From c6901a57ae7552f66db08a17dce45a717c4ceb4a Mon Sep 17 00:00:00 2001 From: amrit110 Date: Thu, 21 Sep 2023 14:03:03 -0400 Subject: [PATCH] deploy: f2019759d6437a816e7b315857e44e4c79c5529e --- 404.html | 8 +- .../tutorials_nihcxr_monitor_api_10_1.png | Bin 51656 -> 62616 bytes .../tutorials_nihcxr_monitor_api_12_0.png | Bin 49546 -> 41767 bytes .../tutorials_nihcxr_monitor_api_6_0.png | Bin 37320 -> 36228 bytes .../tutorials_nihcxr_monitor_api_8_0.png | Bin 56432 -> 61587 bytes api/searchindex.js | 2 +- api/tutorials/eicu/query_api.html | 20 +- api/tutorials/eicu/query_api.ipynb | 60 +- .../kaggle/heart_failure_prediction.html | 66 +- .../kaggle/heart_failure_prediction.ipynb | 520 +-- api/tutorials/kaggle/model_card.html | 144 +- api/tutorials/mimiciii/query_api.html | 20 +- api/tutorials/mimiciii/query_api.ipynb | 60 +- api/tutorials/mimiciv/query_api.html | 36 +- api/tutorials/mimiciv/query_api.ipynb | 108 +- api/tutorials/nihcxr/cxr_classification.html | 58 +- api/tutorials/nihcxr/cxr_classification.ipynb | 190 +- api/tutorials/nihcxr/model_card.html | 20 +- api/tutorials/nihcxr/monitor_api.html | 20 +- api/tutorials/nihcxr/monitor_api.ipynb | 140 +- api/tutorials/omop/query_api.html | 22 +- api/tutorials/omop/query_api.ipynb | 78 +- api/tutorials/synthea/los_prediction.html | 134 +- api/tutorials/synthea/los_prediction.ipynb | 3116 ++++++++--------- api/tutorials/synthea/model_card.html | 146 +- ...8a0ec.101bc726.js => 1cd7c442.f735fc16.js} | 2 +- ...ee0c1.b6c646b2.js => 9f179204.8d399381.js} | 2 +- ...d370c.29f4916b.js => b91d99ed.37214bf2.js} | 2 +- assets/js/main.d39f8eb6.js | 2 + ...CENSE.txt => main.d39f8eb6.js.LICENSE.txt} | 0 assets/js/main.fa1caf66.js | 2 - ...n.c2b34449.js => runtime~main.b8dcc3e6.js} | 2 +- blog/archive/index.html | 8 +- blog/cyclops-alpha-release/index.html | 8 +- blog/index.html | 8 +- blog/tags/alpha/index.html | 8 +- blog/tags/index.html | 8 +- docs/intro/index.html | 8 +- index.html | 8 +- markdown-page/index.html | 8 +- 40 files changed, 2506 insertions(+), 2538 deletions(-) rename assets/js/{d098a0ec.101bc726.js => 1cd7c442.f735fc16.js} (64%) rename assets/js/{72bee0c1.b6c646b2.js => 9f179204.8d399381.js} (64%) rename assets/js/{3e9d370c.29f4916b.js => b91d99ed.37214bf2.js} (65%) create mode 100644 assets/js/main.d39f8eb6.js rename assets/js/{main.fa1caf66.js.LICENSE.txt => main.d39f8eb6.js.LICENSE.txt} (100%) delete mode 100644 assets/js/main.fa1caf66.js rename assets/js/{runtime~main.c2b34449.js => runtime~main.b8dcc3e6.js} (78%) diff --git a/404.html b/404.html index 9a4e34185..723c47948 100644 --- a/404.html +++ b/404.html @@ -5,13 +5,13 @@ Page Not Found | CyclOps - - + +
Skip to main content

Page Not Found

We could not find what you were looking for.

Please contact the owner of the site that linked you to the original URL and let them know their link is broken.

- - + + \ No newline at end of file diff --git a/api/_images/tutorials_nihcxr_monitor_api_10_1.png b/api/_images/tutorials_nihcxr_monitor_api_10_1.png index 4838c6ac416c9045c007812c11d0c39c91417880..e02328415db585e747e76169a40f792905875c5c 100644 GIT binary patch literal 62616 zcmbSz1yogCxGmiwB3%Ls(%p?nC?(z9E#07`NQj7ZNjFG$NeOc3PKiT@biZ}*-uvzt z?~U<-G5CMPefHjKt#5tbob#K@kIITN*chZ3aBy(gaf|EG#%BLt z7qB`yTe9&~))a%ApgYNGyTHNW8pFQf3&irR;owe?<)kFkJX3cUJUrFR7kiElst0q< z715rbEc%p3xK)-#*jJV`HvQmbHqyo1{$=Yi1^1&#Ws(3BjqwGA)DtOjZ#L>@pAGU_ z1IUTPp9FoCYY>~_A>x7vxNPuI2hSgK$3dXS)HDxYkBv6OiJt!Z83Ci<-w!IUUSvju z!@gwWGXoj_{Zjn{LeazT!qw3K>%!;%hYKggiIgckTMW+j=43oQ`RU>qhS&e&CQPCk zF`b=~Dk>`MDN18X+r=LiJy)>}y}cVD4t3Xp9{ao3XLF89Ui)HqN4SQNbP>O|Z{M~S z6uejpghy25zu!o4JcB22co~XS=ql3WaUi;K*|?RL;_%=8lQv_2zQ2(F+d#bx)or%g zI+Bzp!eh}Zj8(sp-T%fj6pN&@CyGo?R+fL|=JFWoa(g;8*5czqj)Th9dO;I}ifggZ z=$4b0cLgC6bbWzOuXrL>JGU2K#vm+A9=Ootfscpxj_^QH3ig$A#_;0BQx=xr8KsKd zYsZ(qLFUbu*nEUSD;){9 z{7u(^nvE?cM(pl_Z$eF3S=`L*+2!Tse@?Y!!H=Y(*DPPwTm>)ht`A7~oif{g+wpQa zEsK9+(bXul{rdImvU5ZD$B%`>q5*flj~_p_8qGlmkK=1-XvlAt_VN-yMn)!Z__vzQ z{_2H+$#HQ(y{pt59F>wjCMGo6+S>7rJzcnB@~>aN4*4wPx~WX3ls?