, "", "log_owner"], [121, 2, 1, "", "log_performance_metrics"], [121, 2, 1, "", "log_plotly_figure"], [121, 2, 1, "", "log_quantitative_analysis"], [121, 2, 1, "", "log_reference"], [121, 2, 1, "", "log_regulation"], [121, 2, 1, "", "log_risk"], [121, 2, 1, "", "log_use_case"], [121, 2, 1, "", "log_user"], [121, 2, 1, "", "log_version"]], "cyclops.tasks": [[122, 0, 0, "-", "cxr_classification"], [124, 0, 0, "-", "mortality_prediction"]], "cyclops.tasks.cxr_classification": [[123, 1, 1, "", "CXRClassificationTask"]], "cyclops.tasks.cxr_classification.CXRClassificationTask": [[123, 2, 1, "", "__init__"], [123, 2, 1, "", "add_model"], [123, 5, 1, "", "data_type"], [123, 2, 1, "", "evaluate"], [123, 2, 1, "", "get_model"], [123, 2, 1, "", "list_models"], [123, 5, 1, "", "models_count"], [123, 2, 1, "", "predict"], [123, 5, 1, "", "task_type"]], "cyclops.tasks.mortality_prediction": [[125, 1, 1, "", "MortalityPredictionTask"]], "cyclops.tasks.mortality_prediction.MortalityPredictionTask": [[125, 2, 1, "", "__init__"], [125, 2, 1, "", "add_model"], [125, 5, 1, "", "data_type"], [125, 2, 1, "", "evaluate"], [125, 2, 1, "", "get_model"], [125, 2, 1, "", "list_models"], [125, 2, 1, "", "list_models_params"], [125, 2, 1, "", "load_model"], [125, 5, 1, "", "models_count"], [125, 2, 1, "", "predict"], [125, 2, 1, "", "save_model"], [125, 5, 1, "", "task_type"], [125, 2, 1, "", "train"]]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:method", "3": "py:attribute", "4": "py:function", "5": "py:property"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "method", "Python method"], "3": ["py", "attribute", "Python attribute"], "4": ["py", "function", "Python function"], "5": ["py", "property", "Python property"]}, "titleterms": {"api": [0, 136], "refer": 0, "contribut": [1, 3], "cyclop": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "pre": 1, "commit": 1, "hook": 1, "code": 1, "guidelin": 1, "welcom": 2, "": 2, "document": [2, 3], "content": 2, "get": [3, 133], "start": 3, "instal": 3, "us": [3, 134, 137], "pip": 3, "develop": 3, "poetri": 3, "notebook": 3, "citat": 3, "data": [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 126, 132, 135, 137], "featur": [4, 5, 126, 132, 135], "medical_imag": [4, 5], "medicalimag": 5, "slicer": [6, 7, 8, 9, 10, 11, 12, 13, 14, 15], "slicespec": 7, "compound_filt": 8, "filter_datetim": 9, "filter_non_nul": 10, "filter_rang": 11, "filter_string_contain": 12, "filter_valu": 13, "is_datetim": 14, "overal": 15, "evalu": [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 127, 132, 135], "fair": [18, 19, 20, 21, 22, 127], "config": [18, 19], "fairnessconfig": 19, "evaluate_fair": 21, "warn_too_many_unique_valu": 22, "metric": [23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 127, 133], "accuraci": [23, 24, 25, 26, 27, 44], "binaryaccuraci": 25, "multiclassaccuraci": 26, "multilabelaccuraci": 27, "auroc": [28, 29, 30, 31, 32, 45, 133], "binaryauroc": 30, "multiclassauroc": 31, "multilabelauroc": 32, "f_beta": [33, 34, 35, 36, 37, 38, 39, 40, 41, 46, 47, 48, 49, 50, 51, 52, 53, 54], "binaryf1scor": 34, "binaryfbetascor": 35, "f1score": 36, "fbetascor": 37, "multiclassf1scor": 38, "multiclassfbetascor": 39, "multilabelf1scor": 40, "multilabelfbetascor": 41, "factori": [42, 43], "create_metr": 43, "function": [44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 127], "binary_f1_scor": 47, "binary_fbeta_scor": 48, "f1_score": 49, "fbeta_scor": 50, "multiclass_f1_scor": 51, "multiclass_fbeta_scor": 52, "multilabel_f1_scor": 53, "multilabel_fbeta_scor": 54, "precision_recal": [55, 56, 57, 58, 59, 60, 61, 62, 63, 77, 78, 79, 80, 81, 82, 83, 84, 85], "binary_precis": 56, "binary_recal": 57, "multiclass_precis": 58, "multiclass_recal": 59, "multilabel_precis": 60, "multilabel_recal": 61, "precis": [62, 84], "recal": [63, 85], "precision_recall_curv": [64, 86, 87, 88, 89, 90], "roc": [65, 66, 67, 68, 69, 91, 92, 93, 94, 95], "binary_roc_curv": 66, "multiclass_roc_curv": 67, "multilabel_roc_curv": 68, "roc_curv": 69, "sensit": [70, 96, 97, 98, 99, 100, 134], "specif": [71, 101, 102, 103, 104, 105], "stat_scor": [72, 106, 107, 108, 109, 110], "metriccollect": 75, "operatormetr": 76, "binaryprecis": 78, "binaryrecal": 79, "multiclassprecis": 80, "multiclassrecal": 81, "multilabelprecis": 82, "multilabelrecal": 83, "binaryprecisionrecallcurv": 87, "multiclassprecisionrecallcurv": 88, "multilabelprecisionrecallcurv": 89, "precisionrecallcurv": 90, "binaryroccurv": 92, "multiclassroccurv": 93, "multilabelroccurv": 94, "roccurv": 95, "binarysensit": 97, "multiclasssensit": 98, "multilabelsensit": 99, "binaryspecif": 102, "multiclassspecif": 103, "multilabelspecif": 104, "binarystatscor": 107, "multiclassstatscor": 108, "multilabelstatscor": 109, "statscor": 110, "monitor": [111, 112, 113, 114, 115, 116, 117, 118, 119, 128, 136], "clinical_appl": [111, 112], "clinicalshiftappl": 112, "synthetic_appl": [113, 114, 115, 116, 117, 118, 119], "syntheticshiftappl": 114, "binary_noise_shift": 115, "feature_association_shift": 116, "feature_swap_shift": 117, "gaussian_noise_shift": 118, "knockout_shift": 119, "report": [120, 121, 129, 132, 133, 135], "modelcardreport": 121, "task": [122, 123, 124, 125, 130, 132, 135], "cxr_classif": [122, 123], "cxrclassificationtask": 123, "mortality_predict": [124, 125], "mortalitypredictiontask": 125, "tutori": [131, 134], "heart": [132, 137], "failur": [132, 137], "predict": [132, 133, 135, 137], "import": [132, 133, 134, 135], "librari": [132, 133, 134, 135], "constant": [132, 135], "load": [132, 133, 134], "sex": [132, 133], "valu": 132, "ag": [132, 133, 135], "distribut": [132, 135], "outcom": [132, 135], "identifi": [132, 135], "type": [132, 135], "creat": [132, 135], "preprocessor": [132, 135], "hug": [132, 135], "face": [132, 135], "dataset": [132, 133, 134, 135], "model": [132, 133, 134, 135], "creation": [132, 135], "train": [132, 134, 135], "perform": [132, 133], "over": 132, "time": 132, "gener": [132, 133, 134, 135], "chest": [133, 137], "x": [133, 137], "rai": [133, 137], "diseas": 133, "classif": [133, 137], "histor": 133, "initi": 133, "period": 133, "multilabel": 133, "pathologi": 133, "log": 133, "test": [133, 134], "w": 133, "threshold": 133, "popul": 133, "card": 133, "field": 133, "nihcxr": 134, "clinic": 134, "drift": 134, "experi": 134, "exampl": [134, 137], "1": 134, "sourc": 134, "target": 134, "2": 134, "3": 134, "dimension": 134, "reduct": 134, "techniqu": 134, "differ": 134, "4": 134, "shift": 134, "5": 134, "roll": 134, "window": 134, "synthet": 134, "timestamp": 134, "biweekli": 134, "prolong": [135, 137], "length": [135, 137], "stai": [135, 137], "queri": 135, "comput": 135, "label": 135, "inspect": 135, "preprocess": 135, "drop": 135, "nan": 135, "base": 135, "nan_threshold": 135, "gender": 135, "case": 137, "tabular": 137, "kaggl": 137, "synthea": 137, "imag": 137, "nih": 137}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.todo": 2, "sphinx.ext.viewcode": 1, "sphinx.ext.intersphinx": 1, "nbsphinx": 4, "sphinx": 60}, "alltitles": {"API Reference": [[0, "api-reference"]], "Contributing to cyclops": [[1, "contributing-to-cyclops"]], "Pre-commit hooks": [[1, "pre-commit-hooks"]], "Coding guidelines": [[1, "coding-guidelines"]], "Welcome to cyclops\u2019s documentation!": [[2, "welcome-to-cyclops-s-documentation"]], "Contents:": [[2, null]], "\ud83d\udc23 Getting Started": [[3, "getting-started"]], "Installing cyclops using pip": [[3, "installing-cyclops-using-pip"]], "\ud83e\uddd1\ud83c\udfff\u200d\ud83d\udcbb Developing": [[3, "developing"]], "Using poetry": [[3, "using-poetry"]], "Contributing": [[3, "contributing"]], "\ud83d\udcda Documentation": [[3, "documentation"]], "\ud83d\udcd3 Notebooks": [[3, "notebooks"]], "\ud83c\udf93 Citation": [[3, "citation"]], "cyclops.data.features.medical_image": [[4, "module-cyclops.data.features.medical_image"]], "cyclops.data.features.medical_image.MedicalImage": [[5, "cyclops-data-features-medical-image-medicalimage"]], "cyclops.data.slicer": [[6, "module-cyclops.data.slicer"]], "cyclops.data.slicer.SliceSpec": [[7, "cyclops-data-slicer-slicespec"]], "cyclops.data.slicer.compound_filter": [[8, "cyclops-data-slicer-compound-filter"]], "cyclops.data.slicer.filter_datetime": [[9, "cyclops-data-slicer-filter-datetime"]], "cyclops.data.slicer.filter_non_null": [[10, "cyclops-data-slicer-filter-non-null"]], "cyclops.data.slicer.filter_range": [[11, "cyclops-data-slicer-filter-range"]], "cyclops.data.slicer.filter_string_contains": [[12, "cyclops-data-slicer-filter-string-contains"]], "cyclops.data.slicer.filter_value": [[13, "cyclops-data-slicer-filter-value"]], "cyclops.data.slicer.is_datetime": [[14, "cyclops-data-slicer-is-datetime"]], "cyclops.data.slicer.overall": [[15, "cyclops-data-slicer-overall"]], "cyclops.evaluate.evaluator": [[16, "module-cyclops.evaluate.evaluator"]], "cyclops.evaluate.evaluator.evaluate": [[17, "cyclops-evaluate-evaluator-evaluate"]], "cyclops.evaluate.fairness.config": [[18, "module-cyclops.evaluate.fairness.config"]], "cyclops.evaluate.fairness.config.FairnessConfig": [[19, "cyclops-evaluate-fairness-config-fairnessconfig"]], "cyclops.evaluate.fairness.evaluator": [[20, "module-cyclops.evaluate.fairness.evaluator"]], "cyclops.evaluate.fairness.evaluator.evaluate_fairness": [[21, "cyclops-evaluate-fairness-evaluator-evaluate-fairness"]], "cyclops.evaluate.fairness.evaluator.warn_too_many_unique_values": [[22, "cyclops-evaluate-fairness-evaluator-warn-too-many-unique-values"]], "cyclops.evaluate.metrics.accuracy": [[23, "module-cyclops.evaluate.metrics.accuracy"]], "cyclops.evaluate.metrics.accuracy.Accuracy": [[24, "cyclops-evaluate-metrics-accuracy-accuracy"]], "cyclops.evaluate.metrics.accuracy.BinaryAccuracy": [[25, "cyclops-evaluate-metrics-accuracy-binaryaccuracy"]], "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy": [[26, "cyclops-evaluate-metrics-accuracy-multiclassaccuracy"]], "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy": [[27, "cyclops-evaluate-metrics-accuracy-multilabelaccuracy"]], "cyclops.evaluate.metrics.auroc": [[28, "module-cyclops.evaluate.metrics.auroc"]], "cyclops.evaluate.metrics.auroc.AUROC": [[29, "cyclops-evaluate-metrics-auroc-auroc"]], "cyclops.evaluate.metrics.auroc.BinaryAUROC": [[30, "cyclops-evaluate-metrics-auroc-binaryauroc"]], "cyclops.evaluate.metrics.auroc.MulticlassAUROC": [[31, "cyclops-evaluate-metrics-auroc-multiclassauroc"]], "cyclops.evaluate.metrics.auroc.MultilabelAUROC": [[32, "cyclops-evaluate-metrics-auroc-multilabelauroc"]], "cyclops.evaluate.metrics.f_beta": [[33, "module-cyclops.evaluate.metrics.f_beta"]], "cyclops.evaluate.metrics.f_beta.BinaryF1Score": [[34, "cyclops-evaluate-metrics-f-beta-binaryf1score"]], "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore": [[35, "cyclops-evaluate-metrics-f-beta-binaryfbetascore"]], "cyclops.evaluate.metrics.f_beta.F1Score": [[36, "cyclops-evaluate-metrics-f-beta-f1score"]], "cyclops.evaluate.metrics.f_beta.FbetaScore": [[37, "cyclops-evaluate-metrics-f-beta-fbetascore"]], "cyclops.evaluate.metrics.f_beta.MulticlassF1Score": [[38, "cyclops-evaluate-metrics-f-beta-multiclassf1score"]], "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore": [[39, "cyclops-evaluate-metrics-f-beta-multiclassfbetascore"]], "cyclops.evaluate.metrics.f_beta.MultilabelF1Score": [[40, "cyclops-evaluate-metrics-f-beta-multilabelf1score"]], "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore": [[41, "cyclops-evaluate-metrics-f-beta-multilabelfbetascore"]], "cyclops.evaluate.metrics.factory": [[42, "module-cyclops.evaluate.metrics.factory"]], "cyclops.evaluate.metrics.factory.create_metric": [[43, "cyclops-evaluate-metrics-factory-create-metric"]], "cyclops.evaluate.metrics.functional.accuracy": [[44, "module-cyclops.evaluate.metrics.functional.accuracy"]], "cyclops.evaluate.metrics.functional.auroc": [[45, "module-cyclops.evaluate.metrics.functional.auroc"]], "cyclops.evaluate.metrics.functional.f_beta": [[46, "module-cyclops.evaluate.metrics.functional.f_beta"]], "cyclops.evaluate.metrics.functional.f_beta.binary_f1_score": [[47, "cyclops-evaluate-metrics-functional-f-beta-binary-f1-score"]], "cyclops.evaluate.metrics.functional.f_beta.binary_fbeta_score": [[48, "cyclops-evaluate-metrics-functional-f-beta-binary-fbeta-score"]], "cyclops.evaluate.metrics.functional.f_beta.f1_score": [[49, "cyclops-evaluate-metrics-functional-f-beta-f1-score"]], "cyclops.evaluate.metrics.functional.f_beta.fbeta_score": [[50, "cyclops-evaluate-metrics-functional-f-beta-fbeta-score"]], "cyclops.evaluate.metrics.functional.f_beta.multiclass_f1_score": [[51, "cyclops-evaluate-metrics-functional-f-beta-multiclass-f1-score"]], "cyclops.evaluate.metrics.functional.f_beta.multiclass_fbeta_score": [[52, "cyclops-evaluate-metrics-functional-f-beta-multiclass-fbeta-score"]], "cyclops.evaluate.metrics.functional.f_beta.multilabel_f1_score": [[53, "cyclops-evaluate-metrics-functional-f-beta-multilabel-f1-score"]], "cyclops.evaluate.metrics.functional.f_beta.multilabel_fbeta_score": [[54, "cyclops-evaluate-metrics-functional-f-beta-multilabel-fbeta-score"]], "cyclops.evaluate.metrics.functional.precision_recall": [[55, "module-cyclops.evaluate.metrics.functional.precision_recall"]], "cyclops.evaluate.metrics.functional.precision_recall.binary_precision": [[56, "cyclops-evaluate-metrics-functional-precision-recall-binary-precision"]], "cyclops.evaluate.metrics.functional.precision_recall.binary_recall": [[57, "cyclops-evaluate-metrics-functional-precision-recall-binary-recall"]], "cyclops.evaluate.metrics.functional.precision_recall.multiclass_precision": [[58, "cyclops-evaluate-metrics-functional-precision-recall-multiclass-precision"]], "cyclops.evaluate.metrics.functional.precision_recall.multiclass_recall": [[59, "cyclops-evaluate-metrics-functional-precision-recall-multiclass-recall"]], "cyclops.evaluate.metrics.functional.precision_recall.multilabel_precision": [[60, "cyclops-evaluate-metrics-functional-precision-recall-multilabel-precision"]], "cyclops.evaluate.metrics.functional.precision_recall.multilabel_recall": [[61, "cyclops-evaluate-metrics-functional-precision-recall-multilabel-recall"]], "cyclops.evaluate.metrics.functional.precision_recall.precision": [[62, "cyclops-evaluate-metrics-functional-precision-recall-precision"]], "cyclops.evaluate.metrics.functional.precision_recall.recall": [[63, "cyclops-evaluate-metrics-functional-precision-recall-recall"]], "cyclops.evaluate.metrics.functional.precision_recall_curve": [[64, "module-cyclops.evaluate.metrics.functional.precision_recall_curve"]], "cyclops.evaluate.metrics.functional.roc": [[65, "module-cyclops.evaluate.metrics.functional.roc"]], "cyclops.evaluate.metrics.functional.roc.binary_roc_curve": [[66, "cyclops-evaluate-metrics-functional-roc-binary-roc-curve"]], "cyclops.evaluate.metrics.functional.roc.multiclass_roc_curve": [[67, "cyclops-evaluate-metrics-functional-roc-multiclass-roc-curve"]], "cyclops.evaluate.metrics.functional.roc.multilabel_roc_curve": [[68, "cyclops-evaluate-metrics-functional-roc-multilabel-roc-curve"]], "cyclops.evaluate.metrics.functional.roc.roc_curve": [[69, "cyclops-evaluate-metrics-functional-roc-roc-curve"]], "cyclops.evaluate.metrics.functional.sensitivity": [[70, "module-cyclops.evaluate.metrics.functional.sensitivity"]], "cyclops.evaluate.metrics.functional.specificity": [[71, "module-cyclops.evaluate.metrics.functional.specificity"]], "cyclops.evaluate.metrics.functional.stat_scores": [[72, "module-cyclops.evaluate.metrics.functional.stat_scores"]], "cyclops.evaluate.metrics.metric": [[73, "module-cyclops.evaluate.metrics.metric"]], "cyclops.evaluate.metrics.metric.Metric": [[74, "cyclops-evaluate-metrics-metric-metric"]], "cyclops.evaluate.metrics.metric.MetricCollection": [[75, "cyclops-evaluate-metrics-metric-metriccollection"]], "cyclops.evaluate.metrics.metric.OperatorMetric": [[76, "cyclops-evaluate-metrics-metric-operatormetric"]], "cyclops.evaluate.metrics.precision_recall": [[77, "module-cyclops.evaluate.metrics.precision_recall"]], "cyclops.evaluate.metrics.precision_recall.BinaryPrecision": [[78, "cyclops-evaluate-metrics-precision-recall-binaryprecision"]], "cyclops.evaluate.metrics.precision_recall.BinaryRecall": [[79, "cyclops-evaluate-metrics-precision-recall-binaryrecall"]], "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision": [[80, "cyclops-evaluate-metrics-precision-recall-multiclassprecision"]], "cyclops.evaluate.metrics.precision_recall.MulticlassRecall": [[81, "cyclops-evaluate-metrics-precision-recall-multiclassrecall"]], "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision": [[82, "cyclops-evaluate-metrics-precision-recall-multilabelprecision"]], "cyclops.evaluate.metrics.precision_recall.MultilabelRecall": [[83, "cyclops-evaluate-metrics-precision-recall-multilabelrecall"]], "cyclops.evaluate.metrics.precision_recall.Precision": [[84, "cyclops-evaluate-metrics-precision-recall-precision"]], "cyclops.evaluate.metrics.precision_recall.Recall": [[85, "cyclops-evaluate-metrics-precision-recall-recall"]], "cyclops.evaluate.metrics.precision_recall_curve": [[86, "module-cyclops.evaluate.metrics.precision_recall_curve"]], "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve": [[87, "cyclops-evaluate-metrics-precision-recall-curve-binaryprecisionrecallcurve"]], "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve": [[88, "cyclops-evaluate-metrics-precision-recall-curve-multiclassprecisionrecallcurve"]], "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve": [[89, "cyclops-evaluate-metrics-precision-recall-curve-multilabelprecisionrecallcurve"]], "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve": [[90, "cyclops-evaluate-metrics-precision-recall-curve-precisionrecallcurve"]], "cyclops.evaluate.metrics.roc": [[91, "module-cyclops.evaluate.metrics.roc"]], "cyclops.evaluate.metrics.roc.BinaryROCCurve": [[92, "cyclops-evaluate-metrics-roc-binaryroccurve"]], "cyclops.evaluate.metrics.roc.MulticlassROCCurve": [[93, "cyclops-evaluate-metrics-roc-multiclassroccurve"]], "cyclops.evaluate.metrics.roc.MultilabelROCCurve": [[94, "cyclops-evaluate-metrics-roc-multilabelroccurve"]], "cyclops.evaluate.metrics.roc.ROCCurve": [[95, "cyclops-evaluate-metrics-roc-roccurve"]], "cyclops.evaluate.metrics.sensitivity": [[96, "module-cyclops.evaluate.metrics.sensitivity"]], "cyclops.evaluate.metrics.sensitivity.BinarySensitivity": [[97, "cyclops-evaluate-metrics-sensitivity-binarysensitivity"]], "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity": [[98, "cyclops-evaluate-metrics-sensitivity-multiclasssensitivity"]], "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity": [[99, "cyclops-evaluate-metrics-sensitivity-multilabelsensitivity"]], "cyclops.evaluate.metrics.sensitivity.Sensitivity": [[100, "cyclops-evaluate-metrics-sensitivity-sensitivity"]], "cyclops.evaluate.metrics.specificity": [[101, "module-cyclops.evaluate.metrics.specificity"]], "cyclops.evaluate.metrics.specificity.BinarySpecificity": [[102, "cyclops-evaluate-metrics-specificity-binaryspecificity"]], "cyclops.evaluate.metrics.specificity.MulticlassSpecificity": [[103, "cyclops-evaluate-metrics-specificity-multiclassspecificity"]], "cyclops.evaluate.metrics.specificity.MultilabelSpecificity": [[104, "cyclops-evaluate-metrics-specificity-multilabelspecificity"]], "cyclops.evaluate.metrics.specificity.Specificity": [[105, "cyclops-evaluate-metrics-specificity-specificity"]], "cyclops.evaluate.metrics.stat_scores": [[106, "module-cyclops.evaluate.metrics.stat_scores"]], "cyclops.evaluate.metrics.stat_scores.BinaryStatScores": [[107, "cyclops-evaluate-metrics-stat-scores-binarystatscores"]], "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores": [[108, "cyclops-evaluate-metrics-stat-scores-multiclassstatscores"]], "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores": [[109, "cyclops-evaluate-metrics-stat-scores-multilabelstatscores"]], "cyclops.evaluate.metrics.stat_scores.StatScores": [[110, "cyclops-evaluate-metrics-stat-scores-statscores"]], "cyclops.monitor.clinical_applicator": [[111, "module-cyclops.monitor.clinical_applicator"]], "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator": [[112, "cyclops-monitor-clinical-applicator-clinicalshiftapplicator"]], "cyclops.monitor.synthetic_applicator": [[113, "module-cyclops.monitor.synthetic_applicator"]], "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator": [[114, "cyclops-monitor-synthetic-applicator-syntheticshiftapplicator"]], "cyclops.monitor.synthetic_applicator.binary_noise_shift": [[115, "cyclops-monitor-synthetic-applicator-binary-noise-shift"]], "cyclops.monitor.synthetic_applicator.feature_association_shift": [[116, "cyclops-monitor-synthetic-applicator-feature-association-shift"]], "cyclops.monitor.synthetic_applicator.feature_swap_shift": [[117, "cyclops-monitor-synthetic-applicator-feature-swap-shift"]], "cyclops.monitor.synthetic_applicator.gaussian_noise_shift": [[118, "cyclops-monitor-synthetic-applicator-gaussian-noise-shift"]], "cyclops.monitor.synthetic_applicator.knockout_shift": [[119, "cyclops-monitor-synthetic-applicator-knockout-shift"]], "cyclops.report.report": [[120, "module-cyclops.report.report"]], "cyclops.report.report.ModelCardReport": [[121, "cyclops-report-report-modelcardreport"]], "cyclops.tasks.cxr_classification": [[122, "module-cyclops.tasks.cxr_classification"]], "cyclops.tasks.cxr_classification.CXRClassificationTask": [[123, "cyclops-tasks-cxr-classification-cxrclassificationtask"]], "cyclops.tasks.mortality_prediction": [[124, "module-cyclops.tasks.mortality_prediction"]], "cyclops.tasks.mortality_prediction.MortalityPredictionTask": [[125, "cyclops-tasks-mortality-prediction-mortalitypredictiontask"]], "cyclops.data": [[126, "module-cyclops.data"]], "cyclops.data.features": [[126, "module-cyclops.data.features"]], "cyclops.evaluate": [[127, "module-cyclops.evaluate"]], "cyclops.evaluate.metrics": [[127, "module-cyclops.evaluate.metrics"]], "cyclops.evaluate.metrics.functional": [[127, "module-cyclops.evaluate.metrics.functional"]], "cyclops.evaluate.fairness": [[127, "module-cyclops.evaluate.fairness"]], "cyclops.monitor": [[128, "module-cyclops.monitor"]], "cyclops.report": [[129, "module-cyclops.report"]], "cyclops.tasks": [[130, "module-cyclops.tasks"]], "Tutorials": [[131, "tutorials"]], "Heart Failure Prediction": [[132, "Heart-Failure-Prediction"]], "Import Libraries": [[132, "Import-Libraries"], [133, "Import-Libraries"], [135, "Import-Libraries"]], "Constants": [[132, "Constants"], [135, "Constants"]], "Data Loading": [[132, "Data-Loading"]], "Sex values": [[132, "Sex-values"]], "Age distribution": [[132, "Age-distribution"], [135, "Age-distribution"]], "Outcome distribution": [[132, "Outcome-distribution"], [135, "Outcome-distribution"]], "Identifying feature types": [[132, "Identifying-feature-types"], [135, "Identifying-feature-types"]], "Creating data preprocessors": [[132, "Creating-data-preprocessors"], [135, "Creating-data-preprocessors"]], "Creating Hugging Face Dataset": [[132, "Creating-Hugging-Face-Dataset"], [135, "Creating-Hugging-Face-Dataset"]], "Model Creation": [[132, "Model-Creation"], [135, "Model-Creation"]], "Task Creation": [[132, "Task-Creation"], [135, "Task-Creation"]], "Training": [[132, "Training"], [135, "Training"]], "Prediction": [[132, "Prediction"], [135, "Prediction"]], "Evaluation": [[132, "Evaluation"], [135, "Evaluation"]], "Performance over time": [[132, "Performance-over-time"]], "Report Generation": [[132, "Report-Generation"], [135, "Report-Generation"]], "Chest X-Ray Disease Classification": [[133, "Chest-X-Ray-Disease-Classification"]], "Generate Historical Reports": [[133, "Generate-Historical-Reports"]], "Initialize Periodic Report": [[133, "Initialize-Periodic-Report"]], "Load Dataset": [[133, "Load-Dataset"]], "Load Model and get Predictions": [[133, "Load-Model-and-get-Predictions"]], "Multilabel AUROC by Pathology and Sex": [[133, "Multilabel-AUROC-by-Pathology-and-Sex"]], "Multilabel AUROC by Pathology and Age": [[133, "Multilabel-AUROC-by-Pathology-and-Age"]], "Log Performance Metrics as Tests w/ Thresholds": [[133, "Log-Performance-Metrics-as-Tests-w/-Thresholds"]], "Populate Model Card Fields": [[133, "Populate-Model-Card-Fields"]], "NIHCXR Clinical Drift Experiments Tutorial": [[134, "NIHCXR-Clinical-Drift-Experiments-Tutorial"]], "Import Libraries and Load NIHCXR Dataset": [[134, "Import-Libraries-and-Load-NIHCXR-Dataset"]], "Example 1. Generate Source/Target Dataset for Experiments (1-2)": [[134, "Example-1.-Generate-Source/Target-Dataset-for-Experiments-(1-2)"]], "Example 2. Sensitivity test experiment with 3 dimensionality reduction techniques": [[134, "Example-2.-Sensitivity-test-experiment-with-3-dimensionality-reduction-techniques"]], "Example 3. Sensitivity test experiment with models trained on different datasets": [[134, "Example-3.-Sensitivity-test-experiment-with-models-trained-on-different-datasets"]], "Example 4. Sensitivity test experiment with different clinical shifts": [[134, "Example-4.-Sensitivity-test-experiment-with-different-clinical-shifts"]], "Example 5. Rolling window experiment with synthetic timestamps using biweekly window": [[134, "Example-5.-Rolling-window-experiment-with-synthetic-timestamps-using-biweekly-window"]], "Prolonged Length of Stay Prediction": [[135, "Prolonged-Length-of-Stay-Prediction"]], "Data Querying": [[135, "Data-Querying"]], "Compute length of stay (labels)": [[135, "Compute-length-of-stay-(labels)"]], "Data Inspection and Preprocessing": [[135, "Data-Inspection-and-Preprocessing"]], "Drop NaNs based on the NAN_THRESHOLD": [[135, "Drop-NaNs-based-on-the-NAN_THRESHOLD"]], "Length of stay distribution": [[135, "Length-of-stay-distribution"]], "Gender distribution": [[135, "Gender-distribution"]], "monitor API": [[136, "monitor-api"]], "Example use cases": [[137, "example-use-cases"]], "Tabular data": [[137, "tabular-data"]], "Kaggle Heart Failure Prediction": [[137, "kaggle-heart-failure-prediction"]], "Synthea Prolonged Length of Stay Prediction": [[137, "synthea-prolonged-length-of-stay-prediction"]], "Image data": [[137, "image-data"]], "NIH Chest X-ray classification": [[137, "nih-chest-x-ray-classification"]]}, "indexentries": {"cyclops.data.features.medical_image": [[4, "module-cyclops.data.features.medical_image"]], "module": [[4, "module-cyclops.data.features.medical_image"], [6, "module-cyclops.data.slicer"], [16, "module-cyclops.evaluate.evaluator"], [18, "module-cyclops.evaluate.fairness.config"], [20, "module-cyclops.evaluate.fairness.evaluator"], [23, "module-cyclops.evaluate.metrics.accuracy"], [28, "module-cyclops.evaluate.metrics.auroc"], [33, "module-cyclops.evaluate.metrics.f_beta"], [42, "module-cyclops.evaluate.metrics.factory"], [44, "module-cyclops.evaluate.metrics.functional.accuracy"], [45, "module-cyclops.evaluate.metrics.functional.auroc"], [46, "module-cyclops.evaluate.metrics.functional.f_beta"], [55, "module-cyclops.evaluate.metrics.functional.precision_recall"], [64, "module-cyclops.evaluate.metrics.functional.precision_recall_curve"], [65, "module-cyclops.evaluate.metrics.functional.roc"], [70, "module-cyclops.evaluate.metrics.functional.sensitivity"], [71, "module-cyclops.evaluate.metrics.functional.specificity"], [72, "module-cyclops.evaluate.metrics.functional.stat_scores"], [73, "module-cyclops.evaluate.metrics.metric"], [77, "module-cyclops.evaluate.metrics.precision_recall"], [86, "module-cyclops.evaluate.metrics.precision_recall_curve"], [91, "module-cyclops.evaluate.metrics.roc"], [96, "module-cyclops.evaluate.metrics.sensitivity"], [101, "module-cyclops.evaluate.metrics.specificity"], [106, "module-cyclops.evaluate.metrics.stat_scores"], [111, "module-cyclops.monitor.clinical_applicator"], [113, "module-cyclops.monitor.synthetic_applicator"], [120, "module-cyclops.report.report"], [122, "module-cyclops.tasks.cxr_classification"], [124, "module-cyclops.tasks.mortality_prediction"], [126, "module-cyclops.data"], [126, "module-cyclops.data.features"], [127, "module-cyclops.evaluate"], [127, "module-cyclops.evaluate.fairness"], [127, "module-cyclops.evaluate.metrics"], [127, "module-cyclops.evaluate.metrics.functional"], [128, "module-cyclops.monitor"], [129, "module-cyclops.report"], [130, "module-cyclops.tasks"]], "medicalimage (class in cyclops.data.features.medical_image)": [[5, "cyclops.data.features.medical_image.MedicalImage"]], "__call__() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.__call__"]], "cast_storage() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.cast_storage"]], "decode_example() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.decode_example"]], "embed_storage() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.embed_storage"]], "encode_example() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.encode_example"]], "flatten() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.flatten"]], "cyclops.data.slicer": [[6, "module-cyclops.data.slicer"]], "slicespec (class in cyclops.data.slicer)": [[7, "cyclops.data.slicer.SliceSpec"]], "_registry (slicespec attribute)": [[7, "cyclops.data.slicer.SliceSpec._registry"]], "add_slice_spec() (slicespec method)": [[7, "cyclops.data.slicer.SliceSpec.add_slice_spec"]], "column_names (slicespec attribute)": [[7, "cyclops.data.slicer.SliceSpec.column_names"]], "get_slices() (slicespec method)": [[7, "cyclops.data.slicer.SliceSpec.get_slices"]], "include_overall (slicespec attribute)": [[7, "cyclops.data.slicer.SliceSpec.include_overall"]], "slices() (slicespec method)": [[7, "cyclops.data.slicer.SliceSpec.slices"]], "spec_list (slicespec attribute)": [[7, "cyclops.data.slicer.SliceSpec.spec_list"]], "validate (slicespec attribute)": [[7, "cyclops.data.slicer.SliceSpec.validate"]], "compound_filter() (in module cyclops.data.slicer)": [[8, "cyclops.data.slicer.compound_filter"]], "filter_datetime() (in module cyclops.data.slicer)": [[9, "cyclops.data.slicer.filter_datetime"]], "filter_non_null() (in module cyclops.data.slicer)": [[10, "cyclops.data.slicer.filter_non_null"]], "filter_range() (in module cyclops.data.slicer)": [[11, "cyclops.data.slicer.filter_range"]], "filter_string_contains() (in module cyclops.data.slicer)": [[12, "cyclops.data.slicer.filter_string_contains"]], "filter_value() (in module cyclops.data.slicer)": [[13, "cyclops.data.slicer.filter_value"]], "is_datetime() (in module cyclops.data.slicer)": [[14, "cyclops.data.slicer.is_datetime"]], "overall() (in module cyclops.data.slicer)": [[15, "cyclops.data.slicer.overall"]], "cyclops.evaluate.evaluator": [[16, "module-cyclops.evaluate.evaluator"]], "evaluate() (in module cyclops.evaluate.evaluator)": [[17, "cyclops.evaluate.evaluator.evaluate"]], "cyclops.evaluate.fairness.config": [[18, "module-cyclops.evaluate.fairness.config"]], "fairnessconfig (class in cyclops.evaluate.fairness.config)": [[19, "cyclops.evaluate.fairness.config.FairnessConfig"]], "cyclops.evaluate.fairness.evaluator": [[20, "module-cyclops.evaluate.fairness.evaluator"]], "evaluate_fairness() (in module cyclops.evaluate.fairness.evaluator)": [[21, "cyclops.evaluate.fairness.evaluator.evaluate_fairness"]], "warn_too_many_unique_values() (in module cyclops.evaluate.fairness.evaluator)": [[22, "cyclops.evaluate.fairness.evaluator.warn_too_many_unique_values"]], "cyclops.evaluate.metrics.accuracy": [[23, "module-cyclops.evaluate.metrics.accuracy"]], "accuracy (class in cyclops.evaluate.metrics.accuracy)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy"]], "__add__() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.__add__"]], "__call__() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.__call__"]], "__init__() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.__init__"]], "__mul__() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.__mul__"]], "add_state() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.add_state"]], "clone() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.clone"]], "compute() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.compute"]], "reset_state() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.reset_state"]], "update_state() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.update_state"]], "binaryaccuracy (class in cyclops.evaluate.metrics.accuracy)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy"]], "__add__() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.__add__"]], "__call__() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.__call__"]], "__init__() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.__init__"]], "__mul__() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.__mul__"]], "add_state() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.add_state"]], "clone() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.clone"]], "compute() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.compute"]], "reset_state() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.reset_state"]], "update_state() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.update_state"]], "multiclassaccuracy (class in cyclops.evaluate.metrics.accuracy)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy"]], "__add__() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.__add__"]], "__call__() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.__call__"]], "__init__() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.__init__"]], "__mul__() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.__mul__"]], "add_state() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.add_state"]], "clone() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.clone"]], "compute() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.compute"]], "reset_state() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.reset_state"]], "update_state() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.update_state"]], "multilabelaccuracy (class in cyclops.evaluate.metrics.accuracy)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy"]], "__add__() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.__add__"]], "__call__() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.__call__"]], "__init__() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.__init__"]], "__mul__() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.__mul__"]], "add_state() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.add_state"]], "clone() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.clone"]], "compute() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.compute"]], "reset_state() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.reset_state"]], "update_state() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.update_state"]], "cyclops.evaluate.metrics.auroc": [[28, "module-cyclops.evaluate.metrics.auroc"]], "auroc (class in cyclops.evaluate.metrics.auroc)": [[29, "cyclops.evaluate.metrics.auroc.AUROC"]], "__add__() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.__add__"]], "__call__() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.__call__"]], "__init__() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.__init__"]], "__mul__() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.__mul__"]], "add_state() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.add_state"]], "clone() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.clone"]], "compute() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.compute"]], "reset_state() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.reset_state"]], "update_state() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.update_state"]], "binaryauroc (class in cyclops.evaluate.metrics.auroc)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC"]], "__add__() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.__add__"]], "__call__() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.__call__"]], "__init__() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.__init__"]], "__mul__() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.__mul__"]], "add_state() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.add_state"]], "clone() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.clone"]], "compute() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.compute"]], "reset_state() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.reset_state"]], "update_state() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.update_state"]], "multiclassauroc (class in cyclops.evaluate.metrics.auroc)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC"]], "__add__() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.__add__"]], "__call__() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.__call__"]], "__init__() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.__init__"]], "__mul__() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.__mul__"]], "add_state() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.add_state"]], "clone() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.clone"]], "compute() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.compute"]], "reset_state() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.reset_state"]], "update_state() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.update_state"]], "multilabelauroc (class in cyclops.evaluate.metrics.auroc)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC"]], "__add__() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.__add__"]], "__call__() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.__call__"]], "__init__() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.__init__"]], "__mul__() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.__mul__"]], "add_state() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.add_state"]], "clone() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.clone"]], "compute() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.compute"]], "reset_state() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.reset_state"]], "update_state() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.update_state"]], "cyclops.evaluate.metrics.f_beta": [[33, "module-cyclops.evaluate.metrics.f_beta"]], "binaryf1score (class in cyclops.evaluate.metrics.f_beta)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score"]], "__add__() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.__add__"]], "__call__() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.__call__"]], "__init__() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.__init__"]], "__mul__() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.__mul__"]], "add_state() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.add_state"]], "clone() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.clone"]], "compute() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.compute"]], "reset_state() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.reset_state"]], "update_state() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.update_state"]], "binaryfbetascore (class in cyclops.evaluate.metrics.f_beta)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore"]], "__add__() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.__add__"]], "__call__() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.__call__"]], "__init__() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.__init__"]], "__mul__() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.__mul__"]], "add_state() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.add_state"]], "clone() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.clone"]], "compute() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.compute"]], "reset_state() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.reset_state"]], "update_state() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.update_state"]], "f1score (class in cyclops.evaluate.metrics.f_beta)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score"]], "__add__() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.__add__"]], "__call__() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.__call__"]], "__init__() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.__init__"]], "__mul__() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.__mul__"]], "add_state() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.add_state"]], "clone() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.clone"]], "compute() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.compute"]], "reset_state() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.reset_state"]], "update_state() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.update_state"]], "fbetascore (class in cyclops.evaluate.metrics.f_beta)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore"]], "__add__() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.__add__"]], "__call__() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.__call__"]], "__init__() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.__init__"]], "__mul__() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.__mul__"]], "add_state() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.add_state"]], "clone() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.clone"]], "compute() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.compute"]], "reset_state() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.reset_state"]], "update_state() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.update_state"]], "multiclassf1score (class in cyclops.evaluate.metrics.f_beta)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score"]], "__add__() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.__add__"]], "__call__() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.__call__"]], "__init__() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.__init__"]], "__mul__() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.__mul__"]], "add_state() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.add_state"]], "clone() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.clone"]], "compute() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.compute"]], "reset_state() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.reset_state"]], "update_state() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.update_state"]], "multiclassfbetascore (class in cyclops.evaluate.metrics.f_beta)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore"]], "__add__() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.__add__"]], "__call__() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.__call__"]], "__init__() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.__init__"]], "__mul__() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.__mul__"]], "add_state() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.add_state"]], "clone() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.clone"]], "compute() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.compute"]], "reset_state() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.reset_state"]], "update_state() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.update_state"]], "multilabelf1score (class in cyclops.evaluate.metrics.f_beta)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score"]], "__add__() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.__add__"]], "__call__() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.__call__"]], "__init__() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.__init__"]], "__mul__() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.__mul__"]], "add_state() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.add_state"]], "clone() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.clone"]], "compute() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.compute"]], "reset_state() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.reset_state"]], "update_state() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.update_state"]], "multilabelfbetascore (class in cyclops.evaluate.metrics.f_beta)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore"]], "__add__() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.__add__"]], "__call__() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.__call__"]], "__init__() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.__init__"]], "__mul__() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.