diff --git a/404.html b/404.html index 75c16707e..d106f40cb 100644 --- a/404.html +++ b/404.html @@ -5,8 +5,8 @@ Page Not Found | CyclOps - - + +
Skip to main content

Page Not Found

We could not find what you were looking for.

Please contact the owner of the site that linked you to the original URL and let them know their link is broken.

diff --git a/api/_modules/cyclops/report/report.html b/api/_modules/cyclops/report/report.html index 58251b9f5..7c19d8532 100644 --- a/api/_modules/cyclops/report/report.html +++ b/api/_modules/cyclops/report/report.html @@ -297,7 +297,7 @@

Source code for cyclops.report.report

-"""Cyclops report module."""
+"""Cyclops model report module."""
 
 import base64
 import glob
@@ -361,8 +361,8 @@ 

Source code for cyclops.report.report

 )
 
 
-_TEMPLATE_DIR = os.path.join(os.path.dirname(__file__), "templates")
-_DEFAULT_TEMPLATE_FILENAME = "cyclops_generic_template.jinja"
+_TEMPLATE_DIR = os.path.join(os.path.dirname(__file__), "templates", "model_report")
+_DEFAULT_TEMPLATE_FILENAME = "model_report.jinja"
 
 
 
diff --git a/api/reference/api/_autosummary/cyclops.report.report.html b/api/reference/api/_autosummary/cyclops.report.report.html index 48bb63729..f9f0fc798 100644 --- a/api/reference/api/_autosummary/cyclops.report.report.html +++ b/api/reference/api/_autosummary/cyclops.report.report.html @@ -300,7 +300,7 @@

cyclops.report.report#

-

Cyclops report module.

+

Cyclops model report module.

Classes

diff --git a/api/reference/api/cyclops.report.html b/api/reference/api/cyclops.report.html index 4bbf7e102..bd1221aa6 100644 --- a/api/reference/api/cyclops.report.html +++ b/api/reference/api/cyclops.report.html @@ -305,7 +305,7 @@
- +

report

Cyclops report module.

Cyclops model report module.