$(b?kZ6O{866 z1W%;ziboj(&6)DNyM%s>j67Ky9Ub+*PI-(6`-**C=A_@cZXYjHO%e+b#R=;2Kl(dd7?*PU8nASn@1ShvYa z`+G!!SzK~{aTS$O>x}Ea18m2gm~8AG`+7Qc4t}#PWZYKbdV1u#wRQs5;x%)7met{- zZz*F?69(LRAaS!@7FEWTS_t}~{{mSp7r{nZ`4NSntI=Y!m)^T>g1}1IQ82jr^F<$} z%jS2hJx6tIw^3l}KSWaq-EHse&QyiX&+C1Oi-X85fM_i#VgCE~?@<3~j>V^l2pR?k zIiKx^ZE_MDW@(US?^u$}vW^DyL51*R$L{c*`eX6ye zN~<*O{ks;YWKyZ6Rb_#F&~`8C<>i%= zlf&+LXq4`?k+j4ed7dCl86%e3)605CZyl*7t4a{BbQ0ggWr_XPYlrR0(oYKx^b8Ci zsb7XxnDsxt7dYLX=rZF>bMjdUA%eTOIfkHPVEhTA@-J}O(=_l3sjuh1kN6e;Zh)oE zh%>2vr>sel-yI@y4*SFUH(f>kTDuueWW;gkX)_Q;Ev+FLjGgS^f>ZP(A&5?Wd{CV12 z1&|};(*)x+4gDtCmesViNvM1e;oWv7MYdcxxwsk*TCe*C2hEmR{lGe~i7^V`dCQR~f4w(!Poz8{-dp`MVkWu?$haE4a_;>59;y zG$npMVd0x>e0*x1C1&q*mMhl0`Z zJ=fzk>sLa_rdxdY9NTW)LtLV9a!VuU9Gap&;?rMIDJ8PM*L7?;&4DUrh^FN!q=0F} zcW6G6rjt($bXRytONFiDLEe;KFEe}7U0h1-a8DL>8(b2`-!H#j6EB|ll_M8NEa3d? zp!pbQZ>}z1DMM7xW5KN&jIXl+SL}uzUv`cze7MO!*$Q$;|KOl-b|9F1|4teu z8ED%>cIykt4fLkumzQ?jD8J0Y+8?+)JvN95I*ZrRntT^(d(BUd1ET(CrbLkEpO5qx zT~v4N)0L)7NTXoqadL7h`lQ9u%8X{cM5XlE<$ztOuBpGCF?Xdq?>=Wg?{m-s*L=B= zLN7wk#f4utr*HiBSq3C*!2t>;^C>6i50!Fr-jsmT+mEn$=?lpcD1g52N9x!xY;(ir z)z}eHFXM*)NVwYkOYgvrD8qiSS)jYS+wvq8Wc8TtPegG^NpfxexAoWiO$~dsb3+$` zy|7}gn2(<@(EXYEr6T{ndsC9I7iW3%UyNeS^0OuXnwWwKO`h{^3zO| z&)sHr&ySU(@uXu67ok>@zE5ZQ5A=Th{=L3kT)t5|=a3DyX>eFrmGk;*04sXe6ATSj z=0RBFpK)QMqXWS8Ax+4G(`NjIf&ZoX=-3!MtgI%9`0&OE|3xcryAy=tvKTZv*&MN( zuE-U}inB$Q5I)%QG|(41*>V`5GCR9(#t zl9N{_FAJy`#-J(@%hv8yBgfm5 zC&Hpy>No7*9`{(@kJ|oe&A-~TB1}XS_t@y!Sg|n65#6Y@C48KuP>QtXdXYx zA5iO6#kCei)W3 zik>nI#I}vPmO=HRxIKo}9L{3CFMJ~<#fo+cgT=BFE2pG&suXi|sFV#vB^nho?KVR0 zVuF*z7{22rB+5?2S2&?-wAXEW3+6}*aUx6JKYBGPkR{YkE&~o|XudxH>WT0HbX~dBbl81p6SF<}yLd#jIRYV$ zXm%%%_uSE{sG&fwlR?}^KaWZESfyItj5rl52`p(DZpI!L;*4xyr{XOuzevqKx6iM4 ztRbz52v>Xg045)6X7!>2vBzl(qvPyZOK+Rq z4j&RtcBJj@yv2zu{nYy_66usV?76zs8^PYTNx9lsd_4FEWPo0sbRT4W@Y06V(@#2P zt)G{KJ%yU)F>B*@=PCQ?i#7YMGT~Df-&WJENI%g-@5l;_9=~$jJ8sfnuc@CQeb|-u z8K{+RnnPD4s@Lz~73d8!s>?TlJM(5dbIs#p=ar0k!#`TzL`kmYZl!z!?aIFosij!Cnu|R46TP_Ria(GLot^xS{ga+_s!zxcY5NeZ zK=)pYMPR09=Z;g^w%aN;P+1&AY%C^|(7+~7X`BO6E*(px(`;!Bo{H$z@-$;>>neh6 z)wdqTR%l$m*~xxdS=fOU?w_N_s+n)cs(kiTk+)lem})N(Ph!PdL}`heqJvEm@FgW< z(tNhmdxoJEXiof*we?8#);W0Y`n{+I=aq}=7%jhKW}^*=o-(44a&wlgzY9Wr!4$Tc zXbPnYh+4gDmQG`(|B9e}-HvBRKG)oVHo6kqi%>I%JwTX#IpzA3V)#cIp15Xd;JumT zs)f^1mvl-$7Vi8zJG6@<=1EnoiP{bx+Du)?)n@w?RIfezqHg7$Q+f@vd34ESu=7Bj|dHpUPcU*i*QI~ zxQ3s->+PhCg8B$cFU!kvhI(nD<>bYk&-y4nE{U0K_+3xf9_n`3RrguvTq_gh!X|Gd z&W|qi78FM=gw6Ccc83xUsoU5iNvZE7`pNMht$=oRXa^gx|L&X(c)xMUPp;mVeGRaK0iLZhMt>Se;- zQQaPA$RM1K7|#sRX3eM@RBFy{36HMsa(5PX+XNrvnALAfn{t${y6u=E)fx_2pLs@3 z31hNO`U za7IWM6;7*n8`#p}Vq5G7sz^3Xx6{YAUr1{MsvmTSR3Fidkz#Js?Mgod1v=Au^QDgA z+}=v+wEV|Uko0{r?sanA1xPa?@mC~0VK3TTe^AfGub+};V>O=hddJ65jow~hN*`2- z$x~sE51CTWxtUR(jCB8uK6r(T6PlGk(o)%LJ3pA1v2&E#n17XEU;8v$hA`6jT82Up z>6`DW|GvZvM*gbvfEQDVV!q=tRK(>eBR`3CaM*WfO}TrL3Nqkh#2lMFsz@lCG5;PL z?ed$}H}+#0LP8;8W%K0F?DK4s&X|Az-l6ZM@Hx`a(yo5(4FmE>s(=gQxRCj;CuL3hjTq1xtC0_(WM#&NYu3-el=#A2lWK}< zPmtGg_I_HO<3_qy!?&fZC8lKDZ$3;1U2eF#`=iKsn_lGZg@J8gYEW<4TOE^eANIKd z5~FL4Y|AtGpU=g2OxrNI_WVrWa?1B^yD>Bm&N6 zA+?82tEj7h)ei!ePt0M0v=neJ;@*@7=II#l87@E#UWbikhvHED`uP!`sk*zjH{+~+ z!J+(+pM?cRV>HkT1`^ol0ec!AR#vp=3`Q3|8Gb3B$i5OBc%{2@XAY*3$G}U#m#bIH zk4I?03iHRyI)h=yg36jtgl>3+BtvGz9`f@uZHu=tY13!6@2|{0ee{}_`EVQ?D023k zHd9)PgbL%rcQ~7k+uGgE^L*sc_r}DejXeE!U}b?sftt5tGgg$5|0i+le!#w5sOP=& zP!;;L$NZW4^*OPa;rYHO?~+&7tZ7%LEgJH;IA(j|QFF5}jAsDVY-=nZ7jA273rHT9 z!7g20T}ou!hJL5&IyE-kfChM-%~&=7c;9d``lbOe3`jj|(}Mr()K$$Y9N)YXVtMNo zBS49CEG*dU2%Fe^^X+T>aZ3CF9UqW^e(?8XOo_|uuh}MKCsy(3{2)q01D%m0!oLn#J(m?_WLV!dyoO{e+1XCl|6yNV^~nN}l{ja5 zl1PO;!xzOJiqrd?lnU;uxd$@cXVoX>`^Q#86{7$;HX^s1e;fcI@p10x?~RNJz%lR~ zOC0xW+_{?