diff --git a/404.html b/404.html index 2d7e235d0..9878335d1 100644 --- a/404.html +++ b/404.html @@ -5,8 +5,8 @@ Page Not Found | CyclOps - - + +
Skip to main content

Page Not Found

We could not find what you were looking for.

Please contact the owner of the site that linked you to the original URL and let them know their link is broken.

diff --git a/api/_modules/cyclops/data/slicer.html b/api/_modules/cyclops/data/slicer.html index e3e0a9ac3..b34daa555 100644 --- a/api/_modules/cyclops/data/slicer.html +++ b/api/_modules/cyclops/data/slicer.html @@ -279,7 +279,7 @@

Source code for cyclops.data.slicer

     ...         {
     ...             "feature_1": {"value": "value_1"},
     ...             "feature_2": {
-    ...                 "min_value": "2020-01-01", keep_nulls: False,
+    ...                 "min_value": "2020-01-01", "keep_nulls": False,
     ...             },
     ...             "feature_3": {"year": ["2000", "2010", "2020"]},
     ...         },
@@ -288,8 +288,22 @@ 

Source code for cyclops.data.slicer

     >>> for slice_name, slice_func in slice_spec.slices():
     ...     print(slice_name)
     ...     # do something with slice_func here (e.g. dataset.filter(slice_func))
-
-    """
+    feature_1:non_null
+    feature_2:non_null&feature_3:non_null
+    feature_1:value_1
+    feature_1:value_1, value_2
+    !(feature_1:value_1)
+    feature_1:[2020-01-01 - 2020-12-31]
+    feature_1:(5 - 60)
+    feature_1:year=[2020, 2021, 2022]
+    feature_1:month=[6, 7, 8]
+    feature_1:month=6, day=1
+    feature_1:contains value_1
+    feature_1:contains ['value_1', 'value_2']
+    feature_1:value_1&feature_2:[2020-01-01 - inf]&feature_3:year=['2000', '2010', '2020']
+    overall
+
+    """  # noqa: W505
 
     spec_list: List[Dict[str, Dict[str, Any]]] = field(
         default_factory=lambda: [{}],
diff --git a/api/_modules/cyclops/monitor/clinical_applicator.html b/api/_modules/cyclops/monitor/clinical_applicator.html
index ad7626d38..639a04385 100644
--- a/api/_modules/cyclops/monitor/clinical_applicator.html
+++ b/api/_modules/cyclops/monitor/clinical_applicator.html
@@ -186,16 +186,16 @@ 

Source code for cyclops.monitor.clinical_applicator

The source and target datasets are then generated by splitting the original dataset along the categorical feature. - Examples - -------- - >>> from cyclops.monitor.clinical_applicator import ClinicalShiftApplicator - >>> from cyclops.data.utils import load_nih - >>> ds = load_nih(path="/mnt/data/nihcxr") - >>> applicator = ClinicalShiftApplicator("hospital_type", - source = ["hospital_type_1", "hospital_type_2"] - target = ["hospital_type_3", "hospital_type_4", "hospital_type_5"] - ) - >>> ds_source, ds_target = applicator.apply_shift(ds) + # Examples + # -------- + # >>> from cyclops.monitor.clinical_applicator import ClinicalShiftApplicator + # >>> from cyclops.data.loader import load_nihcxr + # >>> ds = load_nihcxr(path="/mnt/data/nihcxr") + # >>> applicator = ClinicalShiftApplicator("hospital_type", + # source = ["hospital_type_1", "hospital_type_2"] + # target = ["hospital_type_3", "hospital_type_4", "hospital_type_5"] + # ) + # >>> ds_source, ds_target = applicator.apply_shift(ds) Parameters diff --git a/api/_modules/cyclops/monitor/synthetic_applicator.html b/api/_modules/cyclops/monitor/synthetic_applicator.html index 8d3423294..da6e0859e 100644 --- a/api/_modules/cyclops/monitor/synthetic_applicator.html +++ b/api/_modules/cyclops/monitor/synthetic_applicator.html @@ -183,14 +183,14 @@

Source code for cyclops.monitor.synthetic_applicator

class SyntheticShiftApplicator: """The SyntheticShiftApplicator class is used induce synthetic dataset shift. - Examples - -------- - >>> from drift_detection.experimenter import Experimenter - >>> from sklearn.datasets import load_diabetes - >>> X, y = load_diabetes(return_X_y=True) - >>> X_tr, X_te, y_tr, y_te = train_test_split(X, y, test_size=0.5, random_state=42) - >>> applicator = SyntheticShiftApplicator(shift_type="gn_shift") - >>> X_shift = applicator.apply_shift(X_train, noise_amt=0.1, delta=0.1) + # Examples + # -------- + # >>> from sklearn.datasets import load_diabetes + # >>> X, y = load_diabetes(return_X_y=True) + # >>> dataset = Dataset.from_dict({"X": X, "y": y}) + # >>> dataset = dataset.train_test_split(test_size=0.5, seed=42) + # >>> applicator = SyntheticShiftApplicator(shift_type="gn_shift") + # >>> X_shift = applicator.apply_shift(dataset["test"]) Parameters ---------- diff --git a/api/_modules/cyclops/report/report.html b/api/_modules/cyclops/report/report.html index 47801cf5b..37eca4301 100644 --- a/api/_modules/cyclops/report/report.html +++ b/api/_modules/cyclops/report/report.html @@ -379,7 +379,7 @@

Source code for cyclops.report.report

Methods

diff --git a/api/reference/api/_autosummary/cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.html b/api/reference/api/_autosummary/cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.html index 60f44a714..569686048 100644 --- a/api/reference/api/_autosummary/cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.html +++ b/api/reference/api/_autosummary/cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.html @@ -198,17 +198,16 @@

cyclops.monitor.clinical_applicator.ClinicalShiftApplicatorExamples

-
>>> from cyclops.monitor.clinical_applicator import ClinicalShiftApplicator
->>> from cyclops.data.utils import load_nih
->>> ds = load_nih(path="/mnt/data/nihcxr")
->>> applicator = ClinicalShiftApplicator("hospital_type",
-                source = ["hospital_type_1", "hospital_type_2"]
-                target = ["hospital_type_3", "hospital_type_4", "hospital_type_5"]
-                )
->>> ds_source, ds_target = applicator.apply_shift(ds)
-
-
+

# Examples +# ——– +# >>> from cyclops.monitor.clinical_applicator import ClinicalShiftApplicator +# >>> from cyclops.data.loader import load_nihcxr +# >>> ds = load_nihcxr(path=”/mnt/data/nihcxr”) +# >>> applicator = ClinicalShiftApplicator(“hospital_type”, +# source = [“hospital_type_1”, “hospital_type_2”] +# target = [“hospital_type_3”, “hospital_type_4”, “hospital_type_5”] +# ) +# >>> ds_source, ds_target = applicator.apply_shift(ds)

Parameters:

-
+
@@ -1327,55 +1327,55 @@

Evaluation

-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+

Log the performance metrics to the report.

We can add a performance metric to the model card using the log_performance_metric method, which expects a dictionary where the keys are in the following format: slice_name/metric_name. For instance, overall/accuracy.

@@ -1534,9 +1534,9 @@

Evaluation
-
diff --git a/api/tutorials/kaggle/heart_failure_prediction.ipynb b/api/tutorials/kaggle/heart_failure_prediction.ipynb index 187ee03b9..67bf64794 100644 --- a/api/tutorials/kaggle/heart_failure_prediction.ipynb +++ b/api/tutorials/kaggle/heart_failure_prediction.ipynb @@ -21,10 +21,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-12-09T13:42:35.007397Z", - "iopub.status.busy": "2023-12-09T13:42:35.006581Z", - "iopub.status.idle": "2023-12-09T13:42:38.990517Z", - "shell.execute_reply": "2023-12-09T13:42:38.989820Z" + "iopub.execute_input": "2023-12-09T22:31:25.565750Z", + "iopub.status.busy": "2023-12-09T22:31:25.565138Z", + "iopub.status.idle": "2023-12-09T22:31:29.902259Z", + "shell.execute_reply": "2023-12-09T22:31:29.901449Z" }, "tags": [] }, @@ -83,10 +83,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-12-09T13:42:38.995959Z", - "iopub.status.busy": "2023-12-09T13:42:38.995575Z", - "iopub.status.idle": "2023-12-09T13:42:38.999137Z", - "shell.execute_reply": "2023-12-09T13:42:38.998574Z" + "iopub.execute_input": "2023-12-09T22:31:29.906533Z", + "iopub.status.busy": "2023-12-09T22:31:29.905955Z", + "iopub.status.idle": "2023-12-09T22:31:29.910289Z", + "shell.execute_reply": "2023-12-09T22:31:29.909375Z" } }, "outputs": [], @@ -106,10 +106,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-12-09T13:42:39.004547Z", - "iopub.status.busy": "2023-12-09T13:42:39.004199Z", - "iopub.status.idle": "2023-12-09T13:42:39.007708Z", - "shell.execute_reply": "2023-12-09T13:42:39.007084Z" + "iopub.execute_input": "2023-12-09T22:31:29.914959Z", + "iopub.status.busy": "2023-12-09T22:31:29.914606Z", + "iopub.status.idle": "2023-12-09T22:31:29.918623Z", + "shell.execute_reply": "2023-12-09T22:31:29.917663Z" }, "tags": [] }, @@ -135,10 +135,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-12-09T13:42:39.012978Z", - "iopub.status.busy": "2023-12-09T13:42:39.012566Z", - "iopub.status.idle": "2023-12-09T13:42:39.651581Z", - "shell.execute_reply": "2023-12-09T13:42:39.649353Z" + "iopub.execute_input": "2023-12-09T22:31:29.924078Z", + "iopub.status.busy": "2023-12-09T22:31:29.923713Z", + "iopub.status.idle": "2023-12-09T22:31:30.561693Z", + "shell.execute_reply": "2023-12-09T22:31:30.560731Z" }, "tags": [] }, @@ -158,10 +158,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-12-09T13:42:39.658643Z", - "iopub.status.busy": "2023-12-09T13:42:39.657748Z", - "iopub.status.idle": "2023-12-09T13:42:39.686433Z", - "shell.execute_reply": "2023-12-09T13:42:39.685440Z" + "iopub.execute_input": "2023-12-09T22:31:30.567461Z", + "iopub.status.busy": "2023-12-09T22:31:30.566950Z", + "iopub.status.idle": "2023-12-09T22:31:30.592624Z", + "shell.execute_reply": "2023-12-09T22:31:30.591895Z" }, "tags": [] }, @@ -170,7 +170,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "2023-12-09 08:42:39,661 \u001b[1;37mINFO\u001b[0m cyclops.utils.file - Loading DataFrame from ./data/heart.csv\n" + "2023-12-09 17:31:30,570 \u001b[1;37mINFO\u001b[0m cyclops.utils.file - Loading DataFrame from ./data/heart.csv\n" ] }, { @@ -226,10 +226,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-12-09T13:42:39.712472Z", - "iopub.status.busy": "2023-12-09T13:42:39.711649Z", - "iopub.status.idle": "2023-12-09T13:42:39.967212Z", - "shell.execute_reply": "2023-12-09T13:42:39.966318Z" + "iopub.execute_input": "2023-12-09T22:31:30.632317Z", + "iopub.status.busy": "2023-12-09T22:31:30.631537Z", + "iopub.status.idle": "2023-12-09T22:31:31.144242Z", + "shell.execute_reply": "2023-12-09T22:31:31.143290Z" }, "tags": [] }, @@ -2037,9 +2037,9 @@ } }, "text/html": [ - "
+
@@ -1454,7 +1454,7 @@

Graphics

-
+
@@ -1462,7 +1462,7 @@

Graphics

-
+
@@ -1528,7 +1528,7 @@

Quantitative Analysis

- 1.0 + 0.93 @@ -1561,7 +1561,7 @@

Quantitative Analysis

- 1.0 + 0.8 @@ -1594,7 +1594,7 @@

Quantitative Analysis

- 1.0 + 0.8 @@ -1627,7 +1627,7 @@

Quantitative Analysis

- 0.93 + 0.9 @@ -1660,7 +1660,7 @@

Quantitative Analysis

- 0.93 + 0.9 @@ -1693,7 +1693,7 @@

Quantitative Analysis

- 0.99 + 1.0 @@ -1727,7 +1727,7 @@

Graphics

-
+
@@ -1735,7 +1735,7 @@

Graphics

-
+
@@ -1743,7 +1743,7 @@

Graphics

-
+
@@ -1751,7 +1751,7 @@

Graphics

-
+
@@ -1805,7 +1805,7 @@

Graphics

-
+
@@ -2080,8 +2080,8 @@

Model Parameters

-

Fit_intercept

- True +

Max_iter

+ 1000
@@ -2089,8 +2089,8 @@

Fit_intercept

-

Power_t

- 0.5 +

Shuffle

+ True
@@ -2098,8 +2098,8 @@

Power_t

-

Random_state

- 123 +

Validation_fraction

+ 0.1
@@ -2107,8 +2107,8 @@

Random_state

-

Shuffle

- True +

Average

+ False
@@ -2116,8 +2116,8 @@

Shuffle

-

Average

- False +

Penalty

+ l2
@@ -2125,8 +2125,8 @@

Average

-

Early_stopping

- True +

Warm_start

+ False
@@ -2134,8 +2134,8 @@

Early_stopping

-

Validation_fraction

- 0.1 +

Tol

+ 0.001
@@ -2143,8 +2143,8 @@

Validation_fraction

-

N_iter_no_change

- 5 +

Learning_rate

+ adaptive
@@ -2152,8 +2152,8 @@

N_iter_no_change

-

Alpha

- 0.001 +

Random_state

+ 123
@@ -2161,8 +2161,8 @@

Alpha

-

Loss

- log_loss +

Eta0

+ 0.01
@@ -2170,8 +2170,8 @@

Loss

-

Epsilon

- 0.1 +

N_iter_no_change

+ 5
@@ -2179,8 +2179,8 @@

Epsilon

-

Eta0

- 0.01 +

Alpha

+ 0.001
@@ -2188,8 +2188,8 @@

Eta0

-

Max_iter

- 1000 +

Loss

+ log_loss
@@ -2197,8 +2197,8 @@

Max_iter

-

Learning_rate

- adaptive +

L1_ratio

+ 0.15
@@ -2206,22 +2206,26 @@

Learning_rate

-

Tol

- 0.001 +

Early_stopping

+ True
+
+

Fit_intercept

+ True +
-

Warm_start

- False +

Power_t

+ 0.5
@@ -2229,8 +2233,8 @@

Warm_start

-

Class_weight

- balanced +

Verbose

+ 0
@@ -2238,26 +2242,22 @@

Class_weight

-

Penalty

- l2 +

Class_weight

+ balanced
-
-

L1_ratio

- 0.15 -
-

Verbose

- 0 +

Epsilon

+ 0.1
@@ -2560,7 +2560,7 @@

Ethical Considerations

function generate_model_card_plot() { var model_card_plots = [] var overall_indices = [12, 13, 14, 15, 16, 17] - var histories = JSON.parse("{\"0\": [\"0.8421052631578947\", \"0.7661267520930884\", \"0.8371104304570498\", \"0.5953479683211308\", \"0.447307515139751\"], \"1\": [\"0.8260869565217391\", \"0.8161698862155876\", \"0.713141509776489\", \"0.9654820501210936\", \"0.9641468142233491\"], \"2\": [\"0.6785714285714286\", \"0.7429746479137554\", \"0.8542364038863958\", \"0.7500823278362522\", \"0.8749832094019347\"], \"3\": [\"0.7450980392156863\", \"0.7360512658580961\", \"0.7166722859318031\", \"0.7587664318055074\", \"0.7860835416989599\"], \"4\": [\"0.8819444444444444\", \"0.8706949864308898\", \"0.7290810058901607\", \"0.8285019912051844\", \"0.8759311898936312\"], \"5\": [\"0.7804346778900575\", \"0.7776666305202257\", \"0.8824395556367947\", \"0.948645852608083\", \"0.9900958503369034\"], \"6\": [\"0.8623853211009175\", \"0.8640491107847016\", \"0.9851009508992019\", \"1.0\", \"1.0\"], \"7\": [\"0.8676470588235294\", \"0.5904815272416866\", \"0.615154250839528\", \"0.5932776577033853\", \"0.45042210224355567\"], \"8\": [\"0.9076923076923077\", \"0.7795401829680871\", \"0.9469174519735382\", \"0.9999242669412284\", \"0.8996664448318304\"], \"9\": [\"0.8872180451127819\", \"0.8008363417310389\", \"0.7162457388741228\", \"0.6866778359853555\", \"0.7095792251491628\"], \"10\": [\"0.927972027972028\", \"0.9299692773869779\", \"1.0\", \"0.9870165140410062\", \"0.9635482237191407\"], \"11\": [\"0.9437647444468813\", \"0.8877368743015641\", \"0.9196461770156139\", \"0.8810404565834734\", \"0.7194996242681102\"], \"12\": [\"0.842391304347826\", \"0.8657210213008151\", \"0.9255604587941642\", \"0.9108606874220391\", \"1.0\"], \"13\": [\"0.8686868686868687\", \"0.9009299172084865\", \"0.8991602586439614\", \"0.9536936861555355\", \"1.0\"], \"14\": [\"0.8431372549019608\", \"0.845373006895036\", \"1.0\", \"0.9251832130842849\", \"1.0\"], \"15\": [\"0.8557213930348259\", \"0.8901053228026288\", \"0.9789178047971823\", \"1.0\", \"0.931489686856192\"], \"16\": [\"0.9152319464371114\", \"0.9511436428835963\", \"0.8404284556705557\", \"0.8226865043587341\", \"0.9266832624676709\"], \"17\": [\"0.9135027641916293\", \"1.0\", \"0.9619805776562392\", \"1.0\", \"0.989488980929226\"], \"18\": [\"0.796875\", \"0.6324915921474635\", \"nan\", \"0.964774653929203\", \"0.9104071472231816\"]}"); + var histories = JSON.parse("{\"0\": [\"0.8421052631578947\", \"0.8991658689057991\", \"0.760555116818897\", \"0.8196982766738313\", \"0.6837378095483214\"], \"1\": [\"0.8260869565217391\", \"0.9580995678196944\", \"0.9111720834545008\", \"0.8981571836314519\", \"0.8203170832115099\"], \"2\": [\"0.6785714285714286\", \"0.7937550129034472\", \"1.0\", \"0.9371616566256943\", \"0.8735394574107829\"], \"3\": [\"0.7450980392156863\", \"0.5906694018364542\", \"0.5234625102633704\", \"0.6248280104197306\", \"0.6412712576283495\"], \"4\": [\"0.8819444444444444\", \"0.7278331983597065\", \"0.7383778360991817\", \"0.7050759189934424\", \"0.7624350395046081\"], \"5\": [\"0.7804346778900575\", \"0.8913560491215696\", \"0.964086951485065\", \"0.8613591860990006\", \"1.0\"], \"6\": [\"0.8623853211009175\", \"0.8043899670625048\", \"0.7676057911871169\", \"0.8631764735361948\", \"0.8049904833089053\"], \"7\": [\"0.8676470588235294\", \"0.868332577455716\", \"0.8009671878274689\", \"0.751453920303103\", \"0.7684370643243961\"], \"8\": [\"0.9076923076923077\", \"0.8682528259371946\", \"1.0\", \"0.9297447037648808\", \"0.9577257577103611\"], \"9\": [\"0.8872180451127819\", \"0.6858343819867477\", \"0.7240115338200606\", \"0.5990951880103416\", \"0.36329457171392254\"], \"10\": [\"0.927972027972028\", \"0.8700140302971331\", \"0.8601469419619393\", \"0.8344347409245475\", \"0.8571599273165763\"], \"11\": [\"0.9437647444468813\", \"0.8032417907014745\", \"0.9253511712815408\", \"1.0\", \"1.0\"], \"12\": [\"0.842391304347826\", \"0.8169413410946268\", \"0.8596375296143032\", \"0.9935699409054901\", \"0.9316656284289586\"], \"13\": [\"0.8686868686868687\", \"0.7539371785886104\", \"0.696833185987625\", \"0.6644900051790344\", \"0.795501953652462\"], \"14\": [\"0.8431372549019608\", \"0.8290645903419896\", \"0.9644757369148373\", \"0.8519270638813299\", \"0.7964597703241559\"], \"15\": [\"0.8557213930348259\", \"0.9662028874789844\", \"1.0\", \"0.8587759225830245\", \"0.9019559585938075\"], \"16\": [\"0.9152319464371114\", \"1.0\", \"0.98987536927373\", \"0.9126018263887035\", \"0.904974381616703\"], \"17\": [\"0.9135027641916293\", \"0.9158709334148532\", \"0.9609925771737031\", \"0.974082953226344\", \"1.0\"], \"18\": [\"0.796875\", \"0.8150612587026944\", \"nan\", \"0.7106060936060394\", \"0.7444643461925151\"]}"); var thresholds = JSON.parse("{\"0\": \"0.7\", \"1\": \"0.7\", \"2\": \"0.7\", \"3\": \"0.7\", \"4\": \"0.7\", \"5\": \"0.7\", \"6\": \"0.7\", \"7\": \"0.7\", \"8\": \"0.7\", \"9\": \"0.7\", \"10\": \"0.7\", \"11\": \"0.7\", \"12\": \"0.7\", \"13\": \"0.7\", \"14\": \"0.7\", \"15\": \"0.7\", \"16\": \"0.7\", \"17\": \"0.7\", \"18\": \"0.7\"}"); var timestamps = JSON.parse("{\"0\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"1\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"2\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"3\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"4\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"5\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"6\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"7\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"8\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"9\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"10\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"11\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"12\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"13\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"14\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"15\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"16\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"17\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"18\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"]}"); @@ -2841,10 +2841,10 @@

Ethical Considerations

} } var slices_all = JSON.parse("{\"0\": [\"metric:Accuracy\", \"Sex:F\", \"Age:overall_Age\"], \"1\": [\"metric:Precision\", \"Age:[30 - 50)\", \"Sex:overall_Sex\"], \"2\": [\"metric:Recall\", \"Age:[30 - 50)\", \"Sex:overall_Sex\"], \"3\": [\"metric:F1 Score\", \"Age:[30 - 50)\", \"Sex:overall_Sex\"], \"4\": [\"metric:AUROC\", \"Age:[30 - 50)\", \"Sex:overall_Sex\"], \"5\": [\"metric:AveragePrecision\", \"Age:[30 - 50)\", \"Sex:overall_Sex\"], \"6\": [\"metric:Accuracy\", \"Age:[50 - 70)\", \"Sex:overall_Sex\"], \"7\": [\"metric:Precision\", \"Age:[50 - 70)\", \"Sex:overall_Sex\"], \"8\": [\"metric:Recall\", \"Age:[50 - 70)\", \"Sex:overall_Sex\"], \"9\": [\"metric:F1 Score\", \"Age:[50 - 70)\", \"Sex:overall_Sex\"], \"10\": [\"metric:AUROC\", \"Age:[50 - 70)\", \"Sex:overall_Sex\"], \"11\": [\"metric:AveragePrecision\", \"Age:[50 - 70)\", \"Sex:overall_Sex\"], \"12\": [\"metric:Accuracy\", \"Sex:overall_Sex\", \"Age:overall_Age\"], \"13\": [\"metric:Precision\", \"Sex:overall_Sex\", \"Age:overall_Age\"], \"14\": [\"metric:Recall\", \"Sex:overall_Sex\", \"Age:overall_Age\"], \"15\": [\"metric:F1 Score\", \"Sex:overall_Sex\", \"Age:overall_Age\"], \"16\": [\"metric:AUROC\", \"Sex:overall_Sex\", \"Age:overall_Age\"], \"17\": [\"metric:AveragePrecision\", \"Sex:overall_Sex\", \"Age:overall_Age\"], \"18\": [\"metric:Accuracy\", \"Age:[30 - 50)\", \"Sex:overall_Sex\"]}"); - var histories_all = JSON.parse("{\"0\": [\"0.8421052631578947\", \"0.7661267520930884\", \"0.8371104304570498\", \"0.5953479683211308\", \"0.447307515139751\"], \"1\": [\"0.8260869565217391\", \"0.8161698862155876\", \"0.713141509776489\", \"0.9654820501210936\", \"0.9641468142233491\"], \"2\": [\"0.6785714285714286\", \"0.7429746479137554\", \"0.8542364038863958\", \"0.7500823278362522\", \"0.8749832094019347\"], \"3\": [\"0.7450980392156863\", \"0.7360512658580961\", \"0.7166722859318031\", \"0.7587664318055074\", \"0.7860835416989599\"], \"4\": [\"0.8819444444444444\", \"0.8706949864308898\", \"0.7290810058901607\", \"0.8285019912051844\", \"0.8759311898936312\"], \"5\": [\"0.7804346778900575\", \"0.7776666305202257\", \"0.8824395556367947\", \"0.948645852608083\", \"0.9900958503369034\"], \"6\": [\"0.8623853211009175\", \"0.8640491107847016\", \"0.9851009508992019\", \"1.0\", \"1.0\"], \"7\": [\"0.8676470588235294\", \"0.5904815272416866\", \"0.615154250839528\", \"0.5932776577033853\", \"0.45042210224355567\"], \"8\": [\"0.9076923076923077\", \"0.7795401829680871\", \"0.9469174519735382\", \"0.9999242669412284\", \"0.8996664448318304\"], \"9\": [\"0.8872180451127819\", \"0.8008363417310389\", \"0.7162457388741228\", \"0.6866778359853555\", \"0.7095792251491628\"], \"10\": [\"0.927972027972028\", \"0.9299692773869779\", \"1.0\", \"0.9870165140410062\", \"0.9635482237191407\"], \"11\": [\"0.9437647444468813\", \"0.8877368743015641\", \"0.9196461770156139\", \"0.8810404565834734\", \"0.7194996242681102\"], \"12\": [\"0.842391304347826\", \"0.8657210213008151\", \"0.9255604587941642\", \"0.9108606874220391\", \"1.0\"], \"13\": [\"0.8686868686868687\", \"0.9009299172084865\", \"0.8991602586439614\", \"0.9536936861555355\", \"1.0\"], \"14\": [\"0.8431372549019608\", \"0.845373006895036\", \"1.0\", \"0.9251832130842849\", \"1.0\"], \"15\": [\"0.8557213930348259\", \"0.8901053228026288\", \"0.9789178047971823\", \"1.0\", \"0.931489686856192\"], \"16\": [\"0.9152319464371114\", \"0.9511436428835963\", \"0.8404284556705557\", \"0.8226865043587341\", \"0.9266832624676709\"], \"17\": [\"0.9135027641916293\", \"1.0\", \"0.9619805776562392\", \"1.0\", \"0.989488980929226\"], \"18\": [\"0.796875\", \"0.6324915921474635\", \"nan\", \"0.964774653929203\", \"0.9104071472231816\"]}"); + var histories_all = JSON.parse("{\"0\": [\"0.8421052631578947\", \"0.8991658689057991\", \"0.760555116818897\", \"0.8196982766738313\", \"0.6837378095483214\"], \"1\": [\"0.8260869565217391\", \"0.9580995678196944\", \"0.9111720834545008\", \"0.8981571836314519\", \"0.8203170832115099\"], \"2\": [\"0.6785714285714286\", \"0.7937550129034472\", \"1.0\", \"0.9371616566256943\", \"0.8735394574107829\"], \"3\": [\"0.7450980392156863\", \"0.5906694018364542\", \"0.5234625102633704\", \"0.6248280104197306\", \"0.6412712576283495\"], \"4\": [\"0.8819444444444444\", \"0.7278331983597065\", \"0.7383778360991817\", \"0.7050759189934424\", \"0.7624350395046081\"], \"5\": [\"0.7804346778900575\", \"0.8913560491215696\", \"0.964086951485065\", \"0.8613591860990006\", \"1.0\"], \"6\": [\"0.8623853211009175\", \"0.8043899670625048\", \"0.7676057911871169\", \"0.8631764735361948\", \"0.8049904833089053\"], \"7\": [\"0.8676470588235294\", \"0.868332577455716\", \"0.8009671878274689\", \"0.751453920303103\", \"0.7684370643243961\"], \"8\": [\"0.9076923076923077\", \"0.8682528259371946\", \"1.0\", \"0.9297447037648808\", \"0.9577257577103611\"], \"9\": [\"0.8872180451127819\", \"0.6858343819867477\", \"0.7240115338200606\", \"0.5990951880103416\", \"0.36329457171392254\"], \"10\": [\"0.927972027972028\", \"0.8700140302971331\", \"0.8601469419619393\", \"0.8344347409245475\", \"0.8571599273165763\"], \"11\": [\"0.9437647444468813\", \"0.8032417907014745\", \"0.9253511712815408\", \"1.0\", \"1.0\"], \"12\": [\"0.842391304347826\", \"0.8169413410946268\", \"0.8596375296143032\", \"0.9935699409054901\", \"0.9316656284289586\"], \"13\": [\"0.8686868686868687\", \"0.7539371785886104\", \"0.696833185987625\", \"0.6644900051790344\", \"0.795501953652462\"], \"14\": [\"0.8431372549019608\", \"0.8290645903419896\", \"0.9644757369148373\", \"0.8519270638813299\", \"0.7964597703241559\"], \"15\": [\"0.8557213930348259\", \"0.9662028874789844\", \"1.0\", \"0.8587759225830245\", \"0.9019559585938075\"], \"16\": [\"0.9152319464371114\", \"1.0\", \"0.98987536927373\", \"0.9126018263887035\", \"0.904974381616703\"], \"17\": [\"0.9135027641916293\", \"0.9158709334148532\", \"0.9609925771737031\", \"0.974082953226344\", \"1.0\"], \"18\": [\"0.796875\", \"0.8150612587026944\", \"nan\", \"0.7106060936060394\", \"0.7444643461925151\"]}"); var thresholds_all = JSON.parse("{\"0\": \"0.7\", \"1\": \"0.7\", \"2\": \"0.7\", \"3\": \"0.7\", \"4\": \"0.7\", \"5\": \"0.7\", \"6\": \"0.7\", \"7\": \"0.7\", \"8\": \"0.7\", \"9\": \"0.7\", \"10\": \"0.7\", \"11\": \"0.7\", \"12\": \"0.7\", \"13\": \"0.7\", \"14\": \"0.7\", \"15\": \"0.7\", \"16\": \"0.7\", \"17\": \"0.7\", \"18\": \"0.7\"}"); - var trends_all = JSON.parse("{\"0\": \"negative\", \"1\": \"positive\", \"2\": \"positive\", \"3\": \"positive\", \"4\": \"neutral\", \"5\": \"positive\", \"6\": \"positive\", \"7\": \"negative\", \"8\": \"positive\", \"9\": \"negative\", \"10\": \"positive\", \"11\": \"negative\", \"12\": \"positive\", \"13\": \"positive\", \"14\": \"positive\", \"15\": \"positive\", \"16\": \"negative\", \"17\": \"positive\", \"18\": \"neutral\"}"); - var passed_all = JSON.parse("{\"0\": false, \"1\": true, \"2\": true, \"3\": true, \"4\": true, \"5\": true, \"6\": true, \"7\": false, \"8\": true, \"9\": true, \"10\": true, \"11\": true, \"12\": true, \"13\": true, \"14\": true, \"15\": true, \"16\": true, \"17\": true, \"18\": true}"); + var trends_all = JSON.parse("{\"0\": \"negative\", \"1\": \"neutral\", \"2\": \"positive\", \"3\": \"negative\", \"4\": \"negative\", \"5\": \"positive\", \"6\": \"neutral\", \"7\": \"negative\", \"8\": \"positive\", \"9\": \"negative\", \"10\": \"negative\", \"11\": \"positive\", \"12\": \"positive\", \"13\": \"negative\", \"14\": \"neutral\", \"15\": \"neutral\", \"16\": \"negative\", \"17\": \"positive\", \"18\": \"neutral\"}"); + var passed_all = JSON.parse("{\"0\": false, \"1\": true, \"2\": true, \"3\": false, \"4\": true, \"5\": true, \"6\": true, \"7\": true, \"8\": true, \"9\": false, \"10\": true, \"11\": true, \"12\": true, \"13\": true, \"14\": true, \"15\": true, \"16\": true, \"17\": true, \"18\": true}"); var names_all = JSON.parse("{\"0\": \"Accuracy\", \"1\": \"Precision\", \"2\": \"Recall\", \"3\": \"F1 Score\", \"4\": \"AUROC\", \"5\": \"AveragePrecision\", \"6\": \"Accuracy\", \"7\": \"Precision\", \"8\": \"Recall\", \"9\": \"F1 Score\", \"10\": \"AUROC\", \"11\": \"AveragePrecision\", \"12\": \"Accuracy\", \"13\": \"Precision\", \"14\": \"Recall\", \"15\": \"F1 Score\", \"16\": \"AUROC\", \"17\": \"AveragePrecision\", \"18\": \"Accuracy\"}"); var timestamps_all = JSON.parse("{\"0\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"1\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"2\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"3\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"4\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"5\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"6\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"7\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"8\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"9\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"10\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"11\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"12\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"13\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"14\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"15\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"16\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"17\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"18\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"]}"); @@ -3117,10 +3117,10 @@