diff --git a/api/searchindex.js b/api/searchindex.js index 5e5360f93..b330882db 100644 --- a/api/searchindex.js +++ b/api/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["api", "contributing", "developing", "evaluation", "index", "installation", "model_report", "monitoring", "reference/api/_autosummary/cyclops.data.aggregate", "reference/api/_autosummary/cyclops.data.aggregate.Aggregator", "reference/api/_autosummary/cyclops.data.aggregate.tabular_as_aggregated", "reference/api/_autosummary/cyclops.data.aggregate.timestamp_ffill_agg", "reference/api/_autosummary/cyclops.data.features.medical_image", "reference/api/_autosummary/cyclops.data.features.medical_image.MedicalImage", "reference/api/_autosummary/cyclops.data.slicer", "reference/api/_autosummary/cyclops.data.slicer.SliceSpec", "reference/api/_autosummary/cyclops.data.slicer.compound_filter", "reference/api/_autosummary/cyclops.data.slicer.filter_datetime", "reference/api/_autosummary/cyclops.data.slicer.filter_non_null", "reference/api/_autosummary/cyclops.data.slicer.filter_range", "reference/api/_autosummary/cyclops.data.slicer.filter_string_contains", "reference/api/_autosummary/cyclops.data.slicer.filter_value", "reference/api/_autosummary/cyclops.data.slicer.is_datetime", "reference/api/_autosummary/cyclops.data.slicer.overall", "reference/api/_autosummary/cyclops.monitor.clinical_applicator", "reference/api/_autosummary/cyclops.monitor.clinical_applicator.ClinicalShiftApplicator", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.binary_noise_shift", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.feature_association_shift", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.feature_swap_shift", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.gaussian_noise_shift", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.knockout_shift", "reference/api/_autosummary/cyclops.report.report", "reference/api/_autosummary/cyclops.report.report.ModelCardReport", "reference/api/_autosummary/cyclops.tasks.classification", "reference/api/_autosummary/cyclops.tasks.classification.BinaryTabularClassificationTask", "reference/api/_autosummary/cyclops.tasks.classification.MultilabelImageClassificationTask", "reference/api/cyclops.data", "reference/api/cyclops.monitor", "reference/api/cyclops.report", "reference/api/cyclops.tasks", "reference/api/evaluator", "reference/api/fairness_evaluator", "reference/api/metrics", "reference/api/metrics/accuracy", "reference/api/metrics/auroc", "reference/api/metrics/average_precision", "reference/api/metrics/f1score", "reference/api/metrics/f_beta", "reference/api/metrics/precision", "reference/api/metrics/precision_recall_curve", "reference/api/metrics/recall", "reference/api/metrics/roc", "reference/api/metrics/sensitivity", "reference/api/metrics/specificity", "reference/api/metrics/stat_scores", "tutorials", "tutorials/kaggle/heart_failure_prediction", "tutorials/mimiciv/mortality_prediction", "tutorials/nihcxr/cxr_classification", "tutorials/nihcxr/monitor_api", "tutorials/synthea/los_prediction", "tutorials_monitor", "tutorials_use_cases", "user_guide"], "filenames": ["api.rst", "contributing.rst", "developing.rst", "evaluation.rst", "index.rst", "installation.rst", "model_report.rst", "monitoring.rst", "reference/api/_autosummary/cyclops.data.aggregate.rst", "reference/api/_autosummary/cyclops.data.aggregate.Aggregator.rst", "reference/api/_autosummary/cyclops.data.aggregate.tabular_as_aggregated.rst", "reference/api/_autosummary/cyclops.data.aggregate.timestamp_ffill_agg.rst", "reference/api/_autosummary/cyclops.data.features.medical_image.rst", "reference/api/_autosummary/cyclops.data.features.medical_image.MedicalImage.rst", "reference/api/_autosummary/cyclops.data.slicer.rst", "reference/api/_autosummary/cyclops.data.slicer.SliceSpec.rst", "reference/api/_autosummary/cyclops.data.slicer.compound_filter.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_datetime.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_non_null.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_range.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_string_contains.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_value.rst", "reference/api/_autosummary/cyclops.data.slicer.is_datetime.rst", "reference/api/_autosummary/cyclops.data.slicer.overall.rst", "reference/api/_autosummary/cyclops.monitor.clinical_applicator.rst", "reference/api/_autosummary/cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.binary_noise_shift.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.feature_association_shift.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.feature_swap_shift.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.gaussian_noise_shift.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.knockout_shift.rst", "reference/api/_autosummary/cyclops.report.report.rst", "reference/api/_autosummary/cyclops.report.report.ModelCardReport.rst", "reference/api/_autosummary/cyclops.tasks.classification.rst", "reference/api/_autosummary/cyclops.tasks.classification.BinaryTabularClassificationTask.rst", "reference/api/_autosummary/cyclops.tasks.classification.MultilabelImageClassificationTask.rst", "reference/api/cyclops.data.rst", "reference/api/cyclops.monitor.rst", "reference/api/cyclops.report.rst", "reference/api/cyclops.tasks.rst", "reference/api/evaluator.rst", "reference/api/fairness_evaluator.rst", "reference/api/metrics.rst", "reference/api/metrics/accuracy.rst", "reference/api/metrics/auroc.rst", "reference/api/metrics/average_precision.rst", "reference/api/metrics/f1score.rst", "reference/api/metrics/f_beta.rst", "reference/api/metrics/precision.rst", "reference/api/metrics/precision_recall_curve.rst", "reference/api/metrics/recall.rst", "reference/api/metrics/roc.rst", "reference/api/metrics/sensitivity.rst", "reference/api/metrics/specificity.rst", "reference/api/metrics/stat_scores.rst", "tutorials.rst", "tutorials/kaggle/heart_failure_prediction.ipynb", "tutorials/mimiciv/mortality_prediction.ipynb", "tutorials/nihcxr/cxr_classification.ipynb", "tutorials/nihcxr/monitor_api.ipynb", "tutorials/synthea/los_prediction.ipynb", "tutorials_monitor.rst", "tutorials_use_cases.rst", "user_guide.rst"], "titles": ["API Reference", "Contributing to cyclops", "\ud83e\uddd1\ud83c\udfff\u200d\ud83d\udcbb Developing", "Evaluation", "What is CyclOps?", "Installation", "Model Report", "Monitoring", "cyclops.data.aggregate", "cyclops.data.aggregate.Aggregator", "cyclops.data.aggregate.tabular_as_aggregated", "cyclops.data.aggregate.timestamp_ffill_agg", "cyclops.data.features.medical_image", "cyclops.data.features.medical_image.MedicalImage", "cyclops.data.slicer", "cyclops.data.slicer.SliceSpec", "cyclops.data.slicer.compound_filter", "cyclops.data.slicer.filter_datetime", "cyclops.data.slicer.filter_non_null", "cyclops.data.slicer.filter_range", "cyclops.data.slicer.filter_string_contains", "cyclops.data.slicer.filter_value", "cyclops.data.slicer.is_datetime", "cyclops.data.slicer.overall", "cyclops.monitor.clinical_applicator", "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator", "cyclops.monitor.synthetic_applicator", "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator", "cyclops.monitor.synthetic_applicator.binary_noise_shift", "cyclops.monitor.synthetic_applicator.feature_association_shift", "cyclops.monitor.synthetic_applicator.feature_swap_shift", "cyclops.monitor.synthetic_applicator.gaussian_noise_shift", "cyclops.monitor.synthetic_applicator.knockout_shift", "cyclops.report.report", "cyclops.report.report.ModelCardReport", "cyclops.tasks.classification", "cyclops.tasks.classification.BinaryTabularClassificationTask", "cyclops.tasks.classification.MultilabelImageClassificationTask", "cyclops.data", "cyclops.monitor", "cyclops.report", "cyclops.tasks", "Evaluator", "Fairness Evaluator", "Evaluation Metrics", "Accuracy", "AUROC", "Average Precision", "F1-Score", "F-beta Score", "Precision", "PrecisionRecallCurve", "Recall", "ROC Curve", "Sensitivity", "Specificity", "StatScores", "Tutorials", "Heart Failure Prediction", "Mortality Prediction", "Chest X-Ray Disease Classification", "NIHCXR Clinical Drift Experiments Tutorial", "Prolonged Length of Stay Prediction", "monitor API", "Example use cases", "User Guide"], "terms": {"cyclop": [0, 2, 5, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62], "data": [0, 4, 25, 27, 28, 29, 30, 31, 32, 34, 36, 37, 45, 48, 49, 51, 53, 57, 60, 61, 63], "task": [0, 4, 42, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 64], "evalu": [0, 4, 34, 36, 37, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 60, 64, 65], "fair": [0, 4, 34, 36, 37, 42, 58, 59, 60, 62], "metric": [0, 4, 34, 36, 37, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 62, 64], "monitor": [0, 4, 58, 59, 61, 62, 65], "report": [0, 4, 56, 57, 64, 65], "thank": 1, "your": [1, 58], "interest": [1, 58, 59, 62], "To": [1, 13, 58, 62], "submit": 1, "pr": 1, "pleas": [1, 58, 59, 62], "fill": [1, 11], "out": [1, 34, 58, 59, 62], "templat": [1, 34], "along": [1, 25, 58, 59, 60, 62], "If": [1, 2, 9, 11, 13, 15, 17, 18, 19, 20, 21, 34, 36, 37, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 62], "fix": 1, "an": [1, 4, 9, 13, 15, 34, 42, 43, 48, 50, 52, 54, 56, 58, 59, 60, 62, 64], "issu": [1, 43], "don": [1, 59], "t": [1, 13, 34, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 59], "forget": 1, "link": [1, 34, 58, 59, 60, 62], "onc": [1, 58, 59, 62], "python": [1, 59, 62], "virtual": 1, "environ": [1, 2, 58, 59, 62], "i": [1, 2, 5, 9, 10, 11, 13, 15, 17, 18, 19, 20, 21, 22, 25, 27, 34, 36, 37, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62, 64], "setup": [1, 59, 62], "you": [1, 2, 13, 58, 59, 60, 62, 63], "can": [1, 2, 5, 11, 13, 15, 34, 36, 37, 43, 45, 48, 50, 52, 53, 54, 56, 58, 59, 60, 62, 63], "run": [1, 2, 58, 59, 62], "us": [1, 4, 9, 13, 15, 16, 25, 27, 34, 36, 37, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62, 63, 65], "all": [1, 10, 11, 15, 16, 17, 18, 19, 20, 21, 23, 36, 52, 54, 56, 58, 59, 60, 61, 62], "file": [1, 13, 34, 58, 59, 60, 62], "For": [1, 5, 34, 43, 56, 58, 59, 62], "style": 1, "we": [1, 34, 58, 59, 60, 62], "recommend": 1, "pep": 1, "8": [1, 15, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62], "guid": [1, 4], "docstr": 1, "numpi": [1, 11, 28, 29, 30, 31, 32, 37, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62], "format": [1, 9, 13, 15, 34, 51, 56, 58, 59, 62], "ruff": [1, 58, 59], "static": [1, 10], "analysi": [1, 34, 58, 59, 60, 62], "check": [1, 22, 51], "variou": [1, 42, 58, 59, 62], "rule": 1, "includ": [1, 9, 15, 19, 25, 27, 43, 58, 59, 60, 62, 63, 64], "flake8": 1, "The": [1, 2, 4, 9, 10, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 25, 27, 34, 36, 37, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62, 63, 64], "show": [1, 4, 58, 59, 60, 62], "error": [1, 42, 43], "which": [1, 9, 11, 17, 18, 19, 20, 21, 34, 42, 43, 51, 58, 59, 60, 62, 64], "need": [1, 2, 42, 43, 58, 59, 62], "befor": [1, 11, 36, 42, 43, 58, 59, 62], "last": [1, 10], "least": 1, "type": [1, 9, 10, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 27, 28, 29, 30, 31, 32, 34, 36, 37, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 64], "hint": 1, "our": [1, 58, 59, 62], "mypi": 1, "set": [2, 5, 9, 10, 15, 34, 42, 43, 45, 47, 48, 49, 50, 52, 54, 55, 56, 58, 59, 60, 62], "up": [2, 58, 59, 60, 62], "henc": [2, 5], "make": [2, 58, 59, 62], "sure": [2, 58], "instal": [2, 4, 58, 65], "python3": [2, 5], "m": [2, 5, 58, 59, 60, 61, 62], "sourc": [2, 4, 9, 10, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 27, 28, 29, 30, 31, 32, 34, 36, 37, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 63], "env": 2, "info": [2, 58, 59, 62], "path": [2, 13, 25, 34, 36, 37, 58, 59, 62], "bin": [2, 9, 43], "activ": [2, 62], "In": [2, 58, 59, 62], "order": [2, 13, 42, 56], "depend": [2, 5], "test": [2, 27, 34, 36, 37, 42, 57, 58, 59, 62, 63, 64], "codestyl": 2, "unit": 2, "integr": 2, "api": [2, 4, 9, 42, 43, 58, 62, 64], "document": [2, 58, 59, 60, 62], "built": 2, "sphinx": 2, "local": 2, "doc": 2, "cd": 2, "html": [2, 34, 58, 59, 60, 62], "sphinxopt": 2, "d": [2, 25, 60], "nbsphinx_allow_error": 2, "true": [2, 9, 10, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 27, 29, 34, 36, 37, 42, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62], "build": [2, 25], "pandoc": 2, "addit": [2, 5, 34, 36, 37, 58, 59, 60, 62], "group": [2, 9, 34, 43, 58, 59, 62], "welcom": 2, "see": [2, 9, 15, 34, 58, 59, 62], "guidelin": [2, 4], "open": 4, "toolkit": 4, "scientist": [4, 60], "engin": [4, 58, 59, 62], "clinician": [4, 58, 59, 62], "work": [4, 15, 34, 45, 55, 58, 59, 60, 62], "intersect": [4, 43], "artifici": 4, "intellig": 4, "health": [4, 58, 59, 62], "design": 4, "help": [4, 58, 59, 60, 62], "research": 4, "practition": 4, "adopt": 4, "vector": 4, "institut": 4, "": [4, 15, 18, 22, 34, 36, 37, 42, 43, 47, 58, 59, 62], "ai": [4, 58, 59, 62], "trust": [4, 58, 59, 62], "safeti": 4, "principl": 4, "specif": [4, 5, 15, 28, 31, 36, 37, 42, 44, 47, 58, 59, 60, 62], "focus": 4, "system": 4, "develop": [4, 58, 59, 60, 62], "clinic": [4, 24, 25, 63], "applic": [4, 24, 25, 27, 46], "where": [4, 15, 16, 17, 18, 19, 20, 21, 34, 36, 37, 50, 51, 52, 54, 58, 59, 62, 64], "robust": 4, "ar": [4, 5, 13, 15, 19, 20, 25, 29, 34, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62], "critic": 4, "primari": [4, 34, 58, 59, 60, 62], "goal": [4, 64], "improv": [4, 58, 59, 62], "transpar": 4, "account": [4, 45, 46, 47, 48, 49, 50, 52, 54, 55, 58, 60], "heart": [4, 57], "failur": [4, 57], "predict": [4, 36, 37, 42, 43, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 60], "exampl": [4, 5, 9, 13, 15, 16, 17, 18, 19, 20, 21, 23, 25, 27, 34, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 63], "case": [4, 28, 34, 57, 58, 59, 62, 63], "how": [4, 9, 58, 59, 60, 62], "model": [4, 5, 34, 36, 37, 42, 43, 57, 63, 64, 65], "its": [4, 15, 50, 52, 54, 58, 59, 60, 62], "perform": [4, 9, 11, 21, 34, 42, 45, 46, 57, 58, 59, 62, 63, 64], "over": [4, 56, 58, 59, 60, 62], "time": [4, 9, 15, 25, 34, 58, 59, 60, 62, 63], "user": [4, 34, 58, 59, 62], "tutori": [4, 63, 64], "poetri": 4, "contribut": 4, "pre": [4, 58, 59, 62], "commit": 4, "hook": 4, "code": [4, 58, 59, 62], "refer": [4, 34, 58, 59, 60, 62], "pycyclop": 5, "ha": [5, 21, 34, 58, 59, 60, 62], "mani": 5, "option": [5, 9, 10, 11, 13, 15, 17, 18, 19, 20, 21, 25, 27, 34, 36, 37, 42, 43, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56], "function": [5, 8, 9, 11, 13, 14, 15, 16, 26, 34, 42, 43, 59, 60, 62], "monai": [5, 13], "librari": [5, 57, 63, 64], "load": [5, 34, 36, 37, 42, 57, 59, 62, 63, 64], "dicom": 5, "imag": [5, 12, 13, 31, 34, 37, 38, 42, 43, 57, 60, 61], "creat": [5, 14, 15, 28, 31, 32, 34, 36, 37, 43, 50, 52, 54, 57, 60, 64], "dataset": [5, 14, 15, 25, 27, 34, 36, 37, 38, 42, 43, 45, 48, 49, 50, 51, 52, 53, 54, 55, 57, 63, 64], "list": [5, 9, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 28, 29, 30, 31, 32, 34, 36, 37, 42, 43, 46, 47, 51, 53, 58, 59, 62], "below": [5, 58, 59, 62], "extra": [5, 34], "note": [5, 9, 34, 42, 58, 59, 62], "xgboost": [5, 59, 62], "allow": [5, 42, 43, 58, 59, 62, 63], "torch": [5, 61], "pytorch": 5, "torchvis": [5, 60, 61], "torchxrayvis": [5, 60, 61], "transform": [5, 9, 36, 37, 46, 53, 58, 59, 60, 61, 62], "alibi": 5, "explain": [5, 34], "detect": [5, 60, 63], "shift": [5, 24, 25, 27, 29, 30, 63], "class": [8, 9, 12, 13, 14, 15, 24, 25, 26, 27, 29, 30, 32, 33, 34, 35, 36, 37, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62], "aggfunc": [9, 59, 62], "timestamp_col": [9, 59], "time_bi": [9, 59], "agg_bi": [9, 59], "timestep_s": 9, "none": [9, 10, 11, 13, 15, 17, 25, 34, 36, 37, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62], "window_dur": [9, 59], "window_start_tim": [9, 59], "window_stop_tim": 9, "imput": [9, 58, 59, 62], "agg_meta_for": 9, "base": [9, 13, 15, 25, 27, 34, 36, 37, 42, 43, 50, 52, 54, 57, 58, 64], "transformermixin": 9, "equal": [9, 15, 19, 43], "space": [9, 53], "seri": [9, 11, 36], "comput": [9, 36, 37, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 64], "metadata": [9, 13, 58, 59, 60, 62], "expens": [9, 42, 43], "should": [9, 16, 30, 34, 36, 37, 42, 43, 53, 58, 59, 60, 62], "done": [9, 58, 59, 62], "sparingli": 9, "map": [9, 15, 16, 36, 37, 60], "from": [9, 13, 15, 25, 27, 32, 34, 36, 37, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 64], "column": [9, 10, 15, 16, 17, 18, 19, 20, 21, 25, 36, 37, 42, 43, 58, 59, 60, 62], "each": [9, 15, 16, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 62], "valu": [9, 10, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 34, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 64], "either": [9, 19, 34, 56, 58, 59, 62], "string": [9, 13, 15, 17, 20, 34, 42, 43, 60], "e": [9, 10, 15, 17, 18, 29, 30, 31, 34, 42, 43, 58, 59, 62], "g": [9, 10, 15, 17, 29, 30, 31, 34, 42, 43, 58, 59, 62], "col_nam": 9, "mean": [9, 45, 46, 47, 48, 49, 50, 52, 54, 55, 58, 59, 60, 62], "accept": 9, "return": [9, 10, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 27, 28, 29, 30, 31, 32, 34, 36, 37, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 59, 62], "singl": [9, 11, 15, 34, 36, 37, 42, 51, 58, 59, 62, 64], "dict": [9, 13, 15, 16, 17, 18, 19, 20, 21, 23, 34, 36, 37, 42, 43], "name": [9, 10, 15, 16, 17, 18, 19, 20, 21, 25, 34, 36, 37, 42, 43, 58, 59, 60, 61, 62], "timestamp": [9, 34, 59, 60, 63], "provid": [9, 15, 17, 20, 34, 42, 43, 51, 53, 56, 58, 59, 60, 62], "str": [9, 10, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 27, 34, 36, 37, 42, 43, 58, 59, 62], "determin": [9, 45, 46, 47, 51, 53, 56], "bucket": [9, 11], "hour": [9, 15, 17, 59], "timestep": [9, 10, 11], "float": [9, 11, 19, 28, 29, 30, 31, 32, 34, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56], "window": [9, 11, 63], "latest": 9, "stop": [9, 62], "start": [9, 58, 59, 62], "pd": [9, 10, 36, 59], "datafram": [9, 10, 36, 58, 59, 62], "window_tim": 9, "aggregatedimput": 9, "num_timestep": [9, 10, 11], "number": [9, 10, 11, 25, 29, 30, 34, 36, 37, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 59, 62, 63], "int": [9, 10, 11, 17, 25, 29, 30, 31, 32, 34, 36, 37, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 62], "dictionari": [9, 13, 15, 16, 17, 18, 19, 20, 21, 23, 34, 36, 37, 42, 43, 58, 59, 62], "one": [9, 15, 36, 37, 42, 43, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55], "follow": [9, 15, 34, 42, 45, 48, 49, 50, 52, 54, 55, 58, 59, 60, 62], "median": 9, "std": 9, "var": 9, "min": 9, "max": [9, 10, 62], "count": [9, 45, 46, 47, 48, 49, 50, 52, 54, 55, 58, 59, 60, 62], "sum": [9, 55, 56, 59, 60, 62], "init": 9, "method": [9, 13, 15, 25, 27, 34, 36, 37, 42, 43, 46, 58, 59, 62], "__init__": [9, 36, 37], "fit": [9, 36, 58, 59, 62], "paramet": [9, 10, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 27, 28, 29, 30, 31, 32, 34, 36, 37, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62], "panda": [9, 10, 11, 58, 59, 62], "input": [9, 13, 28, 31, 36, 37, 45, 47, 50, 51, 52, 53, 54, 56], "fit_transform": [9, 59], "set_output": 9, "output": [9, 34, 45, 51, 53, 58, 59, 62], "contain": [9, 10, 13, 15, 16, 17, 18, 19, 20, 21, 23, 34, 42, 43, 45, 55, 58, 59, 60, 62, 64], "introduc": 9, "default": [9, 11, 13, 15, 17, 18, 19, 20, 21, 25, 34, 36, 37, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 62], "configur": [9, 36, 37, 42, 58, 59, 62], "unchang": 9, "self": [9, 13], "estim": [9, 36, 45, 46, 48, 49, 51, 53, 55], "instanc": [9, 45, 46, 47, 48, 49, 50, 52, 54, 55, 58, 59, 60, 62], "y": [9, 27, 29, 30, 32, 36, 58, 59, 60, 62], "include_timestep_start": 9, "placehold": [9, 29], "sklearn": [9, 27, 58, 59, 62], "compat": [9, 58, 59, 62], "bool": [9, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 29, 30, 34, 36, 37, 42, 43, 56, 58, 59, 60, 62], "whether": [9, 13, 15, 25, 34, 42, 43, 56, 59, 62, 64], "tab": [10, 58], "index": [10, 58, 59, 60, 62], "var_nam": 10, "value_nam": 10, "strategi": [10, 34, 58, 59, 60, 62], "sort": [10, 58, 59, 62], "pose": 10, "tabular": [10, 36, 37, 57], "non": [10, 51, 53], "timeseri": 10, "result": [10, 16, 36, 37, 42, 48, 58, 59, 61, 62], "origin": [10, 25], "fake": 10, "first": [10, 42, 43, 45, 55, 58, 59, 62], "thi": [10, 15, 34, 36, 42, 43, 45, 46, 47, 48, 49, 50, 52, 54, 55, 56, 58, 59, 60, 62, 64], "requir": [10, 34, 36, 37, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 62], "process": [10, 25, 57, 58, 60, 62, 64], "tempor": 10, "val": [11, 42], "1": [11, 15, 25, 29, 30, 31, 32, 34, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62, 63, 64], "fill_nan": 11, "forward": 11, "given": [11, 17, 19, 20, 21, 22, 34, 36, 37, 45, 48, 49, 50, 52, 54, 55, 56], "neg": [11, 42, 45, 46, 47, 48, 49, 50, 52, 54, 55, 56, 60, 62], "treat": [11, 43], "occur": 11, "regular": 11, "through": [11, 58, 59, 60, 62], "between": [11, 15, 43, 48, 53, 56], "0": [11, 15, 27, 28, 29, 30, 31, 32, 34, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62], "accordingli": 11, "nan": [11, 17, 18, 42, 43, 57, 64], "A": [11, 15, 16, 17, 18, 19, 20, 21, 23, 34, 42, 43, 45, 55, 56, 58, 59, 60, 62], "integ": [11, 34, 42, 43], "total": [11, 45, 46, 47, 48, 49, 50, 52, 54, 55, 56, 59, 62], "consid": [11, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 59], "ani": [11, 15, 16, 17, 18, 19, 20, 21, 23, 34, 36, 37, 42, 43, 51, 53, 58, 59, 60, 62], "remain": [11, 60], "form": [11, 48, 58, 59, 62], "2": [11, 29, 30, 34, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62, 63], "dimension": [11, 63], "arrai": [11, 13, 29, 30, 32, 37, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 60, 62], "ndarrai": [11, 13, 22, 28, 29, 30, 31, 32, 36, 37, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56], "medic": [12, 13, 38, 60, 62, 64], "decod": [13, 60], "id": [13, 25, 58, 60, 62], "reader": 13, "itkread": 13, "suffix": 13, "jpg": 13, "read": 13, "union": [13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 34, 36, 37, 42, 43, 46, 51, 53], "imageread": 13, "when": [13, 36, 37, 42, 43, 45, 47, 48, 49, 50, 52, 54, 55, 56, 58, 59, 62], "byte": 13, "fals": [13, 15, 17, 18, 19, 20, 21, 22, 30, 31, 36, 37, 42, 43, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 58, 59, 60, 62], "image_path": 13, "image_byt": 13, "attribut": [13, 15, 36, 37, 58, 59, 62], "__call__": 13, "call": [13, 34], "cast_storag": 13, "storag": 13, "cast": 13, "arrow": 13, "convert": [13, 45, 47, 49, 51, 52, 53, 54, 55, 56, 58, 59, 62], "pyarrow": 13, "rtype": 13, "structarrai": 13, "pa": 13, "must": [13, 17, 34, 42, 43, 47], "binari": [13, 28, 36, 37, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 62, 64], "struct": 13, "doesn": 13, "matter": 13, "arg": 13, "stringarrai": 13, "listarrai": 13, "decode_exampl": 13, "token_per_repo_id": 13, "serial": 13, "version": [13, 34, 58, 59, 60, 62], "access": 13, "privat": 13, "repositori": [13, 58], "hub": 13, "pass": [13, 25, 34, 36, 37, 42, 58, 59, 62], "repo_id": 13, "token": [13, 58], "deseri": 13, "np": [13, 19, 22, 36, 37, 43, 58, 59, 60, 61, 62], "embed_storag": 13, "emb": 13, "encode_exampl": 13, "encod": 13, "flatten": 13, "state": [13, 51], "itself": 13, "otherwis": [13, 22, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56], "tupl": [13, 15, 25, 36, 37, 51, 53], "classlabel": [13, 58, 59, 62], "translat": 13, "translationvariablelanguag": 13, "sequenc": [13, 36, 37, 42, 60], "array2d": 13, "array3d": 13, "array4d": 13, "array5d": 13, "audio": 13, "subset": 14, "hug": [14, 36, 37, 57, 64], "face": [14, 36, 37, 57, 64], "spec_list": [15, 58, 59, 60, 61, 62], "factori": [15, 60], "valid": [15, 17, 34, 36, 37, 42, 58, 59], "include_overal": [15, 58], "column_nam": [15, 17, 18, 19, 20, 21, 60], "object": [15, 25, 27, 34, 36, 37, 43, 58, 59, 62], "slice": [15, 16, 34, 36, 37, 42, 43, 58, 59, 60, 62], "more": [15, 36, 37, 42, 58, 64], "kei": [15, 34, 43, 58, 59, 60, 61, 62], "exact": [15, 21], "select": [15, 25, 29, 58, 59, 60, 62], "row": [15, 58, 60], "support": [15, 45, 46, 47, 48, 49, 50, 52, 54, 55, 56, 62, 63], "2021": [15, 58, 59, 62], "01": [15, 46, 58, 59, 62], "00": 15, "min_valu": [15, 19, 58, 59, 60, 61, 62], "minimum": [15, 19], "specifi": [15, 25, 34, 36, 37, 42, 58, 59, 62], "min_inclus": [15, 19, 58, 59, 62], "indic": [15, 28, 31, 42, 43, 45, 50, 52, 54, 58, 59, 62], "rang": [15, 19, 46, 47, 51, 53, 58, 59, 60, 62], "numer": [15, 19, 58, 59, 62], "datetim": [15, 17, 19, 22, 34, 58, 59, 62], "inf": [15, 19], "max_valu": [15, 19, 58, 59, 60, 61, 62], "boolean": [15, 16, 17, 18, 19, 20, 21, 23], "greater": [15, 62], "than": [15, 19, 36, 37, 49, 58, 59, 62, 64], "maximum": [15, 19, 46], "max_inclus": [15, 19, 58, 59, 62], "less": [15, 19, 49, 59, 62], "year": [15, 17, 58, 59, 60, 62], "match": [15, 17, 20, 21, 42], "month": [15, 17, 25], "12": [15, 58, 59, 60, 62], "dai": [15, 17, 59, 62, 64], "31": [15, 58, 59, 62], "23": [15, 58, 59, 62], "negat": [15, 17, 18, 19, 20, 21, 60], "flag": [15, 59], "featur": [15, 17, 18, 19, 20, 21, 23, 25, 29, 30, 34, 36, 37, 57, 60, 64], "doe": [15, 17, 19, 20, 21, 34, 43, 45, 46, 47, 48, 49, 50, 52, 54, 55], "keep_nul": [15, 17, 19, 20, 21], "keep": [15, 42, 43, 62], "null": [15, 17, 18, 19, 20, 21, 59, 62], "conjunct": [15, 60], "own": [15, 58, 59, 62], "overal": [15, 34, 43, 58, 59, 60, 62], "_registri": 15, "callabl": [15, 16, 34, 43], "import": [15, 25, 27, 34, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 63, 64], "slice_spec": [15, 36, 37, 42, 58, 59, 60, 62], "feature_1": 15, "feature_2": 15, "feature_3": 15, "value_1": 15, "value_2": 15, "2020": [15, 17, 60], "5": [15, 27, 28, 31, 32, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62, 63], "60": 15, "2022": [15, 58, 59, 60, 62], "6": [15, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62], "7": [15, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62, 64], "2000": 15, "2010": 15, "slice_nam": [15, 34, 58, 59, 62], "slice_func": 15, "print": [15, 58, 59, 60, 62], "do": [15, 58, 59, 60, 62], "someth": 15, "here": [15, 58, 59, 62], "filter": [15, 17, 18, 19, 20, 21, 42, 43, 59, 60, 62], "non_nul": 15, "add_slice_spec": 15, "add": [15, 34, 36, 37, 58, 59, 62], "detail": [15, 58, 59, 60, 62], "get_slic": 15, "registri": [15, 58, 59, 62], "gener": [15, 25, 34, 53, 57, 63, 64], "slice_funct": 16, "combin": [16, 58], "multipl": [16, 34, 42, 43], "bitwis": 16, "AND": 16, "appli": [16, 25, 36, 37, 45, 46, 50, 51, 52, 53, 54, 55, 56, 58, 59, 62], "signatur": 16, "kwarg": [16, 27, 36, 37], "compon": 17, "have": [17, 20, 21, 27, 58, 59, 64], "nat": 17, "rais": [17, 19, 20, 34, 36, 37, 42, 43, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56], "typeerror": [17, 19, 20, 34, 43], "valueerror": [19, 34, 36, 37, 42, 43, 45, 47, 49, 50, 51, 52, 53, 54, 55, 56], "substr": 20, "find": [21, 36, 45, 46, 47, 48, 49, 50, 52, 54, 55, 60], "datetime64": 22, "modul": [24, 33, 34, 42, 43, 58, 59, 62], "shift_typ": [25, 27], "target": [25, 29, 30, 36, 37, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 62, 63, 64], "shift_id": [25, 61], "induc": [25, 27], "synthet": [25, 27, 34, 62, 63, 64], "take": [25, 43, 45, 46, 47, 48, 49, 50, 52, 54, 55, 58], "split": [25, 34, 36, 37, 42, 58, 59, 60, 62], "categor": [25, 58, 59, 62], "loader": [25, 60, 61], "load_nihcxr": [25, 60, 61], "mnt": [25, 60, 61], "nihcxr": [25, 60, 63], "hospital_typ": 25, "hospital_type_1": 25, "hospital_type_2": 25, "hospital_type_3": 25, "hospital_type_4": 25, "hospital_type_5": 25, "ds_sourc": [25, 61], "ds_target": [25, 61], "apply_shift": [25, 27, 61], "custom": [25, 34, 61], "ag": [25, 57, 61, 64], "batch": [25, 36, 37, 42, 43, 59, 60], "batch_siz": [25, 36, 37, 42, 43, 58, 59, 62], "1000": [25, 36, 42, 43, 58, 60], "num_proc": [25, 61], "huggingfac": [25, 36, 37, 43], "size": [25, 36, 37, 42, 43, 58, 59, 60, 62], "slicespec": [25, 37, 42, 58, 59, 60, 61, 62], "hospit": [25, 58, 59, 62, 64], "sex": [25, 57, 59, 61, 62, 64], "syntheticshiftappl": 26, "load_diabet": 27, "x": [27, 28, 29, 30, 31, 32, 36, 57, 58, 59, 61, 62], "return_x_i": 27, "from_dict": 27, "train_test_split": [27, 58, 59, 62], "test_siz": 27, "seed": [27, 58, 59, 61, 62], "42": [27, 58, 59, 61, 62], "gn_shift": 27, "x_shift": 27, "ko_shift": 27, "cp_shift": 27, "mfa_shift": 27, "bn_shift": 27, "tolerance_shift": 27, "ds_shift": 27, "nois": [27, 28, 31], "ad": [27, 34, 36, 37, 58, 59, 62], "prob": 28, "delta": [28, 31, 32], "matrix": [28, 29, 30, 31, 32, 62], "covari": [28, 29, 30, 31, 32], "p": [28, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 60], "proport": [28, 58, 59, 60, 62], "control": [28, 43], "fraction": [28, 31, 32, 62], "affect": [28, 31, 34, 58, 59, 62], "dtype": [28, 29, 30, 31, 32, 51, 53, 58, 59, 60], "float64": [28, 29, 30, 31, 32, 51, 53, 60], "n_shuffl": [29, 30], "25": [29, 30, 46, 51, 53, 55, 56, 58, 59, 61, 62], "keep_rows_const": 29, "repermute_each_column": 29, "multiwai": 29, "associ": [29, 58, 59, 60, 62], "swap": [29, 30], "individu": [29, 58, 59, 62], "within": [29, 59], "label": [29, 30, 32, 36, 37, 42, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 64], "cl": [29, 30], "3": [29, 30, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62, 63], "etc": [29, 30, 58, 59, 60, 62], "floatnumpi": 29, "shuffl": [29, 30, 58], "permut": 29, "same": [29, 42, 43], "across": [29, 43, 63], "shift_class": [30, 32], "rank": 30, "changepoint": 30, "axi": [30, 59, 62], "x_ref": 30, "y_ref": 30, "noise_amt": 31, "normal": [31, 58, 59, 62], "clip": [31, 58, 59, 62], "gaussian": 31, "standard": [31, 58, 59, 62], "deviat": 31, "divid": 31, "255": [31, 60, 61], "imbal": [32, 45, 46, 47, 48, 49, 50, 52, 54, 55], "remov": [32, 36, 37, 43, 58, 59, 60, 62], "sampl": [32, 50, 52, 54], "placehol": 32, "output_dir": [34, 58, 59, 62], "card": [34, 57, 58, 59, 62, 64], "serv": 34, "interfac": 34, "popul": [34, 57, 58, 59, 62, 64], "modelcard": 34, "directori": [34, 58, 59, 62], "save": [34, 36, 37, 58, 59, 62], "current": [34, 58, 59, 62], "export": [34, 58, 59, 60, 62], "output_filenam": [34, 58, 59, 60, 62], "template_path": 34, "interact": [34, 59, 62], "save_json": 34, "synthetic_timestamp": [34, 58, 59, 60, 62], "date": [34, 58, 59, 62], "jinja2": 34, "json": [34, 58, 59, 62], "back": 34, "classmethod": 34, "from_json_fil": 34, "cyclops_report": [34, 58, 59, 62], "log_cit": [34, 60], "citat": [34, 58, 59, 60, 62], "section_nam": [34, 58, 59, 60, 62], "model_detail": [34, 58, 59, 62], "section": [34, 58, 59, 60, 62], "content": 34, "repres": [34, 60], "keyerror": 34, "bibtex": 34, "entri": [34, 56], "plain": 34, "text": [34, 60], "log_dataset": [34, 58], "descript": [34, 58, 59, 60, 62], "license_id": [34, 58], "sensitive_featur": [34, 58], "sensitive_feature_justif": [34, 58], "log": [34, 42, 57, 58, 59, 62, 64], "inform": [34, 58], "about": [34, 58, 59, 60, 62], "train": [34, 36, 37, 42, 57, 60, 63, 64], "resourc": [34, 58, 59, 62], "relev": [34, 58, 59, 62, 63], "context": 34, "homepag": 34, "spdx": [34, 58], "identifi": [34, 57, 60, 64], "licens": [34, 58, 59, 60, 62], "apach": [34, 58, 59, 62], "http": [34, 58, 59, 60, 62], "org": [34, 58, 59, 60, 62], "unknown": 34, "unlicens": 34, "proprietari": 34, "sensit": [34, 44, 58, 59, 60, 62, 63], "justif": [34, 58], "field": [34, 57, 58, 59, 62, 64], "assertionerror": [34, 51, 53], "log_descriptor": [34, 58, 59, 60, 62], "descriptor": 34, "new": [34, 58, 59, 62], "pydant": 34, "basemodel": 34, "subclass": 34, "As": 34, "long": 34, "conflict": 34, "defin": [34, 58, 59, 60, 62], "model_card": 34, "tradeoff": [34, 60], "trade": 34, "off": 34, "interpret": 34, "consider": [34, 58, 59, 60, 62], "log_fairness_assess": [34, 58, 59, 60, 62], "affected_group": [34, 58, 59, 60, 62], "benefit": [34, 58, 59, 60, 62], "harm": [34, 58, 59, 60, 62], "mitigation_strategi": [34, 58, 59, 60, 62], "assess": 34, "mitig": [34, 58, 59, 60, 62], "relat": 34, "log_from_dict": [34, 58, 59, 60, 62], "log_imag": 34, "img_path": 34, "caption": [34, 58, 59, 60, 62], "exist": [34, 36, 37], "log_licens": [34, 58, 59, 62], "full": 34, "avail": [34, 42, 58, 59, 62, 64], "whole": [34, 58, 59, 62], "found": [34, 58], "left": [34, 62], "blank": 34, "instead": 34, "log_model_paramet": [34, 58, 59, 62], "param": [34, 58, 59, 62], "log_own": [34, 58, 59, 60, 62], "contact": [34, 58, 59, 60, 62], "role": 34, "owner": [34, 58, 59, 60, 62], "log_performance_metr": [34, 58, 59, 62], "quantit": [34, 58, 59, 60, 62], "slash": 34, "metric_nam": [34, 43, 58, 59, 60, 62], "log_plotly_figur": [34, 58, 59, 60, 62], "fig": [34, 58, 59, 60, 62], "plotli": [34, 58, 59, 60, 62], "figur": [34, 58, 59, 62], "plot": [34, 58, 59, 60, 62], "log_quantitative_analysi": [34, 58, 59, 60, 62], "analysis_typ": 34, "metric_slic": [34, 58, 59, 60, 62], "decision_threshold": 34, "pass_fail_threshold": [34, 58, 59, 60, 62], "pass_fail_threshold_fn": [34, 58, 59, 60, 62], "liter": [34, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56], "decis": [34, 46, 51, 53, 58, 59, 62], "threshold": [34, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 62, 64], "fail": 34, "log_refer": [34, 58, 59, 62], "log_regul": 34, "regul": 34, "regulatori": [34, 58, 59, 62], "compli": 34, "log_risk": [34, 58, 59, 60, 62], "risk": [34, 58, 59, 60, 62, 64], "log_use_cas": [34, 58, 59, 60, 62], "kind": [34, 58, 59, 60, 62], "scope": [34, 58, 59, 62], "usecas": 34, "log_us": [34, 58, 59, 60, 62], "log_vers": [34, 58, 59, 62], "version_str": [34, 58, 59, 62], "semant": 34, "v1": 34, "dt_date": 34, "dt_datetim": 34, "unix": 34, "yyyi": 34, "mm": 34, "dd": 34, "hh": 34, "ss": 34, "ffffff": 34, "z": 34, "summar": 34, "chang": [34, 58, 59, 60, 62], "made": [34, 58, 59, 62], "task_featur": [36, 37, 58, 59, 62], "task_target": [36, 37, 58, 59, 62], "basetask": [36, 37], "initi": [36, 37, 45, 57, 58, 59, 62, 64], "ptmodel": [36, 37, 60], "skmodel": [36, 37], "add_model": [36, 37], "wrappedmodel": [36, 37], "properti": [36, 37], "data_typ": [36, 37], "model_nam": [36, 37, 58, 59, 60, 61, 62], "prediction_column_prefix": [36, 37, 58, 59, 62], "splits_map": [36, 37], "remove_column": [36, 37, 42, 43, 60], "fairness_config": [36, 37, 42, 58, 59, 62], "override_fairness_metr": [36, 37, 42, 58, 59, 62], "datasetdict": [36, 37, 42], "metricdict": [36, 37, 42, 43, 58, 59, 62], "columntransform": [36, 58, 59, 62], "slicingconfig": 36, "config": 36, "default_max_batch_s": 36, "unnecessari": [36, 37], "fairnessconfig": [36, 37, 42, 58, 59, 62], "argument": [36, 37, 42, 43, 58, 59, 62], "overridden": [36, 37, 42], "get_model": [36, 37], "get": [36, 37, 58, 59, 62], "list_model": [36, 37, 58, 59, 62], "list_models_param": [36, 37, 58, 59, 62], "load_model": [36, 37], "filepath": [36, 37], "pretrain": [36, 37, 60], "models_count": [36, 37], "proba": [36, 58, 59, 62], "mortal": [36, 57], "probabl": [36, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 62], "notfittederror": 36, "save_model": [36, 37], "destin": [36, 37], "correspond": [36, 37, 51], "parent": [36, 37], "dirctori": [36, 37], "keyword": [36, 37, 42, 43], "task_typ": [36, 37, 58, 59, 62], "best_model_param": [36, 58, 59, 62], "x_train": 36, "y_train": 36, "pipelin": [36, 58, 59, 62], "best": [36, 58, 59, 62], "64": [37, 59, 62], "compos": [37, 58, 59, 60, 61, 62], "pathologi": [37, 57, 58, 64], "represent": [37, 58, 59, 62], "packag": [38, 39, 40, 41, 58, 59, 60, 62], "consist": [42, 43], "It": [42, 48, 50, 52, 54, 55, 63], "target_column": [42, 43, 58, 59, 60, 62], "prediction_column": [42, 43, 60], "ignore_column": [42, 60], "raise_on_empty_slic": [42, 43], "load_dataset_kwarg": 42, "load_dataset": 42, "multi": [42, 60], "ignor": [42, 58, 59, 62], "while": 42, "mai": [42, 43, 58, 59, 60, 62], "memori": [42, 43], "entir": [42, 58, 59, 62], "chosen": 42, "eval": 42, "dev": 42, "empti": [42, 43], "warn": [42, 45, 47, 48, 49, 50, 52, 54, 55], "onli": [42, 43, 45, 46, 48, 49, 50, 52, 54, 55, 56], "evaluate_fair": 43, "pariti": 43, "group_valu": 43, "group_bin": [43, 58, 59, 62], "group_base_valu": [43, 58, 59, 62], "compute_optimal_threshold": 43, "metric_kwarg": 43, "multilabel": [43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 64], "uniqu": [43, 46, 47, 51, 53, 60, 64], "limit": [43, 58, 59, 60, 62], "continu": [43, 56, 58, 59, 60, 62], "veri": 43, "slow": 43, "larg": 43, "denomin": 43, "linspac": 43, "monoton": [43, 47, 53], "optim": [43, 58], "oper": [43, 58, 59, 62], "necessari": 43, "usag": [43, 58, 59, 62], "rel": 43, "small": 43, "32": [43, 58, 59, 62], "avoid": 43, "encount": [43, 59, 62], "nest": 43, "level": [43, 58, 59, 60, 62], "second": 43, "third": 43, "omit": 43, "runtimeerror": 43, "accuraci": [44, 58, 59, 62], "auroc": [44, 57, 58, 59, 62, 64], "averag": [44, 45, 46, 48, 49, 50, 52, 54, 55, 58, 59, 60], "precis": [44, 45, 48, 49, 51, 52, 53, 54, 55, 58, 59, 60, 62], "f1": 44, "score": [44, 45, 46, 47, 50, 51, 52, 53, 54, 55, 56], "f": [44, 48, 58, 59, 60, 61, 62], "beta": 44, "precisionrecallcurv": 44, "recal": [44, 45, 47, 48, 51, 53, 54, 55, 58, 59, 60, 62], "roc": [44, 46, 58, 59, 62], "curv": [44, 46, 51, 58, 59, 62], "statscor": 44, "differ": [45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 58, 59, 60, 62, 63], "classif": [45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 62], "multiclass": [45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56], "One": [45, 46, 49, 50, 52, 53, 59, 60, 62], "pos_label": [45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56], "posit": [45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62], "num_class": [45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 62], "decid": [45, 48, 49, 50, 52, 54, 55], "top_k": [45, 47, 48, 49, 50, 52, 54, 55, 56], "logit": [45, 48, 49, 50, 51, 52, 54, 55, 56], "top": [45, 47, 48, 49, 50, 52, 54, 55, 56], "k": [45, 48, 49, 50, 52, 54, 55, 56, 61], "num_label": [45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 60], "micro": [45, 46, 47, 48, 49, 50, 52, 54, 55], "macro": [45, 46, 47, 48, 49, 50, 52, 54, 55], "weight": [45, 46, 47, 48, 49, 50, 52, 54, 55, 60, 61, 62], "calcul": [45, 46, 47, 48, 49, 50, 52, 54, 55], "global": [45, 46, 47, 48, 49, 50, 52, 54, 55], "unweight": [45, 46, 47, 48, 49, 50, 52, 54, 55], "alter": [45, 48, 49, 50, 52, 54, 55], "zero_divis": [45, 47, 48, 49, 50, 52, 54, 55], "zero": [45, 47, 48, 49, 50, 52, 54, 55], "divis": [45, 47, 48, 49, 50, 52, 54, 55], "act": [45, 47, 48, 49, 50, 52, 54, 55, 56], "also": [45, 47, 48, 49, 50, 52, 54, 55, 58, 59, 60, 62, 64], "pred": [45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 62], "75": [45, 46, 47, 51, 53, 54, 55, 58], "reset_st": [45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56], "05": [45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56], "95": [45, 46, 48, 50, 51, 53], "zip": [45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56], "update_st": [45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56], "66666667": [45, 48, 51, 52, 53, 54, 55], "sigmoid": [45, 46, 49, 51, 53, 55, 56], "them": [45, 55, 58, 59, 62, 63], "875": 45, "problem": [45, 51, 54, 56, 64], "highest": [45, 50, 52, 54, 55], "binar": [45, 46, 48, 53, 56], "classifi": [45, 48, 49, 50, 52, 54, 55, 58, 59, 62], "correct": [45, 46, 48, 49, 50, 51, 52, 53, 54, 55], "per": [45, 59, 62], "npt": [45, 46, 47, 48, 49, 50, 51, 52, 54, 55, 56], "arraylik": [45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56], "ground": [45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56], "truth": [45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56], "acc_scor": 45, "9": [45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62], "4": [45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62, 63], "5555555555555555": 45, "like": [45, 50, 52, 54, 58], "shape": [45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 60, 61], "num_sampl": 45, "flot": 45, "6666666666666666": [45, 48, 50, 51], "max_fpr": 46, "rate": [46, 53, 58, 59, 60, 62], "partial": [46, 60], "auc": 46, "automat": [46, 47, 51, 53], "area": [46, 58, 59, 62], "under": [46, 58, 59, 62], "35": [46, 47, 51, 53, 54, 55, 58, 59, 60, 61, 62], "6111111111111112": 46, "89": [46, 53], "06": [46, 53, 60], "94": 46, "22222222": 46, "625": [46, 49, 55], "aucroc": 46, "auroc_scor": 46, "thei": [46, 51, 53], "via": 46, "softmax": [46, 51, 53], "33333333": [46, 51, 52, 53, 54], "5833333333333333": 47, "1d": [47, 53], "increas": [47, 53], "85714286": 48, "harmon": [49, 58, 59, 62], "8333333333333334": [49, 50, 52, 54], "9090909090909091": 49, "83333333": 49, "55555556": [49, 55], "90909091": 49, "85": [49, 50, 52, 54, 58, 62], "7142857142857143": 49, "appropri": [50, 52, 54, 58, 59, 62], "ratio": [50, 52, 54, 55, 62], "correctli": [50, 58, 59, 60, 62], "observ": [50, 62, 64], "precision_scor": 50, "11": [50, 58, 59, 60, 62, 64], "22": [50, 56, 58, 59, 62], "84": 50, "73": [50, 62], "33": [50, 58, 59, 62], "92": 50, "expect": [50, 52, 54, 58, 59, 62], "n": [50, 52, 54, 58, 59, 60], "l": [50, 52, 54], "presenc": [50, 52, 54, 60], "absenc": [50, 52, 54], "suniqu": 51, "45": [51, 54, 55, 58, 59, 62], "42857143": 51, "375": 51, "multilaabel": 51, "prec": 51, "tolist": [51, 58, 59, 60, 62], "3333333333333333": [51, 52, 54], "rec": 51, "binary_precision_recall_curv": [51, 58, 59, 62], "autofunct": [51, 52], "element": 51, "len": [51, 58, 59, 60, 62], "tp": [52, 54], "fn": [52, 54], "intuit": [52, 54], "abil": [52, 54, 58, 59, 62], "recall_scor": 52, "binary_recal": [52, 58, 59, 62], "precision_recal": 52, "rest": [52, 54], "evenli": 53, "fpr": [53, 58, 59, 62], "tpr": 53, "02": [53, 58, 59, 62], "03": [53, 58, 59], "sensitv": 54, "55": [54, 59], "65": [54, 60, 61], "15": [55, 56, 58, 59, 62], "57142857": 55, "stat": 56, "prior": 56, "classwis": 56, "labelwis": 56, "16": [56, 58, 59, 62], "26": [56, 58, 59, 62], "58": 56, "61": 56, "17": [56, 58, 59, 62], "71": 56, "09": [56, 58, 59, 62], "20": [56, 58, 59, 60, 62], "82": 56, "13": [56, 58, 59, 60, 62], "10": [56, 58, 59, 60, 61, 62], "point": 56, "special": 56, "statist": [56, 58, 59, 60, 62, 63], "n_class": 56, "n_label": 56, "assum": 56, "nadarrai": 56, "kaggl": [57, 58], "constant": [57, 64], "distribut": [57, 60, 64], "outcom": [57, 64], "preprocessor": [57, 64], "creation": [57, 64], "mimiciv": [57, 59], "queri": [57, 64], "inspect": [57, 58, 64], "preprocess": [57, 58, 64], "drop": [57, 58, 64], "nan_threshold": [57, 58, 64], "gender": [57, 58, 60, 61, 64], "synthea": [57, 62], "prolong": [57, 59], "length": [57, 59, 60], "stai": [57, 59], "nih": [57, 60, 61], "chest": 57, "rai": 57, "diseas": [57, 58, 64], "histor": [57, 64], "period": [57, 64], "w": [57, 64], "notebook": [58, 59, 60, 62], "showcas": [58, 59, 62, 64], "popular": 58, "formul": [58, 59, 62], "patient": [58, 59, 60, 61, 62, 64], "copi": [58, 59, 60, 62], "shutil": [58, 59, 60, 62], "express": [58, 59, 60, 62], "px": [58, 59, 60, 62], "kaggle_api_extend": 58, "kaggleapi": 58, "simpleimput": [58, 59, 62], "minmaxscal": [58, 59, 62], "onehotencod": [58, 59, 62], "df": [58, 59, 62], "tabularfeatur": [58, 59, 62], "slicer": [58, 59, 60, 61, 62], "noqa": [58, 59, 60, 62], "e402": [58, 59, 60, 62], "create_metr": [58, 59, 60, 62], "experiment": [58, 59, 60, 62], "metric_dict": [58, 59, 62], "catalog": [58, 59, 62], "create_model": [58, 59, 62], "modelcardreport": [58, 59, 60, 62], "classificationplott": [58, 59, 62], "util": [58, 59, 60, 62], "flatten_results_dict": [58, 59, 62], "binarytabularclassificationtask": [58, 59, 62], "join": [58, 59, 62], "load_datafram": 58, "offer": [58, 59, 60, 62], "overview": [58, 59, 60, 62], "high": [58, 59, 60, 62], "quick": [58, 59, 60, 62], "glanc": [58, 59, 60, 62], "sever": [58, 59, 60, 62], "subgroup": [58, 59, 60, 62], "subpopul": [58, 59, 60, 62], "technic": [58, 59, 60, 62], "architectur": [58, 59, 60, 62], "involv": [58, 59, 60, 62], "intend": [58, 59, 60, 62], "go": [58, 59, 60, 62], "end": [58, 59, 60, 62], "tool": [58, 59, 60, 62], "progress": [58, 59, 60, 62], "subject": [58, 59, 60, 62], "data_dir": [58, 60], "random_se": [58, 59, 62], "train_siz": [58, 59, 62], "pip": [58, 65], "sign": [58, 62], "www": 58, "com": [58, 60], "Then": 58, "profil": [58, 59, 62], "usernam": 58, "trigger": 58, "download": 58, "credenti": 58, "place": 58, "locat": 58, "machin": [58, 60], "authent": 58, "dataset_download_fil": 58, "fedesoriano": 58, "unzip": 58, "csv": [58, 62], "file_format": 58, "reset_index": [58, 59, 62], "2024": [58, 59, 62], "27": [58, 59, 62], "19": [58, 59, 60, 62], "08": [58, 59], "034": 58, "chestpaintyp": 58, "restingbp": 58, "cholesterol": 58, "fastingb": 58, "restingecg": 58, "40": [58, 59, 62], "ata": 58, "140": 58, "289": 58, "49": [58, 62], "nap": 58, "160": 58, "180": 58, "37": [58, 59, 62], "130": 58, "283": [58, 62], "st": 58, "48": [58, 59, 62], "asi": 58, "138": 58, "214": 58, "54": 58, "150": [58, 62], "195": 58, "913": 58, "ta": 58, "110": 58, "264": 58, "914": 58, "68": 58, "144": 58, "193": 58, "915": 58, "57": 58, "131": 58, "916": 58, "236": 58, "lvh": 58, "917": 58, "38": [58, 59, 62], "175": 58, "maxhr": 58, "exerciseangina": 58, "oldpeak": 58, "st_slope": 58, "heartdiseas": 58, "172": 58, "156": 58, "flat": 58, "98": 58, "108": 58, "122": 58, "132": 58, "141": 58, "115": 58, "174": 58, "173": 58, "918": 58, "pie": [58, 59, 60, 62], "update_layout": [58, 59, 60, 62], "titl": [58, 59, 60, 62], "histogram": [58, 59, 60, 62], "xaxis_titl": [58, 59, 60, 62], "yaxis_titl": [58, 59, 60, 62], "bargap": [58, 59, 60, 62], "astyp": [58, 59, 62], "update_trac": [58, 59, 60, 62], "textinfo": [58, 59, 62], "percent": [58, 59, 62], "title_text": [58, 59, 62], "hovertempl": [58, 59, 62], "br": [58, 59, 62], "class_count": [58, 59, 62], "value_count": [58, 59, 62], "class_ratio": [58, 59, 62], "8070866141732284": 58, "508": 58, "410": 58, "int64": [58, 59, 60], "14": [58, 59, 60, 62, 64], "39": [58, 59, 60, 62], "wa": [58, 59, 60, 62], "li": 58, "et": 58, "al": 58, "most": 58, "features_list": [58, 59, 62], "essenti": [58, 59, 62], "step": [58, 59, 62], "understand": [58, 59, 62], "u": [58, 59, 62], "tab_featur": [58, 59, 62], "ordin": [58, 59, 62], "might": [58, 59, 62], "numeric_transform": [58, 59, 62], "scaler": [58, 59, 62], "binary_transform": [58, 59, 62], "most_frequ": [58, 59, 62], "18": [58, 59, 61, 62], "numeric_featur": [58, 59, 62], "features_by_typ": [58, 59, 62], "numeric_indic": [58, 59, 62], "get_loc": [58, 59, 62], "binary_featur": [58, 59, 62], "ordinal_featur": [58, 59], "binary_indic": [58, 59, 62], "ordinal_indic": [58, 59], "num": [58, 59, 62], "onehot": [58, 59, 62], "handle_unknown": [58, 59, 62], "remaind": [58, 59, 62], "passthrough": [58, 59, 62], "let": [58, 59, 62], "21": [58, 59, 62], "alreadi": [58, 59, 62], "independ": 58, "common": [58, 59], "everi": 58, "uci": 58, "learn": [58, 60], "archiv": 58, "ic": 58, "edu": 58, "ml": [58, 59, 62], "databas": [58, 59, 62], "cleandoc": 58, "misc": 58, "author": [58, 60], "publish": 58, "cc0": 58, "demograph": [58, 60], "often": 58, "strong": 58, "correl": 58, "older": [58, 59, 62], "higher": 58, "power": [58, 59, 62], "easi": [58, 59, 62], "from_panda": [58, 59, 62], "cleanup_cache_fil": [58, 59, 62], "num_row": 58, "cast_column": [58, 59, 62], "stratify_by_column": [58, 59, 62], "straightforward": [58, 59, 62], "maintain": [58, 59, 62], "instanti": [58, 59, 62], "line": [58, 59, 62], "sgd": 58, "logisit": [58, 59, 62], "regress": [58, 59, 62], "sgdclassif": 58, "24": [58, 59, 62], "sgd_classifi": 58, "random_st": [58, 59, 62], "123": [58, 59, 62], "verbos": [58, 59, 62], "class_weight": 58, "balanc": 58, "encapsul": [58, 59, 62], "cohes": [58, 59, 62], "structur": [58, 59, 62], "smooth": [58, 59, 62], "manag": [58, 59, 62], "heart_failure_prediction_task": 58, "after": [58, 59, 62], "hyperparamet": [58, 59, 62], "search": [58, 59, 62], "grid": [58, 59, 62], "alpha": 58, "0001": 58, "001": 58, "100": [58, 59, 60, 62], "learning_r": [58, 59, 62], "invscal": 58, "adapt": 58, "eta0": 58, "roc_auc": 58, "998": 58, "wrapper": [58, 59, 60, 62], "sk_model": [58, 59, 62], "999": 58, "sgdclassifi": 58, "x27": [58, 59, 62], "early_stop": 58, "loss": 58, "log_loss": 58, "jupyt": [58, 59, 62], "rerun": [58, 59, 62], "cell": [58, 59, 62], "On": [58, 59, 60, 62], "github": [58, 59, 60, 62], "unabl": [58, 59, 62], "render": [58, 59, 62], "try": [58, 59, 62], "page": [58, 59, 62], "nbviewer": [58, 59, 62], "sgdclassifiersgdclassifi": 58, "28": [58, 59, 62], "model_param": [58, 59, 62], "epsilon": 58, "fit_intercept": 58, "l1_ratio": 58, "max_it": 58, "n_iter_no_chang": 58, "n_job": [58, 59, 62], "penalti": 58, "l2": 58, "power_t": 58, "tol": 58, "validation_fract": 58, "warm_start": 58, "29": [58, 59, 62], "30": [58, 59, 60, 62, 64], "y_pred": [58, 59, 62], "only_predict": [58, 59, 62], "184": [58, 59], "perspect": [58, 59, 62], "binary_accuraci": [58, 59, 62], "binary_precis": [58, 59, 62], "binary_f1_scor": [58, 59, 62], "binary_auroc": [58, 59, 62], "binary_average_precis": [58, 59], "binary_roc_curv": [58, 59, 62], "metric_collect": [58, 59, 62], "certain": [58, 59, 62], "50": [58, 59, 61, 62], "70": 58, "binary_specif": [58, 59, 62], "binary_sensit": [58, 59, 62], "fnr": [58, 59, 62], "ber": [58, 59, 62], "fairness_metric_collect": [58, 59, 62], "34": [58, 59, 62], "dataset_with_pr": [58, 59, 62], "36": [58, 59, 62], "results_femal": 58, "_": 58, "binaryaccuraci": [58, 59, 62], "right": [58, 59, 62], "model_for_pr": [58, 59, 62], "results_flat": [58, 59, 60, 62], "remove_metr": [58, 59, 62], "binaryroc": [58, 59, 62], "binaryprecisionrecallcurv": [58, 59, 62], "results_female_flat": 58, "w505": [58, 59], "item": [58, 59, 60, 61, 62], "plw2901": [58, 59, 60, 62], "binaryprecis": [58, 59, 62], "binaryrecal": [58, 59, 62], "actual": [58, 59, 60, 62], "known": [58, 59, 60, 62], "binaryauroc": [58, 59, 62], "receiv": [58, 59, 62], "characterist": [58, 59, 62], "measur": [58, 59, 62], "binaryaverageprecis": [58, 59], "auprc": [58, 59], "binaryf1scor": [58, 59, 62], "lambda": [58, 59, 60, 61, 62], "plotter": [58, 59, 61, 62], "class_nam": [58, 59, 62], "set_templ": [58, 59, 62], "plotly_whit": [58, 59, 62], "extract": [58, 59, 62], "roc_curv": [58, 59, 62], "slice_result": [58, 59, 62], "dict_kei": [58, 59, 62], "roc_plot": [58, 59, 62], "roc_curve_comparison": [58, 59, 62], "femal": [58, 60, 61, 62], "41": [58, 59, 62], "pr_curv": [58, 59], "average_precis": [58, 59], "pr_plot": [58, 59], "precision_recall_curve_comparison": [58, 59], "comparison": [58, 59, 62], "43": [58, 59, 62], "overall_perform": [58, 59, 62], "metric_valu": [58, 59, 62], "44": [58, 59, 62], "overall_performance_plot": [58, 59, 62], "metrics_valu": [58, 59, 62], "slice_metr": [58, 59, 62], "46": [58, 59, 62], "slice_metrics_plot": [58, 59, 62], "metrics_comparison_bar": [58, 59, 62], "47": [58, 59, 62], "reform": [58, 59, 62], "fairness_result": [58, 59, 62], "deepcopi": [58, 59, 62], "fairness_metr": [58, 59, 62], "group_siz": [58, 59, 62], "pop": [58, 59, 62], "fairness_plot": [58, 59, 62], "metrics_comparison_scatt": [58, 59, 62], "some": [58, 59, 62], "audienc": [58, 59, 62], "organ": [58, 59, 62], "store": [58, 59, 62], "regulatory_requir": [58, 59, 62], "todai": [58, 59, 62], "releas": [58, 59, 62], "team": [58, 59, 62], "vectorinstitut": [58, 59, 62], "io": [58, 59, 62], "email": [58, 59, 60, 62], "scikit": 58, "stabl": [58, 59, 62], "linear_model": 58, "e501": [58, 59, 62], "next": [58, 59, 62], "use_cas": [58, 59, 62], "These": [58, 59, 62], "could": [58, 59, 62], "downstream": [58, 59, 62], "fairness_assess": [58, 59, 62], "well": [58, 59, 60, 62], "taken": [58, 59, 62], "ethical_consider": [58, 59, 62], "condit": 58, "other": 58, "bias": [58, 59, 60, 62], "lead": [58, 59, 62], "wors": [58, 59, 62], "retrain": [58, 59, 62], "By": [58, 59, 62], "folder": [58, 59, 62], "51": 58, "_model_card": [58, 59, 62], "report_path": [58, 59, 60, 62], "heart_failure_report_period": 58, "metric_sav": 58, "quantitative_analysi": [58, 59, 62], "performance_metr": [58, 59, 62], "append": [58, 62], "random": [58, 59, 61, 62], "els": [58, 60, 61], "rmtree": [58, 59, 62], "view": [58, 59, 60, 62, 64], "die": 59, "admiss": 59, "cycqueri": [59, 62], "op": [59, 62], "qo": [59, 62], "graph_object": [59, 62], "mimicivqueri": 59, "imblearn": 59, "over_sampl": 59, "smote": 59, "imbpipelin": 59, "aggreg": 59, "restrict_timestamp": 59, "clean": 59, "normalize_nam": 59, "add_years_approxim": 59, "deathtim": 59, "lab": [59, 60], "event": 59, "merg": [59, 62], "querier": [59, 62], "dbm": [59, 62], "postgresql": [59, 62], "port": [59, 62], "5432": [59, 62], "host": [59, 62], "localhost": [59, 62], "postgr": [59, 62], "password": [59, 62], "pwd": [59, 62], "def": [59, 62], "get_encount": [59, 62], "mimiciv_hosp": 59, "drop_op": 59, "languag": 59, "marital_statu": 59, "edregtim": 59, "edouttim": 59, "patient_encount": [59, 62], "subject_id": 59, "admittim": 59, "dt": 59, "anchor_year": 59, "anchor_ag": 59, "col": 59, "dischtim": 59, "anchor_year_differ": 59, "hadm_id": 59, "admission_loc": 59, "admission_typ": 59, "insur": 59, "hospital_expire_flag": 59, "compute_mortality_outcom": 59, "death": 59, "invalid": 59, "isna": 59, "shorter": 59, "di": 59, "mortality_outcom": 59, "get_labev": 59, "labev": 59, "index_col": 59, "batch_mod": 59, "process_labev": 59, "revers": 59, "deidentifi": 59, "charttim": 59, "categori": [59, 62], "start_timestamp": 59, "set_index": 59, "renam": [59, 62], "mean_aggreg": 59, "valuenum": 59, "means_df": 59, "batch_num": 59, "labevents_batch": 59, "enumer": [59, 60], "pivot": 59, "add_prefix": [59, 62], "lab_": 59, "concat": 59, "break": 59, "run_queri": [59, 62], "cohort": [59, 62], "396": 59, "orm": [59, 62], "readi": [59, 62], "099": 59, "successfulli": [59, 62], "101": 59, "finish": [59, 62], "execut": [59, 62], "432613": 59, "105518": 59, "5925": 59, "04": 59, "105": 59, "106": 59, "225979": 59, "null_count": [59, 62], "isnul": [59, 62], "bar": [59, 60, 62], "height": [59, 60], "600": 59, "respect": [59, 62], "final": [59, 60, 62], "larger": [59, 62], "thresh_nan": [59, 62], "dropna": [59, 62], "thresh": [59, 62], "heavili": 59, "unbalanc": 59, "36758893280632": 59, "14008": 59, "253": 59, "lab_mchc": 59, "lab_whit": 59, "blood": [59, 62], "lab_inr": 59, "pt": 59, "lab_pt": 59, "lab_rdw": 59, "sd": 59, "lab_glucos": 59, "lab_magnesium": 59, "lab_mch": 59, "lab_hemoglobin": 59, "lab_potassium": 59, "lab_i": 59, "lab_alkalin": 59, "phosphatas": [59, 62], "lab_ph": 59, "lab_ptt": 59, "lab_bilirubin": 59, "lab_phosph": 59, "lab_alanin": 59, "aminotransferas": [59, 62], "alt": 59, "lab_hematocrit": 59, "lab_platelet": 59, "lab_urea": 59, "nitrogen": [59, 62], "lab_h": 59, "lab_aspar": 59, "ast": 59, "lab_l": 59, "lab_chlorid": 59, "lab_calcium": 59, "lab_bicarbon": 59, "lab_creatinin": 59, "lab_mcv": 59, "lab_anion": 59, "gap": 59, "lab_r": 59, "lab_sodium": 59, "preprocessor_pipelin": 59, "oversampl": 59, "xgbclassif": [59, 62], "xgb_classifi": [59, 62], "mortality_task": 59, "n_estim": [59, 62], "250": [59, 62], "500": [59, 62], "max_depth": [59, 62], "reg_lambda": [59, 62], "colsample_bytre": [59, 62], "gamma": [59, 62], "183": 59, "185": 59, "186": 59, "xgbclassifi": [59, 62], "base_scor": [59, 62], "booster": [59, 62], "callback": [59, 62], "colsample_bylevel": [59, 62], "colsample_bynod": [59, 62], "early_stopping_round": [59, 62], "enable_categor": [59, 62], "eval_metr": [59, 62], "logloss": [59, 62], "feature_typ": [59, 62], "gpu_id": [59, 62], "grow_polici": [59, 62], "importance_typ": [59, 62], "interaction_constraint": [59, 62], "max_bin": [59, 62], "max_cat_threshold": [59, 62], "max_cat_to_onehot": [59, 62], "max_delta_step": [59, 62], "max_leav": [59, 62], "min_child_weight": [59, 62], "miss": [59, 62], "monotone_constraint": [59, 62], "num_parallel_tre": [59, 62], "predictor": [59, 62], "xgbclassifierxgbclassifi": [59, 62], "logist": [59, 62], "use_label_encod": [59, 62], "reg_alpha": [59, 62], "sampling_method": [59, 62], "scale_pos_weight": [59, 62], "subsampl": [59, 62], "tree_method": [59, 62], "validate_paramet": [59, 62], "2853": 59, "80": [59, 60, 62], "__rsub__": 59, "implement": [59, 64], "readthedoc": [59, 62], "en": [59, 62], "python_api": [59, 62], "mortality_report_period": 59, "functool": 60, "densenet": [60, 61], "filter_valu": 60, "lambdad": [60, 61], "resiz": [60, 61], "apply_transform": 60, "clinical_dataset": [60, 61], "nih_d": [60, 61], "spatial_s": [60, 61], "224": [60, 61], "allow_missing_kei": [60, 61], "func": [60, 61], "1024": [60, 61], "newaxi": [60, 61], "densenet121": [60, 61], "res224": [60, 61], "feature_column": [60, 61], "No": 60, "adjust": 60, "originalimag": 60, "width": [60, 62], "originalimagepixelspac": 60, "unnam": 60, "atelectasi": 60, "float32": 60, "cardiomegali": 60, "consolid": 60, "edema": 60, "effus": 60, "emphysema": 60, "fibrosi": 60, "hernia": 60, "infiltr": 60, "mass": [60, 62], "nodul": 60, "pleural_thicken": 60, "pneumonia": 60, "pneumothorax": 60, "__index_level_0__": 60, "ppv": 60, "multilabel_ppv": 60, "npv": 60, "multilabel_npv": 60, "multilabel_specif": 60, "multilabel_sensit": 60, "nih_eval_results_gend": 60, "nih_eval_results_ag": 60, "male": [60, 61], "showlegend": 60, "slice_": 60, "model_for_predict": 60, "itr": 60, "multilabelppv": 60, "among": 60, "multilabelnpv": 60, "multilabelsensit": 60, "multilabelspecif": 60, "isinst": 60, "112": [60, 64], "120": [60, 62, 64], "frontal": [60, 64], "805": [60, 64], "fourteen": 60, "mine": 60, "radiolog": 60, "pleural": 60, "thicken": 