__mul__"]], "add_state() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.add_state"]], "clone() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.clone"]], "compute() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.compute"]], "reset_state() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.reset_state"]], "update_state() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.update_state"]], "cyclops.evaluate.metrics.factory": [[42, "module-cyclops.evaluate.metrics.factory"]], "create_metric() (in module cyclops.evaluate.metrics.factory)": [[43, "cyclops.evaluate.metrics.factory.create_metric"]], "cyclops.evaluate.metrics.functional.accuracy": [[44, "module-cyclops.evaluate.metrics.functional.accuracy"]], "cyclops.evaluate.metrics.functional.auroc": [[45, "module-cyclops.evaluate.metrics.functional.auroc"]], "cyclops.evaluate.metrics.functional.f_beta": [[46, "module-cyclops.evaluate.metrics.functional.f_beta"]], "binary_f1_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[47, "cyclops.evaluate.metrics.functional.f_beta.binary_f1_score"]], "binary_fbeta_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[48, "cyclops.evaluate.metrics.functional.f_beta.binary_fbeta_score"]], "f1_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[49, "cyclops.evaluate.metrics.functional.f_beta.f1_score"]], "fbeta_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[50, "cyclops.evaluate.metrics.functional.f_beta.fbeta_score"]], "multiclass_f1_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[51, "cyclops.evaluate.metrics.functional.f_beta.multiclass_f1_score"]], "multiclass_fbeta_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[52, "cyclops.evaluate.metrics.functional.f_beta.multiclass_fbeta_score"]], "multilabel_f1_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[53, "cyclops.evaluate.metrics.functional.f_beta.multilabel_f1_score"]], "multilabel_fbeta_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[54, "cyclops.evaluate.metrics.functional.f_beta.multilabel_fbeta_score"]], "cyclops.evaluate.metrics.functional.precision_recall": [[55, "module-cyclops.evaluate.metrics.functional.precision_recall"]], "binary_precision() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[56, "cyclops.evaluate.metrics.functional.precision_recall.binary_precision"]], "binary_recall() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[57, "cyclops.evaluate.metrics.functional.precision_recall.binary_recall"]], "multiclass_precision() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[58, "cyclops.evaluate.metrics.functional.precision_recall.multiclass_precision"]], "multiclass_recall() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[59, "cyclops.evaluate.metrics.functional.precision_recall.multiclass_recall"]], "multilabel_precision() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[60, "cyclops.evaluate.metrics.functional.precision_recall.multilabel_precision"]], "multilabel_recall() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[61, "cyclops.evaluate.metrics.functional.precision_recall.multilabel_recall"]], "precision() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[62, "cyclops.evaluate.metrics.functional.precision_recall.precision"]], "recall() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[63, "cyclops.evaluate.metrics.functional.precision_recall.recall"]], "cyclops.evaluate.metrics.functional.precision_recall_curve": [[64, "module-cyclops.evaluate.metrics.functional.precision_recall_curve"]], "cyclops.evaluate.metrics.functional.roc": [[65, "module-cyclops.evaluate.metrics.functional.roc"]], "binary_roc_curve() (in module cyclops.evaluate.metrics.functional.roc)": [[66, "cyclops.evaluate.metrics.functional.roc.binary_roc_curve"]], "multiclass_roc_curve() (in module cyclops.evaluate.metrics.functional.roc)": [[67, "cyclops.evaluate.metrics.functional.roc.multiclass_roc_curve"]], "multilabel_roc_curve() (in module cyclops.evaluate.metrics.functional.roc)": [[68, "cyclops.evaluate.metrics.functional.roc.multilabel_roc_curve"]], "roc_curve() (in module cyclops.evaluate.metrics.functional.roc)": [[69, "cyclops.evaluate.metrics.functional.roc.roc_curve"]], "cyclops.evaluate.metrics.functional.sensitivity": [[70, "module-cyclops.evaluate.metrics.functional.sensitivity"]], "cyclops.evaluate.metrics.functional.specificity": [[71, "module-cyclops.evaluate.metrics.functional.specificity"]], "cyclops.evaluate.metrics.functional.stat_scores": [[72, "module-cyclops.evaluate.metrics.functional.stat_scores"]], "cyclops.evaluate.metrics.metric": [[73, "module-cyclops.evaluate.metrics.metric"]], "metric (class in cyclops.evaluate.metrics.metric)": [[74, "cyclops.evaluate.metrics.metric.Metric"]], "__add__() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.__add__"]], "__call__() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.__call__"]], "__init__() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.__init__"]], "__mul__() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.__mul__"]], "add_state() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.add_state"]], "clone() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.clone"]], "compute() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.compute"]], "reset_state() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.reset_state"]], "update_state() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.update_state"]], "metriccollection (class in cyclops.evaluate.metrics.metric)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection"]], "__call__() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.__call__"]], "__init__() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.__init__"]], "add_metrics() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.add_metrics"]], "clear() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.clear"]], "clone() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.clone"]], "compute() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.compute"]], "get() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.get"]], "items() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.items"]], "keys() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.keys"]], "pop() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.pop"]], "popitem() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.popitem"]], "reset_state() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.reset_state"]], "setdefault() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.setdefault"]], "update() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.update"]], "update_state() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.update_state"]], "values() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.values"]], "operatormetric (class in cyclops.evaluate.metrics.metric)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric"]], "__add__() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.__add__"]], "__call__() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.__call__"]], "__init__() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.__init__"]], "__mul__() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.__mul__"]], "add_state() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.add_state"]], "clone() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.clone"]], "compute() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.compute"]], "reset_state() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.reset_state"]], "update_state() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.update_state"]], "cyclops.evaluate.metrics.precision_recall": [[77, "module-cyclops.evaluate.metrics.precision_recall"]], "binaryprecision (class in cyclops.evaluate.metrics.precision_recall)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision"]], "__add__() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.__add__"]], "__call__() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.__call__"]], "__init__() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.__init__"]], "__mul__() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.__mul__"]], "add_state() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.add_state"]], "clone() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.clone"]], "compute() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.compute"]], "reset_state() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.reset_state"]], "update_state() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.update_state"]], "binaryrecall (class in cyclops.evaluate.metrics.precision_recall)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall"]], "__add__() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.__add__"]], "__call__() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.__call__"]], "__init__() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.__init__"]], "__mul__() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.__mul__"]], "add_state() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.add_state"]], "clone() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.clone"]], "compute() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.compute"]], "reset_state() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.reset_state"]], "update_state() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.update_state"]], "multiclassprecision (class in cyclops.evaluate.metrics.precision_recall)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision"]], "__add__() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.__add__"]], "__call__() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.__call__"]], "__init__() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.__init__"]], "__mul__() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.__mul__"]], "add_state() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.add_state"]], "clone() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.clone"]], "compute() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.compute"]], "reset_state() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.reset_state"]], "update_state() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.update_state"]], "multiclassrecall (class in cyclops.evaluate.metrics.precision_recall)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall"]], "__add__() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.__add__"]], "__call__() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.__call__"]], "__init__() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.__init__"]], "__mul__() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.__mul__"]], "add_state() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.add_state"]], "clone() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.clone"]], "compute() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.compute"]], "reset_state() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.reset_state"]], "update_state() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.update_state"]], "multilabelprecision (class in cyclops.evaluate.metrics.precision_recall)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision"]], "__add__() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.__add__"]], "__call__() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.__call__"]], "__init__() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.__init__"]], "__mul__() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.__mul__"]], "add_state() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.add_state"]], "clone() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.clone"]], "compute() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.compute"]], "reset_state() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.reset_state"]], "update_state() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.update_state"]], "multilabelrecall (class in cyclops.evaluate.metrics.precision_recall)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall"]], "__add__() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.__add__"]], "__call__() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.__call__"]], "__init__() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.__init__"]], "__mul__() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.__mul__"]], "add_state() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.add_state"]], "clone() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.clone"]], "compute() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.compute"]], "reset_state() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.reset_state"]], "update_state() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.update_state"]], "precision (class in cyclops.evaluate.metrics.precision_recall)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision"]], "__add__() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.__add__"]], "__call__() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.__call__"]], "__init__() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.__init__"]], "__mul__() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.__mul__"]], "add_state() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.add_state"]], "clone() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.clone"]], "compute() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.compute"]], "reset_state() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.reset_state"]], "update_state() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.update_state"]], "recall (class in cyclops.evaluate.metrics.precision_recall)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall"]], "__add__() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.__add__"]], "__call__() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.__call__"]], "__init__() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.__init__"]], "__mul__() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.__mul__"]], "add_state() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.add_state"]], "clone() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.clone"]], "compute() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.compute"]], "reset_state() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.reset_state"]], "update_state() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.update_state"]], "cyclops.evaluate.metrics.precision_recall_curve": [[86, "module-cyclops.evaluate.metrics.precision_recall_curve"]], "binaryprecisionrecallcurve (class in cyclops.evaluate.metrics.precision_recall_curve)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve"]], "__add__() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.__add__"]], "__call__() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.__call__"]], "__init__() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.__init__"]], "__mul__() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.__mul__"]], "add_state() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.add_state"]], "clone() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.clone"]], "compute() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.compute"]], "reset_state() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.reset_state"]], "update_state() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.update_state"]], "multiclassprecisionrecallcurve (class in cyclops.evaluate.metrics.precision_recall_curve)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve"]], "__add__() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.__add__"]], "__call__() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.__call__"]], "__init__() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.__init__"]], "__mul__() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.__mul__"]], "add_state() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.add_state"]], "clone() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.clone"]], "compute() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.compute"]], "reset_state() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.reset_state"]], "update_state() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.update_state"]], "multilabelprecisionrecallcurve (class in cyclops.evaluate.metrics.precision_recall_curve)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve"]], "__add__() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.__add__"]], "__call__() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.__call__"]], "__init__() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.__init__"]], "__mul__() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.__mul__"]], "add_state() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.add_state"]], "clone() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.clone"]], "compute() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.compute"]], "reset_state() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.reset_state"]], "update_state() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.update_state"]], "precisionrecallcurve (class in cyclops.evaluate.metrics.precision_recall_curve)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve"]], "__add__() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.__add__"]], "__call__() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.__call__"]], "__init__() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.__init__"]], "__mul__() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.__mul__"]], "add_state() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.add_state"]], "clone() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.clone"]], "compute() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.compute"]], "reset_state() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.reset_state"]], "update_state() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.update_state"]], "cyclops.evaluate.metrics.roc": [[91, "module-cyclops.evaluate.metrics.roc"]], "binaryroccurve (class in cyclops.evaluate.metrics.roc)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve"]], "__add__() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.__add__"]], "__call__() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.__call__"]], "__init__() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.__init__"]], "__mul__() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.__mul__"]], "add_state() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.add_state"]], "clone() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.clone"]], "compute() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.compute"]], "reset_state() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.reset_state"]], "update_state() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.update_state"]], "multiclassroccurve (class in cyclops.evaluate.metrics.roc)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve"]], "__add__() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.__add__"]], "__call__() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.__call__"]], "__init__() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.__init__"]], "__mul__() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.__mul__"]], "add_state() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.add_state"]], "clone() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.clone"]], "compute() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.compute"]], "reset_state() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.reset_state"]], "update_state() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.update_state"]], "multilabelroccurve (class in cyclops.evaluate.metrics.roc)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve"]], "__add__() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.__add__"]], "__call__() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.__call__"]], "__init__() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.__init__"]], "__mul__() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.__mul__"]], "add_state() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.add_state"]], "clone() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.clone"]], "compute() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.compute"]], "reset_state() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.reset_state"]], "update_state() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.update_state"]], "roccurve (class in cyclops.evaluate.metrics.roc)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve"]], "__add__() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.__add__"]], "__call__() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.__call__"]], "__init__() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.__init__"]], "__mul__() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.__mul__"]], "add_state() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.add_state"]], "clone() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.clone"]], "compute() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.compute"]], "reset_state() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.reset_state"]], "update_state() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.update_state"]], "cyclops.evaluate.metrics.sensitivity": [[96, "module-cyclops.evaluate.metrics.sensitivity"]], "binarysensitivity (class in cyclops.evaluate.metrics.sensitivity)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity"]], "__add__() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.__add__"]], "__call__() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.__call__"]], "__init__() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.__init__"]], "__mul__() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.__mul__"]], "add_state() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.add_state"]], "clone() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.clone"]], "compute() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.compute"]], "reset_state() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.reset_state"]], "update_state() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.update_state"]], "multiclasssensitivity (class in cyclops.evaluate.metrics.sensitivity)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity"]], "__add__() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.__add__"]], "__call__() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.__call__"]], "__init__() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.__init__"]], "__mul__() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.__mul__"]], "add_state() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.add_state"]], "clone() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.clone"]], "compute() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.compute"]], "reset_state() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.reset_state"]], "update_state() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.update_state"]], "multilabelsensitivity (class in cyclops.evaluate.metrics.sensitivity)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity"]], "__add__() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.__add__"]], "__call__() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.__call__"]], "__init__() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.__init__"]], "__mul__() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.__mul__"]], "add_state() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.add_state"]], "clone() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.clone"]], "compute() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.compute"]], "reset_state() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.reset_state"]], "update_state() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.update_state"]], "sensitivity (class in cyclops.evaluate.metrics.sensitivity)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity"]], "__add__() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.__add__"]], "__call__() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.__call__"]], "__init__() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.__init__"]], "__mul__() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.__mul__"]], "add_state() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.add_state"]], "clone() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.clone"]], "compute() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.compute"]], "reset_state() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.reset_state"]], "update_state() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.update_state"]], "cyclops.evaluate.metrics.specificity": [[101, "module-cyclops.evaluate.metrics.specificity"]], "binaryspecificity (class in cyclops.evaluate.metrics.specificity)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity"]], "__add__() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.__add__"]], "__call__() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.__call__"]], "__init__() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.__init__"]], "__mul__() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.__mul__"]], "add_state() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.add_state"]], "clone() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.clone"]], "compute() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.compute"]], "reset_state() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.reset_state"]], "update_state() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.update_state"]], "multiclassspecificity (class in cyclops.evaluate.metrics.specificity)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity"]], "__add__() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.__add__"]], "__call__() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.__call__"]], "__init__() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.__init__"]], "__mul__() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.__mul__"]], "add_state() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.add_state"]], "clone() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.clone"]], "compute() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.compute"]], "reset_state() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.reset_state"]], "update_state() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.update_state"]], "multilabelspecificity (class in cyclops.evaluate.metrics.specificity)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity"]], "__add__() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.__add__"]], "__call__() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.__call__"]], "__init__() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.__init__"]], "__mul__() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.__mul__"]], "add_state() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.add_state"]], "clone() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.clone"]], "compute() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.compute"]], "reset_state() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.reset_state"]], "update_state() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.update_state"]], "specificity (class in cyclops.evaluate.metrics.specificity)": [[105, "cyclops.evaluate.metrics.specificity.Specificity"]], "__add__() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.__add__"]], "__call__() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.__call__"]], "__init__() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.__init__"]], "__mul__() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.__mul__"]], "add_state() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.add_state"]], "clone() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.clone"]], "compute() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.compute"]], "reset_state() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.reset_state"]], "update_state() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.update_state"]], "cyclops.evaluate.metrics.stat_scores": [[106, "module-cyclops.evaluate.metrics.stat_scores"]], "binarystatscores (class in cyclops.evaluate.metrics.stat_scores)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores"]], "__add__() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.__add__"]], "__call__() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.__call__"]], "__init__() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.__init__"]], "__mul__() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.__mul__"]], "add_state() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.add_state"]], "clone() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.clone"]], "compute() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.compute"]], "reset_state() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.reset_state"]], "update_state() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.update_state"]], "multiclassstatscores (class in cyclops.evaluate.metrics.stat_scores)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores"]], "__add__() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.__add__"]], "__call__() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.__call__"]], "__init__() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.__init__"]], "__mul__() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.__mul__"]], "add_state() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.add_state"]], "clone() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.clone"]], "compute() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.compute"]], "reset_state() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.reset_state"]], "update_state() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.update_state"]], "multilabelstatscores (class in cyclops.evaluate.metrics.stat_scores)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores"]], "__add__() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.__add__"]], "__call__() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.__call__"]], "__init__() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.__init__"]], "__mul__() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.__mul__"]], "add_state() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.add_state"]], "clone() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.clone"]], "compute() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.compute"]], "reset_state() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.reset_state"]], "update_state() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.update_state"]], "statscores (class in cyclops.evaluate.metrics.stat_scores)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores"]], "__add__() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.__add__"]], "__call__() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.__call__"]], "__init__() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.__init__"]], "__mul__() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.__mul__"]], "add_state() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.add_state"]], "clone() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.clone"]], "compute() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.compute"]], "reset_state() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.reset_state"]], "update_state() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.update_state"]], "cyclops.monitor.clinical_applicator": [[111, "module-cyclops.monitor.clinical_applicator"]], "clinicalshiftapplicator (class in cyclops.monitor.clinical_applicator)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator"]], "age() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.age"]], "apply_shift() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.apply_shift"]], "custom() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.custom"]], "hospital_type() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.hospital_type"]], "month() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.month"]], "sex() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.sex"]], "time() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.time"]], "cyclops.monitor.synthetic_applicator": [[113, "module-cyclops.monitor.synthetic_applicator"]], "syntheticshiftapplicator (class in cyclops.monitor.synthetic_applicator)": [[114, "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator"]], "apply_shift() (syntheticshiftapplicator method)": [[114, "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator.apply_shift"]], "binary_noise_shift() (in module cyclops.monitor.synthetic_applicator)": [[115, "cyclops.monitor.synthetic_applicator.binary_noise_shift"]], "feature_association_shift() (in module cyclops.monitor.synthetic_applicator)": [[116, "cyclops.monitor.synthetic_applicator.feature_association_shift"]], "feature_swap_shift() (in module cyclops.monitor.synthetic_applicator)": [[117, "cyclops.monitor.synthetic_applicator.feature_swap_shift"]], "gaussian_noise_shift() (in module cyclops.monitor.synthetic_applicator)": [[118, "cyclops.monitor.synthetic_applicator.gaussian_noise_shift"]], "knockout_shift() (in module cyclops.monitor.synthetic_applicator)": [[119, "cyclops.monitor.synthetic_applicator.knockout_shift"]], "cyclops.report.report": [[120, "module-cyclops.report.report"]], "modelcardreport (class in cyclops.report.report)": [[121, "cyclops.report.report.ModelCardReport"]], "export() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.export"]], "from_json_file() (modelcardreport class method)": [[121, "cyclops.report.report.ModelCardReport.from_json_file"]], "log_citation() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_citation"]], "log_dataset() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_dataset"]], "log_descriptor() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_descriptor"]], "log_fairness_assessment() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_fairness_assessment"]], "log_from_dict() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_from_dict"]], "log_image() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_image"]], "log_license() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_license"]], "log_model_parameters() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_model_parameters"]], "log_owner() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_owner"]], "log_performance_metrics() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_performance_metrics"]], "log_plotly_figure() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_plotly_figure"]], "log_quantitative_analysis() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_quantitative_analysis"]], "log_reference() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_reference"]], "log_regulation() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_regulation"]], "log_risk() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_risk"]], "log_use_case() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_use_case"]], "log_user() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_user"]], "log_version() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_version"]], "cyclops.tasks.cxr_classification": [[122, "module-cyclops.tasks.cxr_classification"]], "cxrclassificationtask (class in cyclops.tasks.cxr_classification)": [[123, "cyclops.tasks.cxr_classification.CXRClassificationTask"]], "__init__() (cxrclassificationtask method)": [[123, "cyclops.tasks.cxr_classification.CXRClassificationTask.__init__"]], "add_model() (cxrclassificationtask method)": [[123, "cyclops.tasks.cxr_classification.CXRClassificationTask.add_model"]], "data_type (cxrclassificationtask property)": [[123, "cyclops.tasks.cxr_classification.CXRClassificationTask.data_type"]], "evaluate() (cxrclassificationtask method)": [[123, "cyclops.tasks.cxr_classification.CXRClassificationTask.evaluate"]], "get_model() (cxrclassificationtask method)": [[123, "cyclops.tasks.cxr_classification.CXRClassificationTask.get_model"]], "list_models() (cxrclassificationtask method)": [[123, "cyclops.tasks.cxr_classification.CXRClassificationTask.list_models"]], "models_count (cxrclassificationtask property)": [[123, "cyclops.tasks.cxr_classification.CXRClassificationTask.models_count"]], "predict() (cxrclassificationtask method)": [[123, "cyclops.tasks.cxr_classification.CXRClassificationTask.predict"]], "task_type (cxrclassificationtask property)": [[123, "cyclops.tasks.cxr_classification.CXRClassificationTask.task_type"]], "cyclops.tasks.mortality_prediction": [[124, "module-cyclops.tasks.mortality_prediction"]], "mortalitypredictiontask (class in cyclops.tasks.mortality_prediction)": [[125, "cyclops.tasks.mortality_prediction.MortalityPredictionTask"]], "__init__() (mortalitypredictiontask method)": [[125, "cyclops.tasks.mortality_prediction.MortalityPredictionTask.__init__"]], "add_model() (mortalitypredictiontask method)": [[125, "cyclops.tasks.mortality_prediction.MortalityPredictionTask.add_model"]], "data_type (mortalitypredictiontask property)": [[125, "cyclops.tasks.mortality_prediction.MortalityPredictionTask.data_type"]], "evaluate() (mortalitypredictiontask method)": [[125, "cyclops.tasks.mortality_prediction.MortalityPredictionTask.evaluate"]], "get_model() (mortalitypredictiontask method)": [[125, "cyclops.tasks.mortality_prediction.MortalityPredictionTask.get_model"]], "list_models() (mortalitypredictiontask method)": [[125, "cyclops.tasks.mortality_prediction.MortalityPredictionTask.list_models"]], "list_models_params() (mortalitypredictiontask method)": [[125, "cyclops.tasks.mortality_prediction.MortalityPredictionTask.list_models_params"]], "load_model() (mortalitypredictiontask method)": [[125, "cyclops.tasks.mortality_prediction.MortalityPredictionTask.load_model"]], "models_count (mortalitypredictiontask property)": [[125, "cyclops.tasks.mortality_prediction.MortalityPredictionTask.models_count"]], "predict() (mortalitypredictiontask method)": [[125, "cyclops.tasks.mortality_prediction.MortalityPredictionTask.predict"]], "save_model() (mortalitypredictiontask method)": [[125, "cyclops.tasks.mortality_prediction.MortalityPredictionTask.save_model"]], "task_type (mortalitypredictiontask property)": [[125, "cyclops.tasks.mortality_prediction.MortalityPredictionTask.task_type"]], "train() (mortalitypredictiontask method)": [[125, "cyclops.tasks.mortality_prediction.MortalityPredictionTask.train"]], "cyclops.data": [[126, "module-cyclops.data"]], "cyclops.data.features": [[126, "module-cyclops.data.features"]], "cyclops.evaluate": [[127, "module-cyclops.evaluate"]], "cyclops.evaluate.fairness": [[127, "module-cyclops.evaluate.fairness"]], "cyclops.evaluate.metrics": [[127, "module-cyclops.evaluate.metrics"]], "cyclops.evaluate.metrics.functional": [[127, "module-cyclops.evaluate.metrics.functional"]], "cyclops.monitor": [[128, "module-cyclops.monitor"]], "cyclops.report": [[129, "module-cyclops.report"]], "cyclops.tasks": [[130, "module-cyclops.tasks"]]}}) \ No newline at end of file +Search.setIndex({"docnames": ["api", "contributing", "index", "intro", "reference/api/_autosummary/cyclops.data.features.medical_image", "reference/api/_autosummary/cyclops.data.features.medical_image.MedicalImage", "reference/api/_autosummary/cyclops.data.slicer", "reference/api/_autosummary/cyclops.data.slicer.SliceSpec", "reference/api/_autosummary/cyclops.data.slicer.compound_filter", "reference/api/_autosummary/cyclops.data.slicer.filter_datetime", "reference/api/_autosummary/cyclops.data.slicer.filter_non_null", "reference/api/_autosummary/cyclops.data.slicer.filter_range", "reference/api/_autosummary/cyclops.data.slicer.filter_string_contains", "reference/api/_autosummary/cyclops.data.slicer.filter_value", "reference/api/_autosummary/cyclops.data.slicer.is_datetime", "reference/api/_autosummary/cyclops.data.slicer.overall", "reference/api/_autosummary/cyclops.evaluate.evaluator", "reference/api/_autosummary/cyclops.evaluate.evaluator.evaluate", "reference/api/_autosummary/cyclops.evaluate.fairness.config", "reference/api/_autosummary/cyclops.evaluate.fairness.config.FairnessConfig", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator.evaluate_fairness", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator.warn_too_many_unique_values", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.Accuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.BinaryAccuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.MulticlassAccuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.MultilabelAccuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.AUROC", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.BinaryAUROC", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.MulticlassAUROC", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.MultilabelAUROC", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.BinaryF1Score", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.BinaryFbetaScore", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.F1Score", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.FbetaScore", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MulticlassF1Score", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MultilabelF1Score", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore", "reference/api/_autosummary/cyclops.evaluate.metrics.factory", "reference/api/_autosummary/cyclops.evaluate.metrics.factory.create_metric", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.accuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.auroc", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.binary_f1_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.binary_fbeta_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.f1_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.fbeta_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multiclass_f1_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multiclass_fbeta_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multilabel_f1_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multilabel_fbeta_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.binary_precision", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.binary_recall", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multiclass_precision", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multiclass_recall", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multilabel_precision", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multilabel_recall", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.precision", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.recall", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.binary_roc_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.multiclass_roc_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.multilabel_roc_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.roc_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.sensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.specificity", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.stat_scores", "reference/api/_autosummary/cyclops.evaluate.metrics.metric", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.Metric", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.MetricCollection", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.OperatorMetric", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.BinaryPrecision", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.BinaryRecall", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MulticlassPrecision", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MulticlassRecall", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MultilabelPrecision", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MultilabelRecall", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.Precision", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.Recall", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.roc", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.BinaryROCCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.MulticlassROCCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.MultilabelROCCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.ROCCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.BinarySensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.Sensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.BinarySpecificity", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.MulticlassSpecificity", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.MultilabelSpecificity", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.Specificity", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.BinaryStatScores", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.MulticlassStatScores", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.MultilabelStatScores", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.StatScores", "reference/api/_autosummary/cyclops.monitor.clinical_applicator", "reference/api/_autosummary/cyclops.monitor.clinical_applicator.ClinicalShiftApplicator", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.binary_noise_shift", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.feature_association_shift", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.feature_swap_shift", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.gaussian_noise_shift", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.knockout_shift", "reference/api/_autosummary/cyclops.report.report", "reference/api/_autosummary/cyclops.report.report.ModelCardReport", "reference/api/_autosummary/cyclops.tasks.cxr_classification", "reference/api/_autosummary/cyclops.tasks.cxr_classification.CXRClassificationTask", "reference/api/_autosummary/cyclops.tasks.mortality_prediction", "reference/api/_autosummary/cyclops.tasks.mortality_prediction.MortalityPredictionTask", "reference/api/cyclops.data", "reference/api/cyclops.evaluate", "reference/api/cyclops.monitor", "reference/api/cyclops.report", "reference/api/cyclops.tasks", "tutorials", "tutorials/kaggle/heart_failure_prediction", "tutorials/nihcxr/cxr_classification", "tutorials/nihcxr/monitor_api", "tutorials/synthea/los_prediction", "tutorials_monitor", "tutorials_use_cases"], "filenames": ["api.rst", "contributing.rst", "index.rst", "intro.rst", "reference/api/_autosummary/cyclops.data.features.medical_image.rst", "reference/api/_autosummary/cyclops.data.features.medical_image.MedicalImage.rst", "reference/api/_autosummary/cyclops.data.slicer.rst", "reference/api/_autosummary/cyclops.data.slicer.SliceSpec.rst", "reference/api/_autosummary/cyclops.data.slicer.compound_filter.