Ethical Considerations

} } var slices_all = JSON.parse("{\"0\": [\"metric:Accuracy\", \"Sex:F\", \"Age:overall_Age\"], \"1\": [\"metric:Precision\", \"Age:[30 - 50)\", \"Sex:overall_Sex\"], \"2\": [\"metric:Recall\", \"Age:[30 - 50)\", \"Sex:overall_Sex\"], \"3\": [\"metric:F1 Score\", \"Age:[30 - 50)\", \"Sex:overall_Sex\"], \"4\": [\"metric:AUROC\", \"Age:[30 - 50)\", \"Sex:overall_Sex\"], \"5\": [\"metric:AveragePrecision\", \"Age:[30 - 50)\", \"Sex:overall_Sex\"], \"6\": [\"metric:Accuracy\", \"Age:[50 - 70)\", \"Sex:overall_Sex\"], \"7\": [\"metric:Precision\", \"Age:[50 - 70)\", \"Sex:overall_Sex\"], \"8\": [\"metric:Recall\", \"Age:[50 - 70)\", \"Sex:overall_Sex\"], \"9\": [\"metric:F1 Score\", \"Age:[50 - 70)\", \"Sex:overall_Sex\"], \"10\": [\"metric:AUROC\", \"Age:[50 - 70)\", \"Sex:overall_Sex\"], \"11\": [\"metric:AveragePrecision\", \"Age:[50 - 70)\", \"Sex:overall_Sex\"], \"12\": [\"metric:Accuracy\", \"Sex:overall_Sex\", \"Age:overall_Age\"], \"13\": [\"metric:Precision\", \"Sex:overall_Sex\", \"Age:overall_Age\"], \"14\": [\"metric:Recall\", \"Sex:overall_Sex\", \"Age:overall_Age\"], \"15\": [\"metric:F1 Score\", \"Sex:overall_Sex\", \"Age:overall_Age\"], \"16\": [\"metric:AUROC\", \"Sex:overall_Sex\", \"Age:overall_Age\"], \"17\": [\"metric:AveragePrecision\", \"Sex:overall_Sex\", \"Age:overall_Age\"], \"18\": [\"metric:Accuracy\", \"Age:[30 - 50)\", \"Sex:overall_Sex\"]}"); - var histories_all = JSON.parse("{\"0\": [\"0.8421052631578947\", \"0.7661267520930884\", \"0.8371104304570498\", \"0.5953479683211308\", \"0.447307515139751\"], \"1\": [\"0.8260869565217391\", \"0.8161698862155876\", \"0.713141509776489\", \"0.9654820501210936\", \"0.9641468142233491\"], \"2\": [\"0.6785714285714286\", \"0.7429746479137554\", \"0.8542364038863958\", \"0.7500823278362522\", \"0.8749832094019347\"], \"3\": [\"0.7450980392156863\", \"0.7360512658580961\", \"0.7166722859318031\", \"0.7587664318055074\", \"0.7860835416989599\"], \"4\": [\"0.8819444444444444\", \"0.8706949864308898\", \"0.7290810058901607\", \"0.8285019912051844\", \"0.8759311898936312\"], \"5\": [\"0.7804346778900575\", \"0.7776666305202257\", \"0.8824395556367947\", \"0.948645852608083\", \"0.9900958503369034\"], \"6\": [\"0.8623853211009175\", \"0.8640491107847016\", \"0.9851009508992019\", \"1.0\", \"1.0\"], \"7\": [\"0.8676470588235294\", \"0.5904815272416866\", \"0.615154250839528\", \"0.5932776577033853\", \"0.45042210224355567\"], \"8\": [\"0.9076923076923077\", \"0.7795401829680871\", \"0.9469174519735382\", \"0.9999242669412284\", \"0.8996664448318304\"], \"9\": [\"0.8872180451127819\", \"0.8008363417310389\", \"0.7162457388741228\", \"0.6866778359853555\", \"0.7095792251491628\"], \"10\": [\"0.927972027972028\", \"0.9299692773869779\", \"1.0\", \"0.9870165140410062\", \"0.9635482237191407\"], \"11\": [\"0.9437647444468813\", \"0.8877368743015641\", \"0.9196461770156139\", \"0.8810404565834734\", \"0.7194996242681102\"], \"12\": [\"0.842391304347826\", \"0.8657210213008151\", \"0.9255604587941642\", \"0.9108606874220391\", \"1.0\"], \"13\": [\"0.8686868686868687\", \"0.9009299172084865\", \"0.8991602586439614\", \"0.9536936861555355\", \"1.0\"], \"14\": [\"0.8431372549019608\", \"0.845373006895036\", \"1.0\", \"0.9251832130842849\", \"1.0\"], \"15\": [\"0.8557213930348259\", \"0.8901053228026288\", \"0.9789178047971823\", \"1.0\", \"0.931489686856192\"], \"16\": [\"0.9152319464371114\", \"0.9511436428835963\", \"0.8404284556705557\", \"0.8226865043587341\", \"0.9266832624676709\"], \"17\": [\"0.9135027641916293\", \"1.0\", \"0.9619805776562392\", \"1.0\", \"0.989488980929226\"], \"18\": [\"0.796875\", \"0.6324915921474635\", \"nan\", \"0.964774653929203\", \"0.9104071472231816\"]}"); + var histories_all = JSON.parse("{\"0\": [\"0.8421052631578947\", \"0.8991658689057991\", \"0.760555116818897\", \"0.8196982766738313\", \"0.6837378095483214\"], \"1\": [\"0.8260869565217391\", \"0.9580995678196944\", \"0.9111720834545008\", \"0.8981571836314519\", \"0.8203170832115099\"], \"2\": [\"0.6785714285714286\", \"0.7937550129034472\", \"1.0\", \"0.9371616566256943\", \"0.8735394574107829\"], \"3\": [\"0.7450980392156863\", \"0.5906694018364542\", \"0.5234625102633704\", \"0.6248280104197306\", \"0.6412712576283495\"], \"4\": [\"0.8819444444444444\", \"0.7278331983597065\", \"0.7383778360991817\", \"0.7050759189934424\", \"0.7624350395046081\"], \"5\": [\"0.7804346778900575\", \"0.8913560491215696\", \"0.964086951485065\", \"0.8613591860990006\", \"1.0\"], \"6\": [\"0.8623853211009175\", \"0.8043899670625048\", \"0.7676057911871169\", \"0.8631764735361948\", \"0.8049904833089053\"], \"7\": [\"0.8676470588235294\", \"0.868332577455716\", \"0.8009671878274689\", \"0.751453920303103\", \"0.7684370643243961\"], \"8\": [\"0.9076923076923077\", \"0.8682528259371946\", \"1.0\", \"0.9297447037648808\", \"0.9577257577103611\"], \"9\": [\"0.8872180451127819\", \"0.6858343819867477\", \"0.7240115338200606\", \"0.5990951880103416\", \"0.36329457171392254\"], \"10\": [\"0.927972027972028\", \"0.8700140302971331\", \"0.8601469419619393\", \"0.8344347409245475\", \"0.8571599273165763\"], \"11\": [\"0.9437647444468813\", \"0.8032417907014745\", \"0.9253511712815408\", \"1.0\", \"1.0\"], \"12\": [\"0.842391304347826\", \"0.8169413410946268\", \"0.8596375296143032\", \"0.9935699409054901\", \"0.9316656284289586\"], \"13\": [\"0.8686868686868687\", \"0.7539371785886104\", \"0.696833185987625\", \"0.6644900051790344\", \"0.795501953652462\"], \"14\": [\"0.8431372549019608\", \"0.8290645903419896\", \"0.9644757369148373\", \"0.8519270638813299\", \"0.7964597703241559\"], \"15\": [\"0.8557213930348259\", \"0.9662028874789844\", \"1.0\", \"0.8587759225830245\", \"0.9019559585938075\"], \"16\": [\"0.9152319464371114\", \"1.0\", \"0.98987536927373\", \"0.9126018263887035\", \"0.904974381616703\"], \"17\": [\"0.9135027641916293\", \"0.9158709334148532\", \"0.9609925771737031\", \"0.974082953226344\", \"1.0\"], \"18\": [\"0.796875\", \"0.8150612587026944\", \"nan\", \"0.7106060936060394\", \"0.7444643461925151\"]}"); var thresholds_all = JSON.parse("{\"0\": \"0.7\", \"1\": \"0.7\", \"2\": \"0.7\", \"3\": \"0.7\", \"4\": \"0.7\", \"5\": \"0.7\", \"6\": \"0.7\", \"7\": \"0.7\", \"8\": \"0.7\", \"9\": \"0.7\", \"10\": \"0.7\", \"11\": \"0.7\", \"12\": \"0.7\", \"13\": \"0.7\", \"14\": \"0.7\", \"15\": \"0.7\", \"16\": \"0.7\", \"17\": \"0.7\", \"18\": \"0.7\"}"); - var trends_all = JSON.parse("{\"0\": \"negative\", \"1\": \"positive\", \"2\": \"positive\", \"3\": \"positive\", \"4\": \"neutral\", \"5\": \"positive\", \"6\": \"positive\", \"7\": \"negative\", \"8\": \"positive\", \"9\": \"negative\", \"10\": \"positive\", \"11\": \"negative\", \"12\": \"positive\", \"13\": \"positive\", \"14\": \"positive\", \"15\": \"positive\", \"16\": \"negative\", \"17\": \"positive\", \"18\": \"neutral\"}"); - var passed_all = JSON.parse("{\"0\": false, \"1\": true, \"2\": true, \"3\": true, \"4\": true, \"5\": true, \"6\": true, \"7\": false, \"8\": true, \"9\": true, \"10\": true, \"11\": true, \"12\": true, \"13\": true, \"14\": true, \"15\": true, \"16\": true, \"17\": true, \"18\": true}"); + var trends_all = JSON.parse("{\"0\": \"negative\", \"1\": \"neutral\", \"2\": \"positive\", \"3\": \"negative\", \"4\": \"negative\", \"5\": \"positive\", \"6\": \"neutral\", \"7\": \"negative\", \"8\": \"positive\", \"9\": \"negative\", \"10\": \"negative\", \"11\": \"positive\", \"12\": \"positive\", \"13\": \"negative\", \"14\": \"neutral\", \"15\": \"neutral\", \"16\": \"negative\", \"17\": \"positive\", \"18\": \"neutral\"}"); + var passed_all = JSON.parse("{\"0\": false, \"1\": true, \"2\": true, \"3\": false, \"4\": true, \"5\": true, \"6\": true, \"7\": true, \"8\": true, \"9\": false, \"10\": true, \"11\": true, \"12\": true, \"13\": true, \"14\": true, \"15\": true, \"16\": true, \"17\": true, \"18\": true}"); var names_all = JSON.parse("{\"0\": \"Accuracy\", \"1\": \"Precision\", \"2\": \"Recall\", \"3\": \"F1 Score\", \"4\": \"AUROC\", \"5\": \"AveragePrecision\", \"6\": \"Accuracy\", \"7\": \"Precision\", \"8\": \"Recall\", \"9\": \"F1 Score\", \"10\": \"AUROC\", \"11\": \"AveragePrecision\", \"12\": \"Accuracy\", \"13\": \"Precision\", \"14\": \"Recall\", \"15\": \"F1 Score\", \"16\": \"AUROC\", \"17\": \"AveragePrecision\", \"18\": \"Accuracy\"}"); var timestamps_all = JSON.parse("{\"0\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"1\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"2\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"3\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"4\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"5\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"6\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"7\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"8\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"9\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"10\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"11\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"12\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"13\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"14\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"15\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"16\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"17\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"], \"18\": [\"2021-09-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\", \"2022-02-01\"]}"); diff --git a/api/tutorials/mimiciv/mortality_prediction.html b/api/tutorials/mimiciv/mortality_prediction.html index 0419cbff2..7c21f086a 100644 --- a/api/tutorials/mimiciv/mortality_prediction.html +++ b/api/tutorials/mimiciv/mortality_prediction.html @@ -709,9 +709,9 @@

Compute mortality (labels)
-2023-12-09 08:42:59,482 INFO cycquery.orm    - Database setup, ready to run queries!
-2023-12-09 08:43:06,061 INFO cycquery.orm    - Query returned successfully!
-2023-12-09 08:43:06,062 INFO cycquery.utils.profile - Finished executing function run_query in 5.261463 s
+2023-12-09 17:31:50,702 INFO cycquery.orm    - Database setup, ready to run queries!
+2023-12-09 17:31:57,904 INFO cycquery.orm    - Query returned successfully!
+2023-12-09 17:31:57,904 INFO cycquery.utils.profile - Finished executing function run_query in 5.306424 s
 

@@ -796,9 +796,9 @@

Drop NaNs based on the

-
+
@@ -1276,12 +1276,12 @@

Training

-2023-12-09 08:45:55,412 INFO cyclops.models.wrappers.sk_model - Best reg_lambda: 0
-2023-12-09 08:45:55,413 INFO cyclops.models.wrappers.sk_model - Best n_estimators: 250
-2023-12-09 08:45:55,413 INFO cyclops.models.wrappers.sk_model - Best max_depth: 5
-2023-12-09 08:45:55,414 INFO cyclops.models.wrappers.sk_model - Best learning_rate: 0.1
-2023-12-09 08:45:55,415 INFO cyclops.models.wrappers.sk_model - Best gamma: 2
-2023-12-09 08:45:55,415 INFO cyclops.models.wrappers.sk_model - Best colsample_bytree: 1
+2023-12-09 17:35:21,211 INFO cyclops.models.wrappers.sk_model - Best reg_lambda: 1
+2023-12-09 17:35:21,212 INFO cyclops.models.wrappers.sk_model - Best n_estimators: 250
+2023-12-09 17:35:21,212 INFO cyclops.models.wrappers.sk_model - Best max_depth: 5
+2023-12-09 17:35:21,213 INFO cyclops.models.wrappers.sk_model - Best learning_rate: 0.1
+2023-12-09 17:35:21,213 INFO cyclops.models.wrappers.sk_model - Best gamma: 2
+2023-12-09 17:35:21,213 INFO cyclops.models.wrappers.sk_model - Best colsample_bytree: 0.8
 
XGBClassifier(base_score=None, booster=None, callbacks=None,
-              colsample_bylevel=None, colsample_bynode=None, colsample_bytree=1,
-              early_stopping_rounds=None, enable_categorical=False,
-              eval_metric='logloss', feature_types=None, gamma=2, gpu_id=None,
-              grow_policy=None, importance_type=None,
-              interaction_constraints=None, learning_rate=0.1, max_bin=None,
-              max_cat_threshold=None, max_cat_to_onehot=None,
-              max_delta_step=None, max_depth=5, max_leaves=None,
-              min_child_weight=3, missing=nan, monotone_constraints=None,
-              n_estimators=250, n_jobs=None, num_parallel_tree=None,
-              predictor=None, random_state=123, ...)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
+ colsample_bylevel=None, colsample_bynode=None, + colsample_bytree=0.8, early_stopping_rounds=None, + enable_categorical=False, eval_metric='logloss', + feature_types=None, gamma=2, gpu_id=None, grow_policy=None, + importance_type=None, interaction_constraints=None, + learning_rate=0.1, max_bin=None, max_cat_threshold=None, + max_cat_to_onehot=None, max_delta_step=None, max_depth=5, + max_leaves=None, min_child_weight=3, missing=nan, + monotone_constraints=None, n_estimators=250, n_jobs=None, + num_parallel_tree=None, predictor=None, random_state=123, ...)In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
-{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': 1, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': 'logloss', 'feature_types': None, 'gamma': 2, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': 3, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 250, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 123, 'reg_alpha': None, 'reg_lambda': 0, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': None, 'seed': 123}
+{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': 0.8, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': 'logloss', 'feature_types': None, 'gamma': 2, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': 3, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 250, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 123, 'reg_alpha': None, 'reg_lambda': 1, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': None, 'seed': 123}
 

Log the model parameters to the report.

@@ -1361,7 +1361,7 @@

Prediction

-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+

Log the performance metrics to the report.

We can add a performance metric to the model card using the log_performance_metric method, which expects a dictionary where the keys are in the following format: slice_name/metric_name. For instance, overall/accuracy.

@@ -1694,9 +1694,9 @@

Evaluation
-
diff --git a/api/tutorials/mimiciv/mortality_prediction.ipynb b/api/tutorials/mimiciv/mortality_prediction.ipynb index fe94ab3e8..91db749e7 100644 --- a/api/tutorials/mimiciv/mortality_prediction.ipynb +++ b/api/tutorials/mimiciv/mortality_prediction.ipynb @@ -21,10 +21,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-12-09T13:42:53.230661Z", - "iopub.status.busy": "2023-12-09T13:42:53.230056Z", - "iopub.status.idle": "2023-12-09T13:42:57.235676Z", - "shell.execute_reply": "2023-12-09T13:42:57.234987Z" + "iopub.execute_input": "2023-12-09T22:31:45.067804Z", + "iopub.status.busy": "2023-12-09T22:31:45.067130Z", + "iopub.status.idle": "2023-12-09T22:31:49.240145Z", + "shell.execute_reply": "2023-12-09T22:31:49.239407Z" } }, "outputs": [], @@ -88,10 +88,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-12-09T13:42:57.240983Z", - "iopub.status.busy": "2023-12-09T13:42:57.240548Z", - "iopub.status.idle": "2023-12-09T13:42:57.244027Z", - "shell.execute_reply": "2023-12-09T13:42:57.243241Z" + "iopub.execute_input": "2023-12-09T22:31:49.245636Z", + "iopub.status.busy": "2023-12-09T22:31:49.245113Z", + "iopub.status.idle": "2023-12-09T22:31:49.249896Z", + "shell.execute_reply": "2023-12-09T22:31:49.248987Z" } }, "outputs": [], @@ -111,10 +111,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-12-09T13:42:57.249082Z", - "iopub.status.busy": "2023-12-09T13:42:57.248778Z", - "iopub.status.idle": "2023-12-09T13:42:57.252476Z", - "shell.execute_reply": "2023-12-09T13:42:57.251643Z" + "iopub.execute_input": "2023-12-09T22:31:49.254880Z", + "iopub.status.busy": "2023-12-09T22:31:49.254479Z", + "iopub.status.idle": "2023-12-09T22:31:49.259817Z", + "shell.execute_reply": "2023-12-09T22:31:49.258589Z" } }, "outputs": [], @@ -146,10 +146,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-12-09T13:42:57.257544Z", - "iopub.status.busy": "2023-12-09T13:42:57.257012Z", - "iopub.status.idle": "2023-12-09T13:44:48.737301Z", - "shell.execute_reply": "2023-12-09T13:44:48.736229Z" + "iopub.execute_input": "2023-12-09T22:31:49.265335Z", + "iopub.status.busy": "2023-12-09T22:31:49.264819Z", + "iopub.status.idle": "2023-12-09T22:33:41.313156Z", + "shell.execute_reply": "2023-12-09T22:33:41.312321Z" } }, "outputs": [ @@ -157,21 +157,21 @@ "name": "stderr", "output_type": "stream", "text": [ - "2023-12-09 08:42:59,482 \u001b[1;37mINFO\u001b[0m cycquery.orm - Database setup, ready to run queries!\n" + "2023-12-09 17:31:50,702 \u001b[1;37mINFO\u001b[0m cycquery.orm - Database setup, ready to run queries!\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2023-12-09 08:43:06,061 \u001b[1;37mINFO\u001b[0m cycquery.orm - Query returned successfully!\n" + "2023-12-09 17:31:57,904 \u001b[1;37mINFO\u001b[0m cycquery.orm - Query returned successfully!\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2023-12-09 08:43:06,062 \u001b[1;37mINFO\u001b[0m cycquery.utils.profile - Finished executing function run_query in 5.261463 s\n" + "2023-12-09 17:31:57,904 \u001b[1;37mINFO\u001b[0m cycquery.utils.profile - Finished executing function run_query in 5.306424 s\n" ] }, { @@ -188,14 +188,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "2023-12-09 08:43:35,528 \u001b[1;37mINFO\u001b[0m cycquery.orm - Query returned successfully!\n" + "2023-12-09 17:32:28,030 \u001b[1;37mINFO\u001b[0m cycquery.orm - Query returned successfully!\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2023-12-09 08:43:35,529 \u001b[1;37mINFO\u001b[0m cycquery.utils.profile - Finished executing function run_query in 28.712685 s\n" + "2023-12-09 17:32:28,031 \u001b[1;37mINFO\u001b[0m cycquery.utils.profile - Finished executing function run_query in 29.351719 s\n" ] }, { @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-12-09T13:44:48.742935Z", - "iopub.status.busy": "2023-12-09T13:44:48.742666Z", - "iopub.status.idle": "2023-12-09T13:44:48.976809Z", - "shell.execute_reply": "2023-12-09T13:44:48.975894Z" + "iopub.execute_input": "2023-12-09T22:33:41.321646Z", + "iopub.status.busy": "2023-12-09T22:33:41.321305Z", + "iopub.status.idle": "2023-12-09T22:33:41.543438Z", + "shell.execute_reply": "2023-12-09T22:33:41.542821Z" } }, "outputs": [ @@ -2394,9 +2394,9 @@ } }, "text/html": [ - "
+
@@ -1169,7 +1169,7 @@