60, "arxiv": 60, "ab": 60, "2111": 60, "00595": 60, "inproceed": 60, "cohen2022xrv": 60, "cohen": 60, "joseph": 60, "paul": 60, "viviano": 60, "bertin": 60, "morrison": 60, "torabian": 60, "parsa": 60, "guarrera": 60, "matteo": 60, "lungren": 60, "matthew": 60, "chaudhari": 60, "akshai": 60, "brook": 60, "rupert": 60, "hashir": 60, "mohammad": 60, "bertrand": 60, "hadrien": 60, "booktitl": 60, "deep": 60, "url": 60, "mlmed": 60, "arxivid": 60, "cohen2020limit": 60, "cross": 60, "domain": 60, "autom": [60, 62], "2002": 60, "02497": 60, "medicin": 60, "josephpcohen": 60, "radiologist": 60, "inabl": 60, "addition": 60, "poor": 60, "qualiti": 60, "artifact": 60, "geograph": 60, "region": 60, "ethic": 60, "ensur": 60, "divers": 60, "regularli": 60, "updat": 60, "human": 60, "expertis": 60, "address": 60, "rare": 60, "nihcxr_report_period": 60, "2023": 60, "clinicalshiftappl": 61, "detector": 61, "reductor": 61, "tstester": 61, "plot_drift_experi": 61, "plot_drift_timeseri": 61, "manual_se": 61, "lt": 61, "_c": 61, "0x7fa78de3af70": 61, "gt": 61, "shifter": 61, "source_d": 61, "target_d": 61, "dr_method": 61, "bbse": 61, "soft": 61, "txrv": 61, "ae": 61, "sensitivity_test": 61, "tester": 61, "tester_method": 61, "source_sample_s": 61, "target_sample_s": 61, "num_run": 61, "detect_shift": 61, "chexpert": 61, "chex": 61, "padchest": 61, "pc": 61, "source_slic": 61, "target_slic": 61, "rolling_window_drift": 61, "timestamp_column": 61, "window_s": 61, "4w": 61, "longer": 62, "v3": 62, "instruct": 62, "etl": 62, "datasetqueri": 62, "num_dai": 62, "synthea_demo": 62, "nativ": 62, "sequenti": 62, "patient_id": 62, "birthdat": 62, "race": 62, "ethnic": 62, "isout": 62, "encounter_id": 62, "extracttimestampcompon": 62, "start_year": 62, "birthdate_year": 62, "addcolumn": 62, "new_col_label": 62, "lo": 62, "conditiongreaterthan": 62, "conditionlessthan": 62, "get_observ": 62, "conditionin": 62, "laboratori": 62, "vital": 62, "conditionequ": 62, "groupby_op": 62, "groupbyaggreg": 62, "n_ob": 62, "observations_count": 62, "observations_stat": 62, "pivot_t": 62, "obs_": 62, "get_med": 62, "n_med": 62, "get_procedur": 62, "procedur": [62, 64], "n_procedur": 62, "cohort_queri": 62, "to_merg": 62, "extend": 62, "to_merge_df": 62, "044": 62, "284": 62, "887026": 62, "121": 62, "835471": 62, "657": 62, "658": 62, "382661": 62, "151": 62, "488408": 62, "232": 62, "234": 62, "081796": 62, "length_of_stai": 62, "length_of_stay_count": 62, "length_of_stay_kei": 62, "5573997233748271": 62, "obs_alanin": 62, "enzymat": 62, "volum": 62, "serum": 62, "plasma": 62, "obs_albumin": 62, "obs_alkalin": 62, "obs_aspart": 62, "obs_bilirubin": 62, "obs_bodi": 62, "obs_calcium": 62, "obs_carbon": 62, "dioxid": 62, "mole": 62, "obs_chlorid": 62, "obs_creatinin": 62, "obs_diastol": 62, "pressur": 62, "obs_erythrocyt": 62, "obs_ferritin": 62, "obs_glomerular": 62, "filtrat": 62, "sq": 62, "obs_glucos": 62, "obs_hematocrit": 62, "obs_hemoglobin": 62, "obs_leukocyt": 62, "obs_mch": 62, "entit": 62, "obs_mchc": 62, "obs_mcv": 62, "obs_oxygen": 62, "satur": 62, "arteri": 62, "obs_platelet": 62, "obs_potassium": 62, "obs_protein": 62, "obs_sodium": 62, "obs_systol": 62, "obs_troponin": 62, "cardiac": 62, "obs_urea": 62, "los_task": 62, "257": 62, "258": 62, "259": 62, "260": 62, "226": 62, "binary_confusion_matrix": 62, "rsub": 62, "due": 62, "binaryconfusionmatrix": 62, "confus": 62, "confusion_matrix": 62, "conf_plot": 62, "plot_confusion_matrix": 62, "binaryroccurv": 62, "length_of_stay_report_period": 62, "drift": 63, "experi": 63, "reduct": 63, "techniqu": 63, "roll": 63, "biweekli": 63, "variabl": 64, "ehr": 64, "collect": 64, "site": 64, "icu": 64, "demonstr": 64}, "objects": {"cyclops": [[38, 0, 0, "-", "data"], [39, 0, 0, "-", "monitor"], [40, 0, 0, "-", "report"], [41, 0, 0, "-", "tasks"]], "cyclops.data": [[8, 0, 0, "-", "aggregate"], [38, 0, 0, "-", "features"], [14, 0, 0, "-", "slicer"]], "cyclops.data.aggregate": [[9, 1, 1, "", "Aggregator"], [10, 4, 1, "", "tabular_as_aggregated"], [11, 4, 1, "", "timestamp_ffill_agg"]], "cyclops.data.aggregate.Aggregator": [[9, 2, 1, "", "__init__"], [9, 3, 1, "", "agg_by"], [9, 3, 1, "", "agg_meta_for"], [9, 3, 1, "", "aggfuncs"], [9, 2, 1, "", "fit"], [9, 2, 1, "", "fit_transform"], [9, 3, 1, "", "imputer"], [9, 3, 1, "", "num_timesteps"], [9, 2, 1, "", "set_output"], [9, 3, 1, "", "time_by"], [9, 3, 1, "", "timestamp_col"], [9, 3, 1, "", "timestep_size"], [9, 2, 1, "", "transform"], [9, 3, 1, "", "window_duration"], [9, 3, 1, "", "window_start_time"], [9, 3, 1, "", "window_stop_time"], [9, 3, 1, "", "window_times"]], "cyclops.data.features": [[12, 0, 0, "-", "medical_image"]], "cyclops.data.features.medical_image": [[13, 1, 1, "", "MedicalImage"]], "cyclops.data.features.medical_image.MedicalImage": [[13, 2, 1, "", "__call__"], [13, 2, 1, "", "cast_storage"], [13, 2, 1, "", "decode_example"], [13, 2, 1, "", "embed_storage"], [13, 2, 1, "", "encode_example"], [13, 2, 1, "", "flatten"]], "cyclops.data.slicer": [[15, 1, 1, "", "SliceSpec"], [16, 4, 1, "", "compound_filter"], [17, 4, 1, "", "filter_datetime"], [18, 4, 1, "", "filter_non_null"], [19, 4, 1, "", "filter_range"], [20, 4, 1, "", "filter_string_contains"], [21, 4, 1, "", "filter_value"], [22, 4, 1, "", "is_datetime"], [23, 4, 1, "", "overall"]], "cyclops.data.slicer.SliceSpec": [[15, 3, 1, "", "_registry"], [15, 2, 1, "", "add_slice_spec"], [15, 3, 1, "", "column_names"], [15, 2, 1, "", "get_slices"], [15, 3, 1, "", "include_overall"], [15, 2, 1, "", "slices"], [15, 3, 1, "", "spec_list"], [15, 3, 1, "", "validate"]], "cyclops.evaluate.evaluator": [[42, 4, 1, "", "evaluate"]], "cyclops.evaluate.fairness.evaluator": [[43, 4, 1, "", "evaluate_fairness"]], "cyclops.evaluate.metrics": [[46, 1, 1, "", "AUROC"], [45, 1, 1, "", "Accuracy"], [46, 1, 1, "", "BinaryAUROC"], [45, 1, 1, "", "BinaryAccuracy"], [47, 1, 1, "", "BinaryAveragePrecision"], [48, 1, 1, "", "BinaryF1Score"], [49, 1, 1, "", "BinaryFbetaScore"], [50, 1, 1, "", "BinaryPrecision"], [51, 1, 1, "", "BinaryPrecisionRecallCurve"], [53, 1, 1, "", "BinaryROCCurve"], [52, 1, 1, "", "BinaryRecall"], [54, 1, 1, "", "BinarySensitivity"], [55, 1, 1, "", "BinarySpecificity"], [56, 1, 1, "", "BinaryStatScores"], [48, 1, 1, "", "F1Score"], [49, 1, 1, "", "FbetaScore"], [46, 1, 1, "", "MulticlassAUROC"], [45, 1, 1, "", "MulticlassAccuracy"], [48, 1, 1, "", "MulticlassF1Score"], [49, 1, 1, "", "MulticlassFbetaScore"], [50, 1, 1, "", "MulticlassPrecision"], [51, 1, 1, "", "MulticlassPrecisionRecallCurve"], [53, 1, 1, "", "MulticlassROCCurve"], [52, 1, 1, "", "MulticlassRecall"], [54, 1, 1, "", "MulticlassSensitivity"], [55, 1, 1, "", "MulticlassSpecificity"], [56, 1, 1, "", "MulticlassStatScores"], [46, 1, 1, "", "MultilabelAUROC"], [45, 1, 1, "", "MultilabelAccuracy"], [48, 1, 1, "", "MultilabelF1Score"], [49, 1, 1, "", "MultilabelFbetaScore"], [50, 1, 1, "", "MultilabelPrecision"], [51, 1, 1, "", "MultilabelPrecisionRecallCurve"], [53, 1, 1, "", "MultilabelROCCurve"], [52, 1, 1, "", "MultilabelRecall"], [54, 1, 1, "", "MultilabelSensitivity"], [55, 1, 1, "", "MultilabelSpecificity"], [56, 1, 1, "", "MultilabelStatScores"], [50, 1, 1, "", "Precision"], [51, 1, 1, "", "PrecisionRecallCurve"], [53, 1, 1, "", "ROCCurve"], [52, 1, 1, "", "Recall"], [54, 1, 1, "", "Sensitivity"], [55, 1, 1, "", "Specificity"], [56, 1, 1, "", "StatScores"]], "cyclops.evaluate.metrics.functional.accuracy": [[45, 4, 1, "", "binary_accuracy"], [45, 4, 1, "", "multiclass_accuracy"], [45, 4, 1, "", "multilabel_accuracy"]], "cyclops.evaluate.metrics.functional.auroc": [[46, 4, 1, "", "auroc"], [46, 4, 1, "", "binary_auroc"], [46, 4, 1, "", "multiclass_auroc"], [46, 4, 1, "", "multilabel_auroc"]], "cyclops.evaluate.metrics.functional.average_precision": [[47, 4, 1, "", "average_precision"], [47, 4, 1, "", "binary_average_precision"]], "cyclops.evaluate.metrics.functional.f_beta": [[48, 4, 1, "", "binary_f1_score"], [49, 4, 1, "", "binary_fbeta_score"], [48, 4, 1, "", "f1_score"], [49, 4, 1, "", "fbeta_score"], [48, 4, 1, "", "multiclass_f1_score"], [49, 4, 1, "", "multiclass_fbeta_score"], [48, 4, 1, "", "multilabel_f1_score"], [49, 4, 1, "", "multilabel_fbeta_score"]], "cyclops.evaluate.metrics.functional.precision_recall": [[50, 4, 1, "", "binary_precision"], [50, 4, 1, "", "multiclass_precision"], [52, 4, 1, "", "multiclass_recall"], [50, 4, 1, "", "multilabel_precision"], [52, 4, 1, "", "multilabel_recall"], [50, 4, 1, "", "precision"], [52, 4, 1, "", "recall"]], "cyclops.evaluate.metrics.functional.precision_recall_curve": [[51, 4, 1, "", "multiclass_precision_recall_curve"], [51, 4, 1, "", "multilabel_precision_recall_curve"], [51, 4, 1, "", "precision_recall_curve"]], "cyclops.evaluate.metrics.functional.roc": [[53, 4, 1, "", "binary_roc_curve"], [53, 4, 1, "", "multiclass_roc_curve"], [53, 4, 1, "", "multilabel_roc_curve"], [53, 4, 1, "", "roc_curve"]], "cyclops.evaluate.metrics.functional.sensitivity": [[54, 4, 1, "", "binary_sensitivity"], [54, 4, 1, "", "multiclass_sensitivity"], [54, 4, 1, "", "multilabel_sensitivity"], [54, 4, 1, "", "sensitivity"]], "cyclops.evaluate.metrics.functional.specificity": [[55, 4, 1, "", "binary_specificity"], [55, 4, 1, "", "multiclass_specificity"], [55, 4, 1, "", "multilabel_specificity"], [55, 4, 1, "", "specificity"]], "cyclops.evaluate.metrics.functional.stat_scores": [[56, 4, 1, "", "binary_stat_scores"], [56, 4, 1, "", "multiclass_stat_scores"], [56, 4, 1, "", "multilabel_stat_scores"], [56, 4, 1, "", "stat_scores"]], "cyclops.monitor": [[24, 0, 0, "-", "clinical_applicator"], [26, 0, 0, "-", "synthetic_applicator"]], "cyclops.monitor.clinical_applicator": [[25, 1, 1, "", "ClinicalShiftApplicator"]], "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator": [[25, 2, 1, "", "age"], [25, 2, 1, "", "apply_shift"], [25, 2, 1, "", "custom"], [25, 2, 1, "", "hospital_type"], [25, 2, 1, "", "month"], [25, 2, 1, "", "sex"], [25, 2, 1, "", "time"]], "cyclops.monitor.synthetic_applicator": [[27, 1, 1, "", "SyntheticShiftApplicator"], [28, 4, 1, "", "binary_noise_shift"], [29, 4, 1, "", "feature_association_shift"], [30, 4, 1, "", "feature_swap_shift"], [31, 4, 1, "", "gaussian_noise_shift"], [32, 4, 1, "", "knockout_shift"]], "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator": [[27, 2, 1, "", "apply_shift"]], "cyclops.report": [[33, 0, 0, "-", "report"]], "cyclops.report.report": [[34, 1, 1, "", "ModelCardReport"]], "cyclops.report.report.ModelCardReport": [[34, 2, 1, "", "export"], [34, 2, 1, "", "from_json_file"], [34, 2, 1, "", "log_citation"], [34, 2, 1, "", "log_dataset"], [34, 2, 1, "", "log_descriptor"], [34, 2, 1, "", "log_fairness_assessment"], [34, 2, 1, "", "log_from_dict"], [34, 2, 1, "", "log_image"], [34, 2, 1, "", "log_license"], [34, 2, 1, "", "log_model_parameters"], [34, 2, 1, "", "log_owner"], [34, 2, 1, "", "log_performance_metrics"], [34, 2, 1, "", "log_plotly_figure"], [34, 2, 1, "", "log_quantitative_analysis"], [34, 2, 1, "", "log_reference"], [34, 2, 1, "", "log_regulation"], [34, 2, 1, "", "log_risk"], [34, 2, 1, "", "log_use_case"], [34, 2, 1, "", "log_user"], [34, 2, 1, "", "log_version"]], "cyclops.tasks": [[35, 0, 0, "-", "classification"]], "cyclops.tasks.classification": [[36, 1, 1, "", "BinaryTabularClassificationTask"], [37, 1, 1, "", "MultilabelImageClassificationTask"]], "cyclops.tasks.classification.BinaryTabularClassificationTask": [[36, 2, 1, "", "__init__"], [36, 2, 1, "", "add_model"], [36, 5, 1, "", "data_type"], [36, 2, 1, "", "evaluate"], [36, 2, 1, "", "get_model"], [36, 2, 1, "", "list_models"], [36, 2, 1, "", "list_models_params"], [36, 2, 1, "", "load_model"], [36, 5, 1, "", "models_count"], [36, 2, 1, "", "predict"], [36, 2, 1, "", "save_model"], [36, 5, 1, "", "task_type"], [36, 2, 1, "", "train"]], "cyclops.tasks.classification.MultilabelImageClassificationTask": [[37, 2, 1, "", "__init__"], [37, 2, 1, "", "add_model"], [37, 5, 1, "", "data_type"], [37, 2, 1, "", "evaluate"], [37, 2, 1, "", "get_model"], [37, 2, 1, "", "list_models"], [37, 2, 1, "", "list_models_params"], [37, 2, 1, "", "load_model"], [37, 5, 1, "", "models_count"], [37, 2, 1, "", "predict"], [37, 2, 1, "", "save_model"], [37, 5, 1, "", "task_type"]]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:method", "3": "py:attribute", "4": "py:function", "5": "py:property"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "method", "Python method"], "3": ["py", "attribute", "Python attribute"], "4": ["py", "function", "Python function"], "5": ["py", "property", "Python property"]}, "titleterms": {"api": [0, 63], "refer": 0, "contribut": [1, 2], "cyclop": [1, 4, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41], "pre": 1, "commit": 1, "hook": 1, "code": 1, "guidelin": 1, "develop": 2, "us": [2, 5, 61, 64], "poetri": 2, "evalu": [3, 42, 43, 44, 58, 59, 62], "what": 4, "i": 4, "quick": 4, "start": 4, "instal": 5, "pip": 5, "model": [6, 58, 59, 60, 61, 62], "report": [6, 33, 34, 40, 58, 59, 60, 62], "monitor": [7, 24, 25, 26, 27, 28, 29, 30, 31, 32, 39, 63], "data": [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 38, 58, 59, 62, 64], "aggreg": [8, 9, 10, 11], "tabular_as_aggreg": 10, "timestamp_ffill_agg": 11, "featur": [12, 13, 38, 58, 59, 62], "medical_imag": [12, 13], "medicalimag": 13, "slicer": [14, 15, 16, 17, 18, 19, 20, 21, 22, 23], "slicespec": 15, "compound_filt": 16, "filter_datetim": 17, "filter_non_nul": 18, "filter_rang": 19, "filter_string_contain": 20, "filter_valu": 21, "is_datetim": 22, "overal": 23, "clinical_appl": [24, 25], "clinicalshiftappl": 25, "synthetic_appl": [26, 27, 28, 29, 30, 31, 32], "syntheticshiftappl": 27, "binary_noise_shift": 28, "feature_association_shift": 29, "feature_swap_shift": 30, "gaussian_noise_shift": 31, "knockout_shift": 32, "modelcardreport": 34, "task": [35, 36, 37, 41, 58, 59, 62], "classif": [35, 36, 37, 60, 64], "binarytabularclassificationtask": 36, "multilabelimageclassificationtask": 37, "fair": 43, "metric": [44, 60], "accuraci": 45, "modul": [45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56], "interfac": [45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56], "binaryaccuraci": 45, "multiclassaccuraci": 45, "multilabelaccuraci": 45, "function": [45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56], "binary_accuraci": 45, "multiclass_accuraci": 45, "multilabel_accuraci": 45, "auroc": [46, 60], "binaryauroc": 46, "multiclassauroc": 46, "multilabelauroc": 46, "binary_auroc": 46, "multiclass_auroc": 46, "multilabel_auroc": 46, "averag": 47, "precis": [47, 50], "binaryaverageprecis": 47, "average_precis": 47, "binary_average_precis": 47, "f1": 48, "score": [48, 49], "f1score": 48, "binaryf1scor": 48, "multiclassf1scor": 48, "multilabelf1scor": 48, "f1_score": 48, "binary_f1_scor": 48, "multiclass_f1_scor": 48, "multilabel_f1_scor": 48, "f": 49, "beta": 49, "fbetascor": 49, "binaryfbetascor": 49, "multiclassfbetascor": 49, "multilabelfbetascor": 49, "fbeta_scor": 49, "binary_fbeta_scor": 49, "multiclass_fbeta_scor": 49, "multilabel_fbeta_scor": 49, "binaryprecis": 50, "multiclassprecis": 50, "multilabelprecis": 50, "binary_precis": 50, "multiclass_precis": 50, "multilabel_precis": 50, "precisionrecallcurv": 51, "binaryprecisionrecallcurv": 51, "multiclassprecisionrecallcurv": 51, "multilabelprecisionrecallcurv": 51, "precision_recall_curv": 51, "multiclass_precision_recall_curv": 51, "multilabel_precision_recall_curv": 51, "recal": 52, "binaryrecal": 52, "multiclassrecal": 52, "multilabelrecal": 52, "multiclass_recal": 52, "multilabel_recal": 52, "roc": 53, "curv": 53, "roccurv": 53, "binaryroccurv": 53, "multiclassroccurv": 53, "multilabelroccurv": 53, "roc_curv": 53, "binary_roc_curv": 53, "multiclass_roc_curv": 53, "multilabel_roc_curv": 53, "sensit": [54, 61], "binarysensit": 54, "multiclasssensit": 54, "multilabelsensit": 54, "binary_sensit": 54, "multiclass_sensit": 54, "multilabel_sensit": 54, "specif": 55, "binaryspecif": 55, "multiclassspecif": 55, "multilabelspecif": 55, "binary_specif": 55, "multiclass_specif": 55, "multilabel_specif": 55, "statscor": 56, "binarystatscor": 56, "multiclassstatscor": 56, "multilabelstatscor": 56, "stat_scor": 56, "binary_stat_scor": 56, "multiclass_stat_scor": 56, "multilabel_stat_scor": 56, "tutori": [57, 61], "heart": [58, 64], "failur": [58, 64], "predict": [58, 59, 62, 64], "import": [58, 59, 60, 61, 62], "librari": [58, 59, 60, 61, 62], "constant": [58, 59, 62], "load": [58, 60, 61], "sex": [58, 60], "valu": 58, "ag": [58, 59, 60, 62], "distribut": [58, 59, 62], "outcom": [58, 59, 62], "identifi": [58, 59, 62], "type": [58, 59, 62], "creat": [58, 59, 62], "preprocessor": [58, 59, 62], "hug": [58, 59, 62], "face": [58, 59, 62], "dataset": [58, 59, 60, 61, 62], "creation": [58, 59, 60, 62], "train": [58, 59, 61, 62], "gener": [58, 59, 60, 61, 62], "mortal": [59, 64], "queri": [59, 62], "process": 59, "comput": [59, 62], "label": [59, 62], "inspect": [59, 62], "preprocess": [59, 62], "drop": [59, 62], "nan": [59, 62], "base": [59, 62], "nan_threshold": [59, 62], "gender": [59, 62], "chest": [60, 64], "x": [60, 64], "rai": [60, 64], "diseas": 60, "histor": 60, "initi": 60, "period": 60, "multilabel": 60, "pathologi": 60, "log": 60, "perform": 60, "test": [60, 61], "w": 60, "threshold": 60, "popul": 60, "card": 60, "field": 60, "nihcxr": 61, "clinic": 61, "drift": 61, "experi": 61, "exampl": [61, 64], "1": 61, "sourc": 61, "target": 61, "2": 61, "3": 61, "dimension": 61, "reduct": 61, "techniqu": 61, "differ": 61, "4": 61, "shift": 61, "5": 61, "roll": 61, "window": 61, "synthet": 61, "timestamp": 61, "biweekli": 61, "prolong": [62, 64], "length": [62, 64], "stai": [62, 64], "case": 64, "tabular": 64, "kaggl": 64, "mimiciv": 64, "synthea": 64, "imag": 64, "nih": 64, "user": 65, "guid": 65}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.todo": 2, "sphinx.ext.viewcode": 1, "sphinx.ext.intersphinx": 1, "nbsphinx": 4, "sphinx": 60}, "alltitles": {"API Reference": [[0, "api-reference"]], "Contributing to cyclops": [[1, "contributing-to-cyclops"]], "Pre-commit hooks": [[1, "pre-commit-hooks"]], "Coding guidelines": [[1, "coding-guidelines"]], "\ud83e\uddd1\ud83c\udfff\u200d\ud83d\udcbb Developing": [[2, "developing"]], "Using poetry": [[2, "using-poetry"]], "Contributing": [[2, "contributing"]], "Evaluation": [[3, "evaluation"], [58, "Evaluation"], [59, "Evaluation"], [62, "Evaluation"]], "What is CyclOps?": [[4, "what-is-cyclops"]], "Quick Start": [[4, "quick-start"]], "Installation": [[5, "installation"]], "Using pip": [[5, "using-pip"]], "Model Report": [[6, "model-report"]], "Monitoring": [[7, "monitoring"]], "cyclops.data.aggregate": [[8, "module-cyclops.data.aggregate"]], "cyclops.data.aggregate.Aggregator": [[9, "cyclops-data-aggregate-aggregator"]], "cyclops.data.aggregate.tabular_as_aggregated": [[10, "cyclops-data-aggregate-tabular-as-aggregated"]], "cyclops.data.aggregate.timestamp_ffill_agg": [[11, "cyclops-data-aggregate-timestamp-ffill-agg"]], "cyclops.data.features.medical_image": [[12, "module-cyclops.data.features.medical_image"]], "cyclops.data.features.medical_image.MedicalImage": [[13, "cyclops-data-features-medical-image-medicalimage"]], "cyclops.data.slicer": [[14, "module-cyclops.data.slicer"]], "cyclops.data.slicer.SliceSpec": [[15, "cyclops-data-slicer-slicespec"]], "cyclops.data.slicer.compound_filter": [[16, "cyclops-data-slicer-compound-filter"]], "cyclops.data.slicer.filter_datetime": [[17, "cyclops-data-slicer-filter-datetime"]], "cyclops.data.slicer.filter_non_null": [[18, "cyclops-data-slicer-filter-non-null"]], "cyclops.data.slicer.filter_range": [[19, "cyclops-data-slicer-filter-range"]], "cyclops.data.slicer.filter_string_contains": [[20, "cyclops-data-slicer-filter-string-contains"]], "cyclops.data.slicer.filter_value": [[21, "cyclops-data-slicer-filter-value"]], "cyclops.data.slicer.is_datetime": [[22, "cyclops-data-slicer-is-datetime"]], "cyclops.data.slicer.overall": [[23, "cyclops-data-slicer-overall"]], "cyclops.monitor.clinical_applicator": [[24, "module-cyclops.monitor.clinical_applicator"]], "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator": [[25, "cyclops-monitor-clinical-applicator-clinicalshiftapplicator"]], "cyclops.monitor.synthetic_applicator": [[26, "module-cyclops.monitor.synthetic_applicator"]], "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator": [[27, "cyclops-monitor-synthetic-applicator-syntheticshiftapplicator"]], "cyclops.monitor.synthetic_applicator.binary_noise_shift": [[28, "cyclops-monitor-synthetic-applicator-binary-noise-shift"]], "cyclops.monitor.synthetic_applicator.feature_association_shift": [[29, "cyclops-monitor-synthetic-applicator-feature-association-shift"]], "cyclops.monitor.synthetic_applicator.feature_swap_shift": [[30, "cyclops-monitor-synthetic-applicator-feature-swap-shift"]], "cyclops.monitor.synthetic_applicator.gaussian_noise_shift": [[31, "cyclops-monitor-synthetic-applicator-gaussian-noise-shift"]], "cyclops.monitor.synthetic_applicator.knockout_shift": [[32, "cyclops-monitor-synthetic-applicator-knockout-shift"]], "cyclops.report.report": [[33, "module-cyclops.report.report"]], "cyclops.report.report.ModelCardReport": [[34, "cyclops-report-report-modelcardreport"]], "cyclops.tasks.classification": [[35, "module-cyclops.tasks.classification"]], "cyclops.tasks.classification.BinaryTabularClassificationTask": [[36, "cyclops-tasks-classification-binarytabularclassificationtask"]], "cyclops.tasks.classification.MultilabelImageClassificationTask": [[37, "cyclops-tasks-classification-multilabelimageclassificationtask"]], "cyclops.data": [[38, "module-cyclops.data"]], "cyclops.data.features": [[38, "module-cyclops.data.features"]], "cyclops.monitor": [[39, "module-cyclops.monitor"]], "cyclops.report": [[40, "module-cyclops.report"]], "cyclops.tasks": [[41, "module-cyclops.tasks"]], "Evaluator": [[42, "evaluator"]], "Fairness Evaluator": [[43, "fairness-evaluator"]], "Evaluation Metrics": [[44, "evaluation-metrics"]], "Accuracy": [[45, "accuracy"], [45, "id1"]], "Module Interface": [[45, "module-interface"], [46, "module-interface"], [47, "module-interface"], [48, "module-interface"], [49, "module-interface"], [50, "module-interface"], [51, "module-interface"], [52, "module-interface"], [53, "module-interface"], [54, "module-interface"], [55, "module-interface"], [56, "module-interface"]], "BinaryAccuracy": [[45, "binaryaccuracy"]], "MulticlassAccuracy": [[45, "multiclassaccuracy"]], "MultilabelAccuracy": [[45, "multilabelaccuracy"]], "Functional Interface": [[45, "functional-interface"], [46, "functional-interface"], [47, "functional-interface"], [48, "functional-interface"], [49, "functional-interface"], [50, "functional-interface"], [51, "functional-interface"], [52, "functional-interface"], [53, "functional-interface"], [54, "functional-interface"], [55, "functional-interface"], [56, "functional-interface"]], "binary_accuracy": [[45, "binary-accuracy"]], "multiclass_accuracy": [[45, "multiclass-accuracy"]], "multilabel_accuracy": [[45, "multilabel-accuracy"]], "AUROC": [[46, "auroc"], [46, "id1"]], "BinaryAUROC": [[46, "binaryauroc"]], "MulticlassAUROC": [[46, "multiclassauroc"]], "MultilabelAUROC": [[46, "multilabelauroc"]], "auroc": [[46, "id2"]], "binary_auroc": [[46, "binary-auroc"]], "multiclass_auroc": [[46, "multiclass-auroc"]], "multilabel_auroc": [[46, "multilabel-auroc"]], "Average Precision": [[47, "average-precision"]], "BinaryAveragePrecision": [[47, "binaryaverageprecision"]], "average_precision": [[47, "id1"]], "binary_average_precision": [[47, "binary-average-precision"]], "F1-Score": [[48, "f1-score"]], "F1Score": [[48, "f1score"]], "BinaryF1Score": [[48, "binaryf1score"]], "MulticlassF1Score": [[48, "multiclassf1score"]], "MultilabelF1Score": [[48, "multilabelf1score"]], "f1_score": [[48, "id1"]], "binary_f1_score": [[48, "binary-f1-score"]], "multiclass_f1_score": [[48, "multiclass-f1-score"]], "multilabel_f1_score": [[48, "multilabel-f1-score"]], "F-beta Score": [[49, "f-beta-score"]], "FbetaScore": [[49, "fbetascore"]], "BinaryFbetaScore": [[49, "binaryfbetascore"]], "MulticlassFbetaScore": [[49, "multiclassfbetascore"]], "MultilabelFbetaScore": [[49, "multilabelfbetascore"]], "fbeta_score": [[49, "fbeta-score"]], "binary_fbeta_score": [[49, "binary-fbeta-score"]], "multiclass_fbeta_score": [[49, "multiclass-fbeta-score"]], "multilabel_fbeta_score": [[49, "multilabel-fbeta-score"]], "Precision": [[50, "precision"], [50, "id1"]], "BinaryPrecision": [[50, "binaryprecision"]], "MulticlassPrecision": [[50, "multiclassprecision"]], "MultilabelPrecision": [[50, "multilabelprecision"]], "precision": [[50, "id2"]], "binary_precision": [[50, "binary-precision"]], "multiclass_precision": [[50, "multiclass-precision"]], "multilabel_precision": [[50, "multilabel-precision"]], "PrecisionRecallCurve": [[51, "precisionrecallcurve"], [51, "id1"]], "BinaryPrecisionRecallCurve": [[51, "binaryprecisionrecallcurve"]], "MulticlassPrecisionRecallCurve": [[51, "multiclassprecisionrecallcurve"]], "MultilabelPrecisionRecallCurve": [[51, "multilabelprecisionrecallcurve"]], "precision_recall_curve": [[51, "precision-recall-curve"]], "multiclass_precision_recall_curve": [[51, "multiclass-precision-recall-curve"]], "multilabel_precision_recall_curve": [[51, "multilabel-precision-recall-curve"]], "Recall": [[52, "recall"], [52, "id1"]], "BinaryRecall": [[52, "binaryrecall"]], "MulticlassRecall": [[52, "multiclassrecall"]], "MultilabelRecall": [[52, "multilabelrecall"]], "recall": [[52, "id2"]], "multiclass_recall": [[52, "multiclass-recall"]], "multilabel_recall": [[52, "multilabel-recall"]], "ROC Curve": [[53, "roc-curve"]], "ROCCurve": [[53, "roccurve"]], "BinaryROCCurve": [[53, "binaryroccurve"]], "MulticlassROCCurve": [[53, "multiclassroccurve"]], "MultilabelROCCurve": [[53, "multilabelroccurve"]], "roc_curve": [[53, "id1"]], "binary_roc_curve": [[53, "binary-roc-curve"]], "multiclass_roc_curve": [[53, "multiclass-roc-curve"]], "multilabel_roc_curve": [[53, "multilabel-roc-curve"]], "Sensitivity": [[54, "sensitivity"], [54, "id1"]], "BinarySensitivity": [[54, "binarysensitivity"]], "MulticlassSensitivity": [[54, "multiclasssensitivity"]], "MultilabelSensitivity": [[54, "multilabelsensitivity"]], "sensitivity": [[54, "id2"]], "binary_sensitivity": [[54, "binary-sensitivity"]], "multiclass_sensitivity": [[54, "multiclass-sensitivity"]], "multilabel_sensitivity": [[54, "multilabel-sensitivity"]], "Specificity": [[55, "specificity"], [55, "id1"]], "BinarySpecificity": [[55, "binaryspecificity"]], "MulticlassSpecificity": [[55, "multiclassspecificity"]], "MultilabelSpecificity": [[55, "multilabelspecificity"]], "specificity": [[55, "id2"]], "binary_specificity": [[55, "binary-specificity"]], "multiclass_specificity": [[55, "multiclass-specificity"]], "multilabel_specificity": [[55, "multilabel-specificity"]], "StatScores": [[56, "statscores"], [56, "id1"]], "BinaryStatScores": [[56, "binarystatscores"]], "MulticlassStatScores": [[56, "multiclassstatscores"]], "MultilabelStatScores": [[56, "multilabelstatscores"]], "stat_scores": [[56, "stat-scores"]], "binary_stat_scores": [[56, "binary-stat-scores"]], "multiclass_stat_scores": [[56, "multiclass-stat-scores"]], "multilabel_stat_scores": [[56, "multilabel-stat-scores"]], "Tutorials": [[57, "tutorials"]], "Heart Failure Prediction": [[58, "Heart-Failure-Prediction"]], "Import Libraries": [[58, "Import-Libraries"], [59, "Import-Libraries"], [60, "Import-Libraries"], [62, "Import-Libraries"]], "Constants": [[58, "Constants"], [59, "Constants"], [62, "Constants"]], "Data Loading": [[58, "Data-Loading"]], "Sex values": [[58, "Sex-values"]], "Age distribution": [[58, "Age-distribution"], [59, "Age-distribution"], [62, "Age-distribution"]], "Outcome distribution": [[58, "Outcome-distribution"], [59, "Outcome-distribution"], [62, "Outcome-distribution"]], "Identifying feature types": [[58, "Identifying-feature-types"], [59, "Identifying-feature-types"], [62, "Identifying-feature-types"]], "Creating data preprocessors": [[58, "Creating-data-preprocessors"], [59, "Creating-data-preprocessors"], [62, "Creating-data-preprocessors"]], "Creating Hugging Face Dataset": [[58, "Creating-Hugging-Face-Dataset"], [59, "Creating-Hugging-Face-Dataset"], [62, "Creating-Hugging-Face-Dataset"]], "Model Creation": [[58, "Model-Creation"], [59, "Model-Creation"], [60, "Model-Creation"], [62, "Model-Creation"]], "Task Creation": [[58, "Task-Creation"], [59, "Task-Creation"], [62, "Task-Creation"]], "Training": [[58, "Training"], [59, "Training"], [62, "Training"]], "Prediction": [[58, "Prediction"], [59, "Prediction"], [62, "Prediction"]], "Report Generation": [[58, "Report-Generation"], [59, "Report-Generation"], [62, "Report-Generation"]], "Mortality Prediction": [[59, "Mortality-Prediction"]], "Data Querying & Processing": [[59, "Data-Querying-&-Processing"]], "Compute mortality (labels)": [[59, "Compute-mortality-(labels)"]], "Data Inspection and Preprocessing": [[59, "Data-Inspection-and-Preprocessing"], [62, "Data-Inspection-and-Preprocessing"]], "Drop NaNs based on the NAN_THRESHOLD": [[59, "Drop-NaNs-based-on-the-NAN_THRESHOLD"], [62, "Drop-NaNs-based-on-the-NAN_THRESHOLD"]], "Gender distribution": [[59, "Gender-distribution"], [62, "Gender-distribution"]], "Chest X-Ray Disease Classification": [[60, "Chest-X-Ray-Disease-Classification"]], "Generate Historical Reports": [[60, "Generate-Historical-Reports"]], "Initialize Periodic Report": [[60, "Initialize-Periodic-Report"]], "Load Dataset": [[60, "Load-Dataset"]], "Multilabel AUROC by Pathology and Sex": [[60, "Multilabel-AUROC-by-Pathology-and-Sex"]], "Multilabel AUROC by Pathology and Age": [[60, "Multilabel-AUROC-by-Pathology-and-Age"]], "Log Performance Metrics as Tests w/ Thresholds": [[60, "Log-Performance-Metrics-as-Tests-w/-Thresholds"]], "Populate Model Card Fields": [[60, "Populate-Model-Card-Fields"]], "NIHCXR Clinical Drift Experiments Tutorial": [[61, "NIHCXR-Clinical-Drift-Experiments-Tutorial"]], "Import Libraries and Load NIHCXR Dataset": [[61, "Import-Libraries-and-Load-NIHCXR-Dataset"]], "Example 1. Generate Source/Target Dataset for Experiments (1-2)": [[61, "Example-1.-Generate-Source/Target-Dataset-for-Experiments-(1-2)"]], "Example 2. Sensitivity test experiment with 3 dimensionality reduction techniques": [[61, "Example-2.-Sensitivity-test-experiment-with-3-dimensionality-reduction-techniques"]], "Example 3. Sensitivity test experiment with models trained on different datasets": [[61, "Example-3.-Sensitivity-test-experiment-with-models-trained-on-different-datasets"]], "Example 4. Sensitivity test experiment with different clinical shifts": [[61, "Example-4.-Sensitivity-test-experiment-with-different-clinical-shifts"]], "Example 5. Rolling window experiment with synthetic timestamps using biweekly window": [[61, "Example-5.-Rolling-window-experiment-with-synthetic-timestamps-using-biweekly-window"]], "Prolonged Length of Stay Prediction": [[62, "Prolonged-Length-of-Stay-Prediction"]], "Data Querying": [[62, "Data-Querying"]], "Compute length of stay (labels)": [[62, "Compute-length-of-stay-(labels)"]], "Length of stay distribution": [[62, "Length-of-stay-distribution"]], "monitor API": [[63, "monitor-api"]], "Example use cases": [[64, "example-use-cases"]], "Tabular data": [[64, "tabular-data"]], "Kaggle Heart Failure Prediction": [[64, "kaggle-heart-failure-prediction"]], "MIMICIV Mortality Prediction": [[64, "mimiciv-mortality-prediction"]], "Synthea Prolonged Length of Stay Prediction": [[64, "synthea-prolonged-length-of-stay-prediction"]], "Image data": [[64, "image-data"]], "NIH Chest X-ray classification": [[64, "nih-chest-x-ray-classification"]], "User Guide": [[65, "user-guide"]]}, "indexentries": {"cyclops.data.aggregate": [[8, "module-cyclops.data.aggregate"]], "module": [[8, "module-cyclops.data.aggregate"], [12, "module-cyclops.data.features.medical_image"], [14, "module-cyclops.data.slicer"], [24, "module-cyclops.monitor.clinical_applicator"], [26, "module-cyclops.monitor.synthetic_applicator"], [33, "module-cyclops.report.report"], [35, "module-cyclops.tasks.classification"], [38, "module-cyclops.data"], [38, "module-cyclops.data.features"], [39, "module-cyclops.monitor"], [40, "module-cyclops.report"], [41, "module-cyclops.tasks"]], "aggregator (class in cyclops.data.aggregate)": [[9, "cyclops.data.aggregate.Aggregator"]], "__init__() (aggregator method)": [[9, "cyclops.data.aggregate.Aggregator.__init__"]], "agg_by (aggregator attribute)": [[9, "cyclops.data.aggregate.Aggregator.agg_by"]], "agg_meta_for (aggregator attribute)": [[9, "cyclops.data.aggregate.Aggregator.agg_meta_for"]], "aggfuncs (aggregator attribute)": [[9, "cyclops.data.aggregate.Aggregator.aggfuncs"]], "fit() (aggregator method)": [[9, "cyclops.data.aggregate.Aggregator.fit"]], "fit_transform() (aggregator method)": [[9, "cyclops.data.aggregate.Aggregator.fit_transform"]], "imputer (aggregator attribute)": [[9, "cyclops.data.aggregate.Aggregator.imputer"]], "num_timesteps (aggregator attribute)": [[9, "cyclops.data.aggregate.Aggregator.num_timesteps"]], "set_output() (aggregator method)": [[9, "cyclops.data.aggregate.Aggregator.set_output"]], "time_by (aggregator attribute)": [[9, "cyclops.data.aggregate.Aggregator.time_by"]], "timestamp_col (aggregator attribute)": [[9, "cyclops.data.aggregate.Aggregator.timestamp_col"]], "timestep_size (aggregator attribute)": [[9, "cyclops.data.aggregate.Aggregator.timestep_size"]], "transform() (aggregator method)": [[9, "cyclops.data.aggregate.Aggregator.transform"]], "window_duration (aggregator attribute)": [[9, "cyclops.data.aggregate.Aggregator.window_duration"]], "window_start_time (aggregator attribute)": [[9, "cyclops.data.aggregate.Aggregator.window_start_time"]], "window_stop_time (aggregator attribute)": [[9, "cyclops.data.aggregate.Aggregator.window_stop_time"]], "window_times (aggregator attribute)": [[9, "cyclops.data.aggregate.Aggregator.window_times"]], "tabular_as_aggregated() (in module cyclops.data.aggregate)": [[10, "cyclops.data.aggregate.tabular_as_aggregated"]], "timestamp_ffill_agg() (in module cyclops.data.aggregate)": [[11, "cyclops.data.aggregate.timestamp_ffill_agg"]], "cyclops.data.features.medical_image": [[12, "module-cyclops.data.features.medical_image"]], "medicalimage (class in cyclops.data.features.medical_image)": [[13, "cyclops.data.features.medical_image.MedicalImage"]], "__call__() (medicalimage method)": [[13, "cyclops.data.features.medical_image.MedicalImage.__call__"]], "cast_storage() (medicalimage method)": [[13, "cyclops.data.features.medical_image.MedicalImage.cast_storage"]], "decode_example() (medicalimage method)": [[13, "cyclops.data.features.medical_image.MedicalImage.decode_example"]], "embed_storage() (medicalimage method)": [[13, "cyclops.data.features.medical_image.MedicalImage.embed_storage"]], "encode_example() (medicalimage method)": [[13, "cyclops.data.features.medical_image.MedicalImage.encode_example"]], "flatten() (medicalimage method)": [[13, "cyclops.data.features.medical_image.MedicalImage.flatten"]], "cyclops.data.slicer": [[14, "module-cyclops.data.slicer"]], "slicespec (class in cyclops.data.slicer)": [[15, "cyclops.data.slicer.SliceSpec"]], "_registry (slicespec attribute)": [[15, "cyclops.data.slicer.SliceSpec._registry"]], "add_slice_spec() (slicespec method)": [[15, "cyclops.data.slicer.SliceSpec.add_slice_spec"]], "column_names (slicespec attribute)": [[15, "cyclops.data.slicer.SliceSpec.column_names"]], "get_slices() (slicespec method)": [[15, "cyclops.data.slicer.SliceSpec.get_slices"]], "include_overall (slicespec attribute)": [[15, "cyclops.data.slicer.SliceSpec.include_overall"]], "slices() (slicespec method)": [[15, "cyclops.data.slicer.SliceSpec.slices"]], "spec_list (slicespec attribute)": [[15, "cyclops.data.slicer.SliceSpec.spec_list"]], "validate (slicespec attribute)": [[15, "cyclops.data.slicer.SliceSpec.validate"]], "compound_filter() (in module cyclops.data.slicer)": [[16, "cyclops.data.slicer.compound_filter"]], "filter_datetime() (in module cyclops.data.slicer)": [[17, "cyclops.data.slicer.filter_datetime"]], "filter_non_null() (in module cyclops.data.slicer)": [[18, "cyclops.data.slicer.filter_non_null"]], "filter_range() (in module cyclops.data.slicer)": [[19, "cyclops.data.slicer.filter_range"]], "filter_string_contains() (in module cyclops.data.slicer)": [[20, "cyclops.data.slicer.filter_string_contains"]], "filter_value() (in module cyclops.data.slicer)": [[21, "cyclops.data.slicer.filter_value"]], "is_datetime() (in module cyclops.data.slicer)": [[22, "cyclops.data.slicer.is_datetime"]], "overall() (in module cyclops.data.slicer)": [[23, "cyclops.data.slicer.overall"]], "cyclops.monitor.clinical_applicator": [[24, "module-cyclops.monitor.clinical_applicator"]], "clinicalshiftapplicator (class in cyclops.monitor.clinical_applicator)": [[25, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator"]], "age() (clinicalshiftapplicator method)": [[25, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.age"]], "apply_shift() (clinicalshiftapplicator method)": [[25, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.apply_shift"]], "custom() (clinicalshiftapplicator method)": [[25, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.custom"]], "hospital_type() (clinicalshiftapplicator method)": [[25, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.hospital_type"]], "month() (clinicalshiftapplicator method)": [[25, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.month"]], "sex() (clinicalshiftapplicator method)": [[25, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.sex"]], "time() (clinicalshiftapplicator method)": [[25, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.time"]], "cyclops.monitor.synthetic_applicator": [[26, "module-cyclops.monitor.synthetic_applicator"]], "syntheticshiftapplicator (class in cyclops.monitor.synthetic_applicator)": [[27, "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator"]], "apply_shift() (syntheticshiftapplicator method)": [[27, "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator.apply_shift"]], "binary_noise_shift() (in module cyclops.monitor.synthetic_applicator)": [[28, "cyclops.monitor.synthetic_applicator.binary_noise_shift"]], "feature_association_shift() (in module cyclops.monitor.synthetic_applicator)": [[29, "cyclops.monitor.synthetic_applicator.feature_association_shift"]], "feature_swap_shift() (in module cyclops.monitor.synthetic_applicator)": [[30, "cyclops.monitor.synthetic_applicator.feature_swap_shift"]], "gaussian_noise_shift() (in module cyclops.monitor.synthetic_applicator)": [[31, "cyclops.monitor.synthetic_applicator.gaussian_noise_shift"]], "knockout_shift() (in module cyclops.monitor.synthetic_applicator)": [[32, "cyclops.monitor.synthetic_applicator.knockout_shift"]], "cyclops.report.report": [[33, "module-cyclops.report.report"]], "modelcardreport (class in cyclops.report.report)": [[34, "cyclops.report.report.ModelCardReport"]], "export() (modelcardreport method)": [[34, "cyclops.report.report.ModelCardReport.export"]], "from_json_file() (modelcardreport class method)": [[34, "cyclops.report.report.ModelCardReport.from_json_file"]], "log_citation() (modelcardreport method)": [[34, "cyclops.report.report.ModelCardReport.log_citation"]], "log_dataset() (modelcardreport method)": [[34, "cyclops.report.report.ModelCardReport.log_dataset"]], "log_descriptor() (modelcardreport method)": [[34, "cyclops.report.report.ModelCardReport.log_descriptor"]], "log_fairness_assessment() (modelcardreport method)": [[34, "cyclops.report.report.ModelCardReport.log_fairness_assessment"]], "log_from_dict() (modelcardreport method)": [[34, "cyclops.report.report.ModelCardReport.log_from_dict"]], "log_image() (modelcardreport method)": [[34, "cyclops.report.report.ModelCardReport.log_image"]], "log_license() (modelcardreport method)": [[34, "cyclops.report.report.ModelCardReport.log_license"]], "log_model_parameters() (modelcardreport method)": [[34, "cyclops.report.report.ModelCardReport.log_model_parameters"]], "log_owner() (modelcardreport method)": [[34, "cyclops.report.report.ModelCardReport.log_owner"]], "log_performance_metrics() (modelcardreport method)": [[34, "cyclops.report.report.ModelCardReport.log_performance_metrics"]], "log_plotly_figure() (modelcardreport method)": [[34, "cyclops.report.report.ModelCardReport.log_plotly_figure"]], "log_quantitative_analysis() (modelcardreport method)": [[34, "cyclops.report.report.ModelCardReport.log_quantitative_analysis"]], "log_reference() (modelcardreport method)": [[34, "cyclops.report.report.ModelCardReport.log_reference"]], "log_regulation() (modelcardreport method)": [[34, "cyclops.report.report.ModelCardReport.log_regulation"]], "log_risk() (modelcardreport method)": [[34, "cyclops.report.report.ModelCardReport.log_risk"]], "log_use_case() (modelcardreport method)": [[34, "cyclops.report.report.ModelCardReport.log_use_case"]], "log_user() (modelcardreport method)": [[34, "cyclops.report.report.ModelCardReport.log_user"]], "log_version() (modelcardreport method)": [[34, "cyclops.report.report.ModelCardReport.log_version"]], "cyclops.tasks.classification": [[35, "module-cyclops.tasks.classification"]], "binarytabularclassificationtask (class in cyclops.tasks.classification)": [[36, "cyclops.tasks.classification.BinaryTabularClassificationTask"]], "__init__() (binarytabularclassificationtask method)": [[36, "cyclops.tasks.classification.BinaryTabularClassificationTask.__init__"]], "add_model() (binarytabularclassificationtask method)": [[36, "cyclops.tasks.classification.BinaryTabularClassificationTask.add_model"]], "data_type (binarytabularclassificationtask property)": [[36, "cyclops.tasks.classification.BinaryTabularClassificationTask.data_type"]], "evaluate() (binarytabularclassificationtask method)": [[36, "cyclops.tasks.classification.BinaryTabularClassificationTask.evaluate"]], "get_model() (binarytabularclassificationtask method)": [[36, "cyclops.tasks.classification.BinaryTabularClassificationTask.get_model"]], "list_models() (binarytabularclassificationtask method)": [[36, "cyclops.tasks.classification.BinaryTabularClassificationTask.list_models"]], "list_models_params() (binarytabularclassificationtask method)": [[36, "cyclops.tasks.classification.BinaryTabularClassificationTask.list_models_params"]], "load_model() (binarytabularclassificationtask method)": [[36, "cyclops.tasks.classification.BinaryTabularClassificationTask.load_model"]], "models_count (binarytabularclassificationtask property)": [[36, "cyclops.tasks.classification.BinaryTabularClassificationTask.models_count"]], "predict() (binarytabularclassificationtask method)": [[36, "cyclops.tasks.classification.BinaryTabularClassificationTask.predict"]], "save_model() (binarytabularclassificationtask method)": [[36, "cyclops.tasks.classification.BinaryTabularClassificationTask.save_model"]], "task_type (binarytabularclassificationtask property)": [[36, "cyclops.tasks.classification.BinaryTabularClassificationTask.task_type"]], "train() (binarytabularclassificationtask method)": [[36, "cyclops.tasks.classification.BinaryTabularClassificationTask.train"]], "multilabelimageclassificationtask (class in cyclops.tasks.classification)": [[37, "cyclops.tasks.classification.MultilabelImageClassificationTask"]], "__init__() (multilabelimageclassificationtask method)": [[37, "cyclops.tasks.classification.MultilabelImageClassificationTask.__init__"]], "add_model() (multilabelimageclassificationtask method)": [[37, "cyclops.tasks.classification.MultilabelImageClassificationTask.add_model"]], "data_type (multilabelimageclassificationtask property)": [[37, "cyclops.tasks.classification.MultilabelImageClassificationTask.data_type"]], "evaluate() (multilabelimageclassificationtask method)": [[37, "cyclops.tasks.classification.MultilabelImageClassificationTask.evaluate"]], "get_model() (multilabelimageclassificationtask method)": [[37, "cyclops.tasks.classification.MultilabelImageClassificationTask.get_model"]], "list_models() (multilabelimageclassificationtask method)": [[37, "cyclops.tasks.classification.MultilabelImageClassificationTask.list_models"]], "list_models_params() (multilabelimageclassificationtask method)": [[37, "cyclops.tasks.classification.MultilabelImageClassificationTask.list_models_params"]], "load_model() (multilabelimageclassificationtask method)": [[37, "cyclops.tasks.classification.MultilabelImageClassificationTask.load_model"]], "models_count (multilabelimageclassificationtask property)": [[37, "cyclops.tasks.classification.MultilabelImageClassificationTask.models_count"]], "predict() (multilabelimageclassificationtask method)": [[37, "cyclops.tasks.classification.MultilabelImageClassificationTask.predict"]], "save_model() (multilabelimageclassificationtask method)": [[37, "cyclops.tasks.classification.MultilabelImageClassificationTask.save_model"]], "task_type (multilabelimageclassificationtask property)": [[37, "cyclops.tasks.classification.MultilabelImageClassificationTask.task_type"]], "cyclops.data": [[38, "module-cyclops.data"]], "cyclops.data.features": [[38, "module-cyclops.data.features"]], "cyclops.monitor": [[39, "module-cyclops.monitor"]], "cyclops.report": [[40, "module-cyclops.report"]], "cyclops.tasks": [[41, "module-cyclops.tasks"]], "evaluate() (in module cyclops.evaluate.evaluator)": [[42, "cyclops.evaluate.evaluator.evaluate"]], "evaluate_fairness() (in module cyclops.evaluate.fairness.evaluator)": [[43, "cyclops.evaluate.fairness.evaluator.evaluate_fairness"]], "accuracy (class in cyclops.evaluate.metrics)": [[45, "cyclops.evaluate.metrics.Accuracy"]], "binaryaccuracy (class in cyclops.evaluate.metrics)": [[45, "cyclops.evaluate.metrics.BinaryAccuracy"]], "multiclassaccuracy (class in cyclops.evaluate.metrics)": [[45, "cyclops.evaluate.metrics.MulticlassAccuracy"]], "multilabelaccuracy (class in cyclops.evaluate.metrics)": [[45, "cyclops.evaluate.metrics.MultilabelAccuracy"]], "binary_accuracy() (in module cyclops.evaluate.metrics.functional.accuracy)": [[45, "cyclops.evaluate.metrics.functional.accuracy.binary_accuracy"]], "multiclass_accuracy() (in module cyclops.evaluate.metrics.functional.accuracy)": [[45, "cyclops.evaluate.metrics.functional.accuracy.multiclass_accuracy"]], "multilabel_accuracy() (in module cyclops.evaluate.metrics.functional.accuracy)": [[45, "cyclops.evaluate.metrics.functional.accuracy.multilabel_accuracy"]], "auroc (class in cyclops.evaluate.metrics)": [[46, "cyclops.evaluate.metrics.AUROC"]], "binaryauroc (class in cyclops.evaluate.metrics)": [[46, "cyclops.evaluate.metrics.BinaryAUROC"]], "multiclassauroc (class in cyclops.evaluate.metrics)": [[46, "cyclops.evaluate.metrics.MulticlassAUROC"]], "multilabelauroc (class in cyclops.evaluate.metrics)": [[46, "cyclops.evaluate.metrics.MultilabelAUROC"]], "auroc() (in module cyclops.evaluate.metrics.functional.auroc)": [[46, "cyclops.evaluate.metrics.functional.auroc.auroc"]], "binary_auroc() (in module cyclops.evaluate.metrics.functional.auroc)": [[46, "cyclops.evaluate.metrics.functional.auroc.binary_auroc"]], "multiclass_auroc() (in module cyclops.evaluate.metrics.functional.auroc)": [[46, "cyclops.evaluate.metrics.functional.auroc.multiclass_auroc"]], "multilabel_auroc() (in module cyclops.evaluate.metrics.functional.auroc)": [[46, "cyclops.evaluate.metrics.functional.auroc.multilabel_auroc"]], "binaryaverageprecision (class in cyclops.evaluate.metrics)": [[47, "cyclops.evaluate.metrics.BinaryAveragePrecision"]], "average_precision() (in module cyclops.evaluate.metrics.functional.average_precision)": [[47, "cyclops.evaluate.metrics.functional.average_precision.average_precision"]], "binary_average_precision() (in module cyclops.evaluate.metrics.functional.average_precision)": [[47, "cyclops.evaluate.metrics.functional.average_precision.binary_average_precision"]], "binaryf1score (class in cyclops.evaluate.metrics)": [[48, "cyclops.evaluate.metrics.BinaryF1Score"]], "f1score (class in cyclops.evaluate.metrics)": [[48, "cyclops.evaluate.metrics.F1Score"]], "multiclassf1score (class in cyclops.evaluate.metrics)": [[48, "cyclops.evaluate.metrics.MulticlassF1Score"]], "multilabelf1score (class in cyclops.evaluate.metrics)": [[48, "cyclops.evaluate.metrics.MultilabelF1Score"]], "binary_f1_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[48, "cyclops.evaluate.metrics.functional.f_beta.binary_f1_score"]], "f1_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[48, "cyclops.evaluate.metrics.functional.f_beta.f1_score"]], "multiclass_f1_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[48, "cyclops.evaluate.metrics.functional.f_beta.multiclass_f1_score"]], "multilabel_f1_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[48, "cyclops.evaluate.metrics.functional.f_beta.multilabel_f1_score"]], "binaryfbetascore (class in cyclops.evaluate.metrics)": [[49, "cyclops.evaluate.metrics.BinaryFbetaScore"]], "fbetascore (class in cyclops.evaluate.metrics)": [[49, "cyclops.evaluate.metrics.FbetaScore"]], "multiclassfbetascore (class in cyclops.evaluate.metrics)": [[49, "cyclops.evaluate.metrics.MulticlassFbetaScore"]], "multilabelfbetascore (class in cyclops.evaluate.metrics)": [[49, "cyclops.evaluate.metrics.MultilabelFbetaScore"]], "binary_fbeta_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[49, "cyclops.evaluate.metrics.functional.f_beta.binary_fbeta_score"]], "fbeta_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[49, "cyclops.evaluate.metrics.functional.f_beta.fbeta_score"]], "multiclass_fbeta_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[49, "cyclops.evaluate.metrics.functional.f_beta.multiclass_fbeta_score"]], "multilabel_fbeta_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[49, "cyclops.evaluate.metrics.functional.f_beta.multilabel_fbeta_score"]], "binaryprecision (class in cyclops.evaluate.metrics)": [[50, "cyclops.evaluate.metrics.BinaryPrecision"]], "multiclassprecision (class in cyclops.evaluate.metrics)": [[50, "cyclops.evaluate.metrics.MulticlassPrecision"]], "multilabelprecision (class in cyclops.evaluate.metrics)": [[50, "cyclops.evaluate.metrics.MultilabelPrecision"]], "precision (class in cyclops.evaluate.metrics)": [[50, "cyclops.evaluate.metrics.Precision"]], "binary_precision() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[50, "cyclops.evaluate.metrics.functional.precision_recall.binary_precision"]], "multiclass_precision() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[50, "cyclops.evaluate.metrics.functional.precision_recall.multiclass_precision"]], "multilabel_precision() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[50, "cyclops.evaluate.metrics.functional.precision_recall.multilabel_precision"]], "precision() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[50, "cyclops.evaluate.metrics.functional.precision_recall.precision"]], "binaryprecisionrecallcurve (class in cyclops.evaluate.metrics)": [[51, "cyclops.evaluate.metrics.BinaryPrecisionRecallCurve"]], "multiclassprecisionrecallcurve (class in cyclops.evaluate.metrics)": [[51, "cyclops.evaluate.metrics.MulticlassPrecisionRecallCurve"]], "multilabelprecisionrecallcurve (class in cyclops.evaluate.metrics)": [[51, "cyclops.evaluate.metrics.MultilabelPrecisionRecallCurve"]], "precisionrecallcurve (class in cyclops.evaluate.metrics)": [[51, "cyclops.evaluate.metrics.PrecisionRecallCurve"]], "multiclass_precision_recall_curve() (in module cyclops.evaluate.metrics.functional.precision_recall_curve)": [[51, "cyclops.evaluate.metrics.functional.precision_recall_curve.multiclass_precision_recall_curve"]], "multilabel_precision_recall_curve() (in module cyclops.evaluate.metrics.functional.precision_recall_curve)": [[51, "cyclops.evaluate.metrics.functional.precision_recall_curve.multilabel_precision_recall_curve"]], "precision_recall_curve() (in module cyclops.evaluate.metrics.functional.precision_recall_curve)": [[51, "cyclops.evaluate.metrics.functional.precision_recall_curve.precision_recall_curve"]], "binaryrecall (class in cyclops.evaluate.metrics)": [[52, "cyclops.evaluate.metrics.BinaryRecall"]], "multiclassrecall (class in cyclops.evaluate.metrics)": [[52, "cyclops.evaluate.metrics.MulticlassRecall"]], "multilabelrecall (class in cyclops.evaluate.metrics)": [[52, "cyclops.evaluate.metrics.MultilabelRecall"]], "recall (class in cyclops.evaluate.metrics)": [[52, "cyclops.evaluate.metrics.Recall"]], "multiclass_recall() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[52, "cyclops.evaluate.metrics.functional.precision_recall.multiclass_recall"]], "multilabel_recall() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[52, "cyclops.evaluate.metrics.functional.precision_recall.multilabel_recall"]], "recall() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[52, "cyclops.evaluate.metrics.functional.precision_recall.recall"]], "binaryroccurve (class in cyclops.evaluate.metrics)": [[53, "cyclops.evaluate.metrics.BinaryROCCurve"]], "multiclassroccurve (class in cyclops.evaluate.metrics)": [[53, "cyclops.evaluate.metrics.MulticlassROCCurve"]], "multilabelroccurve (class in cyclops.evaluate.metrics)": [[53, "cyclops.evaluate.metrics.MultilabelROCCurve"]], "roccurve (class in cyclops.evaluate.metrics)": [[53, "cyclops.evaluate.metrics.ROCCurve"]], "binary_roc_curve() (in module cyclops.evaluate.metrics.functional.roc)": [[53, "cyclops.evaluate.metrics.functional.roc.binary_roc_curve"]], "multiclass_roc_curve() (in module cyclops.evaluate.metrics.functional.roc)": [[53, "cyclops.evaluate.metrics.functional.roc.multiclass_roc_curve"]], "multilabel_roc_curve() (in module cyclops.evaluate.metrics.functional.roc)": [[53, "cyclops.evaluate.metrics.functional.roc.multilabel_roc_curve"]], "roc_curve() (in module cyclops.evaluate.metrics.functional.roc)": [[53, "cyclops.evaluate.metrics.functional.roc.roc_curve"]], "binarysensitivity (class in cyclops.evaluate.metrics)": [[54, "cyclops.evaluate.metrics.BinarySensitivity"]], "multiclasssensitivity (class in cyclops.evaluate.metrics)": [[54, "cyclops.evaluate.metrics.MulticlassSensitivity"]], "multilabelsensitivity (class in cyclops.evaluate.metrics)": [[54, "cyclops.evaluate.metrics.MultilabelSensitivity"]], "sensitivity (class in cyclops.evaluate.metrics)": [[54, "cyclops.evaluate.metrics.Sensitivity"]], "binary_sensitivity() (in module cyclops.evaluate.metrics.functional.sensitivity)": [[54, "cyclops.evaluate.metrics.functional.sensitivity.binary_sensitivity"]], "multiclass_sensitivity() (in module cyclops.evaluate.metrics.functional.sensitivity)": [[54, "cyclops.evaluate.metrics.functional.sensitivity.multiclass_sensitivity"]], "multilabel_sensitivity() (in module cyclops.evaluate.metrics.functional.sensitivity)": [[54, "cyclops.evaluate.metrics.functional.sensitivity.multilabel_sensitivity"]], "sensitivity() (in module cyclops.evaluate.metrics.functional.sensitivity)": [[54, "cyclops.evaluate.metrics.functional.sensitivity.sensitivity"]], "binaryspecificity (class in cyclops.evaluate.metrics)": [[55, "cyclops.evaluate.metrics.BinarySpecificity"]], "multiclassspecificity (class in cyclops.evaluate.metrics)": [[55, "cyclops.evaluate.metrics.MulticlassSpecificity"]], "multilabelspecificity (class in cyclops.evaluate.metrics)": [[55, "cyclops.evaluate.metrics.MultilabelSpecificity"]], "specificity (class in cyclops.evaluate.metrics)": [[55, "cyclops.evaluate.metrics.Specificity"]], "binary_specificity() (in module cyclops.evaluate.metrics.functional.specificity)": [[55, "cyclops.evaluate.metrics.functional.specificity.binary_specificity"]], "multiclass_specificity() (in module cyclops.evaluate.metrics.functional.specificity)": [[55, "cyclops.evaluate.metrics.functional.specificity.multiclass_specificity"]], "multilabel_specificity() (in module cyclops.evaluate.metrics.functional.specificity)": [[55, "cyclops.evaluate.metrics.functional.specificity.multilabel_specificity"]], "specificity() (in module cyclops.evaluate.metrics.functional.specificity)": [[55, "cyclops.evaluate.metrics.functional.specificity.specificity"]], "binarystatscores (class in cyclops.evaluate.metrics)": [[56, "cyclops.evaluate.metrics.BinaryStatScores"]], "multiclassstatscores (class in cyclops.evaluate.metrics)": [[56, "cyclops.evaluate.metrics.MulticlassStatScores"]], "multilabelstatscores (class in cyclops.evaluate.metrics)": [[56, "cyclops.evaluate.metrics.MultilabelStatScores"]], "statscores (class in cyclops.evaluate.metrics)": [[56, "cyclops.evaluate.metrics.StatScores"]], "binary_stat_scores() (in module cyclops.evaluate.metrics.functional.stat_scores)": [[56, "cyclops.evaluate.metrics.functional.stat_scores.binary_stat_scores"]], "multiclass_stat_scores() (in module cyclops.evaluate.metrics.functional.stat_scores)": [[56, "cyclops.evaluate.metrics.functional.stat_scores.multiclass_stat_scores"]], "multilabel_stat_scores() (in module cyclops.evaluate.metrics.functional.stat_scores)": [[56, "cyclops.evaluate.metrics.functional.stat_scores.multilabel_stat_scores"]], "stat_scores() (in module cyclops.evaluate.metrics.functional.stat_scores)": [[56, "cyclops.evaluate.metrics.functional.stat_scores.stat_scores"]]}}) \ No newline at end of file +Search.setIndex({"docnames": ["api", "contributing", "developing", "evaluation", "index", "installation", "model_report", "monitoring", "reference/api/_autosummary/cyclops.data.aggregate", "reference/api/_autosummary/cyclops.data.aggregate.Aggregator", "reference/api/_autosummary/cyclops.data.aggregate.tabular_as_aggregated", "reference/api/_autosummary/cyclops.data.aggregate.timestamp_ffill_agg", "reference/api/_autosummary/cyclops.data.features.medical_image", "reference/api/_autosummary/cyclops.data.features.medical_image.MedicalImage", "reference/api/_autosummary/cyclops.data.slicer", "reference/api/_autosummary/cyclops.data.slicer.SliceSpec", "reference/api/_autosummary/cyclops.data.slicer.compound_filter", "reference/api/_autosummary/cyclops.data.slicer.filter_datetime", "reference/api/_autosummary/cyclops.data.slicer.filter_non_null", "reference/api/_autosummary/cyclops.data.slicer.filter_range", "reference/api/_autosummary/cyclops.data.slicer.filter_string_contains", "reference/api/_autosummary/cyclops.data.slicer.filter_value", "reference/api/_autosummary/cyclops.data.slicer.is_datetime", "reference/api/_autosummary/cyclops.data.slicer.overall", "reference/api/_autosummary/cyclops.monitor.clinical_applicator", "reference/api/_autosummary/cyclops.monitor.clinical_applicator.ClinicalShiftApplicator", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.binary_noise_shift", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.feature_association_shift", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.feature_swap_shift", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.gaussian_noise_shift", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.knockout_shift", "reference/api/_autosummary/cyclops.report.report", "reference/api/_autosummary/cyclops.report.report.ModelCardReport", "reference/api/_autosummary/cyclops.tasks.classification", "reference/api/_autosummary/cyclops.tasks.classification.BinaryTabularClassificationTask", "reference/api/_autosummary/cyclops.tasks.classification.MultilabelImageClassificationTask", "reference/api/cyclops.data", "reference/api/cyclops.monitor", "reference/api/cyclops.report", "reference/api/cyclops.tasks", "reference/api/evaluator", "reference/api/fairness_evaluator", "reference/api/metrics", "reference/api/metrics/accuracy", "reference/api/metrics/auroc", "reference/api/metrics/average_precision", "reference/api/metrics/f1score", "reference/api/metrics/f_beta", "reference/api/metrics/precision", "reference/api/metrics/precision_recall_curve", "reference/api/metrics/recall", "reference/api/metrics/roc", "reference/api/metrics/sensitivity", "reference/api/metrics/specificity", "reference/api/metrics/stat_scores", "tutorials", "tutorials/kaggle/heart_failure_prediction", "tutorials/mimiciv/mortality_prediction", "tutorials/nihcxr/cxr_classification", "tutorials/nihcxr/monitor_api", "tutorials/synthea/los_prediction", "tutorials_monitor", "tutorials_use_cases", "user_guide"], "filenames": ["api.rst", "contributing.rst", "developing.rst", "evaluation.rst", "index.rst", "installation.rst", "model_report.rst", "monitoring.rst", "reference/api/_autosummary/cyclops.data.aggregate.rst", "reference/api/_autosummary/cyclops.data.aggregate.Aggregator.rst", "reference/api/_autosummary/cyclops.data.aggregate.tabular_as_aggregated.rst", "reference/api/_autosummary/cyclops.data.aggregate.timestamp_ffill_agg.rst", "reference/api/_autosummary/cyclops.data.features.medical_image.rst", "reference/api/_autosummary/cyclops.data.features.medical_image.MedicalImage.rst", "reference/api/_autosummary/cyclops.data.slicer.rst", "reference/api/_autosummary/cyclops.data.slicer.SliceSpec.rst", "reference/api/_autosummary/cyclops.data.slicer.compound_filter.