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_datetime.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_non_null.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_range.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_string_contains.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_value.rst", "reference/api/_autosummary/cyclops.data.slicer.is_datetime.rst", "reference/api/_autosummary/cyclops.data.slicer.overall.rst", "reference/api/_autosummary/cyclops.evaluate.evaluator.rst", "reference/api/_autosummary/cyclops.evaluate.evaluator.evaluate.rst", "reference/api/_autosummary/cyclops.evaluate.fairness.config.rst", "reference/api/_autosummary/cyclops.evaluate.fairness.config.FairnessConfig.rst", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator.rst", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator.evaluate_fairness.rst", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator.warn_too_many_unique_values.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.Accuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.BinaryAccuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.AUROC.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.BinaryAUROC.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.MulticlassAUROC.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.MultilabelAUROC.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.BinaryF1Score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.F1Score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.FbetaScore.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MulticlassF1Score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MultilabelF1Score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.factory.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.factory.create_metric.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.accuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.auroc.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.binary_f1_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.binary_fbeta_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.f1_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.fbeta_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multiclass_f1_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multiclass_fbeta_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multilabel_f1_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multilabel_fbeta_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.binary_precision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.binary_recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multiclass_precision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multiclass_recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multilabel_precision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multilabel_recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.precision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.binary_roc_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.multiclass_roc_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.multilabel_roc_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.roc_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.sensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.specificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.stat_scores.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.Metric.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.MetricCollection.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.OperatorMetric.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.BinaryPrecision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.BinaryRecall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MulticlassRecall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MultilabelRecall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.Precision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.Recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.BinaryROCCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.MulticlassROCCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.MultilabelROCCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.ROCCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.BinarySensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.Sensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.BinarySpecificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.MulticlassSpecificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.MultilabelSpecificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.Specificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.BinaryStatScores.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.StatScores.rst", "reference/api/_autosummary/cyclops.monitor.clinical_applicator.rst", "reference/api/_autosummary/cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.binary_noise_shift.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.feature_association_shift.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.feature_swap_shift.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.gaussian_noise_shift.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.knockout_shift.rst", "reference/api/_autosummary/cyclops.report.report.rst", "reference/api/_autosummary/cyclops.report.report.ModelCardReport.rst", "reference/api/_autosummary/cyclops.tasks.cxr_classification.rst", "reference/api/_autosummary/cyclops.tasks.cxr_classification.CXRClassificationTask.rst", "reference/api/_autosummary/cyclops.tasks.mortality_prediction.rst", "reference/api/_autosummary/cyclops.tasks.mortality_prediction.MortalityPredictionTask.rst", "reference/api/cyclops.data.rst", "reference/api/cyclops.evaluate.rst", "reference/api/cyclops.monitor.rst", "reference/api/cyclops.report.rst", "reference/api/cyclops.tasks.rst", "tutorials.rst", "tutorials/kaggle/heart_failure_prediction.ipynb", "tutorials/nihcxr/cxr_classification.ipynb", "tutorials/nihcxr/monitor_api.ipynb", "tutorials/synthea/los_prediction.ipynb", "tutorials_monitor.rst", "tutorials_use_cases.rst"], "titles": ["API Reference", "Contributing to cyclops", "Welcome to cyclops\u2019s documentation!", "\ud83d\udc23 Getting Started", "cyclops.data.features.medical_image", "cyclops.data.features.medical_image.MedicalImage", "cyclops.data.slicer", "cyclops.data.slicer.SliceSpec", "cyclops.data.slicer.compound_filter", "cyclops.data.slicer.filter_datetime", "cyclops.data.slicer.filter_non_null", "cyclops.data.slicer.filter_range", "cyclops.data.slicer.filter_string_contains", "cyclops.data.slicer.filter_value", "cyclops.data.slicer.is_datetime", "cyclops.data.slicer.overall", "cyclops.evaluate.evaluator", "cyclops.evaluate.evaluator.evaluate", "cyclops.evaluate.fairness.config", "cyclops.evaluate.fairness.config.FairnessConfig", "cyclops.evaluate.fairness.evaluator", "cyclops.evaluate.fairness.evaluator.evaluate_fairness", "cyclops.evaluate.fairness.evaluator.warn_too_many_unique_values", "cyclops.evaluate.metrics.accuracy", "cyclops.evaluate.metrics.accuracy.Accuracy", "cyclops.evaluate.metrics.accuracy.BinaryAccuracy", "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy", "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy", "cyclops.evaluate.metrics.auroc", "cyclops.evaluate.metrics.auroc.AUROC", "cyclops.evaluate.metrics.auroc.BinaryAUROC", "cyclops.evaluate.metrics.auroc.MulticlassAUROC", "cyclops.evaluate.metrics.auroc.MultilabelAUROC", "cyclops.evaluate.metrics.f_beta", "cyclops.evaluate.metrics.f_beta.BinaryF1Score", "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore", "cyclops.evaluate.metrics.f_beta.F1Score", "cyclops.evaluate.metrics.f_beta.FbetaScore", "cyclops.evaluate.metrics.f_beta.MulticlassF1Score", "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore", "cyclops.evaluate.metrics.f_beta.MultilabelF1Score", "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore", "cyclops.evaluate.metrics.factory", "cyclops.evaluate.metrics.factory.create_metric", "cyclops.evaluate.metrics.functional.accuracy", "cyclops.evaluate.metrics.functional.auroc", "cyclops.evaluate.metrics.functional.f_beta", "cyclops.evaluate.metrics.functional.f_beta.binary_f1_score", "cyclops.evaluate.metrics.functional.f_beta.binary_fbeta_score", "cyclops.evaluate.metrics.functional.f_beta.f1_score", "cyclops.evaluate.metrics.functional.f_beta.fbeta_score", "cyclops.evaluate.metrics.functional.f_beta.multiclass_f1_score", "cyclops.evaluate.metrics.functional.f_beta.multiclass_fbeta_score", "cyclops.evaluate.metrics.functional.f_beta.multilabel_f1_score", "cyclops.evaluate.metrics.functional.f_beta.multilabel_fbeta_score", "cyclops.evaluate.metrics.functional.precision_recall", "cyclops.evaluate.metrics.functional.precision_recall.binary_precision", "cyclops.evaluate.metrics.functional.precision_recall.binary_recall", "cyclops.evaluate.metrics.functional.precision_recall.multiclass_precision", "cyclops.evaluate.metrics.functional.precision_recall.multiclass_recall", "cyclops.evaluate.metrics.functional.precision_recall.multilabel_precision", "cyclops.evaluate.metrics.functional.precision_recall.multilabel_recall", "cyclops.evaluate.metrics.functional.precision_recall.precision", "cyclops.evaluate.metrics.functional.precision_recall.recall", "cyclops.evaluate.metrics.functional.precision_recall_curve", "cyclops.evaluate.metrics.functional.roc", "cyclops.evaluate.metrics.functional.roc.binary_roc_curve", "cyclops.evaluate.metrics.functional.roc.multiclass_roc_curve", "cyclops.evaluate.metrics.functional.roc.multilabel_roc_curve", "cyclops.evaluate.metrics.functional.roc.roc_curve", "cyclops.evaluate.metrics.functional.sensitivity", "cyclops.evaluate.metrics.functional.specificity", "cyclops.evaluate.metrics.functional.stat_scores", "cyclops.evaluate.metrics.metric", "cyclops.evaluate.metrics.metric.Metric", "cyclops.evaluate.metrics.metric.MetricCollection", "cyclops.evaluate.metrics.metric.OperatorMetric", "cyclops.evaluate.metrics.precision_recall", "cyclops.evaluate.metrics.precision_recall.BinaryPrecision", "cyclops.evaluate.metrics.precision_recall.BinaryRecall", "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision", "cyclops.evaluate.metrics.precision_recall.MulticlassRecall", "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision", "cyclops.evaluate.metrics.precision_recall.MultilabelRecall", "cyclops.evaluate.metrics.precision_recall.Precision", "cyclops.evaluate.metrics.precision_recall.Recall", "cyclops.evaluate.metrics.precision_recall_curve", "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve", "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve", "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve", "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve", "cyclops.evaluate.metrics.roc", "cyclops.evaluate.metrics.roc.BinaryROCCurve", "cyclops.evaluate.metrics.roc.MulticlassROCCurve", "cyclops.evaluate.metrics.roc.MultilabelROCCurve", "cyclops.evaluate.metrics.roc.ROCCurve", "cyclops.evaluate.metrics.sensitivity", "cyclops.evaluate.metrics.sensitivity.BinarySensitivity", "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity", "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity", "cyclops.evaluate.metrics.sensitivity.Sensitivity", "cyclops.evaluate.metrics.specificity", "cyclops.evaluate.metrics.specificity.BinarySpecificity", "cyclops.evaluate.metrics.specificity.MulticlassSpecificity", "cyclops.evaluate.metrics.specificity.MultilabelSpecificity", "cyclops.evaluate.metrics.specificity.Specificity", "cyclops.evaluate.metrics.stat_scores", "cyclops.evaluate.metrics.stat_scores.BinaryStatScores", "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores", "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores", "cyclops.evaluate.metrics.stat_scores.StatScores", "cyclops.monitor.clinical_applicator", "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator", "cyclops.monitor.synthetic_applicator", "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator", "cyclops.monitor.synthetic_applicator.binary_noise_shift", "cyclops.monitor.synthetic_applicator.feature_association_shift", "cyclops.monitor.synthetic_applicator.feature_swap_shift", "cyclops.monitor.synthetic_applicator.gaussian_noise_shift", "cyclops.monitor.synthetic_applicator.knockout_shift", "cyclops.report.report", "cyclops.report.report.ModelCardReport", "cyclops.tasks.cxr_classification", "cyclops.tasks.cxr_classification.CXRClassificationTask", "cyclops.tasks.mortality_prediction", "cyclops.tasks.mortality_prediction.MortalityPredictionTask", "cyclops.data", "cyclops.evaluate", "cyclops.monitor", "cyclops.report", "cyclops.tasks", "Tutorials", "Heart Failure Prediction", "Chest X-Ray Disease Classification", "NIHCXR Clinical Drift Experiments Tutorial", "Prolonged Length of Stay Prediction", "monitor API", "Example use cases"], "terms": {"cyclop": [0, 132, 133, 134, 135], "data": [0, 2, 3, 24, 26, 27, 49, 50, 52, 54, 69, 72, 89, 95, 112, 114, 115, 116, 117, 118, 119, 121, 123, 125, 131, 133, 134, 136], "slicer": [0, 132, 133, 134, 135], "compound_filt": 0, "filter_datetim": 0, "filter_non_nul": 0, "filter_rang": 0, "filter_string_contain": 0, "filter_valu": [0, 133], "is_datetim": 0, "overal": [0, 7, 21, 121, 132, 133, 135], "slicespec": [0, 17, 112, 123, 132, 133, 134, 135], "spec_list": [0, 7, 132, 133, 134, 135], "include_overal": [0, 7], "valid": [0, 7, 9, 17, 121, 123, 125, 132, 133], "column_nam": [0, 7, 9, 10, 11, 12, 13, 133], "_registri": [0, 7], "add_slice_spec": [0, 7], "get_slic": [0, 7], "slice": [0, 3, 7, 8, 17, 21, 121, 123, 125, 132, 133, 135], "featur": [0, 7, 9, 10, 11, 12, 13, 15, 17, 112, 116, 117, 121, 123, 125, 131, 133, 137], "medical_imag": 0, "medicalimag": 0, "__call__": [0, 5, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "cast_storag": [0, 5], "decode_exampl": [0, 5], "embed_storag": [0, 5], "encode_exampl": [0, 5], "flatten": [0, 5, 132, 133, 135], "task": [0, 2, 3, 24, 25, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 44, 47, 48, 49, 50, 51, 53, 54, 58, 60, 61, 62, 63, 66, 67, 68, 69, 78, 80, 81, 82, 83, 84, 85, 90, 92, 93, 94, 95, 98, 99, 100, 102, 103, 104, 105, 110, 131, 133, 137], "cxr_classif": 0, "cxrclassificationtask": 0, "__init__": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 123, 125, 133], "add_model": [0, 123, 125], "data_typ": [0, 123, 125], "evalu": [0, 2, 3, 121, 123, 125, 131, 133, 137], "get_model": [0, 123, 125], "list_model": [0, 123, 125, 132, 135], "models_count": [0, 123, 125], "predict": [0, 3, 17, 19, 21, 24, 26, 27, 30, 31, 32, 34, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 67, 80, 81, 82, 84, 85, 87, 88, 89, 92, 93, 94, 98, 100, 102, 103, 104, 105, 107, 108, 109, 110, 123, 124, 125, 131], "task_typ": [0, 123, 125, 132, 135], "mortality_predict": [0, 132, 135], "mortalitypredictiontask": [0, 132, 135], "list_models_param": [0, 125, 132, 135], "load_model": [0, 125], "save_model": [0, 125], "train": [0, 3, 17, 121, 123, 125, 131, 133, 136, 137], "metric": [0, 17, 19, 21, 121, 123, 125, 131, 132, 135, 137], "__add__": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "__mul__": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "add_stat": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "clone": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "comput": [0, 17, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 123, 125, 131, 133, 137], "reset_st": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "update_st": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "metriccollect": [0, 17, 21, 123, 125, 132, 135], "add_metr": [0, 75], "clear": [0, 75], "get": [0, 2, 75, 123, 125, 131, 132, 135, 137], "item": [0, 75, 132, 133, 134, 135], "kei": [0, 7, 17, 21, 75, 121, 132, 133, 134, 135], "pop": [0, 75, 132, 135], "popitem": [0, 75], "setdefault": [0, 75], "updat": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 132, 133, 134, 135], "valu": [0, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 121, 131, 133, 134, 135, 137], "operatormetr": 0, "factori": [0, 7, 133], "create_metr": [0, 132, 133, 135], "accuraci": [0, 132, 135], "binaryaccuraci": [0, 132, 135], "multiclassaccuraci": 0, "multilabelaccuraci": 0, "auroc": [0, 131, 132, 135, 137], "binaryauroc": [0, 29, 132, 135], "multiclassauroc": [0, 29], "multilabelauroc": [0, 29], "precision_recal": 0, "binaryprecis": [0, 132, 135], "binaryrecal": [0, 97, 132, 135], "multiclassprecis": 0, "multiclassrecal": [0, 98], "multilabelprecis": 0, "multilabelrecal": [0, 99], "precis": [0, 24, 35, 36, 37, 38, 39, 40, 41, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 60, 64, 66, 77, 78, 80, 82, 85, 86, 87, 88, 89, 90, 92, 100, 105, 132, 133, 135], "recal": [0, 24, 38, 51, 55, 57, 59, 61, 64, 66, 77, 79, 81, 83, 86, 87, 88, 89, 90, 92, 97, 98, 99, 105, 132, 133, 135], "precision_recall_curv": [0, 132, 135], "binaryprecisionrecallcurv": [0, 30, 92, 132, 135], "multiclassprecisionrecallcurv": [0, 31, 93], "multilabelprecisionrecallcurv": [0, 32, 94], "precisionrecallcurv": 0, "roc": [0, 28, 29, 30, 31, 32, 45, 132, 135], "binaryroccurv": [0, 132, 135], "multiclassroccurv": 0, "multilabelroccurv": 0, "roccurv": 0, "sensit": [0, 121, 131, 132, 133, 135, 136], "binarysensit": 0, "multiclasssensit": 0, "multilabelsensit": [0, 133], "specif": [0, 7, 17, 115, 118, 123, 125, 132, 133, 135], "binaryspecif": 0, "multiclassspecif": 0, "multilabelspecif": [0, 133], "f_beta": 0, "binaryf1scor": [0, 132, 135], "binaryfbetascor": [0, 34], "f1score": 0, "fbetascor": [0, 36], "multiclassf1scor": 0, "multiclassfbetascor": [0, 38], "multilabelf1scor": 0, "multilabelfbetascor": [0, 40], "stat_scor": [0, 133], "binarystatscor": [0, 25, 35, 78, 79, 102], "multiclassstatscor": [0, 26, 39, 80, 81, 103], "multilabelstatscor": [0, 27, 41, 82, 83, 104, 133], "statscor": 0, "function": [0, 3, 5, 6, 7, 8, 16, 17, 20, 21, 25, 35, 41, 42, 76, 93, 102, 104, 107, 109, 110, 113, 121, 132, 133, 135], "binary_precis": 0, "binary_recal": 0, "multiclass_precis": 0, "multiclass_recal": 0, "multilabel_precis": 0, "multilabel_recal": 0, "binary_roc_curv": 0, "multiclass_roc_curv": 0, "multilabel_roc_curv": 0, "roc_curv": [0, 132, 135], "binary_f1_scor": 0, "binary_fbeta_scor": 0, "f1_score": [0, 132, 135], "fbeta_scor": 0, "multiclass_f1_scor": 0, "multiclass_fbeta_scor": 0, "multilabel_f1_scor": 0, "multilabel_fbeta_scor": 0, "fair": [0, 17, 121, 123, 125, 132, 133, 135], "evaluate_fair": 0, "warn_too_many_unique_valu": 0, "config": [0, 125], "fairnessconfig": [0, 17, 123, 125, 132, 135], "monitor": [0, 2, 3, 131, 132, 134, 135], "clinical_appl": 0, "clinicalshiftappl": [0, 134], "ag": [0, 112, 131, 134, 137], "apply_shift": [0, 112, 114, 134], "custom": [0, 112, 121, 134], "hospital_typ": [0, 112], "month": [0, 7, 9, 112], "sex": [0, 112, 131, 134, 135, 137], "time": [0, 7, 75, 112, 121, 131, 136, 137], "synthetic_appl": 0, "binary_noise_shift": 0, "feature_association_shift": 0, "feature_swap_shift": 0, "gaussian_noise_shift": 0, "knockout_shift": 0, "syntheticshiftappl": [0, 113], "report": [0, 2, 3, 110, 131, 137], "modelcardreport": [0, 132, 133, 135], "export": [0, 121, 132, 133, 135], "from_json_fil": [0, 121], "log_cit": [0, 121, 133], "log_dataset": [0, 121, 132], "log_descriptor": [0, 121, 132, 133, 135], "log_fairness_assess": [0, 121, 132, 133, 135], "log_from_dict": [0, 121, 132, 133, 135], "log_imag": [0, 121], "log_licens": [0, 121, 132, 135], "log_model_paramet": [0, 121, 132, 135], "log_own": [0, 121, 132, 133, 135], "log_performance_metr": [0, 121, 132, 135], "log_plotly_figur": [0, 121, 132, 133, 135], "log_quantitative_analysi": [0, 121, 132, 133, 135], "log_refer": [0, 121, 132, 135], "log_regul": [0, 121], "log_risk": [0, 121, 132, 133, 135], "log_use_cas": [0, 121, 132, 133, 135], "log_us": [0, 121, 132, 133, 135], "log_vers": [0, 121, 132, 135], "thank": 1, "your": [1, 132], "interest": [1, 132, 135], "To": [1, 3, 5, 132, 135], "submit": 1, "pr": 1, "pleas": [1, 132, 133, 134, 135], "fill": 1, "out": [1, 121, 132, 135], "templat": [1, 121], "along": [1, 112, 132, 133, 135], "If": [1, 5, 7, 9, 10, 11, 12, 13, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 123, 125, 132, 135], "fix": 1, "an": [1, 3, 5, 7, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 51, 60, 61, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 132, 133, 135], "issu": [1, 21], "don": 1, "t": [1, 5, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121], "forget": 1, "link": [1, 121, 132, 133, 135], "onc": [1, 75, 132, 135], "python": [1, 3, 135], "virtual": [1, 3], "environ": [1, 3, 132, 135], "i": [1, 3, 5, 7, 9, 10, 11, 12, 13, 14, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 123, 125, 132, 133, 135, 137], "setup": [1, 135], "you": [1, 3, 5, 75, 132, 133, 135, 136], "can": [1, 3, 5, 7, 21, 25, 38, 51, 69, 75, 84, 85, 95, 100, 110, 121, 125, 132, 133, 135, 136], "run": [1, 3, 132, 135], "us": [1, 2, 5, 7, 8, 17, 21, 24, 29, 30, 31, 32, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 60, 61, 62, 63, 66, 67, 68, 69, 75, 76, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 98, 99, 100, 102, 105, 107, 110, 112, 114, 121, 123, 125, 131, 132, 133, 135, 136], "all": [1, 7, 8, 9, 10, 11, 12, 13, 15, 63, 73, 75, 108, 109, 110, 125, 132, 133, 134, 135], "file": [1, 5, 121, 132, 133, 135], "For": [1, 21, 76, 121, 132, 135], "style": 1, "we": [1, 3, 121, 132, 133, 135], "recommend": [1, 76], "googl": 1, "guid": 1, "appli": [1, 8, 25, 29, 59, 62, 63, 66, 67, 68, 75, 76, 93, 104, 109, 110, 112, 123, 125, 132, 135], "black": 1, "format": [1, 5, 7, 89, 121, 132, 135], "docstr": 1, "numpi": [1, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 115, 116, 117, 118, 119, 123, 132, 133, 134, 135], "also": [1, 3, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 132, 133, 135, 137], "flake8": 1, "pylint": 1, "further": 1, "static": 1, "analysi": [1, 121, 132, 133, 135], "The": [1, 3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 50, 51, 52, 53, 54, 56, 60, 61, 63, 66, 68, 69, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 123, 125, 132, 133, 135, 136, 137], "show": [1, 132, 133, 135], "error": 1, "which": [1, 9, 10, 11, 12, 13, 21, 90, 121, 132, 133, 135, 137], "need": [1, 17, 21, 132, 135], "befor": [1, 17, 21, 22, 125, 132, 135], "last": 1, "least": 1, "type": [1, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 115, 116, 117, 118, 119, 121, 123, 125, 131, 133, 137], "hint": 1, "our": [1, 132, 135], "check": [1, 14, 89], "mypi": 1, "current": [1, 121, 132, 135], "ar": [1, 5, 7, 11, 12, 17, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 75, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 97, 98, 99, 100, 103, 104, 105, 108, 109, 110, 112, 116, 121, 132, 133, 135], "strict": 1, "enforc": 1, "more": [1, 7, 16, 17, 123, 125, 132, 137], "api": [1, 2, 3, 131, 132, 137], "becom": 1, "stabl": [1, 132, 133, 134, 135], "start": [2, 17, 132, 135], "instal": [2, 132], "pip": [2, 132], "develop": [2, 132, 133, 135], "poetri": 2, "contribut": 2, "notebook": [2, 132, 133, 135], "citat": [2, 121, 132, 133, 135], "pre": [2, 132, 135], "commit": 2, "hook": 2, "code": [2, 132, 135], "guidelin": [2, 3], "tutori": [2, 132, 136, 137], "exampl": [2, 3, 5, 7, 8, 9, 10, 11, 12, 13, 15, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 131, 132, 133, 135, 136], "case": [2, 3, 75, 115, 121, 131, 132, 135, 136], "refer": [2, 3, 121, 132, 133, 135], "toolkit": 3, "facilit": 3, "research": 3, "deploy": 3, "ml": [3, 132, 135], "model": [3, 16, 17, 21, 121, 123, 125, 131, 136, 137], "healthcar": 3, "It": [3, 38, 51, 75, 84, 85, 100, 105, 136], "provid": [3, 7, 9, 12, 17, 21, 69, 110, 121, 132, 135], "few": 3, "high": [3, 132, 135], "level": [3, 21, 132, 135], "name": [3, 7, 8, 9, 10, 11, 12, 13, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 121, 123, 125, 132, 133, 134, 135], "creat": [3, 6, 7, 21, 42, 43, 75, 84, 85, 100, 115, 118, 119, 121, 123, 125, 131, 133, 137], "dataset": [3, 6, 7, 16, 17, 19, 21, 26, 38, 39, 51, 52, 58, 61, 68, 69, 80, 81, 83, 88, 89, 90, 94, 95, 98, 99, 103, 104, 112, 114, 121, 123, 125, 126, 131, 136, 137], "infer": [3, 17], "popular": [3, 132], "effici": 3, "load": [3, 17, 121, 125, 131, 135, 136, 137], "differ": [3, 24, 29, 36, 37, 46, 55, 62, 63, 64, 69, 70, 72, 84, 85, 90, 95, 100, 105, 131, 132, 133, 135, 136], "modal": 3, "common": [3, 132], "implement": [3, 137], "scikit": [3, 132], "learn": [3, 132, 133], "pytorch": 3, "canon": 3, "mortal": [3, 124, 125], "chest": [3, 122, 123, 131], "x": [3, 114, 115, 116, 117, 118, 119, 122, 123, 125, 131, 132, 134, 135], "rai": [3, 122, 123, 131], "classif": [3, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 44, 47, 48, 49, 50, 51, 53, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 78, 79, 80, 81, 82, 83, 84, 85, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 122, 123, 125, 131, 132, 135], "clinic": [3, 111, 112, 131, 136], "detect": [3, 133, 136], "shift": [3, 111, 112, 114, 116, 117, 131, 136], "relev": [3, 121, 132, 135, 136], "card": [3, 121, 131, 132, 135, 137], "librari": [3, 131, 136, 137], "end": [3, 132, 133, 135], "mimic": 3, "iii": 3, "iv": 3, "eicu": 3, "crd": 3, "python3": [3, 132, 133, 134, 135], "m": [3, 132, 133, 134, 135], "pycyclop": [3, 132, 133, 134, 135], "base": [3, 5, 7, 17, 19, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 123, 125, 131, 132, 137], "packag": [3, 126, 127, 128, 129, 130, 132, 133, 134, 135], "support": [3, 7, 24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 72, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 107, 108, 109, 136], "process": [3, 112, 132, 133, 135], "transform": [3, 17, 66, 67, 68, 93, 123, 125, 132, 133, 134, 135], "downstream": [3, 132, 135], "addit": [3, 75, 121, 123, 125, 132, 135], "from": [3, 5, 7, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 119, 121, 123, 125, 132, 133, 134, 135], "other": [3, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 132], "thei": [3, 69], "extra": [3, 121], "multipl": [3, 8, 17, 21, 75, 121], "could": [3, 132, 135], "combin": [3, 8, 132], "both": 3, "set": [3, 7, 17, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 132, 133, 135], "up": [3, 132, 133, 135], "henc": 3, "make": [3, 132, 135], "sure": [3, 132], "sourc": [3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 19, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 115, 116, 117, 118, 119, 121, 123, 125, 131, 136], "env": 3, "info": [3, 132, 135], "path": [3, 5, 112, 121, 125, 132, 135], "bin": [3, 21], "activ": [3, 135], "In": [3, 75, 132, 135], "order": [3, 5, 17, 107, 108, 109], "depend": 3, "test": [3, 17, 121, 123, 125, 131, 132, 135, 136, 137], "codestyl": 3, "unit": 3, "integr": [3, 132], "built": 3, "sphinx": 3, "local": 3, "doc": 3, "cd": 3, "html": [3, 121, 132, 133, 134, 135], "sphinxopt": 3, "d": [3, 75, 112, 133], "nbsphinx_allow_error": 3, "true": [3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 24, 26, 27, 31, 32, 35, 36, 37, 38, 39, 40, 41, 48, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 107, 108, 109, 110, 112, 114, 116, 121, 123, 125, 132, 133, 134, 135], "welcom": 3, "see": [3, 7, 121, 132, 133, 134, 135], "jupyt": [3, 132, 133, 134, 135], "insid": 3, "ipython": 3, "kernel": 3, "after": [3, 17, 132, 135], "ipykernel": 3, "user": [3, 121, 132, 135], "name_of_kernel": 3, "now": 3, "navig": 3, "": [3, 7, 10, 14, 17, 21, 75, 121, 123, 125, 132, 133, 134, 135], "tab": [3, 132], "cite": 3, "when": [3, 5, 17, 21, 24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 75, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 103, 104, 105, 123, 125, 132, 135], "project": 3, "paper": 3, "articl": 3, "krishnan2022": 3, "12": [3, 7, 132, 133, 135], "02": [3, 69, 133], "22283021": 3, "author": [3, 132, 133], "krishnan": 3, "amrit": 3, "subasri": 3, "vallijah": 3, "mckeen": 3, "kaden": 3, "kore": 3, "ali": 3, "ogidi": 3, "franklin": 3, "alinoori": 3, "mahshid": 3, "lalani": 3, "nadim": 3, "dhalla": 3, "azra": 3, "verma": 3, "amol": 3, "razak": 3, "fahad": 3, "pandya": 3, "deval": 3, "dolatabadi": 3, "elham": 3, "titl": [3, 132, 133, 135], "cyclic": 3, "toward": 3, "operation": 3, "health": [3, 132, 135], "eloc": 3, "id": [3, 5, 112, 132, 133, 135], "2022": [3, 7, 133], "year": [3, 7, 9, 132, 133, 135], "doi": 3, "10": [3, 132, 133, 134, 135], "1101": 3, "publish": [3, 132], "cold": 3, "spring": 3, "harbor": 3, "laboratori": [3, 135], "press": 3, "url": [3, 133], "http": [3, 121, 132, 133, 134, 135], "www": [3, 132], "medrxiv": 3, "org": [3, 121, 132, 133, 135], "content": [3, 121], "earli": 3, "08": [3, 132, 133], "journal": 3, "medic": [4, 5, 126, 133, 135, 137], "imag": [4, 5, 17, 21, 118, 121, 123, 126, 131, 133, 134], "class": [4, 5, 6, 7, 17, 18, 19, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 69, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 116, 117, 119, 120, 121, 122, 123, 124, 125, 132, 133, 135], "decod": [5, 133], "none": [5, 7, 9, 17, 19, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 121, 123, 125, 132, 133, 134, 135], "reader": 5, "itkread": 5, "suffix": 5, "jpg": 5, "read": [5, 17], "paramet": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 115, 116, 117, 118, 119, 121, 123, 125, 132, 133, 135], "bool": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 75, 76, 108, 109, 110, 112, 116, 117, 121, 123, 125, 132, 133, 135], "option": [5, 7, 9, 10, 11, 12, 13, 17, 21, 24, 27, 36, 37, 38, 39, 40, 41, 43, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 69, 75, 80, 81, 82, 83, 84, 85, 90, 95, 98, 99, 100, 103, 104, 105, 108, 112, 114, 121, 123, 125, 133], "default": [5, 7, 9, 10, 11, 12, 13, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 121, 123, 125, 132, 135], "whether": [5, 7, 21, 75, 108, 109, 110, 112, 121, 135, 137], "fals": [5, 7, 9, 10, 11, 12, 13, 14, 19, 21, 29, 30, 40, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 75, 80, 81, 82, 83, 84, 85, 98, 99, 100, 105, 107, 108, 109, 110, 117, 118, 123, 125, 132, 133, 135], "return": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 115, 116, 117, 118, 119, 121, 123, 125, 133, 135], "dictionari": [5, 7, 8, 9, 10, 11, 12, 13, 15, 17, 21, 75, 121, 123, 125, 132, 135], "image_path": 5, "byte": 5, "image_byt": 5, "union": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 123, 125], "str": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 123, 125, 132, 135], "imageread": 5, "monai": [5, 133, 134], "method": [5, 7, 19, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 123, 125, 132, 135], "attribut": [5, 7, 19, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 123, 125, 132, 135], "call": [5, 121], "self": [5, 133], "storag": 5, "cast": [5, 132, 135], "arrow": 5, "arrai": [5, 24, 26, 27, 29, 30, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 60, 61, 63, 66, 67, 68, 69, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 98, 99, 100, 103, 104, 105, 107, 108, 109, 110, 116, 117, 119, 123, 133], "convert": [5, 25, 35, 41, 48, 61, 69, 95, 102, 104, 107, 132, 135], "pyarrow": 5, "rtype": 5, "structarrai": 5, "pa": 5, "string": [5, 7, 9, 12, 17, 21, 75, 121, 133], "must": [5, 9, 17, 21, 121], "contain": [5, 7, 8, 9, 10, 11, 12, 13, 15, 17, 21, 27, 103, 104, 121, 132, 133, 135, 137], "binari": [5, 24, 25, 29, 30, 34, 35, 36, 37, 47, 48, 49, 50, 56, 57, 60, 61, 62, 63, 66, 69, 72, 78, 79, 84, 85, 87, 90, 92, 95, 97, 100, 102, 104, 105, 107, 110, 115, 125, 132, 135, 137], "struct": 5, "doesn": 5, "matter": 5, "list": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 66, 67, 68, 69, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 115, 116, 117, 118, 119, 121, 123, 125, 132, 135], "arg": [5, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "stringarrai": 5, "listarrai": 5, "token_per_repo_id": 5, "serial": 5, "version": [5, 121, 132, 133, 135], "dict": [5, 7, 8, 9, 10, 11, 12, 13, 15, 17, 21, 22, 75, 121, 123, 125], "access": 5, "privat": 5, "repositori": [5, 132], "hub": 5, "pass": [5, 17, 43, 75, 112, 121, 125, 132, 135], "repo_id": 5, "token": [5, 132], "deseri": 5, "np": [5, 11, 14, 21, 123, 125, 132, 133, 134, 135], "ndarrai": [5, 14, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 115, 116, 117, 118, 119, 123, 125], "metadata": [5, 132, 133, 135], "emb": 5, "encod": 5, "input": [5, 24, 46, 55, 60, 61, 64, 69, 70, 72, 87, 89, 95, 115, 118, 123, 125], "state": [5, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 133], "itself": 5, "otherwis": [5, 14, 24, 27, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 67, 68, 75, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 108, 109, 110], "tupl": [5, 7, 66, 67, 68, 69, 75, 87, 88, 89, 92, 93, 94, 112, 123, 125], "classlabel": [5, 132, 135], "translat": 5, "translationvariablelanguag": 5, "sequenc": [5, 17, 75, 123, 125, 133], "array2d": 5, "array3d": 5, "array4d": 5, "array5d": 5, "audio": 5, "subset": 6, "hug": [6, 123, 125, 131, 137], "face": [6, 123, 125, 131, 137], "object": [7, 19, 21, 112, 114, 121, 123, 125, 132, 135], "ani": [7, 8, 9, 10, 11, 12, 13, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 123, 125, 132, 133, 135], "A": [7, 8, 9, 10, 11, 12, 13, 15, 17, 21, 22, 25, 75, 76, 104, 109, 121, 132, 133, 135], "each": [7, 8, 17, 21, 24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 67, 68, 69, 75, 76, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 108, 109, 110, 132, 135], "map": [7, 8, 22, 43, 75, 123, 125, 132, 133, 135], "column": [7, 8, 9, 10, 11, 12, 13, 17, 21, 112, 123, 125, 132, 133, 135], "one": [7, 16, 17, 21, 24, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 67, 68, 69, 76, 80, 81, 82, 83, 84, 85, 95, 98, 99, 100, 105, 123, 125], "follow": [7, 17, 24, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 60, 61, 75, 80, 81, 82, 83, 84, 85, 98, 99, 100, 105, 121, 132, 133, 135], "exact": [7, 13], "select": [7, 112, 116, 132, 133, 135], "thi": [7, 17, 21, 24, 25, 26, 27, 29, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 103, 104, 105, 121, 125, 132, 133, 135, 137], "singl": [7, 75, 121, 125, 132, 135], "row": [7, 132, 133], "where": [7, 8, 9, 10, 11, 12, 13, 60, 61, 63, 75, 121, 125, 132, 135, 137], "e": [7, 9, 10, 17, 21, 75, 116, 117, 118, 121, 132, 135], "g": [7, 9, 17, 21, 116, 117, 118, 121, 132, 135], "2021": [7, 132], "01": [7, 29, 31, 32, 132, 133, 135], "00": [7, 132, 133, 134, 135], "min_valu": [7, 11, 132, 133, 134, 135], "minimum": [7, 11], "specifi": [7, 17, 75, 112, 121, 123, 125, 132, 135], "min_inclus": [7, 11, 132, 135], "indic": [7, 21, 27, 60, 61, 115, 118, 132, 133, 135], "includ": [7, 11, 21, 72, 112, 114, 132, 133, 135, 136], "rang": [7, 11, 29, 30, 66, 67, 68, 93, 132, 133, 135], "work": [7, 27, 103, 104, 121, 132, 133, 135], "numer": [7, 11, 132, 135], "datetim": [7, 9, 11, 14, 121, 132, 135], "inf": [7, 11, 132, 135], "max_valu": [7, 11, 132, 133, 134, 135], "boolean": [7, 8, 9, 10, 11, 12, 13, 15], "greater": [7, 22, 135], "than": [7, 11, 22, 48, 52, 54, 123, 125, 132, 135, 137], "equal": [7, 11, 21], "maximum": [7, 11, 22, 29, 30], "max_inclus": [7, 11, 132, 135], "less": [7, 11, 48, 52, 54, 135], "match": [7, 9, 12, 13, 17], "between": [7, 21, 38, 51, 69, 95], "1": [7, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 116, 117, 118, 119, 121, 131, 132, 133, 135, 136, 137], "dai": [7, 9, 135, 137], "31": [7, 132, 135], "hour": [7, 9], "0": [7, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 114, 115, 116, 117, 118, 119, 121, 132, 133, 134, 135], "23": [7, 132, 135], "negat": [7, 9, 10, 11, 12, 13, 133], "flag": 7, "doe": [7, 9, 11, 12, 13, 17, 21, 24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 75, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 121], "keep_nul": [7, 9, 11, 12, 13], "keep": [7, 17, 21, 135], "null": [7, 9, 10, 11, 12, 13, 135], "conjunct": [7, 133], "its": [7, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 60, 61, 74, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 132, 133, 135], "own": [7, 132, 135], "callabl": [7, 8, 17, 21, 76, 121], "import": [7, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 131, 136, 137], "slice_spec": [7, 17, 123, 125, 132, 133, 135], "feature_1": 7, "feature_2": 7, "feature_3": 7, "value_1": 7, "value_2": 7, "2020": [7, 9, 133], "5": [7, 24, 25, 27, 29, 31, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 114, 115, 118, 119, 131, 132, 133, 135, 136], "60": 7, "6": [7, 24, 26, 35, 36, 38, 39, 49, 56, 59, 62, 63, 78, 79, 80, 81, 83, 84, 85, 87, 88, 90, 92, 93, 95, 97, 98, 99, 100, 104, 107, 108, 110, 132, 133, 134, 135], "7": [7, 29, 30, 31, 36, 39, 40, 69, 80, 81, 82, 84, 85, 87, 88, 89, 93, 98, 100, 105, 108, 109, 110, 132, 133, 135, 137], "8": [7, 24, 26, 27, 29, 30, 31, 34, 35, 36, 37, 38, 40, 41, 47, 49, 50, 53, 54, 56, 59, 60, 62, 66, 68, 69, 78, 79, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 99, 100, 105, 107, 109, 110, 132, 133, 135], "2000": 7, "2010": 7, "slice_nam": [7, 121, 132, 135], "slice_func": 7, "print": [7, 132, 133, 135], "do": [7, 17], "someth": 7, "here": [7, 132, 135], "filter": [7, 9, 10, 11, 12, 13, 17, 21, 132, 133, 134, 135], "add": [7, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 123, 125, 132, 135], "detail": [7, 132, 133, 135], "registri": [7, 132, 135], "gener": [7, 69, 95, 112, 121, 131, 136, 137], "slice_funct": 8, "result": [8, 17, 38, 51, 123, 125, 132, 134, 135], "bitwis": 8, "AND": 8, "signatur": 8, "should": [8, 21, 69, 76, 95, 117, 121, 123, 125, 132, 133, 135], "kwarg": [8, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 114, 123, 125], "given": [9, 11, 12, 13, 14, 24, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 75, 80, 81, 82, 84, 85, 98, 100, 105, 108, 109, 110, 121, 123, 125], "int": [9, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 116, 117, 118, 119, 121, 123, 125, 132, 133, 135], "compon": 9, "have": [9, 12, 13, 17, 114, 132, 137], "nan": [9, 10, 131, 137], "nat": 9, "rais": [9, 11, 12, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 123, 125], "typeerror": [9, 11, 12, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121], "float": [11, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 109, 110, 115, 116, 117, 118, 119, 121, 133], "valueerror": [11, 17, 21, 48, 50, 52, 54, 58, 59, 60, 61, 62, 63, 69, 121, 123, 125], "either": [11, 30, 31, 32, 75, 87, 88, 89, 92, 93, 94, 110, 121, 132, 135], "substr": 12, "ha": [13, 75, 121, 132, 133, 135], "find": [13, 24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 133], "perform": [13, 26, 27, 31, 32, 121, 131, 135, 136, 137], "datetime64": 14, "target_column": [17, 19, 21, 132, 133, 135], "feature_column": [17, 133, 134], "prediction_column_prefix": [17, 123, 125, 132, 133, 135], "remove_column": [17, 19, 21, 123, 125, 133], "split": [17, 112, 121, 123, 125, 132, 133, 135], "batch_siz": [17, 19, 21, 112, 123, 125, 132, 135], "1000": [17, 19, 21, 112, 125, 132, 133], "fairness_config": [17, 123, 125, 132, 135], "override_fairness_metr": [17, 123, 125, 132, 135], "load_dataset_kwarg": 17, "datasetdict": [17, 123, 125], "load_dataset": 17, "argument": [17, 21, 43, 75, 123, 125, 132, 135], "target": [17, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 116, 117, 123, 125, 131, 132, 135, 136, 137], "prefix": [17, 75], "ad": [17, 114, 121, 123, 125, 132, 135], "model_nam": [17, 123, 125, 132, 133, 134, 135], "remov": [17, 21, 75, 119, 123, 125, 132, 133, 135], "mai": [17, 21, 132, 133, 135], "expens": [17, 21], "memori": [17, 21], "wrappedmodel": [17, 123, 125], "entir": [17, 132, 135], "being": 17, "note": [17, 121, 132, 135], "chosen": 17, "avail": [17, 121, 132, 135, 137], "first": [17, 21, 25, 76, 104, 132, 135], "eval": 17, "val": 17, "dev": 17, "batch": [17, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 123, 125, 133], "size": [17, 21, 112, 123, 125, 132, 133, 135], "neg": [17, 35, 48, 49, 50, 51, 52, 53, 54, 59, 61, 62, 63, 72, 81, 83, 85, 98, 99, 100, 105, 107, 108, 109, 133, 135], "integ": [17, 21, 121], "configur": [17, 18, 19, 123, 125, 132, 135], "overridden": [17, 123, 125], "prediction_column": [17, 19, 21], "keyword": [17, 21, 43, 75, 125], "onli": [17, 21, 24, 27, 29, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 62, 63, 75, 80, 81, 82, 84, 85, 98, 100, 103, 104, 105, 108, 109, 110], "found": [17, 75, 121, 132, 133, 134, 135], "group": [19, 21, 22, 75, 121, 132, 135], "group_valu": [19, 21], "group_bin": [19, 21, 132, 135], "group_base_valu": [19, 21, 132, 135], "threshold": [19, 21, 24, 25, 27, 29, 30, 31, 32, 34, 35, 36, 37, 40, 41, 47, 48, 49, 50, 53, 54, 56, 57, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 99, 100, 102, 104, 105, 107, 109, 110, 121, 131, 132, 135, 137], "compute_optimal_threshold": [19, 21], "metric_nam": [19, 21, 43, 121, 132, 133, 135], "metric_kwarg": [19, 21], "take": [21, 24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 112, 132], "allow": [21, 22, 132, 135, 136], "intersect": 21, "treat": 21, "multilabel": [21, 24, 27, 29, 32, 36, 37, 40, 41, 49, 50, 53, 54, 60, 61, 62, 63, 68, 69, 72, 82, 83, 84, 85, 89, 90, 94, 95, 99, 100, 104, 105, 109, 110, 131, 137], "same": [21, 75, 116], "uniqu": [21, 22, 29, 30, 31, 32, 66, 67, 68, 69, 87, 88, 89, 92, 93, 94, 95, 133, 137], "limit": [21, 132, 133, 135], "number": [21, 22, 24, 26, 27, 29, 30, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 75, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 98, 99, 100, 103, 104, 105, 108, 110, 112, 116, 117, 121, 123, 125, 135, 136], "continu": [21, 132, 133, 135], "veri": 21, "slow": 21, "larg": 21, "denomin": 21, "pariti": 21, "across": [21, 116, 136], "linspac": 21, "monoton": [21, 69, 95], "control": [21, 115], "usag": [21, 132, 135], "rel": 21, "small": 21, "32": [21, 132, 133, 135], "avoid": 21, "optim": [21, 132], "oper": [21, 65, 76, 132, 135], "necessari": 21, "nest": 21, "second": [21, 76], "third": 21, "omit": 21, "requir": [21, 24, 29, 36, 37, 49, 50, 69, 84, 85, 90, 95, 100, 105, 110, 121, 123, 125, 132, 135], "huggingfac": [21, 112, 123, 125], "runtimeerror": 21, "empti": [21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "encount": [21, 135], "unique_valu": 22, "max_unique_valu": 22, "50": [22, 132, 133, 134, 135], "warn": [22, 24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 102, 103, 104, 105], "score": [24, 25, 26, 27, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 66, 70, 72, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 108, 109, 110, 133], "liter": [24, 25, 26, 27, 29, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 69, 78, 79, 80, 81, 82, 83, 84, 85, 90, 95, 97, 98, 99, 100, 103, 104, 105, 110, 121], "multiclass": [24, 26, 29, 31, 36, 37, 38, 39, 49, 50, 51, 52, 58, 59, 62, 63, 67, 69, 72, 80, 81, 84, 85, 88, 90, 93, 95, 98, 100, 103, 105, 108, 110], "One": [24, 29, 31, 32, 35, 48, 59, 62, 63, 69, 95, 133, 135], "pos_label": [24, 25, 30, 34, 35, 36, 37, 47, 48, 49, 50, 56, 57, 62, 63, 66, 69, 78, 79, 84, 85, 87, 90, 92, 95, 97, 100, 102, 105, 107, 110], "label": [24, 25, 27, 29, 32, 34, 35, 36, 37, 40, 41, 47, 48, 49, 50, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 68, 69, 78, 79, 81, 82, 83, 84, 85, 87, 89, 90, 92, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 109, 110, 116, 117, 119, 123, 125, 131, 132, 133, 137], "consid": [24, 26, 27, 36, 37, 49, 50, 62, 63, 84, 85, 90, 95, 100, 103, 104, 105], "posit": [24, 25, 29, 30, 34, 35, 36, 37, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 75, 78, 79, 80, 81, 82, 83, 84, 85, 87, 90, 92, 95, 97, 98, 99, 100, 102, 105, 107, 108, 109, 110, 132, 133, 135], "num_class": [24, 26, 29, 31, 36, 37, 38, 39, 49, 50, 51, 52, 58, 59, 61, 62, 63, 67, 69, 80, 81, 84, 85, 88, 90, 93, 95, 98, 100, 103, 105, 108, 110, 132, 135], "decid": [24, 36, 37, 40, 41, 49, 50, 53, 54, 56, 57, 60, 61, 78, 79, 82, 83, 84, 85, 97, 99, 100, 105], "top_k": [24, 26, 27, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 108, 109, 110, 133], "probabl": [24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 80, 81, 82, 84, 85, 93, 98, 100, 102, 103, 104, 105, 107, 108, 109, 110, 125, 132, 135], "logit": [24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 72, 80, 81, 82, 84, 85, 98, 100, 102, 103, 104, 105, 107, 108, 109, 110], "top": [24, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 80, 81, 82, 84, 85, 98, 100, 105, 108, 109, 110], "k": [24, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 75, 80, 81, 82, 84, 85, 98, 100, 105, 108, 109, 110, 134], "num_label": [24, 27, 29, 32, 36, 37, 40, 41, 49, 50, 53, 54, 60, 61, 62, 63, 68, 69, 82, 83, 84, 85, 89, 90, 94, 95, 99, 100, 104, 105, 109, 110, 133], "averag": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 132], "micro": [24, 26, 27, 29, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105], "macro": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105], "weight": [24, 26, 27, 29, 31, 32, 35, 36, 37, 38, 39, 40, 41, 48, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 133, 134, 135], "calcul": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105], "global": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "unweight": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105], "mean": [24, 26, 27, 29, 31, 32, 35, 36, 37, 38, 39, 40, 41, 48, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 132, 133, 134, 135], "imbal": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 119], "account": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 132, 133], "instanc": [24, 26, 27, 31, 32, 36, 37, 38, 39, 40, 41, 43, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 132, 133, 135], "alter": [24, 26, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 