Graphics

-
+
@@ -1177,7 +1177,7 @@

Graphics

-
+
@@ -1185,7 +1185,7 @@

Graphics

-
+
@@ -1275,11 +1275,11 @@

Quantitative Analysis

- 0.9 + 0.67 - + @@ -1308,7 +1308,7 @@

Quantitative Analysis

- 0.12 + 0.19 @@ -1341,7 +1341,7 @@

Quantitative Analysis

- 0.5 + 0.22 @@ -1374,7 +1374,7 @@

Quantitative Analysis

- 0.16 + 0.25 @@ -1407,11 +1407,11 @@

Quantitative Analysis

- 0.42 + 0.86 - + @@ -1440,7 +1440,7 @@

Quantitative Analysis

- 0.16 + 0.0 @@ -1472,7 +1472,7 @@

Graphics

-
+
@@ -1480,7 +1480,7 @@

Graphics

-
+
@@ -1488,7 +1488,7 @@

Graphics

-
+
@@ -1496,7 +1496,7 @@

Graphics

-
+
@@ -1550,7 +1550,7 @@

Graphics

-
+
@@ -1838,10 +1838,6 @@

Gamma

-
-

Objective

- binary:logistic -
@@ -1862,6 +1858,10 @@

Objective

+
+

Min_child_weight

+ 3 +
@@ -1872,15 +1872,15 @@

Objective

-
-

Reg_lambda

- 0 -
+
+

Colsample_bytree

+ 0.8 +
@@ -1892,8 +1892,8 @@

Reg_lambda

-

Random_state

- 123 +

Max_depth

+ 5
@@ -1905,13 +1905,8 @@

Random_state

- - - - -
-

Seed

+

Random_state

123
@@ -1920,8 +1915,8 @@

Seed

-

Eval_metric

- logloss +

Reg_lambda

+ 1
@@ -1934,8 +1929,8 @@

Eval_metric

-

Learning_rate

- 0.1 +

Enable_categorical

+ False
@@ -1957,6 +1952,15 @@

Learning_rate

+
+

Missing

+ nan +
+ + + + + @@ -1968,8 +1972,8 @@

Learning_rate

-

Min_child_weight

- 3 +

N_estimators

+ 250
@@ -1981,15 +1985,15 @@

Min_child_weight

-
-

Missing

- nan -
+
+

Objective

+ binary:logistic +
@@ -2021,8 +2025,8 @@

Missing

-

Max_depth

- 5 +

Learning_rate

+ 0.1
@@ -2034,11 +2038,19 @@

Max_depth

+
+

Seed

+ 123 +
+
+

Eval_metric

+ logloss +
@@ -2054,28 +2066,16 @@

Max_depth

-
-

Colsample_bytree

- 1 -
-
-

N_estimators

- 250 -
-
-

Enable_categorical

- False -
@@ -2347,7 +2347,7 @@

Ethical Considerations

function generate_model_card_plot() { var model_card_plots = [] var overall_indices = [24, 25, 26, 27, 28, 29] - var histories = JSON.parse("{\"0\": [\"0.9970014992503748\", \"1.0\", \"0.9330811337479366\", \"0.7337832095796472\", \"0.560485137166198\"], \"1\": [\"0.5\", \"0.615141579060318\", \"0.5042000822133514\", \"0.4833785484653674\", \"0.5640580957361856\"], \"2\": [\"0.5\", \"0.5767711059421224\", \"0.6289029480776678\", \"0.6259959123894474\", \"0.5626754226801309\"], \"3\": [\"0.5\", \"0.508731165459295\", \"0.42390523323296675\", \"0.2890723546951844\", \"0.44641713448717896\"], \"4\": [\"0.9654135338345865\", \"0.9457039534508918\", \"0.91353810165332\", \"0.8665529032440166\", \"0.761168092920869\"], \"5\": [\"0.5208333333333334\", \"0.45960121688076155\", \"0.4850021517919319\", \"0.3698472760726189\", \"0.5885459907479822\"], \"6\": [\"0.9695121951219512\", \"0.9829102041610718\", \"0.8783273298219823\", \"0.8452343356364812\", \"0.8468878128302078\"], \"7\": [\"0.1875\", \"0.21297029265126374\", \"0.20204907679693923\", \"0.18879596350700364\", \"0.26690796127362026\"], \"8\": [\"0.2\", \"0.17937737701717246\", \"0.18603492362256455\", \"0.35265760727304896\", \"0.5204381399697293\"], \"9\": [\"0.1935483870967742\", \"0.0\", \"0.0\", \"0.0\", \"0.0\"], \"10\": [\"0.7929399585921325\", \"0.8868918866876773\", \"0.9106798579273513\", \"0.918516089720871\", \"0.7606915558150309\"], \"11\": [\"0.109504744346699\", \"0.15517236351132435\", \"0.08317957231156836\", \"0.06025220533185004\", \"0.1361674314646668\"], \"12\": [\"0.9663003663003663\", \"1.0\", \"0.9578921872158198\", \"0.9500198505373939\", \"1.0\"], \"13\": [\"0.23333333333333334\", \"0.1652671008734633\", \"0.20794626332378627\", \"0.09215354896087082\", \"0.020807229187746606\"], \"14\": [\"0.23333333333333334\", \"0.19883288732465157\", \"0.23297935596527797\", \"0.3400887860915395\", \"0.24585125983464162\"], \"15\": [\"0.23333333333333334\", \"0.2950250169423252\", \"0.19596729905486926\", \"0.3584691576237604\", \"0.25328337270159523\"], \"16\": [\"0.7873408239700375\", \"0.7403429977914502\", \"0.8220420529487956\", \"0.9443952640175113\", \"0.7403792276538499\"], \"17\": [\"0.20844821055398052\", \"0.07163901886978427\", \"0.0\", \"0.03451153283833688\", \"0.0021040435069474284\"], \"18\": [\"0.9791666666666666\", \"0.8634090943739856\", \"0.7090784775284871\", \"0.5186752709084012\", \"0.4017637978549433\"], \"19\": [\"0.14285714285714285\", \"0.13545667976345457\", \"0.01866108135943803\", \"0.0\", \"0.0\"], \"20\": [\"0.09523809523809523\", \"0.04165615142068378\", \"0.0999561286930817\", \"0.11921405196496007\", \"0.33967216023826213\"], \"21\": [\"0.11428571428571428\", \"0.22269933457069768\", \"0.15209764059492942\", \"0.306430603076711\", \"0.38611171957321017\"], \"22\": [\"0.8195539974681079\", \"0.8321790881910501\", \"0.8505736472919345\", \"0.7573383170090837\", \"0.8133743042837552\"], \"23\": [\"0.08845808463422775\", \"0.0\", \"0.0\", \"0.0986276605230943\", \"0.17849143957434727\"], \"24\": [\"0.9730108657553452\", \"1.0\", \"1.0\", \"0.9909318688126368\", \"0.8984810959581084\"], \"25\": [\"0.20454545454545456\", \"0.2707858962793771\", \"0.23633549507903898\", \"0.24309732331257192\", \"0.12338367615652365\"], \"26\": [\"0.17647058823529413\", \"0.0945103701498902\", \"0.17863353708764285\", \"0.30150358659945004\", \"0.5005092178946878\"], \"27\": [\"0.18947368421052632\", \"0.2405782388303923\", \"0.10900641237781986\", \"0.13627871736426533\", \"0.15731155217577536\"], \"28\": [\"0.8035646806902632\", \"0.7692564500910006\", \"0.710193571095052\", \"0.531095373969195\", \"0.4184428500342675\"], \"29\": [\"0.15125149366000354\", \"0.16867452148986778\", \"0.0956860349740292\", \"0.1541797474174007\", \"0.15999692388702244\"]}"); + var histories = JSON.parse("{\"0\": [\"0.9970014992503748\", \"1.0\", \"1.0\", \"1.0\", \"0.7837439761934797\"], \"1\": [\"0.5\", \"0.6324374594349585\", \"0.5345881489103177\", \"0.45679376834516183\", \"0.40783744209259337\"], \"2\": [\"0.5\", \"0.43419653279749904\", \"0.4568895918893525\", \"0.4435372819588432\", \"0.533343439062238\"], \"3\": [\"0.5\", \"0.5423404474080536\", \"0.49203000732383123\", \"0.588016838550556\", \"0.560557161735712\"], \"4\": [\"0.9323308270676691\", \"0.9363655962391914\", \"1.0\", \"0.7940245731632003\", \"0.7390137672137976\"], \"5\": [\"0.5108695652173914\", \"0.5846225802663129\", \"0.6452245705289005\", \"0.5660110570789518\", \"0.5744153682403548\"], \"6\": [\"0.9652439024390244\", \"1.0\", \"0.9733338159884262\", \"1.0\", \"0.9594334378539845\"], \"7\": [\"0.13513513513513514\", \"0.18021431489743497\", \"0.17666345861421992\", \"0.24339553556984678\", \"0.45529251853748237\"], \"8\": [\"0.16666666666666666\", \"0.20817666246229438\", \"0.27216726239435074\", \"0.10019556155712028\", \"0.18808957706195623\"], \"9\": [\"0.14925373134328357\", \"0.0310393565843044\", \"0.0\", \"0.0\", \"0.0\"], \"10\": [\"0.7812836438923396\", \"0.86303921360473\", \"0.8451768130495224\", \"0.7711986071087384\", \"0.7172241670619275\"], \"11\": [\"0.10296339512027636\", \"0.06459683130415139\", \"0.0\", \"0.11395225862864283\", \"0.15907523572761667\"], \"12\": [\"0.9611721611721612\", \"1.0\", \"0.9177853393033724\", \"0.9918785128795728\", \"0.9219331495014382\"], \"13\": [\"0.20512820512820512\", \"0.10599692696125207\", \"0.0\", \"0.0\", \"0.0\"], \"14\": [\"0.26666666666666666\", \"0.09713121514906387\", \"0.11527927985213163\", \"0.08437968019313832\", \"0.06901174100044068\"], \"15\": [\"0.2318840579710145\", \"0.07032033822706507\", \"0.13415416342786074\", \"0.14326991613807127\", \"0.15439317930091284\"], \"16\": [\"0.7889887640449438\", \"0.8231790254163652\", \"0.746951311356595\", \"0.7611826287106377\", \"0.6136575152844499\"], \"17\": [\"0.19643881548515418\", \"0.26337622344857226\", \"0.32832090863329677\", \"0.4209566175366472\", \"0.4949774968040582\"], \"18\": [\"0.9791666666666666\", \"1.0\", \"0.9068535073120458\", \"0.947496961854642\", \"0.8754367107148147\"], \"19\": [\"0.14285714285714285\", \"0.10584247261934698\", \"0.2880294399328644\", \"0.22711989380616743\", \"0.204401506210669\"], \"20\": [\"0.09523809523809523\", \"0.03195279037385794\", \"0.0\", \"0.04681521148023724\", \"0.0\"], \"21\": [\"0.11428571428571428\", \"0.1466039195479508\", \"0.2259779013271088\", \"0.16851591213635025\", \"0.06156993448719093\"], \"22\": [\"0.7966046677703119\", \"0.8350750236368255\", \"0.9548780087322217\", \"1.0\", \"1.0\"], \"23\": [\"0.07486975513377964\", \"0.10468844225790451\", \"0.10181278365668193\", \"0.0\", \"0.20754728081078105\"], \"24\": [\"0.9705573080967402\", \"0.7657818817071332\", \"0.7333677838639374\", \"0.6382317027440025\", \"0.672049766720993\"], \"25\": [\"0.18867924528301888\", \"0.15312831704429283\", \"0.1251840545238809\", \"0.1440010219636379\", \"0.18836780038375184\"], \"26\": [\"0.19607843137254902\", \"0.14855149491145297\", \"0.10443455288063871\", \"0.19971345269179924\", \"0.21573610405307372\"], \"27\": [\"0.19230769230769232\", \"0.27829600361626017\", \"0.34138505923545676\", \"0.3097963609402502\", \"0.25250325511397376\"], \"28\": [\"0.7940896558480637\", \"0.6969350903948085\", \"0.7618456137301092\", \"0.8151379697616357\", \"0.8563718366453692\"], \"29\": [\"0.1343777315521322\", \"0.08608852574468087\", \"0.035014696011336215\", \"0.0\", \"0.0\"]}"); var thresholds = JSON.parse("{\"0\": \"0.7\", \"1\": \"0.7\", \"2\": \"0.7\", \"3\": \"0.7\", \"4\": \"0.7\", \"5\": \"0.7\", \"6\": \"0.7\", \"7\": \"0.7\", \"8\": \"0.7\", \"9\": \"0.7\", \"10\": \"0.7\", \"11\": \"0.7\", \"12\": \"0.7\", \"13\": \"0.7\", \"14\": \"0.7\", \"15\": \"0.7\", \"16\": \"0.7\", \"17\": \"0.7\", \"18\": \"0.7\", \"19\": \"0.7\", \"20\": \"0.7\", \"21\": \"0.7\", \"22\": \"0.7\", \"23\": \"0.7\", \"24\": \"0.7\", \"25\": \"0.7\", \"26\": \"0.7\", \"27\": \"0.7\", \"28\": \"0.7\", \"29\": \"0.7\"}"); var timestamps = JSON.parse("{\"0\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"1\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"2\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"3\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"4\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"5\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"6\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"7\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"8\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"9\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"10\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"11\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"12\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"13\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"14\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"15\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"16\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"17\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"18\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"19\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"20\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"21\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"22\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"23\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"24\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"25\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"26\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"27\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"28\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"29\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"]}"); @@ -2628,10 +2628,10 @@

Ethical Considerations

} } var slices_all = JSON.parse("{\"0\": [\"metric:Accuracy\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"1\": [\"metric:Precision\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"2\": [\"metric:Recall\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"3\": [\"metric:F1 Score\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"4\": [\"metric:AUROC\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"5\": [\"metric:AveragePrecision\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"6\": [\"metric:Accuracy\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"7\": [\"metric:Precision\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"8\": [\"metric:Recall\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"9\": [\"metric:F1 Score\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"10\": [\"metric:AUROC\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"11\": [\"metric:AveragePrecision\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"12\": [\"metric:Accuracy\", \"gender:M\", \"age:overall_age\"], \"13\": [\"metric:Precision\", \"gender:M\", \"age:overall_age\"], \"14\": [\"metric:Recall\", \"gender:M\", \"age:overall_age\"], \"15\": [\"metric:F1 Score\", \"gender:M\", \"age:overall_age\"], \"16\": [\"metric:AUROC\", \"gender:M\", \"age:overall_age\"], \"17\": [\"metric:AveragePrecision\", \"gender:M\", \"age:overall_age\"], \"18\": [\"metric:Accuracy\", \"gender:F\", \"age:overall_age\"], \"19\": [\"metric:Precision\", \"gender:F\", \"age:overall_age\"], \"20\": [\"metric:Recall\", \"gender:F\", \"age:overall_age\"], \"21\": [\"metric:F1 Score\", \"gender:F\", \"age:overall_age\"], \"22\": [\"metric:AUROC\", \"gender:F\", \"age:overall_age\"], \"23\": [\"metric:AveragePrecision\", \"gender:F\", \"age:overall_age\"], \"24\": [\"metric:Accuracy\", \"age:overall_age\", \"gender:overall_gender\"], \"25\": [\"metric:Precision\", \"age:overall_age\", \"gender:overall_gender\"], \"26\": [\"metric:Recall\", \"age:overall_age\", \"gender:overall_gender\"], \"27\": [\"metric:F1 Score\", \"age:overall_age\", \"gender:overall_gender\"], \"28\": [\"metric:AUROC\", \"age:overall_age\", \"gender:overall_gender\"], \"29\": [\"metric:AveragePrecision\", \"age:overall_age\", \"gender:overall_gender\"]}"); - var histories_all = JSON.parse("{\"0\": [\"0.9970014992503748\", \"1.0\", \"0.9330811337479366\", \"0.7337832095796472\", \"0.560485137166198\"], \"1\": [\"0.5\", \"0.615141579060318\", \"0.5042000822133514\", \"0.4833785484653674\", \"0.5640580957361856\"], \"2\": [\"0.5\", \"0.5767711059421224\", \"0.6289029480776678\", \"0.6259959123894474\", \"0.5626754226801309\"], \"3\": [\"0.5\", \"0.508731165459295\", \"0.42390523323296675\", \"0.2890723546951844\", \"0.44641713448717896\"], \"4\": [\"0.9654135338345865\", \"0.9457039534508918\", \"0.91353810165332\", \"0.8665529032440166\", \"0.761168092920869\"], \"5\": [\"0.5208333333333334\", \"0.45960121688076155\", \"0.4850021517919319\", \"0.3698472760726189\", \"0.5885459907479822\"], \"6\": [\"0.9695121951219512\", \"0.9829102041610718\", \"0.8783273298219823\", \"0.8452343356364812\", \"0.8468878128302078\"], \"7\": [\"0.1875\", \"0.21297029265126374\", \"0.20204907679693923\", \"0.18879596350700364\", \"0.26690796127362026\"], \"8\": [\"0.2\", \"0.17937737701717246\", \"0.18603492362256455\", \"0.35265760727304896\", \"0.5204381399697293\"], \"9\": [\"0.1935483870967742\", \"0.0\", \"0.0\", \"0.0\", \"0.0\"], \"10\": [\"0.7929399585921325\", \"0.8868918866876773\", \"0.9106798579273513\", \"0.918516089720871\", \"0.7606915558150309\"], \"11\": [\"0.109504744346699\", \"0.15517236351132435\", \"0.08317957231156836\", \"0.06025220533185004\", \"0.1361674314646668\"], \"12\": [\"0.9663003663003663\", \"1.0\", \"0.9578921872158198\", \"0.9500198505373939\", \"1.0\"], \"13\": [\"0.23333333333333334\", \"0.1652671008734633\", \"0.20794626332378627\", \"0.09215354896087082\", \"0.020807229187746606\"], \"14\": [\"0.23333333333333334\", \"0.19883288732465157\", \"0.23297935596527797\", \"0.3400887860915395\", \"0.24585125983464162\"], \"15\": [\"0.23333333333333334\", \"0.2950250169423252\", \"0.19596729905486926\", \"0.3584691576237604\", \"0.25328337270159523\"], \"16\": [\"0.7873408239700375\", \"0.7403429977914502\", \"0.8220420529487956\", \"0.9443952640175113\", \"0.7403792276538499\"], \"17\": [\"0.20844821055398052\", \"0.07163901886978427\", \"0.0\", \"0.03451153283833688\", \"0.0021040435069474284\"], \"18\": [\"0.9791666666666666\", \"0.8634090943739856\", \"0.7090784775284871\", \"0.5186752709084012\", \"0.4017637978549433\"], \"19\": [\"0.14285714285714285\", \"0.13545667976345457\", \"0.01866108135943803\", \"0.0\", \"0.0\"], \"20\": [\"0.09523809523809523\", \"0.04165615142068378\", \"0.0999561286930817\", \"0.11921405196496007\", \"0.33967216023826213\"], \"21\": [\"0.11428571428571428\", \"0.22269933457069768\", \"0.15209764059492942\", \"0.306430603076711\", \"0.38611171957321017\"], \"22\": [\"0.8195539974681079\", \"0.8321790881910501\", \"0.8505736472919345\", \"0.7573383170090837\", \"0.8133743042837552\"], \"23\": [\"0.08845808463422775\", \"0.0\", \"0.0\", \"0.0986276605230943\", \"0.17849143957434727\"], \"24\": [\"0.9730108657553452\", \"1.0\", \"1.0\", \"0.9909318688126368\", \"0.8984810959581084\"], \"25\": [\"0.20454545454545456\", \"0.2707858962793771\", \"0.23633549507903898\", \"0.24309732331257192\", \"0.12338367615652365\"], \"26\": [\"0.17647058823529413\", \"0.0945103701498902\", \"0.17863353708764285\", \"0.30150358659945004\", \"0.5005092178946878\"], \"27\": [\"0.18947368421052632\", \"0.2405782388303923\", \"0.10900641237781986\", \"0.13627871736426533\", \"0.15731155217577536\"], \"28\": [\"0.8035646806902632\", \"0.7692564500910006\", \"0.710193571095052\", \"0.531095373969195\", \"0.4184428500342675\"], \"29\": [\"0.15125149366000354\", \"0.16867452148986778\", \"0.0956860349740292\", \"0.1541797474174007\", \"0.15999692388702244\"]}"); + var histories_all = JSON.parse("{\"0\": [\"0.9970014992503748\", \"1.0\", \"1.0\", \"1.0\", \"0.7837439761934797\"], \"1\": [\"0.5\", \"0.6324374594349585\", \"0.5345881489103177\", \"0.45679376834516183\", \"0.40783744209259337\"], \"2\": [\"0.5\", \"0.43419653279749904\", \"0.4568895918893525\", \"0.4435372819588432\", \"0.533343439062238\"], \"3\": [\"0.5\", \"0.5423404474080536\", \"0.49203000732383123\", \"0.588016838550556\", \"0.560557161735712\"], \"4\": [\"0.9323308270676691\", \"0.9363655962391914\", \"1.0\", \"0.7940245731632003\", \"0.7390137672137976\"], \"5\": [\"0.5108695652173914\", \"0.5846225802663129\", \"0.6452245705289005\", \"0.5660110570789518\", \"0.5744153682403548\"], \"6\": [\"0.9652439024390244\", \"1.0\", \"0.9733338159884262\", \"1.0\", \"0.9594334378539845\"], \"7\": [\"0.13513513513513514\", \"0.18021431489743497\", \"0.17666345861421992\", \"0.24339553556984678\", \"0.45529251853748237\"], \"8\": [\"0.16666666666666666\", \"0.20817666246229438\", \"0.27216726239435074\", \"0.10019556155712028\", \"0.18808957706195623\"], \"9\": [\"0.14925373134328357\", \"0.0310393565843044\", \"0.0\", \"0.0\", \"0.0\"], \"10\": [\"0.7812836438923396\", \"0.86303921360473\", \"0.8451768130495224\", \"0.7711986071087384\", \"0.7172241670619275\"], \"11\": [\"0.10296339512027636\", \"0.06459683130415139\", \"0.0\", \"0.11395225862864283\", \"0.15907523572761667\"], \"12\": [\"0.9611721611721612\", \"1.0\", \"0.9177853393033724\", \"0.9918785128795728\", \"0.9219331495014382\"], \"13\": [\"0.20512820512820512\", \"0.10599692696125207\", \"0.0\", \"0.0\", \"0.0\"], \"14\": [\"0.26666666666666666\", \"0.09713121514906387\", \"0.11527927985213163\", \"0.08437968019313832\", \"0.06901174100044068\"], \"15\": [\"0.2318840579710145\", \"0.07032033822706507\", \"0.13415416342786074\", \"0.14326991613807127\", \"0.15439317930091284\"], \"16\": [\"0.7889887640449438\", \"0.8231790254163652\", \"0.746951311356595\", \"0.7611826287106377\", \"0.6136575152844499\"], \"17\": [\"0.19643881548515418\", \"0.26337622344857226\", \"0.32832090863329677\", \"0.4209566175366472\", \"0.4949774968040582\"], \"18\": [\"0.9791666666666666\", \"1.0\", \"0.9068535073120458\", \"0.947496961854642\", \"0.8754367107148147\"], \"19\": [\"0.14285714285714285\", \"0.10584247261934698\", \"0.2880294399328644\", \"0.22711989380616743\", \"0.204401506210669\"], \"20\": [\"0.09523809523809523\", \"0.03195279037385794\", \"0.0\", \"0.04681521148023724\", \"0.0\"], \"21\": [\"0.11428571428571428\", \"0.1466039195479508\", \"0.2259779013271088\", \"0.16851591213635025\", \"0.06156993448719093\"], \"22\": [\"0.7966046677703119\", \"0.8350750236368255\", \"0.9548780087322217\", \"1.0\", \"1.0\"], \"23\": [\"0.07486975513377964\", \"0.10468844225790451\", \"0.10181278365668193\", \"0.0\", \"0.20754728081078105\"], \"24\": [\"0.9705573080967402\", \"0.7657818817071332\", \"0.7333677838639374\", \"0.6382317027440025\", \"0.672049766720993\"], \"25\": [\"0.18867924528301888\", \"0.15312831704429283\", \"0.1251840545238809\", \"0.1440010219636379\", \"0.18836780038375184\"], \"26\": [\"0.19607843137254902\", \"0.14855149491145297\", \"0.10443455288063871\", \"0.19971345269179924\", \"0.21573610405307372\"], \"27\": [\"0.19230769230769232\", \"0.27829600361626017\", \"0.34138505923545676\", \"0.3097963609402502\", \"0.25250325511397376\"], \"28\": [\"0.7940896558480637\", \"0.6969350903948085\", \"0.7618456137301092\", \"0.8151379697616357\", \"0.8563718366453692\"], \"29\": [\"0.1343777315521322\", \"0.08608852574468087\", \"0.035014696011336215\", \"0.0\", \"0.0\"]}"); var thresholds_all = JSON.parse("{\"0\": \"0.7\", \"1\": \"0.7\", \"2\": \"0.7\", \"3\": \"0.7\", \"4\": \"0.7\", \"5\": \"0.7\", \"6\": \"0.7\", \"7\": \"0.7\", \"8\": \"0.7\", \"9\": \"0.7\", \"10\": \"0.7\", \"11\": \"0.7\", \"12\": \"0.7\", \"13\": \"0.7\", \"14\": \"0.7\", \"15\": \"0.7\", \"16\": \"0.7\", \"17\": \"0.7\", \"18\": \"0.7\", \"19\": \"0.7\", \"20\": \"0.7\", \"21\": \"0.7\", \"22\": \"0.7\", \"23\": \"0.7\", \"24\": \"0.7\", \"25\": \"0.7\", \"26\": \"0.7\", \"27\": \"0.7\", \"28\": \"0.7\", \"29\": \"0.7\"}"); - var trends_all = JSON.parse("{\"0\": \"negative\", \"1\": \"neutral\", \"2\": \"positive\", \"3\": \"negative\", \"4\": \"negative\", \"5\": \"neutral\", \"6\": \"negative\", \"7\": \"positive\", \"8\": \"positive\", \"9\": \"negative\", \"10\": \"neutral\", \"11\": \"neutral\", \"12\": \"neutral\", \"13\": \"negative\", \"14\": \"positive\", \"15\": \"positive\", \"16\": \"positive\", \"17\": \"negative\", \"18\": \"negative\", \"19\": \"negative\", \"20\": \"positive\", \"21\": \"positive\", \"22\": \"neutral\", \"23\": \"positive\", \"24\": \"negative\", \"25\": \"negative\", \"26\": \"positive\", \"27\": \"negative\", \"28\": \"negative\", \"29\": \"neutral\"}"); - var passed_all = JSON.parse("{\"0\": false, \"1\": false, \"2\": false, \"3\": false, \"4\": true, \"5\": false, \"6\": true, \"7\": false, \"8\": false, \"9\": false, \"10\": true, \"11\": false, \"12\": true, \"13\": false, \"14\": false, \"15\": false, \"16\": true, \"17\": false, \"18\": false, \"19\": false, \"20\": false, \"21\": false, \"22\": true, \"23\": false, \"24\": true, \"25\": false, \"26\": false, \"27\": false, \"28\": false, \"29\": false}"); + var trends_all = JSON.parse("{\"0\": \"negative\", \"1\": \"negative\", \"2\": \"neutral\", \"3\": \"positive\", \"4\": \"negative\", \"5\": \"positive\", \"6\": \"neutral\", \"7\": \"positive\", \"8\": \"neutral\", \"9\": \"negative\", \"10\": \"negative\", \"11\": \"positive\", \"12\": \"neutral\", \"13\": \"negative\", \"14\": \"negative\", \"15\": \"neutral\", \"16\": \"negative\", \"17\": \"positive\", \"18\": \"negative\", \"19\": \"positive\", \"20\": \"negative\", \"21\": \"neutral\", \"22\": \"positive\", \"23\": \"positive\", \"24\": \"negative\", \"25\": \"neutral\", \"26\": \"neutral\", \"27\": \"positive\", \"28\": \"positive\", \"29\": \"negative\"}"); + var passed_all = JSON.parse("{\"0\": true, \"1\": false, \"2\": false, \"3\": false, \"4\": true, \"5\": false, \"6\": true, \"7\": false, \"8\": false, \"9\": false, \"10\": true, \"11\": false, \"12\": true, \"13\": false, \"14\": false, \"15\": false, \"16\": false, \"17\": false, \"18\": true, \"19\": false, \"20\": false, \"21\": false, \"22\": true, \"23\": false, \"24\": false, \"25\": false, \"26\": false, \"27\": false, \"28\": true, \"29\": false}"); var names_all = JSON.parse("{\"0\": \"Accuracy\", \"1\": \"Precision\", \"2\": \"Recall\", \"3\": \"F1 Score\", \"4\": \"AUROC\", \"5\": \"AveragePrecision\", \"6\": \"Accuracy\", \"7\": \"Precision\", \"8\": \"Recall\", \"9\": \"F1 Score\", \"10\": \"AUROC\", \"11\": \"AveragePrecision\", \"12\": \"Accuracy\", \"13\": \"Precision\", \"14\": \"Recall\", \"15\": \"F1 Score\", \"16\": \"AUROC\", \"17\": \"AveragePrecision\", \"18\": \"Accuracy\", \"19\": \"Precision\", \"20\": \"Recall\", \"21\": \"F1 Score\", \"22\": \"AUROC\", \"23\": \"AveragePrecision\", \"24\": \"Accuracy\", \"25\": \"Precision\", \"26\": \"Recall\", \"27\": \"F1 Score\", \"28\": \"AUROC\", \"29\": \"AveragePrecision\"}"); var timestamps_all = JSON.parse("{\"0\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"1\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"2\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"3\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"4\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"5\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"6\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"7\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"8\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"9\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"10\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"11\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"12\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"13\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"14\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"15\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"16\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"17\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"18\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"19\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"20\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"21\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"22\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"23\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"24\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"25\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"26\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"27\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"28\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"29\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"]}"); @@ -2904,10 +2904,10 @@