-PG1cU3Be;I?CGTnke@2khZNPZ2@9v96Bs2Z;REdopQi` zjw2C^!evWcU-VvtFwo)P>~d{GvmABYj16&+l3L60A22aNr{8*1sJnzV8*)ic z^-DJ?)1X_e+@?5%jP3SxZl5BbimTNJ^=6MKqx0sd2fy3}r9^`XaKAsd=S%dAj1iO~ z-iLss|FHO-j6dXeu@ZLs{%q48$O8mJTT5+Xn)+@8WBE$ZnkfTX-r7IS@B8{>lew+` z7Q6jU6{zam(epc<$QPjm6X608@#u7OXxihYQ%DYmKv#iwm;?A~wf)>#@G%Ak#>HV5 z?gQ_w2jn+N)KBo$t51=c^R%$Kuw^gT-7)g#-W|dK83$4H$I#GH$>HB2W=aAIYx%`P0|e$G_(WXqsFY z4u$7#WiRYXutxC#4m(L`*w`X_wzsoK*|OX)xYtyw%ljf=iE^6cD+=DMbC{Yh8nWU5A(qGhd-ma- ziw2vOKTQx5`4@4l654iO=Et|}I}SH{xrl;T=JFl_?7jC-_ovIP{0vzoCFp+B0gMQn z{!Zq}*W)>ttOtzS^Kv}_w(~zmi@rm+Q4+iT`753YXv6*?i$gENa7OAJ4SDUR#mDj# z*v$HAXw<`|Y)e@0kJP4rjDSo>HurOyLRwrTMTGK|)Y?q}{Iv{ICdzCE<@>=^jib}c z=-Zi++{%apfo~}(137uRzAS9~NHU-ST5TXSbaNJxm8xw*O(=Km`b zUn$vU1)5YAVe!Okz4?y=34FGbk*TTVl9Gyd{r-Ud0#cvnae#jh@3B4pad1%HzLW5EIIrq8A+UwW};F^%6iYWy86nv*EDcb-HfOs%j=v6?anziIk6zHn4dih1{xe}Qty?QZf<;e9p*hJ-5@|30vsH}ULl!V!2Ixb-9$k~AWiY^ z_8{OGY|)GpSfTR*V%rTS1pxuUNSS^&b}1RJT_0#I_^X2YqpoO;K6pzmdOfU_MiiOV zv~VqcPyKmB-X}2v@OR_C`r$2NMGYT5Akfg#_Cp}_G~fTwJo*nk`08|L)ro&-KO}X? zM$AIbe?j0j9gLUk(u@7tH1QVw2@$D1UhJ^#(-SHzH!`)RZXVE0u@ThI6HND3F8)Hw zZlMQA`A5M0aOnc8<~_+1;QUa@UV6oSQM%Uy9O+mJrXc6k@;45>pR>0kTV>|c_;kRB z7`O+RJ2@dfC<=vkjNx28W6JH=s`Meb&Go+z{7z0j{!s;OY}2S>&e0iENgV+Jz&86qtS}l5JU^Rb*iE zE?big;{hsZyK{&c@+ypBi|7K-n zNl8nO<|&X-2Hd;@%{-{s0q9qCz+`uzrfrf;9LEIQ1OZ7CNUrbu&1l%z4uV~H?Pq@i z5lj*EXn-VjvO5#!*m}89J+)B(jur?zv>Y6GVO3QB9^}cJ+yK@0$#8vVZCu}ux zn+Q+9@f%C>4lE|wVN|ErG7|ZLkJ^3WgkSW7}Gysnm1MY^iUMBIs zGYQ$5+dJbb%FoFO&UzWf37TNiF_eCzF02h}k4brKeu57uI61Me_QpWJykRv4TNEbT zp9t`#L;-1kxYf_+`}gk`K+^~4@R>n*0yN!cD8N8U3WZ*+HaNiUKf7uN+E6+raO0aXI7`LGkS`E*jZM8E0mYxz>91R^Q7 z)p9^8sCWS9X;)jl4LO#l8`Ew>#fz=tHD#1ff;;7kOjlv|mZKuZP<;2r+w#gGTZ-(m}mzLCa-d0vta$AoE_s7wL_FClJ z-o}E*(sOF+_c#=SYFC1w8E8C|DsTdBD(Um~EgnFoIk~y-Kno?2G z@T>j~(RlJ*G?8NVyryN=Euk3sU@xr}qMiyT&-+g@#7u0($%b7g|8P1filaRD^1Toi z{T6u{i>>P6)Ggz8+na}b5%HsI2m`v*y7HH+3|4E&9GmgjL!lc`Xq8b1LO}RDKnm#Z z0p=)QD=u$E$ON;@tlu~uV7D=t1hAw!|NV#z)#>>!I(qumQ*TK9&}x!A-NsPb0N`p8 zpj~cJl>{1X;9}4yJ}DP%^EuzY0qOc{LV`;#g~uTP$Ja4DU@iaz9d2~91+4@xFwm{V z79kLo*@|g`mg;rkeRAv2j@=mJGy2a4R1U2JRxyzupgk|0lWQZu=GS=z&l6~(EA@Da zGh+VK>uzx@t};|>=+f44zCMLp_}# zm`voLg+=wyoT*JrB)-30g%;mwfNrVJenS{|djQs?z;*#W3(5ooZ-ynmbBg}{ejr-I z#BhY+e_fBgfIBc%FPNFv0JdK1K&4s(d1E6hj1nOebe=$U`yJo_@W1tB2?=O`u|kB8 z2eqeIY5sT|!uehqCi0P`u1o8>f2+)}R>AmbQ%nqUaM}}PNH(5Ws;{{oTwJ%-^V+VA zl%wuG^L$~)<&-qJy;$X}y=1STp~hNJvgaKT1RvPuaaC zvP=$z8M(Q?Mn*B<-d)*R45ju1F#0i^eFNGGwu~>3)E^K&==@ohbUXhEg9FLJeQ&nXeBj&hRk~CT;YKV^ zcNj@B@LDH8!KKt&nTApQuMDcNUT6K?)s7cPui7;>6AaKS1FPrHpTi~oCdgMx`E7B3 zxN>rG@>+jj=k$+r!=ZNzJ$3?^n&kE0Etq1HAMyK2KqhKts#4pT_5V;RH*@u$KVjCyB?F z5D^8-Xm`5uWP9S%=B5>_Jb;dt5}Mok`uYPltI{d`+1(A#?tNl)w!bg{V}jbc8XAPa zm~dw>0DG;&LnqJy2Am2DI5TJk1(RW|N}zi@A}1ddyT4QdEX@B`iyr*lamKw-)r{3d z5dm1zcqUCwa8Fna+sP18cme9ZHCw|(LPD~(zJ4_NhON>Cs(5!8CZ=}xiHXMfD+IMz zgP7^>-A&wx1*gP7?XU;C>lS+S@|b}n3~0d8vx-lT%cYFp@`b*x{G++u8@uLoK<0pB zK?yD22x%O&WGgLxlLDW@Z{RQ>7V{Sd?h!N4+5uh|&=7~bBGUf}*qGr;gUiO?5iY!F z5kPIA?E@cpdwpJIJ5@F|c{U_;a5%22bV&swpDYjv1a$2W$ea26{MP zgB|wMXAFaaplUE>Q}g%FC$=BfV{{;zLGpw3*9aE7K(NBf5tv9R8JRKAi-R%hX=SDBPj?o*AyTb|dUHNiInYw{lH?K+sJAtqub7zqig@Zv-SHB;aFXW7nY2Yp4jN zx`sv%00D)DZNT6`D^Bp*?fU^qENM~myw>3hVFVni4?Ig~z;gJZNDx27iV1K~bdL0oN`HFeaYQ zu*dbiWhG)xMx{~;@@tCXEyfmffkV;9c}mMVa}1g(MFq# zs8`tUdw$o1!N!LCV7K~n+_9oZn;I%3S$;Ph@FIr~4)~@fKm&A~6m|oZYjR<@3_mot z(X3atFPMTXN|%$tEIfUdi_|Cy%jt4WVW?W}N0hbXS4Us#cK?V#Pfrv6f03OF;KZZA zweuk;=wnO_6u59KfmMQFNML3M7!^)6%hM7PdPUCXUphN;g1rVhpU1%GavdXfxfVyS zS7$wzXQ|c}u7$mA~II{*tH6 z3^gVA%Sc+K9jm+q^y+-UgDNR0X?LzJ=Id9}w#5HuGzW2t9{}LMsSBG=82}>iL}j0Sc-7m68`x5fOrWZfT120FlxFKmoe{pU215-1q0bI*)a#tvco# zTyA4ZHE!|o3h{W$P%QK$I#Dk=Ve^9vYAv3r=WfmSL0PBnfJQ(WA={~bg7|VaZ zse+#j5NrS#0UXy9U^9^GIDke(>38z>{sZAjDtX`k~ z;B?t4v1tUwj^i z-Pa(j_-nqqUN|2&ulIVrL8g4?)C*G7`o95bQqXIYba*eJV;O{z(g?$ zB_bk%X~ZDYDe36wgqWVsyWqZi_wGR>Y*gA9QxeMsb$uS_N6+Z!Mt_*UN%z?o5T;ZL zIp%d-1nx5oY*OxJ;59JGx))cg$0HK8a7hLR1gbvF zDAG=xo|2IP`GAah)5~W+D+OdSMqwyGY|s9=vKl=O3|6Lrwc@rndJ*=P_eX1MW}pUL z7rV89%6|t1&cqY|ydyF*pWYwkXZR(rg_)3T1DTljNkShqxCI}vE0)Q)w(Zfts1})xiwX`mZc|OS!C>!7y`eK|fV6A2Z zQRq_l;k2N%n?kw}O|!h1vd`6EE$e64N2R%d>-R+vFadP{#R$tD<^_ZKIqcb>z#{YN z-8&B8<{`x-Vl8nhF>LdPJ&0h|#Kh$0JSL;uTM#D3g1|Sqzq@U|`8%NJ@|%ZQ`v+23 z7koRulJJUHoqm)16C$ExP%V%0#cn@>KaKz$=>ABC%I_=qeo{X52KW!|!H6rgm|ZuA z-?#Xj{{>fbxbJGgu{Lhf+#iE-r~nKIKq;~Wv;-zx#24vHA!OF~q2*PHez+0NX5q&2 zKH)lJx1XLSo@4^ish*Co?RB!k(*$3kD|utzX6sIsz}JHLssGo|4R*e_4f0f-cSYwa zdO|tM)4soRVfp437JuBEn3yAg2eV>suNerBFzQe04t0WaDir=+yIa0;UE`8*}y;%#3RfYLM5bQ33427N@=I$ z8=!E}GBIK1k7;LxofQCADk-1CAYji!S0W$#yqx%_&~goZQF5P4>#AX$kXY>+Cx6Kk zkq06~5s6=pFQq_97Jo?