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_datetime.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_non_null.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_range.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_string_contains.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_value.rst", "reference/api/_autosummary/cyclops.data.slicer.is_datetime.rst", "reference/api/_autosummary/cyclops.data.slicer.overall.rst", "reference/api/_autosummary/cyclops.monitor.clinical_applicator.rst", "reference/api/_autosummary/cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.binary_noise_shift.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.feature_association_shift.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.feature_swap_shift.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.gaussian_noise_shift.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.knockout_shift.rst", "reference/api/_autosummary/cyclops.report.report.rst", "reference/api/_autosummary/cyclops.report.report.ModelCardReport.rst", "reference/api/_autosummary/cyclops.tasks.classification.rst", "reference/api/_autosummary/cyclops.tasks.classification.BinaryTabularClassificationTask.rst", "reference/api/_autosummary/cyclops.tasks.classification.MultilabelImageClassificationTask.rst", "reference/api/cyclops.data.rst", "reference/api/cyclops.monitor.rst", "reference/api/cyclops.report.rst", "reference/api/cyclops.tasks.rst", "reference/api/evaluator.rst", "reference/api/fairness_evaluator.rst", "reference/api/metrics.rst", "reference/api/metrics/accuracy.rst", "reference/api/metrics/auroc.rst", "reference/api/metrics/average_precision.rst", "reference/api/metrics/f1score.rst", "reference/api/metrics/f_beta.rst", "reference/api/metrics/precision.rst", "reference/api/metrics/precision_recall_curve.rst", "reference/api/metrics/recall.rst", "reference/api/metrics/roc.rst", "reference/api/metrics/sensitivity.rst", "reference/api/metrics/specificity.rst", "reference/api/metrics/stat_scores.rst", "tutorials.rst", "tutorials/kaggle/heart_failure_prediction.ipynb", "tutorials/mimiciv/mortality_prediction.ipynb", "tutorials/nihcxr/cxr_classification.ipynb", "tutorials/nihcxr/monitor_api.ipynb", "tutorials/synthea/los_prediction.ipynb", "tutorials_monitor.rst", "tutorials_use_cases.rst", "user_guide.rst"], "titles": ["API Reference", "Contributing to cyclops", "\ud83e\uddd1\ud83c\udfff\u200d\ud83d\udcbb Developing", "Evaluation", "What is CyclOps?", "Installation", "Model Report", "Monitoring", "cyclops.data.aggregate", "cyclops.data.aggregate.Aggregator", "cyclops.data.aggregate.tabular_as_aggregated", "cyclops.data.aggregate.timestamp_ffill_agg", "cyclops.data.features.medical_image", "cyclops.data.features.medical_image.MedicalImage", "cyclops.data.slicer", "cyclops.data.slicer.SliceSpec", "cyclops.data.slicer.compound_filter", "cyclops.data.slicer.filter_datetime", "cyclops.data.slicer.filter_non_null", "cyclops.data.slicer.filter_range", "cyclops.data.slicer.filter_string_contains", "cyclops.data.slicer.filter_value", "cyclops.data.slicer.is_datetime", "cyclops.data.slicer.overall", "cyclops.monitor.clinical_applicator", "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator", "cyclops.monitor.synthetic_applicator", "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator", "cyclops.monitor.synthetic_applicator.binary_noise_shift", "cyclops.monitor.synthetic_applicator.feature_association_shift", "cyclops.monitor.synthetic_applicator.feature_swap_shift", "cyclops.monitor.synthetic_applicator.gaussian_noise_shift", "cyclops.monitor.synthetic_applicator.knockout_shift", "cyclops.report.report", "cyclops.report.report.ModelCardReport", "cyclops.tasks.classification", "cyclops.tasks.classification.BinaryTabularClassificationTask", "cyclops.tasks.classification.MultilabelImageClassificationTask", "cyclops.data", "cyclops.monitor", "cyclops.report", "cyclops.tasks", "Evaluator", "Fairness Evaluator", "Evaluation Metrics", "Accuracy", "AUROC", "Average Precision", "F1-Score", "F-beta Score", "Precision", "PrecisionRecallCurve", "Recall", "ROC Curve", "Sensitivity", "Specificity", "StatScores", "Tutorials", "Heart Failure Prediction", "Mortality Prediction", "Chest X-Ray Disease Classification", "NIHCXR Clinical Drift Experiments Tutorial", "Prolonged Length of Stay Prediction", "monitor API", "Example use cases", "User Guide"], "terms": {"cyclop": [0, 2, 5, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62], "data": [0, 4, 25, 27, 28, 29, 30, 31, 32, 34, 36, 37, 45, 48, 49, 51, 53, 57, 60, 61, 63], "task": [0, 4, 42, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 64], "evalu": [0, 4, 34, 36, 37, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 60, 64, 65], "fair": [0, 4, 34, 36, 37, 42, 58, 59, 60, 62], "metric": [0, 4, 34, 36, 37, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 62, 64], "monitor": [0, 4, 58, 59, 61, 62, 65], "report": [0, 4, 56, 57, 64, 65], "thank": 1, "your": [1, 58], "interest": [1, 58, 59, 62], "To": [1, 13, 58, 62], "submit": 1, "pr": 1, "pleas": [1, 58, 59, 62], "fill": [1, 11], "out": [1, 34, 58, 59, 62], "templat": [1, 34], "along": [1, 25, 58, 59, 60, 62], "If": [1, 2, 9, 11, 13, 15, 17, 18, 19, 20, 21, 34, 36, 37, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 62], "fix": 1, "an": [1, 4, 9, 13, 15, 34, 42, 43, 48, 50, 52, 54, 56, 58, 59, 60, 62, 64], "issu": [1, 43], "don": [1, 59], "t": [1, 13, 34, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 59], "forget": 1, "link": [1, 34, 58, 59, 60, 62], "onc": [1, 58, 59, 62], "python": [1, 59, 62], "virtual": 1, "environ": [1, 2, 58, 59, 62], "i": [1, 2, 5, 9, 10, 11, 13, 15, 17, 18, 19, 20, 21, 22, 25, 27, 34, 36, 37, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62, 64], "setup": [1, 59, 62], "you": [1, 2, 13, 58, 59, 60, 62, 63], "can": [1, 2, 5, 11, 13, 15, 34, 36, 37, 43, 45, 48, 50, 52, 53, 54, 56, 58, 59, 60, 62, 63], "run": [1, 2, 58, 59, 62], "us": [1, 4, 9, 13, 15, 16, 25, 27, 34, 36, 37, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62, 63, 65], "all": [1, 10, 11, 15, 16, 17, 18, 19, 20, 21, 23, 36, 52, 54, 56, 58, 59, 60, 61, 62], "file": [1, 13, 34, 58, 59, 60, 62], "For": [1, 5, 34, 43, 56, 58, 59, 62], "style": 1, "we": [1, 34, 58, 59, 60, 62], "recommend": 1, "pep": 1, "8": [1, 15, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62], "guid": [1, 4], "docstr": 1, "numpi": [1, 11, 28, 29, 30, 31, 32, 37, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62], "format": [1, 9, 13, 15, 34, 51, 56, 58, 59, 62], "ruff": [1, 58, 59], "static": [1, 10], "analysi": [1, 34, 58, 59, 60, 62], "check": [1, 22, 51], "variou": [1, 42, 58, 59, 62], "rule": 1, "includ": [1, 9, 15, 19, 25, 27, 43, 58, 59, 60, 62, 63, 64], "flake8": 1, "The": [1, 2, 4, 9, 10, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 25, 27, 34, 36, 37, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62, 63, 64], "show": [1, 4, 58, 59, 60, 62], "error": [1, 42, 43], "which": [1, 9, 11, 17, 18, 19, 20, 21, 34, 42, 43, 51, 58, 59, 60, 62, 64], "need": [1, 2, 42, 43, 58, 59, 62], "befor": [1, 11, 36, 42, 43, 58, 59, 62], "last": [1, 10], "least": 1, "type": [1, 9, 10, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 27, 28, 29, 30, 31, 32, 34, 36, 37, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 64], "hint": 1, "our": [1, 58, 59, 62], "mypi": 1, "set": [2, 5, 9, 10, 15, 34, 42, 43, 45, 47, 48, 49, 50, 52, 54, 55, 56, 58, 59, 60, 62], "up": [2, 58, 59, 60, 62], "henc": [2, 5], "make": [2, 58, 59, 62], "sure": [2, 58], "instal": [2, 4, 58, 65], "python3": [2, 5], "m": [2, 5, 58, 59, 60, 61, 62], "sourc": [2, 4, 9, 10, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 27, 28, 29, 30, 31, 32, 34, 36, 37, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 63], "env": 2, "info": [2, 58, 59, 62], "path": [2, 13, 25, 34, 36, 37, 58, 59, 62], "bin": [2, 9, 43], "activ": [2, 62], "In": [2, 58, 59, 62], "order": [2, 13, 42, 56], "depend": [2, 5], "test": [2, 27, 34, 36, 37, 42, 57, 58, 59, 62, 63, 64], "codestyl": 2, "unit": 2, "integr": 2, "api": [2, 4, 9, 42, 43, 58, 62, 64], "document": [2, 58, 59, 60, 62], "built": 2, "sphinx": 2, "local": 2, "doc": 2, "cd": 2, "html": [2, 34, 58, 59, 60, 62], "sphinxopt": 2, "d": [2, 25, 60], "nbsphinx_allow_error": 2, "true": [2, 9, 10, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 27, 29, 34, 36, 37, 42, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62], "build": [2, 25], "pandoc": 2, "addit": [2, 5, 34, 36, 37, 58, 59, 60, 62], "group": [2, 9, 34, 43, 58, 59, 62], "welcom": 2, "see": [2, 9, 15, 34, 58, 59, 62], "guidelin": [2, 4], "open": 4, "toolkit": 4, "scientist": [4, 60], "engin": [4, 58, 59, 62], "clinician": [4, 58, 59, 62], "work": [4, 15, 34, 45, 55, 58, 59, 60, 62], "intersect": [4, 43], "artifici": 4, "intellig": 4, "health": [4, 58, 59, 62], "design": 4, "help": [4, 58, 59, 60, 62], "research": 4, "practition": 4, "adopt": 4, "vector": 4, "institut": 4, "": [4, 15, 18, 22, 34, 36, 37, 42, 43, 47, 58, 59, 62], "ai": [4, 58, 59, 62], "trust": [4, 58, 59, 62], "safeti": 4, "principl": 4, "specif": [4, 5, 15, 28, 31, 36, 37, 42, 44, 47, 58, 59, 60, 62], "focus": 4, "system": 4, "develop": [4, 58, 59, 60, 62], "clinic": [4, 24, 25, 63], "applic": [4, 24, 25, 27, 46], "where": [4, 15, 16, 17, 18, 19, 20, 21, 34, 36, 37, 50, 51, 52, 54, 58, 59, 62, 64], "robust": 4, "ar": [4, 5, 13, 15, 19, 20, 25, 29, 34, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62], "critic": 4, "primari": [4, 34, 58, 59, 60, 62], "goal": [4, 64], "improv": [4, 58, 59, 62], "transpar": 4, "account": [4, 45, 46, 47, 48, 49, 50, 52, 54, 55, 58, 60], "heart": [4, 57], "failur": [4, 57], "predict": [4, 36, 37, 42, 43, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 60], "exampl": [4, 5, 9, 13, 15, 16, 17, 18, 19, 20, 21, 23, 25, 27, 34, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 63], "case": [4, 28, 34, 57, 58, 59, 62, 63], "how": [4, 9, 58, 59, 60, 62], "model": [4, 5, 33, 34, 36, 37, 42, 43, 57, 63, 64, 65], "its": [4, 15, 50, 52, 54, 58, 59, 60, 62], "perform": [4, 9, 11, 21, 34, 42, 45, 46, 57, 58, 59, 62, 63, 64], "over": [4, 56, 58, 59, 60, 62], "time": [4, 9, 15, 25, 34, 58, 59, 60, 62, 63], "user": [4, 34, 58, 59, 62], "tutori": [4, 63, 64], "poetri": 4, "contribut": 4, "pre": [4, 58, 59, 62], "commit": 4, "hook": 4, "code": [4, 58, 59, 62], "refer": [4, 34, 58, 59, 60, 62], "pycyclop": 5, "ha": [5, 21, 34, 58, 59, 60, 62], "mani": 5, "option": [5, 9, 10, 11, 13, 15, 17, 18, 19, 20, 21, 25, 27, 34, 36, 37, 42, 43, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56], "function": [5, 8, 9, 11, 13, 14, 15, 16, 26, 34, 42, 43, 59, 60, 62], "monai": [5, 13], "librari": [5, 57, 63, 64], "load": [5, 34, 36, 37, 42, 57, 59, 62, 63, 64], "dicom": 5, "imag": [5, 12, 13, 31, 34, 37, 38, 42, 43, 57, 60, 61], "creat": [5, 14, 15, 28, 31, 32, 34, 36, 37, 43, 50, 52, 54, 57, 60, 64], "dataset": [5, 14, 15, 25, 27, 34, 36, 37, 38, 42, 43, 45, 48, 49, 50, 51, 52, 53, 54, 55, 57, 63, 64], "list": [5, 9, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 28, 29, 30, 31, 32, 34, 36, 37, 42, 43, 46, 47, 51, 53, 58, 59, 62], "below": [5, 58, 59, 62], "extra": [5, 34], "note": [5, 9, 34, 42, 58, 59, 62], "xgboost": [5, 59, 62], "allow": [5, 42, 43, 58, 59, 62, 63], "torch": [5, 61], "pytorch": 5, "torchvis": [5, 60, 61], "torchxrayvis": [5, 60, 61], "transform": [5, 9, 36, 37, 46, 53, 58, 59, 60, 61, 62], "alibi": 5, "explain": [5, 34], "detect": [5, 60, 63], "shift": [5, 24, 25, 27, 29, 30, 63], "class": [8, 9, 12, 13, 14, 15, 24, 25, 26, 27, 29, 30, 32, 33, 34, 35, 36, 37, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62], "aggfunc": [9, 59, 62], "timestamp_col": [9, 59], "time_bi": [9, 59], "agg_bi": [9, 59], "timestep_s": 9, "none": [9, 10, 11, 13, 15, 17, 25, 34, 36, 37, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62], "window_dur": [9, 59], "window_start_tim": [9, 59], "window_stop_tim": 9, "imput": [9, 58, 59, 62], "agg_meta_for": 9, "base": [9, 13, 15, 25, 27, 34, 36, 37, 42, 43, 50, 52, 54, 57, 58, 64], "transformermixin": 9, "equal": [9, 15, 19, 43], "space": [9, 53], "seri": [9, 11, 36], "comput": [9, 36, 37, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 64], "metadata": [9, 13, 58, 59, 60, 62], "expens": [9, 42, 43], "should": [9, 16, 30, 34, 36, 37, 42, 43, 53, 58, 59, 60, 62], "done": [9, 58, 59, 62], "sparingli": 9, "map": [9, 15, 16, 36, 37, 60], "from": [9, 13, 15, 25, 27, 32, 34, 36, 37, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 64], "column": [9, 10, 15, 16, 17, 18, 19, 20, 21, 25, 36, 37, 42, 43, 58, 59, 60, 62], "each": [9, 15, 16, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 62], "valu": [9, 10, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 34, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 64], "either": [9, 19, 34, 56, 58, 59, 62], "string": [9, 13, 15, 17, 20, 34, 42, 43, 60], "e": [9, 10, 15, 17, 18, 29, 30, 31, 34, 42, 43, 58, 59, 62], "g": [9, 10, 15, 17, 29, 30, 31, 34, 42, 43, 58, 59, 62], "col_nam": 9, "mean": [9, 45, 46, 47, 48, 49, 50, 52, 54, 55, 58, 59, 60, 62], "accept": 9, "return": [9, 10, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 27, 28, 29, 30, 31, 32, 34, 36, 37, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 59, 62], "singl": [9, 11, 15, 34, 36, 37, 42, 51, 58, 59, 62, 64], "dict": [9, 13, 15, 16, 17, 18, 19, 20, 21, 23, 34, 36, 37, 42, 43], "name": [9, 10, 15, 16, 17, 18, 19, 20, 21, 25, 34, 36, 37, 42, 43, 58, 59, 60, 61, 62], "timestamp": [9, 34, 59, 60, 63], "provid": [9, 15, 17, 20, 34, 42, 43, 51, 53, 56, 58, 59, 60, 62], "str": [9, 10, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 27, 34, 36, 37, 42, 43, 58, 59, 62], "determin": [9, 45, 46, 47, 51, 53, 56], "bucket": [9, 11], "hour": [9, 15, 17, 59], "timestep": [9, 10, 11], "float": [9, 11, 19, 28, 29, 30, 31, 32, 34, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56], "window": [9, 11, 63], "latest": 9, "stop": [9, 62], "start": [9, 58, 59, 62], "pd": [9, 10, 36, 59], "datafram": [9, 10, 36, 58, 59, 62], "window_tim": 9, "aggregatedimput": 9, "num_timestep": [9, 10, 11], "number": [9, 10, 11, 25, 29, 30, 34, 36, 37, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 59, 62, 63], "int": [9, 10, 11, 17, 25, 29, 30, 31, 32, 34, 36, 37, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 62], "dictionari": [9, 13, 15, 16, 17, 18, 19, 20, 21, 23, 34, 36, 37, 42, 43, 58, 59, 62], "one": [9, 15, 36, 37, 42, 43, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55], "follow": [9, 15, 34, 42, 45, 48, 49, 50, 52, 54, 55, 58, 59, 60, 62], "median": 9, "std": 9, "var": 9, "min": 9, "max": [9, 10, 62], "count": [9, 45, 46, 47, 48, 49, 50, 52, 54, 55, 58, 59, 60, 62], "sum": [9, 55, 56, 59, 60, 62], "init": 9, "method": [9, 13, 15, 25, 27, 34, 36, 37, 42, 43, 46, 58, 59, 62], "__init__": [9, 36, 37], "fit": [9, 36, 58, 59, 62], "paramet": [9, 10, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 27, 28, 29, 30, 31, 32, 34, 36, 37, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62], "panda": [9, 10, 11, 58, 59, 62], "input": [9, 13, 28, 31, 36, 37, 45, 47, 50, 51, 52, 53, 54, 56], "fit_transform": [9, 59], "set_output": 9, "output": [9, 34, 45, 51, 53, 58, 59, 62], "contain": [9, 10, 13, 15, 16, 17, 18, 19, 20, 21, 23, 34, 42, 43, 45, 55, 58, 59, 60, 62, 64], "introduc": 9, "default": [9, 11, 13, 15, 17, 18, 19, 20, 21, 25, 34, 36, 37, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 62], "configur": [9, 36, 37, 42, 58, 59, 62], "unchang": 9, "self": [9, 13], "estim": [9, 36, 45, 46, 48, 49, 51, 53, 55], "instanc": [9, 45, 46, 47, 48, 49, 50, 52, 54, 55, 58, 59, 60, 62], "y": [9, 27, 29, 30, 32, 36, 58, 59, 60, 62], "include_timestep_start": 9, "placehold": [9, 29], "sklearn": [9, 27, 58, 59, 62], "compat": [9, 58, 59, 62], "bool": [9, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 29, 30, 34, 36, 37, 42, 43, 56, 58, 59, 60, 62], "whether": [9, 13, 15, 25, 34, 42, 43, 56, 59, 62, 64], "tab": [10, 58], "index": [10, 58, 59, 60, 62], "var_nam": 10, "value_nam": 10, "strategi": [10, 34, 58, 59, 60, 62], "sort": [10, 58, 59, 62], "pose": 10, "tabular": [10, 36, 37, 57], "non": [10, 51, 53], "timeseri": 10, "result": [10, 16, 36, 37, 42, 48, 58, 59, 61, 62], "origin": [10, 25], "fake": 10, "first": [10, 42, 43, 45, 55, 58, 59, 62], "thi": [10, 15, 34, 36, 42, 43, 45, 46, 47, 48, 49, 50, 52, 54, 55, 56, 58, 59, 60, 62, 64], "requir": [10, 34, 36, 37, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 62], "process": [10, 25, 57, 58, 60, 62, 64], "tempor": 10, "val": [11, 42], "1": [11, 15, 25, 29, 30, 31, 32, 34, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62, 63, 64], "fill_nan": 11, "forward": 11, "given": [11, 17, 19, 20, 21, 22, 34, 36, 37, 45, 48, 49, 50, 52, 54, 55, 56], "neg": [11, 42, 45, 46, 47, 48, 49, 50, 52, 54, 55, 56, 60, 62], "treat": [11, 43], "occur": 11, "regular": 11, "through": [11, 58, 59, 60, 62], "between": [11, 15, 43, 48, 53, 56], "0": [11, 15, 27, 28, 29, 30, 31, 32, 34, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62], "accordingli": 11, "nan": [11, 17, 18, 42, 43, 57, 64], "A": [11, 15, 16, 17, 18, 19, 20, 21, 23, 34, 42, 43, 45, 55, 56, 58, 59, 60, 62], "integ": [11, 34, 42, 43], "total": [11, 45, 46, 47, 48, 49, 50, 52, 54, 55, 56, 59, 62], "consid": [11, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 59], "ani": [11, 15, 16, 17, 18, 19, 20, 21, 23, 34, 36, 37, 42, 43, 51, 53, 58, 59, 60, 62], "remain": [11, 60], "form": [11, 48, 58, 59, 62], "2": [11, 29, 30, 34, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62, 63], "dimension": [11, 63], "arrai": [11, 13, 29, 30, 32, 37, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 60, 62], "ndarrai": [11, 13, 22, 28, 29, 30, 31, 32, 36, 37, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56], "medic": [12, 13, 38, 60, 62, 64], "decod": [13, 60], "id": [13, 25, 58, 60, 62], "reader": 13, "itkread": 13, "suffix": 13, "jpg": 13, "read": 13, "union": [13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 34, 36, 37, 42, 43, 46, 51, 53], "imageread": 13, "when": [13, 36, 37, 42, 43, 45, 47, 48, 49, 50, 52, 54, 55, 56, 58, 59, 62], "byte": 13, "fals": [13, 15, 17, 18, 19, 20, 21, 22, 30, 31, 36, 37, 42, 43, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 58, 59, 60, 62], "image_path": 13, "image_byt": 13, "attribut": [13, 15, 36, 37, 58, 59, 62], "__call__": 13, "call": [13, 34], "cast_storag": 13, "storag": 13, "cast": 13, "arrow": 13, "convert": [13, 45, 47, 49, 51, 52, 53, 54, 55, 56, 58, 59, 62], "pyarrow": 13, "rtype": 13, "structarrai": 13, "pa": 13, "must": [13, 17, 34, 42, 43, 47], "binari": [13, 28, 36, 37, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 62, 64], "struct": 13, "doesn": 13, "matter": 13, "arg": 13, "stringarrai": 13, "listarrai": 13, "decode_exampl": 13, "token_per_repo_id": 13, "serial": 13, "version": [13, 34, 58, 59, 60, 62], "access": 13, "privat": 13, "repositori": [13, 58], "hub": 13, "pass": [13, 25, 34, 36, 37, 42, 58, 59, 62], "repo_id": 13, "token": [13, 58], "deseri": 13, "np": [13, 19, 22, 36, 37, 43, 58, 59, 60, 61, 62], "embed_storag": 13, "emb": 13, "encode_exampl": 13, "encod": 13, "flatten": 13, "state": [13, 51], "itself": 13, "otherwis": [13, 22, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56], "tupl": [13, 15, 25, 36, 37, 51, 53], "classlabel": [13, 58, 59, 62], "translat": 13, "translationvariablelanguag": 13, "sequenc": [13, 36, 37, 42, 60], "array2d": 13, "array3d": 13, "array4d": 13, "array5d": 13, "audio": 13, "subset": 14, "hug": [14, 36, 37, 57, 64], "face": [14, 36, 37, 57, 64], "spec_list": [15, 58, 59, 60, 61, 62], "factori": [15, 60], "valid": [15, 17, 34, 36, 37, 42, 58, 59], "include_overal": [15, 58], "column_nam": [15, 17, 18, 19, 20, 21, 60], "object": [15, 25, 27, 34, 36, 37, 43, 58, 59, 62], "slice": [15, 16, 34, 36, 37, 42, 43, 58, 59, 60, 62], "more": [15, 36, 37, 42, 58, 64], "kei": [15, 34, 43, 58, 59, 60, 61, 62], "exact": [15, 21], "select": [15, 25, 29, 58, 59, 60, 62], "row": [15, 58, 60], "support": [15, 45, 46, 47, 48, 49, 50, 52, 54, 55, 56, 62, 63], "2021": [15, 58, 59, 62], "01": [15, 46, 58, 59, 62], "00": 15, "min_valu": [15, 19, 58, 59, 60, 61, 62], "minimum": [15, 19], "specifi": [15, 25, 34, 36, 37, 42, 58, 59, 62], "min_inclus": [15, 19, 58, 59, 62], "indic": [15, 28, 31, 42, 43, 45, 50, 52, 54, 58, 59, 62], "rang": [15, 19, 46, 47, 51, 53, 58, 59, 60, 62], "numer": [15, 19, 58, 59, 62], "datetim": [15, 17, 19, 22, 34, 58, 59, 62], "inf": [15, 19], "max_valu": [15, 19, 58, 59, 60, 61, 62], "boolean": [15, 16, 17, 18, 19, 20, 21, 23], "greater": [15, 62], "than": [15, 19, 36, 37, 49, 58, 59, 62, 64], "maximum": [15, 19, 46], "max_inclus": [15, 19, 58, 59, 62], "less": [15, 19, 49, 59, 62], "year": [15, 17, 58, 59, 60, 62], "match": [15, 17, 20, 21, 42], "month": [15, 17, 25], "12": [15, 58, 59, 60, 62], "dai": [15, 17, 59, 62, 64], "31": [15, 58, 59, 62], "23": [15, 58, 59, 62], "negat": [15, 17, 18, 19, 20, 21, 60], "flag": [15, 59], "featur": [15, 17, 18, 19, 20, 21, 23, 25, 29, 30, 34, 36, 37, 57, 60, 64], "doe": [15, 17, 19, 20, 21, 34, 43, 45, 46, 47, 48, 49, 50, 52, 54, 55], "keep_nul": [15, 17, 19, 20, 21], "keep": [15, 42, 43, 62], "null": [15, 17, 18, 19, 20, 21, 59, 62], "conjunct": [15, 60], "own": [15, 58, 59, 62], "overal": [15, 34, 43, 58, 59, 60, 62], "_registri": 15, "callabl": [15, 16, 34, 43], "import": [15, 25, 27, 34, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 63, 64], "slice_spec": [15, 36, 37, 42, 58, 59, 60, 62], "feature_1": 15, "feature_2": 15, "feature_3": 15, "value_1": 15, "value_2": 15, "2020": [15, 17, 60], "5": [15, 27, 28, 31, 32, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62, 63], "60": 15, "2022": [15, 58, 59, 60, 62], "6": [15, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62], "7": [15, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62, 64], "2000": 15, "2010": 15, "slice_nam": [15, 34, 58, 59, 62], "slice_func": 15, "print": [15, 58, 59, 60, 62], "do": [15, 58, 59, 60, 62], "someth": 15, "here": [15, 58, 59, 62], "filter": [15, 17, 18, 19, 20, 21, 42, 43, 59, 60, 62], "non_nul": 15, "add_slice_spec": 15, "add": [15, 34, 36, 37, 58, 59, 62], "detail": [15, 58, 59, 60, 62], "get_slic": 15, "registri": [15, 58, 59, 62], "gener": [15, 25, 34, 53, 57, 63, 64], "slice_funct": 16, "combin": [16, 58], "multipl": [16, 34, 42, 43], "bitwis": 16, "AND": 16, "appli": [16, 25, 36, 37, 45, 46, 50, 51, 52, 53, 54, 55, 56, 58, 59, 62], "signatur": 16, "kwarg": [16, 27, 36, 37], "compon": 17, "have": [17, 20, 21, 27, 58, 59, 64], "nat": 17, "rais": [17, 19, 20, 34, 36, 37, 42, 43, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56], "typeerror": [17, 19, 20, 34, 43], "valueerror": [19, 34, 36, 37, 42, 43, 45, 47, 49, 50, 51, 52, 53, 54, 55, 56], "substr": 20, "find": [21, 36, 45, 46, 47, 48, 49, 50, 52, 54, 55, 60], "datetime64": 22, "modul": [24, 33, 34, 42, 43, 58, 59, 62], "shift_typ": [25, 27], "target": [25, 29, 30, 36, 37, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 62, 63, 64], "shift_id": [25, 61], "induc": [25, 27], "synthet": [25, 27, 34, 62, 63, 64], "take": [25, 43, 45, 46, 47, 48, 49, 50, 52, 54, 55, 58], "split": [25, 34, 36, 37, 42, 58, 59, 60, 62], "categor": [25, 58, 59, 62], "loader": [25, 60, 61], "load_nihcxr": [25, 60, 61], "mnt": [25, 60, 61], "nihcxr": [25, 60, 63], "hospital_typ": 25, "hospital_type_1": 25, "hospital_type_2": 25, "hospital_type_3": 25, "hospital_type_4": 25, "hospital_type_5": 25, "ds_sourc": [25, 61], "ds_target": [25, 61], "apply_shift": [25, 27, 61], "custom": [25, 34, 61], "ag": [25, 57, 61, 64], "batch": [25, 36, 37, 42, 43, 59, 60], "batch_siz": [25, 36, 37, 42, 43, 58, 59, 62], "1000": [25, 36, 42, 43, 58, 60], "num_proc": [25, 61], "huggingfac": [25, 36, 37, 43], "size": [25, 36, 37, 42, 43, 58, 59, 60, 62], "slicespec": [25, 37, 42, 58, 59, 60, 61, 62], "hospit": [25, 58, 59, 62, 64], "sex": [25, 57, 59, 61, 62, 64], "syntheticshiftappl": 26, "load_diabet": 27, "x": [27, 28, 29, 30, 31, 32, 36, 57, 58, 59, 61, 62], "return_x_i": 27, "from_dict": 27, "train_test_split": [27, 58, 59, 62], "test_siz": 27, "seed": [27, 58, 59, 61, 62], "42": [27, 58, 59, 61, 62], "gn_shift": 27, "x_shift": 27, "ko_shift": 27, "cp_shift": 27, "mfa_shift": 27, "bn_shift": 27, "tolerance_shift": 27, "ds_shift": 27, "nois": [27, 28, 31], "ad": [27, 34, 36, 37, 58, 59, 62], "prob": 28, "delta": [28, 31, 32], "matrix": [28, 29, 30, 31, 32, 62], "covari": [28, 29, 30, 31, 32], "p": [28, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 60], "proport": [28, 58, 59, 60, 62], "control": [28, 43], "fraction": [28, 31, 32, 62], "affect": [28, 31, 34, 58, 59, 62], "dtype": [28, 29, 30, 31, 32, 51, 53, 58, 59, 60], "float64": [28, 29, 30, 31, 32, 51, 53, 60], "n_shuffl": [29, 30], "25": [29, 30, 46, 51, 53, 55, 56, 58, 59, 61, 62], "keep_rows_const": 29, "repermute_each_column": 29, "multiwai": 29, "associ": [29, 58, 59, 60, 62], "swap": [29, 30], "individu": [29, 58, 59, 62], "within": [29, 59], "label": [29, 30, 32, 36, 37, 42, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 64], "cl": [29, 30], "3": [29, 30, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62, 63], "etc": [29, 30, 58, 59, 60, 62], "floatnumpi": 29, "shuffl": [29, 30, 58], "permut": 29, "same": [29, 42, 43], "across": [29, 43, 63], "shift_class": [30, 32], "rank": 30, "changepoint": 30, "axi": [30, 59, 62], "x_ref": 30, "y_ref": 30, "noise_amt": 31, "normal": [31, 58, 59, 62], "clip": [31, 58, 59, 62], "gaussian": 31, "standard": [31, 58, 59, 62], "deviat": 31, "divid": 31, "255": [31, 60, 61], "imbal": [32, 45, 46, 47, 48, 49, 50, 52, 54, 55], "remov": [32, 36, 37, 43, 58, 59, 60, 62], "sampl": [32, 50, 52, 54], "placehol": 32, "output_dir": [34, 58, 59, 62], "card": [34, 57, 58, 59, 62, 64], "serv": 34, "interfac": 34, "popul": [34, 57, 58, 59, 62, 64], "modelcard": 34, "directori": [34, 58, 59, 62], "save": [34, 36, 37, 58, 59, 62], "current": [34, 58, 59, 62], "export": [34, 58, 59, 60, 62], "output_filenam": [34, 58, 59, 60, 62], "template_path": 34, "interact": [34, 59, 62], "save_json": 34, "synthetic_timestamp": [34, 58, 59, 60, 62], "date": [34, 58, 59, 62], "jinja2": 34, "json": [34, 58, 59, 62], "back": 34, "classmethod": 34, "from_json_fil": 34, "cyclops_report": [34, 58, 59, 62], "log_cit": [34, 60], "citat": [34, 58, 59, 60, 62], "section_nam": [34, 58, 59, 60, 62], "model_detail": [34, 58, 59, 62], "section": [34, 58, 59, 60, 62], "content": 34, "repres": [34, 60], "keyerror": 34, "bibtex": 34, "entri": [34, 56], "plain": 34, "text": [34, 60], "log_dataset": [34, 58], "descript": [34, 58, 59, 60, 62], "license_id": [34, 58], "sensitive_featur": [34, 58], "sensitive_feature_justif": [34, 58], "log": [34, 42, 57, 58, 59, 62, 64], "inform": [34, 58], "about": [34, 58, 59, 60, 62], "train": [34, 36, 37, 42, 57, 60, 63, 64], "resourc": [34, 58, 59, 62], "relev": [34, 58, 59, 62, 63], "context": 34, "homepag": 34, "spdx": [34, 58], "identifi": [34, 57, 60, 64], "licens": [34, 58, 59, 60, 62], "apach": [34, 58, 59, 62], "http": [34, 58, 59, 60, 62], "org": [34, 58, 59, 60, 62], "unknown": 34, "unlicens": 34, "proprietari": 34, "sensit": [34, 44, 58, 59, 60, 62, 63], "justif": [34, 58], "field": [34, 57, 58, 59, 62, 64], "assertionerror": [34, 51, 53], "log_descriptor": [34, 58, 59, 60, 62], "descriptor": 34, "new": [34, 58, 59, 62], "pydant": 34, "basemodel": 34, "subclass": 34, "As": 34, "long": 34, "conflict": 34, "defin": [34, 58, 59, 60, 62], "model_card": 34, "tradeoff": [34, 60], "trade": 34, "off": 34, "interpret": 34, "consider": [34, 58, 59, 60, 62], "log_fairness_assess": [34, 58, 59, 60, 62], "affected_group": [34, 58, 59, 60, 62], "benefit": [34, 58, 59, 60, 62], "harm": [34, 58, 59, 60, 62], "mitigation_strategi": [34, 58, 59, 60, 62], "assess": 34, "mitig": [34, 58, 59, 60, 62], "relat": 34, "log_from_dict": [34, 58, 59, 60, 62], "log_imag": 34, "img_path": 34, "caption": [34, 58, 59, 60, 62], "exist": [34, 36, 37], "log_licens": [34, 58, 59, 62], "full": 34, "avail": [34, 42, 58, 59, 62, 64], "whole": [34, 58, 59, 62], "found": [34, 58], "left": [34, 62], "blank": 34, "instead": 34, "log_model_paramet": [34, 58, 59, 62], "param": [34, 58, 59, 62], "log_own": [34, 58, 59, 60, 62], "contact": [34, 58, 59, 60, 62], "role": 34, "owner": [34, 58, 59, 60, 62], "log_performance_metr": [34, 58, 59, 62], "quantit": [34, 58, 59, 60, 62], "slash": 34, "metric_nam": [34, 43, 58, 59, 60, 62], "log_plotly_figur": [34, 58, 59, 60, 62], "fig": [34, 58, 59, 60, 62], "plotli": [34, 58, 59, 60, 62], "figur": [34, 58, 59, 62], "plot": [34, 58, 59, 60, 62], "log_quantitative_analysi": [34, 58, 59, 60, 62], "analysis_typ": 34, "metric_slic": [34, 58, 59, 60, 62], "decision_threshold": 34, "pass_fail_threshold": [34, 58, 59, 60, 62], "pass_fail_threshold_fn": [34, 58, 59, 60, 62], "liter": [34, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56], "decis": [34, 46, 51, 53, 58, 59, 62], "threshold": [34, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 62, 64], "fail": 34, "log_refer": [34, 58, 59, 62], "log_regul": 34, "regul": 34, "regulatori": [34, 58, 59, 62], "compli": 34, "log_risk": [34, 58, 59, 60, 62], "risk": [34, 58, 59, 60, 62, 64], "log_use_cas": [34, 58, 59, 60, 62], "kind": [34, 58, 59, 60, 62], "scope": [34, 58, 59, 62], "usecas": 34, "log_us": [34, 58, 59, 60, 62], "log_vers": [34, 58, 59, 62], "version_str": [34, 58, 59, 62], "semant": 34, "v1": 34, "dt_date": 34, "dt_datetim": 34, "unix": 34, "yyyi": 34, "mm": 34, "dd": 34, "hh": 34, "ss": 34, "ffffff": 34, "z": 34, "summar": 34, "chang": [34, 58, 59, 60, 62], "made": [34, 58, 59, 62], "task_featur": [36, 37, 58, 59, 62], "task_target": [36, 37, 58, 59, 62], "basetask": [36, 37], "initi": [36, 37, 45, 57, 58, 59, 62, 64], "ptmodel": [36, 37, 60], "skmodel": [36, 37], "add_model": [36, 37], "wrappedmodel": [36, 37], "properti": [36, 37], "data_typ": [36, 37], "model_nam": [36, 37, 58, 59, 60, 61, 62], "prediction_column_prefix": [36, 37, 58, 59, 62], "splits_map": [36, 37], "remove_column": [36, 37, 42, 43, 60], "fairness_config": [36, 37, 42, 58, 59, 62], "override_fairness_metr": [36, 37, 42, 58, 59, 62], "datasetdict": [36, 37, 42], "metricdict": [36, 37, 42, 43, 58, 59, 62], "columntransform": [36, 58, 59, 62], "slicingconfig": 36, "config": 36, "default_max_batch_s": 36, "unnecessari": [36, 37], "fairnessconfig": [36, 37, 42, 58, 59, 62], "argument": [36, 37, 42, 43, 58, 59, 62], "overridden": [36, 37, 42], "get_model": [36, 37], "get": [36, 37, 58, 59, 62], "list_model": [36, 37, 58, 59, 62], "list_models_param": [36, 37, 58, 59, 62], "load_model": [36, 37], "filepath": [36, 37], "pretrain": [36, 37, 60], "models_count": [36, 37], "proba": [36, 58, 59, 62], "mortal": [36, 57], "probabl": [36, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 62], "notfittederror": 36, "save_model": [36, 37], "destin": [36, 37], "correspond": [36, 37, 51], "parent": [36, 37], "dirctori": [36, 37], "keyword": [36, 37, 42, 43], "task_typ": [36, 37, 58, 59, 62], "best_model_param": [36, 58, 59, 62], "x_train": 36, "y_train": 36, "pipelin": [36, 58, 59, 62], "best": [36, 58, 59, 62], "64": [37, 59, 62], "compos": [37, 58, 59, 60, 61, 62], "pathologi": [37, 57, 58, 64], "represent": [37, 58, 59, 62], "packag": [38, 39, 40, 41, 58, 59, 60, 62], "consist": [42, 43], "It": [42, 48, 50, 52, 54, 55, 63], "target_column": [42, 43, 58, 59, 60, 62], "prediction_column": [42, 43, 60], "ignore_column": [42, 60], "raise_on_empty_slic": [42, 43], "load_dataset_kwarg": 42, "load_dataset": 42, "multi": [42, 60], "ignor": [42, 58, 59, 62], "while": 42, "mai": [42, 43, 58, 59, 60, 62], "memori": [42, 43], "entir": [42, 58, 59, 62], "chosen": 42, "eval": 42, "dev": 42, "empti": [42, 43], "warn": [42, 45, 47, 48, 49, 50, 52, 54, 55], "onli": [42, 43, 45, 46, 48, 49, 50, 52, 54, 55, 56], "evaluate_fair": 43, "pariti": 43, "group_valu": 43, "group_bin": [43, 58, 59, 62], "group_base_valu": [43, 58, 59, 62], "compute_optimal_threshold": 43, "metric_kwarg": 43, "multilabel": [43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 64], "uniqu": [43, 46, 47, 51, 53, 60, 64], "limit": [43, 58, 59, 60, 62], "continu": [43, 56, 58, 59, 60, 62], "veri": 43, "slow": 43, "larg": 43, "denomin": 43, "linspac": 43, "monoton": [43, 47, 53], "optim": [43, 58], "oper": [43, 58, 59, 62], "necessari": 43, "usag": [43, 58, 59, 62], "rel": 43, "small": 43, "32": [43, 58, 59, 62], "avoid": 43, "encount": [43, 59, 62], "nest": 43, "level": [43, 58, 59, 60, 62], "second": 43, "third": 43, "omit": 43, "runtimeerror": 43, "accuraci": [44, 58, 59, 62], "auroc": [44, 57, 58, 59, 62, 64], "averag": [44, 45, 46, 48, 49, 50, 52, 54, 55, 58, 59, 60], "precis": [44, 45, 48, 49, 51, 52, 53, 54, 55, 58, 59, 60, 62], "f1": 44, "score": [44, 45, 46, 47, 50, 51, 52, 53, 54, 55, 56], "f": [44, 48, 58, 59, 60, 61, 62], "beta": 44, "precisionrecallcurv": 44, "recal": [44, 45, 47, 48, 51, 53, 54, 55, 58, 59, 60, 62], "roc": [44, 46, 58, 59, 62], "curv": [44, 46, 51, 58, 59, 62], "statscor": 44, "differ": [45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 58, 59, 60, 62, 63], "classif": [45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 62], "multiclass": [45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56], "One": [45, 46, 49, 50, 52, 53, 59, 60, 62], "pos_label": [45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56], "posit": [45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62], "num_class": [45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 62], "decid": [45, 48, 49, 50, 52, 54, 55], "top_k": [45, 47, 48, 49, 50, 52, 54, 55, 56], "logit": [45, 48, 49, 50, 51, 52, 54, 55, 56], "top": [45, 47, 48, 49, 50, 52, 54, 55, 56], "k": [45, 48, 49, 50, 52, 54, 55, 56, 61], "num_label": [45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 60], "micro": [45, 46, 47, 48, 49, 50, 52, 54, 55], "macro": [45, 46, 47, 48, 49, 50, 52, 54, 55], "weight": [45, 46, 47, 48, 49, 50, 52, 54, 55, 60, 61, 62], "calcul": [45, 46, 47, 48, 49, 50, 52, 54, 55], "global": [45, 46, 47, 48, 49, 50, 52, 54, 55], "unweight": [45, 46, 47, 48, 49, 50, 52, 54, 55], "alter": [45, 48, 49, 50, 52, 54, 55], "zero_divis": [45, 47, 48, 49, 50, 52, 54, 55], "zero": [45, 47, 48, 49, 50, 52, 54, 55], "divis": [45, 47, 48, 49, 50, 52, 54, 55], "act": [45, 47, 48, 49, 50, 52, 54, 55, 56], "also": [45, 47, 48, 49, 50, 52, 54, 55, 58, 59, 60, 62, 64], "pred": [45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 62], "75": [45, 46, 47, 51, 53, 54, 55, 58], "reset_st": [45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56], "05": [45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56], "95": [45, 46, 48, 50, 51, 53], "zip": [45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56], "update_st": [45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56], "66666667": [45, 48, 51, 52, 53, 54, 55], "sigmoid": [45, 46, 49, 51, 53, 55, 56], "them": [45, 55, 58, 59, 62, 63], "875": 45, "problem": [45, 51, 54, 56, 64], "highest": [45, 50, 52, 54, 55], "binar": [45, 46, 48, 53, 56], "classifi": [45, 48, 49, 50, 52, 54, 55, 58, 59, 62], "correct": [45, 46, 48, 49, 50, 51, 52, 53, 54, 55], "per": [45, 59, 62], "npt": [45, 46, 47, 48, 49, 50, 51, 52, 54, 55, 56], "arraylik": [45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56], "ground": [45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56], "truth": [45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56], "acc_scor": 45, "9": [45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62], "4": [45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62, 63], "5555555555555555": 45, "like": [45, 50, 52, 54, 58], "shape": [45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 60, 61], "num_sampl": 45, "flot": 45, "6666666666666666": [45, 48, 50, 51], "max_fpr": 46, "rate": [46, 53, 58, 59, 60, 62], "partial": [46, 60], "auc": 46, "automat": [46, 47, 51, 53], "area": [46, 58, 59, 62], "under": [46, 58, 59, 62], "35": [46, 47, 51, 53, 54, 55, 58, 59, 60, 61, 62], "6111111111111112": 46, "89": [46, 53], "06": [46, 53, 60], "94": 46, "22222222": 46, "625": [46, 49, 55], "aucroc": 46, "auroc_scor": 46, "thei": [46, 51, 53], "via": 46, "softmax": [46, 51, 53], "33333333": [46, 51, 52, 53, 54], "5833333333333333": 47, "1d": [47, 53], "increas": [47, 53], "85714286": 48, "harmon": [49, 58, 59, 62], "8333333333333334": [49, 50, 52, 54], "9090909090909091": 49, "83333333": 49, "55555556": [49, 55], "90909091": 49, "85": [49, 50, 52, 54, 58, 62], "7142857142857143": 49, "appropri": [50, 52, 54, 58, 59, 62], "ratio": [50, 52, 54, 55, 62], "correctli": [50, 58, 59, 60, 62], "observ": [50, 62, 64], "precision_scor": 50, "11": [50, 58, 59, 60, 62, 64], "22": [50, 56, 58, 59, 62], "84": 50, "73": [50, 62], "33": [50, 58, 59, 62], "92": 50, "expect": [50, 52, 54, 58, 59, 62], "n": [50, 52, 54, 58, 59, 60], "l": [50, 52, 54], "presenc": [50, 52, 54, 60], "absenc": [50, 52, 54], "suniqu": 51, "45": [51, 54, 55, 58, 59, 62], "42857143": 51, "375": [51, 59], "multilaabel": 51, "prec": 51, "tolist": [51, 58, 59, 60, 62], "3333333333333333": [51, 52, 54], "rec": 51, "binary_precision_recall_curv": [51, 58, 59, 62], "autofunct": [51, 52], "element": 51, "len": [51, 58, 59, 60, 62], "tp": [52, 54], "fn": [52, 54], "intuit": [52, 54], "abil": [52, 54, 58, 59, 62], "recall_scor": 52, "binary_recal": [52, 58, 59, 62], "precision_recal": 52, "rest": [52, 54], "evenli": 53, "fpr": [53, 58, 59, 62], "tpr": 53, "02": [53, 58, 59, 62], "03": 53, "sensitv": 54, "55": [54, 59, 62], "65": [54, 60, 61], "15": [55, 56, 58, 59, 62], "57142857": 55, "stat": 56, "prior": 56, "classwis": 56, "labelwis": 56, "16": [56, 58, 59, 62], "26": [56, 58, 59, 62], "58": 56, "61": 56, "17": [56, 58, 59, 62], "71": 56, "09": [56, 58, 59, 62], "20": [56, 58, 59, 60, 62], "82": 56, "13": [56, 58, 59, 60, 62], "10": [56, 58, 59, 60, 61, 62], "point": 56, "special": 56, "statist": [56, 58, 59, 60, 62, 63], "n_class": 56, "n_label": 56, "assum": 56, "nadarrai": 56, "kaggl": [57, 58], "constant": [57, 64], "distribut": [57, 60, 64], "outcom": [57, 64], "preprocessor": [57, 64], "creation": [57, 64], "mimiciv": [57, 59], "queri": [57, 64], "inspect": [57, 58, 64], "preprocess": [57, 58, 64], "drop": [57, 58, 64], "nan_threshold": [57, 58, 64], "gender": [57, 58, 60, 61, 64], "synthea": [57, 62], "prolong": [57, 59], "length": [57, 59, 60], "stai": [57, 59], "nih": [57, 60, 61], "chest": 57, "rai": 57, "diseas": [57, 58, 64], "histor": [57, 64], "period": [57, 64], "w": [57, 64], "notebook": [58, 59, 60, 62], "showcas": [58, 59, 62, 64], "popular": 58, "formul": [58, 59, 62], "patient": [58, 59, 60, 61, 62, 64], "copi": [58, 59, 60, 62], "shutil": [58, 59, 60, 62], "express": [58, 59, 60, 62], "px": [58, 59, 60, 62], "kaggle_api_extend": 58, "kaggleapi": 58, "simpleimput": [58, 59, 62], "minmaxscal": [58, 59, 62], "onehotencod": [58, 59, 62], "df": [58, 59, 62], "tabularfeatur": [58, 59, 62], "slicer": [58, 59, 60, 61, 62], "noqa": [58, 59, 60, 62], "e402": [58, 59, 60, 62], "create_metr": [58, 59, 60, 62], "experiment": [58, 59, 60, 62], "metric_dict": [58, 59, 62], "catalog": [58, 59, 62], "create_model": [58, 59, 62], "modelcardreport": [58, 59, 60, 62], "classificationplott": [58, 59, 62], "util": [58, 59, 60, 62], "flatten_results_dict": [58, 59, 62], "binarytabularclassificationtask": [58, 59, 62], "join": [58, 59, 62], "load_datafram": 58, "offer": [58, 59, 60, 62], "overview": [58, 59, 60, 62], "high": [58, 59, 60, 62], "quick": [58, 59, 60, 62], "glanc": [58, 59, 60, 62], "sever": [58, 59, 60, 62], "subgroup": [58, 59, 60, 62], "subpopul": [58, 59, 60, 62], "technic": [58, 59, 60, 62], "architectur": [58, 59, 60, 62], "involv": [58, 59, 60, 62], "intend": [58, 59, 60, 62], "go": [58, 59, 60, 62], "end": [58, 59, 60, 62], "tool": [58, 59, 60, 62], "progress": [58, 59, 60, 62], "subject": [58, 59, 60, 62], "data_dir": [58, 60], "random_se": [58, 59, 62], "train_siz": [58, 59, 62], "pip": [58, 65], "sign": [58, 62], "www": 58, "com": [58, 60], "Then": 58, "profil": [58, 59, 62], "usernam": 58, "trigger": 58, "download": 58, "credenti": 58, "place": 58, "locat": 58, "machin": [58, 60], "authent": 58, "dataset_download_fil": 58, "fedesoriano": 58, "unzip": 58, "csv": [58, 62], "file_format": 58, "reset_index": [58, 59, 62], "2024": [58, 59, 62], "28": [58, 59, 62], "08": 58, "739": 58, "chestpaintyp": 58, "restingbp": 58, "cholesterol": 58, "fastingb": 58, "restingecg": 58, "40": [58, 59, 62], "ata": 58, "140": 58, "289": 58, "49": [58, 62], "nap": 58, "160": 58, "180": 58, "37": [58, 59, 62], "130": 58, "283": 58, "st": 58, "48": [58, 59, 62], "asi": 58, "138": 58, "214": 58, "54": 58, "150": 58, "195": 58, "913": 58, "ta": 58, "110": 58, "264": 58, "914": 58, "68": 58, "144": 58, "193": [58, 62], "915": 58, "57": 58, "131": 58, "916": 58, "236": 58, "lvh": 58, "917": 58, "38": [58, 59, 62], "175": 58, "maxhr": 58, "exerciseangina": 58, "oldpeak": 58, "st_slope": 58, "heartdiseas": 58, "172": 58, "156": 58, "flat": 58, "98": 58, "108": 58, "122": 58, "132": 58, "141": 58, "115": 58, "174": 58, "173": 58, "918": 58, "pie": [58, 59, 60, 62], "update_layout": [58, 59, 60, 62], "titl": [58, 59, 60, 62], "histogram": [58, 59, 60, 62], "xaxis_titl": [58, 59, 60, 62], "yaxis_titl": [58, 59, 60, 62], "bargap": [58, 59, 60, 62], "astyp": [58, 59, 62], "update_trac": [58, 59, 60, 62], "textinfo": [58, 59, 62], "percent": [58, 59, 62], "title_text": [58, 59, 62], "hovertempl": [58, 59, 62], "br": [58, 59, 62], "class_count": [58, 59, 62], "value_count": [58, 59, 62], "class_ratio": [58, 59, 62], "8070866141732284": 58, "508": 58, "410": 58, "int64": [58, 59, 60], "14": [58, 59, 60, 62, 64], "39": [58, 59, 60, 62], "wa": [58, 59, 60, 62], "li": 58, "et": 58, "al": 58, "most": 58, "features_list": [58, 59, 62], "essenti": [58, 59, 62], "step": [58, 59, 62], "understand": [58, 59, 62], "u": [58, 59, 62], "tab_featur": [58, 59, 62], "ordin": [58, 59, 62], "might": [58, 59, 62], "numeric_transform": [58, 59, 62], "scaler": [58, 59, 62], "binary_transform": [58, 59, 62], "most_frequ": [58, 59, 62], "18": [58, 59, 61, 62], "numeric_featur": [58, 59, 62], "features_by_typ": [58, 59, 62], "numeric_indic": [58, 59, 62], "get_loc": [58, 59, 62], "19": [58, 59, 60, 62], "binary_featur": [58, 59, 62], "ordinal_featur": [58, 59], "binary_indic": [58, 59, 62], "ordinal_indic": [58, 59], "num": [58, 59, 62], "onehot": [58, 59, 62], "handle_unknown": [58, 59, 62], "remaind": [58, 59, 62], "passthrough": [58, 59, 62], "let": [58, 59, 62], "21": [58, 59, 62], "alreadi": [58, 59, 62], "independ": 58, "common": [58, 59], "everi": 58, "uci": 58, "learn": [58, 60], "archiv": 58, "ic": 58, "edu": 58, "ml": [58, 59, 62], "databas": [58, 59, 62], "cleandoc": 58, "misc": 58, "author": [58, 60], "publish": 58, "cc0": 58, "demograph": [58, 60], "often": 58, "strong": 58, "correl": 58, "older": [58, 59, 62], "higher": 58, "power": [58, 59, 62], "easi": [58, 59, 62], "from_panda": [58, 59, 62], "cleanup_cache_fil": [58, 59, 62], "num_row": 58, "cast_column": [58, 59, 62], "stratify_by_column": [58, 59, 62], "straightforward": [58, 59, 62], "maintain": [58, 59, 62], "instanti": [58, 59, 62], "line": [58, 59, 62], "sgd": 58, "logisit": [58, 59, 62], "regress": [58, 59, 62], "sgdclassif": 58, "24": [58, 59, 62], "sgd_classifi": 58, "random_st": [58, 59, 62], "123": [58, 59, 62], "verbos": [58, 59, 62], "class_weight": 58, "balanc": 58, "encapsul": [58, 59, 62], "cohes": [58, 59, 62], "structur": [58, 59, 62], "smooth": [58, 59, 62], "manag": [58, 59, 62], "heart_failure_prediction_task": 58, "after": [58, 59, 62], "hyperparamet": [58, 59, 62], "search": [58, 59, 62], "grid": [58, 59, 62], "27": [58, 59, 62], "alpha": 58, "0001": 58, "001": 58, "100": [58, 59, 60, 62], "learning_r": [58, 59, 62], "invscal": 58, "adapt": 58, "eta0": 58, "roc_auc": 58, "008": 58, "wrapper": [58, 59, 60, 62], "sk_model": [58, 59, 62], "009": 58, "010": 58, "sgdclassifi": 58, "x27": [58, 59, 62], "early_stop": 58, "loss": 58, "log_loss": 58, "jupyt": [58, 59, 62], "rerun": [58, 59, 62], "cell": [58, 59, 62], "On": [58, 59, 60, 62], "github": [58, 59, 60, 62], "unabl": [58, 59, 62], "render": [58, 59, 62], "try": [58, 59, 62], "page": [58, 59, 62], "nbviewer": [58, 59, 62], "sgdclassifiersgdclassifi": 58, "model_param": [58, 59, 62], "epsilon": 58, "fit_intercept": 58, "l1_ratio": 58, "max_it": 58, "n_iter_no_chang": 58, "n_job": [58, 59, 62], "penalti": 58, "l2": 58, "power_t": 58, "tol": 58, "validation_fract": 58, "warm_start": 58, "29": [58, 59, 62], "30": [58, 59, 60, 62, 64], "y_pred": [58, 59, 62], "only_predict": [58, 59, 62], "184": 58, "perspect": [58, 59, 62], "binary_accuraci": [58, 59, 62], "binary_precis": [58, 59, 62], "binary_f1_scor": [58, 59, 62], "binary_auroc": [58, 59, 62], "binary_average_precis": [58, 59], "binary_roc_curv": [58, 59, 62], "metric_collect": [58, 59, 62], "certain": [58, 59, 62], "50": [58, 59, 61, 62], "70": 58, "binary_specif": [58, 59, 62], "binary_sensit": [58, 59, 62], "fnr": [58, 59, 62], "ber": [58, 59, 62], "fairness_metric_collect": [58, 59, 62], "34": [58, 59, 62], "dataset_with_pr": [58, 59, 62], "36": [58, 59, 62], "results_femal": 58, "_": 58, "binaryaccuraci": [58, 59, 62], "right": [58, 59, 62], "model_for_pr": [58, 59, 62], "results_flat": [58, 59, 60, 62], "remove_metr": [58, 59, 62], "binaryroc": [58, 59, 62], "binaryprecisionrecallcurv": [58, 59, 62], "results_female_flat": 58, "w505": [58, 59], "item": [58, 59, 60, 61, 62], "plw2901": [58, 59, 60, 62], "binaryprecis": [58, 59, 62], "binaryrecal": [58, 59, 62], "actual": [58, 59, 60, 62], "known": [58, 59, 60, 62], "binaryauroc": [58, 59, 62], "receiv": [58, 59, 62], "characterist": [58, 59, 62], "measur": [58, 59, 62], "binaryaverageprecis": [58, 59], "auprc": [58, 59], "binaryf1scor": [58, 59, 62], "lambda": [58, 59, 60, 61, 62], "plotter": [58, 59, 61, 62], "class_nam": [58, 59, 62], "set_templ": [58, 59, 62], "plotly_whit": [58, 59, 62], "extract": [58, 59, 62], "roc_curv": [58, 59, 62], "slice_result": [58, 59, 62], "dict_kei": [58, 59, 62], "roc_plot": [58, 59, 62], "roc_curve_comparison": [58, 59, 62], "femal": [58, 60, 61, 62], "41": [58, 59, 62], "pr_curv": [58, 59], "average_precis": [58, 59], "pr_plot": [58, 59], "precision_recall_curve_comparison": [58, 59], "comparison": [58, 59, 62], "43": [58, 59, 62], "overall_perform": [58, 59, 62], "metric_valu": [58, 59, 62], "44": [58, 59, 62], "overall_performance_plot": [58, 59, 62], "metrics_valu": [58, 59, 62], "slice_metr": [58, 59, 62], "46": [58, 59, 62], "slice_metrics_plot": [58, 59, 62], "metrics_comparison_bar": [58, 59, 62], "47": [58, 59, 62], "reform": [58, 59, 62], "fairness_result": [58, 59, 62], "deepcopi": [58, 59, 62], "fairness_metr": [58, 59, 62], "group_siz": [58, 59, 62], "pop": [58, 59, 62], "fairness_plot": [58, 59, 62], "metrics_comparison_scatt": [58, 59, 62], "some": [58, 59, 62], "audienc": [58, 59, 62], "organ": [58, 59, 62], "store": [58, 59, 62], "regulatory_requir": [58, 59, 62], "todai": [58, 59, 62], "releas": [58, 59, 62], "team": [58, 59, 62], "vectorinstitut": [58, 59, 62], "io": [58, 59, 62], "email": [58, 59, 60, 62], "scikit": 58, "stabl": [58, 59, 62], "linear_model": 58, "e501": [58, 59, 62], "next": [58, 59, 62], "use_cas": [58, 59, 62], "These": [58, 59, 62], "could": [58, 59, 62], "downstream": [58, 59, 62], "fairness_assess": [58, 59, 62], "well": [58, 59, 60, 62], "taken": [58, 59, 62], "ethical_consider": [58, 59, 62], "condit": 58, "other": 58, "bias": [58, 59, 60, 62], "lead": [58, 59, 62], "wors": [58, 59, 62], "retrain": [58, 59, 62], "By": [58, 59, 62], "folder": [58, 59, 62], "51": 58, "_model_card": [58, 59, 62], "report_path": [58, 59, 60, 62], "heart_failure_report_period": 58, "metric_sav": 58, "quantitative_analysi": [58, 59, 62], "performance_metr": [58, 59, 62], "append": [58, 62], "random": [58, 59, 61, 62], "els": [58, 60, 61], "rmtree": [58, 59, 62], "view": [58, 59, 60, 62, 64], "die": 59, "admiss": 59, "cycqueri": [59, 62], "op": [59, 62], "qo": [59, 62], "graph_object": [59, 62], "mimicivqueri": 59, "imblearn": 59, "over_sampl": 59, "smote": 59, "imbpipelin": 59, "aggreg": 59, "restrict_timestamp": 59, "clean": 59, "normalize_nam": 59, "add_years_approxim": 59, "deathtim": 59, "lab": [59, 60], "event": 59, "merg": [59, 62], "querier": [59, 62], "dbm": [59, 62], "postgresql": [59, 62], "port": [59, 62], "5432": [59, 62], "host": [59, 62], "localhost": [59, 62], "postgr": [59, 62], "password": [59, 62], "pwd": [59, 62], "def": [59, 62], "get_encount": [59, 62], "mimiciv_hosp": 59, "drop_op": 59, "languag": 59, "marital_statu": 59, "edregtim": 59, "edouttim": 59, "patient_encount": [59, 62], "subject_id": 59, "admittim": 59, "dt": 59, "anchor_year": 59, "anchor_ag": 59, "col": 59, "dischtim": 59, "anchor_year_differ": 59, "hadm_id": 59, "admission_loc": 59, "admission_typ": 59, "insur": 59, "hospital_expire_flag": 59, "compute_mortality_outcom": 59, "death": 59, "invalid": 59, "isna": 59, "shorter": 59, "di": 59, "mortality_outcom": 59, "get_labev": 59, "labev": 59, "index_col": 59, "batch_mod": 59, "process_labev": 59, "revers": 59, "deidentifi": 59, "charttim": 59, "categori": [59, 62], "start_timestamp": 59, "set_index": 59, "renam": [59, 62], "mean_aggreg": 59, "valuenum": 59, "means_df": 59, "batch_num": 59, "labevents_batch": 59, "enumer": [59, 60], "pivot": 59, "add_prefix": [59, 62], "lab_": 59, "concat": 59, "break": 59, "run_queri": [59, 62], "cohort": [59, 62], "766": 59, "orm": [59, 62], "readi": [59, 62], "234": 59, "successfulli": [59, 62], "235": 59, "finish": [59, 62], "execut": [59, 62], "235178": 59, "105518": 59, "5925": 59, "415": [59, 62], "416": [59, 62], "431019": 59, "null_count": [59, 62], "isnul": [59, 62], "bar": [59, 60, 62], "height": [59, 60], "600": 59, "respect": [59, 62], "final": [59, 60, 62], "larger": [59, 62], "thresh_nan": [59, 62], "dropna": [59, 62], "thresh": [59, 62], "heavili": 59, "unbalanc": 59, "36758893280632": 59, "14008": 59, "253": 59, "lab_anion": 59, "gap": 59, "lab_creatinin": 59, "lab_mch": 59, "lab_bicarbon": 59, "lab_hemoglobin": 59, "lab_potassium": 59, "lab_aspar": 59, "aminotransferas": [59, 62], "ast": 59, "lab_chlorid": 59, "lab_rdw": 59, "sd": 59, "lab_mcv": 59, "lab_r": 59, "blood": [59, 62], "lab_ph": 59, "lab_glucos": 59, "lab_alanin": 59, "alt": 59, "lab_whit": 59, "lab_i": 59, "lab_bilirubin": 59, "lab_alkalin": 59, "phosphatas": [59, 62], "lab_inr": 59, "pt": 59, "lab_calcium": 59, "lab_magnesium": 59, "lab_pt": 59, "lab_ptt": 59, "lab_urea": 59, "nitrogen": [59, 62], "lab_mchc": 59, "lab_platelet": 59, "lab_sodium": 59, "lab_hematocrit": 59, "lab_phosph": 59, "lab_l": 59, "lab_h": 59, "preprocessor_pipelin": 59, "oversampl": 59, "xgbclassif": [59, 62], "xgb_classifi": [59, 62], "mortality_task": 59, "n_estim": [59, 62], "250": [59, 62], "500": [59, 62], "max_depth": [59, 62], "reg_lambda": [59, 62], "colsample_bytre": [59, 62], "gamma": [59, 62], "374": 59, "376": 59, "377": 59, "xgbclassifi": [59, 62], "base_scor": [59, 62], "booster": [59, 62], "callback": [59, 62], "colsample_bylevel": [59, 62], "colsample_bynod": [59, 62], "early_stopping_round": [59, 62], "enable_categor": [59, 62], "eval_metr": [59, 62], "logloss": [59, 62], "feature_typ": [59, 62], "gpu_id": [59, 62], "grow_polici": [59, 62], "importance_typ": [59, 62], "interaction_constraint": [59, 62], "max_bin": [59, 62], "max_cat_threshold": [59, 62], "max_cat_to_onehot": [59, 62], "max_delta_step": [59, 62], "max_leav": [59, 62], "min_child_weight": [59, 62], "miss": [59, 62], "monotone_constraint": [59, 62], "num_parallel_tre": [59, 62], "predictor": [59, 62], "xgbclassifierxgbclassifi": [59, 62], "logist": [59, 62], "use_label_encod": [59, 62], "reg_alpha": [59, 62], "sampling_method": [59, 62], "scale_pos_weight": [59, 62], "subsampl": [59, 62], "tree_method": [59, 62], "validate_paramet": [59, 62], "2853": 59, "80": [59, 60, 62], "__rsub__": 59, "implement": [59, 64], "readthedoc": [59, 62], "en": [59, 62], "python_api": [59, 62], "mortality_report_period": 59, "functool": 60, "densenet": [60, 61], "filter_valu": 60, "lambdad": [60, 61], "resiz": [60, 61], "apply_transform": 60, "clinical_dataset": [60, 61], "nih_d": [60, 61], "spatial_s": [60, 61], "224": [60, 61], "allow_missing_kei": [60, 61], "func": [60, 61], "1024": [60, 61], "newaxi": [60, 61], "densenet121": [60, 61], "res224": [60, 61], "feature_column": [60, 61], "No": 60, "adjust": 60, "originalimag": 60, "width": [60, 62], "originalimagepixelspac": 60, "unnam": 60, "atelectasi": 60, "float32": 60, "cardiomegali": 60, "consolid": 60, "edema": 60, "effus": 60, "emphysema": 60, "fibrosi": 60, "hernia": 60, "infiltr": 60, "mass": [60, 62], "nodul": 60, "pleural_thicken": 60, "pneumonia": 60, "pneumothorax": 60, "__index_level_0__": 60, "ppv": 60, "multilabel_ppv": 60, "npv": 60, "multilabel_npv": 60, "multilabel_specif": 60, "multilabel_sensit": 60, "nih_eval_results_gend": 60, "nih_eval_results_ag": 60, "male": [60, 61], "showlegend": 60, "slice_": 60, "model_for_predict": 60, "itr": 60, "multilabelppv": 60, "among": 60, "multilabelnpv": 60, "multilabelsensit": 60, "multilabelspecif": 60, "isinst": 60, "112": [60, 64], "120": [60, 64], "frontal": [60, 64], "805": [60, 64], "fourteen": 60, "mine": 60, "radiolog": 60, "pleural": 60, "thicken": 60, "arxiv": 60, "ab": 60, "2111": 60, "00595": 60, "inproceed": 60, "cohen2022xrv": 60, "cohen": 60, "joseph": 60, "paul": 60, "viviano": 60, "bertin": 60, "morrison": 60, "torabian": 60, "parsa": 60, "guarrera": 60, "matteo": 