105], "zero_divis": [24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 102, 103, 104, 105], "zero": [24, 25, 26, 27, 34, 36, 37, 38, 39, 40, 41, 47, 49, 50, 51, 52, 53, 54, 56, 57, 58, 60, 61, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 103, 104, 105], "divis": [24, 25, 26, 27, 34, 36, 37, 38, 39, 40, 41, 47, 49, 50, 51, 52, 53, 54, 56, 57, 58, 60, 61, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 103, 104, 105], "act": [24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 103, 104, 105], "pred": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 132, 135], "75": [24, 25, 29, 30, 66, 67, 68, 90, 92, 95, 103, 104, 105, 132, 135], "05": [24, 26, 27, 29, 31, 32, 36, 38, 39, 40, 49, 53, 62, 67, 68, 69, 80, 81, 84, 85, 88, 90, 93, 94, 95, 98, 100, 103, 104, 105, 108, 110, 133, 135], "95": [24, 26, 27, 36, 38, 49, 62, 69, 88, 90, 93, 94, 95], "p": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 115, 133], "zip": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "2": [24, 26, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 56, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 75, 78, 79, 80, 81, 82, 83, 84, 85, 88, 89, 90, 92, 93, 95, 97, 98, 99, 100, 103, 104, 105, 107, 108, 109, 110, 116, 117, 121, 131, 132, 133, 135, 136], "3": [24, 26, 27, 29, 31, 34, 35, 36, 37, 38, 39, 40, 47, 49, 50, 51, 52, 53, 56, 58, 59, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 103, 104, 105, 107, 108, 109, 110, 116, 117, 131, 132, 133, 135, 136], "66666667": [24, 26, 36, 38, 49, 51, 61, 63, 81, 85, 87, 88, 90, 93, 94, 95, 98, 100, 104], "initi": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 131, 132, 135, 137], "two": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "scalar": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "togeth": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "multipli": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "variabl": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 137], "attributeerror": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "alreadi": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 132, 135], "exist": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 123, 125], "copi": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 132, 133, 135], "abstract": [24, 29, 36, 37, 73, 74, 84, 85, 90, 95, 100, 105, 110], "final": [24, 29, 36, 37, 74, 84, 85, 90, 95, 100, 105, 110, 133, 135], "reset": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "_update_count": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "_comput": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "sigmoid": [25, 35, 41, 66, 68, 69, 102, 104, 107, 109, 110], "them": [25, 104, 132, 135, 136], "875": 25, "problem": [26, 88, 108, 109, 110, 137], "highest": [26, 27, 62, 63, 103, 104], "determin": [26, 27, 29, 30, 31, 32, 66, 67, 68, 87, 88, 89, 90, 92, 93, 94], "dtype": [26, 27, 31, 32, 38, 39, 40, 41, 66, 67, 68, 69, 80, 81, 82, 83, 87, 88, 89, 92, 93, 94, 98, 99, 103, 104, 115, 116, 117, 118, 119, 132, 133], "float64": [26, 27, 31, 32, 38, 39, 40, 41, 66, 67, 68, 69, 80, 81, 82, 83, 87, 88, 89, 92, 93, 94, 98, 99, 103, 104, 115, 116, 117, 118, 119, 133], "binar": [27, 29, 30, 31, 32, 34, 47, 67, 68, 93, 94, 109, 110], "output": [27, 69, 121, 132, 135], "classifi": [27, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 102, 132, 135], "correct": [27, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 93, 102, 103, 104], "per": [27, 75, 135], "area": [28, 29, 30, 31, 32, 45, 132, 135], "under": [28, 29, 30, 31, 32, 45, 132, 135], "curv": [28, 29, 30, 31, 32, 45, 64, 65, 66, 67, 68, 69, 86, 87, 88, 89, 90, 92, 93, 94, 95, 132, 135], "max_fpr": [29, 30], "rate": [29, 30, 66, 67, 68, 69, 132, 133, 135], "partial": [29, 30, 133], "auc": 29, "automat": [29, 30, 31, 32, 66, 67, 68, 87, 88, 89, 90, 92, 93, 94], "applic": [29, 111, 112, 114], "4": [29, 30, 34, 35, 36, 37, 40, 47, 50, 59, 63, 69, 82, 83, 84, 85, 87, 88, 90, 92, 93, 94, 95, 99, 100, 105, 107, 108, 109, 110, 131, 132, 133, 135, 136], "35": [29, 30, 69, 87, 92, 95, 103, 104, 105, 132, 133, 134, 135], "9": [29, 30, 31, 32, 34, 36, 37, 38, 39, 40, 41, 49, 50, 53, 54, 56, 60, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 89, 90, 93, 94, 95, 97, 98, 99, 100, 103, 104, 105, 107, 109, 110, 132, 133, 135], "6111111111111112": [29, 30], "89": [29, 31, 32, 69], "06": [29, 31, 69, 133, 135], "94": [29, 31, 134, 135], "22222222": [29, 31], "625": [29, 32, 35, 103], "aucroc": 30, "confus": [30, 31, 32, 87, 88, 89, 92, 93, 94], "matrix": [30, 31, 32, 87, 88, 89, 92, 93, 94, 115, 116, 117, 118, 119], "f": [33, 35, 37, 38, 39, 41, 46, 48, 50, 51, 52, 54, 75, 132, 133, 134, 135], "beta": [33, 35, 37, 39, 41, 46, 48, 50, 52, 54], "f1": [34, 36, 38, 40, 46, 47, 49, 51, 53], "form": [34, 47, 132, 135], "6666666666666666": [34, 36, 47, 56, 78, 84], "harmon": [35, 37, 39, 41, 48, 50, 52, 54, 132, 135], "8333333333333334": [35, 37, 50, 59, 62], "85714286": [36, 38], "9090909090909091": 37, "83333333": [37, 41, 50, 54], "55555556": [37, 50, 103], "90909091": [37, 39, 41], "85": [39, 80, 81, 84, 85, 98, 100, 132, 135], "total": [40, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 108, 135], "count": [40, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 132, 133, 135], "predicit": 41, "constructor": 43, "arraylik": [47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 76, 93, 102], "ground": [47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 93, 102], "truth": [47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 93, 102], "npt": [48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63], "7142857142857143": 48, "estim": [49, 50, 66, 67, 68, 69, 93, 102, 125], "shape": [49, 50, 51, 52, 53, 54, 60, 61, 108, 109, 133, 134], "expect": [60, 61, 132, 135], "like": [60, 61, 75, 132], "n": [60, 61, 132, 133], "l": [60, 61], "sampl": [60, 61, 63, 119], "presenc": [60, 61, 133], "absenc": [60, 61], "rest": 61, "ratio": [62, 63, 105, 135], "correctli": [62, 132, 133, 135], "observ": [62, 132, 135, 137], "precision_scor": 62, "tp": [63, 107, 108, 109, 133], "fn": [63, 107, 108, 109, 133], "intuit": 63, "abil": [63, 132, 135], "recall_scor": 63, "3333333333333333": 63, "receiv": [65, 132, 135], "characterist": [65, 132, 135], "decis": [66, 67, 68, 69, 93, 121, 132, 135], "fpr": [66, 67, 68, 69, 132, 135], "tpr": [66, 67, 68, 69], "25": [66, 67, 68, 88, 90, 92, 93, 95, 105, 116, 117, 132, 133, 134, 135], "softmax": [67, 69, 93], "1d": [67, 68, 69, 95], "33333333": [67, 85, 88, 90, 93, 94, 95, 100], "non": 69, "evenli": [69, 95], "space": [69, 95], "increas": [69, 95], "assertionerror": [69, 121], "03": 69, "stat": [72, 106, 107, 108, 109, 110], "abc": 74, "other_metr": 75, "postfix": 75, "userdict": 75, "collect": [75, 132], "want": 75, "behav": 75, "themselv": 75, "intern": 75, "similar": 75, "reduc": 75, "els": [75, 133, 134], "keep_bas": 75, "iter": 75, "underli": 75, "moduledict": 75, "hashabl": 75, "v": 75, "correspond": [75, 125], "keyerror": [75, 121], "some": [75, 132, 135], "pair": 75, "present": 75, "lack": 75, "metric_a": 76, "metric_b": 76, "metric1": 76, "metric2": 76, "unari": 76, "appropri": [84, 85, 100, 132, 135], "375": [88, 90], "suniqu": 90, "45": [90, 105, 132, 133, 135], "42857143": 90, "15": [103, 104, 105, 132, 133, 135], "57142857": 103, "sum": [105, 108, 109, 110, 133, 135], "_abstractscor": [107, 108, 109], "fp": [107, 108, 109, 133], "tn": [107, 108, 109, 133], "classwis": [108, 110], "over": [108, 109, 110, 131, 137], "labelwis": [109, 110, 133], "prior": [110, 132], "modul": [111, 120, 121, 132, 135], "shift_typ": [112, 114], "shift_id": [112, 134], "induc": [112, 114], "synthet": [112, 114, 121, 131, 135, 136, 137], "categor": [112, 132, 135], "origin": 112, "util": [112, 132, 133, 135], "load_nih": 112, "mnt": [112, 133, 134], "nihcxr": [112, 131, 133, 136], "hospital_type_1": 112, "hospital_type_2": 112, "hospital_type_3": 112, "hospital_type_4": 112, "hospital_type_5": 112, "ds_sourc": [112, 134], "ds_target": [112, 134], "num_proc": [112, 134], "build": 112, "hospit": [112, 132, 135, 137], "drift_detect": 114, "experiment": 114, "sklearn": [114, 132, 135], "load_diabet": 114, "y": [114, 116, 117, 119, 125, 132, 133, 135], "return_x_i": 114, "x_tr": 114, "x_te": 114, "y_tr": 114, "y_te": 114, "train_test_split": [114, 132, 135], "test_siz": 114, "random_st": [114, 132, 135], "42": [114, 132, 133, 135], "gn_shift": 114, "x_shift": 114, "x_train": [114, 125], "noise_amt": [114, 118], "delta": [114, 115, 118, 119], "ko_shift": 114, "cp_shift": 114, "mfa_shift": 114, "bn_shift": 114, "tolerance_shift": 114, "ds_shift": 114, "nois": [114, 115, 118], "prob": 115, "covari": [115, 116, 117, 118, 119], "proport": [115, 132, 133, 135], "fraction": [115, 118, 119, 135], "affect": [115, 118, 121, 132, 135], "n_shuffl": [116, 117], "keep_rows_const": 116, "repermute_each_column": 116, "multiwai": 116, "associ": [116, 132, 133, 135], "swap": [116, 117], "individu": [116, 132, 135], "within": 116, "cl": [116, 117], "etc": [116, 117, 132, 133, 135], "floatnumpi": 116, "shuffl": [116, 117, 132], "permut": 116, "placehold": 116, "shift_class": [117, 119], "rank": 117, "changepoint": 117, "axi": [117, 133, 134, 135], "x_ref": 117, "y_ref": 117, "normal": [118, 132, 135], "clip": [118, 132, 135], "gaussian": 118, "standard": [118, 132, 135], "deviat": 118, "divid": 118, "255": [118, 133, 134], "placehol": 119, "output_dir": [121, 132, 135], "serv": 121, "interfac": 121, "popul": [121, 131, 132, 135, 137], "modelcard": 121, "directori": [121, 132, 135], "save": [121, 125, 132, 135], "output_filenam": [121, 132, 133, 135], "template_path": 121, "interact": [121, 135], "save_json": 121, "synthetic_timestamp": [121, 133], "date": [121, 132, 135], "jinja2": 121, "json": [121, 132, 135], "timestamp": [121, 131, 133, 136], "back": 121, "classmethod": 121, "cyclops_report": [121, 132, 135], "section_nam": [121, 132, 133, 135], "model_detail": [121, 132, 135], "section": [121, 132, 133, 135], "repres": [121, 133], "bibtex": 121, "entri": 121, "plain": 121, "text": [121, 133], "descript": [121, 132, 133, 135], "license_id": [121, 132], "sensitive_featur": [121, 132], "sensitive_feature_justif": [121, 132], "log": [121, 131, 132, 135, 137], "inform": [121, 132], "about": [121, 132, 133, 135], "resourc": [121, 132, 135], "context": 121, "homepag": 121, "spdx": [121, 132], "identifi": [121, 131, 133, 137], "licens": [121, 132, 133, 135], "apach": [121, 132, 135], "unknown": 121, "unlicens": 121, "proprietari": 121, "justif": [121, 132], "field": [121, 131, 132, 135, 137], "descriptor": 121, "new": [121, 132, 135], "pydant": 121, "basemodel": 121, "subclass": 121, "As": 121, "long": 121, "conflict": 121, "defin": [121, 132, 133, 135], "model_card": 121, "cylop": 121, "tradeoff": [121, 133], "trade": 121, "off": 121, "interpret": 121, "consider": [121, 132, 133, 135], "affected_group": [121, 132, 133, 135], "benefit": [121, 132, 133, 135], "harm": [121, 132, 133, 135], "mitigation_strategi": [121, 132, 133, 135], "assess": 121, "mitig": [121, 132, 133, 135], "strategi": [121, 132, 133, 135], "relat": 121, "img_path": 121, "caption": [121, 132, 133, 135], "full": 121, "whole": [121, 132, 135], "left": [121, 135], "blank": 121, "instead": 121, "param": [121, 132, 135], "contact": [121, 132, 133, 135], "role": 121, "owner": [121, 132, 133, 135], "quantit": [121, 132, 133, 135], "slash": 121, "fig": [121, 132, 133, 135], "plotli": [121, 132, 133, 135], "figur": [121, 132, 135], "plot": [121, 132, 133, 135], "analysis_typ": 121, "metric_slic": [121, 132, 133, 135], "decision_threshold": 121, "pass_fail_threshold": [121, 132, 133, 135], "pass_fail_threshold_fn": [121, 132, 133, 135], "explain": [121, 132, 133, 135], "fail": 121, "regul": 121, "regulatori": [121, 132, 135], "compli": 121, "risk": [121, 132, 133, 135, 137], "kind": [121, 132, 133, 135], "primari": [121, 132, 133, 135], "scope": [121, 132, 135], "usecas": 121, "version_str": [121, 132, 135], "semant": 121, "v1": 121, "dt_date": 121, "dt_datetim": 121, "unix": 121, "yyyi": 121, "mm": 121, "dd": 121, "hh": 121, "ss": 121, "ffffff": 121, "z": 121, "summar": 121, "chang": [121, 132, 133, 135], "made": [121, 132, 135], "task_featur": [123, 125, 132, 135], "task_target": [123, 125, 132, 135], "atelectasi": [123, 133], "consolid": [123, 133], "infiltr": [123, 133], "pneumothorax": [123, 133], "edema": [123, 133], "emphysema": [123, 133], "fibrosi": [123, 133], "effus": [123, 133], "pneumonia": [123, 133], "pleural_thicken": [123, 133], "cardiomegali": [123, 133], "nodul": [123, 133], "mass": [123, 133, 135], "hernia": [123, 133], "lung": 123, "lesion": 123, "fractur": 123, "opac": 123, "enlarg": 123, "cardiomediastinum": 123, "basetask": [123, 125], "multi": [123, 133], "ptmodel": [123, 125, 133], "skmodel": [123, 125], "properti": [123, 125], "splits_map": [123, 125], "64": [123, 135], "compos": [123, 132, 133, 134, 135], "unnecessari": [123, 125], "pathologi": [123, 131, 132, 137], "represent": [123, 132, 135], "tabular": [125, 131], "fit": [125, 132, 135], "columntransform": [125, 132, 135], "slicingconfig": 125, "default_max_batch_s": 125, "filepath": 125, "pretrain": [125, 133], "proba": [125, 132, 135], "pd": 125, "datafram": [125, 132, 135], "notfittederror": 125, "destin": 125, "parent": 125, "dirctori": 125, "best_model_param": [125, 132, 135], "y_train": 125, "seri": 125, "nonei": 125, "drift": [131, 136], "experi": [131, 136], "dimension": [131, 136], "reduct": [131, 136], "techniqu": [131, 136], "roll": [131, 136], "window": [131, 136], "biweekli": [131, 136], "kaggl": [131, 132], "heart": 131, "failur": 131, "constant": [131, 137], "distribut": [131, 133, 137], "outcom": [131, 137], "preprocessor": [131, 137], "creation": [131, 137], "synthea": [131, 135], "prolong": 131, "length": [131, 133], "stai": 131, "queri": [131, 137], "inspect": [131, 132, 137], "preprocess": [131, 132, 137], "drop": [131, 132, 137], "nan_threshold": [131, 132, 137], "gender": [131, 132, 133, 134, 137], "nih": [131, 133, 134], "diseas": [131, 132, 137], "histor": [131, 132, 137], "period": [131, 137], "w": [131, 137], "showcas": [132, 135, 137], "formul": [132, 135], "patient": [132, 133, 134, 135, 137], "shutil": [132, 133, 135], "express": [132, 133, 135], "px": [132, 133, 135], "kaggle_api_extend": 132, "kaggleapi": 132, "imput": [132, 135], "simpleimput": [132, 135], "pipelin": [132, 135], "minmaxscal": [132, 135], "onehotencod": [132, 135], "noqa": [132, 133, 135], "e402": [132, 133, 135], "catalog": [132, 135], "create_model": [132, 135], "tabularfeatur": [132, 135], "classificationplott": [132, 135], "flatten_results_dict": [132, 135], "join": [132, 135], "load_datafram": 132, "home": [132, 133, 134, 135], "amritk": [132, 133, 134, 135], "cach": [132, 133, 134, 135], "pypoetri": [132, 133, 134, 135], "virtualenv": [132, 133, 134, 135], "mhx6ujw0": [132, 133, 134, 135], "py3": [132, 133, 134, 135], "lib": [132, 133, 134, 135], "site": [132, 133, 134, 135], "tqdm": [132, 133, 134, 135], "auto": [132, 133, 134, 135], "py": [132, 133, 134, 135], "21": [132, 133, 134, 135], "tqdmwarn": [132, 133, 134, 135], "iprogress": [132, 133, 134, 135], "ipywidget": [132, 133, 134, 135], "readthedoc": [132, 133, 134, 135], "io": [132, 133, 134, 135], "en": [132, 133, 134, 135], "user_instal": [132, 133, 134, 135], "autonotebook": [132, 133, 134, 135], "notebook_tqdm": [132, 133, 134, 135], "offer": [132, 133, 135], "document": [132, 133, 135], "through": [132, 133, 135], "technic": [132, 133, 135], "architectur": [132, 133, 135], "involv": [132, 133, 135], "intend": [132, 133, 135], "subpopul": [132, 133, 135], "explaina": [132, 133, 135], "go": [132, 133, 135], "tool": [132, 133, 135], "progress": [132, 133, 135], "subject": [132, 133, 135], "data_dir": [132, 133], "random_se": [132, 135], "train_siz": [132, 135], "sign": [132, 135], "com": [132, 133], "Then": 132, "profil": [132, 135], "usernam": 132, "trigger": 132, "download": 132, "credenti": 132, "place": 132, "locat": 132, "machin": [132, 133], "authent": 132, "dataset_download_fil": 132, "fedesoriano": 132, "unzip": 132, "df": 132, "csv": [132, 135], "file_format": 132, "reset_index": [132, 135], "index": [132, 133, 135], "2023": [132, 133, 135], "11": [132, 133, 135, 137], "07": [132, 133, 135], "17": [132, 135], "09": [132, 135], "48": [132, 133, 135], "018": 132, "chestpaintyp": 132, "restingbp": 132, "cholesterol": 132, "fastingb": 132, "restingecg": 132, "40": [132, 133, 135], "ata": 132, "140": 132, "289": 132, "49": [132, 135], "nap": 132, "160": 132, "180": 132, "37": [132, 135], "130": 132, "283": 132, "st": 132, "asi": 132, "138": 132, "214": 132, "54": [132, 133], "150": 132, "195": 132, "913": 132, "ta": 132, "110": 132, "264": 132, "914": 132, "68": [132, 133], "144": 132, "193": 132, "915": 132, "57": 132, "131": 132, "916": 132, "236": 132, "lvh": 132, "917": 132, "38": [132, 135], "175": 132, "maxhr": 132, "exerciseangina": 132, "oldpeak": 132, "st_slope": 132, "heartdiseas": 132, "172": 132, "156": 132, "flat": 132, "98": [132, 133], "108": 132, "122": 132, "132": 132, "141": 132, "115": 132, "174": 132, "173": 132, "918": 132, "13": [132, 133, 135], "pie": [132, 133, 135], "update_layout": [132, 133, 135], "histogram": [132, 133, 135], "xaxis_titl": [132, 133, 135], "yaxis_titl": [132, 133, 135], "bargap": [132, 133, 135], "astyp": [132, 135], "update_trac": [132, 133, 135], "textinfo": [132, 135], "percent": [132, 135], "title_text": [132, 135], "hovertempl": [132, 135], "br": [132, 135], "class_count": [132, 135], "value_count": [132, 135], "class_ratio": [132, 135], "8070866141732284": 132, "14": [132, 133, 135, 137], "39": [132, 133, 135], "20": [132, 133, 135], "wa": [132, 133, 135], "li": 132, "et": 132, "al": 132, "most": 132, "features_list": [132, 135], "sort": [132, 135], "help": [132, 133, 135], "essenti": [132, 135], "step": [132, 135], "understand": [132, 135], "u": [132, 135], "16": [132, 133, 135], "tab_featur": [132, 135], "ordin": 132, "might": [132, 135], "numeric_transform": [132, 135], "scaler": [132, 135], "binary_transform": [132, 135], "most_frequ": [132, 135], "18": [132, 133, 134, 135], "numeric_featur": [132, 135], "features_by_typ": [132, 135], "numeric_indic": [132, 135], "get_loc": [132, 135], "19": [132, 133, 135], "binary_featur": [132, 135], "ordinal_featur": 132, "binary_indic": [132, 135], "ordinal_indic": 132, "num": [132, 135], "onehot": [132, 135], "handle_unknown": [132, 135], "ignor": [132, 133, 135], "remaind": [132, 135], "passthrough": [132, 135], "let": [132, 135], "done": [132, 135], "independ": 132, "everi": 132, "uci": 132, "archiv": 132, "ic": 132, "edu": 132, "databas": [132, 135], "cleandoc": 132, "misc": 132, "cc0": 132, "demograph": [132, 133], "often": 132, "strong": 132, "correl": 132, "older": [132, 135], "higher": 132, "panda": [132, 135], "power": [132, 135], "easi": [132, 135], "compat": [132, 135], "22": [132, 133, 135], "from_panda": [132, 135], "cleanup_cache_fil": [132, 135], "num_row": 132, "cast_column": [132, 135], "stratify_by_column": [132, 135], "seed": [132, 133, 135], "100": [132, 133, 134, 135], "lt": [132, 133, 134, 135], "212680": 132, "straightforward": [132, 135], "maintain": [132, 135], "instanti": [132, 135], "line": [132, 135], "sgd": [132, 135], "logisit": [132, 135], "regress": [132, 135], "sgdclassif": [132, 135], "24": [132, 135], "sgd_classifi": 132, "123": [132, 135], "verbos": [132, 135], "class_weight": 132, "balanc": 132, "mortalitypredict": [132, 135], "encapsul": [132, 135], "cohes": [132, 135], "structur": [132, 135], "smooth": [132, 135], "manag": [132, 135], "mortality_task": 132, "26": [132, 133, 135], "best": [132, 135], "hyperparamet": [132, 135], "search": [132, 135], "grid": [132, 135], "27": [132, 135], "alpha": 132, "0001": 132, "001": 132, "learning_r": [132, 135], "invscal": 132, "adapt": 132, "eta0": 132, "roc_auc": 132, "55": 132, "242": 132, "wrapper": [132, 133, 135], "sk_model": [132, 135], "243": 132, "244": 132, "sgdclassifi": 132, "x27": [132, 135], "early_stop": 132, "loss": 132, "log_loss": 132, "rerun": [132, 135], "cell": [132, 135], "trust": [132, 135], "On": [132, 133, 135], "github": [132, 133, 135], "unabl": [132, 135], "render": [132, 135], "try": [132, 135], "page": [132, 135], "nbviewer": [132, 135], "sgdclassifiersgdclassifi": 132, "28": [132, 133, 135], "model_param": [132, 135], "epsilon": 132, "fit_intercept": 132, "l1_ratio": 132, "max_it": 132, "n_iter_no_chang": 132, "n_job": [132, 135], "penalti": 132, "l2": 132, "power_t": 132, "tol": 132, "validation_fract": 132, "warm_start": 132, "29": [132, 133, 134, 135], "30": [132, 133, 134, 135, 137], "y_pred": [132, 135], "only_predict": [132, 135], "len": [132, 133, 135], "184": 132, "8562": 132, "variou": [132, 135], "perspect": [132, 135], "metric_collect": [132, 135], "how": [132, 135], "certain": [132, 135], "70": 132, "33": [132, 133, 135], "fnr": [132, 135], "ber": [132, 135], "fairness_metric_collect": [132, 135], "34": [132, 133, 135], "dataset_with_pr": [132, 135], "6762": 132, "69": [132, 133], "6652": 132, "61809": 132, "gt": [132, 133, 135], "18924": 132, "12578": 132, "67": [132, 133], "10132": 132, "90": [132, 133], "19401": 132, "20154": 132, "92": [132, 133], "20197": 132, "right": [132, 135], "36": [132, 133, 135], "results_flat": [132, 133, 135], "remove_metr": [132, 135], "plw2901": [132, 133, 135], "actual": [132, 133, 135], "known": [132, 133, 135], "measur": [132, 135], "lambda": [132, 133, 134, 135], "plotter": [132, 134, 135], "class_nam": [132, 135], "set_templ": [132, 135], "plotly_whit": [132, 135], "extract": [132, 135], "slice_result": [132, 135], "dict_kei": [132, 135], "roc_plot": [132, 135], "roc_curve_comparison": [132, 135], "femal": [132, 133, 134, 135], "overall_perform": [132, 135], "metric_valu": [132, 135], "41": [132, 133, 135], "overall_performance_plot": [132, 135], "metrics_valu": [132, 135], "slice_metr": [132, 135], "43": [132, 133, 135], "slice_metrics_plot": [132, 135], "metrics_comparison_bar": [132, 135], "comparison": [132, 133, 135], "44": [132, 133, 135], "reform": [132, 135], "fairness_result": [132, 135], "deepcopi": [132, 135], "fairness_metr": [132, 135], "group_siz": [132, 135], "fairness_plot": [132, 135], "metrics_comparison_scatt": [132, 135], "leverag": 132, "get_metrics_trend": 132, "gather": 132, "merg": [132, 135], "recent": 132, "wish": 132, "metrics_trend": 132, "purpos": 132, "three": 132, "dummi": 132, "demonstr": [132, 137], "trend": 132, "audienc": [132, 135], "organ": [132, 135], "store": [132, 135], "regulatory_requir": [132, 135], "46": [132, 133, 135], "todai": [132, 135], "releas": [132, 135], "team": [132, 135], "vectorinstitut": [132, 135], "email": [132, 133, 135], "ai": [132, 135], "linear_model": 132, "e501": [132, 135], "next": [132, 135], "use_cas": [132, 135], "These": [132, 135], "fairness_assess": [132, 135], "well": [132, 133, 135], "taken": [132, 135], "ethical_consider": [132, 135], "47": [132, 135], "clinician": [132, 135], "engin": [132, 135], "condit": 132, "improv": [132, 135], "bias": [132, 133, 135], "lead": [132, 135], "wors": [132, 135], "retrain": [132, 135], "below": [132, 135], "By": [132, 135], "folder": [132, 135], "report_path": [132, 133, 135], "heart_failure_report_period": 132, "_": [132, 135], "_model_card": [132, 135], "overview": [132, 135], "quantitative_analysi": [132, 135], "random": [132, 135], "view": [132, 133, 135, 137], "torchxrayvis": [133, 134], "functool": 133, "lambdad": [133, 134], "resiz": [133, 134], "densenet": [133, 134], "loader": [133, 134], "load_nihcxr": [133, 134], "apply_transform": 133, "generate_nihcxr_report": 133, "59": 133, "471641": 133, "196123": 133, "82": [133, 135], "400": 133, "1553": 133, "34617": 133, "36283": 133, "36704": 133, "42325": 133, "65": [133, 134], "42406": 133, "41329": 133, "amp": [133, 135], "45408": 133, "87": 133, "58": 133, "97": 133, "397639": 133, "74": 133, "166328": 133, "396": 133, "1829": 133, "42569": 133, "76": 133, "41911": 133, "41668": 133, "40855": 133, "62": 133, "37720": 133, "41795": 133, "29059": 133, "84": 133, "557382": 133, "234031": 133, "383": 133, "1699": 133, "41947": 133, "32378": 133, "43611": 133, "38869": 133, "04": 133, "43790": 133, "71": 133, "39049": 133, "41690": 133, "584734": 133, "237060": 133, "411": 133, "1888": 133, "44822": 133, "44078": 133, "45648": 133, "44647": 133, "99": [133, 135], "46762": 133, "45729": 133, "46829": 133, "clinical_dataset": [133, 134], "nih_d": [133, 134], "spatial_s": [133, 134], "224": [133, 134], "allow_missing_kei": [133, 134], "func": [133, 134], "1024": [133, 134], "newaxi": [133, 134], "densenet121": [133, 134], "res224": [133, 134], "No": 133, "adjust": 133, "100069": 133, "661": 133, "3260": 133, "int64": 133, "originalimag": 133, "width": [133, 135], "height": [133, 135], "originalimagepixelspac": 133, "unnam": 133, "float32": 133, "__index_level_0__": 133, "multilabelpositivepredictivevalu": 133, "registry_kei": 133, "positive_predictive_valu": 133, "def": [133, 135], "super": 133, "overrid": 133, "_final_st": 133, "multilabelnegativepredictivevalu": 133, "negative_predictive_valu": 133, "ppv": 133, "npv": 133, "nih_eval_results_gend": 133, "45122": 133, "26820": 133, "47389": 133, "nih_eval_results_ag": 133, "47628": 133, "45781": 133, "44662": 133, "43334": 133, "43588": 133, "44460": 133, "45663": 133, "46002": 133, "47340": 133, "48005": 133, "male": [133, 134], "1200": 133, "600": [133, 135], "showlegend": 133, "bar": [133, 135], "slice_": 133, "itr": 133, "enumer": 133, "among": 133, "112": [133, 137], "120": [133, 137], "frontal": [133, 137], "805": [133, 137], "fourteen": 133, "mine": 133, "radiolog": 133, "pleural": 133, "thicken": 133, "80": [133, 135], "remain": 133, "arxiv": 133, "ab": 133, "2111": 133, "00595": 133, "inproceed": 133, "cohen2022xrv": 133, "cohen": 133, "joseph": 133, "paul": 133, "viviano": 133, "bertin": 133, "morrison": 133, "torabian": 133, "parsa": 133, "guarrera": 133, "matteo": 133, "lungren": 133, "matthew": 133, "chaudhari": 133, "akshai": 133, "brook": 133, "rupert": 133, "hashir": 133, "mohammad": 133, "bertrand": 133, "hadrien": 133, "booktitl": 133, "deep": 133, "mlmed": 133, "arxivid": 133, "cohen2020limit": 133, "cross": 133, "domain": 133, "autom": [133, 135], "2002": 133, "02497": 133, "medicin": 133, "lab": 133, "josephpcohen": 133, "radiologist": 133, "scientist": 133, "inabl": 133, "addition": 133, "poor": 133, "qualiti": 133, "artifact": 133, "geograph": 133, "region": 133, "ethic": 133, "ensur": 133, "divers": 133, "regularli": 133, "human": 133, "expertis": 133, "address": 133, "rare": 133, "nihcxr_report_period": 133, "detector": 134, "reductor": 134, "tstester": 134, "plot_drift_experi": 134, "plot_drift_timeseri": 134, "shifter": 134, "source_d": 134, "target_d": 134, "25596": 134, "65165": 134, "73": [134, 135], "dr_method": 134, "bbse": 134, "soft": 134, "txrv": 134, "ae": 134, "sensitivity_test": 134, "tester": 134, "tester_method": 134, "source_sample_s": 134, "target_sample_s": 134, "num_run": 134, "detect_shift": 134, "chexpert": 134, "chex": 134, "padchest": 134, "pc": 134, "source_slic": 134, "target_slic": 134, "48793": 134, "61": 134, "48097": 134, "48827": 134, "47284": 134, "66": [134, 135], "48878": 134, "48346": 134, "48995": 134, "48530": 134, "56": [134, 135], "rolling_window_drift": 134, "timestamp_column": 134, "window_s": 134, "4w": 134, "longer": 135, "v3": 135, "instruct": 135, "etl": 135, "postgr": 135, "cycqueri": 135, "op": 135, "qo": 135, "graph_object": 135, "datasetqueri": 135, "num_dai": 135, "querier": 135, "dbm": 135, "postgresql": 135, "port": 135, "5432": 135, "host": 135, "localhost": 135, "synthea_demo": 135, "password": 135, "pwd": 135, "get_encount": 135, "nativ": 135, "sequenti": 135, "renam": 135, "patient_id": 135, "birthdat": 135, "race": 135, "ethnic": 135, "patient_encount": 135, "isout": 135, "encounter_id": 135, "extracttimestampcompon": 135, "start_year": 135, "birthdate_year": 135, "addcolumn": 135, "new_col_label": 135, "stop": 135, "lo": 135, "conditiongreaterthan": 135, "conditionlessthan": 135, "get_observ": 135, "cohort": 135, "conditionin": 135, "categori": 135, "vital": 135, "conditionequ": 135, "groupby_op": 135, "groupbyaggreg": 135, "n_ob": 135, "observations_count": 135, "observations_stat": 135, "pivot_t": 135, "aggfunc": 135, "max": 135, "add_prefix": 135, "obs_": 135, "get_med": 135, "n_med": 135, "get_procedur": 135, "procedur": [135, 137], "n_procedur": 135, "run_queri": 135, "cohort_queri": 135, "to_merg": 135, "extend": 135, "append": 135, "to_merge_df": 135, "963": 135, "orm": 135, "readi": 135, "825": 135, "successfulli": 135, "826": 135, "finish": 135, "execut": 135, "615795": 135, "759": 135, "761": 135, "933158": 135, "954": 135, "955": 135, "332908": 135, "379": 135, "381": 135, "421673": 135, "473": 135, "474": 135, "092155": 135, "list_column": 135, "payer": 135, "encounterclass": 135, "base_encounter_cost": 135, "total_claim_cost": 135, "payer_coverag": 135, "reasoncod": 135, "reasondescript": 135, "null_count": 135, "isnul": 135, "respect": 135, "larger": 135, "thresh_nan": 135, "dropna": 135, "thresh": 135, "length_of_stai": 135, "length_of_stay_count": 135, "length_of_stay_kei": 135, "5573997233748271": 135, "obs_alanin": 135, "aminotransferas": 135, "enzymat": 135, "volum": 135, "serum": 135, "plasma": 135, "obs_albumin": 135, "obs_alkalin": 135, "phosphatas": 135, "obs_aspart": 135, "obs_bilirubin": 135, "obs_bodi": 135, "obs_calcium": 135, "obs_carbon": 135, "dioxid": 135, "mole": 135, "obs_chlorid": 135, "obs_creatinin": 135, "obs_diastol": 135, "blood": 135, "pressur": 135, "obs_erythrocyt": 135, "obs_ferritin": 135, "obs_glomerular": 135, "filtrat": 135, "sq": 135, "obs_glucos": 135, "obs_hematocrit": 135, "obs_hemoglobin": 135, "obs_leukocyt": 135, "obs_mch": 135, "entit": 135, "obs_mchc": 135, "obs_mcv": 135, "obs_oxygen": 135, "satur": 135, "arteri": 135, "obs_platelet": 135, "obs_potassium": 135, "obs_protein": 135, "obs_sodium": 135, "obs_systol": 135, "obs_troponin": 135, "cardiac": 135, "obs_urea": 135, "nitrogen": 135, "1126": 135, "173932": 135, "sllearn": 135, "xgb_classifi": 135, "los_task": 135, "n_estim": 135, "250": 135, "500": 135, "max_depth": 135, "reg_lambda": 135, "colsample_bytre": 135, "gamma": 135, "260": 135, "261": 135, "262": 135, "xgbclassifi": 135, "base_scor": 135, "booster": 135, "callback": 135, "colsample_bylevel": 135, "colsample_bynod": 135, "early_stopping_round": 135, "enable_categor": 135, "eval_metr": 135, "logloss": 135, "feature_typ": 135, "gpu_id": 135, "grow_polici": 135, "importance_typ": 135, "interaction_constraint": 135, "max_bin": 135, "max_cat_threshold": 135, "max_cat_to_onehot": 135, "max_delta_step": 135, "max_leav": 135, "min_child_weight": 135, "miss": 135, "monotone_constraint": 135, "num_parallel_tre": 135, "predictor": 135, "xgbclassifierxgbclassifi": 135, "logist": 135, "use_label_encod": 135, "reg_alpha": 135, "sampling_method": 135, "scale_pos_weight": 135, "subsampl": 135, "tree_method": 135, "validate_paramet": 135, "226": 135, "4539": 135, "4362": 135, "3956": 135, "63708": 135, "8219": 135, "8343": 135, "93": 135, "8832": 135, "9305": 135, "8647": 135, "8660": 135, "8603": 135, "8829": 135, "78": 135, "8836": 135, "8683": 135, "847457627118644": 135, "9807692307692307": 135, "9352941176470588": 135, "8695652173913043": 135, "7692307692307693": 135, "8163265306122449": 135, "9302884615384615": 135, "8943089430894309": 135, "971830985915493": 135, "8625": 135, "9139072847682119": 135, "9565406976744186": 135, "8349514563106796": 135, "9285714285714286": 135, "859504132231405": 135, "942914979757085": 135, "8672566371681416": 135, "952755905511811": 135, "8344827586206897": 135, "8897058823529411": 135, "950915283099191": 135, "xgboost": 135, "python_api": 135, "length_of_stay_report_period": 135, "statist": 136, "goal": 137}, "objects": {"cyclops": [[126, 0, 0, "-", "data"], [127, 0, 0, "-", "evaluate"], [128, 0, 0, "-", "monitor"], [129, 0, 0, "-", "report"], [130, 0, 0, "-", "tasks"]], "cyclops.data": [[126, 0, 0, "-", "features"], [6, 0, 0, "-", "slicer"]], "cyclops.data.features": [[4, 0, 0, "-", "medical_image"]], "cyclops.data.features.medical_image": [[5, 1, 1, "", "MedicalImage"]], "cyclops.data.features.medical_image.MedicalImage": [[5, 2, 1, "", "__call__"], [5, 2, 1, "", "cast_storage"], [5, 2, 1, "", "decode_example"], [5, 2, 1, "", "embed_storage"], [5, 2, 1, "", "encode_example"], [5, 2, 1, "", "flatten"]], "cyclops.data.slicer": [[7, 1, 1, "", "SliceSpec"], [8, 4, 1, "", "compound_filter"], [9, 4, 1, "", "filter_datetime"], [10, 4, 1, "", "filter_non_null"], [11, 4, 1, "", "filter_range"], [12, 4, 1, "", "filter_string_contains"], [13, 4, 1, "", "filter_value"], [14, 4, 1, "", "is_datetime"], [15, 4, 1, "", "overall"]], "cyclops.data.slicer.SliceSpec": [[7, 3, 1, "", "_registry"], [7, 2, 1, "", "add_slice_spec"], [7, 3, 1, "", "column_names"], [7, 2, 1, "", "get_slices"], [7, 3, 1, "", "include_overall"], [7, 2, 1, "", "slices"], [7, 3, 1, "", "spec_list"], [7, 3, 1, "", "validate"]], "cyclops.evaluate": [[16, 0, 0, "-", "evaluator"], [127, 0, 0, "-", "fairness"], [127, 0, 0, "-", "metrics"]], "cyclops.evaluate.evaluator": [[17, 4, 1, "", "evaluate"]], "cyclops.evaluate.fairness": [[18, 0, 0, "-", "config"], [20, 0, 0, "-", "evaluator"]], "cyclops.evaluate.fairness.config": [[19, 1, 1, "", "FairnessConfig"]], "cyclops.evaluate.fairness.evaluator": [[21, 4, 1, "", "evaluate_fairness"], [22, 4, 1, "", "warn_too_many_unique_values"]], "cyclops.evaluate.metrics": [[23, 0, 0, "-", "accuracy"], [28, 0, 0, "-", "auroc"], [33, 0, 0, "-", "f_beta"], [42, 0, 0, "-", "factory"], [127, 0, 0, "-", "functional"], [73, 0, 0, "-", "metric"], [77, 0, 0, "-", "precision_recall"], [86, 0, 0, "-", "precision_recall_curve"], [91, 0, 0, "-", "roc"], [96, 0, 0, "-", "sensitivity"], [101, 0, 0, "-", "specificity"], [106, 0, 0, "-", "stat_scores"]], "cyclops.evaluate.metrics.accuracy": [[24, 1, 1, "", "Accuracy"], [25, 1, 1, "", "BinaryAccuracy"], [26, 1, 1, "", "MulticlassAccuracy"], [27, 1, 1, "", "MultilabelAccuracy"]], "cyclops.evaluate.metrics.accuracy.Accuracy": [[24, 2, 1, "", "__add__"], [24, 2, 1, "", "__call__"], [24, 2, 1, "", "__init__"], [24, 2, 1, "", "__mul__"], [24, 2, 1, "", "add_state"], [24, 2, 1, "", "clone"], [24, 2, 1, "", "compute"], [24, 2, 1, "", "reset_state"], [24, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.accuracy.BinaryAccuracy": [[25, 2, 1, "", "__add__"], [25, 2, 1, "", "__call__"], [25, 2, 1, "", "__init__"], [25, 2, 1, "", "__mul__"], [25, 2, 1, "", "add_state"], [25, 2, 1, "", "clone"], [25, 2, 1, "", "compute"], [25, 2, 1, "", "reset_state"], [25, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy": [[26, 2, 1, "", "__add__"], [26, 2, 1, "", "__call__"], [26, 2, 1, "", "__init__"], [26, 2, 1, "", "__mul__"], [26, 2, 1, "", "add_state"], [26, 2, 1, "", "clone"], [26, 2, 1, "", "compute"], [26, 2, 1, "", "reset_state"], [26, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy": [[27, 2, 1, "", "__add__"], [27, 2, 1, "", "__call__"], [27, 2, 1, "", "__init__"], [27, 2, 1, "", "__mul__"], [27, 2, 1, "", "add_state"], [27, 2, 1, "", "clone"], [27, 2, 1, "", "compute"], [27, 2, 1, "", "reset_state"], [27, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.auroc": [[29, 1, 1, "", "AUROC"], [30, 1, 1, "", "BinaryAUROC"], [31, 1, 1, "", "MulticlassAUROC"], [32, 1, 1, "", "MultilabelAUROC"]], "cyclops.evaluate.metrics.auroc.AUROC": [[29, 2, 1, "", "__add__"], [29, 2, 1, "", "__call__"], [29, 2, 1, "", "__init__"], [29, 2, 1, "", "__mul__"], [29, 2, 1, "", "add_state"], [29, 2, 1, "", "clone"], [29, 2, 1, "", "compute"], [29, 2, 1, "", "reset_state"], [29, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.auroc.BinaryAUROC": [[30, 2, 1, "", "__add__"], [30, 2, 1, "", "__call__"], [30, 2, 1, "", "__init__"], [30, 2, 1, "", "__mul__"], [30, 2, 1, "", "add_state"], [30, 2, 1, "", "clone"], [30, 2, 1, "", "compute"], [30, 2, 1, "", "reset_state"], [30, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.auroc.MulticlassAUROC": [[31, 2, 1, "", "__add__"], [31, 2, 1, "", "__call__"], [31, 2, 1, "", "__init__"], [31, 2, 1, "", "__mul__"], [31, 2, 1, "", "add_state"], [31, 2, 1, "", "clone"], [31, 2, 1, "", "compute"], [31, 2, 1, "", "reset_state"], [31, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.auroc.MultilabelAUROC": [[32, 2, 1, "", "__add__"], [32, 2, 1, "", "__call__"], [32, 2, 1, "", "__init__"], [32, 2, 1, "", "__mul__"], [32, 2, 1, "", "add_state"], [32, 2, 1, "", "clone"], [32, 2, 1, "", "compute"], [32, 2, 1, "", "reset_state"], [32, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta": [[34, 1, 1, "", "BinaryF1Score"], [35, 1, 1, "", "BinaryFbetaScore"], [36, 1, 1, "", "F1Score"], [37, 1, 1, "", "FbetaScore"], [38, 1, 1, "", "MulticlassF1Score"], [39, 1, 1, "", "MulticlassFbetaScore"], [40, 1, 1, "", "MultilabelF1Score"], [41, 1, 1, "", "MultilabelFbetaScore"]], "cyclops.evaluate.metrics.f_beta.BinaryF1Score": [[34, 2, 1, "", "__add__"], [34, 2, 1, "", "__call__"], [34, 2, 1, "", "__init__"], [34, 2, 1, "", "__mul__"], [34, 2, 1, "", "add_state"], [34, 2, 1, "", "clone"], [34, 2, 1, "", "compute"], [34, 2, 1, "", "reset_state"], [34, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore": [[35, 2, 1, "", "__add__"], [35, 2, 1, "", "__call__"], [35, 2, 1, "", "__init__"], [35, 2, 1, "", "__mul__"], [35, 2, 1, "", "add_state"], [35, 2, 1, "", "clone"], [35, 2, 1, "", "compute"], [35, 2, 1, "", "reset_state"], [35, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.F1Score": [[36, 2, 1, "", "__add__"], [36, 2, 1, "", "__call__"], [36, 2, 1, "", "__init__"], [36, 2, 1, "", "__mul__"], [36, 2, 1, "", "add_state"], [36, 2, 1, "", "clone"], [36, 2, 1, "", "compute"], [36, 2, 1, "", "reset_state"], [36, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.FbetaScore": [[37, 2, 1, "", "__add__"], [37, 2, 1, "", "__call__"], [37, 2, 1, "", "__init__"], [37, 2, 1, "", "__mul__"], [37, 2, 1, "", "add_state"], [37, 2, 1, "", "clone"], [37, 2, 1, "", "compute"], [37, 2, 1, "", "reset_state"], [37, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.MulticlassF1Score": [[38, 2, 1, "", "__add__"], [38, 2, 1, "", "__call__"], [38, 2, 1, "", "__init__"], [38, 2, 1, "", "__mul__"], [38, 2, 1, "", "add_state"], [38, 2, 1, "", "clone"], [38, 2, 1, "", "compute"], [38, 2, 1, "", "reset_state"], [38, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore": [[39, 2, 1, "", "__add__"], [39, 2, 1, "", "__call__"], [39, 2, 1, "", "__init__"], [39, 2, 1, "", "__mul__"], [39, 2, 1, "", "add_state"], [39, 2, 1, "", "clone"], [39, 2, 1, "", "compute"], [39, 2, 1, "", "reset_state"], [39, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.MultilabelF1Score": [[40, 2, 1, "", "__add__"], [40, 2, 1, "", "__call__"], [40, 2, 1, "", "__init__"], [40, 2, 1, "", "__mul__"], [40, 2, 1, "", "add_state"], [40, 2, 1, "", "clone"], [40, 2, 1, "", "compute"], [40, 2, 1, "", "reset_state"], [40, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore": [[41, 2, 1, "", "__add__"], [41, 2, 1, "", "__call__"], [41, 2, 1, "", "__init__"], [41, 2, 1, "", "__mul__"], [41, 2, 1, "", "add_state"], [41, 2, 1, "", "clone"], [41, 2, 1, "", "compute"], [41, 2, 1, "", "reset_state"], [41, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.factory": [[43, 4, 1, "", "create_metric"]], "cyclops.evaluate.metrics.functional": [[44, 0, 0, "-", "accuracy"], [45, 0, 0, "-", "auroc"], [46, 0, 0, "-", "f_beta"], [55, 0, 0, "-", "precision_recall"], [64, 0, 0, "-", "precision_recall_curve"], [65, 0, 0, "-", "roc"], [70, 0, 0, "-", "sensitivity"], [71, 0, 0, "-", "specificity"], [72, 0, 0, "-", "stat_scores"]], "cyclops.evaluate.metrics.functional.f_beta": [[47, 4, 1, "", "binary_f1_score"], [48, 4, 1, "", "binary_fbeta_score"], [49, 4, 1, "", "f1_score"], [50, 4, 1, "", "fbeta_score"], [51, 4, 1, "", "multiclass_f1_score"], [52, 4, 1, "", "multiclass_fbeta_score"], [53, 4, 1, "", "multilabel_f1_score"], [54, 4, 1, "", "multilabel_fbeta_score"]], "cyclops.evaluate.metrics.functional.precision_recall": [[56, 4, 1, "", "binary_precision"], [57, 4, 1, "", "binary_recall"], [58, 4, 1, "", "multiclass_precision"], [59, 4, 1, "", "multiclass_recall"], [60, 4, 1, "", "multilabel_precision"], [61, 4, 1, "", "multilabel_recall"], [62, 4, 1, "", "precision"], [63, 4, 1, "", "recall"]], "cyclops.evaluate.metrics.functional.roc": [[66, 4, 1, "", "binary_roc_curve"], [67, 4, 1, "", "multiclass_roc_curve"], [68, 4, 1, "", "multilabel_roc_curve"], [69, 4, 1, "", "roc_curve"]], "cyclops.evaluate.metrics.metric": [[74, 1, 1, "", "Metric"], [75, 1, 1, "", "MetricCollection"], [76, 1, 1, "", "OperatorMetric"]], "cyclops.evaluate.metrics.metric.Metric": [[74, 2, 1, "", "__add__"], [74, 2, 1, "", "__call__"], [74, 2, 1, "", "__init__"], [74, 2, 1, "", "__mul__"], [74, 2, 1, "", "add_state"], [74, 2, 1, "", "clone"], [74, 2, 1, "", "compute"], [74, 2, 1, "", "reset_state"], [74, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.metric.MetricCollection": [[75, 2, 1, "", "__call__"], [75, 2, 1, "", "__init__"], [75, 2, 1, "", "add_metrics"], [75, 2, 1, "", "clear"], [75, 2, 1, "", "clone"], [75, 2, 1, "", "compute"], [75, 2, 1, "", "get"], [75, 2, 1, "", "items"], [75, 2, 1, "", "keys"], [75, 2, 1, "", "pop"], [75, 2, 1, "", "popitem"], [75, 2, 1, "", "reset_state"], [75, 2, 1, "", "setdefault"], [75, 2, 1, "", "update"], [75, 2, 1, "", "update_state"], [75, 2, 1, "", "values"]], "cyclops.evaluate.metrics.metric.OperatorMetric": [[76, 2, 1, "", "__add__"], [76, 2, 1, "", "__call__"], [76, 2, 1, "", "__init__"], [76, 2, 1, "", "__mul__"], [76, 2, 1, "", "add_state"], [76, 2, 1, "", "clone"], [76, 2, 1, "", "compute"], [76, 2, 1, "", "reset_state"], [76, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall": [[78, 1, 1, "", "BinaryPrecision"], [79, 1, 1, "", "BinaryRecall"], [80, 1, 1, "", "MulticlassPrecision"], [81, 1, 1, "", "MulticlassRecall"], [82, 1, 1, "", "MultilabelPrecision"], [83, 1, 1, "", "MultilabelRecall"], [84, 1, 1, "", "Precision"], [85, 1, 1, "", "Recall"]], "cyclops.evaluate.metrics.precision_recall.BinaryPrecision": [[78, 2, 1, "", "__add__"], [78, 2, 1, "", "__call__"], [78, 2, 1, "", "__init__"], [78, 2, 1, "", "__mul__"], [78, 2, 1, "", "add_state"], [78, 2, 1, "", "clone"], [78, 2, 1, "", "compute"], [78, 2, 1, "", "reset_state"], [78, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.BinaryRecall": [[79, 2, 1, "", "__add__"], [79, 2, 1, "", "__call__"], [79, 2, 1, "", "__init__"], [79, 2, 1, "", "__mul__"], [79, 2, 1, "", "add_state"], [79, 2, 1, "", "clone"], [79, 2, 1, "", "compute"], [79, 2, 1, "", "reset_state"], [79, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision": [[80, 2, 1, "", "__add__"], [80, 2, 1, "", "__call__"], [80, 2, 1, "", "__init__"], [80, 2, 1, "", "__mul__"], [80, 2, 1, "", "add_state"], [80, 2, 1, "", "clone"], [80, 2, 1, "", "compute"], [80, 2, 1, "", "reset_state"], [80, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.MulticlassRecall": [[81, 2, 1, "", "__add__"], [81, 2, 1, "", "__call__"], [81, 2, 1, "", "__init__"], [81, 2, 1, "", "__mul__"], [81, 2, 1, "", "add_state"], [81, 2, 1, "", "clone"], [81, 2, 1, "", "compute"], [81, 2, 1, "", "reset_state"], [81, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision": [[82, 2, 1, "", "__add__"], [82, 2, 1, "", "__call__"], [82, 2, 1, "", "__init__"], [82, 2, 1, "", "__mul__"], [82, 2, 1, "", "add_state"], [82, 2, 1, "", "clone"], [82, 2, 1, "", "compute"], [82, 2, 1, "", "reset_state"], [82, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.MultilabelRecall": [[83, 2, 1, "", "__add__"], [83, 2, 1, "", "__call__"], [83, 2, 1, "", "__init__"], [83, 2, 1, "", "__mul__"], [83, 2, 1, "", "add_state"], [83, 2, 1, "", "clone"], [83, 2, 1, "", "compute"], [83, 2, 1, "", "reset_state"], [83, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.Precision": [[84, 2, 1, "", "__add__"], [84, 2, 1, "", "__call__"], [84, 2, 1, "", "__init__"], [84, 2, 1, "", "__mul__"], [84, 2, 1, "", "add_state"], [84, 2, 1, "", "clone"], [84, 2, 1, "", "compute"], [84, 2, 1, "", "reset_state"], [84, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.Recall": [[85, 2, 1, "", "__add__"], [85, 2, 1, "", "__call__"], [85, 2, 1, "", "__init__"], [85, 2, 1, "", "__mul__"], [85, 2, 1, "", "add_state"], [85, 2, 1, "", "clone"], [85, 2, 1, "", "compute"], [85, 2, 1, "", "reset_state"], [85, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall_curve": [[87, 1, 1, "", "BinaryPrecisionRecallCurve"], [88, 1, 1, "", "MulticlassPrecisionRecallCurve"], [89, 1, 1, "", "MultilabelPrecisionRecallCurve"], [90, 1, 1, "", "PrecisionRecallCurve"]], "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve": [[87, 2, 1, "", "__add__"], [87, 2, 1, "", "__call__"], [87, 2, 1, "", "__init__"], [87, 2, 1, "", "__mul__"], [87, 2, 1, "", "add_state"], [87, 2, 1, "", "clone"], [87, 2, 1, "", "compute"], [87, 2, 1, "", "reset_state"], [87, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve": [[88, 2, 1, "", "__add__"], [88, 2, 1, "", "__call__"], [88, 2, 1, "", "__init__"], [88, 2, 1, "", "__mul__"], [88, 2, 1, "", "add_state"], [88, 2, 1, "", "clone"], [88, 2, 1, "", "compute"], [88, 2, 1, "", "reset_state"], [88, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve": [[89, 2, 1, "", "__add__"], [89, 2, 1, "", "__call__"], [89, 2, 1, "", "__init__"], [89, 2, 1, "", "__mul__"], [89, 2, 1, "", "add_state"], [89, 2, 1, "", "clone"], [89, 2, 1, "", "compute"], [89, 2, 