=!G_H&vjq5InmOKZ;Vc14*-|!hGIw`1@4y#Fue1ToJI27> zb~gu1NV4E9RP*HFmq9o|0h=(HC{l0RavMShW*G=HyZL6^#a*-9Kmk}v-J2+YRwXSR zdhgDidA2zc#G+ffd`g*8*92eza5E~ADt2f|*#M4kr_4&DK4?kR**g~Ll$?k)wTK02 z!{J+iFLWbNguN{FY38IPm*vnJ(1&2_1*TGipZEU~*)g3+f2d?p(9qBb;f0B3dgO4~ zGBFmwswAH-e3|2BKUW(C$^!@B=D?r?ELON|&4&mb9UXeUN8NC~pmRXZ?-W?3-}J|c z{{nbyJog)*p3Co16|d6)3vhthh3{^lVlIGFRC*m-z;@@|Nxs-6#0y+h4;l_~AkctQ z4%pfVKXp6*O4r3}Xs@+LsX|s6i!3$KsR^nnjuOagK@~T1&18B4s!>%=AgMUsnUT+>t{1_j9YoUqn zO#&+*u<&pxzk2|j?FYCp1_A}9vY@v6+k;4Qfxp!U0-#j{Gp1f2v}FJnZCrBluZ;T} zOG^I><9h+0v)vU~|A3D#;o`#6`)s!#sNt6~7MH zUQL@q1}F<2^IKkv(5f(bwkWG$8L#xv$nH$GGbxd^& z7-w8kdjOD-KY#yD-GFmrve*RfIW7!?Kacs5FM)Ens-b389U?=FNp(twaY|~%V*rCb z4_Y8=a}cW0#=X%#Gk;^0nw{_o3DRwtxQdO@4p1my)(R1s>dCJ#3u=zWTnoNv63VBI z_r0doxp@*x)WaT6rFxNJ$`~H{3*_-CGoc?^GIDb0ATHs{q>F;Se0jV)eI6}adenB` z{`F%oC7&IFAL`5UyB?bsSUKHc$V`9!sasM_?a9o{3|w$jySV(w6UOKE%4c zIpgmK%HNl@WEq>Xry%O*g6UU7giZh7IdV~?syoz&^!Dhn4c2On&{LYnpmXz(-_{~w z3)z>{KZ}~780Of@PAGvOD;wGx^i*`D9_Hb@L3zNi0&{iky<b~cquR!ur}?Mds(lM9~<{(O#9%L@zHC0VcnIgN*&?I!REn7cTu zkPpI6P1FJeG&G3%S>Q$bv>)d8m#^r>CB5mZ#R{i-v-*+r&q(KDz@#Q=rDbFb(l(xe zOwn2q2@sd*U|#SQr{UZ;L>eVp?|!-5UqS*#fyVSbJNsjFw8e7!d-~La<4a;L3oNit zkWf)!=O+N>^le=V4exV=o_2b?S*aB3N_<;kgUqZ8_q@C3NYE`y#t;TG@e1Dpk9`_& zI|Hk~2@o=1VjR$|LV*<>c=7#4kD=gX18C?%_?CRTewYu)zIkJMxZJV3&@>e=RR3<( zbFXH~6VRy((0oM4#x@6i;ji)W`UQ2MAt&Ha$I<3GF6;RY%TCA94tuPI=*F$2@{vkc zPtPMm*ldyZz>bx?XZ_;|+Cy2Y`HC=X0|x{J&>yM?1<`XYR>uGI5(qdzT!9rw=}6-D zppZO&9@2JqS}uIpjtB<`d|YB;AMk0^?>FxFpC*GNA)uyz$;bd(>gP<01lTSNOd(z_ z%T-&SU52fygn(ablkZ7#E&E2sLukB=|E;EOgHr?!5rAT32_%g>-l~~FpnPc8+G*#O zy;V{9FtAQTM~4y!s6bqNd^h;3TPO^JfmHzr$$d0X2Y@OsuZH_~5)vJbes5@K@--82 zT|@yt6kmzW-~p7rSnPxh;grr>4l-@kaKG#}82*OIxId%h+D8 zpughPJ&@9W?9a( zR;AWR zYxz`B%2F-u5sOOpIz^~9RR>W9DK)`UPEt_x?p|goHddOHgM1gR7J*>HQ|;Bm`YrMn zue>)5Vq5*MXQJd^7f7j8mo-A*hNzn(tKe=#1(fd#Z=CvQX3wvm&Fl!qJSyH9f?-Gv zC4zgzRq@7zWNW6KBtllZR*xzVW7VZBr5;UjZg&#WtBmc9~H@hSSuB5Gp(tfNHP?buSU0lktW5 z2W9C}p<&|Mffg~)z=FYpO*xY`51|&m9L_UxG1m{uFuV0)O5ed9=$_=ID+-E}Am_iV*qppD)qak-C zcDR5-1JHN?^+E1v7S^;80XC~ zd?E|!Hj}eX$R#^e^}-kB8C_SO7?qGk-OJa>XY3Dmc{7Vz6Uvn&|C1-CXqa${CZeA3 z?O>}H`ftYqNLI#i&6o1N!ZpfZ;EFD{khqM+LzQrU!TRB=;G={`55m5b4K?yODIE>V z*Wxzfz7>`b&|-3)+`wDlM);&IB2ELhyMPR&#E|3mRo+>ZZQ|>MGZL)IckfGK@F#~* zRlM~5ATO9F8iD5Az?;49!Rup>6OyUu9Gt6eU7O0^WJWz|7Y^v;X*0u_cqbGHEmto+ zCx~0wz*4ECFl0^|jga7#_?nBn@_Cc!GRKM1I+G+Qf{&>GtuJKtxFeY=(x}mWqVf#j z(#27S7HWQer&Aabkww;dR`|H+4~<;>I;-1pH^o5z6)REIgw#@kkaB>PP3FMk2KGF~ z54iXC^L!~;`j(qqXoBuR;26L+801t*v5I{L-%e_0Ze_u@u~_#(1oOwG#rSKzZU<6a zC0ti)8ff|edT#C`JoL-3EC)Z+mFyvr%!8*^GdLwzm7u3hqoQ7jTJyNb1$X-RH_l?@zrb-j0}vQ#}}WicL5 zAkAO07nzfsba5Xi1FV9JrxotbXfWKLsMgmddIzbnCn>yVRa!d%6#(GBFUZTsr0_L< zMA>!RqIjgd|8V3(GvAg$w;;YC(n+JGA(rQUUcM!Z;l!r_(V{q1@-+ciHHhuXD#Kw{ zgy~*X%FCq==@;0Txc|VR^ALExiAGpRL8x&eGoAb3OmD&~2e9ZQ#S4!&N2MYKa>aaY zca0n0rNO!$#b?s&d!vZE(e0D48b<^DieSSswHeVkEm`WzW%JyJ$dU^>nTvI4$!C{! zHTfCtU6XM?-{BGWbW4|2l~$IiCP1m~Y3=`14=EcOdoERU9^;fG!zzz0iPo#tI?rFi zKY3%;zJFY(lwm~bL$0+0E;*bvGqRXHoXttHE1dThEFIq${b1Nd67mYa z$rQ8dOOt2@q|7k5X&!&`M-K1NTTE6iL`-!vX)xlveYNk2azh%=AU*+#+tJKHp zx?2dEsbhYgYb%T_^y#Cu9+yvKE=J$)_rO?kfn+s@{`yTMa!eTsyvUV=jn0D}032NM z@al}=_N3kFRjA7K`AFqsZ-yF$|L8~|H!>G~)CfS$xFzbO&6F^$m;s7H842FzFIWnF zCeHm+Q*k-G7JrG6ba0vR9oJ4zH~FmABk;0~b3foUO5qalYaKoaZuLYoYc3!$xJ53G z6>N%YGCag+&Z{qsS-i|&Tp0~xbo$RA=O&m{oNFx(&uXL4UFB5LE_@Hia1Te+w3;x! zo33=w$NZ*OC`9a_hG%&Td-_n@FAGNOqxi9Hj#{3}xljBjE}~VA+MUaFO@B#st&rB&hjRpwtmCb~Y~vNmiWI~vr}!wtgH72=+z^QpK=W8}KQ-Au1cU1L4`i^+uz-QW!x4wTfsgBrL~PslJx6si?q$z7Hu zkGj=aQG1UNrEM(U@viX;h2g&CC8llR7(KkqSCQddxu@$?q1s$VL-f+J$l>8177-(j zbm}M*<=>Zp&JL(1c*tsn+*QBj?~l^7?&g)ARYzr6DKTg?A=_58M%k3kWOM@4_W3G) z7Q|?i59x6nf^Gt=s;IqrP3SBwZ-Ku+>8Rk<8rQk-e9fMv(=0U6A~tbcRpS_xP6s|< z-0<;`IM(RtlmX!aif5^M`U8fjQx%V2`bkL=+;3uX4fWAJ+f_2ti zfaO_=|Ltk%w2pnlLWQfSuP^~k_DWBzw2#yi;VW`(dt*Ba7;>R;j%ENKw{=z*tW{>h zq`XOAIL2j%;tml1bb`ycF~fyO@$PQ}M& zecerHW4`Fe)Ta|WP?GY^X(VSKDP#sgKlvv4yQFDKqBd71`;rwVW?1?y*eu(Yf!bZQ z50iESCe4Me)Pv?FSJM%wCzT=E45G?KfjaT)8|{Pl9hzKOCF53~K87p?fe)&TA?Rkn z=4@OLqrh45xm)DwkNdM8?d2ZT?R9{?zH`wa=zk-3JaD*h6&$?B5O&CB5g@q2;XUJs z`h;uuz?4;N!FUCT7T6JhEVJL}JO7-LP^313*MkR?WA5SHexQl2d2~RzD5oHStuHe* z15Dk3z63H699XC0PBTtCV3>HWblaDAzh?rS(#A@e589O8R%pre6?GEqaNr9)l9nR1 z|E>EnLt?lE7by&>@ipx8cyRKfOCx1Z1mgdjSxypuNB*l>0>@5X_mf>_x)<}mhS3*3 zIucN9{;&x<73;{Uqi%u6YT4Dg&LX#3=s+ulEg21wxH(t+w~epIjL$kc%*VX(7x)n@ zvr-^3%*OW-sp1LhLQe?VYZZX$%SoWags0Oce;?