Ethical Considerations

} } var slices_all = JSON.parse("{\"0\": [\"metric:Accuracy\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"1\": [\"metric:Precision\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"2\": [\"metric:Recall\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"3\": [\"metric:F1 Score\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"4\": [\"metric:AUROC\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"5\": [\"metric:AveragePrecision\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"6\": [\"metric:Accuracy\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"7\": [\"metric:Precision\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"8\": [\"metric:Recall\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"9\": [\"metric:F1 Score\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"10\": [\"metric:AUROC\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"11\": [\"metric:AveragePrecision\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"12\": [\"metric:Accuracy\", \"gender:M\", \"age:overall_age\"], \"13\": [\"metric:Precision\", \"gender:M\", \"age:overall_age\"], \"14\": [\"metric:Recall\", \"gender:M\", \"age:overall_age\"], \"15\": [\"metric:F1 Score\", \"gender:M\", \"age:overall_age\"], \"16\": [\"metric:AUROC\", \"gender:M\", \"age:overall_age\"], \"17\": [\"metric:AveragePrecision\", \"gender:M\", \"age:overall_age\"], \"18\": [\"metric:Accuracy\", \"gender:F\", \"age:overall_age\"], \"19\": [\"metric:Precision\", \"gender:F\", \"age:overall_age\"], \"20\": [\"metric:Recall\", \"gender:F\", \"age:overall_age\"], \"21\": [\"metric:F1 Score\", \"gender:F\", \"age:overall_age\"], \"22\": [\"metric:AUROC\", \"gender:F\", \"age:overall_age\"], \"23\": [\"metric:AveragePrecision\", \"gender:F\", \"age:overall_age\"], \"24\": [\"metric:Accuracy\", \"age:overall_age\", \"gender:overall_gender\"], \"25\": [\"metric:Precision\", \"age:overall_age\", \"gender:overall_gender\"], \"26\": [\"metric:Recall\", \"age:overall_age\", \"gender:overall_gender\"], \"27\": [\"metric:F1 Score\", \"age:overall_age\", \"gender:overall_gender\"], \"28\": [\"metric:AUROC\", \"age:overall_age\", \"gender:overall_gender\"], \"29\": [\"metric:AveragePrecision\", \"age:overall_age\", \"gender:overall_gender\"]}"); - var histories_all = JSON.parse("{\"0\": [\"0.9970014992503748\", \"1.0\", \"0.9330811337479366\", \"0.7337832095796472\", \"0.560485137166198\"], \"1\": [\"0.5\", \"0.615141579060318\", \"0.5042000822133514\", \"0.4833785484653674\", \"0.5640580957361856\"], \"2\": [\"0.5\", \"0.5767711059421224\", \"0.6289029480776678\", \"0.6259959123894474\", \"0.5626754226801309\"], \"3\": [\"0.5\", \"0.508731165459295\", \"0.42390523323296675\", \"0.2890723546951844\", \"0.44641713448717896\"], \"4\": [\"0.9654135338345865\", \"0.9457039534508918\", \"0.91353810165332\", \"0.8665529032440166\", \"0.761168092920869\"], \"5\": [\"0.5208333333333334\", \"0.45960121688076155\", \"0.4850021517919319\", \"0.3698472760726189\", \"0.5885459907479822\"], \"6\": [\"0.9695121951219512\", \"0.9829102041610718\", \"0.8783273298219823\", \"0.8452343356364812\", \"0.8468878128302078\"], \"7\": [\"0.1875\", \"0.21297029265126374\", \"0.20204907679693923\", \"0.18879596350700364\", \"0.26690796127362026\"], \"8\": [\"0.2\", \"0.17937737701717246\", \"0.18603492362256455\", \"0.35265760727304896\", \"0.5204381399697293\"], \"9\": [\"0.1935483870967742\", \"0.0\", \"0.0\", \"0.0\", \"0.0\"], \"10\": [\"0.7929399585921325\", \"0.8868918866876773\", \"0.9106798579273513\", \"0.918516089720871\", \"0.7606915558150309\"], \"11\": [\"0.109504744346699\", \"0.15517236351132435\", \"0.08317957231156836\", \"0.06025220533185004\", \"0.1361674314646668\"], \"12\": [\"0.9663003663003663\", \"1.0\", \"0.9578921872158198\", \"0.9500198505373939\", \"1.0\"], \"13\": [\"0.23333333333333334\", \"0.1652671008734633\", \"0.20794626332378627\", \"0.09215354896087082\", \"0.020807229187746606\"], \"14\": [\"0.23333333333333334\", \"0.19883288732465157\", \"0.23297935596527797\", \"0.3400887860915395\", \"0.24585125983464162\"], \"15\": [\"0.23333333333333334\", \"0.2950250169423252\", \"0.19596729905486926\", \"0.3584691576237604\", \"0.25328337270159523\"], \"16\": [\"0.7873408239700375\", \"0.7403429977914502\", \"0.8220420529487956\", \"0.9443952640175113\", \"0.7403792276538499\"], \"17\": [\"0.20844821055398052\", \"0.07163901886978427\", \"0.0\", \"0.03451153283833688\", \"0.0021040435069474284\"], \"18\": [\"0.9791666666666666\", \"0.8634090943739856\", \"0.7090784775284871\", \"0.5186752709084012\", \"0.4017637978549433\"], \"19\": [\"0.14285714285714285\", \"0.13545667976345457\", \"0.01866108135943803\", \"0.0\", \"0.0\"], \"20\": [\"0.09523809523809523\", \"0.04165615142068378\", \"0.0999561286930817\", \"0.11921405196496007\", \"0.33967216023826213\"], \"21\": [\"0.11428571428571428\", \"0.22269933457069768\", \"0.15209764059492942\", \"0.306430603076711\", \"0.38611171957321017\"], \"22\": [\"0.8195539974681079\", \"0.8321790881910501\", \"0.8505736472919345\", \"0.7573383170090837\", \"0.8133743042837552\"], \"23\": [\"0.08845808463422775\", \"0.0\", \"0.0\", \"0.0986276605230943\", \"0.17849143957434727\"], \"24\": [\"0.9730108657553452\", \"1.0\", \"1.0\", \"0.9909318688126368\", \"0.8984810959581084\"], \"25\": [\"0.20454545454545456\", \"0.2707858962793771\", \"0.23633549507903898\", \"0.24309732331257192\", \"0.12338367615652365\"], \"26\": [\"0.17647058823529413\", \"0.0945103701498902\", \"0.17863353708764285\", \"0.30150358659945004\", \"0.5005092178946878\"], \"27\": [\"0.18947368421052632\", \"0.2405782388303923\", \"0.10900641237781986\", \"0.13627871736426533\", \"0.15731155217577536\"], \"28\": [\"0.8035646806902632\", \"0.7692564500910006\", \"0.710193571095052\", \"0.531095373969195\", \"0.4184428500342675\"], \"29\": [\"0.15125149366000354\", \"0.16867452148986778\", \"0.0956860349740292\", \"0.1541797474174007\", \"0.15999692388702244\"]}"); + var histories_all = JSON.parse("{\"0\": [\"0.9970014992503748\", \"1.0\", \"1.0\", \"1.0\", \"0.7837439761934797\"], \"1\": [\"0.5\", \"0.6324374594349585\", \"0.5345881489103177\", \"0.45679376834516183\", \"0.40783744209259337\"], \"2\": [\"0.5\", \"0.43419653279749904\", \"0.4568895918893525\", \"0.4435372819588432\", \"0.533343439062238\"], \"3\": [\"0.5\", \"0.5423404474080536\", \"0.49203000732383123\", \"0.588016838550556\", \"0.560557161735712\"], \"4\": [\"0.9323308270676691\", \"0.9363655962391914\", \"1.0\", \"0.7940245731632003\", \"0.7390137672137976\"], \"5\": [\"0.5108695652173914\", \"0.5846225802663129\", \"0.6452245705289005\", \"0.5660110570789518\", \"0.5744153682403548\"], \"6\": [\"0.9652439024390244\", \"1.0\", \"0.9733338159884262\", \"1.0\", \"0.9594334378539845\"], \"7\": [\"0.13513513513513514\", \"0.18021431489743497\", \"0.17666345861421992\", \"0.24339553556984678\", \"0.45529251853748237\"], \"8\": [\"0.16666666666666666\", \"0.20817666246229438\", \"0.27216726239435074\", \"0.10019556155712028\", \"0.18808957706195623\"], \"9\": [\"0.14925373134328357\", \"0.0310393565843044\", \"0.0\", \"0.0\", \"0.0\"], \"10\": [\"0.7812836438923396\", \"0.86303921360473\", \"0.8451768130495224\", \"0.7711986071087384\", \"0.7172241670619275\"], \"11\": [\"0.10296339512027636\", \"0.06459683130415139\", \"0.0\", \"0.11395225862864283\", \"0.15907523572761667\"], \"12\": [\"0.9611721611721612\", \"1.0\", \"0.9177853393033724\", \"0.9918785128795728\", \"0.9219331495014382\"], \"13\": [\"0.20512820512820512\", \"0.10599692696125207\", \"0.0\", \"0.0\", \"0.0\"], \"14\": [\"0.26666666666666666\", \"0.09713121514906387\", \"0.11527927985213163\", \"0.08437968019313832\", \"0.06901174100044068\"], \"15\": [\"0.2318840579710145\", \"0.07032033822706507\", \"0.13415416342786074\", \"0.14326991613807127\", \"0.15439317930091284\"], \"16\": [\"0.7889887640449438\", \"0.8231790254163652\", \"0.746951311356595\", \"0.7611826287106377\", \"0.6136575152844499\"], \"17\": [\"0.19643881548515418\", \"0.26337622344857226\", \"0.32832090863329677\", \"0.4209566175366472\", \"0.4949774968040582\"], \"18\": [\"0.9791666666666666\", \"1.0\", \"0.9068535073120458\", \"0.947496961854642\", \"0.8754367107148147\"], \"19\": [\"0.14285714285714285\", \"0.10584247261934698\", \"0.2880294399328644\", \"0.22711989380616743\", \"0.204401506210669\"], \"20\": [\"0.09523809523809523\", \"0.03195279037385794\", \"0.0\", \"0.04681521148023724\", \"0.0\"], \"21\": [\"0.11428571428571428\", \"0.1466039195479508\", \"0.2259779013271088\", \"0.16851591213635025\", \"0.06156993448719093\"], \"22\": [\"0.7966046677703119\", \"0.8350750236368255\", \"0.9548780087322217\", \"1.0\", \"1.0\"], \"23\": [\"0.07486975513377964\", \"0.10468844225790451\", \"0.10181278365668193\", \"0.0\", \"0.20754728081078105\"], \"24\": [\"0.9705573080967402\", \"0.7657818817071332\", \"0.7333677838639374\", \"0.6382317027440025\", \"0.672049766720993\"], \"25\": [\"0.18867924528301888\", \"0.15312831704429283\", \"0.1251840545238809\", \"0.1440010219636379\", \"0.18836780038375184\"], \"26\": [\"0.19607843137254902\", \"0.14855149491145297\", \"0.10443455288063871\", \"0.19971345269179924\", \"0.21573610405307372\"], \"27\": [\"0.19230769230769232\", \"0.27829600361626017\", \"0.34138505923545676\", \"0.3097963609402502\", \"0.25250325511397376\"], \"28\": [\"0.7940896558480637\", \"0.6969350903948085\", \"0.7618456137301092\", \"0.8151379697616357\", \"0.8563718366453692\"], \"29\": [\"0.1343777315521322\", \"0.08608852574468087\", \"0.035014696011336215\", \"0.0\", \"0.0\"]}"); var thresholds_all = JSON.parse("{\"0\": \"0.7\", \"1\": \"0.7\", \"2\": \"0.7\", \"3\": \"0.7\", \"4\": \"0.7\", \"5\": \"0.7\", \"6\": \"0.7\", \"7\": \"0.7\", \"8\": \"0.7\", \"9\": \"0.7\", \"10\": \"0.7\", \"11\": \"0.7\", \"12\": \"0.7\", \"13\": \"0.7\", \"14\": \"0.7\", \"15\": \"0.7\", \"16\": \"0.7\", \"17\": \"0.7\", \"18\": \"0.7\", \"19\": \"0.7\", \"20\": \"0.7\", \"21\": \"0.7\", \"22\": \"0.7\", \"23\": \"0.7\", \"24\": \"0.7\", \"25\": \"0.7\", \"26\": \"0.7\", \"27\": \"0.7\", \"28\": \"0.7\", \"29\": \"0.7\"}"); - var trends_all = JSON.parse("{\"0\": \"negative\", \"1\": \"neutral\", \"2\": \"positive\", \"3\": \"negative\", \"4\": \"negative\", \"5\": \"neutral\", \"6\": \"negative\", \"7\": \"positive\", \"8\": \"positive\", \"9\": \"negative\", \"10\": \"neutral\", \"11\": \"neutral\", \"12\": \"neutral\", \"13\": \"negative\", \"14\": \"positive\", \"15\": \"positive\", \"16\": \"positive\", \"17\": \"negative\", \"18\": \"negative\", \"19\": \"negative\", \"20\": \"positive\", \"21\": \"positive\", \"22\": \"neutral\", \"23\": \"positive\", \"24\": \"negative\", \"25\": \"negative\", \"26\": \"positive\", \"27\": \"negative\", \"28\": \"negative\", \"29\": \"neutral\"}"); - var passed_all = JSON.parse("{\"0\": false, \"1\": false, \"2\": false, \"3\": false, \"4\": true, \"5\": false, \"6\": true, \"7\": false, \"8\": false, \"9\": false, \"10\": true, \"11\": false, \"12\": true, \"13\": false, \"14\": false, \"15\": false, \"16\": true, \"17\": false, \"18\": false, \"19\": false, \"20\": false, \"21\": false, \"22\": true, \"23\": false, \"24\": true, \"25\": false, \"26\": false, \"27\": false, \"28\": false, \"29\": false}"); + var trends_all = JSON.parse("{\"0\": \"negative\", \"1\": \"negative\", \"2\": \"neutral\", \"3\": \"positive\", \"4\": \"negative\", \"5\": \"positive\", \"6\": \"neutral\", \"7\": \"positive\", \"8\": \"neutral\", \"9\": \"negative\", \"10\": \"negative\", \"11\": \"positive\", \"12\": \"neutral\", \"13\": \"negative\", \"14\": \"negative\", \"15\": \"neutral\", \"16\": \"negative\", \"17\": \"positive\", \"18\": \"negative\", \"19\": \"positive\", \"20\": \"negative\", \"21\": \"neutral\", \"22\": \"positive\", \"23\": \"positive\", \"24\": \"negative\", \"25\": \"neutral\", \"26\": \"neutral\", \"27\": \"positive\", \"28\": \"positive\", \"29\": \"negative\"}"); + var passed_all = JSON.parse("{\"0\": true, \"1\": false, \"2\": false, \"3\": false, \"4\": true, \"5\": false, \"6\": true, \"7\": false, \"8\": false, \"9\": false, \"10\": true, \"11\": false, \"12\": true, \"13\": false, \"14\": false, \"15\": false, \"16\": false, \"17\": false, \"18\": true, \"19\": false, \"20\": false, \"21\": false, \"22\": true, \"23\": false, \"24\": false, \"25\": false, \"26\": false, \"27\": false, \"28\": true, \"29\": false}"); var names_all = JSON.parse("{\"0\": \"Accuracy\", \"1\": \"Precision\", \"2\": \"Recall\", \"3\": \"F1 Score\", \"4\": \"AUROC\", \"5\": \"AveragePrecision\", \"6\": \"Accuracy\", \"7\": \"Precision\", \"8\": \"Recall\", \"9\": \"F1 Score\", \"10\": \"AUROC\", \"11\": \"AveragePrecision\", \"12\": \"Accuracy\", \"13\": \"Precision\", \"14\": \"Recall\", \"15\": \"F1 Score\", \"16\": \"AUROC\", \"17\": \"AveragePrecision\", \"18\": \"Accuracy\", \"19\": \"Precision\", \"20\": \"Recall\", \"21\": \"F1 Score\", \"22\": \"AUROC\", \"23\": \"AveragePrecision\", \"24\": \"Accuracy\", \"25\": \"Precision\", \"26\": \"Recall\", \"27\": \"F1 Score\", \"28\": \"AUROC\", \"29\": \"AveragePrecision\"}"); var timestamps_all = JSON.parse("{\"0\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"1\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"2\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"3\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"4\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"5\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"6\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"7\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"8\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"9\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"10\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"11\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"12\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"13\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"14\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"15\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"16\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"17\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"18\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"19\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"20\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"21\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"22\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"23\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"24\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"25\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"26\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"27\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"28\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"29\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"]}"); diff --git a/api/tutorials/nihcxr/cxr_classification.html b/api/tutorials/nihcxr/cxr_classification.html index c458b5dc7..63450a948 100644 --- a/api/tutorials/nihcxr/cxr_classification.html +++ b/api/tutorials/nihcxr/cxr_classification.html @@ -496,74 +496,74 @@

Generate Historical Reports
-Flattening the indices: 100%|████████| 1000/1000 [00:50<00:00, 19.80 examples/s]
-Flattening the indices: 100%|████| 1000/1000 [00:00<00:00, 542039.80 examples/s]
-Filter: 100%|████████████████████| 1000/1000 [00:00<00:00, 239400.91 examples/s]
-Map: 100%|███████████████████████████| 400/400 [00:00<00:00, 1811.79 examples/s]
-Filter -> Patient Gender:M: 100%|███| 400/400 [00:00<00:00, 43175.71 examples/s]
-Filter -> Patient Gender:F: 100%|███| 400/400 [00:00<00:00, 27810.46 examples/s]
-Filter -> overall: 100%|████████████| 400/400 [00:00<00:00, 45309.54 examples/s]
-Filter -> Patient Age:[19 - 35]: 100%|█| 400/400 [00:00<00:00, 41452.86 examples
-Filter -> Patient Age:[35 - 65]: 100%|█| 400/400 [00:00<00:00, 41916.84 examples
-Filter -> Patient Age:[65 - 100]: 100%|█| 400/400 [00:00<00:00, 43230.22 example
+Flattening the indices: 100%|████████| 1000/1000 [00:50<00:00, 19.74 examples/s]
+Flattening the indices: 100%|████| 1000/1000 [00:00<00:00, 533355.04 examples/s]
+Filter: 100%|████████████████████| 1000/1000 [00:00<00:00, 229648.71 examples/s]
+Map: 100%|███████████████████████████| 400/400 [00:00<00:00, 1747.36 examples/s]
+Filter -> Patient Gender:M: 100%|███| 400/400 [00:00<00:00, 32807.09 examples/s]
+Filter -> Patient Gender:F: 100%|███| 400/400 [00:00<00:00, 18482.61 examples/s]
+Filter -> overall: 100%|████████████| 400/400 [00:00<00:00, 45613.81 examples/s]
+Filter -> Patient Age:[19 - 35]: 100%|█| 400/400 [00:00<00:00, 42692.29 examples
+Filter -> Patient Age:[35 - 65]: 100%|█| 400/400 [00:00<00:00, 37186.84 examples
+Filter -> Patient Age:[65 - 100]: 100%|█| 400/400 [00:00<00:00, 40703.61 example
 Filter -> Patient Age:[19 - 35]&Patient Gender:M: 100%|█| 400/400 [00:00<00:00,
 Filter -> Patient Age:[19 - 35]&Patient Gender:F: 100%|█| 400/400 [00:00<00:00,
 Filter -> Patient Age:[35 - 65]&Patient Gender:M: 100%|█| 400/400 [00:00<00:00,
 Filter -> Patient Age:[35 - 65]&Patient Gender:F: 100%|█| 400/400 [00:00<00:00,
 Filter -> Patient Age:[65 - 100]&Patient Gender:M: 100%|█| 400/400 [00:00<00:00,
 Filter -> Patient Age:[65 - 100]&Patient Gender:F: 100%|█| 400/400 [00:00<00:00,
-Filter -> overall: 100%|████████████| 400/400 [00:00<00:00, 48663.46 examples/s]
-Flattening the indices: 100%|████████| 1000/1000 [00:53<00:00, 18.54 examples/s]
-Flattening the indices: 100%|████| 1000/1000 [00:00<00:00, 559538.95 examples/s]
-Filter: 100%|████████████████████| 1000/1000 [00:00<00:00, 237920.70 examples/s]
-Map: 100%|███████████████████████████| 396/396 [00:00<00:00, 1802.32 examples/s]
-Filter -> Patient Gender:M: 100%|███| 396/396 [00:00<00:00, 43257.14 examples/s]
-Filter -> Patient Gender:F: 100%|███| 396/396 [00:00<00:00, 43674.58 examples/s]
-Filter -> overall: 100%|████████████| 396/396 [00:00<00:00, 45567.75 examples/s]
-Filter -> Patient Age:[19 - 35]: 100%|█| 396/396 [00:00<00:00, 41090.11 examples
-Filter -> Patient Age:[35 - 65]: 100%|█| 396/396 [00:00<00:00, 43035.22 examples
-Filter -> Patient Age:[65 - 100]: 100%|█| 396/396 [00:00<00:00, 41918.69 example
+Filter -> overall: 100%|████████████| 400/400 [00:00<00:00, 44735.66 examples/s]
+Flattening the indices: 100%|████████| 1000/1000 [00:51<00:00, 19.42 examples/s]
+Flattening the indices: 100%|████| 1000/1000 [00:00<00:00, 552973.50 examples/s]
+Filter: 100%|████████████████████| 1000/1000 [00:00<00:00, 232461.56 examples/s]
+Map: 100%|███████████████████████████| 396/396 [00:00<00:00, 1809.15 examples/s]
+Filter -> Patient Gender:M: 100%|███| 396/396 [00:00<00:00, 43707.91 examples/s]
+Filter -> Patient Gender:F: 100%|███| 396/396 [00:00<00:00, 43281.94 examples/s]
+Filter -> overall: 100%|████████████| 396/396 [00:00<00:00, 44764.56 examples/s]
+Filter -> Patient Age:[19 - 35]: 100%|█| 396/396 [00:00<00:00, 23280.46 examples
+Filter -> Patient Age:[35 - 65]: 100%|█| 396/396 [00:00<00:00, 23761.72 examples
+Filter -> Patient Age:[65 - 100]: 100%|█| 396/396 [00:00<00:00, 22314.92 example
 Filter -> Patient Age:[19 - 35]&Patient Gender:M: 100%|█| 396/396 [00:00<00:00,
 Filter -> Patient Age:[19 - 35]&Patient Gender:F: 100%|█| 396/396 [00:00<00:00,
 Filter -> Patient Age:[35 - 65]&Patient Gender:M: 100%|█| 396/396 [00:00<00:00,
 Filter -> Patient Age:[35 - 65]&Patient Gender:F: 100%|█| 396/396 [00:00<00:00,
 Filter -> Patient Age:[65 - 100]&Patient Gender:M: 100%|█| 396/396 [00:00<00:00,
 Filter -> Patient Age:[65 - 100]&Patient Gender:F: 100%|█| 396/396 [00:00<00:00,
-Filter -> overall: 100%|████████████| 396/396 [00:00<00:00, 46357.54 examples/s]
-Flattening the indices: 100%|████████| 1000/1000 [00:52<00:00, 18.89 examples/s]
-Flattening the indices: 100%|████| 1000/1000 [00:00<00:00, 549568.13 examples/s]
-Filter: 100%|████████████████████| 1000/1000 [00:00<00:00, 237853.24 examples/s]
-Map: 100%|███████████████████████████| 383/383 [00:00<00:00, 1791.85 examples/s]
-Filter -> Patient Gender:M: 100%|███| 383/383 [00:00<00:00, 42952.36 examples/s]
-Filter -> Patient Gender:F: 100%|███| 383/383 [00:00<00:00, 42387.95 examples/s]
-Filter -> overall: 100%|████████████| 383/383 [00:00<00:00, 43830.14 examples/s]
-Filter -> Patient Age:[19 - 35]: 100%|█| 383/383 [00:00<00:00, 39980.55 examples
-Filter -> Patient Age:[35 - 65]: 100%|█| 383/383 [00:00<00:00, 42014.34 examples
-Filter -> Patient Age:[65 - 100]: 100%|█| 383/383 [00:00<00:00, 41591.20 example
+Filter -> overall: 100%|████████████| 396/396 [00:00<00:00, 48020.83 examples/s]
+Flattening the indices: 100%|████████| 1000/1000 [00:51<00:00, 19.48 examples/s]
+Flattening the indices: 100%|████| 1000/1000 [00:00<00:00, 571042.07 examples/s]
+Filter: 100%|████████████████████| 1000/1000 [00:00<00:00, 242683.79 examples/s]
+Map: 100%|███████████████████████████| 383/383 [00:00<00:00, 1814.92 examples/s]
+Filter -> Patient Gender:M: 100%|███| 383/383 [00:00<00:00, 42677.36 examples/s]
+Filter -> Patient Gender:F: 100%|███| 383/383 [00:00<00:00, 42890.44 examples/s]
+Filter -> overall: 100%|████████████| 383/383 [00:00<00:00, 45444.52 examples/s]
+Filter -> Patient Age:[19 - 35]: 100%|█| 383/383 [00:00<00:00, 40784.46 examples
+Filter -> Patient Age:[35 - 65]: 100%|█| 383/383 [00:00<00:00, 42582.33 examples
+Filter -> Patient Age:[65 - 100]: 100%|█| 383/383 [00:00<00:00, 42549.62 example
 Filter -> Patient Age:[19 - 35]&Patient Gender:M: 100%|█| 383/383 [00:00<00:00,
 Filter -> Patient Age:[19 - 35]&Patient Gender:F: 100%|█| 383/383 [00:00<00:00,
 Filter -> Patient Age:[35 - 65]&Patient Gender:M: 100%|█| 383/383 [00:00<00:00,
 Filter -> Patient Age:[35 - 65]&Patient Gender:F: 100%|█| 383/383 [00:00<00:00,
 Filter -> Patient Age:[65 - 100]&Patient Gender:M: 100%|█| 383/383 [00:00<00:00,
 Filter -> Patient Age:[65 - 100]&Patient Gender:F: 100%|█| 383/383 [00:00<00:00,
-Filter -> overall: 100%|████████████| 383/383 [00:00<00:00, 45163.44 examples/s]
-Flattening the indices: 100%|████████| 1000/1000 [00:49<00:00, 20.07 examples/s]
-Flattening the indices: 100%|████| 1000/1000 [00:00<00:00, 286124.84 examples/s]
-Filter: 100%|████████████████████| 1000/1000 [00:00<00:00, 120108.36 examples/s]
-Map: 100%|███████████████████████████| 411/411 [00:00<00:00, 1214.05 examples/s]
-Filter -> Patient Gender:M: 100%|███| 411/411 [00:00<00:00, 44097.49 examples/s]
-Filter -> Patient Gender:F: 100%|███| 411/411 [00:00<00:00, 45350.39 examples/s]
-Filter -> overall: 100%|████████████| 411/411 [00:00<00:00, 46166.55 examples/s]
-Filter -> Patient Age:[19 - 35]: 100%|█| 411/411 [00:00<00:00, 41925.70 examples
-Filter -> Patient Age:[35 - 65]: 100%|█| 411/411 [00:00<00:00, 43115.88 examples
-Filter -> Patient Age:[65 - 100]: 100%|█| 411/411 [00:00<00:00, 43279.33 example
+Filter -> overall: 100%|████████████| 383/383 [00:00<00:00, 45993.60 examples/s]
+Flattening the indices: 100%|████████| 1000/1000 [00:50<00:00, 19.63 examples/s]
+Flattening the indices: 100%|████| 1000/1000 [00:00<00:00, 560286.40 examples/s]
+Filter: 100%|████████████████████| 1000/1000 [00:00<00:00, 238964.45 examples/s]
+Map: 100%|███████████████████████████| 411/411 [00:00<00:00, 1824.64 examples/s]
+Filter -> Patient Gender:M: 100%|███| 411/411 [00:00<00:00, 44209.45 examples/s]
+Filter -> Patient Gender:F: 100%|███| 411/411 [00:00<00:00, 42904.48 examples/s]
+Filter -> overall: 100%|████████████| 411/411 [00:00<00:00, 46443.92 examples/s]
+Filter -> Patient Age:[19 - 35]: 100%|█| 411/411 [00:00<00:00, 41755.09 examples
+Filter -> Patient Age:[35 - 65]: 100%|█| 411/411 [00:00<00:00, 42189.40 examples
+Filter -> Patient Age:[65 - 100]: 100%|█| 411/411 [00:00<00:00, 42680.34 example
 Filter -> Patient Age:[19 - 35]&Patient Gender:M: 100%|█| 411/411 [00:00<00:00,
 Filter -> Patient Age:[19 - 35]&Patient Gender:F: 100%|█| 411/411 [00:00<00:00,
 Filter -> Patient Age:[35 - 65]&Patient Gender:M: 100%|█| 411/411 [00:00<00:00,
 Filter -> Patient Age:[35 - 65]&Patient Gender:F: 100%|█| 411/411 [00:00<00:00,
 Filter -> Patient Age:[65 - 100]&Patient Gender:M: 100%|█| 411/411 [00:00<00:00,
 Filter -> Patient Age:[65 - 100]&Patient Gender:F: 100%|█| 411/411 [00:00<00:00,
-Filter -> overall: 100%|████████████| 411/411 [00:00<00:00, 48033.07 examples/s]
+Filter -> overall: 100%|████████████| 411/411 [00:00<00:00, 47292.50 examples/s]
 

CyclOps offers a package for documentation of the model through a model report. The ModelCardReport class is used to populate and generate the model report as an HTML file. The model report has the following sections:

@@ -660,13 +660,13 @@

Model Creation

-
+
-
+
-
+
-
+
@@ -852,61 +852,61 @@

Multilabel AUROC by Pathology and Age
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-