60, "lungren": 60, "matthew": 60, "chaudhari": 60, "akshai": 60, "brook": 60, "rupert": 60, "hashir": 60, "mohammad": 60, "bertrand": 60, "hadrien": 60, "booktitl": 60, "deep": 60, "url": 60, "mlmed": 60, "arxivid": 60, "cohen2020limit": 60, "cross": 60, "domain": 60, "autom": [60, 62], "2002": 60, "02497": 60, "medicin": 60, "josephpcohen": 60, "radiologist": 60, "inabl": 60, "addition": 60, "poor": 60, "qualiti": 60, "artifact": 60, "geograph": 60, "region": 60, "ethic": 60, "ensur": 60, "divers": 60, "regularli": 60, "updat": 60, "human": 60, "expertis": 60, "address": 60, "rare": 60, "nihcxr_report_period": 60, "2023": 60, "clinicalshiftappl": 61, "detector": 61, "reductor": 61, "tstester": 61, "plot_drift_experi": 61, "plot_drift_timeseri": 61, "manual_se": 61, "lt": 61, "_c": 61, "0x7f7aa965ef70": 61, "gt": 61, "shifter": 61, "source_d": 61, "target_d": 61, "dr_method": 61, "bbse": 61, "soft": 61, "txrv": 61, "ae": 61, "sensitivity_test": 61, "tester": 61, "tester_method": 61, "source_sample_s": 61, "target_sample_s": 61, "num_run": 61, "detect_shift": 61, "chexpert": 61, "chex": 61, "padchest": 61, "pc": 61, "source_slic": 61, "target_slic": 61, "rolling_window_drift": 61, "timestamp_column": 61, "window_s": 61, "4w": 61, "longer": 62, "v3": 62, "instruct": 62, "etl": 62, "datasetqueri": 62, "num_dai": 62, "synthea_demo": 62, "nativ": 62, "sequenti": 62, "patient_id": 62, "birthdat": 62, "race": 62, "ethnic": 62, "isout": 62, "encounter_id": 62, "extracttimestampcompon": 62, "start_year": 62, "birthdate_year": 62, "addcolumn": 62, "new_col_label": 62, "lo": 62, "conditiongreaterthan": 62, "conditionlessthan": 62, "get_observ": 62, "conditionin": 62, "laboratori": 62, "vital": 62, "conditionequ": 62, "groupby_op": 62, "groupbyaggreg": 62, "n_ob": 62, "observations_count": 62, "observations_stat": 62, "pivot_t": 62, "obs_": 62, "get_med": 62, "n_med": 62, "get_procedur": 62, "procedur": [62, 64], "n_procedur": 62, "cohort_queri": 62, "to_merg": 62, "extend": 62, "to_merge_df": 62, "054": 62, "020620": 62, "194": 62, "777614": 62, "752": 62, "753": 62, "380770": 62, "242": 62, "243": 62, "485648": 62, "356": 62, "357": 62, "112409": 62, "length_of_stai": 62, "length_of_stay_count": 62, "length_of_stay_kei": 62, "5573997233748271": 62, "obs_alanin": 62, "enzymat": 62, "volum": 62, "serum": 62, "plasma": 62, "obs_albumin": 62, "obs_alkalin": 62, "obs_aspart": 62, "obs_bilirubin": 62, "obs_bodi": 62, "obs_calcium": 62, "obs_carbon": 62, "dioxid": 62, "mole": 62, "obs_chlorid": 62, "obs_creatinin": 62, "obs_diastol": 62, "pressur": 62, "obs_erythrocyt": 62, "obs_ferritin": 62, "obs_glomerular": 62, "filtrat": 62, "sq": 62, "obs_glucos": 62, "obs_hematocrit": 62, "obs_hemoglobin": 62, "obs_leukocyt": 62, "obs_mch": 62, "entit": 62, "obs_mchc": 62, "obs_mcv": 62, "obs_oxygen": 62, "satur": 62, "arteri": 62, "obs_platelet": 62, "obs_potassium": 62, "obs_protein": 62, "obs_sodium": 62, "obs_systol": 62, "obs_troponin": 62, "cardiac": 62, "obs_urea": 62, "los_task": 62, "463": 62, "464": 62, "465": 62, "466": 62, "226": 62, "binary_confusion_matrix": 62, "rsub": 62, "due": 62, "binaryconfusionmatrix": 62, "confus": 62, "confusion_matrix": 62, "conf_plot": 62, "plot_confusion_matrix": 62, "binaryroccurv": 62, "length_of_stay_report_period": 62, "drift": 63, "experi": 63, "reduct": 63, "techniqu": 63, "roll": 63, "biweekli": 63, "variabl": 64, "ehr": 64, "collect": 64, "site": 64, "icu": 64, "demonstr": 64}, "objects": {"cyclops": [[38, 0, 0, "-", "data"], [39, 0, 0, "-", "monitor"], [40, 0, 0, "-", "report"], [41, 0, 0, "-", "tasks"]], "cyclops.data": [[8, 0, 0, "-", "aggregate"], [38, 0, 0, "-", "features"], [14, 0, 0, "-", "slicer"]], "cyclops.data.aggregate": [[9, 1, 1, "", "Aggregator"], [10, 4, 1, "", "tabular_as_aggregated"], [11, 4, 1, "", "timestamp_ffill_agg"]], "cyclops.data.aggregate.Aggregator": [[9, 2, 1, "", "__init__"], [9, 3, 1, "", "agg_by"], [9, 3, 1, "", "agg_meta_for"], [9, 3, 1, "", "aggfuncs"], [9, 2, 1, "", "fit"], [9, 2, 1, "", "fit_transform"], [9, 3, 1, "", "imputer"], [9, 3, 1, "", "num_timesteps"], [9, 2, 1, "", "set_output"], [9, 3, 1, "", "time_by"], [9, 3, 1, "", "timestamp_col"], [9, 3, 1, "", "timestep_size"], [9, 2, 1, "", "transform"], [9, 3, 1, "", "window_duration"], [9, 3, 1, "", "window_start_time"], [9, 3, 1, "", "window_stop_time"], [9, 3, 1, "", "window_times"]], "cyclops.data.features": [[12, 0, 0, "-", "medical_image"]], "cyclops.data.features.medical_image": [[13, 1, 1, "", "MedicalImage"]], "cyclops.data.features.medical_image.MedicalImage": [[13, 2, 1, "", "__call__"], [13, 2, 1, "", "cast_storage"], [13, 2, 1, "", "decode_example"], [13, 2, 1, "", "embed_storage"], [13, 2, 1, "", "encode_example"], [13, 2, 1, "", "flatten"]], "cyclops.data.slicer": [[15, 1, 1, "", "SliceSpec"], [16, 4, 1, "", "compound_filter"], [17, 4, 1, "", "filter_datetime"], [18, 4, 1, "", "filter_non_null"], [19, 4, 1, "", "filter_range"], [20, 4, 1, "", "filter_string_contains"], [21, 4, 1, "", "filter_value"], [22, 4, 1, "", "is_datetime"], [23, 4, 1, "", "overall"]], "cyclops.data.slicer.SliceSpec": [[15, 3, 1, "", "_registry"], [15, 2, 1, "", "add_slice_spec"], [15, 3, 1, "", "column_names"], [15, 2, 1, "", "get_slices"], [15, 3, 1, "", "include_overall"], [15, 2, 1, "", "slices"], [15, 3, 1, "", "spec_list"], [15, 3, 1, "", "validate"]], "cyclops.evaluate.evaluator": [[42, 4, 1, "", "evaluate"]], "cyclops.evaluate.fairness.evaluator": [[43, 4, 1, "", "evaluate_fairness"]], "cyclops.evaluate.metrics": [[46, 1, 1, "", "AUROC"], [45, 1, 1, "", "Accuracy"], [46, 1, 1, "", "BinaryAUROC"], [45, 1, 1, "", "BinaryAccuracy"], [47, 1, 1, "", "BinaryAveragePrecision"], [48, 1, 1, "", "BinaryF1Score"], [49, 1, 1, "", "BinaryFbetaScore"], [50, 1, 1, "", "BinaryPrecision"], [51, 1, 1, "", "BinaryPrecisionRecallCurve"], [53, 1, 1, "", "BinaryROCCurve"], [52, 1, 1, "", "BinaryRecall"], [54, 1, 1, "", "BinarySensitivity"], [55, 1, 1, "", "BinarySpecificity"], [56, 1, 1, "", "BinaryStatScores"], [48, 1, 1, "", "F1Score"], [49, 1, 1, "", "FbetaScore"], [46, 1, 1, "", "MulticlassAUROC"], [45, 1, 1, "", "MulticlassAccuracy"], [48, 1, 1, "", "MulticlassF1Score"], [49, 1, 1, "", "MulticlassFbetaScore"], [50, 1, 1, "", "MulticlassPrecision"], [51, 1, 1, "", "MulticlassPrecisionRecallCurve"], [53, 1, 1, "", "MulticlassROCCurve"], [52, 1, 1, "", "MulticlassRecall"], [54, 1, 1, "", "MulticlassSensitivity"], [55, 1, 1, "", "MulticlassSpecificity"], [56, 1, 1, "", "MulticlassStatScores"], [46, 1, 1, "", "MultilabelAUROC"], [45, 1, 1, "", "MultilabelAccuracy"], [48, 1, 1, "", "MultilabelF1Score"], [49, 1, 1, "", "MultilabelFbetaScore"], [50, 1, 1, "", "MultilabelPrecision"], [51, 1, 1, "", "MultilabelPrecisionRecallCurve"], [53, 1, 1, "", "MultilabelROCCurve"], [52, 1, 1, "", "MultilabelRecall"], [54, 1, 1, "", "MultilabelSensitivity"], [55, 1, 1, "", "MultilabelSpecificity"], [56, 1, 1, "", "MultilabelStatScores"], [50, 1, 1, "", "Precision"], [51, 1, 1, "", "PrecisionRecallCurve"], [53, 1, 1, "", "ROCCurve"], [52, 1, 1, "", "Recall"], [54, 1, 1, "", "Sensitivity"], [55, 1, 1, "", "Specificity"], [56, 1, 1, "", "StatScores"]], "cyclops.evaluate.metrics.functional.accuracy": [[45, 4, 1, "", "binary_accuracy"], [45, 4, 1, "", "multiclass_accuracy"], [45, 4, 1, "", "multilabel_accuracy"]], "cyclops.evaluate.metrics.functional.auroc": [[46, 4, 1, "", "auroc"], [46, 4, 1, "", "binary_auroc"], [46, 4, 1, "", "multiclass_auroc"], [46, 4, 1, "", "multilabel_auroc"]], "cyclops.evaluate.metrics.functional.average_precision": [[47, 4, 1, "", "average_precision"], [47, 4, 1, "", "binary_average_precision"]], "cyclops.evaluate.metrics.functional.f_beta": [[48, 4, 1, "", "binary_f1_score"], [49, 4, 1, "", "binary_fbeta_score"], [48, 4, 1, "", "f1_score"], [49, 4, 1, "", "fbeta_score"], [48, 4, 1, "", "multiclass_f1_score"], [49, 4, 1, "", "multiclass_fbeta_score"], [48, 4, 1, "", "multilabel_f1_score"], [49, 4, 1, "", "multilabel_fbeta_score"]], "cyclops.evaluate.metrics.functional.precision_recall": [[50, 4, 1, "", "binary_precision"], [50, 4, 1, "", "multiclass_precision"], [52, 4, 1, "", "multiclass_recall"], [50, 4, 1, "", "multilabel_precision"], [52, 4, 1, "", "multilabel_recall"], [50, 4, 1, "", "precision"], [52, 4, 1, "", "recall"]], "cyclops.evaluate.metrics.functional.precision_recall_curve": [[51, 4, 1, "", "multiclass_precision_recall_curve"], [51, 4, 1, "", "multilabel_precision_recall_curve"], [51, 4, 1, "", "precision_recall_curve"]], "cyclops.evaluate.metrics.functional.roc": [[53, 4, 1, "", "binary_roc_curve"], [53, 4, 1, "", "multiclass_roc_curve"], [53, 4, 1, "", "multilabel_roc_curve"], [53, 4, 1, "", "roc_curve"]], "cyclops.evaluate.metrics.functional.sensitivity": [[54, 4, 1, "", "binary_sensitivity"], [54, 4, 1, "", "multiclass_sensitivity"], [54, 4, 1, "", "multilabel_sensitivity"], [54, 4, 1, "", "sensitivity"]], "cyclops.evaluate.metrics.functional.specificity": [[55, 4, 1, "", "binary_specificity"], [55, 4, 1, "", "multiclass_specificity"], [55, 4, 1, "", "multilabel_specificity"], [55, 4, 1, "", "specificity"]], "cyclops.evaluate.metrics.functional.stat_scores": [[56, 4, 1, "", "binary_stat_scores"], [56, 4, 1, "", "multiclass_stat_scores"], [56, 4, 1, "", "multilabel_stat_scores"], [56, 4, 1, "", "stat_scores"]], "cyclops.monitor": [[24, 0, 0, "-", "clinical_applicator"], [26, 0, 0, "-", "synthetic_applicator"]], "cyclops.monitor.clinical_applicator": [[25, 1, 1, "", "ClinicalShiftApplicator"]], "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator": [[25, 2, 1, "", "age"], [25, 2, 1, "", "apply_shift"], [25, 2, 1, "", "custom"], [25, 2, 1, "", "hospital_type"], [25, 2, 1, "", "month"], [25, 2, 1, "", "sex"], [25, 2, 1, "", "time"]], "cyclops.monitor.synthetic_applicator": [[27, 1, 1, "", "SyntheticShiftApplicator"], [28, 4, 1, "", "binary_noise_shift"], [29, 4, 1, "", "feature_association_shift"], [30, 4, 1, "", "feature_swap_shift"], [31, 4, 1, "", "gaussian_noise_shift"], [32, 4, 1, "", "knockout_shift"]], "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator": [[27, 2, 1, "", "apply_shift"]], "cyclops.report": [[33, 0, 0, "-", "report"]], "cyclops.report.report": [[34, 1, 1, "", "ModelCardReport"]], "cyclops.report.report.ModelCardReport": [[34, 2, 1, "", "export"], [34, 2, 1, "", "from_json_file"], [34, 2, 1, "", "log_citation"], [34, 2, 1, "", "log_dataset"], [34, 2, 1, "", "log_descriptor"], [34, 2, 1, "", "log_fairness_assessment"], [34, 2, 1, "", "log_from_dict"], [34, 2, 1, "", "log_image"], [34, 2, 1, "", "log_license"], [34, 2, 1, "", "log_model_parameters"], [34, 2, 1, "", "log_owner"], [34, 2, 1, "", "log_performance_metrics"], [34, 2, 1, "", "log_plotly_figure"], [34, 2, 1, "", "log_quantitative_analysis"], [34, 2, 1, "", "log_reference"], [34, 2, 1, "", "log_regulation"], [34, 2, 1, "", "log_risk"], [34, 2, 1, "", "log_use_case"], [34, 2, 1, "", "log_user"], [34, 2, 1, "", "log_version"]], "cyclops.tasks": [[35, 0, 0, "-", "classification"]], "cyclops.tasks.classification": [[36, 1, 1, "", "BinaryTabularClassificationTask"], [37, 1, 1, "", "MultilabelImageClassificationTask"]], "cyclops.tasks.classification.BinaryTabularClassificationTask": [[36, 2, 1, "", "__init__"], [36, 2, 1, "", "add_model"], [36, 5, 1, "", "data_type"], [36, 2, 1, "", "evaluate"], [36, 2, 1, "", "get_model"], [36, 2, 1, "", "list_models"], [36, 2, 1, "", "list_models_params"], [36, 2, 1, "", "load_model"], [36, 5, 1, "", "models_count"], [36, 2, 1, "", "predict"], [36, 2, 1, "", "save_model"], [36, 5, 1, "", "task_type"], [36, 2, 1, "", "train"]], "cyclops.tasks.classification.MultilabelImageClassificationTask": [[37, 2, 1, "", "__init__"], [37, 2, 1, "", "add_model"], [37, 5, 1, "", "data_type"], [37, 2, 1, "", "evaluate"], [37, 2, 1, "", "get_model"], [37, 2, 1, "", "list_models"], [37, 2, 1, "", "list_models_params"], [37, 2, 1, "", "load_model"], [37, 5, 1, "", "models_count"], [37, 2, 1, "", "predict"], [37, 2, 1, "", "save_model"], [37, 5, 1, "", "task_type"]]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:method", "3": "py:attribute", "4": "py:function", "5": "py:property"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "method", "Python method"], "3": ["py", "attribute", "Python attribute"], "4": ["py", "function", "Python function"], "5": ["py", "property", "Python property"]}, "titleterms": {"api": [0, 63], "refer": 0, "contribut": [1, 2], "cyclop": [1, 4, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41], "pre": 1, "commit": 1, "hook": 1, "code": 1, "guidelin": 1, "develop": 2, "us": [2, 5, 61, 64], "poetri": 2, "evalu": [3, 42, 43, 44, 58, 59, 62], "what": 4, "i": 4, "quick": 4, "start": 4, "instal": 5, "pip": 5, "model": [6, 58, 59, 60, 61, 62], "report": [6, 33, 34, 40, 58, 59, 60, 62], "monitor": [7, 24, 25, 26, 27, 28, 29, 30, 31, 32, 39, 63], "data": [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 38, 58, 59, 62, 64], "aggreg": [8, 9, 10, 11], "tabular_as_aggreg": 10, "timestamp_ffill_agg": 11, "featur": [12, 13, 38, 58, 59, 62], "medical_imag": [12, 13], "medicalimag": 13, "slicer": [14, 15, 16, 17, 18, 19, 20, 21, 22, 23], "slicespec": 15, "compound_filt": 16, "filter_datetim": 17, "filter_non_nul": 18, "filter_rang": 19, "filter_string_contain": 20, "filter_valu": 21, "is_datetim": 22, "overal": 23, "clinical_appl": [24, 25], "clinicalshiftappl": 25, "synthetic_appl": [26, 27, 28, 29, 30, 31, 32], "syntheticshiftappl": 27, "binary_noise_shift": 28, "feature_association_shift": 29, "feature_swap_shift": 30, "gaussian_noise_shift": 31, "knockout_shift": 32, "modelcardreport": 34, "task": [35, 36, 37, 41, 58, 59, 62], "classif": [35, 36, 37, 60, 64], "binarytabularclassificationtask": 36, "multilabelimageclassificationtask": 37, "fair": 43, "metric": [44, 60], "accuraci": 45, "modul": [45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56], "interfac": [45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56], "binaryaccuraci": 45, "multiclassaccuraci": 45, "multilabelaccuraci": 45, "function": [45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56], "binary_accuraci": 45, "multiclass_accuraci": 45, "multilabel_accuraci": 45, "auroc": [46, 60], "binaryauroc": 46, "multiclassauroc": 46, "multilabelauroc": 46, "binary_auroc": 46, "multiclass_auroc": 46, "multilabel_auroc": 46, "averag": 47, "precis": [47, 50], "binaryaverageprecis": 47, "average_precis": 47, "binary_average_precis": 47, "f1": 48, "score": [48, 49], "f1score": 48, "binaryf1scor": 48, "multiclassf1scor": 48, "multilabelf1scor": 48, "f1_score": 48, "binary_f1_scor": 48, "multiclass_f1_scor": 48, "multilabel_f1_scor": 48, "f": 49, "beta": 49, "fbetascor": 49, "binaryfbetascor": 49, "multiclassfbetascor": 49, "multilabelfbetascor": 49, "fbeta_scor": 49, "binary_fbeta_scor": 49, "multiclass_fbeta_scor": 49, "multilabel_fbeta_scor": 49, "binaryprecis": 50, "multiclassprecis": 50, "multilabelprecis": 50, "binary_precis": 50, "multiclass_precis": 50, "multilabel_precis": 50, "precisionrecallcurv": 51, "binaryprecisionrecallcurv": 51, "multiclassprecisionrecallcurv": 51, "multilabelprecisionrecallcurv": 51, "precision_recall_curv": 51, "multiclass_precision_recall_curv": 51, "multilabel_precision_recall_curv": 51, "recal": 52, "binaryrecal": 52, "multiclassrecal": 52, "multilabelrecal": 52, "multiclass_recal": 52, "multilabel_recal": 52, "roc": 53, "curv": 53, "roccurv": 53, "binaryroccurv": 53, "multiclassroccurv": 53, "multilabelroccurv": 53, "roc_curv": 53, "binary_roc_curv": 53, "multiclass_roc_curv": 53, "multilabel_roc_curv": 53, "sensit": [54, 61], "binarysensit": 54, "multiclasssensit": 54, "multilabelsensit": 54, "binary_sensit": 54, "multiclass_sensit": 54, "multilabel_sensit": 54, "specif": 55, "binaryspecif": 55, "multiclassspecif": 55, "multilabelspecif": 55, "binary_specif": 55, "multiclass_specif": 55, "multilabel_specif": 55, "statscor": 56, "binarystatscor": 56, "multiclassstatscor": 56, "multilabelstatscor": 56, "stat_scor": 56, "binary_stat_scor": 56, "multiclass_stat_scor": 56, "multilabel_stat_scor": 56, "tutori": [57, 61], "heart": [58, 64], "failur": [58, 64], "predict": [58, 59, 62, 64], "import": [58, 59, 60, 61, 62], "librari": [58, 59, 60, 61, 62], "constant": [58, 59, 62], "load": [58, 60, 61], "sex": [58, 60], "valu": 58, "ag": [58, 59, 60, 62], "distribut": [58, 59, 62], "outcom": [58, 59, 62], "identifi": [58, 59, 62], "type": [58, 59, 62], "creat": [58, 59, 62], "preprocessor": [58, 59, 62], "hug": [58, 59, 62], "face": [58, 59, 62], "dataset": [58, 59, 60, 61, 62], "creation": [58, 59, 60, 62], "train": [58, 59, 61, 62], "gener": [58, 59, 60, 61, 62], "mortal": [59, 64], "queri": [59, 62], "process": 59, "comput": [59, 62], "label": [59, 62], "inspect": [59, 62], "preprocess": [59, 62], "drop": [59, 62], "nan": [59, 62], "base": [59, 62], "nan_threshold": [59, 62], "gender": [59, 62], "chest": [60, 64], "x": [60, 64], "rai": [60, 64], "diseas": 60, "histor": 60, "initi": 60, "period": 60, "multilabel": 60, "pathologi": 60, "log": 60, "perform": 60, "test": [60, 61], "w": 60, "threshold": 60, "popul": 60, "card": 60, "field": 60, "nihcxr": 61, "clinic": 61, "drift": 61, "experi": 61, "exampl": [61, 64], "1": 61, "sourc": 61, "target": 61, "2": 61, "3": 61, "dimension": 61, "reduct": 61, "techniqu": 61, "differ": 61, "4": 61, "shift": 61, "5": 61, "roll": 61, "window": 61, "synthet": 61, "timestamp": 61, "biweekli": 61, "prolong": [62, 64], "length": [62, 64], "stai": [62, 64], "case": 64, "tabular": 64, "kaggl": 64, "mimiciv": 64, "synthea": 64, "imag": 64, "nih": 64, "user": 65, "guid": 65}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.todo": 2, "sphinx.ext.viewcode": 1, "sphinx.ext.intersphinx": 1, "nbsphinx": 4, "sphinx": 60}, "alltitles": {"API Reference": [[0, "api-reference"]], "Contributing to cyclops": [[1, "contributing-to-cyclops"]], "Pre-commit hooks": [[1, "pre-commit-hooks"]], "Coding guidelines": [[1, "coding-guidelines"]], "\ud83e\uddd1\ud83c\udfff\u200d\ud83d\udcbb Developing": [[2, "developing"]], "Using poetry": [[2, "using-poetry"]], "Contributing": [[2, "contributing"]], "Evaluation": [[3, "evaluation"], [58, "Evaluation"], [59, "Evaluation"], [62, "Evaluation"]], "What is CyclOps?": [[4, "what-is-cyclops"]], "Quick Start": [[4, "quick-start"]], "Installation": [[5, "installation"]], "Using pip": [[5, "using-pip"]], "Model Report": [[6, "model-report"]], "Monitoring": [[7, "monitoring"]], "cyclops.data.aggregate": [[8, "module-cyclops.data.aggregate"]], "cyclops.data.aggregate.Aggregator": [[9, "cyclops-data-aggregate-aggregator"]], "cyclops.data.aggregate.tabular_as_aggregated": [[10, "cyclops-data-aggregate-tabular-as-aggregated"]], "cyclops.data.aggregate.timestamp_ffill_agg": [[11, "cyclops-data-aggregate-timestamp-ffill-agg"]], "cyclops.data.features.medical_image": [[12, "module-cyclops.data.features.medical_image"]], "cyclops.data.features.medical_image.MedicalImage": [[13, "cyclops-data-features-medical-image-medicalimage"]], "cyclops.data.slicer": [[14, "module-cyclops.data.slicer"]], "cyclops.data.slicer.SliceSpec": [[15, "cyclops-data-slicer-slicespec"]], "cyclops.data.slicer.compound_filter": [[16, "cyclops-data-slicer-compound-filter"]], "cyclops.data.slicer.filter_datetime": [[17, "cyclops-data-slicer-filter-datetime"]], "cyclops.data.slicer.filter_non_null": [[18, "cyclops-data-slicer-filter-non-null"]], "cyclops.data.slicer.filter_range": [[19, "cyclops-data-slicer-filter-range"]], "cyclops.data.slicer.filter_string_contains": [[20, "cyclops-data-slicer-filter-string-contains"]], "cyclops.data.slicer.filter_value": [[21, "cyclops-data-slicer-filter-value"]], "cyclops.data.slicer.is_datetime": [[22, "cyclops-data-slicer-is-datetime"]], "cyclops.data.slicer.overall": [[23, "cyclops-data-slicer-overall"]], "cyclops.monitor.clinical_applicator": [[24, "module-cyclops.monitor.clinical_applicator"]], "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator": [[25, "cyclops-monitor-clinical-applicator-clinicalshiftapplicator"]], "cyclops.monitor.synthetic_applicator": [[26, "module-cyclops.monitor.synthetic_applicator"]], "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator": [[27, "cyclops-monitor-synthetic-applicator-syntheticshiftapplicator"]], "cyclops.monitor.synthetic_applicator.binary_noise_shift": [[28, "cyclops-monitor-synthetic-applicator-binary-noise-shift"]], "cyclops.monitor.synthetic_applicator.feature_association_shift": [[29, "cyclops-monitor-synthetic-applicator-feature-association-shift"]], "cyclops.monitor.synthetic_applicator.feature_swap_shift": [[30, "cyclops-monitor-synthetic-applicator-feature-swap-shift"]], "cyclops.monitor.synthetic_applicator.gaussian_noise_shift": [[31, "cyclops-monitor-synthetic-applicator-gaussian-noise-shift"]], "cyclops.monitor.synthetic_applicator.knockout_shift": [[32, "cyclops-monitor-synthetic-applicator-knockout-shift"]], "cyclops.report.report": [[33, "module-cyclops.report.report"]], "cyclops.report.report.ModelCardReport": [[34, "cyclops-report-report-modelcardreport"]], "cyclops.tasks.classification": [[35, "module-cyclops.tasks.classification"]], "cyclops.tasks.classification.BinaryTabularClassificationTask": [[36, "cyclops-tasks-classification-binarytabularclassificationtask"]], "cyclops.tasks.classification.MultilabelImageClassificationTask": [[37, "cyclops-tasks-classification-multilabelimageclassificationtask"]], "cyclops.data": [[38, "module-cyclops.data"]], "cyclops.data.features": [[38, "module-cyclops.data.features"]], "cyclops.monitor": [[39, "module-cyclops.monitor"]], "cyclops.report": [[40, "module-cyclops.report"]], "cyclops.tasks": [[41, "module-cyclops.tasks"]], "Evaluator": [[42, "evaluator"]], "Fairness Evaluator": [[43, "fairness-evaluator"]], "Evaluation Metrics": [[44, "evaluation-metrics"]], "Accuracy": [[45, "accuracy"], [45, "id1"]], "Module Interface": [[45, "module-interface"], [46, "module-interface"], [47, "module-interface"], [48, "module-interface"], [49, "module-interface"], [50, "module-interface"], [51, "module-interface"], [52, "module-interface"], [53, "module-interface"], [54, "module-interface"], [55, "module-interface"], [56, "module-interface"]], "BinaryAccuracy": [[45, "binaryaccuracy"]], "MulticlassAccuracy": [[45, "multiclassaccuracy"]], "MultilabelAccuracy": [[45, "multilabelaccuracy"]], "Functional Interface": [[45, "functional-interface"], [46, "functional-interface"], [47, "functional-interface"], [48, "functional-interface"], [49, "functional-interface"], [50, "functional-interface"], [51, "functional-interface"], [52, "functional-interface"], [53, "functional-interface"], [54, "functional-interface"], [55, "functional-interface"], [56, "functional-interface"]], "binary_accuracy": [[45, "binary-accuracy"]], "multiclass_accuracy": [[45, "multiclass-accuracy"]], "multilabel_accuracy": [[45, "multilabel-accuracy"]], "AUROC": [[46, "auroc"], [46, "id1"]], "BinaryAUROC": [[46, "binaryauroc"]], "MulticlassAUROC": [[46, "multiclassauroc"]], "MultilabelAUROC": [[46, "multilabelauroc"]], "auroc": [[46, "id2"]], "binary_auroc": [[46, "binary-auroc"]], "multiclass_auroc": [[46, "multiclass-auroc"]], "multilabel_auroc": [[46, "multilabel-auroc"]], "Average Precision": [[47, "average-precision"]], "BinaryAveragePrecision": [[47, "binaryaverageprecision"]], "average_precision": [[47, "id1"]], "binary_average_precision": [[47, "binary-average-precision"]], "F1-Score": [[48, "f1-score"]], "F1Score": [[48, "f1score"]], "BinaryF1Score": [[48, "binaryf1score"]], "MulticlassF1Score": [[48, "multiclassf1score"]], "MultilabelF1Score": [[48, "multilabelf1score"]], "f1_score": [[48, "id1"]], "binary_f1_score": [[48, "binary-f1-score"]], "multiclass_f1_score": [[48, "multiclass-f1-score"]], "multilabel_f1_score": [[48, "multilabel-f1-score"]], "F-beta Score": [[49, "f-beta-score"]], "FbetaScore": [[49, "fbetascore"]], "BinaryFbetaScore": [[49, "binaryfbetascore"]], "MulticlassFbetaScore": [[49, "multiclassfbetascore"]], "MultilabelFbetaScore": [[49, "multilabelfbetascore"]], "fbeta_score": [[49, "fbeta-score"]], "binary_fbeta_score": [[49, "binary-fbeta-score"]], "multiclass_fbeta_score": [[49, "multiclass-fbeta-score"]], "multilabel_fbeta_score": [[49, "multilabel-fbeta-score"]], "Precision": [[50, "precision"], [50, "id1"]], "BinaryPrecision": [[50, "binaryprecision"]], "MulticlassPrecision": [[50, "multiclassprecision"]], "MultilabelPrecision": [[50, "multilabelprecision"]], "precision": [[50, "id2"]], "binary_precision": [[50, "binary-precision"]], "multiclass_precision": [[50, "multiclass-precision"]], "multilabel_precision": [[50, "multilabel-precision"]], "PrecisionRecallCurve": [[51, "precisionrecallcurve"], [51, "id1"]], "BinaryPrecisionRecallCurve": [[51, "binaryprecisionrecallcurve"]], "MulticlassPrecisionRecallCurve": [[51, "multiclassprecisionrecallcurve"]], "MultilabelPrecisionRecallCurve": [[51, "multilabelprecisionrecallcurve"]], "precision_recall_curve": [[51, "precision-recall-curve"]], "multiclass_precision_recall_curve": [[51, "multiclass-precision-recall-curve"]], "multilabel_precision_recall_curve": [[51, "multilabel-precision-recall-curve"]], "Recall": [[52, "recall"], [52, "id1"]], "BinaryRecall": [[52, "binaryrecall"]], "MulticlassRecall": [[52, "multiclassrecall"]], "MultilabelRecall": [[52, "multilabelrecall"]], "recall": [[52, "id2"]], "multiclass_recall": [[52, "multiclass-recall"]], "multilabel_recall": [[52, "multilabel-recall"]], "ROC Curve": [[53, "roc-curve"]], "ROCCurve": [[53, "roccurve"]], "BinaryROCCurve": [[53, "binaryroccurve"]], "MulticlassROCCurve": [[53, "multiclassroccurve"]], "MultilabelROCCurve": [[53, "multilabelroccurve"]], "roc_curve": [[53, "id1"]], "binary_roc_curve": [[53, "binary-roc-curve"]], "multiclass_roc_curve": [[53, "multiclass-roc-curve"]], "multilabel_roc_curve": [[53, "multilabel-roc-curve"]], "Sensitivity": [[54, "sensitivity"], [54, "id1"]], "BinarySensitivity": [[54, "binarysensitivity"]], "MulticlassSensitivity": [[54, "multiclasssensitivity"]], "MultilabelSensitivity": [[54, "multilabelsensitivity"]], "sensitivity": [[54, "id2"]], "binary_sensitivity": [[54, "binary-sensitivity"]], "multiclass_sensitivity": [[54, "multiclass-sensitivity"]], "multilabel_sensitivity": [[54, "multilabel-sensitivity"]], "Specificity": [[55, "specificity"], [55, "id1"]], "BinarySpecificity": [[55, "binaryspecificity"]], "MulticlassSpecificity": [[55, "multiclassspecificity"]], "MultilabelSpecificity": [[55, "multilabelspecificity"]], "specificity": [[55, "id2"]], "binary_specificity": [[55, "binary-specificity"]], "multiclass_specificity": [[55, "multiclass-specificity"]], "multilabel_specificity": [[55, "multilabel-specificity"]], "StatScores": [[56, "statscores"], [56, "id1"]], "BinaryStatScores": [[56, "binarystatscores"]], "MulticlassStatScores": [[56, "multiclassstatscores"]], "MultilabelStatScores": [[56, "multilabelstatscores"]], "stat_scores": [[56, "stat-scores"]], "binary_stat_scores": [[56, "binary-stat-scores"]], "multiclass_stat_scores": [[56, "multiclass-stat-scores"]], "multilabel_stat_scores": [[56, "multilabel-stat-scores"]], "Tutorials": [[57, "tutorials"]], "Heart Failure Prediction": [[58, "Heart-Failure-Prediction"]], "Import Libraries": [[58, "Import-Libraries"], [59, "Import-Libraries"], [60, "Import-Libraries"], [62, "Import-Libraries"]], "Constants": [[58, "Constants"], [59, "Constants"], [62, "Constants"]], "Data Loading": [[58, "Data-Loading"]], "Sex values": [[58, "Sex-values"]], "Age distribution": [[58, "Age-distribution"], [59, "Age-distribution"], [62, "Age-distribution"]], "Outcome distribution": [[58, "Outcome-distribution"], [59, "Outcome-distribution"], [62, "Outcome-distribution"]], "Identifying feature types": [[58, "Identifying-feature-types"], [59, "Identifying-feature-types"], [62, "Identifying-feature-types"]], "Creating data preprocessors": [[58, "Creating-data-preprocessors"], [59, "Creating-data-preprocessors"], [62, "Creating-data-preprocessors"]], "Creating Hugging Face Dataset": [[58, "Creating-Hugging-Face-Dataset"], [59, "Creating-Hugging-Face-Dataset"], [62, "Creating-Hugging-Face-Dataset"]], "Model Creation": [[58, "Model-Creation"], [59, "Model-Creation"], [60, "Model-Creation"], [62, "Model-Creation"]], "Task Creation": [[58, "Task-Creation"], [59, "Task-Creation"], [62, "Task-Creation"]], "Training": [[58, "Training"], [59, "Training"], [62, "Training"]], "Prediction": [[58, "Prediction"], [59, "Prediction"], [62, "Prediction"]], "Report Generation": [[58, "Report-Generation"], [59, "Report-Generation"], [62, "Report-Generation"]], "Mortality Prediction": [[59, "Mortality-Prediction"]], "Data Querying & Processing": [[59, "Data-Querying-&-Processing"]], "Compute mortality (labels)": [[59, "Compute-mortality-(labels)"]], "Data Inspection and Preprocessing": [[59, "Data-Inspection-and-Preprocessing"], [62, "Data-Inspection-and-Preprocessing"]], "Drop NaNs based on the NAN_THRESHOLD": [[59, "Drop-NaNs-based-on-the-NAN_THRESHOLD"], [62, "Drop-NaNs-based-on-the-NAN_THRESHOLD"]], "Gender distribution": [[59, "Gender-distribution"], [62, "Gender-distribution"]], "Chest X-Ray Disease Classification": [[60, "Chest-X-Ray-Disease-Classification"]], "Generate Historical Reports": [[60, "Generate-Historical-Reports"]], "Initialize Periodic Report": [[60, "Initialize-Periodic-Report"]], "Load Dataset": [[60, "Load-Dataset"]], "Multilabel AUROC by Pathology and Sex": [[60, "Multilabel-AUROC-by-Pathology-and-Sex"]], "Multilabel AUROC by Pathology and Age": [[60, "Multilabel-AUROC-by-Pathology-and-Age"]], "Log Performance Metrics as Tests w/ Thresholds": [[60, "Log-Performance-Metrics-as-Tests-w/-Thresholds"]], "Populate Model Card Fields": [[60, "Populate-Model-Card-Fields"]], "NIHCXR Clinical Drift Experiments Tutorial": [[61, "NIHCXR-Clinical-Drift-Experiments-Tutorial"]], "Import Libraries and Load NIHCXR Dataset": [[61, "Import-Libraries-and-Load-NIHCXR-Dataset"]], "Example 1. Generate Source/Target Dataset for Experiments (1-2)": [[61, "Example-1.-Generate-Source/Target-Dataset-for-Experiments-(1-2)"]], "Example 2. Sensitivity test experiment with 3 dimensionality reduction techniques": [[61, "Example-2.-Sensitivity-test-experiment-with-3-dimensionality-reduction-techniques"]], "Example 3. Sensitivity test experiment with models trained on different datasets": [[61, "Example-3.-Sensitivity-test-experiment-with-models-trained-on-different-datasets"]], "Example 4. Sensitivity test experiment with different clinical shifts": [[61, "Example-4.-Sensitivity-test-experiment-with-different-clinical-shifts"]], "Example 5. Rolling window experiment with synthetic timestamps using biweekly window": [[61, "Example-5.-Rolling-window-experiment-with-synthetic-timestamps-using-biweekly-window"]], "Prolonged Length of Stay Prediction": [[62, "Prolonged-Length-of-Stay-Prediction"]], "Data Querying": [[62, "Data-Querying"]], "Compute length of stay (labels)": [[62, "Compute-length-of-stay-(labels)"]], "Length of stay distribution": [[62, "Length-of-stay-distribution"]], "monitor API": [[63, "monitor-api"]], "Example use cases": [[64, "example-use-cases"]], "Tabular data": [[64, "tabular-data"]], "Kaggle Heart Failure Prediction": [[64, "kaggle-heart-failure-prediction"]], "MIMICIV Mortality Prediction": [[64, "mimiciv-mortality-prediction"]], "Synthea Prolonged Length of Stay Prediction": [[64, "synthea-prolonged-length-of-stay-prediction"]], "Image data": [[64, "image-data"]], "NIH Chest X-ray classification": [[64, "nih-chest-x-ray-classification"]], "User Guide": [[65, "user-guide"]]}, "indexentries": {"cyclops.data.aggregate": [[8, "module-cyclops.data.aggregate"]], "module": [[8, "module-cyclops.data.aggregate"], [12, "module-cyclops.data.features.medical_image"], [14, "module-cyclops.data.slicer"], [24, "module-cyclops.monitor.clinical_applicator"], [26, "module-cyclops.monitor.synthetic_applicator"], [33, "module-cyclops.report.report"], [35, "module-cyclops.tasks.classification"], [38, "module-cyclops.data"], [38, "module-cyclops.data.features"], [39, "module-cyclops.monitor"], [40, "module-cyclops.report"], [41, "module-cyclops.tasks"]], "aggregator (class in cyclops.data.aggregate)": [[9, "cyclops.data.aggregate.Aggregator"]], "__init__() (aggregator method)": [[9, "cyclops.data.aggregate.Aggregator.__init__"]], "agg_by (aggregator attribute)": [[9, "cyclops.data.aggregate.Aggregator.agg_by"]], "agg_meta_for (aggregator attribute)": [[9, "cyclops.data.aggregate.Aggregator.agg_meta_for"]], "aggfuncs (aggregator attribute)": [[9, "cyclops.data.aggregate.Aggregator.aggfuncs"]], "fit() (aggregator method)": [[9, "cyclops.data.aggregate.Aggregator.fit"]], "fit_transform() (aggregator method)": [[9, "cyclops.data.aggregate.Aggregator.fit_transform"]], "imputer (aggregator attribute)": [[9, "cyclops.data.aggregate.Aggregator.imputer"]], "num_timesteps (aggregator attribute)": [[9, "cyclops.data.aggregate.Aggregator.num_timesteps"]], "set_output() (aggregator method)": [[9, "cyclops.data.aggregate.Aggregator.set_output"]], "time_by (aggregator attribute)": [[9, "cyclops.data.aggregate.Aggregator.time_by"]], "timestamp_col (aggregator attribute)": [[9, "cyclops.data.aggregate.Aggregator.timestamp_col"]], "timestep_size (aggregator attribute)": [[9, "cyclops.data.aggregate.Aggregator.timestep_size"]], "transform() (aggregator method)": [[9, "cyclops.data.aggregate.Aggregator.transform"]], "window_duration (aggregator attribute)": [[9, "cyclops.data.aggregate.Aggregator.window_duration"]], "window_start_time (aggregator attribute)": [[9, "cyclops.data.aggregate.Aggregator.window_start_time"]], "window_stop_time (aggregator attribute)": [[9, "cyclops.data.aggregate.Aggregator.window_stop_time"]], "window_times (aggregator attribute)": [[9, "cyclops.data.aggregate.Aggregator.window_times"]], "tabular_as_aggregated() (in module cyclops.data.aggregate)": [[10, "cyclops.data.aggregate.tabular_as_aggregated"]], "timestamp_ffill_agg() (in module cyclops.data.aggregate)": [[11, "cyclops.data.aggregate.timestamp_ffill_agg"]], "cyclops.data.features.medical_image": [[12, "module-cyclops.data.features.medical_image"]], "medicalimage (class in cyclops.data.features.medical_image)": [[13, "cyclops.data.features.medical_image.MedicalImage"]], "__call__() (medicalimage method)": [[13, "cyclops.data.features.medical_image.MedicalImage.__call__"]], "cast_storage() (medicalimage method)": [[13, "cyclops.data.features.medical_image.MedicalImage.cast_storage"]], "decode_example() (medicalimage method)": [[13, "cyclops.data.features.medical_image.MedicalImage.decode_example"]], "embed_storage() (medicalimage method)": [[13, "cyclops.data.features.medical_image.MedicalImage.embed_storage"]], "encode_example() (medicalimage method)": [[13, "cyclops.data.features.medical_image.MedicalImage.encode_example"]], "flatten() (medicalimage method)": [[13, "cyclops.data.features.medical_image.MedicalImage.flatten"]], "cyclops.data.slicer": [[14, "module-cyclops.data.slicer"]], "slicespec (class in cyclops.data.slicer)": [[15, "cyclops.data.slicer.SliceSpec"]], "_registry (slicespec attribute)": [[15, "cyclops.data.slicer.SliceSpec._registry"]], "add_slice_spec() (slicespec method)": [[15, "cyclops.data.slicer.SliceSpec.add_slice_spec"]], "column_names (slicespec attribute)": [[15, "cyclops.data.slicer.SliceSpec.column_names"]], "get_slices() (slicespec method)": [[15, "cyclops.data.slicer.SliceSpec.get_slices"]], "include_overall (slicespec attribute)": [[15, "cyclops.data.slicer.SliceSpec.include_overall"]], "slices() (slicespec method)": [[15, "cyclops.data.slicer.SliceSpec.slices"]], "spec_list (slicespec attribute)": [[15, "cyclops.data.slicer.SliceSpec.spec_list"]], "validate (slicespec attribute)": [[15, "cyclops.data.slicer.SliceSpec.validate"]], "compound_filter() (in module cyclops.data.slicer)": [[16, "cyclops.data.slicer.compound_filter"]], "filter_datetime() (in module cyclops.data.slicer)": [[17, "cyclops.data.slicer.filter_datetime"]], "filter_non_null() (in module cyclops.data.slicer)": [[18, "cyclops.data.slicer.filter_non_null"]], "filter_range() (in module cyclops.data.slicer)": [[19, "cyclops.data.slicer.filter_range"]], "filter_string_contains() (in module cyclops.data.slicer)": [[20, "cyclops.data.slicer.filter_string_contains"]], "filter_value() (in module cyclops.data.slicer)": [[21, "cyclops.data.slicer.filter_value"]], "is_datetime() (in module cyclops.data.slicer)": [[22, "cyclops.data.slicer.is_datetime"]], "overall() (in module cyclops.data.slicer)": [[23, "cyclops.data.slicer.overall"]], "cyclops.monitor.clinical_applicator": [[24, "module-cyclops.monitor.clinical_applicator"]], "clinicalshiftapplicator (class in cyclops.monitor.clinical_applicator)": [[25, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator"]], "age() (clinicalshiftapplicator method)": [[25, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.age"]], "apply_shift() (clinicalshiftapplicator method)": [[25, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.apply_shift"]], "custom() (clinicalshiftapplicator method)": [[25, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.custom"]], "hospital_type() (clinicalshiftapplicator method)": [[25, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.hospital_type"]], "month() (clinicalshiftapplicator method)": [[25, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.month"]], "sex() (clinicalshiftapplicator method)": [[25, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.sex"]], "time() (clinicalshiftapplicator method)": [[25, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.time"]], "cyclops.monitor.synthetic_applicator": [[26, "module-cyclops.monitor.synthetic_applicator"]], "syntheticshiftapplicator (class in cyclops.monitor.synthetic_applicator)": [[27, "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator"]], "apply_shift() (syntheticshiftapplicator method)": [[27, "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator.apply_shift"]], "binary_noise_shift() (in module cyclops.monitor.synthetic_applicator)": [[28, "cyclops.monitor.synthetic_applicator.binary_noise_shift"]], "feature_association_shift() (in module cyclops.monitor.synthetic_applicator)": [[29, "cyclops.monitor.synthetic_applicator.feature_association_shift"]], "feature_swap_shift() (in module cyclops.monitor.synthetic_applicator)": [[30, "cyclops.monitor.synthetic_applicator.feature_swap_shift"]], "gaussian_noise_shift() (in module cyclops.monitor.synthetic_applicator)": [[31, "cyclops.monitor.synthetic_applicator.gaussian_noise_shift"]], "knockout_shift() (in module cyclops.monitor.synthetic_applicator)": [[32, "cyclops.monitor.synthetic_applicator.knockout_shift"]], "cyclops.report.report": [[33, "module-cyclops.report.report"]], "modelcardreport (class in cyclops.report.report)": [[34, "cyclops.report.report.ModelCardReport"]], "export() (modelcardreport method)": [[34, "cyclops.report.report.ModelCardReport.export"]], "from_json_file() (modelcardreport class method)": [[34, "cyclops.report.report.ModelCardReport.from_json_file"]], "log_citation() (modelcardreport method)": [[34, "cyclops.report.report.ModelCardReport.log_citation"]], "log_dataset() (modelcardreport method)": [[34, "cyclops.report.report.ModelCardReport.log_dataset"]], "log_descriptor() (modelcardreport method)": [[34, "cyclops.report.report.ModelCardReport.log_descriptor"]], "log_fairness_assessment() (modelcardreport method)": [[34, "cyclops.report.report.ModelCardReport.log_fairness_assessment"]], "log_from_dict() (modelcardreport method)": [[34, "cyclops.report.report.ModelCardReport.log_from_dict"]], "log_image() (modelcardreport method)": [[34, "cyclops.report.report.ModelCardReport.log_image"]], "log_license() (modelcardreport method)": [[34, "cyclops.report.report.ModelCardReport.log_license"]], "log_model_parameters() (modelcardreport method)": [[34, "cyclops.report.report.ModelCardReport.log_model_parameters"]], "log_owner() (modelcardreport method)": [[34, "cyclops.report.report.ModelCardReport.log_owner"]], "log_performance_metrics() (modelcardreport method)": [[34, "cyclops.report.report.ModelCardReport.log_performance_metrics"]], "log_plotly_figure() (modelcardreport method)": [[34, "cyclops.report.report.ModelCardReport.log_plotly_figure"]], "log_quantitative_analysis() (modelcardreport method)": [[34, "cyclops.report.report.ModelCardReport.log_quantitative_analysis"]], "log_reference() (modelcardreport method)": [[34, "cyclops.report.report.ModelCardReport.log_reference"]], "log_regulation() (modelcardreport method)": [[34, "cyclops.report.report.ModelCardReport.log_regulation"]], "log_risk() (modelcardreport method)": [[34, "cyclops.report.report.ModelCardReport.log_risk"]], "log_use_case() (modelcardreport method)": [[34, "cyclops.report.report.ModelCardReport.log_use_case"]], "log_user() (modelcardreport method)": [[34, "cyclops.report.report.ModelCardReport.log_user"]], "log_version() (modelcardreport method)": [[34, "cyclops.report.report.ModelCardReport.log_version"]], "cyclops.tasks.classification": [[35, "module-cyclops.tasks.classification"]], "binarytabularclassificationtask (class in cyclops.tasks.classification)": [[36, "cyclops.tasks.classification.BinaryTabularClassificationTask"]], "__init__() (binarytabularclassificationtask method)": [[36, "cyclops.tasks.classification.BinaryTabularClassificationTask.__init__"]], "add_model() (binarytabularclassificationtask method)": [[36, "cyclops.tasks.classification.BinaryTabularClassificationTask.add_model"]], "data_type (binarytabularclassificationtask property)": [[36, "cyclops.tasks.classification.BinaryTabularClassificationTask.data_type"]], "evaluate() (binarytabularclassificationtask method)": [[36, "cyclops.tasks.classification.BinaryTabularClassificationTask.evaluate"]], "get_model() (binarytabularclassificationtask method)": [[36, "cyclops.tasks.classification.BinaryTabularClassificationTask.get_model"]], "list_models() (binarytabularclassificationtask method)": [[36, "cyclops.tasks.classification.BinaryTabularClassificationTask.list_models"]], "list_models_params() (binarytabularclassificationtask method)": [[36, "cyclops.tasks.classification.BinaryTabularClassificationTask.list_models_params"]], "load_model() (binarytabularclassificationtask method)": [[36, "cyclops.tasks.classification.BinaryTabularClassificationTask.load_model"]], "models_count (binarytabularclassificationtask property)": [[36, "cyclops.tasks.classification.BinaryTabularClassificationTask.models_count"]], "predict() (binarytabularclassificationtask method)": [[36, "cyclops.tasks.classification.BinaryTabularClassificationTask.predict"]], "save_model() (binarytabularclassificationtask method)": [[36, "cyclops.tasks.classification.BinaryTabularClassificationTask.save_model"]], "task_type (binarytabularclassificationtask property)": [[36, "cyclops.tasks.classification.BinaryTabularClassificationTask.task_type"]], "train() (binarytabularclassificationtask method)": [[36, "cyclops.tasks.classification.BinaryTabularClassificationTask.train"]], "multilabelimageclassificationtask (class in cyclops.tasks.classification)": [[37, "cyclops.tasks.classification.MultilabelImageClassificationTask"]], "__init__() (multilabelimageclassificationtask method)": [[37, "cyclops.tasks.classification.MultilabelImageClassificationTask.__init__"]], "add_model() (multilabelimageclassificationtask method)": [[37, "cyclops.tasks.classification.MultilabelImageClassificationTask.add_model"]], "data_type (multilabelimageclassificationtask property)": [[37, "cyclops.tasks.classification.MultilabelImageClassificationTask.data_type"]], "evaluate() (multilabelimageclassificationtask method)": [[37, "cyclops.tasks.classification.MultilabelImageClassificationTask.evaluate"]], "get_model() (multilabelimageclassificationtask method)": [[37, "cyclops.tasks.classification.MultilabelImageClassificationTask.get_model"]], "list_models() (multilabelimageclassificationtask method)": [[37, "cyclops.tasks.classification.MultilabelImageClassificationTask.list_models"]], "list_models_params() (multilabelimageclassificationtask method)": [[37, "cyclops.tasks.classification.MultilabelImageClassificationTask.list_models_params"]], "load_model() (multilabelimageclassificationtask method)": [[37, "cyclops.tasks.classification.MultilabelImageClassificationTask.load_model"]], "models_count (multilabelimageclassificationtask property)": [[37, "cyclops.tasks.classification.MultilabelImageClassificationTask.models_count"]], "predict() (multilabelimageclassificationtask method)": [[37, "cyclops.tasks.classification.MultilabelImageClassificationTask.predict"]], "save_model() (multilabelimageclassificationtask method)": [[37, "cyclops.tasks.classification.MultilabelImageClassificationTask.save_model"]], "task_type (multilabelimageclassificationtask property)": [[37, "cyclops.tasks.classification.MultilabelImageClassificationTask.task_type"]], "cyclops.data": [[38, "module-cyclops.data"]], "cyclops.data.features": [[38, "module-cyclops.data.features"]], "cyclops.monitor": [[39, "module-cyclops.monitor"]], "cyclops.report": [[40, "module-cyclops.report"]], "cyclops.tasks": [[41, "module-cyclops.tasks"]], "evaluate() (in module cyclops.evaluate.evaluator)": [[42, "cyclops.evaluate.evaluator.evaluate"]], "evaluate_fairness() (in module cyclops.evaluate.fairness.evaluator)": [[43, "cyclops.evaluate.fairness.evaluator.evaluate_fairness"]], "accuracy (class in cyclops.evaluate.metrics)": [[45, "cyclops.evaluate.metrics.Accuracy"]], "binaryaccuracy (class in cyclops.evaluate.metrics)": [[45, "cyclops.evaluate.metrics.BinaryAccuracy"]], "multiclassaccuracy (class in cyclops.evaluate.metrics)": [[45, "cyclops.evaluate.metrics.MulticlassAccuracy"]], "multilabelaccuracy (class in cyclops.evaluate.metrics)": [[45, "cyclops.evaluate.metrics.MultilabelAccuracy"]], "binary_accuracy() (in module cyclops.evaluate.metrics.functional.accuracy)": [[45, "cyclops.evaluate.metrics.functional.accuracy.binary_accuracy"]], "multiclass_accuracy() (in module cyclops.evaluate.metrics.functional.accuracy)": [[45, "cyclops.evaluate.metrics.functional.accuracy.multiclass_accuracy"]], "multilabel_accuracy() (in module cyclops.evaluate.metrics.functional.accuracy)": [[45, "cyclops.evaluate.metrics.functional.accuracy.multilabel_accuracy"]], "auroc (class in cyclops.evaluate.metrics)": [[46, "cyclops.evaluate.metrics.AUROC"]], "binaryauroc (class in cyclops.evaluate.metrics)": [[46, "cyclops.evaluate.metrics.BinaryAUROC"]], "multiclassauroc (class in cyclops.evaluate.metrics)": [[46, "cyclops.evaluate.metrics.MulticlassAUROC"]], "multilabelauroc (class in cyclops.evaluate.metrics)": [[46, "cyclops.evaluate.metrics.MultilabelAUROC"]], "auroc() (in module cyclops.evaluate.metrics.functional.auroc)": [[46, "cyclops.evaluate.metrics.functional.auroc.auroc"]], "binary_auroc() (in module cyclops.evaluate.metrics.functional.auroc)": [[46, "cyclops.evaluate.metrics.functional.auroc.binary_auroc"]], "multiclass_auroc() (in module cyclops.evaluate.metrics.functional.auroc)": [[46, "cyclops.evaluate.metrics.functional.auroc.multiclass_auroc"]], "multilabel_auroc() (in module cyclops.evaluate.metrics.functional.auroc)": [[46, "cyclops.evaluate.metrics.functional.auroc.multilabel_auroc"]], "binaryaverageprecision (class in cyclops.evaluate.metrics)": [[47, "cyclops.evaluate.metrics.BinaryAveragePrecision"]], "average_precision() (in module cyclops.evaluate.metrics.functional.average_precision)": [[47, "cyclops.evaluate.metrics.functional.average_precision.average_precision"]], "binary_average_precision() (in module cyclops.evaluate.metrics.functional.average_precision)": [[47, "cyclops.evaluate.metrics.functional.average_precision.binary_average_precision"]], "binaryf1score (class in cyclops.evaluate.metrics)": [[48, "cyclops.evaluate.metrics.BinaryF1Score"]], "f1score (class in cyclops.evaluate.metrics)": [[48, "cyclops.evaluate.metrics.F1Score"]], "multiclassf1score (class in cyclops.evaluate.metrics)": [[48, "cyclops.evaluate.metrics.MulticlassF1Score"]], "multilabelf1score (class in cyclops.evaluate.metrics)": [[48, "cyclops.evaluate.metrics.MultilabelF1Score"]], "binary_f1_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[48, "cyclops.evaluate.metrics.functional.f_beta.binary_f1_score"]], "f1_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[48, "cyclops.evaluate.metrics.functional.f_beta.f1_score"]], "multiclass_f1_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[48, "cyclops.evaluate.metrics.functional.f_beta.multiclass_f1_score"]], "multilabel_f1_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[48, "cyclops.evaluate.metrics.functional.f_beta.multilabel_f1_score"]], "binaryfbetascore (class in cyclops.evaluate.metrics)": [[49, "cyclops.evaluate.metrics.BinaryFbetaScore"]], "fbetascore (class in cyclops.evaluate.metrics)": [[49, "cyclops.evaluate.metrics.FbetaScore"]], "multiclassfbetascore (class in cyclops.evaluate.metrics)": [[49, "cyclops.evaluate.metrics.MulticlassFbetaScore"]], "multilabelfbetascore (class in cyclops.evaluate.metrics)": [[49, "cyclops.evaluate.metrics.MultilabelFbetaScore"]], "binary_fbeta_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[49, "cyclops.evaluate.metrics.functional.f_beta.binary_fbeta_score"]], "fbeta_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[49, "cyclops.evaluate.metrics.functional.f_beta.fbeta_score"]], "multiclass_fbeta_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[49, "cyclops.evaluate.metrics.functional.f_beta.multiclass_fbeta_score"]], "multilabel_fbeta_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[49, "cyclops.evaluate.metrics.functional.f_beta.multilabel_fbeta_score"]], "binaryprecision (class in cyclops.evaluate.metrics)": [[50, "cyclops.evaluate.metrics.BinaryPrecision"]], "multiclassprecision (class in cyclops.evaluate.metrics)": [[50, "cyclops.evaluate.metrics.MulticlassPrecision"]], "multilabelprecision (class in cyclops.evaluate.metrics)": [[50, "cyclops.evaluate.metrics.MultilabelPrecision"]], "precision (class in cyclops.evaluate.metrics)": [[50, "cyclops.evaluate.metrics.Precision"]], "binary_precision() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[50, "cyclops.evaluate.metrics.functional.precision_recall.binary_precision"]], "multiclass_precision() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[50, "cyclops.evaluate.metrics.functional.precision_recall.multiclass_precision"]], "multilabel_precision() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[50, "cyclops.evaluate.metrics.functional.precision_recall.multilabel_precision"]], "precision() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[50, "cyclops.evaluate.metrics.functional.precision_recall.precision"]], "binaryprecisionrecallcurve (class in cyclops.evaluate.metrics)": [[51, "cyclops.evaluate.metrics.BinaryPrecisionRecallCurve"]], "multiclassprecisionrecallcurve (class in cyclops.evaluate.metrics)": [[51, "cyclops.evaluate.metrics.MulticlassPrecisionRecallCurve"]], "multilabelprecisionrecallcurve (class in cyclops.evaluate.metrics)": [[51, "cyclops.evaluate.metrics.MultilabelPrecisionRecallCurve"]], "precisionrecallcurve (class in cyclops.evaluate.metrics)": [[51, "cyclops.evaluate.metrics.PrecisionRecallCurve"]], "multiclass_precision_recall_curve() (in module cyclops.evaluate.metrics.functional.precision_recall_curve)": [[51, "cyclops.evaluate.metrics.functional.precision_recall_curve.multiclass_precision_recall_curve"]], "multilabel_precision_recall_curve() (in module cyclops.evaluate.metrics.functional.precision_recall_curve)": [[51, "cyclops.evaluate.metrics.functional.precision_recall_curve.multilabel_precision_recall_curve"]], "precision_recall_curve() (in module cyclops.evaluate.metrics.functional.precision_recall_curve)": [[51, "cyclops.evaluate.metrics.functional.precision_recall_curve.precision_recall_curve"]], "binaryrecall (class in cyclops.evaluate.metrics)": [[52, "cyclops.evaluate.metrics.BinaryRecall"]], "multiclassrecall (class in cyclops.evaluate.metrics)": [[52, "cyclops.evaluate.metrics.MulticlassRecall"]], "multilabelrecall (class in cyclops.evaluate.metrics)": [[52, "cyclops.evaluate.metrics.MultilabelRecall"]], "recall (class in cyclops.evaluate.metrics)": [[52, "cyclops.evaluate.metrics.Recall"]], "multiclass_recall() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[52, "cyclops.evaluate.metrics.functional.precision_recall.multiclass_recall"]], "multilabel_recall() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[52, "cyclops.evaluate.metrics.functional.precision_recall.multilabel_recall"]], "recall() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[52, "cyclops.evaluate.metrics.functional.precision_recall.recall"]], "binaryroccurve (class in cyclops.evaluate.metrics)": [[53, "cyclops.evaluate.metrics.BinaryROCCurve"]], "multiclassroccurve (class in cyclops.evaluate.metrics)": [[53, "cyclops.evaluate.metrics.MulticlassROCCurve"]], "multilabelroccurve (class in cyclops.evaluate.metrics)": [[53, "cyclops.evaluate.metrics.MultilabelROCCurve"]], "roccurve (class in cyclops.evaluate.metrics)": [[53, "cyclops.evaluate.metrics.ROCCurve"]], "binary_roc_curve() (in module cyclops.evaluate.metrics.functional.roc)": [[53, "cyclops.evaluate.metrics.functional.roc.binary_roc_curve"]], "multiclass_roc_curve() (in module cyclops.evaluate.metrics.functional.roc)": [[53, "cyclops.evaluate.metrics.functional.roc.multiclass_roc_curve"]], "multilabel_roc_curve() (in module cyclops.evaluate.metrics.functional.roc)": [[53, "cyclops.evaluate.metrics.functional.roc.multilabel_roc_curve"]], "roc_curve() (in module cyclops.evaluate.metrics.functional.roc)": [[53, "cyclops.evaluate.metrics.functional.roc.roc_curve"]], "binarysensitivity (class in cyclops.evaluate.metrics)": [[54, "cyclops.evaluate.metrics.BinarySensitivity"]], "multiclasssensitivity (class in cyclops.evaluate.metrics)": [[54, "cyclops.evaluate.metrics.MulticlassSensitivity"]], "multilabelsensitivity (class in cyclops.evaluate.metrics)": [[54, "cyclops.evaluate.metrics.MultilabelSensitivity"]], "sensitivity (class in cyclops.evaluate.metrics)": [[54, "cyclops.evaluate.metrics.Sensitivity"]], "binary_sensitivity() (in module cyclops.evaluate.metrics.functional.sensitivity)": [[54, "cyclops.evaluate.metrics.functional.sensitivity.binary_sensitivity"]], "multiclass_sensitivity() (in module cyclops.evaluate.metrics.functional.sensitivity)": [[54, "cyclops.evaluate.metrics.functional.sensitivity.multiclass_sensitivity"]], "multilabel_sensitivity() (in module cyclops.evaluate.metrics.functional.sensitivity)": [[54, "cyclops.evaluate.metrics.functional.sensitivity.multilabel_sensitivity"]], "sensitivity() (in module cyclops.evaluate.metrics.functional.sensitivity)": [[54, "cyclops.evaluate.metrics.functional.sensitivity.sensitivity"]], "binaryspecificity (class in cyclops.evaluate.metrics)": [[55, "cyclops.evaluate.metrics.BinarySpecificity"]], "multiclassspecificity (class in cyclops.evaluate.metrics)": [[55, "cyclops.evaluate.metrics.MulticlassSpecificity"]], "multilabelspecificity (class in cyclops.evaluate.metrics)": [[55, "cyclops.evaluate.metrics.MultilabelSpecificity"]], "specificity (class in cyclops.evaluate.metrics)": [[55, "cyclops.evaluate.metrics.Specificity"]], "binary_specificity() (in module cyclops.evaluate.metrics.functional.specificity)": [[55, "cyclops.evaluate.metrics.functional.specificity.binary_specificity"]], "multiclass_specificity() (in module cyclops.evaluate.metrics.functional.specificity)": [[55, "cyclops.evaluate.metrics.functional.specificity.multiclass_specificity"]], "multilabel_specificity() (in module cyclops.evaluate.metrics.functional.specificity)": [[55, "cyclops.evaluate.metrics.functional.specificity.multilabel_specificity"]], "specificity() (in module cyclops.evaluate.metrics.functional.specificity)": [[55, "cyclops.evaluate.metrics.functional.specificity.specificity"]], "binarystatscores (class in cyclops.evaluate.metrics)": [[56, "cyclops.evaluate.metrics.BinaryStatScores"]], "multiclassstatscores (class in cyclops.evaluate.metrics)": [[56, "cyclops.evaluate.metrics.MulticlassStatScores"]], "multilabelstatscores (class in cyclops.evaluate.metrics)": [[56, "cyclops.evaluate.metrics.MultilabelStatScores"]], "statscores (class in cyclops.evaluate.metrics)": [[56, "cyclops.evaluate.metrics.StatScores"]], "binary_stat_scores() (in module cyclops.evaluate.metrics.functional.stat_scores)": [[56, "cyclops.evaluate.metrics.functional.stat_scores.binary_stat_scores"]], "multiclass_stat_scores() (in module cyclops.evaluate.metrics.functional.stat_scores)": [[56, "cyclops.evaluate.metrics.functional.stat_scores.multiclass_stat_scores"]], "multilabel_stat_scores() (in module cyclops.evaluate.metrics.functional.stat_scores)": [[56, "cyclops.evaluate.metrics.functional.stat_scores.multilabel_stat_scores"]], "stat_scores() (in module cyclops.evaluate.metrics.functional.stat_scores)": [[56, "cyclops.evaluate.metrics.functional.stat_scores.stat_scores"]]}}) \ No newline at end of file diff --git a/api/tutorials/kaggle/heart_failure_prediction.html b/api/tutorials/kaggle/heart_failure_prediction.html index dd58d4133..cfd4c5716 100644 --- a/api/tutorials/kaggle/heart_failure_prediction.html +++ b/api/tutorials/kaggle/heart_failure_prediction.html @@ -407,7 +407,7 @@