*?0rm4atbT%1v1h5TSU2WdBZI^! zd&tc!+HKPc=J*(f%_qnoPKbe!JBI`3ld#tHThRpFLLx0@yI{JC6hhvQq}T8@;FLB5 z+aoEA?LcSfZe2i&+@kE#`6)Ge$9vXd?*TC^aLQjGL-HLS(v0!R($i-@rw6#H(dG00 zBg@t3f!8OL`-0iCUBP~mv2fu%{`#?wjOrKtXpvvh&t++UL$urpAM71-#I2Z*GOU<= zzk)+o+i8Tbb=a1HS7&`u^?R^=N=VhaAoY)5F8QLGxa{|!&z>@wZ;C119fFkdy1?m* zm1a25DP1z!6nXUB6!Bl^^l2-L#|NTCSDNys@KqlvEWK&V=0rv;j06fm`6&P5IO@0Zlj!-mFO5(X7s?qu*{q%k@x@uUV96D=U`yvOS z!Zr*~kws&37#R@Dv$S@?C;uvm)Q|wO8hSl1Eg9Yu2lFk!N&fabfMr98JP4lA7$8() zWD6>93#?$zPB>A<0f`(jOakIRToMm+_khQemVSE*p(u?xF1AaQ7iOf)iI^OfPWP+5l2-EMQoTqI$}4asmVg*@ zQO^A(xBnyzvP0|PCpv^cWXs7H_s*J>8hygIe7rOTWP?_HBpERx4D6sUCIBtzQTf9% zgX~@&c=s>;b~J#-h_yB)9rWH0UIo~jPPh5s8PGo)&P^l9!1dPw@H&J?jNI07^4BzD zo(~mTnZ*Hc-~lcu{8l`kalnjo#7K)#ETAIoPYI`Ji#v7K-9%6U%F27zy(ur@!-dD$ zy{LyjW_@~+Q_?Rm*uw~c{1>3|C==rh>5xFV! zM`6oHd%TZLKf6+O6I3di_=n9U{3&;rYzKKnDsV~pxHL8>&V)SOh37>ulB?Ao7!qC~ zQWVcu8`>B1JAyRm4fzr+nz32f28vp0H^MCvTb8u@>`+D3hQGL&+j*4n zC@~o}cTz z=CH5a;gOB(Zm@+59|uRARQ3|>EjqtQR%rbO>2TvXg>dZfhakZAhc_*op>91I92Q(y zZ5>vhB0}4QQGn*F#iOOI1$%N%1lXN6O#DL~lSw}P+9@(av%-2Itg{PaC-W_V54IlN z?i-k`hqo*94N$FB#xjjpUCzB}Xe5DO0^^s9l9zBNt0M5P#+v^4 zbnXPTOmp%YQ1XiYZ3kU=)21p5^x~{1%DFm#IJ$ZjAWN)h_+PYPm!wo1;9@*F`Wl^UB=P& z_8laZ6XVw*rRHPz?kkM$W9REQ@wzK@^=KQu7@)uU;a`9CEC?tL{+!a z^9#fhNhzlHqN*AR7?zEj{ZL?&4yi))ao=&&MV$di(1pV z(8IwGOL2zjU9=+fBb-@eaN4hgv|Nlhtns3(2$$Ag^T>>H?A)p{g87K`(BMp+$NT-0Lv;xu~NH@|*Hja5VGs&!Ke|ZN2qzycGsel|$ zq1$o0ry5AE)ke4q!y!LkyFPt$66-TX_;re+v6_{(VZqi~=|Cj%t}>pdyb6IuK~Q0G zW{EmKu$mu29*ynTXerghRIn>-JkpfSm$!yJFy;ct)~AE$dh!g|} z#HhJ+=_HS)b%`aTTl3|Q>KJ(yu4rBw39Ydgsoq4$yK{^Mo5}A&TY7pfldeW$%C?Cm zHNG^XF-4M$q5AQBvpnfGTpy2KQ#-NQUb_sunQW;RhJ%;l`w$rn*W!(2U9PCRhz{Rl2W?cY^R&A_`d0v-bQ~_F3hIftx>iYaCGPQoKLwvBI_?}zYc3@utgDWFfBt4(~f#I)&8s5H%-y> z%M@_U?tWWI+;{X5DwEv&yuRnm{D~$tQ;;^NMe;{ADjZ0;r+=i})o@43sJ=8&VAYeV zU$<+wNK0TMgsV*P<_buc5zP!>Rv3f2YFL*%A_{ z&*j$Z?iyW!XxWX|pI&`Yg!g|Gx+8Y5*6Kh$x%+^_;u9;<+_AB9n&untRb^E5CJEdE zv9K2F))85ZJO##Es|7_d?4tbh0XEGl#vaKR)x&Jn;BhcD(ky7NVupMfBSq^@eIYGHHT>4S`+a??=40dU zeL0Qx0b2DJ;u#IhsSobmX!xvR8k1!G{J`WKGXwX!e0 z>8)H6PIn6ntXPqx9C{bK@@{@5U-pGpmOt2x(s|>?g&#fAaf5T^dzfj6WY(?LQRUrb za(6I9IY6lAhLV)vEEuA)^H>Ryq4bv)ZOV(7TWP~QFHMq=@u?lgGbR|kD;7m+nI~1e z$|t3^&t3ImU+a~vl0GB|zbw`$4lEnIpU;5wrKicY@<@A=b+U8PoVJh7013%F!g)|= zi(8(7;@oe))6$6d2WHt90yAueXMCS|C2HmPj0T85T32;J?2zB)YBXCIJwDxi$3(x- zt|knR<%*S<^cmini*DWcF|uu$bn3^1AaK;sFGpP{^xYkKgid6Jvy$aL=#MRNTgT!0 z!7-^h6MHIG$K27Q=IH05&2q>}+0nFhez&#BPaelU2j)Ntt&ftsH6|c*F>eU&ZaqqW zlJWHmo`+n*bifCVDEq`f5`wIA-bL3oZ*5%00fM$sVTCK96t@k{*Ok>i4~nQIa6djb z4*T^6RWfYo1^mO;kMu9VxH;MPsUlz7#=(BWE<2Dh=-HTKxgEGH3L+N^olE7m<*qWL zDr#jXwV3=QOWHZ6ah@yp%ic7~*_PGx#Sn1 zAshZU)XL>ae~4(l`5qEU31c6l6ypyWL;6iF(NPeyK|C~YJPcNZ>GGF9hPdTwVdUVVD-&Mc&Y+0k2X;R*hw6{!6>Md;OH zHusmrHQTBf~^fm)3TE%H9N;Q(@P~cUxc;1$jb3g!e!H4 z+y1c_^`W1yj2eko3jYyqyxoV7-@=eo*jM8I68iill$uBrW}@oyH|fgTN^IUZm_Pgm zML|m8C1-iLOH@tqCYDe-yu*7zD1JQ6B2UY@H5(xiA{!@7(pK}3RWrtnsZSdX|2nBC z?V!F)xhlE-*nN5?lS+m8Nv>M7wh-YXqa^NBS@c@k<{>aLfPKo{xhlkid_>{3H0d5_ z$sMb!fA`u1uF%5a9l2hy8b< znvgU?GEGQUgEraL=>n*PmbMAuMQBW}@&?8` zUDvB^voKaWlF}r_aXSQfSeQXZ>sFFO3Zpt^3=dJ=9M<_WdH#rGJH8>zm!YC&P1Cc; zcqFh^8=o>l6i)BBg;<*JK%E(8%{=|-yh6+ofv9MM5FSO7Gj+r6B5PQz;bCGT6F}$r zp=FIE76wOgajFNsfBCRAKhX}pXT1y*|7~69h^H|8r#WSSjb`bT#fvNLekcMCCF=%moG-A-2`D2LXF`=lv(cfCk8i5vJYYE8f6UCz1>6kgZa+YP z%eY8)iLP)@co>+wTLVc)igeF$*Ks5t{1$7x?czod-ns86WX4}g5!WK?y&6>^D7)Wj zb85O#w>PJ+-y?ZL&pT3f%E~f_gHbMqUSXQ`7dSw=FW&jIh$dKVp6a$jwZ`p$sls!E ztttN~f7eYNUKM+4fCuBk=Da47Yxxd#)XrHvvsjJC(436}IbLrqnWu;5*<+x=u^F;L zxc|_VGK2^-T|V2M1ctT31THa+WCHeV}cd(oE0uhSx`yBPh z7+B@+;*|o0xB(^M_FCw1{pkc!O%teEVv6mls3Xv=6yn;D77l8p;wE3%sJcZoQG}5x ztGv3GK3)`S?sNO~z>|Cinb12DB3fNNIO3Xsr~wI*Eda!=OjtxZDJ4i*sg207M9aUIA{rNi26EBk;j+^`pAo(FU!rAV_{Bb$KmEd8jbrvFlzx>N-yT>~7pZw=k`955m%$0C1w{I{%N&L( z4ZYVNT@Mc^b4LaIbb~Ec_J280>JD!hc3=> zz;e>Y{miv+TP%jFWwhxq^A~%t&Uh`Jk78{lUDUnDTrv!!