1, "", "reset_state"], [89, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve": [[90, 2, 1, "", "__add__"], [90, 2, 1, "", "__call__"], [90, 2, 1, "", "__init__"], [90, 2, 1, "", "__mul__"], [90, 2, 1, "", "add_state"], [90, 2, 1, "", "clone"], [90, 2, 1, "", "compute"], [90, 2, 1, "", "reset_state"], [90, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.roc": [[92, 1, 1, "", "BinaryROCCurve"], [93, 1, 1, "", "MulticlassROCCurve"], [94, 1, 1, "", "MultilabelROCCurve"], [95, 1, 1, "", "ROCCurve"]], "cyclops.evaluate.metrics.roc.BinaryROCCurve": [[92, 2, 1, "", "__add__"], [92, 2, 1, "", "__call__"], [92, 2, 1, "", "__init__"], [92, 2, 1, "", "__mul__"], [92, 2, 1, "", "add_state"], [92, 2, 1, "", "clone"], [92, 2, 1, "", "compute"], [92, 2, 1, "", "reset_state"], [92, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.roc.MulticlassROCCurve": [[93, 2, 1, "", "__add__"], [93, 2, 1, "", "__call__"], [93, 2, 1, "", "__init__"], [93, 2, 1, "", "__mul__"], [93, 2, 1, "", "add_state"], [93, 2, 1, "", "clone"], [93, 2, 1, "", "compute"], [93, 2, 1, "", "reset_state"], [93, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.roc.MultilabelROCCurve": [[94, 2, 1, "", "__add__"], [94, 2, 1, "", "__call__"], [94, 2, 1, "", "__init__"], [94, 2, 1, "", "__mul__"], [94, 2, 1, "", "add_state"], [94, 2, 1, "", "clone"], [94, 2, 1, "", "compute"], [94, 2, 1, "", "reset_state"], [94, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.roc.ROCCurve": [[95, 2, 1, "", "__add__"], [95, 2, 1, "", "__call__"], [95, 2, 1, "", "__init__"], [95, 2, 1, "", "__mul__"], [95, 2, 1, "", "add_state"], [95, 2, 1, "", "clone"], [95, 2, 1, "", "compute"], [95, 2, 1, "", "reset_state"], [95, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.sensitivity": [[97, 1, 1, "", "BinarySensitivity"], [98, 1, 1, "", "MulticlassSensitivity"], [99, 1, 1, "", "MultilabelSensitivity"], [100, 1, 1, "", "Sensitivity"]], "cyclops.evaluate.metrics.sensitivity.BinarySensitivity": [[97, 2, 1, "", "__add__"], [97, 2, 1, "", "__call__"], [97, 2, 1, "", "__init__"], [97, 2, 1, "", "__mul__"], [97, 2, 1, "", "add_state"], [97, 2, 1, "", "clone"], [97, 2, 1, "", "compute"], [97, 2, 1, "", "reset_state"], [97, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity": [[98, 2, 1, "", "__add__"], [98, 2, 1, "", "__call__"], [98, 2, 1, "", "__init__"], [98, 2, 1, "", "__mul__"], [98, 2, 1, "", "add_state"], [98, 2, 1, "", "clone"], [98, 2, 1, "", "compute"], [98, 2, 1, "", "reset_state"], [98, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity": [[99, 2, 1, "", "__add__"], [99, 2, 1, "", "__call__"], [99, 2, 1, "", "__init__"], [99, 2, 1, "", "__mul__"], [99, 2, 1, "", "add_state"], [99, 2, 1, "", "clone"], [99, 2, 1, "", "compute"], [99, 2, 1, "", "reset_state"], [99, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.sensitivity.Sensitivity": [[100, 2, 1, "", "__add__"], [100, 2, 1, "", "__call__"], [100, 2, 1, "", "__init__"], [100, 2, 1, "", "__mul__"], [100, 2, 1, "", "add_state"], [100, 2, 1, "", "clone"], [100, 2, 1, "", "compute"], [100, 2, 1, "", "reset_state"], [100, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.specificity": [[102, 1, 1, "", "BinarySpecificity"], [103, 1, 1, "", "MulticlassSpecificity"], [104, 1, 1, "", "MultilabelSpecificity"], [105, 1, 1, "", "Specificity"]], "cyclops.evaluate.metrics.specificity.BinarySpecificity": [[102, 2, 1, "", "__add__"], [102, 2, 1, "", "__call__"], [102, 2, 1, "", "__init__"], [102, 2, 1, "", "__mul__"], [102, 2, 1, "", "add_state"], [102, 2, 1, "", "clone"], [102, 2, 1, "", "compute"], [102, 2, 1, "", "reset_state"], [102, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.specificity.MulticlassSpecificity": [[103, 2, 1, "", "__add__"], [103, 2, 1, "", "__call__"], [103, 2, 1, "", "__init__"], [103, 2, 1, "", "__mul__"], [103, 2, 1, "", "add_state"], [103, 2, 1, "", "clone"], [103, 2, 1, "", "compute"], [103, 2, 1, "", "reset_state"], [103, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.specificity.MultilabelSpecificity": [[104, 2, 1, "", "__add__"], [104, 2, 1, "", "__call__"], [104, 2, 1, "", "__init__"], [104, 2, 1, "", "__mul__"], [104, 2, 1, "", "add_state"], [104, 2, 1, "", "clone"], [104, 2, 1, "", "compute"], [104, 2, 1, "", "reset_state"], [104, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.specificity.Specificity": [[105, 2, 1, "", "__add__"], [105, 2, 1, "", "__call__"], [105, 2, 1, "", "__init__"], [105, 2, 1, "", "__mul__"], [105, 2, 1, "", "add_state"], [105, 2, 1, "", "clone"], [105, 2, 1, "", "compute"], [105, 2, 1, "", "reset_state"], [105, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.stat_scores": [[107, 1, 1, "", "BinaryStatScores"], [108, 1, 1, "", "MulticlassStatScores"], [109, 1, 1, "", "MultilabelStatScores"], [110, 1, 1, "", "StatScores"]], "cyclops.evaluate.metrics.stat_scores.BinaryStatScores": [[107, 2, 1, "", "__add__"], [107, 2, 1, "", "__call__"], [107, 2, 1, "", "__init__"], [107, 2, 1, "", "__mul__"], [107, 2, 1, "", "add_state"], [107, 2, 1, "", "clone"], [107, 2, 1, "", "compute"], [107, 2, 1, "", "reset_state"], [107, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores": [[108, 2, 1, "", "__add__"], [108, 2, 1, "", "__call__"], [108, 2, 1, "", "__init__"], [108, 2, 1, "", "__mul__"], [108, 2, 1, "", "add_state"], [108, 2, 1, "", "clone"], [108, 2, 1, "", "compute"], [108, 2, 1, "", "reset_state"], [108, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores": [[109, 2, 1, "", "__add__"], [109, 2, 1, "", "__call__"], [109, 2, 1, "", "__init__"], [109, 2, 1, "", "__mul__"], [109, 2, 1, "", "add_state"], [109, 2, 1, "", "clone"], [109, 2, 1, "", "compute"], [109, 2, 1, "", "reset_state"], [109, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.stat_scores.StatScores": [[110, 2, 1, "", "__add__"], [110, 2, 1, "", "__call__"], [110, 2, 1, "", "__init__"], [110, 2, 1, "", "__mul__"], [110, 2, 1, "", "add_state"], [110, 2, 1, "", "clone"], [110, 2, 1, "", "compute"], [110, 2, 1, "", "reset_state"], [110, 2, 1, "", "update_state"]], "cyclops.monitor": [[111, 0, 0, "-", "clinical_applicator"], [113, 0, 0, "-", "synthetic_applicator"]], "cyclops.monitor.clinical_applicator": [[112, 1, 1, "", "ClinicalShiftApplicator"]], "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator": [[112, 2, 1, "", "age"], [112, 2, 1, "", "apply_shift"], [112, 2, 1, "", "custom"], [112, 2, 1, "", "hospital_type"], [112, 2, 1, "", "month"], [112, 2, 1, "", "sex"], [112, 2, 1, "", "time"]], "cyclops.monitor.synthetic_applicator": [[114, 1, 1, "", "SyntheticShiftApplicator"], [115, 4, 1, "", "binary_noise_shift"], [116, 4, 1, "", "feature_association_shift"], [117, 4, 1, "", "feature_swap_shift"], [118, 4, 1, "", "gaussian_noise_shift"], [119, 4, 1, "", "knockout_shift"]], "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator": [[114, 2, 1, "", "apply_shift"]], "cyclops.report": [[120, 0, 0, "-", "report"]], "cyclops.report.report": [[121, 1, 1, "", "ModelCardReport"]], "cyclops.report.report.ModelCardReport": [[121, 2, 1, "", "export"], [121, 2, 1, "", "from_json_file"], [121, 2, 1, "", "log_citation"], [121, 2, 1, "", "log_dataset"], [121, 2, 1, "", "log_descriptor"], [121, 2, 1, "", "log_fairness_assessment"], [121, 2, 1, "", "log_from_dict"], [121, 2, 1, "", "log_image"], [121, 2, 1, "", "log_license"], [121, 2, 1, "", "log_model_parameters"], [121, 2, 1, "", "log_owner"], [121, 2, 1, "", "log_performance_metrics"], [121, 2, 1, "", "log_plotly_figure"], [121, 2, 1, "", "log_quantitative_analysis"], [121, 2, 1, "", "log_reference"], [121, 2, 1, "", "log_regulation"], [121, 2, 1, "", "log_risk"], [121, 2, 1, "", "log_use_case"], [121, 2, 1, "", "log_user"], [121, 2, 1, "", "log_version"]], "cyclops.tasks": [[122, 0, 0, "-", "cxr_classification"], [124, 0, 0, "-", "mortality_prediction"]], "cyclops.tasks.cxr_classification": [[123, 1, 1, "", "CXRClassificationTask"]], "cyclops.tasks.cxr_classification.CXRClassificationTask": [[123, 2, 1, "", "__init__"], [123, 2, 1, "", "add_model"], [123, 5, 1, "", "data_type"], [123, 2, 1, "", "evaluate"], [123, 2, 1, "", "get_model"], [123, 2, 1, "", "list_models"], [123, 5, 1, "", "models_count"], [123, 2, 1, "", "predict"], [123, 5, 1, "", "task_type"]], "cyclops.tasks.mortality_prediction": [[125, 1, 1, "", "MortalityPredictionTask"]], "cyclops.tasks.mortality_prediction.MortalityPredictionTask": [[125, 2, 1, "", "__init__"], [125, 2, 1, "", "add_model"], [125, 5, 1, "", "data_type"], [125, 2, 1, "", "evaluate"], [125, 2, 1, "", "get_model"], [125, 2, 1, "", "list_models"], [125, 2, 1, "", "list_models_params"], [125, 2, 1, "", "load_model"], [125, 5, 1, "", "models_count"], [125, 2, 1, "", "predict"], [125, 2, 1, "", "save_model"], [125, 5, 1, "", "task_type"], [125, 2, 1, "", "train"]]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:method", "3": "py:attribute", "4": "py:function", "5": "py:property"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "method", "Python method"], "3": ["py", "attribute", "Python attribute"], "4": ["py", "function", "Python function"], "5": ["py", "property", "Python property"]}, "titleterms": {"api": [0, 136], "refer": 0, "contribut": [1, 3], "cyclop": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], "pre": 1, "commit": 1, "hook": 1, "code": 1, "guidelin": 1, "welcom": 2, "": 2, "document": [2, 3], "content": 2, "get": [3, 133], "start": 3, "instal": 3, "us": [3, 134, 137], "pip": 3, "develop": 3, "poetri": 3, "notebook": 3, "citat": 3, "data": [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 126, 132, 135, 137], "featur": [4, 5, 126, 132, 135], "medical_imag": [4, 5], "medicalimag": 5, "slicer": [6, 7, 8, 9, 10, 11, 12, 13, 14, 15], "slicespec": 7, "compound_filt": 8, "filter_datetim": 9, "filter_non_nul": 10, "filter_rang": 11, "filter_string_contain": 12, "filter_valu": 13, "is_datetim": 14, "overal": 15, "evalu": [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 127, 132, 135], "fair": [18, 19, 20, 21, 22, 127], "config": [18, 19], "fairnessconfig": 19, "evaluate_fair": 21, "warn_too_many_unique_valu": 22, "metric": [23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 127, 133], "accuraci": [23, 24, 25, 26, 27, 44], "binaryaccuraci": 25, "multiclassaccuraci": 26, "multilabelaccuraci": 27, "auroc": [28, 29, 30, 31, 32, 45, 133], "binaryauroc": 30, "multiclassauroc": 31, "multilabelauroc": 32, "f_beta": [33, 34, 35, 36, 37, 38, 39, 40, 41, 46, 47, 48, 49, 50, 51, 52, 53, 54], "binaryf1scor": 34, "binaryfbetascor": 35, "f1score": 36, "fbetascor": 37, "multiclassf1scor": 38, "multiclassfbetascor": 39, "multilabelf1scor": 40, "multilabelfbetascor": 41, "factori": [42, 43], "create_metr": 43, "function": [44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 127], "binary_f1_scor": 47, "binary_fbeta_scor": 48, "f1_score": 49, "fbeta_scor": 50, "multiclass_f1_scor": 51, "multiclass_fbeta_scor": 52, "multilabel_f1_scor": 53, "multilabel_fbeta_scor": 54, "precision_recal": [55, 56, 57, 58, 59, 60, 61, 62, 63, 77, 78, 79, 80, 81, 82, 83, 84, 85], "binary_precis": 56, "binary_recal": 57, "multiclass_precis": 58, "multiclass_recal": 59, "multilabel_precis": 60, "multilabel_recal": 61, "precis": [62, 84], "recal": [63, 85], "precision_recall_curv": [64, 86, 87, 88, 89, 90], "roc": [65, 66, 67, 68, 69, 91, 92, 93, 94, 95], "binary_roc_curv": 66, "multiclass_roc_curv": 67, "multilabel_roc_curv": 68, "roc_curv": 69, "sensit": [70, 96, 97, 98, 99, 100, 134], "specif": [71, 101, 102, 103, 104, 105], "stat_scor": [72, 106, 107, 108, 109, 110], "metriccollect": 75, "operatormetr": 76, "binaryprecis": 78, "binaryrecal": 79, "multiclassprecis": 80, "multiclassrecal": 81, "multilabelprecis": 82, "multilabelrecal": 83, "binaryprecisionrecallcurv": 87, "multiclassprecisionrecallcurv": 88, "multilabelprecisionrecallcurv": 89, "precisionrecallcurv": 90, "binaryroccurv": 92, "multiclassroccurv": 93, "multilabelroccurv": 94, "roccurv": 95, "binarysensit": 97, "multiclasssensit": 98, "multilabelsensit": 99, "binaryspecif": 102, "multiclassspecif": 103, "multilabelspecif": 104, "binarystatscor": 107, "multiclassstatscor": 108, "multilabelstatscor": 109, "statscor": 110, "monitor": [111, 112, 113, 114, 115, 116, 117, 118, 119, 128, 136], "clinical_appl": [111, 112], "clinicalshiftappl": 112, "synthetic_appl": [113, 114, 115, 116, 117, 118, 119], "syntheticshiftappl": 114, "binary_noise_shift": 115, "feature_association_shift": 116, "feature_swap_shift": 117, "gaussian_noise_shift": 118, "knockout_shift": 119, "report": [120, 121, 129, 132, 133, 135], "modelcardreport": 121, "task": [122, 123, 124, 125, 130, 132, 135], "cxr_classif": [122, 123], "cxrclassificationtask": 123, "mortality_predict": [124, 125], "mortalitypredictiontask": 125, "tutori": [131, 134], "heart": [132, 137], "failur": [132, 137], "predict": [132, 133, 135, 137], "import": [132, 133, 134, 135], "librari": [132, 133, 134, 135], "constant": [132, 135], "load": [132, 133, 134], "sex": [132, 133], "valu": 132, "ag": [132, 133, 135], "distribut": [132, 135], "outcom": [132, 135], "identifi": [132, 135], "type": [132, 135], "creat": [132, 135], "preprocessor": [132, 135], "hug": [132, 135], "face": [132, 135], "dataset": [132, 133, 134, 135], "model": [132, 133, 134, 135], "creation": [132, 135], "train": [132, 134, 135], "perform": [132, 133], "over": 132, "time": 132, "gener": [132, 133, 134, 135], "chest": [133, 137], "x": [133, 137], "rai": [133, 137], "diseas": 133, "classif": [133, 137], "histor": 133, "initi": 133, "period": 133, "multilabel": 133, "pathologi": 133, "log": 133, "test": [133, 134], "w": 133, "threshold": 133, "popul": 133, "card": 133, "field": 133, "nihcxr": 134, "clinic": 134, "drift": 134, "experi": 134, "exampl": [134, 137], "1": 134, "sourc": 134, "target": 134, "2": 134, "3": 134, "dimension": 134, "reduct": 134, "techniqu": 134, "differ": 134, "4": 134, "shift": 134, "5": 134, "roll": 134, "window": 134, "synthet": 134, "timestamp": 134, "biweekli": 134, "prolong": [135, 137], "length": [135, 137], "stai": [135, 137], "queri": 135, "comput": 135, "label": 135, "inspect": 135, "preprocess": 135, "drop": 135, "nan": 135, "base": 135, "nan_threshold": 135, "gender": 135, "case": 137, "tabular": 137, "kaggl": 137, "synthea": 137, "imag": 137, "nih": 137}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.todo": 2, "sphinx.ext.viewcode": 1, "sphinx.ext.intersphinx": 1, "nbsphinx": 4, "sphinx": 60}, "alltitles": {"API Reference": [[0, "api-reference"]], "Contributing to cyclops": [[1, "contributing-to-cyclops"]], "Pre-commit hooks": [[1, "pre-commit-hooks"]], "Coding guidelines": [[1, "coding-guidelines"]], "Welcome to cyclops\u2019s documentation!": [[2, "welcome-to-cyclops-s-documentation"]], "Contents:": [[2, null]], "\ud83d\udc23 Getting Started": [[3, "getting-started"]], "Installing cyclops using pip": [[3, "installing-cyclops-using-pip"]], "\ud83e\uddd1\ud83c\udfff\u200d\ud83d\udcbb Developing": [[3, "developing"]], "Using poetry": [[3, "using-poetry"]], "Contributing": [[3, "contributing"]], "\ud83d\udcda Documentation": [[3, "documentation"]], "\ud83d\udcd3 Notebooks": [[3, "notebooks"]], "\ud83c\udf93 Citation": [[3, "citation"]], "cyclops.data.features.medical_image": [[4, "module-cyclops.data.features.medical_image"]], "cyclops.data.features.medical_image.MedicalImage": [[5, "cyclops-data-features-medical-image-medicalimage"]], "cyclops.data.slicer": [[6, "module-cyclops.data.slicer"]], "cyclops.data.slicer.SliceSpec": [[7, "cyclops-data-slicer-slicespec"]], "cyclops.data.slicer.compound_filter": [[8, "cyclops-data-slicer-compound-filter"]], "cyclops.data.slicer.filter_datetime": [[9, "cyclops-data-slicer-filter-datetime"]], "cyclops.data.slicer.filter_non_null": [[10, "cyclops-data-slicer-filter-non-null"]], "cyclops.data.slicer.filter_range": [[11, "cyclops-data-slicer-filter-range"]], "cyclops.data.slicer.filter_string_contains": [[12, "cyclops-data-slicer-filter-string-contains"]], "cyclops.data.slicer.filter_value": [[13, "cyclops-data-slicer-filter-value"]], "cyclops.data.slicer.is_datetime": [[14, "cyclops-data-slicer-is-datetime"]], "cyclops.data.slicer.overall": [[15, "cyclops-data-slicer-overall"]], "cyclops.evaluate.evaluator": [[16, "module-cyclops.evaluate.evaluator"]], "cyclops.evaluate.evaluator.evaluate": [[17, "cyclops-evaluate-evaluator-evaluate"]], "cyclops.evaluate.fairness.config": [[18, "module-cyclops.evaluate.fairness.config"]], "cyclops.evaluate.fairness.config.FairnessConfig": [[19, "cyclops-evaluate-fairness-config-fairnessconfig"]], "cyclops.evaluate.fairness.evaluator": [[20, "module-cyclops.evaluate.fairness.evaluator"]], "cyclops.evaluate.fairness.evaluator.evaluate_fairness": [[21, "cyclops-evaluate-fairness-evaluator-evaluate-fairness"]], "cyclops.evaluate.fairness.evaluator.warn_too_many_unique_values": [[22, "cyclops-evaluate-fairness-evaluator-warn-too-many-unique-values"]], "cyclops.evaluate.metrics.accuracy": [[23, "module-cyclops.evaluate.metrics.accuracy"]], "cyclops.evaluate.metrics.accuracy.Accuracy": [[24, "cyclops-evaluate-metrics-accuracy-accuracy"]], "cyclops.evaluate.metrics.accuracy.BinaryAccuracy": [[25, "cyclops-evaluate-metrics-accuracy-binaryaccuracy"]], "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy": [[26, "cyclops-evaluate-metrics-accuracy-multiclassaccuracy"]], "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy": [[27, "cyclops-evaluate-metrics-accuracy-multilabelaccuracy"]], "cyclops.evaluate.metrics.auroc": [[28, "module-cyclops.evaluate.metrics.auroc"]], "cyclops.evaluate.metrics.auroc.AUROC": [[29, "cyclops-evaluate-metrics-auroc-auroc"]], "cyclops.evaluate.metrics.auroc.BinaryAUROC": [[30, "cyclops-evaluate-metrics-auroc-binaryauroc"]], "cyclops.evaluate.metrics.auroc.MulticlassAUROC": [[31, "cyclops-evaluate-metrics-auroc-multiclassauroc"]], "cyclops.evaluate.metrics.auroc.MultilabelAUROC": [[32, "cyclops-evaluate-metrics-auroc-multilabelauroc"]], "cyclops.evaluate.metrics.f_beta": [[33, "module-cyclops.evaluate.metrics.f_beta"]], "cyclops.evaluate.metrics.f_beta.BinaryF1Score": [[34, "cyclops-evaluate-metrics-f-beta-binaryf1score"]], "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore": [[35, "cyclops-evaluate-metrics-f-beta-binaryfbetascore"]], "cyclops.evaluate.metrics.f_beta.F1Score": [[36, "cyclops-evaluate-metrics-f-beta-f1score"]], "cyclops.evaluate.metrics.f_beta.FbetaScore": [[37, "cyclops-evaluate-metrics-f-beta-fbetascore"]], "cyclops.evaluate.metrics.f_beta.MulticlassF1Score": [[38, "cyclops-evaluate-metrics-f-beta-multiclassf1score"]], "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore": [[39, "cyclops-evaluate-metrics-f-beta-multiclassfbetascore"]], "cyclops.evaluate.metrics.f_beta.MultilabelF1Score": [[40, "cyclops-evaluate-metrics-f-beta-multilabelf1score"]], "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore": [[41, "cyclops-evaluate-metrics-f-beta-multilabelfbetascore"]], "cyclops.evaluate.metrics.factory": [[42, "module-cyclops.evaluate.metrics.factory"]], "cyclops.evaluate.metrics.factory.create_metric": [[43, "cyclops-evaluate-metrics-factory-create-metric"]], "cyclops.evaluate.metrics.functional.accuracy": [[44, "module-cyclops.evaluate.metrics.functional.accuracy"]], "cyclops.evaluate.metrics.functional.auroc": [[45, "module-cyclops.evaluate.metrics.functional.auroc"]], "cyclops.evaluate.metrics.functional.f_beta": [[46, "module-cyclops.evaluate.metrics.functional.f_beta"]], "cyclops.evaluate.metrics.functional.f_beta.binary_f1_score": [[47, "cyclops-evaluate-metrics-functional-f-beta-binary-f1-score"]], "cyclops.evaluate.metrics.functional.f_beta.binary_fbeta_score": [[48, "cyclops-evaluate-metrics-functional-f-beta-binary-fbeta-score"]], "cyclops.evaluate.metrics.functional.f_beta.f1_score": [[49, "cyclops-evaluate-metrics-functional-f-beta-f1-score"]], "cyclops.evaluate.metrics.functional.f_beta.fbeta_score": [[50, "cyclops-evaluate-metrics-functional-f-beta-fbeta-score"]], "cyclops.evaluate.metrics.functional.f_beta.multiclass_f1_score": [[51, "cyclops-evaluate-metrics-functional-f-beta-multiclass-f1-score"]], "cyclops.evaluate.metrics.functional.f_beta.multiclass_fbeta_score": [[52, "cyclops-evaluate-metrics-functional-f-beta-multiclass-fbeta-score"]], "cyclops.evaluate.metrics.functional.f_beta.multilabel_f1_score": [[53, "cyclops-evaluate-metrics-functional-f-beta-multilabel-f1-score"]], "cyclops.evaluate.metrics.functional.f_beta.multilabel_fbeta_score": [[54, "cyclops-evaluate-metrics-functional-f-beta-multilabel-fbeta-score"]], "cyclops.evaluate.metrics.functional.precision_recall": [[55, "module-cyclops.evaluate.metrics.functional.precision_recall"]], "cyclops.evaluate.metrics.functional.precision_recall.binary_precision": [[56, "cyclops-evaluate-metrics-functional-precision-recall-binary-precision"]], "cyclops.evaluate.metrics.functional.precision_recall.binary_recall": [[57, "cyclops-evaluate-metrics-functional-precision-recall-binary-recall"]], "cyclops.evaluate.metrics.functional.precision_recall.multiclass_precision": [[58, "cyclops-evaluate-metrics-functional-precision-recall-multiclass-precision"]], "cyclops.evaluate.metrics.functional.precision_recall.multiclass_recall": [[59, "cyclops-evaluate-metrics-functional-precision-recall-multiclass-recall"]], "cyclops.evaluate.metrics.functional.precision_recall.multilabel_precision": [[60, "cyclops-evaluate-metrics-functional-precision-recall-multilabel-precision"]], "cyclops.evaluate.metrics.functional.precision_recall.multilabel_recall": [[61, "cyclops-evaluate-metrics-functional-precision-recall-multilabel-recall"]], "cyclops.evaluate.metrics.functional.precision_recall.precision": [[62, "cyclops-evaluate-metrics-functional-precision-recall-precision"]], "cyclops.evaluate.metrics.functional.precision_recall.recall": [[63, "cyclops-evaluate-metrics-functional-precision-recall-recall"]], "cyclops.evaluate.metrics.functional.precision_recall_curve": [[64, "module-cyclops.evaluate.metrics.functional.precision_recall_curve"]], "cyclops.evaluate.metrics.functional.roc": [[65, "module-cyclops.evaluate.metrics.functional.roc"]], "cyclops.evaluate.metrics.functional.roc.binary_roc_curve": [[66, "cyclops-evaluate-metrics-functional-roc-binary-roc-curve"]], "cyclops.evaluate.metrics.functional.roc.multiclass_roc_curve": [[67, "cyclops-evaluate-metrics-functional-roc-multiclass-roc-curve"]], "cyclops.evaluate.metrics.functional.roc.multilabel_roc_curve": [[68, "cyclops-evaluate-metrics-functional-roc-multilabel-roc-curve"]], "cyclops.evaluate.metrics.functional.roc.roc_curve": [[69, "cyclops-evaluate-metrics-functional-roc-roc-curve"]], "cyclops.evaluate.metrics.functional.sensitivity": [[70, "module-cyclops.evaluate.metrics.functional.sensitivity"]], "cyclops.evaluate.metrics.functional.specificity": [[71, "module-cyclops.evaluate.metrics.functional.specificity"]], "cyclops.evaluate.metrics.functional.stat_scores": [[72, "module-cyclops.evaluate.metrics.functional.stat_scores"]], "cyclops.evaluate.metrics.metric": [[73, "module-cyclops.evaluate.metrics.metric"]], "cyclops.evaluate.metrics.metric.Metric": [[74, "cyclops-evaluate-metrics-metric-metric"]], "cyclops.evaluate.metrics.metric.MetricCollection": [[75, "cyclops-evaluate-metrics-metric-metriccollection"]], "cyclops.evaluate.metrics.metric.OperatorMetric": [[76, "cyclops-evaluate-metrics-metric-operatormetric"]], "cyclops.evaluate.metrics.precision_recall": [[77, "module-cyclops.evaluate.metrics.precision_recall"]], "cyclops.evaluate.metrics.precision_recall.BinaryPrecision": [[78, "cyclops-evaluate-metrics-precision-recall-binaryprecision"]], "cyclops.evaluate.metrics.precision_recall.BinaryRecall": [[79, "cyclops-evaluate-metrics-precision-recall-binaryrecall"]], "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision": [[80, "cyclops-evaluate-metrics-precision-recall-multiclassprecision"]], "cyclops.evaluate.metrics.precision_recall.MulticlassRecall": [[81, "cyclops-evaluate-metrics-precision-recall-multiclassrecall"]], "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision": [[82, "cyclops-evaluate-metrics-precision-recall-multilabelprecision"]], "cyclops.evaluate.metrics.precision_recall.MultilabelRecall": [[83, "cyclops-evaluate-metrics-precision-recall-multilabelrecall"]], "cyclops.evaluate.metrics.precision_recall.Precision": [[84, "cyclops-evaluate-metrics-precision-recall-precision"]], "cyclops.evaluate.metrics.precision_recall.Recall": [[85, "cyclops-evaluate-metrics-precision-recall-recall"]], "cyclops.evaluate.metrics.precision_recall_curve": [[86, "module-cyclops.evaluate.metrics.precision_recall_curve"]], "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve": [[87, "cyclops-evaluate-metrics-precision-recall-curve-binaryprecisionrecallcurve"]], "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve": [[88, "cyclops-evaluate-metrics-precision-recall-curve-multiclassprecisionrecallcurve"]], "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve": [[89, "cyclops-evaluate-metrics-precision-recall-curve-multilabelprecisionrecallcurve"]], "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve": [[90, "cyclops-evaluate-metrics-precision-recall-curve-precisionrecallcurve"]], "cyclops.evaluate.metrics.roc": [[91, "module-cyclops.evaluate.metrics.roc"]], "cyclops.evaluate.metrics.roc.BinaryROCCurve": [[92, "cyclops-evaluate-metrics-roc-binaryroccurve"]], "cyclops.evaluate.metrics.roc.MulticlassROCCurve": [[93, "cyclops-evaluate-metrics-roc-multiclassroccurve"]], "cyclops.evaluate.metrics.roc.MultilabelROCCurve": [[94, "cyclops-evaluate-metrics-roc-multilabelroccurve"]], "cyclops.evaluate.metrics.roc.ROCCurve": [[95, "cyclops-evaluate-metrics-roc-roccurve"]], "cyclops.evaluate.metrics.sensitivity": [[96, "module-cyclops.evaluate.metrics.sensitivity"]], "cyclops.evaluate.metrics.sensitivity.BinarySensitivity": [[97, "cyclops-evaluate-metrics-sensitivity-binarysensitivity"]], "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity": [[98, "cyclops-evaluate-metrics-sensitivity-multiclasssensitivity"]], "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity": [[99, "cyclops-evaluate-metrics-sensitivity-multilabelsensitivity"]], "cyclops.evaluate.metrics.sensitivity.Sensitivity": [[100, "cyclops-evaluate-metrics-sensitivity-sensitivity"]], "cyclops.evaluate.metrics.specificity": [[101, "module-cyclops.evaluate.metrics.specificity"]], "cyclops.evaluate.metrics.specificity.BinarySpecificity": [[102, "cyclops-evaluate-metrics-specificity-binaryspecificity"]], "cyclops.evaluate.metrics.specificity.MulticlassSpecificity": [[103, "cyclops-evaluate-metrics-specificity-multiclassspecificity"]], "cyclops.evaluate.metrics.specificity.MultilabelSpecificity": [[104, "cyclops-evaluate-metrics-specificity-multilabelspecificity"]], "cyclops.evaluate.metrics.specificity.Specificity": [[105, "cyclops-evaluate-metrics-specificity-specificity"]], "cyclops.evaluate.metrics.stat_scores": [[106, "module-cyclops.evaluate.metrics.stat_scores"]], "cyclops.evaluate.metrics.stat_scores.BinaryStatScores": [[107, "cyclops-evaluate-metrics-stat-scores-binarystatscores"]], "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores": [[108, "cyclops-evaluate-metrics-stat-scores-multiclassstatscores"]], "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores": [[109, "cyclops-evaluate-metrics-stat-scores-multilabelstatscores"]], "cyclops.evaluate.metrics.stat_scores.StatScores": [[110, "cyclops-evaluate-metrics-stat-scores-statscores"]], "cyclops.monitor.clinical_applicator": [[111, "module-cyclops.monitor.clinical_applicator"]], "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator": [[112, "cyclops-monitor-clinical-applicator-clinicalshiftapplicator"]], "cyclops.monitor.synthetic_applicator": [[113, "module-cyclops.monitor.synthetic_applicator"]], "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator": [[114, "cyclops-monitor-synthetic-applicator-syntheticshiftapplicator"]], "cyclops.monitor.synthetic_applicator.binary_noise_shift": [[115, "cyclops-monitor-synthetic-applicator-binary-noise-shift"]], "cyclops.monitor.synthetic_applicator.feature_association_shift": [[116, "cyclops-monitor-synthetic-applicator-feature-association-shift"]], "cyclops.monitor.synthetic_applicator.feature_swap_shift": [[117, "cyclops-monitor-synthetic-applicator-feature-swap-shift"]], "cyclops.monitor.synthetic_applicator.gaussian_noise_shift": [[118, "cyclops-monitor-synthetic-applicator-gaussian-noise-shift"]], "cyclops.monitor.synthetic_applicator.knockout_shift": [[119, "cyclops-monitor-synthetic-applicator-knockout-shift"]], "cyclops.report.report": [[120, "module-cyclops.report.report"]], "cyclops.report.report.ModelCardReport": [[121, "cyclops-report-report-modelcardreport"]], "cyclops.tasks.cxr_classification": [[122, "module-cyclops.tasks.cxr_classification"]], "cyclops.tasks.cxr_classification.CXRClassificationTask": [[123, "cyclops-tasks-cxr-classification-cxrclassificationtask"]], "cyclops.tasks.mortality_prediction": [[124, "module-cyclops.tasks.mortality_prediction"]], "cyclops.tasks.mortality_prediction.MortalityPredictionTask": [[125, "cyclops-tasks-mortality-prediction-mortalitypredictiontask"]], "cyclops.data": [[126, "module-cyclops.data"]], "cyclops.data.features": [[126, "module-cyclops.data.features"]], "cyclops.evaluate": [[127, "module-cyclops.evaluate"]], "cyclops.evaluate.metrics": [[127, "module-cyclops.evaluate.metrics"]], "cyclops.evaluate.metrics.functional": [[127, "module-cyclops.evaluate.metrics.functional"]], "cyclops.evaluate.fairness": [[127, "module-cyclops.evaluate.fairness"]], "cyclops.monitor": [[128, "module-cyclops.monitor"]], "cyclops.report": [[129, "module-cyclops.report"]], "cyclops.tasks": [[130, "module-cyclops.tasks"]], "Tutorials": [[131, "tutorials"]], "Heart Failure Prediction": [[132, "Heart-Failure-Prediction"]], "Import Libraries": [[132, "Import-Libraries"], [133, "Import-Libraries"], [135, "Import-Libraries"]], "Constants": [[132, "Constants"], [135, "Constants"]], "Data Loading": [[132, "Data-Loading"]], "Sex values": [[132, "Sex-values"]], "Age distribution": [[132, "Age-distribution"], [135, "Age-distribution"]], "Outcome distribution": [[132, "Outcome-distribution"], [135, "Outcome-distribution"]], "Identifying feature types": [[132, "Identifying-feature-types"], [135, "Identifying-feature-types"]], "Creating data preprocessors": [[132, "Creating-data-preprocessors"], [135, "Creating-data-preprocessors"]], "Creating Hugging Face Dataset": [[132, "Creating-Hugging-Face-Dataset"], [135, "Creating-Hugging-Face-Dataset"]], "Model Creation": [[132, "Model-Creation"], [135, "Model-Creation"]], "Task Creation": [[132, "Task-Creation"], [135, "Task-Creation"]], "Training": [[132, "Training"], [135, "Training"]], "Prediction": [[132, "Prediction"], [135, "Prediction"]], "Evaluation": [[132, "Evaluation"], [135, "Evaluation"]], "Performance over time": [[132, "Performance-over-time"]], "Report Generation": [[132, "Report-Generation"], [135, "Report-Generation"]], "Chest X-Ray Disease Classification": [[133, "Chest-X-Ray-Disease-Classification"]], "Generate Historical Reports": [[133, "Generate-Historical-Reports"]], "Initialize Periodic Report": [[133, "Initialize-Periodic-Report"]], "Load Dataset": [[133, "Load-Dataset"]], "Load Model and get Predictions": [[133, "Load-Model-and-get-Predictions"]], "Multilabel AUROC by Pathology and Sex": [[133, "Multilabel-AUROC-by-Pathology-and-Sex"]], "Multilabel AUROC by Pathology and Age": [[133, "Multilabel-AUROC-by-Pathology-and-Age"]], "Log Performance Metrics as Tests w/ Thresholds": [[133, "Log-Performance-Metrics-as-Tests-w/-Thresholds"]], "Populate Model Card Fields": [[133, "Populate-Model-Card-Fields"]], "NIHCXR Clinical Drift Experiments Tutorial": [[134, "NIHCXR-Clinical-Drift-Experiments-Tutorial"]], "Import Libraries and Load NIHCXR Dataset": [[134, "Import-Libraries-and-Load-NIHCXR-Dataset"]], "Example 1. Generate Source/Target Dataset for Experiments (1-2)": [[134, "Example-1.-Generate-Source/Target-Dataset-for-Experiments-(1-2)"]], "Example 2. Sensitivity test experiment with 3 dimensionality reduction techniques": [[134, "Example-2.-Sensitivity-test-experiment-with-3-dimensionality-reduction-techniques"]], "Example 3. Sensitivity test experiment with models trained on different datasets": [[134, "Example-3.-Sensitivity-test-experiment-with-models-trained-on-different-datasets"]], "Example 4. Sensitivity test experiment with different clinical shifts": [[134, "Example-4.-Sensitivity-test-experiment-with-different-clinical-shifts"]], "Example 5. Rolling window experiment with synthetic timestamps using biweekly window": [[134, "Example-5.-Rolling-window-experiment-with-synthetic-timestamps-using-biweekly-window"]], "Prolonged Length of Stay Prediction": [[135, "Prolonged-Length-of-Stay-Prediction"]], "Data Querying": [[135, "Data-Querying"]], "Compute length of stay (labels)": [[135, "Compute-length-of-stay-(labels)"]], "Data Inspection and Preprocessing": [[135, "Data-Inspection-and-Preprocessing"]], "Drop NaNs based on the NAN_THRESHOLD": [[135, "Drop-NaNs-based-on-the-NAN_THRESHOLD"]], "Length of stay distribution": [[135, "Length-of-stay-distribution"]], "Gender distribution": [[135, "Gender-distribution"]], "monitor API": [[136, "monitor-api"]], "Example use cases": [[137, "example-use-cases"]], "Tabular data": [[137, "tabular-data"]], "Kaggle Heart Failure Prediction": [[137, "kaggle-heart-failure-prediction"]], "Synthea Prolonged Length of Stay Prediction": [[137, "synthea-prolonged-length-of-stay-prediction"]], "Image data": [[137, "image-data"]], "NIH Chest X-ray classification": [[137, "nih-chest-x-ray-classification"]]}, "indexentries": {"cyclops.data.features.medical_image": [[4, "module-cyclops.data.features.medical_image"]], "module": [[4, "module-cyclops.data.features.medical_image"], [6, "module-cyclops.data.slicer"], [16, "module-cyclops.evaluate.evaluator"], [18, "module-cyclops.evaluate.fairness.config"], [20, "module-cyclops.evaluate.fairness.evaluator"], [23, "module-cyclops.evaluate.metrics.accuracy"], [28, "module-cyclops.evaluate.metrics.auroc"], [33, "module-cyclops.evaluate.metrics.f_beta"], [42, "module-cyclops.evaluate.metrics.factory"], [44, "module-cyclops.evaluate.metrics.functional.accuracy"], [45, "module-cyclops.evaluate.metrics.functional.auroc"], [46, "module-cyclops.evaluate.metrics.functional.f_beta"], [55, "module-cyclops.evaluate.metrics.functional.precision_recall"], [64, "module-cyclops.evaluate.metrics.functional.precision_recall_curve"], [65, "module-cyclops.evaluate.metrics.functional.roc"], [70, "module-cyclops.evaluate.metrics.functional.sensitivity"], [71, "module-cyclops.evaluate.metrics.functional.specificity"], [72, "module-cyclops.evaluate.metrics.functional.stat_scores"], [73, "module-cyclops.evaluate.metrics.metric"], [77, "module-cyclops.evaluate.metrics.precision_recall"], [86, "module-cyclops.evaluate.metrics.precision_recall_curve"], [91, "module-cyclops.evaluate.metrics.roc"], [96, "module-cyclops.evaluate.metrics.sensitivity"], [101, "module-cyclops.evaluate.metrics.specificity"], [106, "module-cyclops.evaluate.metrics.stat_scores"], [111, "module-cyclops.monitor.clinical_applicator"], [113, "module-cyclops.monitor.synthetic_applicator"], [120, "module-cyclops.report.report"], [122, "module-cyclops.tasks.cxr_classification"], [124, "module-cyclops.tasks.mortality_prediction"], [126, "module-cyclops.data"], [126, "module-cyclops.data.features"], [127, "module-cyclops.evaluate"], [127, "module-cyclops.evaluate.fairness"], [127, "module-cyclops.evaluate.metrics"], [127, "module-cyclops.evaluate.metrics.functional"], [128, "module-cyclops.monitor"], [129, "module-cyclops.report"], [130, "module-cyclops.tasks"]], "medicalimage (class in cyclops.data.features.medical_image)": [[5, "cyclops.data.features.medical_image.MedicalImage"]], "__call__() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.__call__"]], "cast_storage() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.cast_storage"]], "decode_example() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.decode_example"]], "embed_storage() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.embed_storage"]], "encode_example() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.encode_example"]], "flatten() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.flatten"]], "cyclops.data.slicer": [[6, "module-cyclops.data.slicer"]], "slicespec (class in cyclops.data.slicer)": [[7, "cyclops.data.slicer.SliceSpec"]], "_registry (slicespec attribute)": [[7, "cyclops.data.slicer.SliceSpec._registry"]], "add_slice_spec() (slicespec method)": [[7, "cyclops.data.slicer.SliceSpec.add_slice_spec"]], "column_names (slicespec attribute)": [[7, "cyclops.data.slicer.SliceSpec.column_names"]], "get_slices() (slicespec method)": [[7, "cyclops.data.slicer.SliceSpec.get_slices"]], "include_overall (slicespec attribute)": [[7, "cyclops.data.slicer.SliceSpec.include_overall"]], "slices() (slicespec method)": [[7, "cyclops.data.slicer.SliceSpec.slices"]], "spec_list (slicespec attribute)": [[7, "cyclops.data.slicer.SliceSpec.spec_list"]], "validate (slicespec attribute)": [[7, "cyclops.data.slicer.SliceSpec.validate"]], "compound_filter() (in module cyclops.data.slicer)": [[8, "cyclops.data.slicer.compound_filter"]], "filter_datetime() (in module cyclops.data.slicer)": [[9, "cyclops.data.slicer.filter_datetime"]], "filter_non_null() (in module cyclops.data.slicer)": [[10, "cyclops.data.slicer.filter_non_null"]], "filter_range() (in module cyclops.data.slicer)": [[11, "cyclops.data.slicer.filter_range"]], "filter_string_contains() (in module cyclops.data.slicer)": [[12, "cyclops.data.slicer.filter_string_contains"]], "filter_value() (in module cyclops.data.slicer)": [[13, "cyclops.data.slicer.filter_value"]], "is_datetime() (in module cyclops.data.slicer)": [[14, "cyclops.data.slicer.is_datetime"]], "overall() (in module cyclops.data.slicer)": [[15, "cyclops.data.slicer.overall"]], "cyclops.evaluate.evaluator": [[16, "module-cyclops.evaluate.evaluator"]], "evaluate() (in module cyclops.evaluate.evaluator)": [[17, "cyclops.evaluate.evaluator.evaluate"]], "cyclops.evaluate.fairness.config": [[18, "module-cyclops.evaluate.fairness.config"]], "fairnessconfig (class in cyclops.evaluate.fairness.config)": [[19, "cyclops.evaluate.fairness.config.FairnessConfig"]], "cyclops.evaluate.fairness.evaluator": [[20, "module-cyclops.evaluate.fairness.evaluator"]], "evaluate_fairness() (in module cyclops.evaluate.fairness.evaluator)": [[21, "cyclops.evaluate.fairness.evaluator.evaluate_fairness"]], "warn_too_many_unique_values() (in module cyclops.evaluate.fairness.evaluator)": [[22, "cyclops.evaluate.fairness.evaluator.warn_too_many_unique_values"]], "cyclops.evaluate.metrics.accuracy": [[23, "module-cyclops.evaluate.metrics.accuracy"]], "accuracy (class in cyclops.evaluate.metrics.accuracy)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy"]], "__add__() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.__add__"]], "__call__() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.__call__"]], "__init__() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.__init__"]], "__mul__() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.__mul__"]], "add_state() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.add_state"]], "clone() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.clone"]], "compute() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.compute"]], "reset_state() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.reset_state"]], "update_state() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.update_state"]], "binaryaccuracy (class in cyclops.evaluate.metrics.accuracy)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy"]], "__add__() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.__add__"]], "__call__() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.__call__"]], "__init__() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.__init__"]], "__mul__() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.__mul__"]], "add_state() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.add_state"]], "clone() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.clone"]], "compute() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.compute"]], "reset_state() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.reset_state"]], "update_state() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.update_state"]], "multiclassaccuracy (class in cyclops.evaluate.metrics.accuracy)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy"]], "__add__() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.__add__"]], "__call__() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.__call__"]], "__init__() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.__init__"]], "__mul__() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.__mul__"]], "add_state() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.add_state"]], "clone() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.clone"]], "compute() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.compute"]], "reset_state() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.reset_state"]], "update_state() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.update_state"]], "multilabelaccuracy (class in cyclops.evaluate.metrics.accuracy)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy"]], "__add__() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.__add__"]], "__call__() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.__call__"]], "__init__() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.__init__"]], "__mul__() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.__mul__"]], "add_state() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.add_state"]], "clone() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.clone"]], "compute() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.compute"]], "reset_state() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.reset_state"]], "update_state() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.update_state"]], "cyclops.evaluate.metrics.auroc": [[28, "module-cyclops.evaluate.metrics.auroc"]], "auroc (class in cyclops.evaluate.metrics.auroc)": [[29, "cyclops.evaluate.metrics.auroc.AUROC"]], "__add__() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.__add__"]], "__call__() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.__call__"]], "__init__() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.__init__"]], "__mul__() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.__mul__"]], "add_state() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.add_state"]], "clone() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.clone"]], "compute() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.compute"]], "reset_state() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.reset_state"]], "update_state() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.update_state"]], "binaryauroc (class in cyclops.evaluate.metrics.auroc)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC"]], "__add__() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.__add__"]], "__call__() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.__call__"]], "__init__() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.__init__"]], "__mul__() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.__mul__"]], "add_state() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.add_state"]], "clone() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.clone"]], "compute() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.compute"]], "reset_state() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.reset_state"]], "update_state() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.update_state"]], "multiclassauroc (class in cyclops.evaluate.metrics.auroc)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC"]], "__add__() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.__add__"]], "__call__() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.__call__"]], "__init__() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.__init__"]], "__mul__() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.__mul__"]], "add_state() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.add_state"]], "clone() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.clone"]], "compute() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.compute"]], "reset_state() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.reset_state"]], "update_state() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.update_state"]], "multilabelauroc (class in cyclops.evaluate.metrics.auroc)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC"]], "__add__() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.__add__"]], "__call__() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.__call__"]], "__init__() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.__init__"]], "__mul__() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.__mul__"]], "add_state() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.add_state"]], "clone() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.clone"]], "compute() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.compute"]], "reset_state() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.reset_state"]], "update_state() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.update_state"]], "cyclops.evaluate.metrics.f_beta": [[33, "module-cyclops.evaluate.metrics.f_beta"]], "binaryf1score (class in cyclops.evaluate.metrics.f_beta)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score"]], "__add__() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.