diff --git a/api/tutorials/nihcxr/cxr_classification.ipynb b/api/tutorials/nihcxr/cxr_classification.ipynb index 6666e4f89..2c9fd8d13 100644 --- a/api/tutorials/nihcxr/cxr_classification.ipynb +++ b/api/tutorials/nihcxr/cxr_classification.ipynb @@ -24,10 +24,10 @@ "id": "fc1eb72a", "metadata": { "execution": { - "iopub.execute_input": "2023-12-09T13:46:11.827402Z", - "iopub.status.busy": "2023-12-09T13:46:11.826877Z", - "iopub.status.idle": "2023-12-09T13:46:19.430791Z", - "shell.execute_reply": "2023-12-09T13:46:19.429541Z" + "iopub.execute_input": "2023-12-09T22:35:37.639602Z", + "iopub.status.busy": "2023-12-09T22:35:37.639054Z", + "iopub.status.idle": "2023-12-09T22:35:46.134102Z", + "shell.execute_reply": "2023-12-09T22:35:46.132925Z" } }, "outputs": [], @@ -71,10 +71,10 @@ "id": "25c2a16f", "metadata": { "execution": { - "iopub.execute_input": "2023-12-09T13:46:19.436181Z", - "iopub.status.busy": "2023-12-09T13:46:19.435652Z", - "iopub.status.idle": "2023-12-09T13:51:32.797827Z", - "shell.execute_reply": "2023-12-09T13:51:32.795819Z" + "iopub.execute_input": "2023-12-09T22:35:46.139523Z", + "iopub.status.busy": "2023-12-09T22:35:46.139119Z", + "iopub.status.idle": "2023-12-09T22:41:01.279601Z", + "shell.execute_reply": "2023-12-09T22:41:01.277611Z" } }, "outputs": [ @@ -91,21 +91,14 @@ "output_type": "stream", "text": [ "\r", - "Flattening the indices: 100%|████████| 1000/1000 [00:50<00:00, 19.80 examples/s]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Flattening the indices: 100%|████████| 1000/1000 [00:50<00:00, 19.80 examples/s]\r\n", + "Flattening the indices: 100%|████████| 1000/1000 [00:50<00:00, 19.75 examples/s]\r", + "Flattening the indices: 100%|████████| 1000/1000 [00:50<00:00, 19.74 examples/s]\r\n", "\r", "Flattening the indices: 0%| | 0/1000 [00:00 Patient Gender:M: 0%| | 0/400 [00:00 Patient Gender:M: 100%|███| 400/400 [00:00<00:00, 32807.09 examples/s]\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "\r", - "Filter -> Patient Gender:M: 0%| | 0/400 [00:00 Patient Gender:M: 100%|███| 400/400 [00:00<00:00, 43175.71 examples/s]\r\n", "\r", "Filter -> Patient Gender:F: 0%| | 0/400 [00:00 Patient Gender:F: 100%|███| 400/400 [00:00<00:00, 27810.46 examples/s]\r\n", + "Filter -> Patient Gender:F: 100%|███| 400/400 [00:00<00:00, 18482.61 examples/s]\r\n", "\r", "Filter -> overall: 0%| | 0/400 [00:00 overall: 100%|████████████| 400/400 [00:00<00:00, 45309.54 examples/s]\r\n" + "Filter -> overall: 100%|████████████| 400/400 [00:00<00:00, 45613.81 examples/s]\r\n" ] }, { @@ -147,9 +140,7 @@ "text": [ "\r", "Filter -> Patient Age:[19 - 35]: 0%| | 0/400 [00:00 Patient Age:[19 - 35]: 100%|█| 400/400 [00:00<00:00, 41452.86 examples\r\n", - "\r", - "Filter -> Patient Age:[35 - 65]: 0%| | 0/400 [00:00 Patient Age:[19 - 35]: 100%|█| 400/400 [00:00<00:00, 42692.29 examples\r\n" ] }, { @@ -157,24 +148,24 @@ "output_type": "stream", "text": [ "\r", - "Filter -> Patient Age:[35 - 65]: 100%|█| 400/400 [00:00<00:00, 41916.84 examples\r\n", + "Filter -> Patient Age:[35 - 65]: 0%| | 0/400 [00:00 Patient Age:[35 - 65]: 100%|█| 400/400 [00:00<00:00, 37186.84 examples\r\n", "\r", - "Filter -> Patient Age:[65 - 100]: 0%| | 0/400 [00:00 Patient Age:[65 - 100]: 100%|█| 400/400 [00:00<00:00, 43230.22 example\r\n" + "Filter -> Patient Age:[65 - 100]: 0%| | 0/400 [00:00 Patient Age:[65 - 100]: 100%|█| 400/400 [00:00<00:00, 40703.61 example\r\n", "\r", "Filter -> Patient Age:[19 - 35]&Patient Gender:M: 0%| | 0/400 [00:00 Patient Age:[19 - 35]&Patient Gender:M: 100%|█| 400/400 [00:00<00:00, \r\n", "\r", "Filter -> Patient Age:[19 - 35]&Patient Gender:F: 0%| | 0/400 [00:00 Patient Age:[19 - 35]&Patient Gender:F: 100%|█| 400/400 [00:00<00:00, \r\n", - "\r", - "Filter -> Patient Age:[35 - 65]&Patient Gender:M: 0%| | 0/400 [00:00 Patient Age:[19 - 35]&Patient Gender:F: 100%|█| 400/400 [00:00<00:00, \r\n" ] }, { @@ -182,12 +173,11 @@ "output_type": "stream", "text": [ "\r", + "Filter -> Patient Age:[35 - 65]&Patient Gender:M: 0%| | 0/400 [00:00 Patient Age:[35 - 65]&Patient Gender:M: 100%|█| 400/400 [00:00<00:00, \r\n", "\r", "Filter -> Patient Age:[35 - 65]&Patient Gender:F: 0%| | 0/400 [00:00 Patient Age:[35 - 65]&Patient Gender:F: 100%|█| 400/400 [00:00<00:00, \r\n", - "\r", - "Filter -> Patient Age:[65 - 100]&Patient Gender:M: 0%| | 0/400 [00:00 Patient Age:[35 - 65]&Patient Gender:F: 100%|█| 400/400 [00:00<00:00, \r\n" ] }, { @@ -195,13 +185,13 @@ "output_type": "stream", "text": [ "\r", + "Filter -> Patient Age:[65 - 100]&Patient Gender:M: 0%| | 0/400 [00:00 Patient Age:[65 - 100]&Patient Gender:M: 100%|█| 400/400 [00:00<00:00,\r\n", "\r", "Filter -> Patient Age:[65 - 100]&Patient Gender:F: 0%| | 0/400 [00:00 Patient Age:[65 - 100]&Patient Gender:F: 100%|█| 400/400 [00:00<00:00,\r\n", "\r", - "Filter -> overall: 0%| | 0/400 [00:00 overall: 100%|████████████| 400/400 [00:00<00:00, 48663.46 examples/s]\r\n" + "Filter -> overall: 0%| | 0/400 [00:00 overall: 100%|████████████| 400/400 [00:00<00:00, 44735.66 examples/s]\r\n" ] }, { @@ -217,20 +207,22 @@ "output_type": "stream", "text": [ "\r", - "Flattening the indices: 100%|████████| 1000/1000 [00:53<00:00, 18.55 examples/s]\r", - "Flattening the indices: 100%|████████| 1000/1000 [00:53<00:00, 18.54 examples/s]\r\n", - "\r", - "Flattening the indices: 0%| | 0/1000 [00:00 Patient Gender:M: 0%| | 0/396 [00:00 Patient Gender:M: 0%| | 0/396 [00:00 Patient Gender:M: 100%|███| 396/396 [00:00<00:00, 43707.91 examples/s]\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "\r", - "Filter -> Patient Gender:M: 100%|███| 396/396 [00:00<00:00, 43257.14 examples/s]\r\n", "\r", "Filter -> Patient Gender:F: 0%| | 0/396 [00:00 Patient Gender:F: 100%|███| 396/396 [00:00<00:00, 43674.58 examples/s]\r\n" + "Filter -> Patient Gender:F: 100%|███| 396/396 [00:00<00:00, 43281.94 examples/s]\r\n", + "\r", + "Filter -> overall: 0%| | 0/396 [00:00 overall: 0%| | 0/396 [00:00 overall: 100%|████████████| 396/396 [00:00<00:00, 45567.75 examples/s]\r\n" + "Filter -> overall: 100%|████████████| 396/396 [00:00<00:00, 44764.56 examples/s]\r\n" ] }, { @@ -272,10 +264,16 @@ "text": [ "\r", "Filter -> Patient Age:[19 - 35]: 0%| | 0/396 [00:00 Patient Age:[19 - 35]: 100%|█| 396/396 [00:00<00:00, 41090.11 examples\r\n", + "Filter -> Patient Age:[19 - 35]: 100%|█| 396/396 [00:00<00:00, 23280.46 examples\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "\r", "Filter -> Patient Age:[35 - 65]: 0%| | 0/396 [00:00 Patient Age:[35 - 65]: 100%|█| 396/396 [00:00<00:00, 43035.22 examples\r\n" + "Filter -> Patient Age:[35 - 65]: 100%|█| 396/396 [00:00<00:00, 23761.72 examples\r\n" ] }, { @@ -284,7 +282,13 @@ "text": [ "\r", "Filter -> Patient Age:[65 - 100]: 0%| | 0/396 [00:00 Patient Age:[65 - 100]: 100%|█| 396/396 [00:00<00:00, 41918.69 example\r\n", + "Filter -> Patient Age:[65 - 100]: 100%|█| 396/396 [00:00<00:00, 22314.92 example\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "\r", "Filter -> Patient Age:[19 - 35]&Patient Gender:M: 0%| | 0/396 [00:00 Patient Age:[19 - 35]&Patient Gender:M: 100%|█| 396/396 [00:00<00:00, \r\n", @@ -299,7 +303,14 @@ "\r", "Filter -> Patient Age:[19 - 35]&Patient Gender:F: 100%|█| 396/396 [00:00<00:00, \r\n", "\r", - "Filter -> Patient Age:[35 - 65]&Patient Gender:M: 0%| | 0/396 [00:00 Patient Age:[35 - 65]&Patient Gender:M: 0%| | 0/396 [00:00 Patient Age:[35 - 65]&Patient Gender:M: 100%|█| 396/396 [00:00<00:00, \r\n", "\r", "Filter -> Patient Age:[35 - 65]&Patient Gender:F: 0%| | 0/396 [00:00 Patient Age:[65 - 100]&Patient Gender:M: 0%| | 0/396 [00:00 Patient Age:[65 - 100]&Patient Gender:M: 100%|█| 396/396 [00:00<00:00,\r\n", "\r", - "Filter -> Patient Age:[65 - 100]&Patient Gender:F: 0%| | 0/396 [00:00 Patient Age:[65 - 100]&Patient Gender:F: 100%|█| 396/396 [00:00<00:00,\r\n" + "Filter -> Patient Age:[65 - 100]&Patient Gender:F: 0%| | 0/396 [00:00 Patient Age:[65 - 100]&Patient Gender:F: 100%|█| 396/396 [00:00<00:00,\r\n", "\r", "Filter -> overall: 0%| | 0/396 [00:00 overall: 100%|████████████| 396/396 [00:00<00:00, 46357.54 examples/s]\r\n" + "Filter -> overall: 100%|████████████| 396/396 [00:00<00:00, 48020.83 examples/s]\r\n" ] }, { @@ -340,10 +352,7 @@ "output_type": "stream", "text": [ "\r", - "Flattening the indices: 100%|████████| 1000/1000 [00:52<00:00, 18.90 examples/s]\r", - "Flattening the indices: 100%|████████| 1000/1000 [00:52<00:00, 18.89 examples/s]\r\n", - "\r", - "Flattening the indices: 0%| | 0/1000 [00:00 Patient Gender:M: 0%| | 0/383 [00:00 Patient Gender:M: 100%|███| 383/383 [00:00<00:00, 42952.36 examples/s]\r\n" + "Filter -> Patient Gender:M: 0%| | 0/383 [00:00 Patient Gender:F: 0%| | 0/383 [00:00 Patient Gender:F: 100%|███| 383/383 [00:00<00:00, 42387.95 examples/s]\r\n", + "Filter -> Patient Gender:M: 100%|███| 383/383 [00:00<00:00, 42677.36 examples/s]\r\n", "\r", - "Filter -> overall: 0%| | 0/383 [00:00 Patient Gender:F: 0%| | 0/383 [00:00 Patient Gender:F: 100%|███| 383/383 [00:00<00:00, 42890.44 examples/s]\r\n" ] }, { @@ -387,9 +398,8 @@ "output_type": "stream", "text": [ "\r", - "Filter -> overall: 100%|████████████| 383/383 [00:00<00:00, 43830.14 examples/s]\r\n", - "\r", - "Filter -> Patient Age:[19 - 35]: 0%| | 0/383 [00:00 overall: 0%| | 0/383 [00:00 overall: 100%|████████████| 383/383 [00:00<00:00, 45444.52 examples/s]\r\n" ] }, { @@ -397,12 +407,11 @@ "output_type": "stream", "text": [ "\r", - "Filter -> Patient Age:[19 - 35]: 100%|█| 383/383 [00:00<00:00, 39980.55 examples\r\n", + "Filter -> Patient Age:[19 - 35]: 0%| | 0/383 [00:00 Patient Age:[19 - 35]: 100%|█| 383/383 [00:00<00:00, 40784.46 examples\r\n", "\r", "Filter -> Patient Age:[35 - 65]: 0%| | 0/383 [00:00 Patient Age:[35 - 65]: 100%|█| 383/383 [00:00<00:00, 42014.34 examples\r\n", - "\r", - "Filter -> Patient Age:[65 - 100]: 0%| | 0/383 [00:00 Patient Age:[35 - 65]: 100%|█| 383/383 [00:00<00:00, 42582.33 examples\r\n" ] }, { @@ -410,19 +419,21 @@ "output_type": "stream", "text": [ "\r", - "Filter -> Patient Age:[65 - 100]: 100%|█| 383/383 [00:00<00:00, 41591.20 example\r\n", + "Filter -> Patient Age:[65 - 100]: 0%| | 0/383 [00:00 Patient Age:[65 - 100]: 100%|█| 383/383 [00:00<00:00, 42549.62 example\r\n", "\r", "Filter -> Patient Age:[19 - 35]&Patient Gender:M: 0%| | 0/383 [00:00 Patient Age:[19 - 35]&Patient Gender:M: 100%|█| 383/383 [00:00<00:00, \r\n", "\r", - "Filter -> Patient Age:[19 - 35]&Patient Gender:F: 0%| | 0/383 [00:00 Patient Age:[19 - 35]&Patient Gender:F: 100%|█| 383/383 [00:00<00:00, \r\n" + "Filter -> Patient Age:[19 - 35]&Patient Gender:F: 0%| | 0/383 [00:00 Patient Age:[19 - 35]&Patient Gender:F: 100%|█| 383/383 [00:00<00:00, \r\n", "\r", "Filter -> Patient Age:[35 - 65]&Patient Gender:M: 0%| | 0/383 [00:00 Patient Age:[35 - 65]&Patient Gender:M: 100%|█| 383/383 [00:00<00:00, \r\n", @@ -450,7 +461,7 @@ "output_type": "stream", "text": [ "\r", - "Filter -> overall: 100%|████████████| 383/383 [00:00<00:00, 45163.44 examples/s]\r\n" + "Filter -> overall: 100%|████████████| 383/383 [00:00<00:00, 45993.60 examples/s]\r\n" ] }, { @@ -466,13 +477,7 @@ "output_type": "stream", "text": [ "\r", - "Flattening the indices: 100%|████████| 1000/1000 [00:49<00:00, 20.08 examples/s]\r", - "Flattening the indices: 100%|████████| 1000/1000 [00:49<00:00, 20.07 examples/s]\r\n", - "\r", - "Flattening the indices: 0%| | 0/1000 [00:00 Patient Gender:M: 0%| | 0/411 [00:00 Patient Gender:M: 100%|███| 411/411 [00:00<00:00, 44097.49 examples/s]\r\n", + "Filter -> Patient Gender:M: 100%|███| 411/411 [00:00<00:00, 44209.45 examples/s]\r\n", "\r", - "Filter -> Patient Gender:F: 0%| | 0/411 [00:00 Patient Gender:F: 100%|███| 411/411 [00:00<00:00, 45350.39 examples/s]\r\n" + "Filter -> Patient Gender:F: 0%| | 0/411 [00:00 Patient Gender:F: 100%|███| 411/411 [00:00<00:00, 42904.48 examples/s]\r\n", "\r", "Filter -> overall: 0%| | 0/411 [00:00 overall: 100%|████████████| 411/411 [00:00<00:00, 46166.55 examples/s]\r\n" + "Filter -> overall: 100%|████████████| 411/411 [00:00<00:00, 46443.92 examples/s]\r\n" ] }, { @@ -528,10 +533,9 @@ "text": [ "\r", "Filter -> Patient Age:[19 - 35]: 0%| | 0/411 [00:00 Patient Age:[19 - 35]: 100%|█| 411/411 [00:00<00:00, 41925.70 examples\r\n", + "Filter -> Patient Age:[19 - 35]: 100%|█| 411/411 [00:00<00:00, 41755.09 examples\r\n", "\r", - "Filter -> Patient Age:[35 - 65]: 0%| | 0/411 [00:00 Patient Age:[35 - 65]: 100%|█| 411/411 [00:00<00:00, 43115.88 examples\r\n" + "Filter -> Patient Age:[35 - 65]: 0%| | 0/411 [00:00 Patient Age:[65 - 100]: 0%| | 0/411 [00:00 Patient Age:[65 - 100]: 100%|█| 411/411 [00:00<00:00, 43279.33 example\r\n", + "Filter -> Patient Age:[35 - 65]: 100%|█| 411/411 [00:00<00:00, 42189.40 examples\r\n", "\r", - "Filter -> Patient Age:[19 - 35]&Patient Gender:M: 0%| | 0/411 [00:00 Patient Age:[19 - 35]&Patient Gender:M: 100%|█| 411/411 [00:00<00:00, \r\n" + "Filter -> Patient Age:[65 - 100]: 0%| | 0/411 [00:00 Patient Age:[65 - 100]: 100%|█| 411/411 [00:00<00:00, 42680.34 example\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ + "\r", + "Filter -> Patient Age:[19 - 35]&Patient Gender:M: 0%| | 0/411 [00:00 Patient Age:[19 - 35]&Patient Gender:M: 100%|█| 411/411 [00:00<00:00, \r\n", "\r", "Filter -> Patient Age:[19 - 35]&Patient Gender:F: 0%| | 0/411 [00:00 Patient Age:[19 - 35]&Patient Gender:F: 100%|█| 411/411 [00:00<00:00, \r\n", "\r", - "Filter -> Patient Age:[35 - 65]&Patient Gender:M: 0%| | 0/411 [00:00 Patient Age:[35 - 65]&Patient Gender:M: 100%|█| 411/411 [00:00<00:00, \r\n" + "Filter -> Patient Age:[35 - 65]&Patient Gender:M: 0%| | 0/411 [00:00 Patient Age:[35 - 65]&Patient Gender:M: 100%|█| 411/411 [00:00<00:00, \r\n", "\r", "Filter -> Patient Age:[35 - 65]&Patient Gender:F: 0%| | 0/411 [00:00 Patient Age:[35 - 65]&Patient Gender:F: 100%|█| 411/411 [00:00<00:00, \r\n", "\r", - "Filter -> Patient Age:[65 - 100]&Patient Gender:M: 0%| | 0/411 [00:00 Patient Age:[65 - 100]&Patient Gender:M: 100%|█| 411/411 [00:00<00:00,\r\n", - "\r", - "Filter -> Patient Age:[65 - 100]&Patient Gender:F: 0%| | 0/411 [00:00 Patient Age:[65 - 100]&Patient Gender:M: 0%| | 0/411 [00:00 Patient Age:[65 - 100]&Patient Gender:M: 100%|█| 411/411 [00:00<00:00,\r\n", + "\r", + "Filter -> Patient Age:[65 - 100]&Patient Gender:F: 0%| | 0/411 [00:00 Patient Age:[65 - 100]&Patient Gender:F: 100%|█| 411/411 [00:00<00:00,\r\n", "\r", "Filter -> overall: 0%| | 0/411 [00:00 overall: 100%|████████████| 411/411 [00:00<00:00, 48033.07 examples/s]\r\n" + "Filter -> overall: 100%|████████████| 411/411 [00:00<00:00, 47292.50 examples/s]\r\n" ] } ], @@ -628,10 +635,10 @@ "id": "03edf1c0", "metadata": { "execution": { - "iopub.execute_input": "2023-12-09T13:51:32.805376Z", - "iopub.status.busy": "2023-12-09T13:51:32.804798Z", - "iopub.status.idle": "2023-12-09T13:51:32.812771Z", - "shell.execute_reply": "2023-12-09T13:51:32.811510Z" + "iopub.execute_input": "2023-12-09T22:41:01.289771Z", + "iopub.status.busy": "2023-12-09T22:41:01.289178Z", + "iopub.status.idle": "2023-12-09T22:41:01.297099Z", + "shell.execute_reply": "2023-12-09T22:41:01.295847Z" } }, "outputs": [], @@ -653,10 +660,10 @@ "id": "6514120e", "metadata": { "execution": { - "iopub.execute_input": "2023-12-09T13:51:32.818719Z", - "iopub.status.busy": "2023-12-09T13:51:32.818104Z", - "iopub.status.idle": "2023-12-09T13:51:36.117532Z", - "shell.execute_reply": "2023-12-09T13:51:36.116528Z" + "iopub.execute_input": "2023-12-09T22:41:01.303024Z", + "iopub.status.busy": "2023-12-09T22:41:01.302519Z", + "iopub.status.idle": "2023-12-09T22:41:04.617838Z", + "shell.execute_reply": "2023-12-09T22:41:04.617197Z" } }, "outputs": [], @@ -700,17 +707,17 @@ "id": "5f624ed4", "metadata": { "execution": { - "iopub.execute_input": "2023-12-09T13:51:36.122609Z", - "iopub.status.busy": "2023-12-09T13:51:36.122407Z", - "iopub.status.idle": "2023-12-09T13:51:49.775912Z", - "shell.execute_reply": "2023-12-09T13:51:49.775257Z" + "iopub.execute_input": "2023-12-09T22:41:04.622969Z", + "iopub.status.busy": "2023-12-09T22:41:04.622699Z", + "iopub.status.idle": "2023-12-09T22:41:18.419060Z", + "shell.execute_reply": "2023-12-09T22:41:18.418414Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "5df5f42340c84f6ea90b6a8c5febf397", + "model_id": "e705c93c8ef6473ca6cad1c855c838e5", "version_major": 2, "version_minor": 0 }, @@ -724,7 +731,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4b33fae6ec904c42a1f8ea93486bd4c8", + "model_id": "cc7a60c6ae8c42df8d3e2c78cfa7e7e4", "version_major": 2, "version_minor": 0 }, @@ -784,17 +791,17 @@ "id": "bff27cc1", "metadata": { "execution": { - "iopub.execute_input": "2023-12-09T13:51:49.783326Z", - "iopub.status.busy": "2023-12-09T13:51:49.783111Z", - "iopub.status.idle": "2023-12-09T13:51:50.000813Z", - "shell.execute_reply": "2023-12-09T13:51:49.999662Z" + "iopub.execute_input": "2023-12-09T22:41:18.427980Z", + "iopub.status.busy": "2023-12-09T22:41:18.427586Z", + "iopub.status.idle": "2023-12-09T22:41:18.644187Z", + "shell.execute_reply": "2023-12-09T22:41:18.643051Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f3653fa14e8643d08bb436f36480b669", + "model_id": "ef7a4b46a624424785708baf24b9d836", "version_major": 2, "version_minor": 0 }, @@ -808,7 +815,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "998d240787194aebab89c2518ccf6e77", + "model_id": "908fd35024684190bbb877ed01077b44", "version_major": 2, "version_minor": 0 }, @@ -822,7 +829,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8a4905ad4e2a4b618fe5f0070b95a29f", + "model_id": "f6196d7d53a4409c9c84626722095dee", "version_major": 2, "version_minor": 0 }, @@ -942,17 +949,17 @@ "id": "8c38ef9e", "metadata": { "execution": { - "iopub.execute_input": "2023-12-09T13:51:50.005883Z", - "iopub.status.busy": "2023-12-09T13:51:50.005676Z", - "iopub.status.idle": "2023-12-09T13:51:50.489749Z", - "shell.execute_reply": "2023-12-09T13:51:50.488800Z" + "iopub.execute_input": "2023-12-09T22:41:18.652502Z", + "iopub.status.busy": "2023-12-09T22:41:18.652107Z", + "iopub.status.idle": "2023-12-09T22:41:19.134343Z", + "shell.execute_reply": "2023-12-09T22:41:19.133444Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "624164688eba4ca587d26aadda1c47cd", + "model_id": "f26514c476ad42b4879bf3cef5058316", "version_major": 2, "version_minor": 0 }, @@ -966,7 +973,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b9972d2f39134283b29fdc640e950e08", + "model_id": "84627ed4eeba4b7295f8399294d9453c", "version_major": 2, "version_minor": 0 }, @@ -980,7 +987,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "fd1589ed842548148811647eae2ba1eb", + "model_id": "63008f08c44c4a69ae5ecf0fa65433b3", "version_major": 2, "version_minor": 0 }, @@ -994,7 +1001,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "bd8b5a4c97ab4b3b8a6b42fb1e900aed", + "model_id": "daabbc633d1141049fda2f934286eac2", "version_major": 2, "version_minor": 0 }, @@ -1008,7 +1015,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "13f4e1e35404401fb689f71bcd8b4433", + "model_id": "b7fc4022b0b2448eb0654a349153a691", "version_major": 2, "version_minor": 0 }, @@ -1022,7 +1029,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6c9ef1b6ca4944fcb4467e85813c3028", + "model_id": "a211528a9f5e47119760345ef0773c27", "version_major": 2, "version_minor": 0 }, @@ -1036,7 +1043,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6ab90329b3a641be9eec24cef7dfdb91", + "model_id": "a28a1076bf9c450da7823d00877167af", "version_major": 2, "version_minor": 0 }, @@ -1050,7 +1057,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e3226e245f7246b7895f0f7c0b2e7d2a", + "model_id": "7f6b22b2ad4e4916bbd14e0a23fdbb75", "version_major": 2, "version_minor": 0 }, @@ -1064,7 +1071,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "1bbe3899397444cfb985c40aac243d09", + "model_id": "2db03e0752f64562982cdaccae1867b7", "version_major": 2, "version_minor": 0 }, @@ -1078,7 +1085,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f416af91a7f14543a7e12d46c44e0944", + "model_id": "6ad119a50b65454bb8714e2f30a8cb08", "version_major": 2, "version_minor": 0 }, @@ -1141,10 +1148,10 @@ "id": "3e674b7a", "metadata": { "execution": { - "iopub.execute_input": "2023-12-09T13:51:50.494919Z", - "iopub.status.busy": "2023-12-09T13:51:50.494712Z", - "iopub.status.idle": "2023-12-09T13:51:50.752835Z", - "shell.execute_reply": "2023-12-09T13:51:50.752181Z" + "iopub.execute_input": "2023-12-09T22:41:19.139648Z", + "iopub.status.busy": "2023-12-09T22:41:19.139316Z", + "iopub.status.idle": "2023-12-09T22:41:19.414892Z", + "shell.execute_reply": "2023-12-09T22:41:19.414377Z" } }, "outputs": [ @@ -2041,9 +2048,9 @@ } }, "text/html": [ - "
+
@@ -671,49 +671,49 @@

Example 4. Sensitivity test experiment with different clinical shifts
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
@@ -758,7 +758,7 @@