<$``Ka=8!gPxk=Ih>11m zdq{6{4SBUSq~-`>3u@@dD=jtNoRZ}dAxm~_2lw`RwARb&^L}e(fx( ze|hy@MLaC!@wZT$D*~1Ye=eP+MydZR19XgHJ}c)=BylXM3~MtN!lnThYvQ-_4|P1| z?BU`pzgQi;hk^lHq75gyC5c4zm@BSiT+ z>z_Yv7bJdET4yET;5tl@GuAqD?y;$TRVr6Ihd9m?Y3~1m%_PHK58{gU5Jz^18o%XB zdBL737KGKttv7zY<5JVQ-qbM6`NqyAu5rJKxW`WQm49g)fgbk34nZ~i*shaq`eu@b zdbAM~9bUDV{Xr?ViN}#M<<34I-%o}Pnf+{5sz0<_2*8nDj%fAREy&(FI4f-|`wzCZ zsML5Xj~d?pHVn^hox&yBe%16p_@``r5c@|TudnXSddH@Ew2h+zU6NLH82nMfIQ7_s zD12u7!p-)~>gwZ@uO@#DWVX|i1xW$JerZer7ZxkQ52I{|k>mb%-+uE$>}+vQwQgl7 z-!O0j@A1$t_$=TZIpRT19#pXZz*kf>)uZ(H=4;!=Ued~u6BOz=<-+!hc_?4|iD>g_ z<^0*b4EGWs76L(8`g%`om`b(TpEr~%b1vAkD0XjPDhXnn^hDa9m5aO}4XgjZb|Ynu zETi;Xz;T0E+!ASI%4QOo_Fos@ic5@^xL-NR?wO1fv%up0`~3}t9w+zd^VV@>NW!z3 z>e&30)DBD{M}t;pMX@^ZxGX2`a;pfvfbST3>^$RP0d4GQ-!s*}Lo42b1pJR_3gRyJ zz4?Te9Nn}!CmE^OrvF}2)9Ug5s4N~6y0)D;-+sZnDBe?M0Yqih`HzCLdi!`?#&sY08@M#n5(7*o-Kvd zWRPAa23N9HmbGZFMHy}i#S#qq&i&o~Y48$HzLC&%-L|W*oVuwJW@3;_p+Ndpg^hg5;({4x11kI)6JSc4#|5n>-aV3Y7*@gOtBIn_7P z>dxufm}Du%lM3@Q0`_v(h66ui&wAM%q6xOd?@iKdB~fA*>a6&gbzXfo7Q4k8L``If z8?`w%_T?!dt-POy)^V-J{kFygTI-4@amO83zo$Yp@F5c!+V60Z2*1DNaTJ7!T!J%5 ztD9S1HL;>-&N&fB%+3~@xbc;8B_(rGR&MMEn9~Gws@CHE3${Yg2 zQT?be6mR`|FZcM4ot-Fp_yA9$mu3qewnnbI3sDh!Dok&<`qDvvFn@5iJ9l77#N{x7 zUQ@gOVqNU_eP};LcB-O07{|j!FBaWJ`3aviz7)N+ZETr4MX`C~^qpjE(dPjEW~$Lt zR|jiXt1eD@x29LyN~(m07{m~9tQ@~C^^h*Lp5vyCc2 ze#~}r(VESy%^7?15656)v-Wa#84ZT8Zf(Ca8d~gNp64I0f1`GAOWXY7>C+F1zIa9`fp{2i)MPLz%3+IlWR2dqNm&VkDFXb-ZUKdSABJVm1iIt7Bq*$Aw zTbKxt5D_<}_pUVQ73=b;v2r z7HBN`g)3<#bdL&Sj@S$&)@ z1S4Zr7$2h zP?UjIIFTxW(naz82YnB`wRbcHeky)F3(xyGsD|-DB;%3*fxS$n5VQGm>7-S8pg;6R085bMamZ+um!nq* zDdQKl-84DaZvPwK+@*^-64C$slcP2{jch%w32YTzXvOo?8ICz?@ge9=wUs?!ZfuS9 zFf%*?9j^(6#8m^2Wi@s9x*=3y%G+^LIn6X_ubYOJkU>BZ~kTM^uX$T_=G@V|G0`mpS>rU9=nh=!|&iC{7&Qysushh+~TI#{M>p+RMdTbok^|g;xXFOn(!dXDYWONqG$}`f-mBlh5vn)6TQdYB%|A$pe0nuubh-b^9%Yx~*a;Ww`1xR0YT)e!*fe;!#u zPJZ!;wK&Kj5c9V@M+RE^(T7c9+2MCLoxh^U#`MJxbWP_Lipw135H=^Mi zoLWgM?bAi+09<~Jk8p!32T8b7h;fs3+;?Il?VqNi?w5JYoYpXiM|GdvB1!f%tyN#0 z@~;S7mn`3g$2T8>+k4S_bv9cL5fW}`fSg)01*EKu|8ZuS1yw+kVG zgApR#(0qJDZB6c-RoN+T8s?wf{Kq2Nk+yU z$fovt97umAE^Y@oxV?Pg!~x0RmJZjLqjQ5D728;!1B|04kvc(lc>BgO)I$t1EXf4E1A%yJ+k>+6ks?c|A`V{j!ude&Q z7i?cgZ4UYUuv^fB!7qx-x8?Le#o=#BT6(R%Pfs-mUDjfrVR&M=+_7Vb>tp^!4ZsA% zZveF3TLZNs`)(W~MjWI6*BEB#zT&MekAg_&kDRX5x4ue|u*OZl`ec=QBUnBn zQIvzv`K#2d_X5+i@`6MqI|N78*cErW_e-+pd+M!GG@@xv68>jZrmFwBJTrW)(tH!g z07G)$>sQIv*ju_3_gFL+DvjkG5bT#%lvt;SRbTF0sK~vXAM$3m5iIEK%D&PD5Z$sO zeT!^Tixe^RgE>aCQoG!k)Fm>{08Q77U-!XDCJ-eQRsJ8OY$(P)`fikLd8sZ_{7KS` z`8;&G(!ca`NYtrJzB>mCf{5>|Cfg>b3}JT;s~_;d{0P*rszrJ&EWMiL7Sv6Ccp0Gk zjgfxP8cOTY$S)^+cK<KPTc+kdQ@q)P7VYW_!zY|(b9Sv z<`K)Hu%*b{iN4HWI$pg8#L|N`9&DCLb;8wR(OaD>2k+jxx8ICz9POSMcq~Q+TOJIR z-4vEvVJ{`hKf8~oqgY<<1OpA2FTR2zU7mp(G4e`N23$h?juZpkli+{;cPLs*e<^g< zOA0;B?o9uqkRvaYi4e5^%Y0XJ&?E3^ZQu*Y8XtodBIuCCU%qU_T#5entq*L3^8cKh zZiBa|f>!zKAQI3*jNFWx=E+-LbUW3yZYdHf%$B)uXb8!(aLLeDg80R7sv>4zkV$Q3 zi7+u+yD;5;JnVq_5!;{dg~`U(<6G2%!upG1ZQnlMt;WLm{hE;Eu8f%#cNrN@0K!J? zN0_8V!+0shmCF0{i1C@5YX`8->-cXAhrmt^!Z9@l#PZ;{-j2C~Fl+;t9OU@J(|5`_ z-(jPI0!@K+whK~015i|K#tx@9HSNPzzgi(!*(2N!`wRl&RVMHX^v@F2o&;}*0wMn%i-EiAe5}uSNjBExU%A!*P#ul+`-FGU7$q!%S`o z&@b$R%=0mrl6b_8nIUvZZ0cp3x%suAV+HSdD?TcOr5pHCC4vWgqIm~>orJMGXK+Do z*Btw8$IcqF#G;_x!?zLRZD>_b!fof@nvejt4w)bF&!aL~!{uKd16&4S9>1Fab@y1` z_b8QKm4#qPV*CAUM;wR}of9j*)g^Sjgi@(vxOK&Nrarajmx*cy?hNh!AEC|V@`gRU zU4*Y3tXDYRndwE?Xo1IoYPCK4+}s?K8>o5smzLVDBe1cs+z&RANDWJ@1;#jMezv7` z2KD&soTQ?#T};S1YH9)B_{%dPIjT+$c})QIXf92eDQ*5N1We!1@!lu*MC;E(OmLU? zG(qkSC>Px*$uD9Dc!=)aRG|d2c#iiNOL2dqd5CG+?45rdaz3bOjUW8=;!Up!3>?Qd zKVvB|Cnr9FH8tTk?x1f*2wW5Nqlx}i2MR9^C7AEy zL;4gKqe2iSoK7zM0AED_U|}tzyla4XEaGilzo}hazD8*B_+47GDt7LfS(6K;g^Ip9 znSHKex2^QUlj81OQE-@ud1^_cqG5d-35?C04wkKVYFF~b3NthP^VG|224$Wm>{B5G zOgnji&LGXwnk?O9 zDI(A;8`S56+-fnxpL)XnC zYLtG%x25vxsdpwfGO-SXqDj|-zn?Zo!@>XfF|2qB3<|o+IS(P@@&YH1M2~BydR0{u z&?a49fR~m52$;Zz3w&*m>rwCo>(isPB%Pg~fiavui2GF8Nb>8h&+BVCY}uJHs*Z6# z5!*y{D?`ehCQu&@H9NOrnz=S-4{5*0&5`p`=tQ2CZFElrYU{4Q<}^(06w**D)(1^& z=)vgl#wk36uk|<~aL5c>qX@z7^6Wy#Td8+gn&oWp=Hkrs^;O8!Lp~b+Sg-`XBwxuN z`@*uJ@iOx+@cOyLX4)G6jeTH^jRcCiQ1Fd9qpd>-%iv$|IrD?fRVal@KOBFN z;Qt1Jd0jeOIRXI4z>>?MxlU$#8rNc{YnEhED!