Data Loading
-2024-02-27 19:03:08,034 INFO cyclops.utils.file - Loading DataFrame from ./data/heart.csv
+2024-02-28 16:28:08,739 INFO cyclops.utils.file - Loading DataFrame from ./data/heart.csv
 

-
+
@@ -989,7 +989,7 @@

Training

-2024-02-27 19:03:14,998 INFO cyclops.models.wrappers.sk_model - Best alpha: 0.001
+2024-02-28 16:28:16,008 INFO cyclops.models.wrappers.sk_model - Best alpha: 0.001
 
@@ -997,7 +997,7 @@

Training

-2024-02-27 19:03:14,999 INFO cyclops.models.wrappers.sk_model - Best eta0: 0.01
+2024-02-28 16:28:16,009 INFO cyclops.models.wrappers.sk_model - Best eta0: 0.01
 
@@ -1005,7 +1005,7 @@

Training

-2024-02-27 19:03:14,999 INFO cyclops.models.wrappers.sk_model - Best learning_rate: adaptive
+2024-02-28 16:28:16,010 INFO cyclops.models.wrappers.sk_model - Best learning_rate: adaptive
 
@@ -1069,7 +1069,7 @@

Prediction

-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+

Log the performance metrics to the report.

We can add a performance metric to the model card using the log_performance_metric method, which expects a dictionary where the keys are in the following format: slice_name/metric_name. For instance, overall/accuracy.

@@ -1419,9 +1419,9 @@

Evaluation
-
diff --git a/api/tutorials/kaggle/heart_failure_prediction.ipynb b/api/tutorials/kaggle/heart_failure_prediction.ipynb index 37fb23b75..31ded3c75 100644 --- a/api/tutorials/kaggle/heart_failure_prediction.ipynb +++ b/api/tutorials/kaggle/heart_failure_prediction.ipynb @@ -21,10 +21,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-28T00:03:03.003066Z", - "iopub.status.busy": "2024-02-28T00:03:03.002427Z", - "iopub.status.idle": "2024-02-28T00:03:07.525473Z", - "shell.execute_reply": "2024-02-28T00:03:07.524579Z" + "iopub.execute_input": "2024-02-28T21:28:03.688756Z", + "iopub.status.busy": "2024-02-28T21:28:03.688073Z", + "iopub.status.idle": "2024-02-28T21:28:08.313462Z", + "shell.execute_reply": "2024-02-28T21:28:08.312675Z" }, "tags": [] }, @@ -84,10 +84,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-28T00:03:07.531768Z", - "iopub.status.busy": "2024-02-28T00:03:07.531023Z", - "iopub.status.idle": "2024-02-28T00:03:07.535695Z", - "shell.execute_reply": "2024-02-28T00:03:07.534784Z" + "iopub.execute_input": "2024-02-28T21:28:08.319117Z", + "iopub.status.busy": "2024-02-28T21:28:08.318441Z", + "iopub.status.idle": "2024-02-28T21:28:08.322336Z", + "shell.execute_reply": "2024-02-28T21:28:08.321758Z" } }, "outputs": [], @@ -107,10 +107,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-28T00:03:07.540887Z", - "iopub.status.busy": "2024-02-28T00:03:07.540497Z", - "iopub.status.idle": "2024-02-28T00:03:07.545482Z", - "shell.execute_reply": "2024-02-28T00:03:07.544273Z" + "iopub.execute_input": "2024-02-28T21:28:08.327290Z", + "iopub.status.busy": "2024-02-28T21:28:08.327101Z", + "iopub.status.idle": "2024-02-28T21:28:08.330273Z", + "shell.execute_reply": "2024-02-28T21:28:08.329703Z" }, "tags": [] }, @@ -136,10 +136,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-28T00:03:07.551183Z", - "iopub.status.busy": "2024-02-28T00:03:07.550564Z", - "iopub.status.idle": "2024-02-28T00:03:08.024752Z", - "shell.execute_reply": "2024-02-28T00:03:08.022909Z" + "iopub.execute_input": "2024-02-28T21:28:08.335296Z", + "iopub.status.busy": "2024-02-28T21:28:08.334932Z", + "iopub.status.idle": "2024-02-28T21:28:08.730000Z", + "shell.execute_reply": "2024-02-28T21:28:08.728648Z" }, "tags": [] }, @@ -159,10 +159,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-28T00:03:08.031778Z", - "iopub.status.busy": "2024-02-28T00:03:08.031061Z", - "iopub.status.idle": "2024-02-28T00:03:08.060369Z", - "shell.execute_reply": "2024-02-28T00:03:08.059289Z" + "iopub.execute_input": "2024-02-28T21:28:08.736415Z", + "iopub.status.busy": "2024-02-28T21:28:08.735718Z", + "iopub.status.idle": "2024-02-28T21:28:08.765854Z", + "shell.execute_reply": "2024-02-28T21:28:08.764818Z" }, "tags": [] }, @@ -171,7 +171,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "2024-02-27 19:03:08,034 \u001b[1;37mINFO\u001b[0m cyclops.utils.file - Loading DataFrame from ./data/heart.csv\n" + "2024-02-28 16:28:08,739 \u001b[1;37mINFO\u001b[0m cyclops.utils.file - Loading DataFrame from ./data/heart.csv\n" ] }, { @@ -227,10 +227,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-28T00:03:08.091596Z", - "iopub.status.busy": "2024-02-28T00:03:08.090811Z", - "iopub.status.idle": "2024-02-28T00:03:08.349146Z", - "shell.execute_reply": "2024-02-28T00:03:08.348398Z" + "iopub.execute_input": "2024-02-28T21:28:08.792991Z", + "iopub.status.busy": "2024-02-28T21:28:08.792217Z", + "iopub.status.idle": "2024-02-28T21:28:09.410194Z", + "shell.execute_reply": "2024-02-28T21:28:09.408899Z" }, "tags": [] }, @@ -2038,9 +2038,9 @@ } }, "text/html": [ - "
+
@@ -1361,7 +1361,7 @@

Graphics

-
+
@@ -1369,7 +1369,7 @@

Graphics

-
+
@@ -1435,7 +1435,7 @@

Quantitative Analysis

- 0.63 + 0.7 @@ -1468,11 +1468,11 @@

Quantitative Analysis

- 0.63 + 0.82 - + @@ -1501,7 +1501,7 @@

Quantitative Analysis

- 0.91 + 0.92 @@ -1534,7 +1534,7 @@

Quantitative Analysis

- 1.0 + 0.99 @@ -1567,7 +1567,7 @@

Quantitative Analysis

- 0.82 + 1.0 @@ -1600,7 +1600,7 @@

Quantitative Analysis

- 1.0 + 0.98 @@ -1634,7 +1634,7 @@

Graphics

-
+
@@ -1642,7 +1642,7 @@

Graphics

-
+
@@ -1650,7 +1650,7 @@

Graphics

-
+
@@ -1658,7 +1658,7 @@

Graphics

-
+
@@ -1712,7 +1712,7 @@

Graphics

-
+
@@ -1768,7 +1768,7 @@

Version

- Date: 2024-02-27 + Date: 2024-02-28
@@ -1987,8 +1987,8 @@

Model Parameters

-

Epsilon

- 0.1 +

Tol

+ 0.001
@@ -1996,8 +1996,8 @@

Epsilon

-

Max_iter

- 1000 +

Epsilon

+ 0.1
@@ -2005,8 +2005,8 @@

Max_iter

-

Warm_start

- False +

Penalty

+ l2
@@ -2014,8 +2014,8 @@

Warm_start

-

Class_weight

- balanced +

Warm_start

+ False
@@ -2023,8 +2023,8 @@

Class_weight

-

Verbose

- 0 +

Eta0

+ 0.01
@@ -2032,8 +2032,8 @@

Verbose

-

Random_state

- 123 +

Average

+ False
@@ -2041,8 +2041,8 @@

Random_state

-

Learning_rate

- adaptive +

L1_ratio

+ 0.15
@@ -2050,8 +2050,8 @@

Learning_rate

-

Loss

- log_loss +

Validation_fraction

+ 0.1
@@ -2059,8 +2059,8 @@

Loss

-

Early_stopping

- True +

Max_iter

+ 1000
@@ -2068,8 +2068,8 @@

Early_stopping

-

L1_ratio

- 0.15 +

Shuffle

+ True
@@ -2077,8 +2077,8 @@

L1_ratio

-

N_iter_no_change

- 5 +

Verbose

+ 0
@@ -2086,8 +2086,8 @@

N_iter_no_change

-

Tol

- 0.001 +

Power_t

+ 0.5
@@ -2095,8 +2095,8 @@

Tol

-

Validation_fraction

- 0.1 +

Class_weight

+ balanced
@@ -2109,8 +2109,8 @@

Validation_fraction

-

Alpha

- 0.001 +

Random_state

+ 123
@@ -2118,8 +2118,8 @@

Alpha

-

Average

- False +

Loss

+ log_loss
@@ -2127,8 +2127,8 @@

Average

-

Penalty

- l2 +

Learning_rate

+ adaptive
@@ -2136,8 +2136,8 @@

Penalty

-

Shuffle

- True +

N_iter_no_change

+ 5
@@ -2145,8 +2145,8 @@

Shuffle

-

Eta0

- 0.01 +

Early_stopping

+ True
@@ -2163,8 +2163,8 @@

Fit_intercept

-

Power_t

- 0.5 +

Alpha

+ 0.001
@@ -2424,643 +2424,525 @@

Ethical Considerations

- + + + + \ No newline at end of file diff --git a/api/tutorials/mimiciv/mortality_prediction.html b/api/tutorials/mimiciv/mortality_prediction.html index 6b12a62ec..fd967c6a3 100644 --- a/api/tutorials/mimiciv/mortality_prediction.html +++ b/api/tutorials/mimiciv/mortality_prediction.html @@ -567,7 +567,7 @@

Compute mortality (labels)
-2024-02-27 19:03:29,396 INFO cycquery.orm    - Database setup, ready to run queries!
+2024-02-28 16:28:29,766 INFO cycquery.orm    - Database setup, ready to run queries!
 