Example 5. Rolling window experiment with synthetic timestamps using biweekl

diff --git a/api/tutorials/nihcxr/monitor_api.ipynb b/api/tutorials/nihcxr/monitor_api.ipynb index 6d2b7057a..633e06795 100644 --- a/api/tutorials/nihcxr/monitor_api.ipynb +++ b/api/tutorials/nihcxr/monitor_api.ipynb @@ -22,17 +22,17 @@ "id": "8aa3302d", "metadata": { "execution": { - "iopub.execute_input": "2023-12-09T13:51:56.330002Z", - "iopub.status.busy": "2023-12-09T13:51:56.329338Z", - "iopub.status.idle": "2023-12-09T13:52:04.039117Z", - "shell.execute_reply": "2023-12-09T13:52:04.038482Z" + "iopub.execute_input": "2023-12-09T22:41:25.132768Z", + "iopub.status.busy": "2023-12-09T22:41:25.132262Z", + "iopub.status.idle": "2023-12-09T22:41:32.885687Z", + "shell.execute_reply": "2023-12-09T22:41:32.884894Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 1, @@ -79,17 +79,17 @@ "id": "e11920db", "metadata": { "execution": { - "iopub.execute_input": "2023-12-09T13:52:04.044657Z", - "iopub.status.busy": "2023-12-09T13:52:04.044426Z", - "iopub.status.idle": "2023-12-09T13:52:04.618336Z", - "shell.execute_reply": "2023-12-09T13:52:04.617655Z" + "iopub.execute_input": "2023-12-09T22:41:32.889346Z", + "iopub.status.busy": "2023-12-09T22:41:32.889025Z", + "iopub.status.idle": "2023-12-09T22:41:33.474780Z", + "shell.execute_reply": "2023-12-09T22:41:33.473307Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2278b60bc5e14b12847777d063f9c626", + "model_id": "27c7476d35d645dd9e9b55e14de6c77a", "version_major": 2, "version_minor": 0 }, @@ -145,10 +145,10 @@ "id": "54a3523a", "metadata": { "execution": { - "iopub.execute_input": "2023-12-09T13:52:04.623552Z", - "iopub.status.busy": "2023-12-09T13:52:04.623314Z", - "iopub.status.idle": "2023-12-09T13:52:15.374756Z", - "shell.execute_reply": "2023-12-09T13:52:15.374078Z" + "iopub.execute_input": "2023-12-09T22:41:33.480036Z", + "iopub.status.busy": "2023-12-09T22:41:33.479681Z", + "iopub.status.idle": "2023-12-09T22:41:43.947948Z", + "shell.execute_reply": "2023-12-09T22:41:43.947271Z" } }, "outputs": [ @@ -213,10 +213,10 @@ "id": "40b5a90f", "metadata": { "execution": { - "iopub.execute_input": "2023-12-09T13:52:15.380406Z", - "iopub.status.busy": "2023-12-09T13:52:15.380208Z", - "iopub.status.idle": "2023-12-09T13:52:22.224860Z", - "shell.execute_reply": "2023-12-09T13:52:22.224191Z" + "iopub.execute_input": "2023-12-09T22:41:43.953670Z", + "iopub.status.busy": "2023-12-09T22:41:43.953473Z", + "iopub.status.idle": "2023-12-09T22:41:50.791273Z", + "shell.execute_reply": "2023-12-09T22:41:50.790708Z" } }, "outputs": [ @@ -271,17 +271,17 @@ "id": "9ba03fac", "metadata": { "execution": { - "iopub.execute_input": "2023-12-09T13:52:22.230238Z", - "iopub.status.busy": "2023-12-09T13:52:22.230044Z", - "iopub.status.idle": "2023-12-09T13:52:37.069776Z", - "shell.execute_reply": "2023-12-09T13:52:37.067775Z" + "iopub.execute_input": "2023-12-09T22:41:50.797567Z", + "iopub.status.busy": "2023-12-09T22:41:50.797182Z", + "iopub.status.idle": "2023-12-09T22:42:06.120226Z", + "shell.execute_reply": "2023-12-09T22:42:06.119301Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "37ad0c2ecea742859f0aa5bf3f7e384b", + "model_id": "607cf0894cfb4a3b938e2b6c3556cdd4", "version_major": 2, "version_minor": 0 }, @@ -295,7 +295,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "95fbf72eaafc4798b9fd5a5a646b5e8b", + "model_id": "ba60e3fa03d54281a80c32f3908a7ee7", "version_major": 2, "version_minor": 0 }, @@ -309,7 +309,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "960bd592352e43e4883cd54c2e0ed117", + "model_id": "58cd045c76004697856a457e3885e174", "version_major": 2, "version_minor": 0 }, @@ -323,7 +323,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a7cd5899c2dd446c85d8e7411ddbe225", + "model_id": "b650a6b52c254c58ad5c84bdddedd602", "version_major": 2, "version_minor": 0 }, @@ -337,7 +337,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "bee506fd250e4a579caa4ec864ffe490", + "model_id": "feb85ce5697b415399e80d8fa39ff2b9", "version_major": 2, "version_minor": 0 }, @@ -351,7 +351,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "1b4d504f96c247508910716e29e7fc9c", + "model_id": "821848d582b54cb5bf67e68681b2808a", "version_major": 2, "version_minor": 0 }, @@ -365,7 +365,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3bb7bfd9841044d49aed249f6deef808", + "model_id": "b472432979244b3ca96e641790ee3347", "version_major": 2, "version_minor": 0 }, @@ -379,7 +379,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a42559a7aa4c4a76a12121c630166528", + "model_id": "5bfb4c61dead48d98f111814355bd6d3", "version_major": 2, "version_minor": 0 }, @@ -456,10 +456,10 @@ "id": "77e4b383", "metadata": { "execution": { - "iopub.execute_input": "2023-12-09T13:52:37.077092Z", - "iopub.status.busy": "2023-12-09T13:52:37.076539Z", - "iopub.status.idle": "2023-12-09T13:52:39.058474Z", - "shell.execute_reply": "2023-12-09T13:52:39.057620Z" + "iopub.execute_input": "2023-12-09T22:42:06.127468Z", + "iopub.status.busy": "2023-12-09T22:42:06.127209Z", + "iopub.status.idle": "2023-12-09T22:42:08.083596Z", + "shell.execute_reply": "2023-12-09T22:42:08.082755Z" }, "tags": [] }, @@ -518,83 +518,51 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "001e728e94d2405d9bcd9b864c4c0759": { - "model_module": "@jupyter-widgets/base", + "0131d34c27ab4971ab38ee5413ead264": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "00cbfbfb0c0449c8ac862fb79b6d8d8e": { + "0138323385fb4a21a43ff8164cf06037": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3143356210224eaa86a37e219efa3836", - "placeholder": "​", - "style": "IPY_MODEL_0949736c4abe45d99eb77e0faed0b372", + "layout": "IPY_MODEL_a627262d059a45dba164ee50db3bd33f", + "max": 25596.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_38deaa4e1aae4278a1fce4a6346284d7", "tabbable": null, "tooltip": null, - "value": " 25596/25596 [00:00<00:00, 58608.05 examples/s]" + "value": 25596.0 } }, - "036ce0187c2a42119cd4c426c5f1b51e": { + "035b74cbabfa42ba9575cd9988ff0915": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -609,33 +577,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_163995bede684772a65ea8f4ebf78a6b", + "layout": "IPY_MODEL_b3ce3e279fba497aa3cc0bea6ab1177a", "placeholder": "​", - "style": "IPY_MODEL_b886906f12b142d0a778cde316794100", + "style": "IPY_MODEL_e9e3fe1d70d7461798d934f5d344e929", "tabbable": null, "tooltip": null, - "value": " 25596/25596 [00:00<00:00, 63460.65 examples/s]" + "value": " 25596/25596 [00:00<00:00, 63245.18 examples/s]" } }, - "07bc434e66724c9a9e9ba33156085ba0": { + "0406c49704754535a15332535b0cc732": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3ca20e46706543bda276db230389bdb6", + "placeholder": "​", + "style": "IPY_MODEL_7bef50b59e9d4a129e384c5e5894a814", + "tabbable": null, + "tooltip": null, + "value": " 25596/25596 [00:00<00:00, 75683.42 examples/s]" } }, - "07f7f6b58a3b428d8df4329d0426fbae": { + "04f088f4d3dc4c1e9e4e1ae44fdd2a53": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -688,71 +661,7 @@ "width": null } }, - "0949736c4abe45d99eb77e0faed0b372": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "09d26d94db5b42099a3c7480d325cd7a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9b8108dce8f8474cadcc72119e496866", - "placeholder": "​", - "style": "IPY_MODEL_07bc434e66724c9a9e9ba33156085ba0", - "tabbable": null, - "tooltip": null, - "value": "Filter (num_proc=6): 100%" - } - }, - "0ada016833c546dfa056dd90654bcf21": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5aa7c8ae0eac406182c150ee00245f7d", - "placeholder": "​", - "style": "IPY_MODEL_699fa43a52314486870d0b5116812f72", - "tabbable": null, - "tooltip": null, - "value": " 25596/25596 [00:00<00:00, 63762.66 examples/s]" - } - }, - "0c107617885a4ae39afc208097587030": { + "078444ebbd2642029383f2996363470f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -805,7 +714,7 @@ "width": null } }, - "12d2dfd542264901a83ac1e3be5a3af0": { + "08f58b75ef36497fa1765cc9a64d4490": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -823,7 +732,56 @@ "text_color": null } }, - "163995bede684772a65ea8f4ebf78a6b": { + "0ba4686b9f884d869b5326d75b297227": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b4792349cfae4c48894b6ff6a5b9247d", + "placeholder": "​", + "style": "IPY_MODEL_acb39321057945ef8d9559a7b2f4b3f7", + "tabbable": null, + "tooltip": null, + "value": "Filter (num_proc=6): 100%" + } + }, + "0e79004fc7b64e849d1a78ebddc90af7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_04f088f4d3dc4c1e9e4e1ae44fdd2a53", + "max": 25596.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_cce88b39515648ad901d016b5f912a37", + "tabbable": null, + "tooltip": null, + "value": 25596.0 + } + }, + "105e27fdc27c429a93d2988de65a7270": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -876,7 +834,7 @@ "width": null } }, - "1695364dc2f74dafa2a6474ee7376e64": { + "1066a4ca84fc45478642ae35a5a8c133": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -929,123 +887,115 @@ "width": null } }, - "1af7c16b16cc4b27bacb2f8959e91cb1": { + "12df217bac064177909fc7184a4efae7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_35205c5d70d34da485df5110204ca42a", + "placeholder": "​", + "style": "IPY_MODEL_95ee5ccc94ec41d3aff3fefb5d3e1275", + "tabbable": null, + "tooltip": null, + "value": " 25596/25596 [00:00<00:00, 63344.86 examples/s]" } }, - "1b4d504f96c247508910716e29e7fc9c": { + "14966c7035f74fe4a8e2083289a1f089": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e83c7830f5bb4726a1ef39404751171d", - "IPY_MODEL_212b65da5a37433e9d4c29875e382cbc", - "IPY_MODEL_27084fc78baf4649aea180d606d29f76" - ], - "layout": "IPY_MODEL_aecd4422d04b4e61a8d477b64ec70a9a", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_76bef866fc2549e0981920002ba6acd1", + "placeholder": "​", + "style": "IPY_MODEL_212bc12fde704470a46b595f3df1c950", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 25596/25596 [00:00<00:00, 58989.54 examples/s]" } }, - "1edd6735cc424b4f8cb7437f3cd592db": { - "model_module": "@jupyter-widgets/base", + "14d95fe229734519888d28f539fe69b6": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e55559606167429583b736293189f63c", + "max": 25596.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_bf6b557aee7641e5a20ed62ac2bea459", + "tabbable": null, + "tooltip": null, + "value": 25596.0 + } + }, + "1756a3d460d247a19698ea599cfe7cd1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "205c60633e3f4f50b3b3c7d017832d3a": { + "212bc12fde704470a46b595f3df1c950": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9a727d1446d34d30934288d6855218d7", - "placeholder": "​", - "style": "IPY_MODEL_439948815e8b42ea99cc62a5ba9ec420", - "tabbable": null, - "tooltip": null, - "value": " 25596/25596 [00:00<00:00, 76032.98 examples/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "212b65da5a37433e9d4c29875e382cbc": { + "26e0c5c8fffb40e8937de1c550b2e876": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1061,17 +1011,40 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_578420348479491f9c5a428097738427", + "layout": "IPY_MODEL_608e309c3c3c4d67aef2350319e6eb12", "max": 25596.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_dc0d59f0a44d4e6896e539b00db72ebd", + "style": "IPY_MODEL_a61f36b48f1d44768631b05a0c9fb5c1", "tabbable": null, "tooltip": null, "value": 25596.0 } }, - "2278b60bc5e14b12847777d063f9c626": { + "274ba6977b294ffdadc524f11f7bb467": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e6b045ec60964802830ccbf749dc2ed2", + "placeholder": "​", + "style": "IPY_MODEL_2e8715fda9a24a06a607a8ef2efcc0e6", + "tabbable": null, + "tooltip": null, + "value": "Filter (num_proc=6): 100%" + } + }, + "27c7476d35d645dd9e9b55e14de6c77a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1086,42 +1059,39 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_e7f130a7591d472ba9b0bcc9f7b0d49f", - "IPY_MODEL_d6e6c564552848849d0e176ae72c3ae8", - "IPY_MODEL_205c60633e3f4f50b3b3c7d017832d3a" + "IPY_MODEL_0ba4686b9f884d869b5326d75b297227", + "IPY_MODEL_26e0c5c8fffb40e8937de1c550b2e876", + "IPY_MODEL_0406c49704754535a15332535b0cc732" ], - "layout": "IPY_MODEL_bd0ca1aff7144bb8a53f6236e15fca5f", + "layout": "IPY_MODEL_ba2dcc70d6ec4453a8ea51569120a971", "tabbable": null, "tooltip": null } }, - "2550bf24ab464989861d0b27a453d73b": { + "291851bac0594555881d2067cbcb9d03": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7a8a47e3b08947f3a9bf54bd02c55fd1", - "max": 25596.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e5f161e4aa6d4dbc8969fa2443626047", + "layout": "IPY_MODEL_3826930505e14db187e1e958c6be0b22", + "placeholder": "​", + "style": "IPY_MODEL_a5ec7b53094947be8d6f1269ed339bed", "tabbable": null, "tooltip": null, - "value": 25596.0 + "value": " 25596/25596 [00:00<00:00, 60890.97 examples/s]" } }, - "263456dfb51a4b31ad89dca19a55e61b": { + "2aba6c7528f842c19f651438c8295c6b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1174,30 +1144,25 @@ "width": null } }, - "27084fc78baf4649aea180d606d29f76": { + "2e8715fda9a24a06a607a8ef2efcc0e6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e84e344c97fc49beb3f33fb132214720", - "placeholder": "​", - "style": "IPY_MODEL_cb3cfa3844164c008b4249517ef57a79", - "tabbable": null, - "tooltip": null, - "value": " 25596/25596 [00:00<00:00, 61977.92 examples/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "2812786a5c214f1392bd2c39c603c0eb": { + "30768bbde63e4f65b3ea67a758ac497e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1250,59 +1215,147 @@ "width": null } }, - "2dba515fe1604bad94a97e688872d6f7": { + "30b371e4935949bc92ba6c544fce25f7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c6de72a747f6458683e3f0012b309659", - "max": 25596.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_56d989c1b63a488790f881c3d644d37e", - "tabbable": null, - "tooltip": null, - "value": 25596.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "2ec49b18202a45beaf426f11afdf09b0": { + "31a83703f55e4f30a7bb191ec66cd1c4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "33d512c385174f62b0e3d2ad20aa7ede": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_92242c6bf36b4453a089fdf5607cbb69", - "max": 25596.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8f3815b0f1a04eb4b64b5353d6b39438", - "tabbable": null, - "tooltip": null, - "value": 25596.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "35205c5d70d34da485df5110204ca42a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "3143356210224eaa86a37e219efa3836": { + "3826930505e14db187e1e958c6be0b22": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1355,30 +1408,23 @@ "width": null } }, - "3200260ff8304fecb102d185a4b5b977": { + "38deaa4e1aae4278a1fce4a6346284d7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_893551066840447bb88c4f54f8d26a53", - "placeholder": "​", - "style": "IPY_MODEL_68caf5aa5efe4692ac41103ad69751f3", - "tabbable": null, - "tooltip": null, - "value": "Filter (num_proc=6): 100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "34be4575499845eeb4708afb8708caf5": { + "39ff25baafb74475baaa7bf216fce198": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1431,55 +1477,7 @@ "width": null } }, - "37ad0c2ecea742859f0aa5bf3f7e384b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b8f95fcf94ad4ac7af18b293d0113032", - "IPY_MODEL_2ec49b18202a45beaf426f11afdf09b0", - "IPY_MODEL_612f9431518b4b96b2fe39d2629bb121" - ], - "layout": "IPY_MODEL_b4ffd862f40e42298b101659c65272fd", - "tabbable": null, - "tooltip": null - } - }, - "3bb7bfd9841044d49aed249f6deef808": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_09d26d94db5b42099a3c7480d325cd7a", - "IPY_MODEL_2550bf24ab464989861d0b27a453d73b", - "IPY_MODEL_00cbfbfb0c0449c8ac862fb79b6d8d8e" - ], - "layout": "IPY_MODEL_34be4575499845eeb4708afb8708caf5", - "tabbable": null, - "tooltip": null - } - }, - "3dc4309161ea40c3b66eb98cc444cfd8": { + "3ca20e46706543bda276db230389bdb6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1532,7 +1530,57 @@ "width": null } }, - "42ce97355a114c748349f2ec6667cf6b": { + "4504ac0fc1ed46d8998911dafb3df3c3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8e595e7ec6814af58ee665bd6677f38b", + "max": 25596.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7afe7fbf522948a49e392a6e86fd486b", + "tabbable": null, + "tooltip": null, + "value": 25596.0 + } + }, + "58cd045c76004697856a457e3885e174": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_274ba6977b294ffdadc524f11f7bb467", + "IPY_MODEL_ac6bff27bb724ed88e3f131ae97f4030", + "IPY_MODEL_14966c7035f74fe4a8e2083289a1f089" + ], + "layout": "IPY_MODEL_da2a7895ce9a494ba401adbba5495396", + "tabbable": null, + "tooltip": null + } + }, + "5bd2f84bed8c473f95b4dfa3eeb1def6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1547,33 +1595,63 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_822d87014d8a4e3c90259ac8669bff5c", + "layout": "IPY_MODEL_39ff25baafb74475baaa7bf216fce198", "placeholder": "​", - "style": "IPY_MODEL_d4d7bbc2f0b34185a384da7debd03b28", + "style": "IPY_MODEL_7ba13b5bee524b5e914d221ebe183da0", "tabbable": null, "tooltip": null, "value": "Filter (num_proc=6): 100%" } }, - "439948815e8b42ea99cc62a5ba9ec420": { + "5bfb4c61dead48d98f111814355bd6d3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e1d150146e274ca5af351e423a8a4f17", + "IPY_MODEL_76d806f65416460bade92fd577fd5e4f", + "IPY_MODEL_8373ae04b7454567b805cf5d6ae08fa2" + ], + "layout": "IPY_MODEL_82bf6543dc6d4cd7ac18d3e1cb9d2d07", + "tabbable": null, + "tooltip": null + } + }, + "607cf0894cfb4a3b938e2b6c3556cdd4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_de8364a1a4d04ea5a0c7e25b704f68e4", + "IPY_MODEL_0e79004fc7b64e849d1a78ebddc90af7", + "IPY_MODEL_e46d9bab482a423da92aa4d3f415e542" + ], + "layout": "IPY_MODEL_105e27fdc27c429a93d2988de65a7270", + "tabbable": null, + "tooltip": null } }, - "54f3c891ae6e4742bf8481db73bf044d": { + "608e309c3c3c4d67aef2350319e6eb12": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1626,7 +1704,7 @@ "width": null } }, - "56d989c1b63a488790f881c3d644d37e": { + "619dc2cb693d43c891e7145206fcaa20": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1642,7 +1720,7 @@ "description_width": "" } }, - "578420348479491f9c5a428097738427": { + "6737f73f236146fe8e28242d10d19bed": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1695,25 +1773,7 @@ "width": null } }, - "59349b5e6dd146d6b3630ef0020185b3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "5aa7c8ae0eac406182c150ee00245f7d": { + "6a63ec405ba84cbc8dda14c4c605a326": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1766,30 +1826,7 @@ "width": null } }, - "612f9431518b4b96b2fe39d2629bb121": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2812786a5c214f1392bd2c39c603c0eb", - "placeholder": "​", - "style": "IPY_MODEL_61fbd359d1bb49468769b22681880b3b", - "tabbable": null, - "tooltip": null, - "value": " 25596/25596 [00:00<00:00, 63950.20 examples/s]" - } - }, - "61fbd359d1bb49468769b22681880b3b": { + "735d3b49e5dc4282b68638bd13cfe117": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1807,7 +1844,7 @@ "text_color": null } }, - "64ec719b9fd842ec811fee8ac336969c": { + "7673ab369264404b9e5e3de515dc0418": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1860,7 +1897,7 @@ "width": null } }, - "6559591d08f3424fb4790ebc94dc4690": { + "76bef866fc2549e0981920002ba6acd1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1913,60 +1950,33 @@ "width": null } }, - "658c87fd30cb4667b6edfe940a9d8ca3": { - "model_module": "@jupyter-widgets/base", + "76d806f65416460bade92fd577fd5e4f": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a2a78a3a8a454d3eb999d14ea8707991", + "max": 25596.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_891ad2f4c8bc4d90b1ad4c5336e9d7ad", + "tabbable": null, + "tooltip": null, + "value": 25596.0 } }, - "66e426e137f64346b75c5067050d2308": { + "7a61a7058d0248b99793aca8c73bb952": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1984,25 +1994,23 @@ "text_color": null } }, - "68caf5aa5efe4692ac41103ad69751f3": { + "7afe7fbf522948a49e392a6e86fd486b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "699fa43a52314486870d0b5116812f72": { + "7ba13b5bee524b5e914d221ebe183da0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2020,7 +2028,7 @@ "text_color": null } }, - "69f9855d4b9649b9bfa201504261aa74": { + "7bef50b59e9d4a129e384c5e5894a814": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2038,7 +2046,7 @@ "text_color": null } }, - "7306fc9040cc451dbf6216f53b0274b9": { + "8131144a1d9d4767afa389e3bf5b903d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2091,7 +2099,31 @@ "width": null } }, - "76ee1a38b70a4c2d89ba5f1ef7089969": { + "821848d582b54cb5bf67e68681b2808a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5bd2f84bed8c473f95b4dfa3eeb1def6", + "IPY_MODEL_a1c971f08d2f468283c22959f8bdce29", + "IPY_MODEL_291851bac0594555881d2067cbcb9d03" + ], + "layout": "IPY_MODEL_9d853709bae74d5dae66395bf57f155c", + "tabbable": null, + "tooltip": null + } + }, + "82bf6543dc6d4cd7ac18d3e1cb9d2d07": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2144,7 +2176,118 @@ "width": null } }, - "7a8a47e3b08947f3a9bf54bd02c55fd1": { + "8373ae04b7454567b805cf5d6ae08fa2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d66c4a1ae2474cab85ef9591c7bf4d4f", + "placeholder": "​", + "style": "IPY_MODEL_c1858cb1c1d2438a8a01c31677c0e87f", + "tabbable": null, + "tooltip": null, + "value": " 25596/25596 [00:00<00:00, 56236.20 examples/s]" + } + }, + "8428035360784e75a8b959a4159e4dea": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_baafa12535994897b7d72033c09db782", + "placeholder": "​", + "style": "IPY_MODEL_9906e85d5ef14ac4b424d95a012c69aa", + "tabbable": null, + "tooltip": null, + "value": "Filter (num_proc=6): 100%" + } + }, + "891ad2f4c8bc4d90b1ad4c5336e9d7ad": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "8a4790dc268d45a4abe42eb8338a2b32": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6a63ec405ba84cbc8dda14c4c605a326", + "placeholder": "​", + "style": "IPY_MODEL_33d512c385174f62b0e3d2ad20aa7ede", + "tabbable": null, + "tooltip": null, + "value": " 25596/25596 [00:00<00:00, 60065.46 examples/s]" + } + }, + "8af8f73de3c54dffa864dec2c7567561": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_078444ebbd2642029383f2996363470f", + "max": 25596.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e4a81d57538f4b348cc66728576f4df0", + "tabbable": null, + "tooltip": null, + "value": 25596.0 + } + }, + "8e595e7ec6814af58ee665bd6677f38b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2197,48 +2340,7 @@ "width": null } }, - "814346eba15246cd9dbe9d1e0f152bde": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e708862646a14263a37a35ce8e6c5e7e", - "placeholder": "​", - "style": "IPY_MODEL_69f9855d4b9649b9bfa201504261aa74", - "tabbable": null, - "tooltip": null, - "value": " 25596/25596 [00:00<00:00, 62426.56 examples/s]" - } - }, - "8226a347ffc54f2fb30d2d65dc535d93": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "822d87014d8a4e3c90259ac8669bff5c": { + "90b7cc75540c443c939a97010ce1ab2e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2291,30 +2393,7 @@ "width": null } }, - "8411d8358a6247e482009e254ae9578b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cfb1f570bf354d138a7fd555436da40d", - "placeholder": "​", - "style": "IPY_MODEL_59349b5e6dd146d6b3630ef0020185b3", - "tabbable": null, - "tooltip": null, - "value": "Filter (num_proc=6): 100%" - } - }, - "8487905bebb54ca290d698d056be4772": { + "95ee5ccc94ec41d3aff3fefb5d3e1275": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2332,7 +2411,7 @@ "text_color": null } }, - "8511013ac137430399373fa74d278a39": { + "9906e85d5ef14ac4b424d95a012c69aa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2350,7 +2429,7 @@ "text_color": null } }, - "893551066840447bb88c4f54f8d26a53": { + "99d6252387d04b5d9adc4e385d038e22": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2403,23 +2482,7 @@ "width": null } }, - "8f3815b0f1a04eb4b64b5353d6b39438": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "92242c6bf36b4453a089fdf5607cbb69": { + "9c701145d978489c96ac727face9d526": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2472,7 +2535,7 @@ "width": null } }, - "93b71c2c5a2741e2a43e11c3f02bc0ee": { + "9d853709bae74d5dae66395bf57f155c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2500,80 +2563,32 @@ "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "95fbf72eaafc4798b9fd5a5a646b5e8b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_42ce97355a114c748349f2ec6667cf6b", - "IPY_MODEL_2dba515fe1604bad94a97e688872d6f7", - "IPY_MODEL_0ada016833c546dfa056dd90654bcf21" - ], - "layout": "IPY_MODEL_7306fc9040cc451dbf6216f53b0274b9", - "tabbable": null, - "tooltip": null - } - }, - "960bd592352e43e4883cd54c2e0ed117": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_cd050e0e3d3d4ddaadf796dcbde026e4", - "IPY_MODEL_981dd0654ea440b2a2e8a2ddcc06e58f", - "IPY_MODEL_036ce0187c2a42119cd4c426c5f1b51e" - ], - "layout": "IPY_MODEL_3dc4309161ea40c3b66eb98cc444cfd8", - "tabbable": null, - "tooltip": null + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "981dd0654ea440b2a2e8a2ddcc06e58f": { + "a1c971f08d2f468283c22959f8bdce29": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2589,17 +2604,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_001e728e94d2405d9bcd9b864c4c0759", + "layout": "IPY_MODEL_6737f73f236146fe8e28242d10d19bed", "max": 25596.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_c0258c06cc5e4fab9daff33d41049a02", + "style": "IPY_MODEL_30b371e4935949bc92ba6c544fce25f7", "tabbable": null, "tooltip": null, "value": 25596.0 } }, - "9a727d1446d34d30934288d6855218d7": { + "a2a78a3a8a454d3eb999d14ea8707991": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2652,7 +2667,41 @@ "width": null } }, - "9b8108dce8f8474cadcc72119e496866": { + "a5ec7b53094947be8d6f1269ed339bed": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a61f36b48f1d44768631b05a0c9fb5c1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a627262d059a45dba164ee50db3bd33f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2705,23 +2754,7 @@ "width": null } }, - "9e61ec88747b4e79bb1f155752156e4a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a1e12328deb8466c99ac665ff714628d": { + "ac6bff27bb724ed88e3f131ae97f4030": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2737,41 +2770,35 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6559591d08f3424fb4790ebc94dc4690", + "layout": "IPY_MODEL_7673ab369264404b9e5e3de515dc0418", "max": 25596.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_9e61ec88747b4e79bb1f155752156e4a", + "style": "IPY_MODEL_619dc2cb693d43c891e7145206fcaa20", "tabbable": null, "tooltip": null, "value": 25596.0 } }, - "a42559a7aa4c4a76a12121c630166528": { + "acb39321057945ef8d9559a7b2f4b3f7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3200260ff8304fecb102d185a4b5b977", - "IPY_MODEL_ac7988c418f847109a2687dfa2fbf524", - "IPY_MODEL_814346eba15246cd9dbe9d1e0f152bde" - ], - "layout": "IPY_MODEL_93b71c2c5a2741e2a43e11c3f02bc0ee", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "a7261e7a4f294c2580c893f58947c0e5": { + "b3ce3e279fba497aa3cc0bea6ab1177a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2824,7 +2851,7 @@ "width": null } }, - "a7cd5899c2dd446c85d8e7411ddbe225": { + "b472432979244b3ca96e641790ee3347": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2839,68 +2866,93 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_8411d8358a6247e482009e254ae9578b", - "IPY_MODEL_a1e12328deb8466c99ac665ff714628d", - "IPY_MODEL_d33d6ec7e0fb4e0092841847668d5367" + "IPY_MODEL_e202bc35916841a19e1b298cc685d118", + "IPY_MODEL_14d95fe229734519888d28f539fe69b6", + "IPY_MODEL_f14a318648d9484cbc18886ecb89045e" ], - "layout": "IPY_MODEL_dbb368fb84b24e09ad5c9b8aa6408e25", + "layout": "IPY_MODEL_8131144a1d9d4767afa389e3bf5b903d", "tabbable": null, "tooltip": null } }, - "a8109d26a4854346ab47c99099af5f9f": { - "model_module": "@jupyter-widgets/controls", + "b4792349cfae4c48894b6ff6a5b9247d": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a7261e7a4f294c2580c893f58947c0e5", - "max": 25596.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_f006c442096f4037b71ac85fa0374512", - "tabbable": null, - "tooltip": null, - "value": 25596.0 + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "ac7988c418f847109a2687dfa2fbf524": { + "b650a6b52c254c58ad5c84bdddedd602": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_658c87fd30cb4667b6edfe940a9d8ca3", - "max": 25596.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_1af7c16b16cc4b27bacb2f8959e91cb1", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f8539af08d75443aa96636544081579c", + "IPY_MODEL_4504ac0fc1ed46d8998911dafb3df3c3", + "IPY_MODEL_8a4790dc268d45a4abe42eb8338a2b32" + ], + "layout": "IPY_MODEL_99d6252387d04b5d9adc4e385d038e22", "tabbable": null, - "tooltip": null, - "value": 25596.0 + "tooltip": null } }, - "aecd4422d04b4e61a8d477b64ec70a9a": { + "ba2dcc70d6ec4453a8ea51569120a971": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2953,7 +3005,31 @@ "width": null } }, - "b4ffd862f40e42298b101659c65272fd": { + "ba60e3fa03d54281a80c32f3908a7ee7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_feeec6b44f044df0bae35f5c36d083cb", + "IPY_MODEL_0138323385fb4a21a43ff8164cf06037", + "IPY_MODEL_035b74cbabfa42ba9575cd9988ff0915" + ], + "layout": "IPY_MODEL_31a83703f55e4f30a7bb191ec66cd1c4", + "tabbable": null, + "tooltip": null + } + }, + "baafa12535994897b7d72033c09db782": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3006,30 +3082,23 @@ "width": null } }, - "b6c0c60864ac4d1895f2b4048a0bf889": { + "bf6b557aee7641e5a20ed62ac2bea459": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_76ee1a38b70a4c2d89ba5f1ef7089969", - "placeholder": "​", - "style": "IPY_MODEL_66e426e137f64346b75c5067050d2308", - "tabbable": null, - "tooltip": null, - "value": " 25596/25596 [00:00<00:00, 58463.12 examples/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "b886906f12b142d0a778cde316794100": { + "c1858cb1c1d2438a8a01c31677c0e87f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3047,30 +3116,60 @@ "text_color": null } }, - "b8f95fcf94ad4ac7af18b293d0113032": { - "model_module": "@jupyter-widgets/controls", + "c413bc0d1c3748d08c3af2b654bc88a1": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_64ec719b9fd842ec811fee8ac336969c", - "placeholder": "​", - "style": "IPY_MODEL_8487905bebb54ca290d698d056be4772", - "tabbable": null, - "tooltip": null, - "value": "Filter (num_proc=6): 100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "bd0ca1aff7144bb8a53f6236e15fca5f": { + "ca501ab8bc9f4544ab7c6d02e5f21e13": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3123,31 +3222,7 @@ "width": null } }, - "bee506fd250e4a579caa4ec864ffe490": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_cdf84ec4068c4558adae54a250ceed52", - "IPY_MODEL_a8109d26a4854346ab47c99099af5f9f", - "IPY_MODEL_b6c0c60864ac4d1895f2b4048a0bf889" - ], - "layout": "IPY_MODEL_1695364dc2f74dafa2a6474ee7376e64", - "tabbable": null, - "tooltip": null - } - }, - "bf685cf99ec64be79b1c553e48211bf2": { + "cbb83678845c4bb18893e2fa3f05ca2a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3165,7 +3240,7 @@ "text_color": null } }, - "c0258c06cc5e4fab9daff33d41049a02": { + "cce88b39515648ad901d016b5f912a37": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -3181,7 +3256,7 @@ "description_width": "" } }, - "c6de72a747f6458683e3f0012b309659": { + "d66c4a1ae2474cab85ef9591c7bf4d4f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3234,7 +3309,7 @@ "width": null } }, - "cb3cfa3844164c008b4249517ef57a79": { + "d8d531d6693141929547156898fceba9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3252,30 +3327,7 @@ "text_color": null } }, - "cd050e0e3d3d4ddaadf796dcbde026e4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0c107617885a4ae39afc208097587030", - "placeholder": "​", - "style": "IPY_MODEL_8511013ac137430399373fa74d278a39", - "tabbable": null, - "tooltip": null, - "value": "Filter (num_proc=6): 100%" - } - }, - "cd13ede2148043da971089918149fd92": { + "da2a7895ce9a494ba401adbba5495396": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3328,7 +3380,7 @@ "width": null } }, - "cdf84ec4068c4558adae54a250ceed52": { + "de8364a1a4d04ea5a0c7e25b704f68e4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3343,68 +3395,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1edd6735cc424b4f8cb7437f3cd592db", + "layout": "IPY_MODEL_30768bbde63e4f65b3ea67a758ac497e", "placeholder": "​", - "style": "IPY_MODEL_12d2dfd542264901a83ac1e3be5a3af0", + "style": "IPY_MODEL_7a61a7058d0248b99793aca8c73bb952", "tabbable": null, "tooltip": null, "value": "Filter (num_proc=6): 100%" } }, - "cfb1f570bf354d138a7fd555436da40d": { - "model_module": "@jupyter-widgets/base", + "e1d150146e274ca5af351e423a8a4f17": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2aba6c7528f842c19f651438c8295c6b", + "placeholder": "​", + "style": "IPY_MODEL_735d3b49e5dc4282b68638bd13cfe117", + "tabbable": null, + "tooltip": null, + "value": "Filter (num_proc=6): 100%" } }, - "d33d6ec7e0fb4e0092841847668d5367": { + "e202bc35916841a19e1b298cc685d118": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3419,59 +3441,54 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_54f3c891ae6e4742bf8481db73bf044d", + "layout": "IPY_MODEL_ca501ab8bc9f4544ab7c6d02e5f21e13", "placeholder": "​", - "style": "IPY_MODEL_bf685cf99ec64be79b1c553e48211bf2", + "style": "IPY_MODEL_08f58b75ef36497fa1765cc9a64d4490", "tabbable": null, "tooltip": null, - "value": " 25596/25596 [00:00<00:00, 61396.71 examples/s]" + "value": "Filter (num_proc=6): 100%" } }, - "d4d7bbc2f0b34185a384da7debd03b28": { + "e46d9bab482a423da92aa4d3f415e542": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c413bc0d1c3748d08c3af2b654bc88a1", + "placeholder": "​", + "style": "IPY_MODEL_1756a3d460d247a19698ea599cfe7cd1", + "tabbable": null, + "tooltip": null, + "value": " 25596/25596 [00:00<00:00, 68655.61 examples/s]" } }, - "d6e6c564552848849d0e176ae72c3ae8": { + "e4a81d57538f4b348cc66728576f4df0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_07f7f6b58a3b428d8df4329d0426fbae", - "max": 25596.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e21081f31e1d433ea6e2e048f08a3fe7", - "tabbable": null, - "tooltip": null, - "value": 25596.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "dbb368fb84b24e09ad5c9b8aa6408e25": { + "e55559606167429583b736293189f63c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3524,73 +3541,7 @@ "width": null } }, - "dc0d59f0a44d4e6896e539b00db72ebd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "e21081f31e1d433ea6e2e048f08a3fe7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "e3e855018512493b8da1cc79bd338e8d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "e5f161e4aa6d4dbc8969fa2443626047": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "e708862646a14263a37a35ce8e6c5e7e": { + "e6b045ec60964802830ccbf749dc2ed2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3643,7 +3594,25 @@ "width": null } }, - "e7f130a7591d472ba9b0bcc9f7b0d49f": { + "e9e3fe1d70d7461798d934f5d344e929": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "f14a318648d9484cbc18886ecb89045e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3658,15 +3627,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_cd13ede2148043da971089918149fd92", + "layout": "IPY_MODEL_fe962bb82ede45488778806b83e25c1a", "placeholder": "​", - "style": "IPY_MODEL_8226a347ffc54f2fb30d2d65dc535d93", + "style": "IPY_MODEL_d8d531d6693141929547156898fceba9", "tabbable": null, "tooltip": null, - "value": "Filter (num_proc=6): 100%" + "value": " 25596/25596 [00:00<00:00, 59005.10 examples/s]" } }, - "e83c7830f5bb4726a1ef39404751171d": { + "f8539af08d75443aa96636544081579c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3681,15 +3650,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_263456dfb51a4b31ad89dca19a55e61b", + "layout": "IPY_MODEL_9c701145d978489c96ac727face9d526", "placeholder": "​", - "style": "IPY_MODEL_e3e855018512493b8da1cc79bd338e8d", + "style": "IPY_MODEL_0131d34c27ab4971ab38ee5413ead264", "tabbable": null, "tooltip": null, "value": "Filter (num_proc=6): 100%" } }, - "e84e344c97fc49beb3f33fb132214720": { + "fe962bb82ede45488778806b83e25c1a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3742,20 +3711,51 @@ "width": null } }, - "f006c442096f4037b71ac85fa0374512": { + "feb85ce5697b415399e80d8fa39ff2b9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8428035360784e75a8b959a4159e4dea", + "IPY_MODEL_8af8f73de3c54dffa864dec2c7567561", + "IPY_MODEL_12df217bac064177909fc7184a4efae7" + ], + "layout": "IPY_MODEL_1066a4ca84fc45478642ae35a5a8c133", + "tabbable": null, + "tooltip": null + } + }, + "feeec6b44f044df0bae35f5c36d083cb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_90b7cc75540c443c939a97010ce1ab2e", + "placeholder": "​", + "style": "IPY_MODEL_cbb83678845c4bb18893e2fa3f05ca2a", + "tabbable": null, + "tooltip": null, + "value": "Filter (num_proc=6): 100%" } } }, diff --git a/api/tutorials/nihcxr/nihcxr_report_periodic.html b/api/tutorials/nihcxr/nihcxr_report_periodic.html index e16ec825b..54309bd11 100644 --- a/api/tutorials/nihcxr/nihcxr_report_periodic.html +++ b/api/tutorials/nihcxr/nihcxr_report_periodic.html @@ -6639,7 +6639,7 @@