%&CpPfF8F$ijphcvW;Kd`Z-8qfss zahhJ59)A@^tP{Ik<)57o5)W|B0voab|Gq~?HrL;2I5He9S&(#1=ti5&W3mU)l;xMU zdS=?S>!<*^pIdXkX)!BCD*SXJZ6kHuPiJtCeZHE2IzF={7|2|=>Q}t$sC`2N>u*ic z;*9uyPLI8oR2`F6N_T$yx*4C!yluHKto*k>@uS=p&GnR>E^1D7;=7C8=KQ6x1?6%- zp?pG=M3WJ2zzf+suZiJAphlx%AH4E(H3s$W;(o-Tc?w)Rc^u%=dpNz}<3V;1YaANl zi%-P7tr-5Wlfta!!)NxS&DNFMU^e*K@>46}2h2|<@?Xweg`r-$$HhkN#{+QrUzmID z0g1qbY$_H47*b(Oo?zdVW^A+lz0PpYtOudQ;EI@K$c?RIlVW{yj8VaL%k1}JovB@$ zzoKr@-_%u+KSYLc0Yca%Kinp`H5j*_M>8soGT1(vOYC*oU5fH30m=hl=IL6B*i}R1 zZ)TiTAi2mmf3Ss0Y2bHHizqtNf1FK4ItA>xJlBP5oH;9XRMer=o9rR)hw?2$l<|$p z4prPIiI)6@+|g=J*_TrTgbKxs_tM65VIY}gevS_4gRRHN(+>72IhfVL%#YU=zcSqg zxiHq-IJ_^I!_F72LJtDO8BY>%Lq${T73-_ul-iK@!|9ozR(KI~UqZ=h)=vY}0#qtR zahYhk8kYr$sBOx7SI$fE9qeOrFcO3!0$iyObH|bH9sp|-SFdPcih#^)vmA~e`v#Gp zN`$>Z(VNAw{GDu~!|`(pU8`0G0gtg^G>HUZmM-B$o6TOG3+GBy`l30j-iA@NiIdcu zWe@c8NZb&8|CoIozxbI;RI#Nr|EiGs}a*F>LiZ>Bx{97eKsu9LJmHrp> zU)Ne62)S=j<9rO$fyz^lwiMILNT2SvFUR9lx60wAbb|k#_e{qR=t?;V?5`4_cKs(hp&}Thzb;JQLjSH20cGWC3LhqL>OC%DqW|D{NZqW^t;|yXchihq$%*xp(q&6(t^H ze@jMV{{lsW9(q#kOI>o%N9yBp4|=#V4O}qYuF8GiwPjaCw;~|lL`g^;??0%}Ix>-Q z&>C2Wza{=bItlOcBBZL8WBm;;UGuLbgh$NpmKS)F?nuWKbVH_hHp~^Uc?~noe#t-2 zgN0&Q>yt|~f2uCjkJ*L%JM>adu(#SPp0ESQT~e;6&iDJpGI!0G8%%2nJ#8FVv@Nbk zWfq?Gvlw7-(Mi0YL{v&7od@;pW~1v~sMvz!D4O0VnnQ>sMD)M?hb(m4t2NKgufK1` zS0~-ZyFwCfuaKrYa%Hh2<~nOLI^#FGEq8M9=*)osn~S6bR*qaIJ7M|A?dOF&U!MV* zD3YS?$qHol@aGTr8{N=@ttiZSkNNZ1|92|?;Ty*NKrXP;o72x3t!Acl@d2(qdd|-% zi&Q(@|3#o=05OAn@*Qh{<%72e1h~8W2dY&r4*;n_T8(rkMhu4Eg*e{4MMxL2raEhO zqrD4zFy|gP-bXw4MXk!tmOxfYL*x1(bLgH=eOn;VirA%nLSFpC6(?xAGTeC)ML*Kotg#frFk4dQiF z@_40JE+oDadf}>yKPH~>agN7U@ z&Yxt`^+NBgl*lrZW=Fso;-8gFzGNGTp2792nUakSHiX`)Vdql=g@()ZnWa#vuSbCs zE=(^IsI~7yz3KTih8JEli!CV%K4tvNrd3`FEOxjAMoUSzcXwVcT(@IX&{5@{AEnBh z_FBR*RrL;1DEjg~#$m=`^M=kAZ-qfh2U9fi&ImbUPHoPo2L0m(_cOSMhJr z_euACYes?*YLEsVr`)qP!)GC;G^@ou<9ki^$kUoDsj)5m*XRvtJs3Z7wEM z6Q7^W1^Zhyqh^DdGeK5^Fo&1Q{?`kYFAWLdvzZBxbKD<8HhzD<(w2%;Zo8pMLS2G3 zMtXYqWh#X)dR6XB^TN@t$INsa3~rV!uS8lGZ0C-g#Dm)*NI}EMj6}a_4J^$8<}ytk zY{X@w*vcVvJPxzIna8hqMCe5<+Z)rda&UG_Q&dUi|8AgyQ;k|h6<)G@aMrGA^i^o@ z+|{R507E9biqfXCmIJ}znj1iYun_@K127{e!-kzP&B6f0@V6(+8<91|G4fvd%iJg< z0(hgUJk|*<>eIeQWQqR1%yzex-@-icQJgsY2ksyKAIV=Ihx)0VtvdtRKxeehSvhN3 zF?3{MX23x6n49L}91Hl4(1*8~aSMk~4WHVxJ)oqPKPMuUZ<_%wF}+QSt2P?mBH3JN z4$2$W_(Wp2HBr+d|EiR`TdXOYVUZw|Y=&3vZ%Izw7yDK7mfIw=rj(f$crmS~GUu@c0`1}k9T;w1y;gam=0(uIAf5Vn(L>NSd zf%4@{-c2)!yBq5Kg=DtyL<(8?}fIo-a9qJsLNap6!8^I6Fc zBw+2Gy3Ys_HmwglOkp}(;-}*1GE~^cJKZhL(0L5;8_B}_I94|a5g=zQy|(fd89th}CklntF}x1E5b2fpPSP0})XG+DY1a5Z$LQ$y zm;we5P@nwMViqK*5n!hIdmfrMe?|3ltL)VsMeY4N%V^qckt|YzKLXhfEAZ~=0 ztn4><^A}c8y_DXydUEG2pO7U)??qIYw85NV&aTnK?jsuZ1CGU#<~FW8?m^~kb~;@B z)olbJjT!Xy_mAlt35aI1;n0iru$SY}{QaD6p!2i=rJwT&sykPvbPpZ;l36;_Wh~Mf zNB5}}&}~f?!hN*1(toFOiCCDtUQIzA=9m$?F{&b>4bRoBhF2x8@8q`IO&6nL>htU3 z=WOxYFM|hL-BBxd!zm1|8kP{G3c&6awmA$e8v)It7sOewp$Z_-ed;^! z?54%-LDtkd`Q6ct26`YW&o^9K6&ZswYheRP6=Bc7p16{*k-qW2(nZrb%u-ubDzwP_ z){!!NdC{IYhkaeiaO;~8@d{z8T&xUIL{Z2Nvw-NfWzCM10hF32tG1KEq)330y@Fe(MxU*3 zmN6C#75Hj(5IHs`H#LE6>WbxE2~pqgTo#qS0R+bo7+*S-G&+UtFO001oI zBed+Zr7z0_BJODEwU(45Y^&w!c3WcbwYu^0a{pd%b>1KGXcpMUtcPdI2u>XaczJ^8^xb8+rv4%lE zMoGdK^Sg|$>dH$t;@Etzs+pj3Ho9_0JfmB4L3*bXbPLyvDOTEdQ9rgMV#6NWGzu4k zHBGkBGdkceC4$ldNgT64uB4*p2}m7UJ}?NE;zE71;@YAKbR*H)xAr|#auW9BNt*v7 z_kIQV7~sM$4~RwU(RE`dPh!oUs` zw6weZWvs%?*|Jgo6*K5$N;XI$s_AZOY7-I9u<}@wT<{aV;B!25K|-AHD5%_Bu9iJv zU)xnE_#Gh(m$Q{}m>)etzb7J+1Sa>}@x;vXl>9;lFx@;5;c$rF9d^LuH0rt^wSD$A zo^Syr1>`}?XUIu5Ms1|+{w7iYG((YB6!U0OZm2I!ha(PLLeO--tyIT=S`POz?BZr? z%EeXT=&Ef`C1QC%eIQMx^XkEg*QBM_Euy#9>&sVO(N5^EYd&M~*}Y1zSpW3Q;a!I9 zv+^X_cR%ht!nli%Pf&@`4pYdT6W-{93x>B@8f@uLOfKAoX`HN_ZEW@>;(TfjYI(-4 z0N3z;@^56w%8%64^M!rI3`)SdK7}$4ZYE+gC&HA_<9slw@O@npl>uN(V31$-E|AD1 zIBNSEFZwcvwXUn?i}~%1QRPBh%NDISWg>n7ngxvn#IN)|J=2`JB9Ff&I!_O2B_N*u z@#!bgmb8=poq$@+)6Oeb$1R&<_AZ={GKja{R{R_7mrF{cr!a5K!sjPn1`9v#Ch2rV zu>&5oTzCau&#+m5C`%%3NVWP#KWay<-iIT4V0sJ%KGe%MDfT(zg=9I=6E7H2>*aB5 zlU-9O2MJ9w(te*ZS=tG!t(O$5)Xh;0p4E{-5@lv_IeXm%Q!R8Fhqpp(bwjuuKmDv z=a%c|hrbRhkUe>=HDh?r8M)pJ3JP9>{Y!9!