@@ -682,9 +682,9 @@

Drop NaNs based on the

-
+
@@ -1162,7 +1162,7 @@

Training
-2024-02-27 19:08:14,183 INFO cyclops.models.wrappers.sk_model - Best reg_lambda: 0
+2024-02-28 16:31:45,374 INFO cyclops.models.wrappers.sk_model - Best reg_lambda: 1
 
-2024-02-27 19:08:14,184 INFO cyclops.models.wrappers.sk_model - Best n_estimators: 500
+2024-02-28 16:31:45,375 INFO cyclops.models.wrappers.sk_model - Best n_estimators: 500
 
-2024-02-27 19:08:14,184 INFO cyclops.models.wrappers.sk_model - Best max_depth: 5
+2024-02-28 16:31:45,375 INFO cyclops.models.wrappers.sk_model - Best max_depth: 5
 
-2024-02-27 19:08:14,185 INFO cyclops.models.wrappers.sk_model - Best learning_rate: 0.1
+2024-02-28 16:31:45,376 INFO cyclops.models.wrappers.sk_model - Best learning_rate: 0.1
 
-2024-02-27 19:08:14,185 INFO cyclops.models.wrappers.sk_model - Best gamma: 10
+2024-02-28 16:31:45,376 INFO cyclops.models.wrappers.sk_model - Best gamma: 10
 
-2024-02-27 19:08:14,186 INFO cyclops.models.wrappers.sk_model - Best colsample_bytree: 1
+2024-02-28 16:31:45,377 INFO cyclops.models.wrappers.sk_model - Best colsample_bytree: 0.7
 
XGBClassifier(base_score=None, booster=None, callbacks=None,
-              colsample_bylevel=None, colsample_bynode=None, colsample_bytree=1,
-              early_stopping_rounds=None, enable_categorical=False,
-              eval_metric='logloss', feature_types=None, gamma=10, gpu_id=None,
-              grow_policy=None, importance_type=None,
-              interaction_constraints=None, learning_rate=0.1, max_bin=None,
-              max_cat_threshold=None, max_cat_to_onehot=None,
-              max_delta_step=None, max_depth=5, max_leaves=None,
-              min_child_weight=3, missing=nan, monotone_constraints=None,
-              n_estimators=500, n_jobs=None, num_parallel_tree=None,
-              predictor=None, random_state=123, ...)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
+ colsample_bylevel=None, colsample_bynode=None, + colsample_bytree=0.7, early_stopping_rounds=None, + enable_categorical=False, eval_metric='logloss', + feature_types=None, gamma=10, gpu_id=None, grow_policy=None, + importance_type=None, interaction_constraints=None, + learning_rate=0.1, max_bin=None, max_cat_threshold=None, + max_cat_to_onehot=None, max_delta_step=None, max_depth=5, + max_leaves=None, min_child_weight=3, missing=nan, + monotone_constraints=None, n_estimators=500, n_jobs=None, + num_parallel_tree=None, predictor=None, random_state=123, ...)In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
-{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': 1, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': 'logloss', 'feature_types': None, 'gamma': 10, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': 3, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 500, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 123, 'reg_alpha': None, 'reg_lambda': 0, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': None, 'seed': 123}
+{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': 0.7, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': 'logloss', 'feature_types': None, 'gamma': 10, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': 3, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 500, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 123, 'reg_alpha': None, 'reg_lambda': 1, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': None, 'seed': 123}
 

Log the model parameters to the report.

@@ -1282,7 +1282,7 @@

Prediction

-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+

Log the performance metrics to the report.

We can add a performance metric to the model card using the log_performance_metric method, which expects a dictionary where the keys are in the following format: slice_name/metric_name. For instance, overall/accuracy.

@@ -1617,9 +1617,9 @@

Evaluation
-

diff --git a/api/tutorials/mimiciv/mortality_prediction.ipynb b/api/tutorials/mimiciv/mortality_prediction.ipynb index ae55e7037..076feec69 100644 --- a/api/tutorials/mimiciv/mortality_prediction.ipynb +++ b/api/tutorials/mimiciv/mortality_prediction.ipynb @@ -21,10 +21,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-28T00:03:21.607288Z", - "iopub.status.busy": "2024-02-28T00:03:21.606617Z", - "iopub.status.idle": "2024-02-28T00:03:27.106309Z", - "shell.execute_reply": "2024-02-28T00:03:27.105288Z" + "iopub.execute_input": "2024-02-28T21:28:22.604959Z", + "iopub.status.busy": "2024-02-28T21:28:22.604312Z", + "iopub.status.idle": "2024-02-28T21:28:27.369421Z", + "shell.execute_reply": "2024-02-28T21:28:27.368491Z" } }, "outputs": [], @@ -89,10 +89,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-28T00:03:27.112426Z", - "iopub.status.busy": "2024-02-28T00:03:27.112004Z", - "iopub.status.idle": "2024-02-28T00:03:27.117534Z", - "shell.execute_reply": "2024-02-28T00:03:27.116795Z" + "iopub.execute_input": "2024-02-28T21:28:27.375755Z", + "iopub.status.busy": "2024-02-28T21:28:27.375057Z", + "iopub.status.idle": "2024-02-28T21:28:27.381366Z", + "shell.execute_reply": "2024-02-28T21:28:27.380431Z" } }, "outputs": [], @@ -112,10 +112,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-28T00:03:27.122719Z", - "iopub.status.busy": "2024-02-28T00:03:27.122345Z", - "iopub.status.idle": "2024-02-28T00:03:27.126401Z", - "shell.execute_reply": "2024-02-28T00:03:27.125638Z" + "iopub.execute_input": "2024-02-28T21:28:27.387144Z", + "iopub.status.busy": "2024-02-28T21:28:27.386736Z", + "iopub.status.idle": "2024-02-28T21:28:27.391310Z", + "shell.execute_reply": "2024-02-28T21:28:27.390291Z" } }, "outputs": [], @@ -147,10 +147,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-28T00:03:27.132038Z", - "iopub.status.busy": "2024-02-28T00:03:27.131531Z", - "iopub.status.idle": "2024-02-28T00:04:52.490174Z", - "shell.execute_reply": "2024-02-28T00:04:52.489242Z" + "iopub.execute_input": "2024-02-28T21:28:27.396839Z", + "iopub.status.busy": "2024-02-28T21:28:27.396384Z", + "iopub.status.idle": "2024-02-28T21:29:57.842618Z", + "shell.execute_reply": "2024-02-28T21:29:57.841811Z" } }, "outputs": [ @@ -158,21 +158,21 @@ "name": "stderr", "output_type": "stream", "text": [ - "2024-02-27 19:03:29,396 \u001b[1;37mINFO\u001b[0m cycquery.orm - Database setup, ready to run queries!\n" + "2024-02-28 16:28:29,766 \u001b[1;37mINFO\u001b[0m cycquery.orm - Database setup, ready to run queries!\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2024-02-27 19:03:37,099 \u001b[1;37mINFO\u001b[0m cycquery.orm - Query returned successfully!\n" + "2024-02-28 16:28:37,234 \u001b[1;37mINFO\u001b[0m cycquery.orm - Query returned successfully!\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2024-02-27 19:03:37,101 \u001b[1;37mINFO\u001b[0m cycquery.utils.profile - Finished executing function run_query in 5.432613 s\n" + "2024-02-28 16:28:37,235 \u001b[1;37mINFO\u001b[0m cycquery.utils.profile - Finished executing function run_query in 5.235178 s\n" ] }, { @@ -189,14 +189,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "2024-02-27 19:04:03,105 \u001b[1;37mINFO\u001b[0m cycquery.orm - Query returned successfully!\n" + "2024-02-28 16:29:12,415 \u001b[1;37mINFO\u001b[0m cycquery.orm - Query returned successfully!\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2024-02-27 19:04:03,106 \u001b[1;37mINFO\u001b[0m cycquery.utils.profile - Finished executing function run_query in 25.225979 s\n" + "2024-02-28 16:29:12,416 \u001b[1;37mINFO\u001b[0m cycquery.utils.profile - Finished executing function run_query in 34.431019 s\n" ] }, { @@ -394,10 +394,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-28T00:04:52.496159Z", - "iopub.status.busy": "2024-02-28T00:04:52.495726Z", - "iopub.status.idle": "2024-02-28T00:04:52.648814Z", - "shell.execute_reply": "2024-02-28T00:04:52.647928Z" + "iopub.execute_input": "2024-02-28T21:29:57.848008Z", + "iopub.status.busy": "2024-02-28T21:29:57.847660Z", + "iopub.status.idle": "2024-02-28T21:29:57.990955Z", + "shell.execute_reply": "2024-02-28T21:29:57.990251Z" } }, "outputs": [ @@ -2395,9 +2395,9 @@ } }, "text/html": [ - "
+
@@ -1034,7 +1034,7 @@

Graphics

-
+
@@ -1042,7 +1042,7 @@

Graphics

-
+
@@ -1050,7 +1050,7 @@

Graphics

-
+
@@ -1173,7 +1173,7 @@

Quantitative Analysis

- 0.07 + 0.16 @@ -1206,7 +1206,7 @@

Quantitative Analysis

- 0.23 + 0.0 @@ -1239,7 +1239,7 @@

Quantitative Analysis

- 0.24 + 0.32 @@ -1272,11 +1272,11 @@

Quantitative Analysis

- 0.8 + 0.19 - + @@ -1305,7 +1305,7 @@

Quantitative Analysis

- 0.3 + 0.19 @@ -1337,7 +1337,7 @@

Graphics

-
+
@@ -1345,7 +1345,7 @@

Graphics

-
+
@@ -1353,7 +1353,7 @@

Graphics

-
+
@@ -1361,7 +1361,7 @@

Graphics

-
+
@@ -1415,7 +1415,7 @@

Graphics

-
+
@@ -1471,7 +1471,7 @@

Version

- Date: 2024-02-27 + Date: 2024-02-28
@@ -1689,10 +1689,6 @@

Model Parameters

-
-

Learning_rate

- 0.1 -
@@ -1714,8 +1710,8 @@

Learning_rate

-

Gamma

- 10 +

Seed

+ 123
@@ -1732,11 +1728,6 @@

Gamma

- - - - - @@ -1752,8 +1743,8 @@

Min_child_weight

-

Seed

- 123 +

N_estimators

+ 500
@@ -1761,19 +1752,27 @@

Seed

-

Enable_categorical

- False +

Objective

+ binary:logistic
+
+

Missing

+ nan +
+
+

Learning_rate

+ 0.1 +
@@ -1794,19 +1793,11 @@

Enable_categorical

-
-

Objective

- binary:logistic -
-
-

Max_depth

- 5 -
@@ -1822,6 +1813,10 @@

Max_depth

+
+

Max_depth

+ 5 +
@@ -1836,19 +1831,11 @@

Random_state

-
-

Colsample_bytree

- 1 -
-
-

N_estimators

- 500 -
@@ -1874,10 +1861,6 @@

N_estimators

-
-

Missing

- nan -
@@ -1893,11 +1876,19 @@

Missing

+
+

Enable_categorical

+ False +
+
+

Reg_lambda

+ 1 +
@@ -1908,10 +1899,6 @@

Missing

-
-

Eval_metric

- logloss -
@@ -1923,14 +1910,27 @@

Eval_metric

-

Reg_lambda

- 0 +

Colsample_bytree

+ 0.7 +
+ + + + + +
+

Eval_metric

+ logloss
+
+

Gamma

+ 10 +
@@ -2169,643 +2169,525 @@

Ethical Considerations

- + + + + \ No newline at end of file diff --git a/api/tutorials/nihcxr/cxr_classification.html b/api/tutorials/nihcxr/cxr_classification.html index eb155fd97..05e46dcea 100644 --- a/api/tutorials/nihcxr/cxr_classification.html +++ b/api/tutorials/nihcxr/cxr_classification.html @@ -428,13 +428,13 @@

Model Creation

-
+
-
+
-
+
-
+
@@ -578,61 +578,61 @@

Multilabel AUROC by Pathology and Age
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-

diff --git a/api/tutorials/nihcxr/cxr_classification.ipynb b/api/tutorials/nihcxr/cxr_classification.ipynb index bd981062f..916e4d9f9 100644 --- a/api/tutorials/nihcxr/cxr_classification.ipynb +++ b/api/tutorials/nihcxr/cxr_classification.ipynb @@ -24,10 +24,10 @@ "id": "fc1eb72a", "metadata": { "execution": { - "iopub.execute_input": "2024-02-28T00:08:28.333642Z", - "iopub.status.busy": "2024-02-28T00:08:28.332976Z", - "iopub.status.idle": "2024-02-28T00:08:33.952838Z", - "shell.execute_reply": "2024-02-28T00:08:33.951811Z" + "iopub.execute_input": "2024-02-28T21:31:59.803422Z", + "iopub.status.busy": "2024-02-28T21:31:59.802808Z", + "iopub.status.idle": "2024-02-28T21:32:04.015270Z", + "shell.execute_reply": "2024-02-28T21:32:04.014166Z" } }, "outputs": [], @@ -69,10 +69,10 @@ "id": "25c2a16f", "metadata": { "execution": { - "iopub.execute_input": "2024-02-28T00:08:33.958977Z", - "iopub.status.busy": "2024-02-28T00:08:33.958423Z", - "iopub.status.idle": "2024-02-28T00:13:54.310815Z", - "shell.execute_reply": "2024-02-28T00:13:54.308890Z" + "iopub.execute_input": "2024-02-28T21:32:04.020774Z", + "iopub.status.busy": "2024-02-28T21:32:04.020390Z", + "iopub.status.idle": "2024-02-28T21:37:22.616124Z", + "shell.execute_reply": "2024-02-28T21:37:22.614225Z" }, "nbsphinx": "hidden" }, @@ -90,16 +90,10 @@ "output_type": "stream", "text": [ "\r", - "Flattening the indices: 100%|████████| 1000/1000 [00:52<00:00, 18.92 examples/s]\r", - "Flattening the indices: 100%|████████| 1000/1000 [00:52<00:00, 18.92 examples/s]\r\n", + "Flattening the indices: 100%|████████| 1000/1000 [00:52<00:00, 19.03 examples/s]\r", + "Flattening the indices: 100%|████████| 1000/1000 [00:52<00:00, 19.03 examples/s]\r\n", "\r", - "Flattening the indices: 0%| | 0/1000 [00:00 Patient Gender:M: 0%| | 0/400 [00:00 Patient Gender:M: 100%|███| 400/400 [00:00<00:00, 42654.30 examples/s]\r\n" + "Map: 100%|███████████████████████████| 400/400 [00:00<00:00, 1868.51 examples/s]\r", + "Map: 100%|███████████████████████████| 400/400 [00:00<00:00, 1834.55 examples/s]\r\n", + "\r", + "Filter -> Patient Gender:M: 0%| | 0/400 [00:00 Patient Gender:F: 0%| | 0/400 [00:00 Patient Gender:F: 100%|███| 400/400 [00:00<00:00, 43024.02 examples/s]\r\n", + "Filter -> Patient Gender:M: 100%|███| 400/400 [00:00<00:00, 43805.89 examples/s]\r\n", "\r", - "Filter -> overall: 0%| | 0/400 [00:00 overall: 100%|████████████| 400/400 [00:00<00:00, 45738.16 examples/s]\r\n" + "Filter -> Patient Gender:F: 0%| | 0/400 [00:00 Patient Gender:F: 100%|███| 400/400 [00:00<00:00, 45095.19 examples/s]\r\n" ] }, { @@ -137,10 +136,10 @@ "output_type": "stream", "text": [ "\r", - "Filter -> Patient Age:[19 - 35]: 0%| | 0/400 [00:00 Patient Age:[19 - 35]: 100%|█| 400/400 [00:00<00:00, 41190.29 examples\r\n", + "Filter -> overall: 0%| | 0/400 [00:00 overall: 100%|████████████| 400/400 [00:00<00:00, 46842.80 examples/s]\r\n", "\r", - "Filter -> Patient Age:[35 - 65]: 0%| | 0/400 [00:00 Patient Age:[19 - 35]: 0%| | 0/400 [00:00 Patient Age:[35 - 65]: 100%|█| 400/400 [00:00<00:00, 42177.12 examples\r\n", - "\r", - "Filter -> Patient Age:[65 - 100]: 0%| | 0/400 [00:00 Patient Age:[65 - 100]: 100%|█| 400/400 [00:00<00:00, 42179.24 example\r\n", + "Filter -> Patient Age:[19 - 35]: 100%|█| 400/400 [00:00<00:00, 42537.50 examples\r\n", "\r", - "Filter -> Patient Age:[19 - 35]&Patient Gender:M: 0%| | 0/400 [00:00 Patient Age:[35 - 65]: 0%| | 0/400 [00:00 Patient Age:[35 - 65]: 100%|█| 400/400 [00:00<00:00, 44311.49 examples\r\n" ] }, { @@ -161,13 +158,14 @@ "output_type": "stream", "text": [ "\r", + "Filter -> Patient Age:[65 - 100]: 0%| | 0/400 [00:00 Patient Age:[65 - 100]: 100%|█| 400/400 [00:00<00:00, 43617.97 example\r\n", + "\r", + "Filter -> Patient Age:[19 - 35]&Patient Gender:M: 0%| | 0/400 [00:00 Patient Age:[19 - 35]&Patient Gender:M: 100%|█| 400/400 [00:00<00:00, \r\n", "\r", "Filter -> Patient Age:[19 - 35]&Patient Gender:F: 0%| | 0/400 [00:00 Patient Age:[19 - 35]&Patient Gender:F: 100%|█| 400/400 [00:00<00:00, \r\n", - "\r", - "Filter -> Patient Age:[35 - 65]&Patient Gender:M: 0%| | 0/400 [00:00 Patient Age:[35 - 65]&Patient Gender:M: 100%|█| 400/400 [00:00<00:00, \r\n" + "Filter -> Patient Age:[19 - 35]&Patient Gender:F: 100%|█| 400/400 [00:00<00:00, \r\n" ] }, { @@ -175,23 +173,26 @@ "output_type": "stream", "text": [ "\r", - "Filter -> Patient Age:[35 - 65]&Patient Gender:F: 0%| | 0/400 [00:00 Patient Age:[35 - 65]&Patient Gender:F: 100%|█| 400/400 [00:00<00:00, \r\n", + "Filter -> Patient Age:[35 - 65]&Patient Gender:M: 0%| | 0/400 [00:00 Patient Age:[35 - 65]&Patient Gender:M: 100%|█| 400/400 [00:00<00:00, \r\n", "\r", - "Filter -> Patient Age:[65 - 100]&Patient Gender:M: 0%| | 0/400 [00:00 Patient Age:[65 - 100]&Patient Gender:M: 100%|█| 400/400 [00:00<00:00,\r\n" + "Filter -> Patient Age:[35 - 65]&Patient Gender:F: 0%| | 0/400 [00:00 Patient Age:[35 - 65]&Patient Gender:F: 100%|█| 400/400 [00:00<00:00, \r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ + "\r", + "Filter -> Patient Age:[65 - 100]&Patient Gender:M: 0%| | 0/400 [00:00 Patient Age:[65 - 100]&Patient Gender:M: 100%|█| 400/400 [00:00<00:00,\r\n", "\r", "Filter -> Patient Age:[65 - 100]&Patient Gender:F: 0%| | 0/400 [00:00 Patient Age:[65 - 100]&Patient Gender:F: 100%|█| 400/400 [00:00<00:00,\r\n", "\r", "Filter -> overall: 0%| | 0/400 [00:00 overall: 100%|████████████| 400/400 [00:00<00:00, 46765.76 examples/s]\r\n" + "Filter -> overall: 100%|████████████| 400/400 [00:00<00:00, 48728.48 examples/s]\r\n" ] }, { @@ -207,14 +208,14 @@ "output_type": "stream", "text": [ "\r", - "Flattening the indices: 100%|████████| 1000/1000 [00:53<00:00, 18.81 examples/s]\r", - "Flattening the indices: 100%|████████| 1000/1000 [00:53<00:00, 18.81 examples/s]\r\n", + "Flattening the indices: 100%|████████| 1000/1000 [00:53<00:00, 18.78 examples/s]\r", + "Flattening the indices: 100%|████████| 1000/1000 [00:53<00:00, 18.77 examples/s]\r\n", "\r", "Flattening the indices: 0%| | 0/1000 [00:00 Patient Gender:M: 0%| | 0/396 [00:00 Patient Gender:M: 100%|███| 396/396 [00:00<00:00, 43202.01 examples/s]\r\n", + "Filter -> Patient Gender:M: 100%|███| 396/396 [00:00<00:00, 43129.09 examples/s]\r\n", "\r", "Filter -> Patient Gender:F: 0%| | 0/396 [00:00 Patient Gender:F: 100%|███| 396/396 [00:00<00:00, 43233.49 examples/s]\r\n", + "Filter -> Patient Gender:F: 100%|███| 396/396 [00:00<00:00, 42483.74 examples/s]\r\n", "\r", "Filter -> overall: 0%| | 0/396 [00:00 overall: 100%|████████████| 396/396 [00:00<00:00, 45937.01 examples/s]\r\n" + "Filter -> overall: 100%|████████████| 396/396 [00:00<00:00, 45715.74 examples/s]\r\n" ] }, { @@ -256,10 +257,10 @@ "text": [ "\r", "Filter -> Patient Age:[19 - 35]: 0%| | 0/396 [00:00 Patient Age:[19 - 35]: 100%|█| 396/396 [00:00<00:00, 41657.96 examples\r\n", + "Filter -> Patient Age:[19 - 35]: 100%|█| 396/396 [00:00<00:00, 41539.19 examples\r\n", "\r", "Filter -> Patient Age:[35 - 65]: 0%| | 0/396 [00:00 Patient Age:[35 - 65]: 100%|█| 396/396 [00:00<00:00, 43111.18 examples\r\n" + "Filter -> Patient Age:[35 - 65]: 100%|█| 396/396 [00:00<00:00, 42914.02 examples\r\n" ] }, { @@ -268,23 +269,24 @@ "text": [ "\r", "Filter -> Patient Age:[65 - 100]: 0%| | 0/396 [00:00 Patient Age:[65 - 100]: 100%|█| 396/396 [00:00<00:00, 42233.13 example\r\n", + "Filter -> Patient Age:[65 - 100]: 100%|█| 396/396 [00:00<00:00, 41686.19 example\r\n", "\r", - "Filter -> Patient Age:[19 - 35]&Patient Gender:M: 0%| | 0/396 [00:00 Patient Age:[19 - 35]&Patient Gender:M: 0%| | 0/396 [00:00 Patient Age:[19 - 35]&Patient Gender:M: 100%|█| 396/396 [00:00<00:00, \r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "\r", - "Filter -> Patient Age:[19 - 35]&Patient Gender:M: 100%|█| 396/396 [00:00<00:00, \r\n", "\r", "Filter -> Patient Age:[19 - 35]&Patient Gender:F: 0%| | 0/396 [00:00 Patient Age:[19 - 35]&Patient Gender:F: 100%|█| 396/396 [00:00<00:00, \r\n", "\r", "Filter -> Patient Age:[35 - 65]&Patient Gender:M: 0%| | 0/396 [00:00 Patient Age:[35 - 65]&Patient Gender:M: 100%|█| 396/396 [00:00<00:00, \r\n" + "Filter -> Patient Age:[35 - 65]&Patient Gender:M: 100%|█| 396/396 [00:00<00:00, \r\n", + "\r", + "Filter -> Patient Age:[35 - 65]&Patient Gender:F: 0%| | 0/396 [00:00 Patient Age:[35 - 65]&Patient Gender:F: 0%| | 0/396 [00:00 Patient Age:[35 - 65]&Patient Gender:F: 100%|█| 396/396 [00:00<00:00, \r\n", "\r", "Filter -> Patient Age:[65 - 100]&Patient Gender:M: 0%| | 0/396 [00:00 Patient Age:[65 - 100]&Patient Gender:F: 100%|█| 396/396 [00:00<00:00,\r\n", "\r", "Filter -> overall: 0%| | 0/396 [00:00 overall: 100%|████████████| 396/396 [00:00<00:00, 47306.88 examples/s]\r\n" + "Filter -> overall: 100%|████████████| 396/396 [00:00<00:00, 47118.99 examples/s]\r\n" ] }, { @@ -325,11 +326,11 @@ "output_type": "stream", "text": [ "\r", - "Flattening the indices: 100%|████████| 1000/1000 [00:53<00:00, 18.66 examples/s]\r", - "Flattening the indices: 100%|████████| 1000/1000 [00:53<00:00, 18.65 examples/s]\r\n", + "Flattening the indices: 100%|████████| 1000/1000 [00:52<00:00, 18.99 examples/s]\r", + "Flattening the indices: 100%|████████| 1000/1000 [00:52<00:00, 18.98 examples/s]\r\n", "\r", "Flattening the indices: 0%| | 0/1000 [00:00 Patient Gender:M: 0%| | 0/383 [00:00 Patient Gender:M: 100%|███| 383/383 [00:00<00:00, 42746.63 examples/s]\r\n" + "Filter -> Patient Gender:M: 100%|███| 383/383 [00:00<00:00, 42714.81 examples/s]\r\n" ] }, { @@ -362,10 +363,10 @@ "text": [ "\r", "Filter -> Patient Gender:F: 0%| | 0/383 [00:00 Patient Gender:F: 100%|███| 383/383 [00:00<00:00, 42702.32 examples/s]\r\n", + "Filter -> Patient Gender:F: 100%|███| 383/383 [00:00<00:00, 42180.93 examples/s]\r\n", "\r", "Filter -> overall: 0%| | 0/383 [00:00 overall: 100%|████████████| 383/383 [00:00<00:00, 45304.82 examples/s]\r\n" + "Filter -> overall: 100%|████████████| 383/383 [00:00<00:00, 45748.66 examples/s]\r\n" ] }, { @@ -374,19 +375,21 @@ "text": [ "\r", "Filter -> Patient Age:[19 - 35]: 0%| | 0/383 [00:00 Patient Age:[19 - 35]: 100%|█| 383/383 [00:00<00:00, 41143.80 examples\r\n" + "Filter -> Patient Age:[19 - 35]: 100%|█| 383/383 [00:00<00:00, 41404.67 examples\r\n", + "\r", + "Filter -> Patient Age:[35 - 65]: 0%| | 0/383 [00:00 Patient Age:[35 - 65]: 100%|█| 383/383 [00:00<00:00, 41535.28 examples\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "\r", - "Filter -> Patient Age:[35 - 65]: 0%| | 0/383 [00:00 Patient Age:[35 - 65]: 100%|█| 383/383 [00:00<00:00, 41730.57 examples\r\n", "\r", "Filter -> Patient Age:[65 - 100]: 0%| | 0/383 [00:00 Patient Age:[65 - 100]: 100%|█| 383/383 [00:00<00:00, 41212.41 example\r\n" + "Filter -> Patient Age:[65 - 100]: 100%|█| 383/383 [00:00<00:00, 40434.40 example\r\n", + "\r", + "Filter -> Patient Age:[19 - 35]&Patient Gender:M: 0%| | 0/383 [00:00 Patient Age:[19 - 35]&Patient Gender:M: 0%| | 0/383 [00:00 Patient Age:[19 - 35]&Patient Gender:M: 100%|█| 383/383 [00:00<00:00, \r\n", "\r", "Filter -> Patient Age:[19 - 35]&Patient Gender:F: 0%| | 0/383 [00:00 Patient Age:[19 - 35]&Patient Gender:F: 100%|█| 383/383 [00:00<00:00, \r\n", "\r", - "Filter -> Patient Age:[35 - 65]&Patient Gender:M: 0%| | 0/383 [00:00 Patient Age:[35 - 65]&Patient Gender:M: 0%| | 0/383 [00:00 Patient Age:[35 - 65]&Patient Gender:M: 100%|█| 383/383 [00:00<00:00, \r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "\r", - "Filter -> Patient Age:[35 - 65]&Patient Gender:M: 100%|█| 383/383 [00:00<00:00, \r\n", "\r", "Filter -> Patient Age:[35 - 65]&Patient Gender:F: 0%| | 0/383 [00:00 Patient Age:[35 - 65]&Patient Gender:F: 100%|█| 383/383 [00:00<00:00, \r\n", "\r", "Filter -> Patient Age:[65 - 100]&Patient Gender:M: 0%| | 0/383 [00:00 Patient Age:[65 - 100]&Patient Gender:M: 100%|█| 383/383 [00:00<00:00,\r\n" + "Filter -> Patient Age:[65 - 100]&Patient Gender:M: 100%|█| 383/383 [00:00<00:00,\r\n", + "\r", + "Filter -> Patient Age:[65 - 100]&Patient Gender:F: 0%| | 0/383 [00:00 Patient Age:[65 - 100]&Patient Gender:F: 0%| | 0/383 [00:00 Patient Age:[65 - 100]&Patient Gender:F: 100%|█| 383/383 [00:00<00:00,\r\n", "\r", "Filter -> overall: 0%| | 0/383 [00:00 overall: 100%|████████████| 383/383 [00:00<00:00, 46013.36 examples/s]\r\n" + "Filter -> overall: 100%|████████████| 383/383 [00:00<00:00, 46898.62 examples/s]\r\n" ] }, { @@ -442,14 +444,14 @@ "output_type": "stream", "text": [ "\r", - "Flattening the indices: 100%|████████| 1000/1000 [00:53<00:00, 18.58 examples/s]\r", - "Flattening the indices: 100%|████████| 1000/1000 [00:53<00:00, 18.57 examples/s]\r\n", + "Flattening the indices: 100%|████████| 1000/1000 [00:52<00:00, 19.10 examples/s]\r", + "Flattening the indices: 100%|████████| 1000/1000 [00:52<00:00, 19.10 examples/s]\r\n", "\r", "Flattening the indices: 0%| | 0/1000 [00:00 Patient Gender:M: 0%| | 0/411 [00:00 Patient Gender:M: 100%|███| 411/411 [00:00<00:00, 43819.50 examples/s]\r\n" + "Filter -> Patient Gender:M: 100%|███| 411/411 [00:00<00:00, 44609.86 examples/s]\r\n", + "\r", + "Filter -> Patient Gender:F: 0%| | 0/411 [00:00 Patient Gender:F: 0%| | 0/411 [00:00 Patient Gender:F: 100%|███| 411/411 [00:00<00:00, 43590.13 examples/s]\r\n", + "Filter -> Patient Gender:F: 100%|███| 411/411 [00:00<00:00, 43444.03 examples/s]\r\n", "\r", "Filter -> overall: 0%| | 0/411 [00:00 overall: 100%|████████████| 411/411 [00:00<00:00, 46568.13 examples/s]\r\n" + "Filter -> overall: 100%|████████████| 411/411 [00:00<00:00, 46593.30 examples/s]\r\n" ] }, { @@ -484,7 +493,9 @@ "text": [ "\r", "Filter -> Patient Age:[19 - 35]: 0%| | 0/411 [00:00 Patient Age:[19 - 35]: 100%|█| 411/411 [00:00<00:00, 41915.50 examples\r\n" + "Filter -> Patient Age:[19 - 35]: 100%|█| 411/411 [00:00<00:00, 42187.34 examples\r\n", + "\r", + "Filter -> Patient Age:[35 - 65]: 0%| | 0/411 [00:00 Patient Age:[35 - 65]: 0%| | 0/411 [00:00 Patient Age:[35 - 65]: 100%|█| 411/411 [00:00<00:00, 42847.96 examples\r\n", + "Filter -> Patient Age:[35 - 65]: 100%|█| 411/411 [00:00<00:00, 42666.61 examples\r\n", "\r", - "Filter -> Patient Age:[65 - 100]: 0%| | 0/411 [00:00 Patient Age:[65 - 100]: 0%| | 0/411 [00:00 Patient Age:[65 - 100]: 100%|█| 411/411 [00:00<00:00, 42613.87 example\r\n", + "\r", + "Filter -> Patient Age:[19 - 35]&Patient Gender:M: 0%| | 0/411 [00:00 Patient Age:[65 - 100]: 100%|█| 411/411 [00:00<00:00, 43293.46 example\r\n", - "\r", - "Filter -> Patient Age:[19 - 35]&Patient Gender:M: 0%| | 0/411 [00:00 Patient Age:[19 - 35]&Patient Gender:M: 100%|█| 411/411 [00:00<00:00, \r\n", "\r", "Filter -> Patient Age:[19 - 35]&Patient Gender:F: 0%| | 0/411 [00:00 Patient Age:[19 - 35]&Patient Gender:F: 100%|█| 411/411 [00:00<00:00, \r\n", "\r", - "Filter -> Patient Age:[35 - 65]&Patient Gender:M: 0%| | 0/411 [00:00 Patient Age:[35 - 65]&Patient Gender:M: 0%| | 0/411 [00:00 Patient Age:[35 - 65]&Patient Gender:M: 100%|█| 411/411 [00:00<00:00, \r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "\r", - "Filter -> Patient Age:[35 - 65]&Patient Gender:M: 100%|█| 411/411 [00:00<00:00, \r\n", "\r", "Filter -> Patient Age:[35 - 65]&Patient Gender:F: 0%| | 0/411 [00:00 Patient Age:[35 - 65]&Patient Gender:F: 100%|█| 411/411 [00:00<00:00, \r\n", "\r", - "Filter -> Patient Age:[65 - 100]&Patient Gender:M: 0%| | 0/411 [00:00 Patient Age:[65 - 100]&Patient Gender:M: 0%| | 0/411 [00:00 Patient Age:[65 - 100]&Patient Gender:M: 100%|█| 411/411 [00:00<00:00,\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "\r", - "Filter -> Patient Age:[65 - 100]&Patient Gender:M: 100%|█| 411/411 [00:00<00:00,\r\n", "\r", "Filter -> Patient Age:[65 - 100]&Patient Gender:F: 0%| | 0/411 [00:00 Patient Age:[65 - 100]&Patient Gender:F: 100%|█| 411/411 [00:00<00:00,\r\n", "\r", "Filter -> overall: 0%| | 0/411 [00:00 overall: 100%|████████████| 411/411 [00:00<00:00, 47531.13 examples/s]\r\n" + "Filter -> overall: 100%|████████████| 411/411 [00:00<00:00, 47419.99 examples/s]\r\n" ] } ], @@ -586,10 +594,10 @@ "id": "03edf1c0", "metadata": { "execution": { - "iopub.execute_input": "2024-02-28T00:13:54.321405Z", - "iopub.status.busy": "2024-02-28T00:13:54.320823Z", - "iopub.status.idle": "2024-02-28T00:13:54.329756Z", - "shell.execute_reply": "2024-02-28T00:13:54.328008Z" + "iopub.execute_input": "2024-02-28T21:37:22.623513Z", + "iopub.status.busy": "2024-02-28T21:37:22.622921Z", + "iopub.status.idle": "2024-02-28T21:37:22.630956Z", + "shell.execute_reply": "2024-02-28T21:37:22.629693Z" } }, "outputs": [], @@ -611,10 +619,10 @@ "id": "6514120e", "metadata": { "execution": { - "iopub.execute_input": "2024-02-28T00:13:54.335935Z", - "iopub.status.busy": "2024-02-28T00:13:54.335411Z", - "iopub.status.idle": "2024-02-28T00:13:57.686305Z", - "shell.execute_reply": "2024-02-28T00:13:57.685292Z" + "iopub.execute_input": "2024-02-28T21:37:22.636993Z", + "iopub.status.busy": "2024-02-28T21:37:22.636353Z", + "iopub.status.idle": "2024-02-28T21:37:25.936372Z", + "shell.execute_reply": "2024-02-28T21:37:25.935490Z" } }, "outputs": [], @@ -658,17 +666,17 @@ "id": "5f624ed4", "metadata": { "execution": { - "iopub.execute_input": "2024-02-28T00:13:57.693104Z", - "iopub.status.busy": "2024-02-28T00:13:57.692897Z", - "iopub.status.idle": "2024-02-28T00:14:11.359098Z", - "shell.execute_reply": "2024-02-28T00:14:11.358115Z" + "iopub.execute_input": "2024-02-28T21:37:25.944410Z", + "iopub.status.busy": "2024-02-28T21:37:25.944199Z", + "iopub.status.idle": "2024-02-28T21:37:39.785448Z", + "shell.execute_reply": "2024-02-28T21:37:39.784769Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "1cb695175ad24419b8e1fab6c83346cd", + "model_id": "2c16739537e14c638fef93d1c9c2638d", "version_major": 2, "version_minor": 0 }, @@ -682,7 +690,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "90d0a521a7e148c88c31c806f521054a", + "model_id": "984368424f084a27899ed0241496bd36", "version_major": 2, "version_minor": 0 }, @@ -742,17 +750,17 @@ "id": "bff27cc1", "metadata": { "execution": { - "iopub.execute_input": "2024-02-28T00:14:11.369543Z", - "iopub.status.busy": "2024-02-28T00:14:11.369284Z", - "iopub.status.idle": "2024-02-28T00:14:11.600513Z", - "shell.execute_reply": "2024-02-28T00:14:11.599830Z" + "iopub.execute_input": "2024-02-28T21:37:39.793960Z", + "iopub.status.busy": "2024-02-28T21:37:39.793555Z", + "iopub.status.idle": "2024-02-28T21:37:40.011650Z", + "shell.execute_reply": "2024-02-28T21:37:40.010512Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ea632e92c0524a0bb373a30c70eef75c", + "model_id": "6a071efbe80b48659a336a9b8adc96b7", "version_major": 2, "version_minor": 0 }, @@ -766,7 +774,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "163995ac8894427f90543199402d1e3c", + "model_id": "3a09c2751a0947379207e933e0a2f793", "version_major": 2, "version_minor": 0 }, @@ -780,7 +788,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "561cb40aa9a34248be08891d82335ce5", + "model_id": "c8e02ac63dbd4853be7c0e4bcc561af1", "version_major": 2, "version_minor": 0 }, @@ -858,17 +866,17 @@ "id": "8c38ef9e", "metadata": { "execution": { - "iopub.execute_input": "2024-02-28T00:14:11.605371Z", - "iopub.status.busy": "2024-02-28T00:14:11.605040Z", - "iopub.status.idle": "2024-02-28T00:14:12.111464Z", - "shell.execute_reply": "2024-02-28T00:14:12.110195Z" + "iopub.execute_input": "2024-02-28T21:37:40.017479Z", + "iopub.status.busy": "2024-02-28T21:37:40.016955Z", + "iopub.status.idle": "2024-02-28T21:37:40.516901Z", + "shell.execute_reply": "2024-02-28T21:37:40.515833Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "56c6af40b9874efc84b7d261fa3010d6", + "model_id": "897ed197d5584c07a0cea280cc7cda4f", "version_major": 2, "version_minor": 0 }, @@ -882,7 +890,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "24787ac519e945b99e36606a2eec4764", + "model_id": "2f38a868b96a4dca80a24f7bb085655a", "version_major": 2, "version_minor": 0 }, @@ -896,7 +904,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c803ed395e1044ffa91bdbbafd745834", + "model_id": "f0adc266b60545289d856fe6007434ae", "version_major": 2, "version_minor": 0 }, @@ -910,7 +918,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d1d91e4b26ca4442b45b9755f08eba57", + "model_id": "fcbbebad6b14491d895018ede9bced74", "version_major": 2, "version_minor": 0 }, @@ -924,7 +932,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "aaf3a6ecd928458caf90c711690985ed", + "model_id": "9e61c85de31d4e84b6289a7cda65dbfc", "version_major": 2, "version_minor": 0 }, @@ -938,7 +946,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a38192b0ae4a4f118e720c7ee5cefced", + "model_id": "c6187525100d4ece83e2111974dd6610", "version_major": 2, "version_minor": 0 }, @@ -952,7 +960,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3779ff16c1364716adf86cf67f94656f", + "model_id": "909d95be86274cb99935306352a670db", "version_major": 2, "version_minor": 0 }, @@ -966,7 +974,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "635c4668b5e243898cf7f3b7d52ebde8", + "model_id": "548631a67f8b4034bf7d9ea0e41e968d", "version_major": 2, "version_minor": 0 }, @@ -980,7 +988,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b4d3ab7be37142ef8d6183d013d7af81", + "model_id": "9672d0ab3e354e5bac0e6daf20c2e94e", "version_major": 2, "version_minor": 0 }, @@ -994,7 +1002,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d64bb7d922764d95835c66b57d4b64f4", + "model_id": "a7c769396a334f74bd8072e8f9437bfa", "version_major": 2, "version_minor": 0 }, @@ -1057,10 +1065,10 @@ "id": "3e674b7a", "metadata": { "execution": { - "iopub.execute_input": "2024-02-28T00:14:12.117155Z", - "iopub.status.busy": "2024-02-28T00:14:12.116754Z", - "iopub.status.idle": "2024-02-28T00:14:12.360922Z", - "shell.execute_reply": "2024-02-28T00:14:12.360136Z" + "iopub.execute_input": "2024-02-28T21:37:40.521834Z", + "iopub.status.busy": "2024-02-28T21:37:40.521632Z", + "iopub.status.idle": "2024-02-28T21:37:40.750494Z", + "shell.execute_reply": "2024-02-28T21:37:40.749561Z" } }, "outputs": [ @@ -1955,9 +1963,9 @@ } }, "text/html": [ - "
+
@@ -526,49 +526,49 @@

Example 4. Sensitivity test experiment with different clinical shifts
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
@@ -613,7 +613,7 @@