Graphics

-
+
@@ -6647,7 +6647,7 @@

Graphics

-
+
@@ -6655,7 +6655,7 @@

Graphics

-
+
diff --git a/api/tutorials/synthea/length_of_stay_report_periodic.html b/api/tutorials/synthea/length_of_stay_report_periodic.html index 81ea50b71..2f4c42e08 100644 --- a/api/tutorials/synthea/length_of_stay_report_periodic.html +++ b/api/tutorials/synthea/length_of_stay_report_periodic.html @@ -679,7 +679,7 @@

A quick glance of your most import
- 0.71 + 1.0 @@ -712,11 +712,11 @@

A quick glance of your most import
- 1.0 + 0.7 - + @@ -745,7 +745,7 @@

A quick glance of your most import
- 0.83 + 0.92 @@ -778,7 +778,7 @@

A quick glance of your most import
- 0.89 + 1.0 @@ -811,7 +811,7 @@

A quick glance of your most import
- 1.0 + 0.91 @@ -1076,7 +1076,7 @@

Graphics

-
+
@@ -1084,7 +1084,7 @@

Graphics

-
+
@@ -1092,7 +1092,7 @@

Graphics

-
+
@@ -1100,7 +1100,7 @@

Graphics

-
+
@@ -1108,7 +1108,7 @@

Graphics

-
+
@@ -1190,7 +1190,7 @@

Quantitative Analysis

- 0.71 + 1.0 @@ -1223,11 +1223,11 @@

Quantitative Analysis

- 1.0 + 0.7 - + @@ -1256,7 +1256,7 @@

Quantitative Analysis

- 0.83 + 0.92 @@ -1289,7 +1289,7 @@

Quantitative Analysis

- 0.89 + 1.0 @@ -1322,7 +1322,7 @@

Quantitative Analysis

- 1.0 + 0.91 @@ -1354,7 +1354,7 @@

Graphics

-
+
@@ -1362,7 +1362,7 @@

Graphics

-
+
@@ -1370,7 +1370,7 @@

Graphics

-
+
@@ -1378,7 +1378,7 @@

Graphics

-
+
@@ -1432,7 +1432,7 @@

Graphics

-
+
@@ -1706,19 +1706,27 @@

Model Parameters

+
+

Missing

+ nan +
+
+

Colsample_bytree

+ 0.8 +
-

Max_depth

- 2 +

Gamma

+ 10
@@ -1740,10 +1748,6 @@

Max_depth

-
-

Seed

- 123 -
@@ -1764,10 +1768,6 @@

Seed

-
-

Gamma

- 2 -
@@ -1784,23 +1784,23 @@

Gamma

-

Min_child_weight

- 3 +

Seed

+ 123
-
-

Missing

- nan -
+
+

Min_child_weight

+ 3 +
@@ -1811,10 +1811,6 @@

Missing

-
-

Random_state

- 123 -
@@ -1842,7 +1838,7 @@

Random_state

Learning_rate

- 0.1 + 0.01
@@ -1854,10 +1850,6 @@

Learning_rate

-
-

Enable_categorical

- False -
@@ -1868,18 +1860,14 @@

Enable_categorical

-
-

Reg_lambda

- 1 -
-

N_estimators

- 100 +

Eval_metric

+ logloss
@@ -1896,20 +1884,28 @@

N_estimators

+
+

Enable_categorical

+ False +
-

Objective

- binary:logistic +

N_estimators

+ 500
+
+

Objective

+ binary:logistic +
@@ -1920,16 +1916,28 @@

Objective

+
+

Reg_lambda

+ 0 +
+
+

Max_depth

+ 5 +
+
+

Random_state

+ 123 +
@@ -1945,19 +1953,11 @@

Objective

-
-

Colsample_bytree

- 0.7 -
-
-

Eval_metric

- logloss -
@@ -2229,7 +2229,7 @@

Ethical Considerations

function generate_model_card_plot() { var model_card_plots = [] var overall_indices = [20, 21, 22, 23, 24] - var histories = JSON.parse("{\"0\": [\"0.864406779661017\", \"0.8993062501463628\", \"0.7590485356033688\", \"0.8285197355744485\", \"0.7906665942436504\"], \"1\": [\"0.9833333333333333\", \"1.0\", \"1.0\", \"1.0\", \"0.8188431708683748\"], \"2\": [\"0.7972972972972973\", \"0.6962514368089372\", \"0.7136769966928241\", \"0.7455915522859962\", \"0.7158168122634554\"], \"3\": [\"0.8805970149253731\", \"0.9918984728948993\", \"0.919200213984704\", \"0.8150293563900363\", \"0.7668869927222021\"], \"4\": [\"0.9631449631449631\", \"0.8930098905024182\", \"1.0\", \"0.8944333300085516\", \"0.8078797484043726\"], \"5\": [\"0.8703703703703703\", \"0.9318905254885583\", \"0.6828746712445494\", \"0.6813173381193545\", \"0.6496052693017352\"], \"6\": [\"0.9130434782608695\", \"0.9516102567932733\", \"0.9356522901576511\", \"0.9492667631257199\", \"0.9779536683181523\"], \"7\": [\"0.8076923076923077\", \"0.7406469033705946\", \"0.7830057547487796\", \"0.743296151892163\", \"0.7208795146579745\"], \"8\": [\"0.8571428571428571\", \"0.8419275506035353\", \"0.9930480355589715\", \"0.9702026395238136\", \"1.0\"], \"9\": [\"0.9512362637362637\", \"0.7891881875795842\", \"0.6025926241934397\", \"0.5238882031568927\", \"0.36439189839069763\"], \"10\": [\"0.8898305084745762\", \"0.7141893570607318\", \"0.5460702791782149\", \"0.446729955037847\", \"0.5600464052542125\"], \"11\": [\"1.0\", \"0.9307851721320557\", \"1.0\", \"0.9940837848619417\", \"0.9661861905067434\"], \"12\": [\"0.8311688311688312\", \"0.7074237168649731\", \"0.6077673804080426\", \"0.5037451267044037\", \"0.5032933202179718\"], \"13\": [\"0.9078014184397163\", \"0.9686867943055363\", \"1.0\", \"1.0\", \"0.9976531011637592\"], \"14\": [\"0.966265441875198\", \"0.924459727307104\", \"0.9030081771838163\", \"0.8270506173051891\", \"0.9053609006623138\"], \"15\": [\"0.8981481481481481\", \"0.8372962377761621\", \"0.828314446138853\", \"0.6458550889341697\", \"0.7605329103706359\"], \"16\": [\"0.9523809523809523\", \"0.9555550231127934\", \"0.7999182748157807\", \"0.7770064769978706\", \"0.6662060335246613\"], \"17\": [\"0.8823529411764706\", \"0.7463586970035231\", \"0.6712269200920864\", \"0.6527671297468487\", \"0.5470895904704142\"], \"18\": [\"0.916030534351145\", \"0.9644773582175717\", \"0.8912580731250325\", \"1.0\", \"0.8973703115329477\"], \"19\": [\"0.9678308823529411\", \"0.9865546032435977\", \"1.0\", \"1.0\", \"0.950609006832807\"], \"20\": [\"0.8938053097345132\", \"0.7300559629393314\", \"0.6461437587787595\", \"0.6356149659839363\", \"0.7086703195958732\"], \"21\": [\"0.9763779527559056\", \"0.9415506744947246\", \"1.0\", \"0.949616894924978\", \"1.0\"], \"22\": [\"0.8551724137931035\", \"0.7219781789226911\", \"0.748161934974854\", \"0.6926808110554649\", \"0.8291366043424484\"], \"23\": [\"0.9117647058823529\", \"1.0\", \"1.0\", \"1.0\", \"0.88757367171146\"], \"24\": [\"0.9675180928054492\", \"0.9825691410169554\", \"0.9666463188979673\", \"1.0\", \"1.0\"]}"); + var histories = JSON.parse("{\"0\": [\"0.8717948717948718\", \"1.0\", \"1.0\", \"1.0\", \"0.910388412571671\"], \"1\": [\"1.0\", \"1.0\", \"1.0\", \"0.9578630941232121\", \"1.0\"], \"2\": [\"0.7619047619047619\", \"0.7482273545367529\", \"0.8374750021331773\", \"0.9659217651569773\", \"0.679835084463768\"], \"3\": [\"0.8648648648648649\", \"0.9976842912560083\", \"0.9034504530315746\", \"1.0\", \"0.8661814472305589\"], \"4\": [\"0.9422398589065255\", \"1.0\", \"0.8199446459581341\", \"0.7965442645023353\", \"0.8185979456531283\"], \"5\": [\"0.8596491228070176\", \"1.0\", \"1.0\", \"0.9819012004068857\", \"1.0\"], \"6\": [\"0.9375\", \"0.7357148430758972\", \"0.8310447324631776\", \"0.9017937946763962\", \"0.8724355921445989\"], \"7\": [\"0.8333333333333334\", \"0.8538545652703514\", \"0.814334406452902\", \"0.8013556868502084\", \"0.8074529962097959\"], \"8\": [\"0.8823529411764706\", \"0.829702553712814\", \"0.7881316658182267\", \"0.7325295481200085\", \"0.7653987657670646\"], \"9\": [\"0.9153439153439153\", \"0.9046826173748163\", \"0.9482273879522435\", \"1.0\", \"1.0\"], \"10\": [\"0.8833333333333333\", \"0.9156403667100692\", \"0.7017993397346919\", \"0.7384953951634315\", \"0.6866169450580393\"], \"11\": [\"1.0\", \"1.0\", \"0.7556733487801225\", \"0.7620991645464431\", \"0.7031984792054216\"], \"12\": [\"0.8157894736842105\", \"0.6817474409146221\", \"0.6365286706951968\", \"0.5991675178813676\", \"0.5280522879533682\"], \"13\": [\"0.8985507246376812\", \"0.9006636188350234\", \"0.8254720441634376\", \"0.8857467704219172\", \"0.7997875288280306\"], \"14\": [\"0.9567882775119617\", \"1.0\", \"1.0\", \"1.0\", \"0.9525261467348834\"], \"15\": [\"0.8962264150943396\", \"0.8707672185167564\", \"0.8282771248689635\", \"0.8646692817049835\", \"1.0\"], \"16\": [\"0.967741935483871\", \"0.9510992284082298\", \"0.9699681002992214\", \"0.8917133204168985\", \"0.823987602901995\"], \"17\": [\"0.8695652173913043\", \"0.9233241526808328\", \"0.9760058629174101\", \"0.8422540891976931\", \"0.9536047072340482\"], \"18\": [\"0.916030534351145\", \"0.8660322948702325\", \"1.0\", \"0.906996083238966\", \"1.0\"], \"19\": [\"0.9414414414414416\", \"0.8925712423963877\", \"0.899926939964436\", \"0.9939037927713921\", \"0.860340751781492\"], \"20\": [\"0.8893805309734514\", \"0.7642691401830463\", \"0.7680252596716269\", \"0.9449522783874997\", \"1.0\"], \"21\": [\"0.9838709677419355\", \"1.0\", \"1.0\", \"0.788089906555172\", \"0.6964059313674806\"], \"22\": [\"0.8413793103448276\", \"0.87512802700806\", \"0.9102601533364936\", \"0.6811956971259406\", \"0.9223198776558822\"], \"23\": [\"0.9070631970260223\", \"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"24\": [\"0.9492124308216263\", \"0.9682095185282\", \"0.8669862451485185\", \"0.9848754988491972\", \"0.9130324144316974\"]}"); var thresholds = JSON.parse("{\"0\": \"0.7\", \"1\": \"0.7\", \"2\": \"0.7\", \"3\": \"0.7\", \"4\": \"0.7\", \"5\": \"0.7\", \"6\": \"0.7\", \"7\": \"0.7\", \"8\": \"0.7\", \"9\": \"0.7\", \"10\": \"0.7\", \"11\": \"0.7\", \"12\": \"0.7\", \"13\": \"0.7\", \"14\": \"0.7\", \"15\": \"0.7\", \"16\": \"0.7\", \"17\": \"0.7\", \"18\": \"0.7\", \"19\": \"0.7\", \"20\": \"0.7\", \"21\": \"0.7\", \"22\": \"0.7\", \"23\": \"0.7\", \"24\": \"0.7\"}"); var timestamps = JSON.parse("{\"0\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"1\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"2\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"3\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"4\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"5\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"6\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"7\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"8\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"9\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"10\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"11\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"12\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"13\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"14\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"15\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"16\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"17\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"18\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"19\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"20\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"21\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"22\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"23\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"24\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"]}"); @@ -2510,10 +2510,10 @@

Ethical Considerations

} } var slices_all = JSON.parse("{\"0\": [\"metric:Accuracy\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"1\": [\"metric:Precision\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"2\": [\"metric:Recall\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"3\": [\"metric:F1 Score\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"4\": [\"metric:AUROC\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"5\": [\"metric:Accuracy\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"6\": [\"metric:Precision\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"7\": [\"metric:Recall\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"8\": [\"metric:F1 Score\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"9\": [\"metric:AUROC\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"10\": [\"metric:Accuracy\", \"gender:M\", \"age:overall_age\"], \"11\": [\"metric:Precision\", \"gender:M\", \"age:overall_age\"], \"12\": [\"metric:Recall\", \"gender:M\", \"age:overall_age\"], \"13\": [\"metric:F1 Score\", \"gender:M\", \"age:overall_age\"], \"14\": [\"metric:AUROC\", \"gender:M\", \"age:overall_age\"], \"15\": [\"metric:Accuracy\", \"gender:F\", \"age:overall_age\"], \"16\": [\"metric:Precision\", \"gender:F\", \"age:overall_age\"], \"17\": [\"metric:Recall\", \"gender:F\", \"age:overall_age\"], \"18\": [\"metric:F1 Score\", \"gender:F\", \"age:overall_age\"], \"19\": [\"metric:AUROC\", \"gender:F\", \"age:overall_age\"], \"20\": [\"metric:Accuracy\", \"age:overall_age\", \"gender:overall_gender\"], \"21\": [\"metric:Precision\", \"age:overall_age\", \"gender:overall_gender\"], \"22\": [\"metric:Recall\", \"age:overall_age\", \"gender:overall_gender\"], \"23\": [\"metric:F1 Score\", \"age:overall_age\", \"gender:overall_gender\"], \"24\": [\"metric:AUROC\", \"age:overall_age\", \"gender:overall_gender\"]}"); - var histories_all = JSON.parse("{\"0\": [\"0.864406779661017\", \"0.8993062501463628\", \"0.7590485356033688\", \"0.8285197355744485\", \"0.7906665942436504\"], \"1\": [\"0.9833333333333333\", \"1.0\", \"1.0\", \"1.0\", \"0.8188431708683748\"], \"2\": [\"0.7972972972972973\", \"0.6962514368089372\", \"0.7136769966928241\", \"0.7455915522859962\", \"0.7158168122634554\"], \"3\": [\"0.8805970149253731\", \"0.9918984728948993\", \"0.919200213984704\", \"0.8150293563900363\", \"0.7668869927222021\"], \"4\": [\"0.9631449631449631\", \"0.8930098905024182\", \"1.0\", \"0.8944333300085516\", \"0.8078797484043726\"], \"5\": [\"0.8703703703703703\", \"0.9318905254885583\", \"0.6828746712445494\", \"0.6813173381193545\", \"0.6496052693017352\"], \"6\": [\"0.9130434782608695\", \"0.9516102567932733\", \"0.9356522901576511\", \"0.9492667631257199\", \"0.9779536683181523\"], \"7\": [\"0.8076923076923077\", \"0.7406469033705946\", \"0.7830057547487796\", \"0.743296151892163\", \"0.7208795146579745\"], \"8\": [\"0.8571428571428571\", \"0.8419275506035353\", \"0.9930480355589715\", \"0.9702026395238136\", \"1.0\"], \"9\": [\"0.9512362637362637\", \"0.7891881875795842\", \"0.6025926241934397\", \"0.5238882031568927\", \"0.36439189839069763\"], \"10\": [\"0.8898305084745762\", \"0.7141893570607318\", \"0.5460702791782149\", \"0.446729955037847\", \"0.5600464052542125\"], \"11\": [\"1.0\", \"0.9307851721320557\", \"1.0\", \"0.9940837848619417\", \"0.9661861905067434\"], \"12\": [\"0.8311688311688312\", \"0.7074237168649731\", \"0.6077673804080426\", \"0.5037451267044037\", \"0.5032933202179718\"], \"13\": [\"0.9078014184397163\", \"0.9686867943055363\", \"1.0\", \"1.0\", \"0.9976531011637592\"], \"14\": [\"0.966265441875198\", \"0.924459727307104\", \"0.9030081771838163\", \"0.8270506173051891\", \"0.9053609006623138\"], \"15\": [\"0.8981481481481481\", \"0.8372962377761621\", \"0.828314446138853\", \"0.6458550889341697\", \"0.7605329103706359\"], \"16\": [\"0.9523809523809523\", \"0.9555550231127934\", \"0.7999182748157807\", \"0.7770064769978706\", \"0.6662060335246613\"], \"17\": [\"0.8823529411764706\", \"0.7463586970035231\", \"0.6712269200920864\", \"0.6527671297468487\", \"0.5470895904704142\"], \"18\": [\"0.916030534351145\", \"0.9644773582175717\", \"0.8912580731250325\", \"1.0\", \"0.8973703115329477\"], \"19\": [\"0.9678308823529411\", \"0.9865546032435977\", \"1.0\", \"1.0\", \"0.950609006832807\"], \"20\": [\"0.8938053097345132\", \"0.7300559629393314\", \"0.6461437587787595\", \"0.6356149659839363\", \"0.7086703195958732\"], \"21\": [\"0.9763779527559056\", \"0.9415506744947246\", \"1.0\", \"0.949616894924978\", \"1.0\"], \"22\": [\"0.8551724137931035\", \"0.7219781789226911\", \"0.748161934974854\", \"0.6926808110554649\", \"0.8291366043424484\"], \"23\": [\"0.9117647058823529\", \"1.0\", \"1.0\", \"1.0\", \"0.88757367171146\"], \"24\": [\"0.9675180928054492\", \"0.9825691410169554\", \"0.9666463188979673\", \"1.0\", \"1.0\"]}"); + var histories_all = JSON.parse("{\"0\": [\"0.8717948717948718\", \"1.0\", \"1.0\", \"1.0\", \"0.910388412571671\"], \"1\": [\"1.0\", \"1.0\", \"1.0\", \"0.9578630941232121\", \"1.0\"], \"2\": [\"0.7619047619047619\", \"0.7482273545367529\", \"0.8374750021331773\", \"0.9659217651569773\", \"0.679835084463768\"], \"3\": [\"0.8648648648648649\", \"0.9976842912560083\", \"0.9034504530315746\", \"1.0\", \"0.8661814472305589\"], \"4\": [\"0.9422398589065255\", \"1.0\", \"0.8199446459581341\", \"0.7965442645023353\", \"0.8185979456531283\"], \"5\": [\"0.8596491228070176\", \"1.0\", \"1.0\", \"0.9819012004068857\", \"1.0\"], \"6\": [\"0.9375\", \"0.7357148430758972\", \"0.8310447324631776\", \"0.9017937946763962\", \"0.8724355921445989\"], \"7\": [\"0.8333333333333334\", \"0.8538545652703514\", \"0.814334406452902\", \"0.8013556868502084\", \"0.8074529962097959\"], \"8\": [\"0.8823529411764706\", \"0.829702553712814\", \"0.7881316658182267\", \"0.7325295481200085\", \"0.7653987657670646\"], \"9\": [\"0.9153439153439153\", \"0.9046826173748163\", \"0.9482273879522435\", \"1.0\", \"1.0\"], \"10\": [\"0.8833333333333333\", \"0.9156403667100692\", \"0.7017993397346919\", \"0.7384953951634315\", \"0.6866169450580393\"], \"11\": [\"1.0\", \"1.0\", \"0.7556733487801225\", \"0.7620991645464431\", \"0.7031984792054216\"], \"12\": [\"0.8157894736842105\", \"0.6817474409146221\", \"0.6365286706951968\", \"0.5991675178813676\", \"0.5280522879533682\"], \"13\": [\"0.8985507246376812\", \"0.9006636188350234\", \"0.8254720441634376\", \"0.8857467704219172\", \"0.7997875288280306\"], \"14\": [\"0.9567882775119617\", \"1.0\", \"1.0\", \"1.0\", \"0.9525261467348834\"], \"15\": [\"0.8962264150943396\", \"0.8707672185167564\", \"0.8282771248689635\", \"0.8646692817049835\", \"1.0\"], \"16\": [\"0.967741935483871\", \"0.9510992284082298\", \"0.9699681002992214\", \"0.8917133204168985\", \"0.823987602901995\"], \"17\": [\"0.8695652173913043\", \"0.9233241526808328\", \"0.9760058629174101\", \"0.8422540891976931\", \"0.9536047072340482\"], \"18\": [\"0.916030534351145\", \"0.8660322948702325\", \"1.0\", \"0.906996083238966\", \"1.0\"], \"19\": [\"0.9414414414414416\", \"0.8925712423963877\", \"0.899926939964436\", \"0.9939037927713921\", \"0.860340751781492\"], \"20\": [\"0.8893805309734514\", \"0.7642691401830463\", \"0.7680252596716269\", \"0.9449522783874997\", \"1.0\"], \"21\": [\"0.9838709677419355\", \"1.0\", \"1.0\", \"0.788089906555172\", \"0.6964059313674806\"], \"22\": [\"0.8413793103448276\", \"0.87512802700806\", \"0.9102601533364936\", \"0.6811956971259406\", \"0.9223198776558822\"], \"23\": [\"0.9070631970260223\", \"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"24\": [\"0.9492124308216263\", \"0.9682095185282\", \"0.8669862451485185\", \"0.9848754988491972\", \"0.9130324144316974\"]}"); var thresholds_all = JSON.parse("{\"0\": \"0.7\", \"1\": \"0.7\", \"2\": \"0.7\", \"3\": \"0.7\", \"4\": \"0.7\", \"5\": \"0.7\", \"6\": \"0.7\", \"7\": \"0.7\", \"8\": \"0.7\", \"9\": \"0.7\", \"10\": \"0.7\", \"11\": \"0.7\", \"12\": \"0.7\", \"13\": \"0.7\", \"14\": \"0.7\", \"15\": \"0.7\", \"16\": \"0.7\", \"17\": \"0.7\", \"18\": \"0.7\", \"19\": \"0.7\", \"20\": \"0.7\", \"21\": \"0.7\", \"22\": \"0.7\", \"23\": \"0.7\", \"24\": \"0.7\"}"); - var trends_all = JSON.parse("{\"0\": \"negative\", \"1\": \"negative\", \"2\": \"negative\", \"3\": \"negative\", \"4\": \"negative\", \"5\": \"negative\", \"6\": \"positive\", \"7\": \"negative\", \"8\": \"positive\", \"9\": \"negative\", \"10\": \"negative\", \"11\": \"neutral\", \"12\": \"negative\", \"13\": \"positive\", \"14\": \"negative\", \"15\": \"negative\", \"16\": \"negative\", \"17\": \"negative\", \"18\": \"neutral\", \"19\": \"neutral\", \"20\": \"negative\", \"21\": \"neutral\", \"22\": \"neutral\", \"23\": \"neutral\", \"24\": \"neutral\"}"); - var passed_all = JSON.parse("{\"0\": true, \"1\": true, \"2\": true, \"3\": true, \"4\": true, \"5\": false, \"6\": true, \"7\": true, \"8\": true, \"9\": false, \"10\": false, \"11\": true, \"12\": false, \"13\": true, \"14\": true, \"15\": true, \"16\": false, \"17\": false, \"18\": true, \"19\": true, \"20\": true, \"21\": true, \"22\": true, \"23\": true, \"24\": true}"); + var trends_all = JSON.parse("{\"0\": \"neutral\", \"1\": \"neutral\", \"2\": \"neutral\", \"3\": \"neutral\", \"4\": \"negative\", \"5\": \"positive\", \"6\": \"neutral\", \"7\": \"negative\", \"8\": \"negative\", \"9\": \"positive\", \"10\": \"negative\", \"11\": \"negative\", \"12\": \"negative\", \"13\": \"negative\", \"14\": \"neutral\", \"15\": \"positive\", \"16\": \"negative\", \"17\": \"neutral\", \"18\": \"positive\", \"19\": \"neutral\", \"20\": \"positive\", \"21\": \"negative\", \"22\": \"neutral\", \"23\": \"positive\", \"24\": \"neutral\"}"); + var passed_all = JSON.parse("{\"0\": true, \"1\": true, \"2\": false, \"3\": true, \"4\": true, \"5\": true, \"6\": true, \"7\": true, \"8\": true, \"9\": true, \"10\": false, \"11\": true, \"12\": false, \"13\": true, \"14\": true, \"15\": true, \"16\": true, \"17\": true, \"18\": true, \"19\": true, \"20\": true, \"21\": false, \"22\": true, \"23\": true, \"24\": true}"); var names_all = JSON.parse("{\"0\": \"Accuracy\", \"1\": \"Precision\", \"2\": \"Recall\", \"3\": \"F1 Score\", \"4\": \"AUROC\", \"5\": \"Accuracy\", \"6\": \"Precision\", \"7\": \"Recall\", \"8\": \"F1 Score\", \"9\": \"AUROC\", \"10\": \"Accuracy\", \"11\": \"Precision\", \"12\": \"Recall\", \"13\": \"F1 Score\", \"14\": \"AUROC\", \"15\": \"Accuracy\", \"16\": \"Precision\", \"17\": \"Recall\", \"18\": \"F1 Score\", \"19\": \"AUROC\", \"20\": \"Accuracy\", \"21\": \"Precision\", \"22\": \"Recall\", \"23\": \"F1 Score\", \"24\": \"AUROC\"}"); var timestamps_all = JSON.parse("{\"0\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"1\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"2\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"3\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"4\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"5\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"6\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"7\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"8\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"9\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"10\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"11\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"12\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"13\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"14\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"15\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"16\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"17\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"18\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"19\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"20\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"21\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"22\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"23\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"24\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"]}"); @@ -2786,10 +2786,10 @@