__add__"]], "__call__() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.__call__"]], "__init__() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.__init__"]], "__mul__() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.__mul__"]], "add_state() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.add_state"]], "clone() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.clone"]], "compute() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.compute"]], "reset_state() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.reset_state"]], "update_state() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.update_state"]], "binaryfbetascore (class in cyclops.evaluate.metrics.f_beta)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore"]], "__add__() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.__add__"]], "__call__() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.__call__"]], "__init__() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.__init__"]], "__mul__() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.__mul__"]], "add_state() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.add_state"]], "clone() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.clone"]], "compute() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.compute"]], "reset_state() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.reset_state"]], "update_state() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.update_state"]], "f1score (class in cyclops.evaluate.metrics.f_beta)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score"]], "__add__() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.__add__"]], "__call__() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.__call__"]], "__init__() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.__init__"]], "__mul__() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.__mul__"]], "add_state() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.add_state"]], "clone() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.clone"]], "compute() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.compute"]], "reset_state() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.reset_state"]], "update_state() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.update_state"]], "fbetascore (class in cyclops.evaluate.metrics.f_beta)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore"]], "__add__() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.__add__"]], "__call__() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.__call__"]], "__init__() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.__init__"]], "__mul__() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.__mul__"]], "add_state() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.add_state"]], "clone() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.clone"]], "compute() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.compute"]], "reset_state() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.reset_state"]], "update_state() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.update_state"]], "multiclassf1score (class in cyclops.evaluate.metrics.f_beta)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score"]], "__add__() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.__add__"]], "__call__() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.__call__"]], "__init__() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.__init__"]], "__mul__() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.__mul__"]], "add_state() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.add_state"]], "clone() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.clone"]], "compute() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.compute"]], "reset_state() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.reset_state"]], "update_state() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.update_state"]], "multiclassfbetascore (class in cyclops.evaluate.metrics.f_beta)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore"]], "__add__() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.__add__"]], "__call__() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.__call__"]], "__init__() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.__init__"]], "__mul__() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.__mul__"]], "add_state() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.add_state"]], "clone() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.clone"]], "compute() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.compute"]], "reset_state() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.reset_state"]], "update_state() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.update_state"]], "multilabelf1score (class in cyclops.evaluate.metrics.f_beta)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score"]], "__add__() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.__add__"]], "__call__() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.__call__"]], "__init__() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.__init__"]], "__mul__() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.__mul__"]], "add_state() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.add_state"]], "clone() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.clone"]], "compute() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.compute"]], "reset_state() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.reset_state"]], "update_state() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.update_state"]], "multilabelfbetascore (class in cyclops.evaluate.metrics.f_beta)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore"]], "__add__() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.__add__"]], "__call__() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.__call__"]], "__init__() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.__init__"]], "__mul__() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.__mul__"]], "add_state() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.add_state"]], "clone() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.clone"]], "compute() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.compute"]], "reset_state() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.reset_state"]], "update_state() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.update_state"]], "cyclops.evaluate.metrics.factory": [[42, "module-cyclops.evaluate.metrics.factory"]], "create_metric() (in module cyclops.evaluate.metrics.factory)": [[43, "cyclops.evaluate.metrics.factory.create_metric"]], "cyclops.evaluate.metrics.functional.accuracy": [[44, "module-cyclops.evaluate.metrics.functional.accuracy"]], "cyclops.evaluate.metrics.functional.auroc": [[45, "module-cyclops.evaluate.metrics.functional.auroc"]], "cyclops.evaluate.metrics.functional.f_beta": [[46, "module-cyclops.evaluate.metrics.functional.f_beta"]], "binary_f1_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[47, "cyclops.evaluate.metrics.functional.f_beta.binary_f1_score"]], "binary_fbeta_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[48, "cyclops.evaluate.metrics.functional.f_beta.binary_fbeta_score"]], "f1_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[49, "cyclops.evaluate.metrics.functional.f_beta.f1_score"]], "fbeta_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[50, "cyclops.evaluate.metrics.functional.f_beta.fbeta_score"]], "multiclass_f1_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[51, "cyclops.evaluate.metrics.functional.f_beta.multiclass_f1_score"]], "multiclass_fbeta_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[52, "cyclops.evaluate.metrics.functional.f_beta.multiclass_fbeta_score"]], "multilabel_f1_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[53, "cyclops.evaluate.metrics.functional.f_beta.multilabel_f1_score"]], "multilabel_fbeta_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[54, "cyclops.evaluate.metrics.functional.f_beta.multilabel_fbeta_score"]], "cyclops.evaluate.metrics.functional.precision_recall": [[55, "module-cyclops.evaluate.metrics.functional.precision_recall"]], "binary_precision() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[56, "cyclops.evaluate.metrics.functional.precision_recall.binary_precision"]], "binary_recall() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[57, "cyclops.evaluate.metrics.functional.precision_recall.binary_recall"]], "multiclass_precision() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[58, "cyclops.evaluate.metrics.functional.precision_recall.multiclass_precision"]], "multiclass_recall() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[59, "cyclops.evaluate.metrics.functional.precision_recall.multiclass_recall"]], "multilabel_precision() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[60, "cyclops.evaluate.metrics.functional.precision_recall.multilabel_precision"]], "multilabel_recall() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[61, "cyclops.evaluate.metrics.functional.precision_recall.multilabel_recall"]], "precision() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[62, "cyclops.evaluate.metrics.functional.precision_recall.precision"]], "recall() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[63, "cyclops.evaluate.metrics.functional.precision_recall.recall"]], "cyclops.evaluate.metrics.functional.precision_recall_curve": [[64, "module-cyclops.evaluate.metrics.functional.precision_recall_curve"]], "cyclops.evaluate.metrics.functional.roc": [[65, "module-cyclops.evaluate.metrics.functional.roc"]], "binary_roc_curve() (in module cyclops.evaluate.metrics.functional.roc)": [[66, "cyclops.evaluate.metrics.functional.roc.binary_roc_curve"]], "multiclass_roc_curve() (in module cyclops.evaluate.metrics.functional.roc)": [[67, "cyclops.evaluate.metrics.functional.roc.multiclass_roc_curve"]], "multilabel_roc_curve() (in module cyclops.evaluate.metrics.functional.roc)": [[68, "cyclops.evaluate.metrics.functional.roc.multilabel_roc_curve"]], "roc_curve() (in module cyclops.evaluate.metrics.functional.roc)": [[69, "cyclops.evaluate.metrics.functional.roc.roc_curve"]], "cyclops.evaluate.metrics.functional.sensitivity": [[70, "module-cyclops.evaluate.metrics.functional.sensitivity"]], "cyclops.evaluate.metrics.functional.specificity": [[71, "module-cyclops.evaluate.metrics.functional.specificity"]], "cyclops.evaluate.metrics.functional.stat_scores": [[72, "module-cyclops.evaluate.metrics.functional.stat_scores"]], "cyclops.evaluate.metrics.metric": [[73, "module-cyclops.evaluate.metrics.metric"]], "metric (class in cyclops.evaluate.metrics.metric)": [[74, "cyclops.evaluate.metrics.metric.Metric"]], "__add__() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.__add__"]], "__call__() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.__call__"]], "__init__() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.__init__"]], "__mul__() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.__mul__"]], "add_state() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.add_state"]], "clone() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.clone"]], "compute() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.compute"]], "reset_state() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.reset_state"]], "update_state() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.update_state"]], "metriccollection (class in cyclops.evaluate.metrics.metric)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection"]], "__call__() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.__call__"]], "__init__() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.__init__"]], "add_metrics() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.add_metrics"]], "clear() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.clear"]], "clone() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.clone"]], "compute() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.compute"]], "get() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.get"]], "items() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.items"]], "keys() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.keys"]], "pop() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.pop"]], "popitem() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.popitem"]], "reset_state() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.reset_state"]], "setdefault() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.setdefault"]], "update() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.update"]], "update_state() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.update_state"]], "values() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.values"]], "operatormetric (class in cyclops.evaluate.metrics.metric)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric"]], "__add__() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.__add__"]], "__call__() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.__call__"]], "__init__() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.__init__"]], "__mul__() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.__mul__"]], "add_state() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.add_state"]], "clone() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.clone"]], "compute() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.compute"]], "reset_state() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.reset_state"]], "update_state() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.update_state"]], "cyclops.evaluate.metrics.precision_recall": [[77, "module-cyclops.evaluate.metrics.precision_recall"]], "binaryprecision (class in cyclops.evaluate.metrics.precision_recall)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision"]], "__add__() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.__add__"]], "__call__() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.__call__"]], "__init__() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.__init__"]], "__mul__() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.__mul__"]], "add_state() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.add_state"]], "clone() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.clone"]], "compute() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.compute"]], "reset_state() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.reset_state"]], "update_state() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.update_state"]], "binaryrecall (class in cyclops.evaluate.metrics.precision_recall)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall"]], "__add__() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.__add__"]], "__call__() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.__call__"]], "__init__() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.__init__"]], "__mul__() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.__mul__"]], "add_state() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.add_state"]], "clone() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.clone"]], "compute() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.compute"]], "reset_state() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.reset_state"]], "update_state() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.update_state"]], "multiclassprecision (class in cyclops.evaluate.metrics.precision_recall)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision"]], "__add__() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.__add__"]], "__call__() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.__call__"]], "__init__() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.__init__"]], "__mul__() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.__mul__"]], "add_state() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.add_state"]], "clone() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.clone"]], "compute() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.compute"]], "reset_state() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.reset_state"]], "update_state() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.update_state"]], "multiclassrecall (class in cyclops.evaluate.metrics.precision_recall)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall"]], "__add__() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.__add__"]], "__call__() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.__call__"]], "__init__() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.__init__"]], "__mul__() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.__mul__"]], "add_state() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.add_state"]], "clone() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.clone"]], "compute() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.compute"]], "reset_state() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.reset_state"]], "update_state() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.update_state"]], "multilabelprecision (class in cyclops.evaluate.metrics.precision_recall)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision"]], "__add__() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.__add__"]], "__call__() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.__call__"]], "__init__() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.__init__"]], "__mul__() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.__mul__"]], "add_state() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.add_state"]], "clone() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.clone"]], "compute() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.compute"]], "reset_state() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.reset_state"]], "update_state() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.update_state"]], "multilabelrecall (class in cyclops.evaluate.metrics.precision_recall)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall"]], "__add__() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.__add__"]], "__call__() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.__call__"]], "__init__() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.__init__"]], "__mul__() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.__mul__"]], "add_state() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.add_state"]], "clone() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.clone"]], "compute() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.compute"]], "reset_state() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.reset_state"]], "update_state() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.update_state"]], "precision (class in cyclops.evaluate.metrics.precision_recall)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision"]], "__add__() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.__add__"]], "__call__() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.__call__"]], "__init__() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.__init__"]], "__mul__() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.__mul__"]], "add_state() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.add_state"]], "clone() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.clone"]], "compute() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.compute"]], "reset_state() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.reset_state"]], "update_state() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.update_state"]], "recall (class in cyclops.evaluate.metrics.precision_recall)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall"]], "__add__() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.__add__"]], "__call__() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.__call__"]], "__init__() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.__init__"]], "__mul__() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.__mul__"]], "add_state() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.add_state"]], "clone() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.clone"]], "compute() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.compute"]], "reset_state() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.reset_state"]], "update_state() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.update_state"]], "cyclops.evaluate.metrics.precision_recall_curve": [[86, "module-cyclops.evaluate.metrics.precision_recall_curve"]], "binaryprecisionrecallcurve (class in cyclops.evaluate.metrics.precision_recall_curve)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve"]], "__add__() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.__add__"]], "__call__() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.__call__"]], "__init__() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.__init__"]], "__mul__() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.__mul__"]], "add_state() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.add_state"]], "clone() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.clone"]], "compute() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.compute"]], "reset_state() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.reset_state"]], "update_state() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.update_state"]], "multiclassprecisionrecallcurve (class in cyclops.evaluate.metrics.precision_recall_curve)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve"]], "__add__() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.__add__"]], "__call__() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.__call__"]], "__init__() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.__init__"]], "__mul__() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.__mul__"]], "add_state() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.add_state"]], "clone() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.clone"]], "compute() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.compute"]], "reset_state() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.reset_state"]], "update_state() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.update_state"]], "multilabelprecisionrecallcurve (class in cyclops.evaluate.metrics.precision_recall_curve)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve"]], "__add__() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.__add__"]], "__call__() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.__call__"]], "__init__() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.__init__"]], "__mul__() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.__mul__"]], "add_state() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.add_state"]], "clone() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.clone"]], "compute() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.compute"]], "reset_state() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.reset_state"]], "update_state() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.update_state"]], "precisionrecallcurve (class in cyclops.evaluate.metrics.precision_recall_curve)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve"]], "__add__() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.__add__"]], "__call__() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.__call__"]], "__init__() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.__init__"]], "__mul__() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.__mul__"]], "add_state() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.add_state"]], "clone() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.clone"]], "compute() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.compute"]], "reset_state() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.reset_state"]], "update_state() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.update_state"]], "cyclops.evaluate.metrics.roc": [[91, "module-cyclops.evaluate.metrics.roc"]], "binaryroccurve (class in cyclops.evaluate.metrics.roc)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve"]], "__add__() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.__add__"]], "__call__() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.__call__"]], "__init__() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.__init__"]], "__mul__() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.__mul__"]], "add_state() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.add_state"]], "clone() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.clone"]], "compute() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.compute"]], "reset_state() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.reset_state"]], "update_state() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.update_state"]], "multiclassroccurve (class in cyclops.evaluate.metrics.roc)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve"]], "__add__() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.__add__"]], "__call__() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.__call__"]], "__init__() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.__init__"]], "__mul__() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.__mul__"]], "add_state() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.add_state"]], "clone() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.clone"]], "compute() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.compute"]], "reset_state() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.reset_state"]], "update_state() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.update_state"]], "multilabelroccurve (class in cyclops.evaluate.metrics.roc)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve"]], "__add__() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.__add__"]], "__call__() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.__call__"]], "__init__() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.__init__"]], "__mul__() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.__mul__"]], "add_state() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.add_state"]], "clone() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.clone"]], "compute() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.compute"]], "reset_state() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.reset_state"]], "update_state() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.update_state"]], "roccurve (class in cyclops.evaluate.metrics.roc)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve"]], "__add__() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.__add__"]], "__call__() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.__call__"]], "__init__() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.__init__"]], "__mul__() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.__mul__"]], "add_state() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.add_state"]], "clone() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.clone"]], "compute() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.compute"]], "reset_state() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.reset_state"]], "update_state() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.update_state"]], "cyclops.evaluate.metrics.sensitivity": [[96, "module-cyclops.evaluate.metrics.sensitivity"]], "binarysensitivity (class in cyclops.evaluate.metrics.sensitivity)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity"]], "__add__() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.__add__"]], "__call__() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.__call__"]], "__init__() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.__init__"]], "__mul__() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.__mul__"]], "add_state() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.add_state"]], "clone() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.clone"]], "compute() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.compute"]], "reset_state() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.reset_state"]], "update_state() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.update_state"]], "multiclasssensitivity (class in cyclops.evaluate.metrics.sensitivity)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity"]], "__add__() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.__add__"]], "__call__() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.__call__"]], "__init__() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.__init__"]], "__mul__() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.__mul__"]], "add_state() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.add_state"]], "clone() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.clone"]], "compute() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.compute"]], "reset_state() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.reset_state"]], "update_state() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.update_state"]], "multilabelsensitivity (class in cyclops.evaluate.metrics.sensitivity)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity"]], "__add__() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.__add__"]], "__call__() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.__call__"]], "__init__() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.__init__"]], "__mul__() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.__mul__"]], "add_state() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.add_state"]], "clone() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.clone"]], "compute() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.compute"]], "reset_state() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.reset_state"]], "update_state() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.update_state"]], "sensitivity (class in cyclops.evaluate.metrics.sensitivity)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity"]], "__add__() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.__add__"]], "__call__() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.__call__"]], "__init__() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.__init__"]], "__mul__() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.__mul__"]], "add_state() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.add_state"]], "clone() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.clone"]], "compute() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.compute"]], "reset_state() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.reset_state"]], "update_state() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.update_state"]], "cyclops.evaluate.metrics.specificity": [[101, "module-cyclops.evaluate.metrics.specificity"]], "binaryspecificity (class in cyclops.evaluate.metrics.specificity)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity"]], "__add__() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.__add__"]], "__call__() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.__call__"]], "__init__() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.__init__"]], "__mul__() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.__mul__"]], "add_state() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.add_state"]], "clone() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.clone"]], "compute() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.compute"]], "reset_state() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.reset_state"]], "update_state() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.update_state"]], "multiclassspecificity (class in cyclops.evaluate.metrics.specificity)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity"]], "__add__() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.__add__"]], "__call__() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.__call__"]], "__init__() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.__init__"]], "__mul__() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.__mul__"]], "add_state() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.add_state"]], "clone() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.clone"]], "compute() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.compute"]], "reset_state() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.reset_state"]], "update_state() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.update_state"]], "multilabelspecificity (class in cyclops.evaluate.metrics.specificity)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity"]], "__add__() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.__add__"]], "__call__() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.__call__"]], "__init__() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.__init__"]], "__mul__() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.__mul__"]], "add_state() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.add_state"]], "clone() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.clone"]], "compute() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.compute"]], "reset_state() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.reset_state"]], "update_state() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.update_state"]], "specificity (class in cyclops.evaluate.metrics.specificity)": [[105, "cyclops.evaluate.metrics.specificity.Specificity"]], "__add__() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.__add__"]], "__call__() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.__call__"]], "__init__() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.__init__"]], "__mul__() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.__mul__"]], "add_state() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.add_state"]], "clone() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.clone"]], "compute() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.compute"]], "reset_state() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.reset_state"]], "update_state() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.update_state"]], "cyclops.evaluate.metrics.stat_scores": [[106, "module-cyclops.evaluate.metrics.stat_scores"]], "binarystatscores (class in cyclops.evaluate.metrics.stat_scores)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores"]], "__add__() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.__add__"]], "__call__() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.__call__"]], "__init__() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.__init__"]], "__mul__() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.__mul__"]], "add_state() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.add_state"]], "clone() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.clone"]], "compute() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.compute"]], "reset_state() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.reset_state"]], "update_state() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.update_state"]], "multiclassstatscores (class in cyclops.evaluate.metrics.stat_scores)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores"]], "__add__() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.__add__"]], "__call__() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.__call__"]], "__init__() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.__init__"]], "__mul__() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.__mul__"]], "add_state() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.add_state"]], "clone() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.clone"]], "compute() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.compute"]], "reset_state() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.reset_state"]], "update_state() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.update_state"]], "multilabelstatscores (class in cyclops.evaluate.metrics.stat_scores)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores"]], "__add__() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.__add__"]], "__call__() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.__call__"]], "__init__() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.__init__"]], "__mul__() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.__mul__"]], "add_state() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.add_state"]], "clone() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.clone"]], "compute() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.compute"]], "reset_state() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.reset_state"]], "update_state() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.update_state"]], "statscores (class in cyclops.evaluate.metrics.stat_scores)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores"]], "__add__() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.__add__"]], "__call__() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.__call__"]], "__init__() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.__init__"]], "__mul__() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.__mul__"]], "add_state() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.add_state"]], "clone() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.clone"]], "compute() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.compute"]], "reset_state() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.reset_state"]], "update_state() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.update_state"]], "cyclops.monitor.clinical_applicator": [[111, "module-cyclops.monitor.clinical_applicator"]], "clinicalshiftapplicator (class in cyclops.monitor.clinical_applicator)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator"]], "age() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.age"]], "apply_shift() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.apply_shift"]], "custom() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.custom"]], "hospital_type() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.hospital_type"]], "month() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.month"]], "sex() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.sex"]], "time() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.time"]], "cyclops.monitor.synthetic_applicator": [[113, "module-cyclops.monitor.synthetic_applicator"]], "syntheticshiftapplicator (class in cyclops.monitor.synthetic_applicator)": [[114, "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator"]], "apply_shift() (syntheticshiftapplicator method)": [[114, "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator.apply_shift"]], "binary_noise_shift() (in module cyclops.monitor.synthetic_applicator)": [[115, "cyclops.monitor.synthetic_applicator.binary_noise_shift"]], "feature_association_shift() (in module cyclops.monitor.synthetic_applicator)": [[116, "cyclops.monitor.synthetic_applicator.feature_association_shift"]], "feature_swap_shift() (in module cyclops.monitor.synthetic_applicator)": [[117, "cyclops.monitor.synthetic_applicator.feature_swap_shift"]], "gaussian_noise_shift() (in module cyclops.monitor.synthetic_applicator)": [[118, "cyclops.monitor.synthetic_applicator.gaussian_noise_shift"]], "knockout_shift() (in module cyclops.monitor.synthetic_applicator)": [[119, "cyclops.monitor.synthetic_applicator.knockout_shift"]], "cyclops.report.report": [[120, "module-cyclops.report.report"]], "modelcardreport (class in cyclops.report.report)": [[121, "cyclops.report.report.ModelCardReport"]], "export() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.export"]], "from_json_file() (modelcardreport class method)": [[121, "cyclops.report.report.ModelCardReport.from_json_file"]], "log_citation() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_citation"]], "log_dataset() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_dataset"]], "log_descriptor() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_descriptor"]], "log_fairness_assessment() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_fairness_assessment"]], "log_from_dict() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_from_dict"]], "log_image() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_image"]], "log_license() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_license"]], "log_model_parameters() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_model_parameters"]], "log_owner() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_owner"]], "log_performance_metrics() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_performance_metrics"]], "log_plotly_figure() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_plotly_figure"]], "log_quantitative_analysis() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_quantitative_analysis"]], "log_reference() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_reference"]], "log_regulation() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_regulation"]], "log_risk() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_risk"]], "log_use_case() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_use_case"]], "log_user() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_user"]], "log_version() (modelcardreport method)": [[121, "cyclops.report.report.ModelCardReport.log_version"]], "cyclops.tasks.cxr_classification": [[122, "module-cyclops.tasks.cxr_classification"]], "cxrclassificationtask (class in cyclops.tasks.cxr_classification)": [[123, "cyclops.tasks.cxr_classification.CXRClassificationTask"]], "__init__() (cxrclassificationtask method)": [[123, "cyclops.tasks.cxr_classification.CXRClassificationTask.__init__"]], "add_model() (cxrclassificationtask method)": [[123, "cyclops.tasks.cxr_classification.CXRClassificationTask.add_model"]], "data_type (cxrclassificationtask property)": [[123, "cyclops.tasks.cxr_classification.CXRClassificationTask.data_type"]], "evaluate() (cxrclassificationtask method)": [[123, "cyclops.tasks.cxr_classification.CXRClassificationTask.evaluate"]], "get_model() (cxrclassificationtask method)": [[123, "cyclops.tasks.cxr_classification.CXRClassificationTask.get_model"]], "list_models() (cxrclassificationtask method)": [[123, "cyclops.tasks.cxr_classification.CXRClassificationTask.list_models"]], "models_count (cxrclassificationtask property)": [[123, "cyclops.tasks.cxr_classification.CXRClassificationTask.models_count"]], "predict() (cxrclassificationtask method)": [[123, "cyclops.tasks.cxr_classification.CXRClassificationTask.predict"]], "task_type (cxrclassificationtask property)": [[123, "cyclops.tasks.cxr_classification.CXRClassificationTask.task_type"]], "cyclops.tasks.mortality_prediction": [[124, "module-cyclops.tasks.mortality_prediction"]], "mortalitypredictiontask (class in cyclops.tasks.mortality_prediction)": [[125, "cyclops.tasks.mortality_prediction.MortalityPredictionTask"]], "__init__() (mortalitypredictiontask method)": [[125, "cyclops.tasks.mortality_prediction.MortalityPredictionTask.__init__"]], "add_model() (mortalitypredictiontask method)": [[125, "cyclops.tasks.mortality_prediction.MortalityPredictionTask.add_model"]], "data_type (mortalitypredictiontask property)": [[125, "cyclops.tasks.mortality_prediction.MortalityPredictionTask.data_type"]], "evaluate() (mortalitypredictiontask method)": [[125, "cyclops.tasks.mortality_prediction.MortalityPredictionTask.evaluate"]], "get_model() (mortalitypredictiontask method)": [[125, "cyclops.tasks.mortality_prediction.MortalityPredictionTask.get_model"]], "list_models() (mortalitypredictiontask method)": [[125, "cyclops.tasks.mortality_prediction.MortalityPredictionTask.list_models"]], "list_models_params() (mortalitypredictiontask method)": [[125, "cyclops.tasks.mortality_prediction.MortalityPredictionTask.list_models_params"]], "load_model() (mortalitypredictiontask method)": [[125, "cyclops.tasks.mortality_prediction.MortalityPredictionTask.load_model"]], "models_count (mortalitypredictiontask property)": [[125, "cyclops.tasks.mortality_prediction.MortalityPredictionTask.models_count"]], "predict() (mortalitypredictiontask method)": [[125, "cyclops.tasks.mortality_prediction.MortalityPredictionTask.predict"]], "save_model() (mortalitypredictiontask method)": [[125, "cyclops.tasks.mortality_prediction.MortalityPredictionTask.save_model"]], "task_type (mortalitypredictiontask property)": [[125, "cyclops.tasks.mortality_prediction.MortalityPredictionTask.task_type"]], "train() (mortalitypredictiontask method)": [[125, "cyclops.tasks.mortality_prediction.MortalityPredictionTask.train"]], "cyclops.data": [[126, "module-cyclops.data"]], "cyclops.data.features": [[126, "module-cyclops.data.features"]], "cyclops.evaluate": [[127, "module-cyclops.evaluate"]], "cyclops.evaluate.fairness": [[127, "module-cyclops.evaluate.fairness"]], "cyclops.evaluate.metrics": [[127, "module-cyclops.evaluate.metrics"]], "cyclops.evaluate.metrics.functional": [[127, "module-cyclops.evaluate.metrics.functional"]], "cyclops.monitor": [[128, "module-cyclops.monitor"]], "cyclops.report": [[129, "module-cyclops.report"]], "cyclops.tasks": [[130, "module-cyclops.tasks"]]}}) \ No newline at end of file diff --git a/api/tutorials/kaggle/heart_failure_prediction.html b/api/tutorials/kaggle/heart_failure_prediction.html index 1490ebf08..2cb628226 100644 --- a/api/tutorials/kaggle/heart_failure_prediction.html +++ b/api/tutorials/kaggle/heart_failure_prediction.html @@ -548,7 +548,7 @@