Example 5. Rolling window experiment with synthetic timestamps using biweekl

diff --git a/api/tutorials/nihcxr/monitor_api.ipynb b/api/tutorials/nihcxr/monitor_api.ipynb index 756ee274a..029f1f6e9 100644 --- a/api/tutorials/nihcxr/monitor_api.ipynb +++ b/api/tutorials/nihcxr/monitor_api.ipynb @@ -22,17 +22,17 @@ "id": "8aa3302d", "metadata": { "execution": { - "iopub.execute_input": "2024-02-28T00:14:18.894647Z", - "iopub.status.busy": "2024-02-28T00:14:18.894102Z", - "iopub.status.idle": "2024-02-28T00:14:26.375318Z", - "shell.execute_reply": "2024-02-28T00:14:26.374684Z" + "iopub.execute_input": "2024-02-28T21:37:46.069486Z", + "iopub.status.busy": "2024-02-28T21:37:46.068989Z", + "iopub.status.idle": "2024-02-28T21:37:53.785413Z", + "shell.execute_reply": "2024-02-28T21:37:53.784602Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 1, @@ -79,17 +79,17 @@ "id": "e11920db", "metadata": { "execution": { - "iopub.execute_input": "2024-02-28T00:14:26.380688Z", - "iopub.status.busy": "2024-02-28T00:14:26.380360Z", - "iopub.status.idle": "2024-02-28T00:14:26.979363Z", - "shell.execute_reply": "2024-02-28T00:14:26.977719Z" + "iopub.execute_input": "2024-02-28T21:37:53.789427Z", + "iopub.status.busy": "2024-02-28T21:37:53.789215Z", + "iopub.status.idle": "2024-02-28T21:37:54.355037Z", + "shell.execute_reply": "2024-02-28T21:37:54.354230Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f66c71b871e44785976ab237c6d7d899", + "model_id": "78127934b417486e9343f3bfd529d3dc", "version_major": 2, "version_minor": 0 }, @@ -145,10 +145,10 @@ "id": "54a3523a", "metadata": { "execution": { - "iopub.execute_input": "2024-02-28T00:14:26.985182Z", - "iopub.status.busy": "2024-02-28T00:14:26.984754Z", - "iopub.status.idle": "2024-02-28T00:14:37.716713Z", - "shell.execute_reply": "2024-02-28T00:14:37.715208Z" + "iopub.execute_input": "2024-02-28T21:37:54.358368Z", + "iopub.status.busy": "2024-02-28T21:37:54.358046Z", + "iopub.status.idle": "2024-02-28T21:38:05.240110Z", + "shell.execute_reply": "2024-02-28T21:38:05.239060Z" } }, "outputs": [ @@ -213,10 +213,10 @@ "id": "40b5a90f", "metadata": { "execution": { - "iopub.execute_input": "2024-02-28T00:14:37.722839Z", - "iopub.status.busy": "2024-02-28T00:14:37.722283Z", - "iopub.status.idle": "2024-02-28T00:14:44.693451Z", - "shell.execute_reply": "2024-02-28T00:14:44.692793Z" + "iopub.execute_input": "2024-02-28T21:38:05.244293Z", + "iopub.status.busy": "2024-02-28T21:38:05.244066Z", + "iopub.status.idle": "2024-02-28T21:38:12.236239Z", + "shell.execute_reply": "2024-02-28T21:38:12.235318Z" } }, "outputs": [ @@ -271,17 +271,17 @@ "id": "9ba03fac", "metadata": { "execution": { - "iopub.execute_input": "2024-02-28T00:14:44.699469Z", - "iopub.status.busy": "2024-02-28T00:14:44.699144Z", - "iopub.status.idle": "2024-02-28T00:15:01.061633Z", - "shell.execute_reply": "2024-02-28T00:15:01.060930Z" + "iopub.execute_input": "2024-02-28T21:38:12.240230Z", + "iopub.status.busy": "2024-02-28T21:38:12.239886Z", + "iopub.status.idle": "2024-02-28T21:38:26.589888Z", + "shell.execute_reply": "2024-02-28T21:38:26.588609Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "03ede02461c54c36803cc1b9726c7ac9", + "model_id": "22d2236b03c34c50b8130ca5d171dc5d", "version_major": 2, "version_minor": 0 }, @@ -295,7 +295,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8d09aa01ef1241baabb55029a99bb276", + "model_id": "aa76555317464cb8ad86074092a2d6bd", "version_major": 2, "version_minor": 0 }, @@ -309,7 +309,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "07cc96f243ea4a4fb99ae30b2c4aecdd", + "model_id": "2b85b914a62b4cc08bb0e8544026accd", "version_major": 2, "version_minor": 0 }, @@ -323,7 +323,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "54b34cc479a04917a97e29823821330e", + "model_id": "68fd61a5ef7243d3be05fd861bdf0233", "version_major": 2, "version_minor": 0 }, @@ -337,7 +337,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9116661a9a0244fb9664052673560700", + "model_id": "d80dbfd498334c0bbaf696a79e04f395", "version_major": 2, "version_minor": 0 }, @@ -351,7 +351,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3f8707ad9ceb41c49c37b2507810bfa0", + "model_id": "9f8387b3592341e79b12c0f49fd0c309", "version_major": 2, "version_minor": 0 }, @@ -365,7 +365,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ca590beacb7c47b8b8081c83057fd13b", + "model_id": "4ebae65562cf40d98c5be9d578cfecf7", "version_major": 2, "version_minor": 0 }, @@ -379,7 +379,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "fd3f4b7147ef4f94a7d45e9531a2f4d3", + "model_id": "f22a724a1e1245cbb1829d43fdd7ad8a", "version_major": 2, "version_minor": 0 }, @@ -456,10 +456,10 @@ "id": "77e4b383", "metadata": { "execution": { - "iopub.execute_input": "2024-02-28T00:15:01.067699Z", - "iopub.status.busy": "2024-02-28T00:15:01.067343Z", - "iopub.status.idle": "2024-02-28T00:15:03.392231Z", - "shell.execute_reply": "2024-02-28T00:15:03.391549Z" + "iopub.execute_input": "2024-02-28T21:38:26.596559Z", + "iopub.status.busy": "2024-02-28T21:38:26.595996Z", + "iopub.status.idle": "2024-02-28T21:38:28.760651Z", + "shell.execute_reply": "2024-02-28T21:38:28.760068Z" }, "tags": [] }, @@ -518,31 +518,30 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "03ede02461c54c36803cc1b9726c7ac9": { + "0189cad1cb9240c38936820c4fce30c6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9ff0234c46da4c9d80049d0b50c6ff9e", - "IPY_MODEL_c20f6151232242f49403118e494dc28d", - "IPY_MODEL_85d6d2868ab84168b2471f3cc957b4fe" - ], - "layout": "IPY_MODEL_1009bb133ed7486e9c683fc0ce12d824", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fa5481635f1b4195a5514ad135da6456", + "placeholder": "​", + "style": "IPY_MODEL_8163b0a7e80841dab72f1c02b9d6578a", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "Filter (num_proc=6): 100%" } }, - "0451d01a3adf4d40b2cca70b0f7bc35c": { + "02a94a84c9724ccc89d68c168ada9d94": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -557,110 +556,103 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1a1a682bf90b4e95ab2792b8533bf259", + "layout": "IPY_MODEL_9d62cb135a4146c0926405a000c376ec", "placeholder": "​", - "style": "IPY_MODEL_5fd21a36eeb5491f8d31267281cfda84", + "style": "IPY_MODEL_b95ce661b8c04cdc81ea2167cf6466ea", "tabbable": null, "tooltip": null, - "value": " 25596/25596 [00:00<00:00, 61440.29 examples/s]" + "value": "Filter (num_proc=6): 100%" } }, - "07b7aeb358954d03807a85bd552be43b": { + "030021f873234ce1b06889886788b69c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_85c0c779d9214615b6d50c4bf56f0efa", + "placeholder": "​", + "style": "IPY_MODEL_a29026cc0cb54381853c8715a5ee7e1a", + "tabbable": null, + "tooltip": null, + "value": " 25596/25596 [00:00<00:00, 61474.87 examples/s]" } }, - "07cc96f243ea4a4fb99ae30b2c4aecdd": { + "067790446650471985363674ccaad81f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_52d51963bd9c48ff8c2de38c498fa781", - "IPY_MODEL_76251a6ae67742c5a78f13857ce81b52", - "IPY_MODEL_0451d01a3adf4d40b2cca70b0f7bc35c" - ], - "layout": "IPY_MODEL_7916564ef21e456396cff8efbbb25bbf", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_280dcd1950b648fa837412429167c883", + "placeholder": "​", + "style": "IPY_MODEL_4d977cd11fac4d2b91621c01e5720de7", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 25596/25596 [00:00<00:00, 67294.54 examples/s]" } }, - "1009bb133ed7486e9c683fc0ce12d824": { - "model_module": "@jupyter-widgets/base", + "09bac848dd8a48fdac464fd7870e81e0": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "0c3f5714105b498b8f5e0ab9b287e018": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5b939e5dfe5945499d5b57c02752b6bd", + "max": 25596.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f3eac79add644ad397feef8296b6508a", + "tabbable": null, + "tooltip": null, + "value": 25596.0 } }, - "129281c4fd134114a215811c972729c1": { + "0de7dc3357de4133ae0a8799bb6cecc4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -675,15 +667,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4211bae109d24dfda13175b12cb379d4", + "layout": "IPY_MODEL_1833ba742be7485a8749595d41f80a4f", "placeholder": "​", - "style": "IPY_MODEL_a985fa2aabf64ff78768e4b0287f32ea", + "style": "IPY_MODEL_d496f8d63a5447938ba8071e7c2b1818", "tabbable": null, "tooltip": null, "value": "Filter (num_proc=6): 100%" } }, - "147442701b3f4a6891bb38993a306fbf": { + "0f819e357b304e57a75a31154fdb6042": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "15a566567c33436999c0278e153119df": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -701,23 +709,30 @@ "text_color": null } }, - "15a5411be2ab4b5b80347405fabd783a": { + "1786099bb6cb4de999e158c55df384d8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_52d514747e944f43bd07bcc2b8f0e691", + "placeholder": "​", + "style": "IPY_MODEL_b27f3fa4c4b14d658c17a7a807b6363d", + "tabbable": null, + "tooltip": null, + "value": "Filter (num_proc=6): 100%" } }, - "18e4a7a6dea44f498748f435ce626259": { + "1833ba742be7485a8749595d41f80a4f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -770,33 +785,7 @@ "width": null } }, - "19f1428f539e4f11b7ab4c06e367ef65": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b50bef1b30ec448785afe22419a8f2e0", - "max": 25596.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_292d80d756234bdebc177bf72456c805", - "tabbable": null, - "tooltip": null, - "value": 25596.0 - } - }, - "1a1a682bf90b4e95ab2792b8533bf259": { + "1863d63046dc431f9bad515acbfa9304": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -849,25 +838,7 @@ "width": null } }, - "1ab63c22abeb4ad39b306a6dc2ab916a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "2039227d9fc4409999e5117508aefbb1": { + "1a1715089094408f89a3ecfb203ff0d3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -920,102 +891,93 @@ "width": null } }, - "292d80d756234bdebc177bf72456c805": { + "1da65d2bc8b64a7e841342d6d4a6f759": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4363c401b3df4578a25396ad5dac9ec4", + "placeholder": "​", + "style": "IPY_MODEL_ac2779159b204a368fd82983c16727ab", + "tabbable": null, + "tooltip": null, + "value": " 25596/25596 [00:00<00:00, 69145.49 examples/s]" } }, - "29d736abab734fc4b4c660fce51389ad": { + "1dffd1df91f8424fbdd1bf56e5d06fc2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_41b97b680ba648f1824c3cd6c5425403", - "max": 25596.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_63b0511a45114ae09b3c942801cd414a", + "layout": "IPY_MODEL_68f55a95cbfd43548b414e20618a22d9", + "placeholder": "​", + "style": "IPY_MODEL_bd980976c49a4adaa86b4222b489b3d8", "tabbable": null, "tooltip": null, - "value": 25596.0 + "value": "Filter (num_proc=6): 100%" } }, - "326415b7e0954827adda718283c652da": { - "model_module": "@jupyter-widgets/base", + "21add52666154467874eb7d5d5625fc3": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "22d2236b03c34c50b8130ca5d171dc5d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_02a94a84c9724ccc89d68c168ada9d94", + "IPY_MODEL_ea6925e38c004d448bad7511061e8987", + "IPY_MODEL_27c3d7ae73d7498882a17c5e7e2bbb65" + ], + "layout": "IPY_MODEL_e8a4adb8e32c49b2a21db654cb1bb260", + "tabbable": null, + "tooltip": null } }, - "33ae523d17004be99d760f3c8177504a": { + "275fa2cc368f44c7a4ced27238398c43": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1033,7 +995,30 @@ "text_color": null } }, - "36276fae9db64251849cd3f619fec2e1": { + "27c3d7ae73d7498882a17c5e7e2bbb65": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4c66f0d82a734a44b0c69aa1221d96c1", + "placeholder": "​", + "style": "IPY_MODEL_275fa2cc368f44c7a4ced27238398c43", + "tabbable": null, + "tooltip": null, + "value": " 25596/25596 [00:00<00:00, 72852.65 examples/s]" + } + }, + "280dcd1950b648fa837412429167c883": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1086,7 +1071,83 @@ "width": null } }, - "39586644fab547149e3a64f9d66649b3": { + "2b85b914a62b4cc08bb0e8544026accd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_cfef7f9e76804d609beab064a7dd14ee", + "IPY_MODEL_db995ea127e6467393347627f1fc1533", + "IPY_MODEL_77a4f7705b4a407b89cb59e82915bff5" + ], + "layout": "IPY_MODEL_acad61569c2d43e88b73c1e19de9a6a8", + "tabbable": null, + "tooltip": null + } + }, + "3339ff6ba5af4b2a9b3390bfab6be385": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e371b5d78fa94052afb5e3901d4de764", + "max": 25596.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c1b29c3268774cff95a470e167813194", + "tabbable": null, + "tooltip": null, + "value": 25596.0 + } + }, + "37b8711b8c68483aa1123d9532193515": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_720e1b63b6514dd6b91e01e530991619", + "max": 25596.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_21add52666154467874eb7d5d5625fc3", + "tabbable": null, + "tooltip": null, + "value": 25596.0 + } + }, + "395aae54ecb94439ac668c775cedb76d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1139,7 +1200,7 @@ "width": null } }, - "3b0c9fce073f4186a8bd69c4d8ed32f6": { + "3bdef15d2ec84a4b999b7311d9d18424": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1192,77 +1253,86 @@ "width": null } }, - "3cd7f17ef82f42089e34fae664bfe855": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5d6cfac5a98545e193df222c3640cfbf", - "placeholder": "​", - "style": "IPY_MODEL_a27b2550e4014385ba845eae052d92b3", - "tabbable": null, - "tooltip": null, - "value": "Filter (num_proc=6): 100%" - } - }, - "3f8707ad9ceb41c49c37b2507810bfa0": { - "model_module": "@jupyter-widgets/controls", + "3cc586217d0740e9b0dcf3ee324d8d59": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3cd7f17ef82f42089e34fae664bfe855", - "IPY_MODEL_e5eacdb4b70643f6bb7a58dafb655374", - "IPY_MODEL_c063e0591b9c4dd18a0be519fc5eacf4" - ], - "layout": "IPY_MODEL_ccdef08f261f405ca768920a221a67f1", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "4199a14bebcd464daa89d60b747ed2ba": { + "3f1ef92cd3904d268b77452e20b6cca4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ee5bc0d46ba84a44a186cab4299a8021", - "placeholder": "​", - "style": "IPY_MODEL_4b8866334155425fbc72105c0c75bab2", + "layout": "IPY_MODEL_1863d63046dc431f9bad515acbfa9304", + "max": 25596.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_efbe74f4623c4a4dbd0ebf9bd58b7b02", "tabbable": null, "tooltip": null, - "value": "Filter (num_proc=6): 100%" + "value": 25596.0 } }, - "41b97b680ba648f1824c3cd6c5425403": { + "4363c401b3df4578a25396ad5dac9ec4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1315,7 +1385,7 @@ "width": null } }, - "4211bae109d24dfda13175b12cb379d4": { + "4618e5613e13434ab4ed41c6ab96f26b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1368,25 +1438,7 @@ "width": null } }, - "422ca91ee12c483983d79e2df19bb3e2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "47a283770eae442da46c84c294d0ebdf": { + "4c66f0d82a734a44b0c69aa1221d96c1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1439,23 +1491,7 @@ "width": null } }, - "47fea4d5603a4ff4b18127c056ac2f8b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "4b8866334155425fbc72105c0c75bab2": { + "4d977cd11fac4d2b91621c01e5720de7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1473,33 +1509,31 @@ "text_color": null } }, - "4f43115421ca4f0da97e6b2b23fd548d": { + "4ebae65562cf40d98c5be9d578cfecf7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_98ae58809e114556a537d2329e7b3209", - "max": 25596.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6d428dd058244d47966aff6571f343a9", - "tabbable": null, - "tooltip": null, - "value": 25596.0 + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1dffd1df91f8424fbdd1bf56e5d06fc2", + "IPY_MODEL_ecd0b830b4084d46bc74e75aa1724b89", + "IPY_MODEL_cdf5b72a28e64851af3c23d0f176a325" + ], + "layout": "IPY_MODEL_395aae54ecb94439ac668c775cedb76d", + "tabbable": null, + "tooltip": null } }, - "4fbcbf2926d24126bd5ed0bc4eed6286": { + "52d514747e944f43bd07bcc2b8f0e691": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1552,77 +1586,7 @@ "width": null } }, - "51d3c7ae5b0d4ec2bf55b6c88772b7a1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_dbb565eea27c439d823a6138f6b8d424", - "placeholder": "​", - "style": "IPY_MODEL_a03329ee82014558a6a9e167916658e0", - "tabbable": null, - "tooltip": null, - "value": "Filter (num_proc=6): 100%" - } - }, - "52d51963bd9c48ff8c2de38c498fa781": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_39586644fab547149e3a64f9d66649b3", - "placeholder": "​", - "style": "IPY_MODEL_422ca91ee12c483983d79e2df19bb3e2", - "tabbable": null, - "tooltip": null, - "value": "Filter (num_proc=6): 100%" - } - }, - "54b34cc479a04917a97e29823821330e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_78d6bfc736824546a4f0622c8f29271f", - "IPY_MODEL_694b74b045504cc1a7ea2ff4b996a1d9", - "IPY_MODEL_bf34f0de3b5747ecbdf894f170f8cf3f" - ], - "layout": "IPY_MODEL_b2b64ddee49e4e19b85c572d9eeb5b66", - "tabbable": null, - "tooltip": null - } - }, - "5814a6662c1b490399624f9cfe6bc5fd": { + "5889830893544c98be24a9ac1c878e66": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1675,7 +1639,7 @@ "width": null } }, - "585f6355b95149db82da3faa58369a3a": { + "5b939e5dfe5945499d5b57c02752b6bd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1728,43 +1692,56 @@ "width": null } }, - "5888e3ab0c9e4785bd3cafb022a1ec5e": { + "5ba6539406394500ba870e80cb261341": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8ec4c969519641329ea02e371d616c08", + "max": 25596.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_80df5e7eadd1495ba1270d53f2b41aac", + "tabbable": null, + "tooltip": null, + "value": 25596.0 } }, - "5c8096cc4c3640f29a14f16399aa0a1d": { + "5ce585ab1a9c4c6bacf1ff97d1e1d339": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3bdef15d2ec84a4b999b7311d9d18424", + "placeholder": "​", + "style": "IPY_MODEL_c1a0e0ab0ec0414aacff3fd3faf26b12", + "tabbable": null, + "tooltip": null, + "value": "Filter (num_proc=6): 100%" } }, - "5d6cfac5a98545e193df222c3640cfbf": { + "604ae11ff7af4a28a8b5d53b56ef90c8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1817,41 +1794,7 @@ "width": null } }, - "5dc1865cd25b40bababcc8e9e6e79b71": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "5e736c32d148491ab1c93d95d1446bc6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "5fd21a36eeb5491f8d31267281cfda84": { + "61b3f077aa474103989b5bc4145f642c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1869,23 +1812,7 @@ "text_color": null } }, - "63b0511a45114ae09b3c942801cd414a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "681f1afaaebb4673a6ead976a676d059": { + "6238024589c5434e8ef04c74238788ad": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1903,101 +1830,30 @@ "text_color": null } }, - "694b74b045504cc1a7ea2ff4b996a1d9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2039227d9fc4409999e5117508aefbb1", - "max": 25596.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ef06855bdc1a4f4bbe5bb3b9aec16b2f", - "tabbable": null, - "tooltip": null, - "value": 25596.0 - } - }, - "6d428dd058244d47966aff6571f343a9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "71fab44e9cec46d3a465f09c54eac45e": { + "628127bbe51645478a13fdbdb80eb13c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_be9bc1d5ca4c44bb96d3299851a18322", - "max": 25596.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_15a5411be2ab4b5b80347405fabd783a", - "tabbable": null, - "tooltip": null, - "value": 25596.0 - } - }, - "76251a6ae67742c5a78f13857ce81b52": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_47a283770eae442da46c84c294d0ebdf", - "max": 25596.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_5e736c32d148491ab1c93d95d1446bc6", + "layout": "IPY_MODEL_b176ada24ba8493587609d783cff48bd", + "placeholder": "​", + "style": "IPY_MODEL_6238024589c5434e8ef04c74238788ad", "tabbable": null, "tooltip": null, - "value": 25596.0 + "value": "Filter (num_proc=6): 100%" } }, - "779c2b5f8ee94da5b62b386c131685a2": { + "68efffbefbcd4856b8d07bf8d76453fa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2050,30 +1906,7 @@ "width": null } }, - "78d6bfc736824546a4f0622c8f29271f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_18e4a7a6dea44f498748f435ce626259", - "placeholder": "​", - "style": "IPY_MODEL_147442701b3f4a6891bb38993a306fbf", - "tabbable": null, - "tooltip": null, - "value": "Filter (num_proc=6): 100%" - } - }, - "7916564ef21e456396cff8efbbb25bbf": { + "68f55a95cbfd43548b414e20618a22d9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2126,153 +1959,65 @@ "width": null } }, - "85d6d2868ab84168b2471f3cc957b4fe": { + "68fd61a5ef7243d3be05fd861bdf0233": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_585f6355b95149db82da3faa58369a3a", - "placeholder": "​", - "style": "IPY_MODEL_5dc1865cd25b40bababcc8e9e6e79b71", - "tabbable": null, - "tooltip": null, - "value": " 25596/25596 [00:00<00:00, 67198.72 examples/s]" - } - }, - "888ba2e3cb0c42e1a21ee6e74dd1e7ef": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5814a6662c1b490399624f9cfe6bc5fd", - "placeholder": "​", - "style": "IPY_MODEL_ad637190a6444c5ca1b6b0a7934c95d7", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_628127bbe51645478a13fdbdb80eb13c", + "IPY_MODEL_37b8711b8c68483aa1123d9532193515", + "IPY_MODEL_1da65d2bc8b64a7e841342d6d4a6f759" + ], + "layout": "IPY_MODEL_d61c03ca7d1b4553963888a20c43b791", "tabbable": null, - "tooltip": null, - "value": " 25596/25596 [00:00<00:00, 62722.14 examples/s]" + "tooltip": null } }, - "8bb9e476e4324620abff8feacd404a07": { + "69c520c11cab4773928db7d75ccd580e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ba780ec96e03480eac40050fa9774dce", - "placeholder": "​", - "style": "IPY_MODEL_fda20c40d2a5470bacb492e00d24d37e", - "tabbable": null, - "tooltip": null, - "value": " 25596/25596 [00:00<00:00, 66128.46 examples/s]" - } - }, - "8c358bf4b3f7418f859f8e691ebb5db9": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "8d09aa01ef1241baabb55029a99bb276": { + "6f37145fdcba4375ab6d86baf5e0edf3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e5a99f7f9a0941d1a9fc694e01efef8b", - "IPY_MODEL_29d736abab734fc4b4c660fce51389ad", - "IPY_MODEL_8bb9e476e4324620abff8feacd404a07" - ], - "layout": "IPY_MODEL_f292f35936b4499c9b14bef703abea4a", - "tabbable": null, - "tooltip": null + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "8f2a381e5f6745d395e8e80838d456e7": { + "6f4f502b4e3243a3a7ee6a34d7464b98": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2325,54 +2070,7 @@ "width": null } }, - "9116661a9a0244fb9664052673560700": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_129281c4fd134114a215811c972729c1", - "IPY_MODEL_19f1428f539e4f11b7ab4c06e367ef65", - "IPY_MODEL_922ecbc15dc64b6399ecb56088d9ee28" - ], - "layout": "IPY_MODEL_8f2a381e5f6745d395e8e80838d456e7", - "tabbable": null, - "tooltip": null - } - }, - "922ecbc15dc64b6399ecb56088d9ee28": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c6952bab9d7a419b8f2ac0ea3dde5efc", - "placeholder": "​", - "style": "IPY_MODEL_681f1afaaebb4673a6ead976a676d059", - "tabbable": null, - "tooltip": null, - "value": " 25596/25596 [00:00<00:00, 65138.47 examples/s]" - } - }, - "92a0adcf0811495083444e322b3e86a4": { + "7132b94b196a43d9a55c6665878d3bd2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2425,7 +2123,7 @@ "width": null } }, - "932a395c77814a4a8a4f0b2821ef2027": { + "720e1b63b6514dd6b91e01e530991619": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2478,7 +2176,7 @@ "width": null } }, - "98ae58809e114556a537d2329e7b3209": { + "75c021db8b29406584ab0271273375d8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2531,7 +2229,7 @@ "width": null } }, - "9ff0234c46da4c9d80049d0b50c6ff9e": { + "77a4f7705b4a407b89cb59e82915bff5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2546,85 +2244,39 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4fbcbf2926d24126bd5ed0bc4eed6286", + "layout": "IPY_MODEL_4618e5613e13434ab4ed41c6ab96f26b", "placeholder": "​", - "style": "IPY_MODEL_d1c017e98f124032bb31ce36d1c33cdd", + "style": "IPY_MODEL_61b3f077aa474103989b5bc4145f642c", "tabbable": null, "tooltip": null, - "value": "Filter (num_proc=6): 100%" - } - }, - "a03329ee82014558a6a9e167916658e0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a27b2550e4014385ba845eae052d92b3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 25596/25596 [00:00<00:00, 61723.09 examples/s]" } }, - "a2aa8781accd493fadd65b2170ff2645": { + "78127934b417486e9343f3bfd529d3dc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a985fa2aabf64ff78768e4b0287f32ea": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1786099bb6cb4de999e158c55df384d8", + "IPY_MODEL_0c3f5714105b498b8f5e0ab9b287e018", + "IPY_MODEL_e4407b3778ab4c9b9698963c7b6623eb" + ], + "layout": "IPY_MODEL_6f4f502b4e3243a3a7ee6a34d7464b98", + "tabbable": null, + "tooltip": null } }, - "a9dfd197d04d45f9ac66f2cb857c8b42": { + "78220de96c994dd094892008aeb136f4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2677,7 +2329,23 @@ "width": null } }, - "ad637190a6444c5ca1b6b0a7934c95d7": { + "80df5e7eadd1495ba1270d53f2b41aac": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "8163b0a7e80841dab72f1c02b9d6578a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2695,7 +2363,7 @@ "text_color": null } }, - "b2b64ddee49e4e19b85c572d9eeb5b66": { + "85c0c779d9214615b6d50c4bf56f0efa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2748,7 +2416,25 @@ "width": null } }, - "b325ceed2ead4bb495aa679a55562a57": { + "8ac5b3fbcc6c4edbae4f231e34595b95": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "8ec4c969519641329ea02e371d616c08": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2801,7 +2487,48 @@ "width": null } }, - "b50bef1b30ec448785afe22419a8f2e0": { + "8f9f8cb19a454719aad324409eb7ea39": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7132b94b196a43d9a55c6665878d3bd2", + "placeholder": "​", + "style": "IPY_MODEL_9b2dd31693364564a5a74ebf9db64cd9", + "tabbable": null, + "tooltip": null, + "value": " 25596/25596 [00:00<00:00, 61412.13 examples/s]" + } + }, + "9b2dd31693364564a5a74ebf9db64cd9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9d62cb135a4146c0926405a000c376ec": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2854,7 +2581,132 @@ "width": null } }, - "ba780ec96e03480eac40050fa9774dce": { + "9f8387b3592341e79b12c0f49fd0c309": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f0a96671aae74547ad9bdf16d4221937", + "IPY_MODEL_3339ff6ba5af4b2a9b3390bfab6be385", + "IPY_MODEL_8f9f8cb19a454719aad324409eb7ea39" + ], + "layout": "IPY_MODEL_5889830893544c98be24a9ac1c878e66", + "tabbable": null, + "tooltip": null + } + }, + "a29026cc0cb54381853c8715a5ee7e1a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a48b465ab9f1406b86c2ff27a8cf3f0b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_75c021db8b29406584ab0271273375d8", + "placeholder": "​", + "style": "IPY_MODEL_6f37145fdcba4375ab6d86baf5e0edf3", + "tabbable": null, + "tooltip": null, + "value": " 25596/25596 [00:00<00:00, 65512.43 examples/s]" + } + }, + "aa76555317464cb8ad86074092a2d6bd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5ce585ab1a9c4c6bacf1ff97d1e1d339", + "IPY_MODEL_3f1ef92cd3904d268b77452e20b6cca4", + "IPY_MODEL_a48b465ab9f1406b86c2ff27a8cf3f0b" + ], + "layout": "IPY_MODEL_1a1715089094408f89a3ecfb203ff0d3", + "tabbable": null, + "tooltip": null + } + }, + "aa8b9254c8494fd4b41e2b27288f26c0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ac2779159b204a368fd82983c16727ab": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "acad61569c2d43e88b73c1e19de9a6a8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2907,7 +2759,23 @@ "width": null } }, - "be9bc1d5ca4c44bb96d3299851a18322": { + "b007cff303a24104becbea956ea830f9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b176ada24ba8493587609d783cff48bd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2960,102 +2828,97 @@ "width": null } }, - "bf34f0de3b5747ecbdf894f170f8cf3f": { + "b27f3fa4c4b14d658c17a7a807b6363d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_326415b7e0954827adda718283c652da", - "placeholder": "​", - "style": "IPY_MODEL_5888e3ab0c9e4785bd3cafb022a1ec5e", - "tabbable": null, - "tooltip": null, - "value": " 25596/25596 [00:00<00:00, 69740.71 examples/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "c039f56897754c50aadb53e5ca648293": { + "b6fbea078ff749fc870367547b206f57": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a9dfd197d04d45f9ac66f2cb857c8b42", - "placeholder": "​", - "style": "IPY_MODEL_5c8096cc4c3640f29a14f16399aa0a1d", - "tabbable": null, - "tooltip": null, - "value": " 25596/25596 [00:00<00:00, 69779.68 examples/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "c063e0591b9c4dd18a0be519fc5eacf4": { + "b95ce661b8c04cdc81ea2167cf6466ea": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c989c8d942c64284989c3a872a80ab29", - "placeholder": "​", - "style": "IPY_MODEL_07b7aeb358954d03807a85bd552be43b", - "tabbable": null, - "tooltip": null, - "value": " 25596/25596 [00:00<00:00, 70405.83 examples/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "c20f6151232242f49403118e494dc28d": { + "bd980976c49a4adaa86b4222b489b3d8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_779c2b5f8ee94da5b62b386c131685a2", - "max": 25596.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c443f21945044d9dbebc2cc3359b4609", - "tabbable": null, - "tooltip": null, - "value": 25596.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c1a0e0ab0ec0414aacff3fd3faf26b12": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "c443f21945044d9dbebc2cc3359b4609": { + "c1b29c3268774cff95a470e167813194": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -3071,7 +2934,7 @@ "description_width": "" } }, - "c6952bab9d7a419b8f2ac0ea3dde5efc": { + "c6e6b9e05169472884c6ef389fea7658": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3124,7 +2987,7 @@ "width": null } }, - "c91a8d923b9a4669893d3509861e48e2": { + "cdf5b72a28e64851af3c23d0f176a325": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3139,15 +3002,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f551010059894d8db0e0f959307b7baa", + "layout": "IPY_MODEL_e58f0dd43a8a4d3784a889f703625245", "placeholder": "​", - "style": "IPY_MODEL_33ae523d17004be99d760f3c8177504a", + "style": "IPY_MODEL_15a566567c33436999c0278e153119df", "tabbable": null, "tooltip": null, - "value": "Filter (num_proc=6): 100%" + "value": " 25596/25596 [00:00<00:00, 70243.03 examples/s]" } }, - "c989c8d942c64284989c3a872a80ab29": { + "ce054f663d4d47ec8c0b78b44ad29899": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3200,31 +3063,48 @@ "width": null } }, - "ca590beacb7c47b8b8081c83057fd13b": { + "cfef7f9e76804d609beab064a7dd14ee": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_51d3c7ae5b0d4ec2bf55b6c88772b7a1", - "IPY_MODEL_71fab44e9cec46d3a465f09c54eac45e", - "IPY_MODEL_d8924a5f85a34f91aa28221d7148dfaf" - ], - "layout": "IPY_MODEL_8c358bf4b3f7418f859f8e691ebb5db9", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c6e6b9e05169472884c6ef389fea7658", + "placeholder": "​", + "style": "IPY_MODEL_8ac5b3fbcc6c4edbae4f231e34595b95", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "Filter (num_proc=6): 100%" + } + }, + "d496f8d63a5447938ba8071e7c2b1818": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "ccdef08f261f405ca768920a221a67f1": { + "d61c03ca7d1b4553963888a20c43b791": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3277,25 +3157,110 @@ "width": null } }, - "d1c017e98f124032bb31ce36d1c33cdd": { + "d80dbfd498334c0bbaf696a79e04f395": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0de7dc3357de4133ae0a8799bb6cecc4", + "IPY_MODEL_ff4f305bc7cd435c8bb4d704594c3ef9", + "IPY_MODEL_067790446650471985363674ccaad81f" + ], + "layout": "IPY_MODEL_78220de96c994dd094892008aeb136f4", + "tabbable": null, + "tooltip": null + } + }, + "db995ea127e6467393347627f1fc1533": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ef22c68337a640d6b163651ae47fc9b4", + "max": 25596.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b007cff303a24104becbea956ea830f9", + "tabbable": null, + "tooltip": null, + "value": 25596.0 + } + }, + "e371b5d78fa94052afb5e3901d4de764": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "d8924a5f85a34f91aa28221d7148dfaf": { + "e4407b3778ab4c9b9698963c7b6623eb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3310,15 +3275,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_36276fae9db64251849cd3f619fec2e1", + "layout": "IPY_MODEL_e84f7457bb4941eabbafa876bf6dbfde", "placeholder": "​", - "style": "IPY_MODEL_1ab63c22abeb4ad39b306a6dc2ab916a", + "style": "IPY_MODEL_b6fbea078ff749fc870367547b206f57", "tabbable": null, "tooltip": null, - "value": " 25596/25596 [00:00<00:00, 71515.74 examples/s]" + "value": " 25596/25596 [00:00<00:00, 70614.10 examples/s]" } }, - "dbb565eea27c439d823a6138f6b8d424": { + "e58f0dd43a8a4d3784a889f703625245": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3371,82 +3336,7 @@ "width": null } }, - "dbb783f654be4ffbb56710ea525493f2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f28aeb708bd44516a3ba6c60df1462bf", - "max": 25596.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a2aa8781accd493fadd65b2170ff2645", - "tabbable": null, - "tooltip": null, - "value": 25596.0 - } - }, - "e5a99f7f9a0941d1a9fc694e01efef8b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b325ceed2ead4bb495aa679a55562a57", - "placeholder": "​", - "style": "IPY_MODEL_fa4ace2e5d154e4e9083ed09ba6aa44d", - "tabbable": null, - "tooltip": null, - "value": "Filter (num_proc=6): 100%" - } - }, - "e5eacdb4b70643f6bb7a58dafb655374": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_92a0adcf0811495083444e322b3e86a4", - "max": 25596.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_47fea4d5603a4ff4b18127c056ac2f8b", - "tabbable": null, - "tooltip": null, - "value": 25596.0 - } - }, - "ee5bc0d46ba84a44a186cab4299a8021": { + "e84f7457bb4941eabbafa876bf6dbfde": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3499,23 +3389,7 @@ "width": null } }, - "ef06855bdc1a4f4bbe5bb3b9aec16b2f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "f28aeb708bd44516a3ba6c60df1462bf": { + "e8a4adb8e32c49b2a21db654cb1bb260": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3568,7 +3442,59 @@ "width": null } }, - "f292f35936b4499c9b14bef703abea4a": { + "ea6925e38c004d448bad7511061e8987": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ee0442a4a51444f88f524ee542fac3e3", + "max": 25596.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_09bac848dd8a48fdac464fd7870e81e0", + "tabbable": null, + "tooltip": null, + "value": 25596.0 + } + }, + "ecd0b830b4084d46bc74e75aa1724b89": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3cc586217d0740e9b0dcf3ee324d8d59", + "max": 25596.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_69c520c11cab4773928db7d75ccd580e", + "tabbable": null, + "tooltip": null, + "value": 25596.0 + } + }, + "ee0442a4a51444f88f524ee542fac3e3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3621,7 +3547,7 @@ "width": null } }, - "f551010059894d8db0e0f959307b7baa": { + "ef22c68337a640d6b163651ae47fc9b4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3674,49 +3600,46 @@ "width": null } }, - "f66c71b871e44785976ab237c6d7d899": { + "efbe74f4623c4a4dbd0ebf9bd58b7b02": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c91a8d923b9a4669893d3509861e48e2", - "IPY_MODEL_4f43115421ca4f0da97e6b2b23fd548d", - "IPY_MODEL_c039f56897754c50aadb53e5ca648293" - ], - "layout": "IPY_MODEL_3b0c9fce073f4186a8bd69c4d8ed32f6", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "fa4ace2e5d154e4e9083ed09ba6aa44d": { + "f0a96671aae74547ad9bdf16d4221937": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_604ae11ff7af4a28a8b5d53b56ef90c8", + "placeholder": "​", + "style": "IPY_MODEL_aa8b9254c8494fd4b41e2b27288f26c0", + "tabbable": null, + "tooltip": null, + "value": "Filter (num_proc=6): 100%" } }, - "fd3f4b7147ef4f94a7d45e9531a2f4d3": { + "f22a724a1e1245cbb1829d43fdd7ad8a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3731,31 +3654,108 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_4199a14bebcd464daa89d60b747ed2ba", - "IPY_MODEL_dbb783f654be4ffbb56710ea525493f2", - "IPY_MODEL_888ba2e3cb0c42e1a21ee6e74dd1e7ef" + "IPY_MODEL_0189cad1cb9240c38936820c4fce30c6", + "IPY_MODEL_5ba6539406394500ba870e80cb261341", + "IPY_MODEL_030021f873234ce1b06889886788b69c" ], - "layout": "IPY_MODEL_932a395c77814a4a8a4f0b2821ef2027", + "layout": "IPY_MODEL_68efffbefbcd4856b8d07bf8d76453fa", "tabbable": null, "tooltip": null } }, - "fda20c40d2a5470bacb492e00d24d37e": { + "f3eac79add644ad397feef8296b6508a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" + } + }, + "fa5481635f1b4195a5514ad135da6456": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ff4f305bc7cd435c8bb4d704594c3ef9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ce054f663d4d47ec8c0b78b44ad29899", + "max": 25596.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0f819e357b304e57a75a31154fdb6042", + "tabbable": null, + "tooltip": null, + "value": 25596.0 } } }, diff --git a/api/tutorials/nihcxr/nihcxr_report_periodic.html b/api/tutorials/nihcxr/nihcxr_report_periodic.html index 55eae4149..24c73b876 100644 --- a/api/tutorials/nihcxr/nihcxr_report_periodic.html +++ b/api/tutorials/nihcxr/nihcxr_report_periodic.html @@ -3772,7 +3772,7 @@

Graphics

-
+
@@ -3780,7 +3780,7 @@

Graphics

-
+
@@ -3788,7 +3788,7 @@

Graphics

-
+
@@ -5859,643 +5859,525 @@

Tradeoffs

- + + + + \ No newline at end of file diff --git a/api/tutorials/synthea/length_of_stay_report_periodic.html b/api/tutorials/synthea/length_of_stay_report_periodic.html index a7bc5583b..63f74b83c 100644 --- a/api/tutorials/synthea/length_of_stay_report_periodic.html +++ b/api/tutorials/synthea/length_of_stay_report_periodic.html @@ -658,7 +658,7 @@

A quick glance of your most import
- 0.75 + 0.86 @@ -691,7 +691,7 @@

A quick glance of your most import
- 1.0 + 0.76 @@ -724,7 +724,7 @@

A quick glance of your most import
- 0.81 + 0.84 @@ -757,7 +757,7 @@

A quick glance of your most import
- 0.97 + 0.78 @@ -790,7 +790,7 @@

A quick glance of your most import
- 1.0 + 0.77 @@ -961,7 +961,7 @@

Graphics

-
+
@@ -969,7 +969,7 @@

Graphics

-
+
@@ -977,7 +977,7 @@

Graphics

-
+
@@ -985,7 +985,7 @@

Graphics

-
+
@@ -993,7 +993,7 @@

Graphics

-
+
@@ -1075,7 +1075,7 @@

Quantitative Analysis

- 0.75 + 0.86 @@ -1108,7 +1108,7 @@

Quantitative Analysis

- 1.0 + 0.76 @@ -1141,7 +1141,7 @@

Quantitative Analysis

- 0.81 + 0.84 @@ -1174,7 +1174,7 @@

Quantitative Analysis

- 0.97 + 0.78 @@ -1207,7 +1207,7 @@

Quantitative Analysis

- 1.0 + 0.77 @@ -1239,7 +1239,7 @@

Graphics

-
+
@@ -1247,7 +1247,7 @@

Graphics

-
+
@@ -1255,7 +1255,7 @@

Graphics

-
+
@@ -1263,7 +1263,7 @@

Graphics

-
+
@@ -1317,7 +1317,7 @@

Graphics

-
+
@@ -1373,7 +1373,7 @@

Version

- Date: 2024-02-27 + Date: 2024-02-28
@@ -1591,6 +1591,10 @@

Model Parameters

+
+

Objective

+ binary:logistic +
@@ -1606,6 +1610,10 @@

Model Parameters

+
+

Max_depth

+ 5 +
@@ -1621,24 +1629,20 @@

Model Parameters

+
+

Min_child_weight

+ 3 +
-
-

Learning_rate

- 0.1 -
-
-

Max_depth

- 2 -
@@ -1655,8 +1659,8 @@

Max_depth

-

N_estimators

- 500 +

Colsample_bytree

+ 1
@@ -1673,10 +1677,6 @@

N_estimators

-
-

Enable_categorical

- False -
@@ -1687,6 +1687,10 @@

Enable_categorical

+
+

Reg_lambda

+ 1 +
@@ -1703,14 +1707,18 @@

Enable_categorical

-

Objective

- binary:logistic +

Learning_rate

+ 0.1
+
+

Seed

+ 123 +
@@ -1721,37 +1729,37 @@

Objective

+
+

Gamma

+ 2 +
-
-

Reg_lambda

- 0 -
+
+

Missing

+ nan +
-
-

Gamma

- 2 -
-

Seed

- 123 +

N_estimators

+ 250
@@ -1773,33 +1781,25 @@

Seed

-
-

Missing

- nan -
+
+

Random_state

+ 123 +
-
-

Min_child_weight

- 3 -
-
-

Eval_metric

- logloss -
@@ -1816,23 +1816,23 @@

Eval_metric

-

Random_state

- 123 +

Enable_categorical

+ False
+
+

Eval_metric

+ logloss +
-
-

Colsample_bytree

- 1 -
@@ -2071,643 +2071,525 @@

Ethical Considerations

- + + + + \ No newline at end of file diff --git a/api/tutorials/synthea/los_prediction.html b/api/tutorials/synthea/los_prediction.html index 815d308a2..579f497bd 100644 --- a/api/tutorials/synthea/los_prediction.html +++ b/api/tutorials/synthea/los_prediction.html @@ -535,7 +535,7 @@

Compute length of stay (labels)
-2024-02-27 19:15:12,044 INFO cycquery.orm    - Database setup, ready to run queries!
+2024-02-28 16:38:37,054 INFO cycquery.orm    - Database setup, ready to run queries!
 

@@ -668,9 +668,9 @@

Drop NaNs based on the
-
+
@@ -1232,7 +1232,7 @@

Training
-2024-02-27 19:15:27,257 INFO cyclops.models.wrappers.sk_model - Best reg_lambda: 0
+2024-02-28 16:38:55,463 INFO cyclops.models.wrappers.sk_model - Best reg_lambda: 1
 
-2024-02-27 19:15:27,258 INFO cyclops.models.wrappers.sk_model - Best n_estimators: 500
+2024-02-28 16:38:55,464 INFO cyclops.models.wrappers.sk_model - Best n_estimators: 250
 
-2024-02-27 19:15:27,259 INFO cyclops.models.wrappers.sk_model - Best max_depth: 2
+2024-02-28 16:38:55,464 INFO cyclops.models.wrappers.sk_model - Best max_depth: 5
 
-2024-02-27 19:15:27,259 INFO cyclops.models.wrappers.sk_model - Best learning_rate: 0.1
+2024-02-28 16:38:55,465 INFO cyclops.models.wrappers.sk_model - Best learning_rate: 0.1
 
-2024-02-27 19:15:27,259 INFO cyclops.models.wrappers.sk_model - Best gamma: 2
+2024-02-28 16:38:55,465 INFO cyclops.models.wrappers.sk_model - Best gamma: 2
 
-2024-02-27 19:15:27,260 INFO cyclops.models.wrappers.sk_model - Best colsample_bytree: 1
+2024-02-28 16:38:55,466 INFO cyclops.models.wrappers.sk_model - Best colsample_bytree: 1
 
-{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': 1, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': 'logloss', 'feature_types': None, 'gamma': 2, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 2, 'max_leaves': None, 'min_child_weight': 3, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 500, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 123, 'reg_alpha': None, 'reg_lambda': 0, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': None, 'seed': 123}
+{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': 1, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': 'logloss', 'feature_types': None, 'gamma': 2, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': 3, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 250, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 123, 'reg_alpha': None, 'reg_lambda': 1, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': None, 'seed': 123}
 

Log the model parameters to the report.

@@ -1352,7 +1352,7 @@

Prediction
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+

Log the performance metrics to the report.

We can add a performance metric to the model card using the log_performance_metric method, which expects a dictionary where the keys are in the following format: slice_name/metric_name. For instance, overall/accuracy.

@@ -1666,9 +1666,9 @@

Evaluation
-

diff --git a/api/tutorials/synthea/los_prediction.ipynb b/api/tutorials/synthea/los_prediction.ipynb index 48a74a99e..311e1cebc 100644 --- a/api/tutorials/synthea/los_prediction.ipynb +++ b/api/tutorials/synthea/los_prediction.ipynb @@ -33,10 +33,10 @@ "id": "53009e6b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-28T00:15:06.467554Z", - "iopub.status.busy": "2024-02-28T00:15:06.466909Z", - "iopub.status.idle": "2024-02-28T00:15:11.178021Z", - "shell.execute_reply": "2024-02-28T00:15:11.176698Z" + "iopub.execute_input": "2024-02-28T21:38:31.650717Z", + "iopub.status.busy": "2024-02-28T21:38:31.650084Z", + "iopub.status.idle": "2024-02-28T21:38:36.012351Z", + "shell.execute_reply": "2024-02-28T21:38:36.011597Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "afae58a8-5708-4e05-8695-25ba3ce1a71f", "metadata": { "execution": { - "iopub.execute_input": "2024-02-28T00:15:11.185669Z", - "iopub.status.busy": "2024-02-28T00:15:11.185090Z", - "iopub.status.idle": "2024-02-28T00:15:11.190668Z", - "shell.execute_reply": "2024-02-28T00:15:11.189753Z" + "iopub.execute_input": "2024-02-28T21:38:36.017704Z", + "iopub.status.busy": "2024-02-28T21:38:36.017345Z", + "iopub.status.idle": "2024-02-28T21:38:36.021809Z", + "shell.execute_reply": "2024-02-28T21:38:36.021013Z" }, "tags": [] }, @@ -123,10 +123,10 @@ "id": "739b109a-011b-4e6e-a3de-964edeffddbd", "metadata": { "execution": { - "iopub.execute_input": "2024-02-28T00:15:11.196015Z", - "iopub.status.busy": "2024-02-28T00:15:11.195597Z", - "iopub.status.idle": "2024-02-28T00:15:11.200284Z", - "shell.execute_reply": "2024-02-28T00:15:11.199328Z" + "iopub.execute_input": "2024-02-28T21:38:36.026408Z", + "iopub.status.busy": "2024-02-28T21:38:36.026061Z", + "iopub.status.idle": "2024-02-28T21:38:36.030020Z", + "shell.execute_reply": "2024-02-28T21:38:36.029161Z" }, "tags": [] }, @@ -157,10 +157,10 @@ "id": "e497df9f-0f3d-4e9c-845c-539627a37f67", "metadata": { "execution": { - "iopub.execute_input": "2024-02-28T00:15:11.207390Z", - "iopub.status.busy": "2024-02-28T00:15:11.206847Z", - "iopub.status.idle": "2024-02-28T00:15:21.276171Z", - "shell.execute_reply": "2024-02-28T00:15:21.275221Z" + "iopub.execute_input": "2024-02-28T21:38:36.035226Z", + "iopub.status.busy": "2024-02-28T21:38:36.034827Z", + "iopub.status.idle": "2024-02-28T21:38:46.395301Z", + "shell.execute_reply": "2024-02-28T21:38:46.394564Z" }, "tags": [] }, @@ -169,77 +169,77 @@ "name": "stderr", "output_type": "stream", "text": [ - "2024-02-27 19:15:12,044 \u001b[1;37mINFO\u001b[0m cycquery.orm - Database setup, ready to run queries!\n" + "2024-02-28 16:38:37,054 \u001b[1;37mINFO\u001b[0m cycquery.orm - Database setup, ready to run queries!\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2024-02-27 19:15:17,283 \u001b[1;37mINFO\u001b[0m cycquery.orm - Query returned successfully!\n" + "2024-02-28 16:38:42,415 \u001b[1;37mINFO\u001b[0m cycquery.orm - Query returned successfully!\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2024-02-27 19:15:17,284 \u001b[1;37mINFO\u001b[0m cycquery.utils.profile - Finished executing function run_query in 3.887026 s\n" + "2024-02-28 16:38:42,416 \u001b[1;37mINFO\u001b[0m cycquery.utils.profile - Finished executing function run_query in 4.020620 s\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2024-02-27 19:15:19,120 \u001b[1;37mINFO\u001b[0m cycquery.orm - Query returned successfully!\n" + "2024-02-28 16:38:44,193 \u001b[1;37mINFO\u001b[0m cycquery.orm - Query returned successfully!\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2024-02-27 19:15:19,121 \u001b[1;37mINFO\u001b[0m cycquery.utils.profile - Finished executing function run_query in 1.835471 s\n" + "2024-02-28 16:38:44,194 \u001b[1;37mINFO\u001b[0m cycquery.utils.profile - Finished executing function run_query in 1.777614 s\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2024-02-27 19:15:20,657 \u001b[1;37mINFO\u001b[0m cycquery.orm - Query returned successfully!\n" + "2024-02-28 16:38:45,752 \u001b[1;37mINFO\u001b[0m cycquery.orm - Query returned successfully!\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2024-02-27 19:15:20,658 \u001b[1;37mINFO\u001b[0m cycquery.utils.profile - Finished executing function run_query in 0.382661 s\n" + "2024-02-28 16:38:45,753 \u001b[1;37mINFO\u001b[0m cycquery.utils.profile - Finished executing function run_query in 0.380770 s\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2024-02-27 19:15:21,150 \u001b[1;37mINFO\u001b[0m cycquery.orm - Query returned successfully!\n" + "2024-02-28 16:38:46,242 \u001b[1;37mINFO\u001b[0m cycquery.orm - Query returned successfully!\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2024-02-27 19:15:21,151 \u001b[1;37mINFO\u001b[0m cycquery.utils.profile - Finished executing function run_query in 0.488408 s\n" + "2024-02-28 16:38:46,243 \u001b[1;37mINFO\u001b[0m cycquery.utils.profile - Finished executing function run_query in 0.485648 s\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2024-02-27 19:15:21,232 \u001b[1;37mINFO\u001b[0m cycquery.orm - Query returned successfully!\n" + "2024-02-28 16:38:46,356 \u001b[1;37mINFO\u001b[0m cycquery.orm - Query returned successfully!\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2024-02-27 19:15:21,234 \u001b[1;37mINFO\u001b[0m cycquery.utils.profile - Finished executing function run_query in 0.081796 s\n" + "2024-02-28 16:38:46,357 \u001b[1;37mINFO\u001b[0m cycquery.utils.profile - Finished executing function run_query in 0.112409 s\n" ] } ], @@ -398,10 +398,10 @@ "id": "c576ee51-e825-4970-86e8-3e5f221f145c", "metadata": { "execution": { - "iopub.execute_input": "2024-02-28T00:15:21.282439Z", - "iopub.status.busy": "2024-02-28T00:15:21.281973Z", - "iopub.status.idle": "2024-02-28T00:15:21.373941Z", - "shell.execute_reply": "2024-02-28T00:15:21.373002Z" + "iopub.execute_input": "2024-02-28T21:38:46.400695Z", + "iopub.status.busy": "2024-02-28T21:38:46.400298Z", + "iopub.status.idle": "2024-02-28T21:38:46.488217Z", + "shell.execute_reply": "2024-02-28T21:38:46.487513Z" }, "tags": [] }, @@ -1497,9 +1497,9 @@ } }, "text/html": [ - "
- + +

CyclOps 0.2.0 release

· 4 min read
Carolyn Chong
Amrit Krishnan

diff --git a/blog/archive/index.html b/blog/archive/index.html index bcdc0b553..8d926c610 100644 --- a/blog/archive/index.html +++ b/blog/archive/index.html @@ -5,8 +5,8 @@ Archive | CyclOps - - + +
diff --git a/blog/index.html b/blog/index.html index d989da7e4..34b9f2924 100644 --- a/blog/index.html +++ b/blog/index.html @@ -5,8 +5,8 @@ Blog | CyclOps - - + +

· 4 min read
Carolyn Chong
Amrit Krishnan

diff --git a/blog/tags/0-2-0/index.html b/blog/tags/0-2-0/index.html index b5681cec6..bfc539fb4 100644 --- a/blog/tags/0-2-0/index.html +++ b/blog/tags/0-2-0/index.html @@ -5,8 +5,8 @@ One post tagged with "0.2.0" | CyclOps - - + +

One post tagged with "0.2.0"

View All Tags

· 4 min read
Carolyn Chong
Amrit Krishnan

diff --git a/blog/tags/index.html b/blog/tags/index.html index 801a69771..7a073adc1 100644 --- a/blog/tags/index.html +++ b/blog/tags/index.html @@ -5,8 +5,8 @@ Tags | CyclOps - - + +
diff --git a/docs/intro/index.html b/docs/intro/index.html index bd7fcf04d..8b6faea73 100644 --- a/docs/intro/index.html +++ b/docs/intro/index.html @@ -5,8 +5,8 @@ intro | CyclOps - - + +

intro

Getting Started

diff --git a/index.html b/index.html index dbbfa52dd..a688c78e7 100644 --- a/index.html +++ b/index.html @@ -5,8 +5,8 @@ CyclOps | CyclOps - - + +

CyclOps

Cyclical development towards Operationalizing ML models for healthcare

Rigorous Evaluation

CyclOps APIs support rigorous evaluation across patient sub-populations

Monitoring

CyclOps supports monitoring of clinical ML models for performance degradation

diff --git a/markdown-page/index.html b/markdown-page/index.html index 30ea67c77..3ccbd5a1f 100644 --- a/markdown-page/index.html +++ b/markdown-page/index.html @@ -5,8 +5,8 @@ Markdown page example | CyclOps - - + +