Ethical Considerations

} } var slices_all = JSON.parse("{\"0\": [\"metric:Accuracy\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"1\": [\"metric:Precision\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"2\": [\"metric:Recall\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"3\": [\"metric:F1 Score\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"4\": [\"metric:AUROC\", \"age:[20 - 50)\", \"gender:overall_gender\"], \"5\": [\"metric:Accuracy\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"6\": [\"metric:Precision\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"7\": [\"metric:Recall\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"8\": [\"metric:F1 Score\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"9\": [\"metric:AUROC\", \"age:[50 - 80)\", \"gender:overall_gender\"], \"10\": [\"metric:Accuracy\", \"gender:M\", \"age:overall_age\"], \"11\": [\"metric:Precision\", \"gender:M\", \"age:overall_age\"], \"12\": [\"metric:Recall\", \"gender:M\", \"age:overall_age\"], \"13\": [\"metric:F1 Score\", \"gender:M\", \"age:overall_age\"], \"14\": [\"metric:AUROC\", \"gender:M\", \"age:overall_age\"], \"15\": [\"metric:Accuracy\", \"gender:F\", \"age:overall_age\"], \"16\": [\"metric:Precision\", \"gender:F\", \"age:overall_age\"], \"17\": [\"metric:Recall\", \"gender:F\", \"age:overall_age\"], \"18\": [\"metric:F1 Score\", \"gender:F\", \"age:overall_age\"], \"19\": [\"metric:AUROC\", \"gender:F\", \"age:overall_age\"], \"20\": [\"metric:Accuracy\", \"age:overall_age\", \"gender:overall_gender\"], \"21\": [\"metric:Precision\", \"age:overall_age\", \"gender:overall_gender\"], \"22\": [\"metric:Recall\", \"age:overall_age\", \"gender:overall_gender\"], \"23\": [\"metric:F1 Score\", \"age:overall_age\", \"gender:overall_gender\"], \"24\": [\"metric:AUROC\", \"age:overall_age\", \"gender:overall_gender\"]}"); - var histories_all = JSON.parse("{\"0\": [\"0.864406779661017\", \"0.8993062501463628\", \"0.7590485356033688\", \"0.8285197355744485\", \"0.7906665942436504\"], \"1\": [\"0.9833333333333333\", \"1.0\", \"1.0\", \"1.0\", \"0.8188431708683748\"], \"2\": [\"0.7972972972972973\", \"0.6962514368089372\", \"0.7136769966928241\", \"0.7455915522859962\", \"0.7158168122634554\"], \"3\": [\"0.8805970149253731\", \"0.9918984728948993\", \"0.919200213984704\", \"0.8150293563900363\", \"0.7668869927222021\"], \"4\": [\"0.9631449631449631\", \"0.8930098905024182\", \"1.0\", \"0.8944333300085516\", \"0.8078797484043726\"], \"5\": [\"0.8703703703703703\", \"0.9318905254885583\", \"0.6828746712445494\", \"0.6813173381193545\", \"0.6496052693017352\"], \"6\": [\"0.9130434782608695\", \"0.9516102567932733\", \"0.9356522901576511\", \"0.9492667631257199\", \"0.9779536683181523\"], \"7\": [\"0.8076923076923077\", \"0.7406469033705946\", \"0.7830057547487796\", \"0.743296151892163\", \"0.7208795146579745\"], \"8\": [\"0.8571428571428571\", \"0.8419275506035353\", \"0.9930480355589715\", \"0.9702026395238136\", \"1.0\"], \"9\": [\"0.9512362637362637\", \"0.7891881875795842\", \"0.6025926241934397\", \"0.5238882031568927\", \"0.36439189839069763\"], \"10\": [\"0.8898305084745762\", \"0.7141893570607318\", \"0.5460702791782149\", \"0.446729955037847\", \"0.5600464052542125\"], \"11\": [\"1.0\", \"0.9307851721320557\", \"1.0\", \"0.9940837848619417\", \"0.9661861905067434\"], \"12\": [\"0.8311688311688312\", \"0.7074237168649731\", \"0.6077673804080426\", \"0.5037451267044037\", \"0.5032933202179718\"], \"13\": [\"0.9078014184397163\", \"0.9686867943055363\", \"1.0\", \"1.0\", \"0.9976531011637592\"], \"14\": [\"0.966265441875198\", \"0.924459727307104\", \"0.9030081771838163\", \"0.8270506173051891\", \"0.9053609006623138\"], \"15\": [\"0.8981481481481481\", \"0.8372962377761621\", \"0.828314446138853\", \"0.6458550889341697\", \"0.7605329103706359\"], \"16\": [\"0.9523809523809523\", \"0.9555550231127934\", \"0.7999182748157807\", \"0.7770064769978706\", \"0.6662060335246613\"], \"17\": [\"0.8823529411764706\", \"0.7463586970035231\", \"0.6712269200920864\", \"0.6527671297468487\", \"0.5470895904704142\"], \"18\": [\"0.916030534351145\", \"0.9644773582175717\", \"0.8912580731250325\", \"1.0\", \"0.8973703115329477\"], \"19\": [\"0.9678308823529411\", \"0.9865546032435977\", \"1.0\", \"1.0\", \"0.950609006832807\"], \"20\": [\"0.8938053097345132\", \"0.7300559629393314\", \"0.6461437587787595\", \"0.6356149659839363\", \"0.7086703195958732\"], \"21\": [\"0.9763779527559056\", \"0.9415506744947246\", \"1.0\", \"0.949616894924978\", \"1.0\"], \"22\": [\"0.8551724137931035\", \"0.7219781789226911\", \"0.748161934974854\", \"0.6926808110554649\", \"0.8291366043424484\"], \"23\": [\"0.9117647058823529\", \"1.0\", \"1.0\", \"1.0\", \"0.88757367171146\"], \"24\": [\"0.9675180928054492\", \"0.9825691410169554\", \"0.9666463188979673\", \"1.0\", \"1.0\"]}"); + var histories_all = JSON.parse("{\"0\": [\"0.8717948717948718\", \"1.0\", \"1.0\", \"1.0\", \"0.910388412571671\"], \"1\": [\"1.0\", \"1.0\", \"1.0\", \"0.9578630941232121\", \"1.0\"], \"2\": [\"0.7619047619047619\", \"0.7482273545367529\", \"0.8374750021331773\", \"0.9659217651569773\", \"0.679835084463768\"], \"3\": [\"0.8648648648648649\", \"0.9976842912560083\", \"0.9034504530315746\", \"1.0\", \"0.8661814472305589\"], \"4\": [\"0.9422398589065255\", \"1.0\", \"0.8199446459581341\", \"0.7965442645023353\", \"0.8185979456531283\"], \"5\": [\"0.8596491228070176\", \"1.0\", \"1.0\", \"0.9819012004068857\", \"1.0\"], \"6\": [\"0.9375\", \"0.7357148430758972\", \"0.8310447324631776\", \"0.9017937946763962\", \"0.8724355921445989\"], \"7\": [\"0.8333333333333334\", \"0.8538545652703514\", \"0.814334406452902\", \"0.8013556868502084\", \"0.8074529962097959\"], \"8\": [\"0.8823529411764706\", \"0.829702553712814\", \"0.7881316658182267\", \"0.7325295481200085\", \"0.7653987657670646\"], \"9\": [\"0.9153439153439153\", \"0.9046826173748163\", \"0.9482273879522435\", \"1.0\", \"1.0\"], \"10\": [\"0.8833333333333333\", \"0.9156403667100692\", \"0.7017993397346919\", \"0.7384953951634315\", \"0.6866169450580393\"], \"11\": [\"1.0\", \"1.0\", \"0.7556733487801225\", \"0.7620991645464431\", \"0.7031984792054216\"], \"12\": [\"0.8157894736842105\", \"0.6817474409146221\", \"0.6365286706951968\", \"0.5991675178813676\", \"0.5280522879533682\"], \"13\": [\"0.8985507246376812\", \"0.9006636188350234\", \"0.8254720441634376\", \"0.8857467704219172\", \"0.7997875288280306\"], \"14\": [\"0.9567882775119617\", \"1.0\", \"1.0\", \"1.0\", \"0.9525261467348834\"], \"15\": [\"0.8962264150943396\", \"0.8707672185167564\", \"0.8282771248689635\", \"0.8646692817049835\", \"1.0\"], \"16\": [\"0.967741935483871\", \"0.9510992284082298\", \"0.9699681002992214\", \"0.8917133204168985\", \"0.823987602901995\"], \"17\": [\"0.8695652173913043\", \"0.9233241526808328\", \"0.9760058629174101\", \"0.8422540891976931\", \"0.9536047072340482\"], \"18\": [\"0.916030534351145\", \"0.8660322948702325\", \"1.0\", \"0.906996083238966\", \"1.0\"], \"19\": [\"0.9414414414414416\", \"0.8925712423963877\", \"0.899926939964436\", \"0.9939037927713921\", \"0.860340751781492\"], \"20\": [\"0.8893805309734514\", \"0.7642691401830463\", \"0.7680252596716269\", \"0.9449522783874997\", \"1.0\"], \"21\": [\"0.9838709677419355\", \"1.0\", \"1.0\", \"0.788089906555172\", \"0.6964059313674806\"], \"22\": [\"0.8413793103448276\", \"0.87512802700806\", \"0.9102601533364936\", \"0.6811956971259406\", \"0.9223198776558822\"], \"23\": [\"0.9070631970260223\", \"1.0\", \"1.0\", \"1.0\", \"1.0\"], \"24\": [\"0.9492124308216263\", \"0.9682095185282\", \"0.8669862451485185\", \"0.9848754988491972\", \"0.9130324144316974\"]}"); var thresholds_all = JSON.parse("{\"0\": \"0.7\", \"1\": \"0.7\", \"2\": \"0.7\", \"3\": \"0.7\", \"4\": \"0.7\", \"5\": \"0.7\", \"6\": \"0.7\", \"7\": \"0.7\", \"8\": \"0.7\", \"9\": \"0.7\", \"10\": \"0.7\", \"11\": \"0.7\", \"12\": \"0.7\", \"13\": \"0.7\", \"14\": \"0.7\", \"15\": \"0.7\", \"16\": \"0.7\", \"17\": \"0.7\", \"18\": \"0.7\", \"19\": \"0.7\", \"20\": \"0.7\", \"21\": \"0.7\", \"22\": \"0.7\", \"23\": \"0.7\", \"24\": \"0.7\"}"); - var trends_all = JSON.parse("{\"0\": \"negative\", \"1\": \"negative\", \"2\": \"negative\", \"3\": \"negative\", \"4\": \"negative\", \"5\": \"negative\", \"6\": \"positive\", \"7\": \"negative\", \"8\": \"positive\", \"9\": \"negative\", \"10\": \"negative\", \"11\": \"neutral\", \"12\": \"negative\", \"13\": \"positive\", \"14\": \"negative\", \"15\": \"negative\", \"16\": \"negative\", \"17\": \"negative\", \"18\": \"neutral\", \"19\": \"neutral\", \"20\": \"negative\", \"21\": \"neutral\", \"22\": \"neutral\", \"23\": \"neutral\", \"24\": \"neutral\"}"); - var passed_all = JSON.parse("{\"0\": true, \"1\": true, \"2\": true, \"3\": true, \"4\": true, \"5\": false, \"6\": true, \"7\": true, \"8\": true, \"9\": false, \"10\": false, \"11\": true, \"12\": false, \"13\": true, \"14\": true, \"15\": true, \"16\": false, \"17\": false, \"18\": true, \"19\": true, \"20\": true, \"21\": true, \"22\": true, \"23\": true, \"24\": true}"); + var trends_all = JSON.parse("{\"0\": \"neutral\", \"1\": \"neutral\", \"2\": \"neutral\", \"3\": \"neutral\", \"4\": \"negative\", \"5\": \"positive\", \"6\": \"neutral\", \"7\": \"negative\", \"8\": \"negative\", \"9\": \"positive\", \"10\": \"negative\", \"11\": \"negative\", \"12\": \"negative\", \"13\": \"negative\", \"14\": \"neutral\", \"15\": \"positive\", \"16\": \"negative\", \"17\": \"neutral\", \"18\": \"positive\", \"19\": \"neutral\", \"20\": \"positive\", \"21\": \"negative\", \"22\": \"neutral\", \"23\": \"positive\", \"24\": \"neutral\"}"); + var passed_all = JSON.parse("{\"0\": true, \"1\": true, \"2\": false, \"3\": true, \"4\": true, \"5\": true, \"6\": true, \"7\": true, \"8\": true, \"9\": true, \"10\": false, \"11\": true, \"12\": false, \"13\": true, \"14\": true, \"15\": true, \"16\": true, \"17\": true, \"18\": true, \"19\": true, \"20\": true, \"21\": false, \"22\": true, \"23\": true, \"24\": true}"); var names_all = JSON.parse("{\"0\": \"Accuracy\", \"1\": \"Precision\", \"2\": \"Recall\", \"3\": \"F1 Score\", \"4\": \"AUROC\", \"5\": \"Accuracy\", \"6\": \"Precision\", \"7\": \"Recall\", \"8\": \"F1 Score\", \"9\": \"AUROC\", \"10\": \"Accuracy\", \"11\": \"Precision\", \"12\": \"Recall\", \"13\": \"F1 Score\", \"14\": \"AUROC\", \"15\": \"Accuracy\", \"16\": \"Precision\", \"17\": \"Recall\", \"18\": \"F1 Score\", \"19\": \"AUROC\", \"20\": \"Accuracy\", \"21\": \"Precision\", \"22\": \"Recall\", \"23\": \"F1 Score\", \"24\": \"AUROC\"}"); var timestamps_all = JSON.parse("{\"0\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"1\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"2\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"3\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"4\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"5\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"6\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"7\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"8\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"9\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"10\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"11\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"12\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"13\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"14\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"15\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"16\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"17\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"18\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"19\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"20\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"21\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"22\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"23\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"], \"24\": [\"2021-09-01\", \"2021-10-01\", \"2021-11-01\", \"2021-12-01\", \"2022-01-01\"]}"); diff --git a/api/tutorials/synthea/los_prediction.html b/api/tutorials/synthea/los_prediction.html index 9849fa58d..7d3f4ed7f 100644 --- a/api/tutorials/synthea/los_prediction.html +++ b/api/tutorials/synthea/los_prediction.html @@ -677,17 +677,17 @@

Compute length of stay (labels)
-2023-12-09 08:52:46,863 INFO cycquery.orm    - Database setup, ready to run queries!
-2023-12-09 08:52:51,996 INFO cycquery.orm    - Query returned successfully!
-2023-12-09 08:52:51,997 INFO cycquery.utils.profile - Finished executing function run_query in 3.923022 s
-2023-12-09 08:52:53,801 INFO cycquery.orm    - Query returned successfully!
-2023-12-09 08:52:53,802 INFO cycquery.utils.profile - Finished executing function run_query in 1.803954 s
-2023-12-09 08:52:55,350 INFO cycquery.orm    - Query returned successfully!
-2023-12-09 08:52:55,351 INFO cycquery.utils.profile - Finished executing function run_query in 0.387944 s
-2023-12-09 08:52:55,836 INFO cycquery.orm    - Query returned successfully!
-2023-12-09 08:52:55,838 INFO cycquery.utils.profile - Finished executing function run_query in 0.484055 s
-2023-12-09 08:52:55,943 INFO cycquery.orm    - Query returned successfully!
-2023-12-09 08:52:55,945 INFO cycquery.utils.profile - Finished executing function run_query in 0.106256 s
+2023-12-09 17:42:16,340 INFO cycquery.orm    - Database setup, ready to run queries!
+2023-12-09 17:42:21,570 INFO cycquery.orm    - Query returned successfully!
+2023-12-09 17:42:21,570 INFO cycquery.utils.profile - Finished executing function run_query in 3.898663 s
+2023-12-09 17:42:23,395 INFO cycquery.orm    - Query returned successfully!
+2023-12-09 17:42:23,396 INFO cycquery.utils.profile - Finished executing function run_query in 1.824111 s
+2023-12-09 17:42:24,942 INFO cycquery.orm    - Query returned successfully!
+2023-12-09 17:42:24,944 INFO cycquery.utils.profile - Finished executing function run_query in 0.388999 s
+2023-12-09 17:42:25,424 INFO cycquery.orm    - Query returned successfully!
+2023-12-09 17:42:25,426 INFO cycquery.utils.profile - Finished executing function run_query in 0.476844 s
+2023-12-09 17:42:25,518 INFO cycquery.orm    - Query returned successfully!
+2023-12-09 17:42:25,520 INFO cycquery.utils.profile - Finished executing function run_query in 0.093154 s
 

@@ -740,9 +740,9 @@

Drop NaNs based on the

-
+
@@ -1304,12 +1304,12 @@

Training

-2023-12-09 08:53:05,611 INFO cyclops.models.wrappers.sk_model - Best reg_lambda: 1
-2023-12-09 08:53:05,612 INFO cyclops.models.wrappers.sk_model - Best n_estimators: 100
-2023-12-09 08:53:05,612 INFO cyclops.models.wrappers.sk_model - Best max_depth: 2
-2023-12-09 08:53:05,613 INFO cyclops.models.wrappers.sk_model - Best learning_rate: 0.1
-2023-12-09 08:53:05,613 INFO cyclops.models.wrappers.sk_model - Best gamma: 2
-2023-12-09 08:53:05,614 INFO cyclops.models.wrappers.sk_model - Best colsample_bytree: 0.7
+2023-12-09 17:42:34,238 INFO cyclops.models.wrappers.sk_model - Best reg_lambda: 0
+2023-12-09 17:42:34,239 INFO cyclops.models.wrappers.sk_model - Best n_estimators: 500
+2023-12-09 17:42:34,240 INFO cyclops.models.wrappers.sk_model - Best max_depth: 5
+2023-12-09 17:42:34,241 INFO cyclops.models.wrappers.sk_model - Best learning_rate: 0.01
+2023-12-09 17:42:34,241 INFO cyclops.models.wrappers.sk_model - Best gamma: 10
+2023-12-09 17:42:34,242 INFO cyclops.models.wrappers.sk_model - Best colsample_bytree: 0.8
 
@@ -1319,24 +1319,24 @@

Training
XGBClassifier(base_score=None, booster=None, callbacks=None,
               colsample_bylevel=None, colsample_bynode=None,
-              colsample_bytree=0.7, early_stopping_rounds=None,
+              colsample_bytree=0.8, early_stopping_rounds=None,
               enable_categorical=False, eval_metric='logloss',
-              feature_types=None, gamma=2, gpu_id=None, grow_policy=None,
+              feature_types=None, gamma=10, gpu_id=None, grow_policy=None,
               importance_type=None, interaction_constraints=None,
-              learning_rate=0.1, max_bin=None, max_cat_threshold=None,
-              max_cat_to_onehot=None, max_delta_step=None, max_depth=2,
+              learning_rate=0.01, max_bin=None, max_cat_threshold=None,
+              max_cat_to_onehot=None, max_delta_step=None, max_depth=5,
               max_leaves=None, min_child_weight=3, missing=nan,
-              monotone_constraints=None, n_estimators=100, n_jobs=None,
+              monotone_constraints=None, n_estimators=500, n_jobs=None,
               num_parallel_tree=None, predictor=None, random_state=123, ...)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

-{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': 0.7, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': 'logloss', 'feature_types': None, 'gamma': 2, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 2, 'max_leaves': None, 'min_child_weight': 3, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 100, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 123, 'reg_alpha': None, 'reg_lambda': 1, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': None, 'seed': 123}
+{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': 0.8, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': 'logloss', 'feature_types': None, 'gamma': 10, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.01, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': 3, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 500, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 123, 'reg_alpha': None, 'reg_lambda': 0, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': None, 'seed': 123}
 

Log the model parameters to the report.

@@ -1389,7 +1389,7 @@

Prediction

-
+

-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+

Log the performance metrics to the report.

We can add a performance metric to the model card using the log_performance_metric method, which expects a dictionary where the keys are in the following format: slice_name/metric_name. For instance, overall/accuracy.

@@ -1700,9 +1700,9 @@

Evaluation
-
diff --git a/api/tutorials/synthea/los_prediction.ipynb b/api/tutorials/synthea/los_prediction.ipynb index 56fbb21a0..17298f943 100644 --- a/api/tutorials/synthea/los_prediction.ipynb +++ b/api/tutorials/synthea/los_prediction.ipynb @@ -33,10 +33,10 @@ "id": "53009e6b", "metadata": { "execution": { - "iopub.execute_input": "2023-12-09T13:52:42.241234Z", - "iopub.status.busy": "2023-12-09T13:52:42.240724Z", - "iopub.status.idle": "2023-12-09T13:52:46.276588Z", - "shell.execute_reply": "2023-12-09T13:52:46.275891Z" + "iopub.execute_input": "2023-12-09T22:42:11.423910Z", + "iopub.status.busy": "2023-12-09T22:42:11.422982Z", + "iopub.status.idle": "2023-12-09T22:42:15.497985Z", + "shell.execute_reply": "2023-12-09T22:42:15.496946Z" } }, "outputs": [], @@ -96,10 +96,10 @@ "id": "afae58a8-5708-4e05-8695-25ba3ce1a71f", "metadata": { "execution": { - "iopub.execute_input": "2023-12-09T13:52:46.281869Z", - "iopub.status.busy": "2023-12-09T13:52:46.281512Z", - "iopub.status.idle": "2023-12-09T13:52:46.284961Z", - "shell.execute_reply": "2023-12-09T13:52:46.284406Z" + "iopub.execute_input": "2023-12-09T22:42:15.503434Z", + "iopub.status.busy": "2023-12-09T22:42:15.502987Z", + "iopub.status.idle": "2023-12-09T22:42:15.507773Z", + "shell.execute_reply": "2023-12-09T22:42:15.506532Z" }, "tags": [] }, @@ -122,10 +122,10 @@ "id": "739b109a-011b-4e6e-a3de-964edeffddbd", "metadata": { "execution": { - "iopub.execute_input": "2023-12-09T13:52:46.290277Z", - "iopub.status.busy": "2023-12-09T13:52:46.289926Z", - "iopub.status.idle": "2023-12-09T13:52:46.293657Z", - "shell.execute_reply": "2023-12-09T13:52:46.293018Z" + "iopub.execute_input": "2023-12-09T22:42:15.513854Z", + "iopub.status.busy": "2023-12-09T22:42:15.513346Z", + "iopub.status.idle": "2023-12-09T22:42:15.519526Z", + "shell.execute_reply": "2023-12-09T22:42:15.518305Z" }, "tags": [] }, @@ -156,10 +156,10 @@ "id": "e497df9f-0f3d-4e9c-845c-539627a37f67", "metadata": { "execution": { - "iopub.execute_input": "2023-12-09T13:52:46.299196Z", - "iopub.status.busy": "2023-12-09T13:52:46.298899Z", - "iopub.status.idle": "2023-12-09T13:52:55.983991Z", - "shell.execute_reply": "2023-12-09T13:52:55.982980Z" + "iopub.execute_input": "2023-12-09T22:42:15.525795Z", + "iopub.status.busy": "2023-12-09T22:42:15.525193Z", + "iopub.status.idle": "2023-12-09T22:42:25.560972Z", + "shell.execute_reply": "2023-12-09T22:42:25.559732Z" }, "tags": [] }, @@ -168,77 +168,77 @@ "name": "stderr", "output_type": "stream", "text": [ - "2023-12-09 08:52:46,863 \u001b[1;37mINFO\u001b[0m cycquery.orm - Database setup, ready to run queries!\n" + "2023-12-09 17:42:16,340 \u001b[1;37mINFO\u001b[0m cycquery.orm - Database setup, ready to run queries!\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2023-12-09 08:52:51,996 \u001b[1;37mINFO\u001b[0m cycquery.orm - Query returned successfully!\n" + "2023-12-09 17:42:21,570 \u001b[1;37mINFO\u001b[0m cycquery.orm - Query returned successfully!\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2023-12-09 08:52:51,997 \u001b[1;37mINFO\u001b[0m cycquery.utils.profile - Finished executing function run_query in 3.923022 s\n" + "2023-12-09 17:42:21,570 \u001b[1;37mINFO\u001b[0m cycquery.utils.profile - Finished executing function run_query in 3.898663 s\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2023-12-09 08:52:53,801 \u001b[1;37mINFO\u001b[0m cycquery.orm - Query returned successfully!\n" + "2023-12-09 17:42:23,395 \u001b[1;37mINFO\u001b[0m cycquery.orm - Query returned successfully!\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2023-12-09 08:52:53,802 \u001b[1;37mINFO\u001b[0m cycquery.utils.profile - Finished executing function run_query in 1.803954 s\n" + "2023-12-09 17:42:23,396 \u001b[1;37mINFO\u001b[0m cycquery.utils.profile - Finished executing function run_query in 1.824111 s\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2023-12-09 08:52:55,350 \u001b[1;37mINFO\u001b[0m cycquery.orm - Query returned successfully!\n" + "2023-12-09 17:42:24,942 \u001b[1;37mINFO\u001b[0m cycquery.orm - Query returned successfully!\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2023-12-09 08:52:55,351 \u001b[1;37mINFO\u001b[0m cycquery.utils.profile - Finished executing function run_query in 0.387944 s\n" + "2023-12-09 17:42:24,944 \u001b[1;37mINFO\u001b[0m cycquery.utils.profile - Finished executing function run_query in 0.388999 s\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2023-12-09 08:52:55,836 \u001b[1;37mINFO\u001b[0m cycquery.orm - Query returned successfully!\n" + "2023-12-09 17:42:25,424 \u001b[1;37mINFO\u001b[0m cycquery.orm - Query returned successfully!\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2023-12-09 08:52:55,838 \u001b[1;37mINFO\u001b[0m cycquery.utils.profile - Finished executing function run_query in 0.484055 s\n" + "2023-12-09 17:42:25,426 \u001b[1;37mINFO\u001b[0m cycquery.utils.profile - Finished executing function run_query in 0.476844 s\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2023-12-09 08:52:55,943 \u001b[1;37mINFO\u001b[0m cycquery.orm - Query returned successfully!\n" + "2023-12-09 17:42:25,518 \u001b[1;37mINFO\u001b[0m cycquery.orm - Query returned successfully!\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2023-12-09 08:52:55,945 \u001b[1;37mINFO\u001b[0m cycquery.utils.profile - Finished executing function run_query in 0.106256 s\n" + "2023-12-09 17:42:25,520 \u001b[1;37mINFO\u001b[0m cycquery.utils.profile - Finished executing function run_query in 0.093154 s\n" ] } ], @@ -397,10 +397,10 @@ "id": "c576ee51-e825-4970-86e8-3e5f221f145c", "metadata": { "execution": { - "iopub.execute_input": "2023-12-09T13:52:55.989253Z", - "iopub.status.busy": "2023-12-09T13:52:55.988782Z", - "iopub.status.idle": "2023-12-09T13:52:56.079604Z", - "shell.execute_reply": "2023-12-09T13:52:56.078712Z" + "iopub.execute_input": "2023-12-09T22:42:25.566357Z", + "iopub.status.busy": "2023-12-09T22:42:25.566051Z", + "iopub.status.idle": "2023-12-09T22:42:25.657384Z", + "shell.execute_reply": "2023-12-09T22:42:25.656733Z" }, "tags": [] }, @@ -1496,9 +1496,9 @@ } }, "text/html": [ - "
- + +

CyclOps 0.2.0 release

· 4 min read
Carolyn Chong
Amrit Krishnan

diff --git a/blog/archive/index.html b/blog/archive/index.html index 6a174b1d5..d5dc19fad 100644 --- a/blog/archive/index.html +++ b/blog/archive/index.html @@ -5,8 +5,8 @@ Archive | CyclOps - - + +
diff --git a/blog/index.html b/blog/index.html index 1fe407251..bdb74048d 100644 --- a/blog/index.html +++ b/blog/index.html @@ -5,8 +5,8 @@ Blog | CyclOps - - + +

· 4 min read
Carolyn Chong
Amrit Krishnan

diff --git a/blog/tags/0-2-0/index.html b/blog/tags/0-2-0/index.html index 3f4d103a1..c2d8f1ffb 100644 --- a/blog/tags/0-2-0/index.html +++ b/blog/tags/0-2-0/index.html @@ -5,8 +5,8 @@ One post tagged with "0.2.0" | CyclOps - - + +

One post tagged with "0.2.0"

View All Tags

· 4 min read
Carolyn Chong
Amrit Krishnan

diff --git a/blog/tags/index.html b/blog/tags/index.html index 7007c30d4..24d68f193 100644 --- a/blog/tags/index.html +++ b/blog/tags/index.html @@ -5,8 +5,8 @@ Tags | CyclOps - - + +
diff --git a/docs/intro/index.html b/docs/intro/index.html index 8119ccc4c..1ae9dfb01 100644 --- a/docs/intro/index.html +++ b/docs/intro/index.html @@ -5,8 +5,8 @@ intro | CyclOps - - + +

intro

Getting Started

diff --git a/index.html b/index.html index 6afdad669..fc364e958 100644 --- a/index.html +++ b/index.html @@ -5,8 +5,8 @@ CyclOps | CyclOps - - + +

CyclOps

Cyclical development towards Operationalizing ML models for healthcare

Rigorous Evaluation

CyclOps APIs support rigorous evaluation across patient sub-populations

Monitoring

CyclOps supports monitoring of clinical ML models for performance degradation

diff --git a/markdown-page/index.html b/markdown-page/index.html index 540cb4265..dcfcffe3b 100644 --- a/markdown-page/index.html +++ b/markdown-page/index.html @@ -5,8 +5,8 @@ Markdown page example | CyclOps - - + +