    Data Loading
    -2023-11-07 13:00:22,223 INFO cyclops.utils.file - Loading DataFrame from ./data/heart.csv
    +2023-11-07 17:09:48,018 INFO cyclops.utils.file - Loading DataFrame from ./data/heart.csv
     
    -
    + + + + + +
    + +
    + + + + +
    +

    How is your model doing?


    +

    A quick glance of your most important metrics.

    + + + + + + + + + + + + + + + + + + + + + + + +
    +
    + +
    + Accuracy +
    + The proportion of all instances that are correctly predicted. +
    +
    +
    +
    +
    + + 0.58 + + + + + + + + 0.7
    minimum
    threshold
    +
    + + +
    + +
    + +
    + + +
    +
    +
    + + + + + +
    +
    + +
    + Precision +
    + The proportion of predicted positive instances that are correctly predicted. +
    +
    +
    +
    +
    + + 0.97 + + + + + + + + 0.7
    minimum
    threshold
    +
    + + +
    + +
    + +
    + + +
    +
    +
    + + + + + +
    +
    + +
    + Recall +
    + The proportion of actual positive instances that are correctly predicted. Also known as recall or true positive rate. +
    +
    +
    +
    +
    + + 0.98 + + + + + + + + 0.7
    minimum
    threshold
    +
    + + +
    + +
    + +
    + + +
    +
    +
    + + + + + +
    +
    + +
    + F1 Score +
    + The harmonic mean of precision and recall. +
    +
    +
    +
    +
    + + 0.8 + + + + + + + + 0.7
    minimum
    threshold
    +
    + + +
    + +
    + +
    + + +
    +
    +
    + + + + + +
    +
    + +
    + AUROC +
    + The area under the receiver operating characteristic curve (AUROC) is a measure of the performance of a binary classification model. +
    +
    +
    +
    +
    + + 0.81 + + + + + + + + 0.7
    minimum
    threshold
    +
    + + +
    + +
    + +
    + + +
    +
    +
    + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +

    How is your model doing over time?


    +

    See how your model is performing over several metrics and subgroups over time.

    +
    +
    +

    Metrics

    +
    + + +
    + +
    + The proportion of all instances that are correctly predicted. +
    +
    +
    + + + + + +
    + +
    + The proportion of predicted positive instances that are correctly predicted. +
    +
    +
    + + + + + +
    + +
    + The proportion of actual positive instances that are correctly predicted. Also known as recall or true positive rate. +
    +
    +
    + + + + + +
    + +
    + The harmonic mean of precision and recall. +
    +
    +
    + + + + + +
    + +
    + The area under the receiver operating characteristic curve (AUROC) is a measure of the performance of a binary classification model. +
    +
    +
    + + +
    +
    + +
    +

    Age

    +
    + + + + + + + + + +
    +
    + +
    +
    +
    + + +
    +
    +
    + + + + + + + + + +
    +

    Datasets

    + + + + + + +
    +

    Description

    + This dataset was created by combining different datasets + already available independently but not combined before. In this dataset, + 5 heart datasets are combined over 11 common features. Every dataset used + can be found under the Index of heart disease datasets from UCI + Machine Learning Repository on the following link: + https://archive.ics.uci.edu/ml/machine-learning-databases/heart-disease/. +
    + + + + + + + + + + + + + + + + + + + + +
    +

    Version

    +
      + +
      + + +
    • + + + + + Version 1 + + +
      + + + + + + +
    • + + +
      + +
    +
    + + + + + +
    +

    Features

    + +
      + +
      + + +
    • + Age +
    • + + +
      + +
    + +
      + +
      + + +
    • + ChestPainType +
    • + + +
      + +
    + +
      + +
      + + +
    • + Cholesterol +
    • + + +
      + +
    + +
      + +
      + + +
    • + ExerciseAngina +
    • + + +
      + +
    + +
      + +
      + + +
    • + FastingBS +
    • + + +
      + +
    + +
      + +
      + + +
    • + MaxHR +
    • + + +
      + +
    + +
      + +
      + + +
    • + Oldpeak +
    • + + +
      + +
    + +
      + +
      + + +
    • + RestingBP +
    • + + +
      + +
    + +
      + +
      + + +
    • + RestingECG +
    • + + +
      + +
    + +
      + +
      + + +
    • + ST_Slope +
    • + + +
      + +
    + +
      + +
      + + +
    • + Sex +
    • + + +
      + +
    + +
    + + + + + + + + + + + + + + + + + + + + +
    +

    Sensitive Data

    +
      + +
      + + +
    • + + + + + + + Sensitive Data Used: ['Sex', 'Age'] + + +
      + + + + + + Justification: Demographic information like age and gender often have a strong correlation with health outcomes. For example, older patients are more likely to have a higher risk of heart disease. + + +
      + + +
    • + + +
      + +
    +
    + + + + + +
    +

    Reference

    + +
    + + + + + +
    +

    Citation

    +
      + +
      + +
    • + + + @misc{fedesoriano, + title={Heart Failure Prediction Dataset.}, + author={Fedesoriano, F}, + year={2021}, + publisher={Kaggle} +} + + +
    • + +
      + +
    +
    + + + + + +
    +

    License

    +
      + +
      + + +
    • + + + + + Identifier: CC0-1.0 + + +
      + + + + + + +
    • + + +
      + +
    +
    + + + + + + + +
    +

    Graphics

    + +
    + + +
    + + + +
    + +
    + +
    + + + +
    + +
    + +
    + + + +
    + +
    + +
    + + +
    + + +
    + +
    + + +
    + + + + + + + + +
    +

    Quantitative Analysis

    + + + + + + + + + + + + + + + + + + + + + + + + +
    +
    + +
    + Accuracy +
    + The proportion of all instances that are correctly predicted. +
    +
    +
    +
    +
    + + 0.58 + + + + + + + + 0.7
    minimum
    threshold
    +
    + + +
    + +
    + +
    + + +
    +
    +
    + + + + + +
    +
    + +
    + Precision +
    + The proportion of predicted positive instances that are correctly predicted. +
    +
    +
    +
    +
    + + 0.97 + + + + + + + + 0.7
    minimum
    threshold
    +
    + + +
    + +
    + +
    + + +
    +
    +
    + + + + + +
    +
    + +
    + Recall +
    + The proportion of actual positive instances that are correctly predicted. Also known as recall or true positive rate. +
    +
    +
    +
    +
    + + 0.98 + + + + + + + + 0.7
    minimum
    threshold
    +
    + + +
    + +
    + +
    + + +
    +
    +
    + + + + + +
    +
    + +
    + F1 Score +
    + The harmonic mean of precision and recall. +
    +
    +
    +
    +
    + + 0.8 + + + + + + + + 0.7
    minimum
    threshold
    +
    + + +
    + +
    + +
    + + +
    +
    +
    + + + + + +
    +
    + +
    + AUROC +
    + The area under the receiver operating characteristic curve (AUROC) is a measure of the performance of a binary classification model. +
    +
    +
    +
    +
    + + 0.81 + + + + + + + + 0.7
    minimum
    threshold
    +
    + + +
    + +
    + +
    + + +
    +
    +
    + + + + +
    + + + + + + + + + + + + + + +
    +

    Fairness Analysis

    + + + + + + + + + +
    +

    Graphics

    +
      + +
      + + +
      + + + +
      + +
      + +
      + + +
      + + +
      + +
    +
    + + + + +
    + + + + + + + + +
    +

    Model Details

    + + + + + +
    +

    Description

    + The model was trained on the Kaggle Heart Failure Prediction Dataset to predict risk of heart failure. +
    + + + + + +
    +

    Version

    +
      + +
      + + +
    • + + + + + + + Date: 2023-11-07 + + +
      + + + + + Initial Release + +
      + + + + + + Version: 0.0.1 + + +
      + + +
    • + + +
      + +
    +
    + + + + + +
    +

    Owners

    + +
      + +
      + + +
    • + + + + + Name: CyclOps Team + + +
      + + + + + + Contact: vectorinstitute.github.io/cyclops/ + + +
      + + + + + + + + Email: cyclops@vectorinstitute.ai + + +
      + + +
    • + + +
      + +
    + +
    + + + + + +
    +

    Licenses

    + +
      + +
      + + +
    • + + + + + Identifier: Apache-2.0 + + +
      + + + + + + +
    • + + +
      + +
    + +
    + + + + + + + + + + +
    +

    References

    + + + +
    + + + + + + + + + + + + + + + +
    +

    Name

    + Heart Failure Prediction Model +
    + + + + + +
    + + + + + + + + +
    +

    Model Parameters

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +

    Learning_rate

    + adaptive +
    + + + + + +
    +

    Early_stopping

    + True +
    + + + + + + + + + + +
    +

    Verbose

    + 0 +
    + + + + + +
    +

    Random_state

    + 123 +
    + + + + + +
    +

    Shuffle

    + True +
    + + + + + +
    +

    Epsilon

    + 0.1 +
    + + + + + +
    +

    Validation_fraction

    + 0.1 +
    + + + + + +
    +

    Class_weight

    + balanced +
    + + + + + +
    +

    Power_t

    + 0.5 +
    + + + + + +
    +

    Tol

    + 0.001 +
    + + + + + +
    +

    Average

    + False +
    + + + + + +
    +

    Penalty

    + l2 +
    + + + + + +
    +

    N_iter_no_change

    + 5 +
    + + + + + +
    +

    Warm_start

    + False +
    + + + + + +
    +

    Loss

    + log_loss +
    + + + + + +
    +

    Alpha

    + 0.001 +
    + + + + + +
    +

    L1_ratio

    + 0.15 +
    + + + + + +
    +

    Eta0

    + 0.01 +
    + + + + + +
    +

    Fit_intercept

    + True +
    + + + + + +
    +

    Max_iter

    + 1000 +
    + + + + + +
    + + + + + + + + +
    +

    Considerations

    + + + + + +
    +

    Users

    + +
      + +
      + +
    • + + + Hospitals + + +
    • + +
      + +
    + +
      + +
      + +
    • + + + Clinicians + + +
    • + +
      + +
    + +
      + +
      + +
    • + + + ML Engineers + + +
    • + +
      + +
    + +
    + + + + + +
    +

    Use Cases

    + +
      + +
      + + +
    • + + + + Predicting risk of heart failure. + +
      + + + + + + Kind: primary + + +
      + + +
    • + + +
      + +
    + +
      + +
      + + +
    • + + + + Predicting risk of pathologies and conditions other than heart failure. + +
      + + + + + + Kind: out-of-scope + + +
      + + +
    • + + +
      + +
    + +
    + + + + + +
    +

    Fairness Assessment

    + +
      + +
      + + +
    • + + + + + Affected Group: sex, age + + +
      + + + + + + Benefits: Improved health outcomes for patients. + + +
      + + + + + + Harms: Biased predictions for patients in certain groups (e.g. older patients) may lead to worse health outcomes. + + +
      + + + + + + We will monitor the performance of the model on these groups and retrain the model if the performance drops below a certain threshold. + + +
      + + +
    • + + +
      + +
    + +
    + + + + + +
    +

    Ethical Considerations

    + +
      + +
      + + +
    • + + + + + + + The model should be continuously monitored for performance and retrained if the performance drops below a certain threshold. + + +
      + + + + + + Risk: The model may be used to make decisions that affect the health of patients. + + +
      + + +
    • + + +
      + +
    + +
    + + + + + +
    + + + + +
    + + + \ No newline at end of file diff --git a/api/tutorials/nihcxr/cxr_classification.html b/api/tutorials/nihcxr/cxr_classification.html index 38daf73f9..4f362ca73 100644 --- a/api/tutorials/nihcxr/cxr_classification.html +++ b/api/tutorials/nihcxr/cxr_classification.html @@ -504,73 +504,73 @@

    Generate Historical Reports
     Flattening the indices: 100%|████████| 1000/1000 [00:59<00:00, 16.68 examples/s]
    -Flattening the indices: 100%|████| 1000/1000 [00:00<00:00, 574719.65 examples/s]
    -Filter: 100%|████████████████████| 1000/1000 [00:00<00:00, 232848.72 examples/s]
    -Map: 100%|███████████████████████████| 400/400 [00:00<00:00, 1883.80 examples/s]
    -Filter -> Patient Gender:M: 100%|███| 400/400 [00:00<00:00, 43209.07 examples/s]
    -Filter -> Patient Gender:F: 100%|███| 400/400 [00:00<00:00, 42582.85 examples/s]
    -Filter -> overall: 100%|████████████| 400/400 [00:00<00:00, 43274.82 examples/s]
    -Filter -> Patient Age:[19 - 35]: 100%|█| 400/400 [00:00<00:00, 44368.91 examples
    -Filter -> Patient Age:[35 - 65]: 100%|█| 400/400 [00:00<00:00, 45186.29 examples
    -Filter -> Patient Age:[65 - 100]: 100%|█| 400/400 [00:00<00:00, 43544.38 example
    +Flattening the indices: 100%|████| 1000/1000 [00:00<00:00, 471641.07 examples/s]
    +Filter: 100%|████████████████████| 1000/1000 [00:00<00:00, 196123.82 examples/s]
    +Map: 100%|███████████████████████████| 400/400 [00:00<00:00, 1553.25 examples/s]
    +Filter -> Patient Gender:M: 100%|███| 400/400 [00:00<00:00, 34617.18 examples/s]
    +Filter -> Patient Gender:F: 100%|███| 400/400 [00:00<00:00, 36283.69 examples/s]
    +Filter -> overall: 100%|████████████| 400/400 [00:00<00:00, 36704.40 examples/s]
    +Filter -> Patient Age:[19 - 35]: 100%|█| 400/400 [00:00<00:00, 42325.02 examples
    +Filter -> Patient Age:[35 - 65]: 100%|█| 400/400 [00:00<00:00, 42406.33 examples
    +Filter -> Patient Age:[65 - 100]: 100%|█| 400/400 [00:00<00:00, 41329.30 example
     Filter -> Patient Age:[19 - 35]&Patient Gender:M: 100%|█| 400/400 [00:00<00:00,
     Filter -> Patient Age:[19 - 35]&Patient Gender:F: 100%|█| 400/400 [00:00<00:00,
     Filter -> Patient Age:[35 - 65]&Patient Gender:M: 100%|█| 400/400 [00:00<00:00,
     Filter -> Patient Age:[35 - 65]&Patient Gender:F: 100%|█| 400/400 [00:00<00:00,
     Filter -> Patient Age:[65 - 100]&Patient Gender:M: 100%|█| 400/400 [00:00<00:00,
     Filter -> Patient Age:[65 - 100]&Patient Gender:F: 100%|█| 400/400 [00:00<00:00,
    -Filter -> overall: 100%|████████████| 400/400 [00:00<00:00, 47416.04 examples/s]
    -Flattening the indices: 100%|████████| 1000/1000 [00:58<00:00, 17.06 examples/s]
    -Flattening the indices: 100%|████| 1000/1000 [00:00<00:00, 556126.23 examples/s]
    -Filter: 100%|████████████████████| 1000/1000 [00:00<00:00, 226266.60 examples/s]
    -Map: 100%|███████████████████████████| 396/396 [00:00<00:00, 1785.00 examples/s]
    -Filter -> Patient Gender:M: 100%|███| 396/396 [00:00<00:00, 41782.66 examples/s]
    -Filter -> Patient Gender:F: 100%|███| 396/396 [00:00<00:00, 41657.96 examples/s]
    -Filter -> overall: 100%|████████████| 396/396 [00:00<00:00, 42470.71 examples/s]
    -Filter -> Patient Age:[19 - 35]: 100%|█| 396/396 [00:00<00:00, 43107.82 examples
    -Filter -> Patient Age:[35 - 65]: 100%|█| 396/396 [00:00<00:00, 44339.15 examples
    -Filter -> Patient Age:[65 - 100]: 100%|█| 396/396 [00:00<00:00, 42220.24 example
    +Filter -> overall: 100%|████████████| 400/400 [00:00<00:00, 45408.87 examples/s]
    +Flattening the indices: 100%|████████| 1000/1000 [00:58<00:00, 16.97 examples/s]
    +Flattening the indices: 100%|████| 1000/1000 [00:00<00:00, 397639.74 examples/s]
    +Filter: 100%|████████████████████| 1000/1000 [00:00<00:00, 166328.43 examples/s]
    +Map: 100%|███████████████████████████| 396/396 [00:00<00:00, 1829.29 examples/s]
    +Filter -> Patient Gender:M: 100%|███| 396/396 [00:00<00:00, 42569.76 examples/s]
    +Filter -> Patient Gender:F: 100%|███| 396/396 [00:00<00:00, 41911.29 examples/s]
    +Filter -> overall: 100%|████████████| 396/396 [00:00<00:00, 41668.41 examples/s]
    +Filter -> Patient Age:[19 - 35]: 100%|█| 396/396 [00:00<00:00, 40855.62 examples
    +Filter -> Patient Age:[35 - 65]: 100%|█| 396/396 [00:00<00:00, 37720.45 examples
    +Filter -> Patient Age:[65 - 100]: 100%|█| 396/396 [00:00<00:00, 41795.28 example
     Filter -> Patient Age:[19 - 35]&Patient Gender:M: 100%|█| 396/396 [00:00<00:00,
     Filter -> Patient Age:[19 - 35]&Patient Gender:F: 100%|█| 396/396 [00:00<00:00,
     Filter -> Patient Age:[35 - 65]&Patient Gender:M: 100%|█| 396/396 [00:00<00:00,
     Filter -> Patient Age:[35 - 65]&Patient Gender:F: 100%|█| 396/396 [00:00<00:00,
     Filter -> Patient Age:[65 - 100]&Patient Gender:M: 100%|█| 396/396 [00:00<00:00,
     Filter -> Patient Age:[65 - 100]&Patient Gender:F: 100%|█| 396/396 [00:00<00:00,
    -Filter -> overall: 100%|████████████| 396/396 [00:00<00:00, 43116.77 examples/s]
    -Flattening the indices: 100%|████████| 1000/1000 [01:01<00:00, 16.21 examples/s]
    -Flattening the indices: 100%|████| 1000/1000 [00:00<00:00, 570808.93 examples/s]
    -Filter: 100%|████████████████████| 1000/1000 [00:00<00:00, 235595.35 examples/s]
    -Map: 100%|███████████████████████████| 383/383 [00:00<00:00, 1812.05 examples/s]
    -Filter -> Patient Gender:M: 100%|███| 383/383 [00:00<00:00, 42574.43 examples/s]
    -Filter -> Patient Gender:F: 100%|███| 383/383 [00:00<00:00, 41979.21 examples/s]
    -Filter -> overall: 100%|████████████| 383/383 [00:00<00:00, 44208.89 examples/s]
    -Filter -> Patient Age:[19 - 35]: 100%|█| 383/383 [00:00<00:00, 43326.55 examples
    -Filter -> Patient Age:[35 - 65]: 100%|█| 383/383 [00:00<00:00, 43806.23 examples
    -Filter -> Patient Age:[65 - 100]: 100%|█| 383/383 [00:00<00:00, 42846.97 example
    +Filter -> overall: 100%|████████████| 396/396 [00:00<00:00, 29059.84 examples/s]
    +Flattening the indices: 100%|████████| 1000/1000 [01:05<00:00, 15.36 examples/s]
    +Flattening the indices: 100%|████| 1000/1000 [00:00<00:00, 557382.59 examples/s]
    +Filter: 100%|████████████████████| 1000/1000 [00:00<00:00, 234031.02 examples/s]
    +Map: 100%|███████████████████████████| 383/383 [00:00<00:00, 1699.90 examples/s]
    +Filter -> Patient Gender:M: 100%|███| 383/383 [00:00<00:00, 41947.42 examples/s]
    +Filter -> Patient Gender:F: 100%|███| 383/383 [00:00<00:00, 32378.98 examples/s]
    +Filter -> overall: 100%|████████████| 383/383 [00:00<00:00, 43611.20 examples/s]
    +Filter -> Patient Age:[19 - 35]: 100%|█| 383/383 [00:00<00:00, 38869.04 examples
    +Filter -> Patient Age:[35 - 65]: 100%|█| 383/383 [00:00<00:00, 43790.71 examples
    +Filter -> Patient Age:[65 - 100]: 100%|█| 383/383 [00:00<00:00, 39049.50 example
     Filter -> Patient Age:[19 - 35]&Patient Gender:M: 100%|█| 383/383 [00:00<00:00,
     Filter -> Patient Age:[19 - 35]&Patient Gender:F: 100%|█| 383/383 [00:00<00:00,
     Filter -> Patient Age:[35 - 65]&Patient Gender:M: 100%|█| 383/383 [00:00<00:00,
     Filter -> Patient Age:[35 - 65]&Patient Gender:F: 100%|█| 383/383 [00:00<00:00,
     Filter -> Patient Age:[65 - 100]&Patient Gender:M: 100%|█| 383/383 [00:00<00:00,
     Filter -> Patient Age:[65 - 100]&Patient Gender:F: 100%|█| 383/383 [00:00<00:00,
    -Filter -> overall: 100%|████████████| 383/383 [00:00<00:00, 44972.52 examples/s]
    -Flattening the indices: 100%|████████| 1000/1000 [01:00<00:00, 16.56 examples/s]
    -Flattening the indices: 100%|████| 1000/1000 [00:00<00:00, 550144.81 examples/s]
    -Filter: 100%|████████████████████| 1000/1000 [00:00<00:00, 229447.70 examples/s]
    -Map: 100%|███████████████████████████| 411/411 [00:00<00:00, 1845.84 examples/s]
    -Filter -> Patient Gender:M: 100%|███| 411/411 [00:00<00:00, 42709.95 examples/s]
    -Filter -> Patient Gender:F: 100%|███| 411/411 [00:00<00:00, 41488.78 examples/s]
    -Filter -> overall: 100%|████████████| 411/411 [00:00<00:00, 42321.98 examples/s]
    -Filter -> Patient Age:[19 - 35]: 100%|█| 411/411 [00:00<00:00, 43213.15 examples
    -Filter -> Patient Age:[35 - 65]: 100%|█| 411/411 [00:00<00:00, 42614.92 examples
    -Filter -> Patient Age:[65 - 100]: 100%|█| 411/411 [00:00<00:00, 43044.82 example
    +Filter -> overall: 100%|████████████| 383/383 [00:00<00:00, 41690.50 examples/s]
    +Flattening the indices: 100%|████████| 1000/1000 [00:59<00:00, 16.92 examples/s]
    +Flattening the indices: 100%|████| 1000/1000 [00:00<00:00, 584734.98 examples/s]
    +Filter: 100%|████████████████████| 1000/1000 [00:00<00:00, 237060.08 examples/s]
    +Map: 100%|███████████████████████████| 411/411 [00:00<00:00, 1888.92 examples/s]
    +Filter -> Patient Gender:M: 100%|███| 411/411 [00:00<00:00, 44822.13 examples/s]
    +Filter -> Patient Gender:F: 100%|███| 411/411 [00:00<00:00, 44078.32 examples/s]
    +Filter -> overall: 100%|████████████| 411/411 [00:00<00:00, 45648.21 examples/s]
    +Filter -> Patient Age:[19 - 35]: 100%|█| 411/411 [00:00<00:00, 44647.99 examples
    +Filter -> Patient Age:[35 - 65]: 100%|█| 411/411 [00:00<00:00, 46762.67 examples
    +Filter -> Patient Age:[65 - 100]: 100%|█| 411/411 [00:00<00:00, 45729.34 example
     Filter -> Patient Age:[19 - 35]&Patient Gender:M: 100%|█| 411/411 [00:00<00:00,
     Filter -> Patient Age:[19 - 35]&Patient Gender:F: 100%|█| 411/411 [00:00<00:00,
     Filter -> Patient Age:[35 - 65]&Patient Gender:M: 100%|█| 411/411 [00:00<00:00,
     Filter -> Patient Age:[35 - 65]&Patient Gender:F: 100%|█| 411/411 [00:00<00:00,
     Filter -> Patient Age:[65 - 100]&Patient Gender:M: 100%|█| 411/411 [00:00<00:00,
     Filter -> Patient Age:[65 - 100]&Patient Gender:F: 100%|█| 411/411 [00:00<00:00,
    -Filter -> overall: 100%|████████████| 411/411 [00:00<00:00, 44622.57 examples/s]
    +Filter -> overall: 100%|████████████| 411/411 [00:00<00:00, 46829.99 examples/s]
     

    CyclOps offers a package for documentation of the model through a model card. The ModelCardReport class is used to populate and generate the model card as an HTML file. The model card has the following sections: - Model Details: This section contains descriptive metadata about the model such as the owners, version, license, etc. - Model Parameters: This section contains the technical details of the model such as the model architecture, training parameters, etc. - Considerations: This section @@ -659,8 +659,8 @@

    Load Model and get Predictions
    -Filter: 100%|██████████| 1000/1000 [00:00<00:00, 113614.43 examples/s]
    -Map: 100%|██████████| 661/661 [00:00<00:00, 3288.78 examples/s]
    +Filter: 100%|██████████| 1000/1000 [00:00<00:00, 100069.28 examples/s]
    +Map: 100%|██████████| 661/661 [00:00<00:00, 3260.05 examples/s]
     
    @@ -849,16 +849,16 @@

    Multilabel AUROC by Pathology and Age
    -Filter -> Patient Age:[19 - 35]: 100%|██████████| 661/661 [00:00<00:00, 47537.51 examples/s]
    -Filter -> Patient Age:[35 - 65]: 100%|██████████| 661/661 [00:00<00:00, 45093.44 examples/s]
    -Filter -> Patient Age:[65 - 100]: 100%|██████████| 661/661 [00:00<00:00, 45813.26 examples/s]
    -Filter -> Patient Age:[19 - 35]&Patient Gender:M: 100%|██████████| 661/661 [00:00<00:00, 38930.49 examples/s]
    -Filter -> Patient Age:[19 - 35]&Patient Gender:F: 100%|██████████| 661/661 [00:00<00:00, 45141.90 examples/s]
    -Filter -> Patient Age:[35 - 65]&Patient Gender:M: 100%|██████████| 661/661 [00:00<00:00, 45507.20 examples/s]
    -Filter -> Patient Age:[35 - 65]&Patient Gender:F: 100%|██████████| 661/661 [00:00<00:00, 44554.29 examples/s]
    -Filter -> Patient Age:[65 - 100]&Patient Gender:M: 100%|██████████| 661/661 [00:00<00:00, 39816.10 examples/s]
    -Filter -> Patient Age:[65 - 100]&Patient Gender:F: 100%|██████████| 661/661 [00:00<00:00, 46799.26 examples/s]
    -Filter -> overall: 100%|██████████| 661/661 [00:00<00:00, 46125.76 examples/s]
    +Filter -> Patient Age:[19 - 35]: 100%|██████████| 661/661 [00:00<00:00, 47628.97 examples/s]
    +Filter -> Patient Age:[35 - 65]: 100%|██████████| 661/661 [00:00<00:00, 45781.48 examples/s]
    +Filter -> Patient Age:[65 - 100]: 100%|██████████| 661/661 [00:00<00:00, 44662.67 examples/s]
    +Filter -> Patient Age:[19 - 35]&Patient Gender:M: 100%|██████████| 661/661 [00:00<00:00, 43334.19 examples/s]
    +Filter -> Patient Age:[19 - 35]&Patient Gender:F: 100%|██████████| 661/661 [00:00<00:00, 43588.32 examples/s]
    +Filter -> Patient Age:[35 - 65]&Patient Gender:M: 100%|██████████| 661/661 [00:00<00:00, 44460.69 examples/s]
    +Filter -> Patient Age:[35 - 65]&Patient Gender:F: 100%|██████████| 661/661 [00:00<00:00, 45663.10 examples/s]
    +Filter -> Patient Age:[65 - 100]&Patient Gender:M: 100%|██████████| 661/661 [00:00<00:00, 46002.54 examples/s]
    +Filter -> Patient Age:[65 - 100]&Patient Gender:F: 100%|██████████| 661/661 [00:00<00:00, 47340.26 examples/s]
    +Filter -> overall: 100%|██████████| 661/661 [00:00<00:00, 48005.04 examples/s]
     
    -
    + + + + + +
    + +
    + + + + +
    +

    How is your model doing?


    +

    A quick glance of your most important metrics.

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +
    + +
    + Positive Predictive Value (PPV) +
    + The proportion of correctly predicted positive instances among all instances predicted as positive. Also known as precision. +
    +
    +
    +
    +
    + + 0.14 + + + + + + + + 0.7
    minimum
    threshold
    +
    + + +
    + +
    + +
    + + +
    +
    +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +
    + +
    + Negative Predictive Value (NPV) +
    + The proportion of correctly predicted negative instances among all instances predicted as negative. +
    +
    +
    +
    +
    + + 0.93 + + + + + + + + 0.7
    minimum
    threshold
    +
    + + +
    + +
    + +
    + + +
    +
    +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +
    + +
    + Sensitivity +
    + The proportion of actual positive instances that are correctly predicted. Also known as recall or true positive rate. +
    +
    +
    +
    +
    + + 0.83 + + + + + + + + 0.7
    minimum
    threshold
    +
    + + +
    + +
    + +
    + + +
    +
    +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +
    + +
    + Specificity +
    + The proportion of actual negative instances that are correctly predicted. +
    +
    +
    +
    +
    + + 0.33 + + + + + + + + 0.7
    minimum
    threshold
    +
    + + +
    + +
    + +
    + + +
    +
    +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +

    How is your model doing over time?


    +

    See how your model is performing over several metrics and subgroups over time.

    +
    +
    +

    Metrics

    +
    + + + +
    + +
    + The proportion of correctly predicted positive instances among all instances predicted as positive. Also known as precision. +
    +
    +
    + + + + + + +
    + +
    + The proportion of correctly predicted negative instances among all instances predicted as negative. +
    +
    +
    + + + + + +
    + +
    + The proportion of actual positive instances that are correctly predicted. Also known as recall or true positive rate. +
    +
    +
    + + + + + +
    + +
    + The proportion of actual negative instances that are correctly predicted. +
    +
    +
    + + +
    +
    + +
    +

    Patient Age

    +
    + + + + + + + + + + + + +
    +
    + +
    +

    Pathology

    +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +
    + +
    +

    Patient Gender

    +
    + + + + + + + + + +
    +
    + +
    +
    +
    + + +
    +
    +
    + + + + + + + + + +
    +

    Datasets

    + + + + +
    +

    Graphics

    + +
    + + +
    + + + +
    + +
    + +
    + + + +
    + +
    + +
    + + + +
    + +
    + +
    + + +
    + + +
    + +
    + + +
    + + + + + + + + +
    +

    Quantitative Analysis

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +
    + +
    + Positive Predictive Value (PPV) +
    + The proportion of correctly predicted positive instances among all instances predicted as positive. Also known as precision. +
    +
    +
    +
    +
    + + 0.14 + + + + + + + + 0.7
    minimum
    threshold
    +
    + + +
    + +
    + +
    + + +
    +
    +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +
    + +
    + Negative Predictive Value (NPV) +
    + The proportion of correctly predicted negative instances among all instances predicted as negative. +
    +
    +
    +
    +
    + + 0.93 + + + + + + + + 0.7
    minimum
    threshold
    +
    + + +
    + +
    + +
    + + +
    +
    +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +
    + +
    + Sensitivity +
    + The proportion of actual positive instances that are correctly predicted. Also known as recall or true positive rate. +
    +
    +
    +
    +
    + + 0.83 + + + + + + + + 0.7
    minimum
    threshold
    +
    + + +
    + +
    + +
    + + +
    +
    +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +
    + +
    + Specificity +
    + The proportion of actual negative instances that are correctly predicted. +
    +
    +
    +
    +
    + + 0.33 + + + + + + + + 0.7
    minimum
    threshold
    +
    + + +
    + +
    + +
    + + +
    +
    +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + + + + + + + + + + + + + + + + +
    +

    Model Details

    + + + + + +
    +

    Description

    + This model is a DenseNet121 model trained on the NIH Chest X-Ray dataset, which contains 112,120 frontal-view X-ray images of 30,805 unique patients with the fourteen text-mined disease labels from the associated radiological reports. The labels are Atelectasis, Cardiomegaly, Effusion, Infiltration, Mass, Nodule, Pneumonia, Pneumothorax, Consolidation, Edema, Emphysema, Fibrosis, Pleural Thickening, and Hernia. The model was trained on 80% of the data and evaluated on the remaining 20%. +
    + + + + + + + + + + +
    +

    Owners

    + +
      + +
      + + +
    • + + + + + Name: Machine Learning and Medicine Lab + + +
      + + + + + + Contact: mlmed.org + + +
      + + + + + + + + Email: joseph@josephpcohen.com + + +
      + + +
    • + + +
      + +
    + +
    + + + + + + + + + + +
    +

    Citations

    + +
      + +
      + +
    • + + + @inproceedings{Cohen2022xrv, + title = {{TorchXRayVision: A library of chest X-ray datasets and models}}, + author = {Cohen, Joseph Paul and Viviano, Joseph D. and Bertin, Paul and Morrison,Paul and Torabian, Parsa and Guarrera, Matteo and Lungren, Matthew P and Chaudhari, Akshay and Brooks, Rupert and Hashir, Mohammad and Bertrand, Hadrien}, + booktitle = {Medical Imaging with Deep Learning}, + url = {https://github.com/mlmed/torchxrayvision}, + arxivId = {2111.00595}, + year = {2022} + } + + +
    • + +
      + +
    + +
      + +
      + +
    • + + + @inproceedings{cohen2020limits, + title={On the limits of cross-domain generalization in automated X-ray prediction}, + author={Cohen, Joseph Paul and Hashir, Mohammad and Brooks, Rupert and Bertrand, Hadrien}, + booktitle={Medical Imaging with Deep Learning}, + year={2020}, + url={https://arxiv.org/abs/2002.02497} + } + + +
    • + +
      + +
    + +
    + + + + + +
    +

    References

    + + + +
    + + + + + + + + + + + + + + + +
    +

    Name

    + NIH Chest X-Ray Multi-label Classification Model +
    + + + + + +
    + + + + + + + + + + + + + + +
    +

    Considerations

    + + + + + +
    +

    Users

    + +
      + +
      + +
    • + + + Radiologists + + +
    • + +
      + +
    + +
      + +
      + +
    • + + + Data Scientists + + +
    • + +
      + +
    + +
    + + + + + +
    +

    Use Cases

    + +
      + +
      + + +
    • + + + + The model can be used to predict the presence of 14 pathologies in chest X-ray images. + +
      + + + + + + Kind: primary + + +
      + + +
    • + + +
      + +
    + +
    + + + + + +
    +

    Fairness Assessment

    + +
      + +
      + + +
    • + + + + + Affected Group: Patients with rare pathologies + + +
      + + + + + + Benefits: The model can help radiologists to detect pathologies in chest X-ray images. + + +
      + + + + + + Harms: The model may not generalize well to populations that are not well-represented in the training data. + + +
      + + + + + + A mitigation strategy for this risk is to ensure that the training data is diverse and representative of the population. + + +
      + + +
    • + + +
      + +
    + +
    + + + + + +
    +

    Ethical Considerations

    + +
      + +
      + + +
    • + + + + + + + A mitigation strategy for this risk is to ensure that the training data is diverse and representative of the population that the model will be used on. Additionally, the model should be regularly evaluated and updated to ensure that it continues to perform well on diverse populations. Finally, the model should be used in conjunction with human expertise to ensure that any biases or limitations are identified and addressed. + + +
      + + + + + + Risk: One ethical risk of the model is that it may not generalize well to populations that are not well-represented in the training data, such as patients from different geographic regions or with different demographics. + + +
      + + +
    • + + +
      + +
    + +
    + + + + + +
    +

    Limitations

    + +
      + +
      + + +
    • + + + + The limitations of this model include its inability to detect pathologies that are not included in the 14 labels of the NIH Chest X-Ray dataset. Additionally, the model may not perform well on images that are of poor quality or that contain artifacts. Finally, the model may not generalize well to populations that are not well-represented in the training data, such as patients from different geographic regions or with different demographics. + +
      + + +
    • + + +
      + +
    + +
    + + + + + +
    +

    Tradeoffs

    + +
      + +
      + + +
    • + + + + The model can help radiologists to detect pathologies in chest X-ray images, but it may not generalize well to populations that are not well-represented in the training data. + +
      + + +
    • + + +
      + +
    + +
    + + + + + +
    + + + + +
    + + + \ No newline at end of file diff --git a/api/tutorials/synthea/length_of_stay_report_periodic.html b/api/tutorials/synthea/length_of_stay_report_periodic.html new file mode 100644 index 000000000..c0c2ee900 --- /dev/null +++ b/api/tutorials/synthea/length_of_stay_report_periodic.html @@ -0,0 +1,2254 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + +
    +

    How is your model doing?


    +

    A quick glance of your most important metrics.

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +
    + +
    + Accuracy +
    + The proportion of all instances that are correctly predicted. +
    +
    +
    +
    +
    + + 0.76 + + + + + + + + 0.7
    minimum
    threshold
    +
    + + +
    + +
    + +
    + + +
    +
    +
    + + + + + +
    +
    + +
    + Precision +
    + The proportion of predicted positive instances that are correctly predicted. +
    +
    +
    +
    +
    + + 0.94 + + + + + + + + 0.7
    minimum
    threshold
    +
    + + +
    + +
    + +
    + + +
    +
    +
    + + + + + +
    +
    + +
    + Recall +
    + The proportion of actual positive instances that are correctly predicted. Also known as recall or true positive rate. +
    +
    +
    +
    +
    + + 0.82 + + + + + + + + 0.7
    minimum
    threshold
    +
    + + +
    + +
    + +
    + + +
    +
    +
    + + + + + +
    +
    + +
    + F1 Score +
    + The harmonic mean of precision and recall. +
    +
    +
    +
    +
    + + 1.0 + + + + + + + + 0.7
    minimum
    threshold
    +
    + + +
    + +
    + +
    + + +
    +
    +
    + + + + + +
    +
    + +
    + AUROC +
    + The area under the receiver operating characteristic curve (AUROC) is a measure of the performance of a binary classification model. +
    +
    +
    +
    +
    + + 0.97 + + + + + + + + 0.7
    minimum
    threshold
    +
    + + +
    + +
    + +
    + + +
    +
    +
    + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +

    How is your model doing over time?


    +

    See how your model is performing over several metrics and subgroups over time.

    +
    +
    +

    Metrics

    +
    + + +
    + +
    + The proportion of all instances that are correctly predicted. +
    +
    +
    + + + + + +
    + +
    + The proportion of predicted positive instances that are correctly predicted. +
    +
    +
    + + + + + +
    + +
    + The proportion of actual positive instances that are correctly predicted. Also known as recall or true positive rate. +
    +
    +
    + + + + + +
    + +
    + The harmonic mean of precision and recall. +
    +
    +
    + + + + + +
    + +
    + The area under the receiver operating characteristic curve (AUROC) is a measure of the performance of a binary classification model. +
    +
    +
    + + +
    +
    + +
    +

    Age

    +
    + + + + + + + + + +
    +
    + +
    +

    Gender

    +
    + + + + + + + + + +
    +
    + +
    +
    +
    + + +
    +
    +
    + + + + + + + + + +
    +

    Datasets

    + + + + +
    +

    Graphics

    + +
    + + +
    + + + +
    + +
    + +
    + + + +
    + +
    + +
    + + + +
    + +
    + +
    + + + +
    + +
    + +
    + + + +
    + +
    + +
    + + +
    + + +
    + +
    + + +
    + + + + + + + + +
    +

    Quantitative Analysis

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +
    + +
    + Accuracy +
    + The proportion of all instances that are correctly predicted. +
    +
    +
    +
    +
    + + 0.76 + + + + + + + + 0.7
    minimum
    threshold
    +
    + + +
    + +
    + +
    + + +
    +
    +
    + + + + + +
    +
    + +
    + Precision +
    + The proportion of predicted positive instances that are correctly predicted. +
    +
    +
    +
    +
    + + 0.94 + + + + + + + + 0.7
    minimum
    threshold
    +
    + + +
    + +
    + +
    + + +
    +
    +
    + + + + + +
    +
    + +
    + Recall +
    + The proportion of actual positive instances that are correctly predicted. Also known as recall or true positive rate. +
    +
    +
    +
    +
    + + 0.82 + + + + + + + + 0.7
    minimum
    threshold
    +
    + + +
    + +
    + +
    + + +
    +
    +
    + + + + + +
    +
    + +
    + F1 Score +
    + The harmonic mean of precision and recall. +
    +
    +
    +
    +
    + + 1.0 + + + + + + + + 0.7
    minimum
    threshold
    +
    + + +
    + +
    + +
    + + +
    +
    +
    + + + + + +
    +
    + +
    + AUROC +
    + The area under the receiver operating characteristic curve (AUROC) is a measure of the performance of a binary classification model. +
    +
    +
    +
    +
    + + 0.97 + + + + + + + + 0.7
    minimum
    threshold
    +
    + + +
    + +
    + +
    + + +
    +
    +
    + + + + +
    + + + + + + + + + + + + + + +
    +

    Fairness Analysis

    + + + + + + + + + +
    +

    Graphics

    +
      + +
      + + +
      + + + +
      + +
      + +
      + + +
      + + +
      + +
    +
    + + + + +
    + + + + + + + + +
    +

    Model Details

    + + + + + +
    +

    Description

    + The model was trained on the Synthea synthetic dataset to predict prolonged stay in the hospital. +
    + + + + + +
    +

    Version

    +
      + +
      + + +
    • + + + + + + + Date: 2023-11-07 + + +
      + + + + + Initial Release + +
      + + + + + + Version: 0.0.1 + + +
      + + +
    • + + +
      + +
    +
    + + + + + +
    +

    Owners

    + +
      + +
      + + +
    • + + + + + Name: CyclOps Team + + +
      + + + + + + Contact: vectorinstitute.github.io/cyclops/ + + +
      + + + + + + + + Email: cyclops@vectorinstitute.ai + + +
      + + +
    • + + +
      + +
    + +
    + + + + + +
    +

    Licenses

    + +
      + +
      + + +
    • + + + + + Identifier: Apache-2.0 + + +
      + + + + + + +
    • + + +
      + +
    + +
    + + + + + + + + + + +
    +

    References

    + + + +
    + + + + + + + + + + + + + + + +
    +

    Name

    + Prolonged Length of Stay Prediction Model +
    + + + + + +
    + + + + + + + + +
    +

    Model Parameters

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +

    N_estimators

    + 500 +
    + + + + + + + + + + + + + + + +
    +

    Seed

    + 123 +
    + + + + + + + + + + + + + + + +
    +

    Random_state

    + 123 +
    + + + + + + + + + + + + + + + +
    +

    Min_child_weight

    + 3 +
    + + + + + + + + + + +
    +

    Reg_lambda

    + 0 +
    + + + + + +
    +

    Missing

    + nan +
    + + + + + + + + + + +
    +

    Gamma

    + 2 +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +

    Learning_rate

    + 0.1 +
    + + + + + +
    +

    Max_depth

    + 2 +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +

    Enable_categorical

    + False +
    + + + + + + + + + + +
    +

    Objective

    + binary:logistic +
    + + + + + + + + + + +
    +

    Colsample_bytree

    + 1 +
    + + + + + +
    +

    Eval_metric

    + logloss +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + + + + +
    +

    Considerations

    + + + + + +
    +

    Users

    + +
      + +
      + +
    • + + + Hospitals + + +
    • + +
      + +
    + +
      + +
      + +
    • + + + Clinicians + + +
    • + +
      + +
    + +
      + +
      + +
    • + + + ML Engineers + + +
    • + +
      + +
    + +
    + + + + + +
    +

    Use Cases

    + +
      + +
      + + +
    • + + + + Predicting prolonged length of stay + +
      + + + + + + Kind: primary + + +
      + + +
    • + + +
      + +
    + +
    + + + + + +
    +

    Fairness Assessment

    + +
      + +
      + + +
    • + + + + + Affected Group: sex, age + + +
      + + + + + + Benefits: Improved health outcomes for patients. + + +
      + + + + + + Harms: Biased predictions for patients in certain groups (e.g. older patients) may lead to worse health outcomes. + + +
      + + + + + + We will monitor the performance of the model on these groups and retrain the model if the performance drops below a certain threshold. + + +
      + + +
    • + + +
      + +
    + +
    + + + + + +
    +

    Ethical Considerations

    + +
      + +
      + + +
    • + + + + + + + The model should be continuously monitored for performance and retrained if the performance drops below a certain threshold. + + +
      + + + + + + Risk: The model may be used to make decisions that affect the health of patients. + + +
      + + +
    • + + +
      + +
    + +
    + + + + + +
    + + + + +
    + + + \ No newline at end of file diff --git a/api/tutorials/synthea/los_prediction.html b/api/tutorials/synthea/los_prediction.html index 2d5042474..399a77eb8 100644 --- a/api/tutorials/synthea/los_prediction.html +++ b/api/tutorials/synthea/los_prediction.html @@ -673,17 +673,17 @@

    Compute length of stay (labels)
    -2023-11-07 13:08:13,639 INFO cycquery.orm    - Database setup, ready to run queries!
    -2023-11-07 13:08:17,733 INFO cycquery.orm    - Query returned successfully!
    -2023-11-07 13:08:17,733 INFO cycquery.utils.profile - Finished executing function run_query in 3.570902 s
    -2023-11-07 13:08:19,542 INFO cycquery.orm    - Query returned successfully!
    -2023-11-07 13:08:19,544 INFO cycquery.utils.profile - Finished executing function run_query in 1.809629 s
    -2023-11-07 13:08:20,584 INFO cycquery.orm    - Query returned successfully!
    -2023-11-07 13:08:20,585 INFO cycquery.utils.profile - Finished executing function run_query in 0.167578 s
    -2023-11-07 13:08:20,815 INFO cycquery.orm    - Query returned successfully!
    -2023-11-07 13:08:20,816 INFO cycquery.utils.profile - Finished executing function run_query in 0.225515 s
    -2023-11-07 13:08:20,900 INFO cycquery.orm    - Query returned successfully!
    -2023-11-07 13:08:20,901 INFO cycquery.utils.profile - Finished executing function run_query in 0.085219 s
    +2023-11-07 17:17:40,963 INFO cycquery.orm    - Database setup, ready to run queries!
    +2023-11-07 17:17:45,825 INFO cycquery.orm    - Query returned successfully!
    +2023-11-07 17:17:45,826 INFO cycquery.utils.profile - Finished executing function run_query in 3.615795 s
    +2023-11-07 17:17:47,759 INFO cycquery.orm    - Query returned successfully!
    +2023-11-07 17:17:47,761 INFO cycquery.utils.profile - Finished executing function run_query in 1.933158 s
    +2023-11-07 17:17:48,954 INFO cycquery.orm    - Query returned successfully!
    +2023-11-07 17:17:48,955 INFO cycquery.utils.profile - Finished executing function run_query in 0.332908 s
    +2023-11-07 17:17:49,379 INFO cycquery.orm    - Query returned successfully!
    +2023-11-07 17:17:49,381 INFO cycquery.utils.profile - Finished executing function run_query in 0.421673 s
    +2023-11-07 17:17:49,473 INFO cycquery.orm    - Query returned successfully!
    +2023-11-07 17:17:49,474 INFO cycquery.utils.profile - Finished executing function run_query in 0.092155 s
     

    @@ -770,9 +770,9 @@

    Drop NaNs based on the
    -