} zo8KoWo=c8tA5%|lW$2agol1;!otgB;HEQll5JYa?TgBTS%l&=VoHbp~gAv7In_#>6 zzhB`YPGeqW;UHdsVa(R&hW@#HN%!^-WWLt)Oqp3(x?mIqHevnM4wm!t@24sJ!NMK3 z!T_`htI6g##OS5%$2d}d>RIzgU{Jh>+Hr~&i`EJn+@6chsQc3K;nux6`naC$>H96E zO=hOlnp!wbIz#$1g>y?=NQbq*SYPd|DO?CZ3MDYX`rh!iYfXh`mfNrDC?p8eK`Bql z?eP$1uYy6z*y>dENkHP8G&N_#C3Dx(E1sSm{@|hn4y1c54-)9sjBF(5pKnHy$%D!` zH1L=D0fp>1GYlk}43AnUNL!+NEp(ftCicFcksozk$8=+5!P&FfA0o3d(qfKpjhWRd zZ#238(dxMy7&(PFU4hp!rL$?c{{r5*qeB-Sn87qP1^+}fCoLr%@_HDhE*uySmW zICX!?Xs9fQT){RtJT9yEa%OwV%EDEj*)6wHe|7h+)sbhCyCW*_w0%lW0X${J&r_%; z6}qX7CZZp$NM{t}@&p2cpk@WvEU;zl|NU`<g8dU+S<37_8(e`EKig>6dhjMk-gwsGNJ}R`mX~wGd$1$ zvll4KOHCKVI=8oNntJD-CsZ^pq&e(efr)mgV+L41^T3G5{goUmq5a1bk8bZIEz!6N zj!B{Qmhr2FXWBlxWTg&A_t^6vTl1=r<(MVP^4Bp8ld-b8AMtF-$^8_pju?INSN0w} z%HS@}*}cZMd^{+FgtNE43>wb)v?bGY!kh{A@kPKk4J+90!@HdIS~gJW;<~F%U|L7< zB5B~M!Tq!EYO2!j$k0%Ok%q1%H{bQ&=aY{a_n-lh#w6oYmjtF?gWIJa0_#{axC>&F zXYO$bz1NpV6e9hCDtB(!P>8G|u{i?JgM>|=U>;5p7q>N)v61TZzJFO9{eFfD&l1dy;^jus<@c<55%$TXaC02Dye5ldPW&E zcD3hTcIomoQkz1eR17;DjEC9-oGMYT-xH4i8OK!NZ^*V9H+#aDEPT-Y*v_5zjyD+R zAAm_Lx6}S25r=dd*X`hYBi9)sua&g6srGJdX=Whx2{@sC*6|c(VG#c+%hV8_+Yub= z4;t|l7eU&o8ZSvpo*m6npAv1#JdQeeqysvZ-y0vlPT7*0pCgqmT>Gh6GB7I<@yuac zW5uXsOd7m^Vf~o?@#a`_Tia8~&*9G_@AEtwGY~i%X*J3`R;1S= znBn-C^tjUd4+}%U?<(;?i8j-BIhuULJIo7LtkLp6RAfFCC)i%QQ}p1PRwDY;g#&l~ z?!V|LrzU2`@@cBM}tFlk9g zV?o;ux|pId#~y_T&sO}D^|SYLUTFmRY&l-HquJ91s|l+oTGa}^HrfVieT1(mFOsBO zKjnmv)bsW8#pLY2e{=*(X}$BTgqYVg$H>!D`?oUe_>z*25^+UtN6w8=Wk5`wl(SWvCSVYPrA_#7aqsqz+wdjp&Cb$&> zFXl@51@h&#z)?8&q^Ry{%QCc@Ec_?e9q&31p`=I0Zq1qu+RdO4GbW zH^@6JrfiaTbB$A(6$hf|?Bvt7-G+Y#cg;nm|EzY%+h|vW+C12q}(z zNl3*4VSlM6u{_i64{^XpqTmkHu4T8D#9mu6{-@qr(VwpOD4}f?4=S6%d%EJ=Xwt?U zv+<74TmsHn-Nm**kI0QHV&MsVBs!%Y9-9C2dwqPwl0om}HS4Q3<;edT-hxY+m z{WP$^M)+sNcvteFHB9bE5(N(!f3Hsc;t7(q*O4oHi613Wkr*p4a#gTH^Iz(_ zFTIbFViim6`3bvw@400j*=Q=<>1lA92Cw)Z;EO+4X=|jM_x?3_6FW>hG06$;iRuqC z|NW**X7^rjNA1avT1NFs!+P&SIZBl01!;8gGqx0N3U3A;I-w#3zd;cTi-ed%J^;Osh-!U4pRSXBEfl>JCj~_oigWa95 z8nw}k7c4@^!4eY8Jy&42UCxP*Crz}6y7;E% za#m@5{3*2F18sgK8Ua?ITbesLX(F*Sm^zr*AEGUnS6J6?j=uu}RDy8jRCYQ#Nw z9{MF?h?VtF4obmGAXxO%51yGmMAy>1!ElQZv${&w9-?u0mn0w#h;DBhT?KWP=~~2_ zaBEEmL|PWy=SfVIeRz-)Ap5T#q{!h>oksP!f~TnzR1Yd9P>deNml;FJjVHK^1Pfu1 z5KB3i`)n=w+_AbC zOihl3cm;Q4&mYVYdIQ$a1a@0pby1z3Ozqbfu^kJ)LMnrn9=hShh zyUe-6R{s^X;yw)%D$Cok$-8*OAml}8~eD) z(dD%kCi%>ge9x9O(UwLAbG)P|cyYw; ztOUEEIDC3&sNh}Kgl|IF;Wib2b#CIyXGhLh-RX3a+RJzGd(hu9gZwVy3B)~>oU5Gg zJ2u#}N+2@B%E;@)41U25%cXz?G!OQ?E3o+(F(TJ+KU>nUA2av_?ym%0cM8NQykph> zL{rXCdOcEg`=_64DBuylf7?O~OS$W0ih4)el}3AsZLTKqsjYJcHuCOm)6<75kIyqg z(u1mLkC|n78U8A)O~VWM^DQv`Ar%d!Q5|or569jd2kZ|NT{n3_-p!6-oKfz=pt^dmw6S$6zzVc70QoWQ9O=z zZ?j~&4wdxC3~i3kylGPzlOh|M%eW((^c)&Z+3JiI8B@kQ6(?E79qpoT146`UII@em zDq?GAFd!JX!UNXW>Te;w?^ zZ0EQNvC-z*u#M^y+EYa8*}lfk?{-X<&B+#*B8;Q>TX{p(G=M(bf6>XY=%FC3M;nc3 z>BLdHa(%`i*T)$Dm+N^1QasOLH_TZL6L!dXtFFrUJ3`7VUs{QkPm>NvABaAf-|cRLbt_P$@N?Hz>t_j1#QCg!}=ZBiyZX_TRLFB`T}VGK`hIMCDd zxH|eh_i3!yKv9L(O<9c~+=}yu^w*oKw^i|jBwmGwpY6;X4P5@aNG3zYmsYkMcWZyAgLB8UG{i zuN&3KyGteNs(Y&=y7`h28tquHe5#JNk6snu-gan0`l4`#jPuIE5Hk5*8;kZ^`2>%D z`tir2@Mj)fCHnB*58PafJ;I~&xw+R<5AM{xu(QUok3PQ(#Z0`}(u({uTJEm9iu0G{ZFZ&8d7O~9=!7v1(Tq~>smIB{neOP@t zusVRoI4{gdY`SsO6K5T-_p(c5kn$~I8I1GM zI_&XwZ2*_*)4!JPO*hvkB51f&nV6BH_vZmcn9OJ{IWMOiI|T7cjWhor8;}3JIIdf0 z-5q}EN;)XppPClQIDa&1{t)Gk?5`&e0psyA=t}sOzA2cVkoz{gCe=i(hkYzVe8g`& zVU>Ue2Wd-73tvJH9DVv=W9?tjub&p&e@k3H*wv!;DD+DB4ye+M^w2EHKj4do$Hl1|C3Sq5hkbc^bB$kcg!25wBTWV9f0Ss^1n_VKddalZ zICQKiE-QVhW`iGR2)&}i>l7=~TNW~&*u=8wiSYelg^lSixuhO&PF~+sVg2d<F39(x*?Q=sStuiVTR@SN7dTtEfDa6> z(jC%`(ycT|iGYAeiy)m60)li&BOoayC`gIYAn?t3dEd|beCz%5TkE^l+H3FS_KNct zGshfr%uMA2k)2R8_tfMV(x=Q-&6Z2^%>-WhU{1~UGDsZvWImub+Vf6eItUnr2w)&@ zp*M@U$-m_l^3z`$hnHbzv0VS4?G?&al2Q1aI%{%Y#>t8z|52Zn&{ilwhP>kmw6IOz zFGk-@nZ^p-&_2>i8heUbs=UPY@H96D9<9Ek2r{lZS^W8v zF-wy+w}InL2wsDx2~AXle4j35V49nm37Q6{b2H5`NBaHingm4=pIpSg|0VW*5|($5 zXG*^-Ot624kp7=~G^wB38BZ?a#8O!|nCZC#ihYF|FMyt%{Z@XJZYV6Nw#xMk z`%Kt@JSg?{zl-ahD4o0*sw}u5(9TKnJQ@hE5e;O81=L>7%H;FUn8w_!SQ(|IFiwgr zZ=**=EY#6MfekwgeGen}S|uDQ%U@}VMk0d_RBo>*I2`rtw7;7iundSB!qMe^n>Tg^ z^&XYv`M{GM)5qkK%FanNEZu=Um$!Ozn33UgqSBixidGOWlaX6o`<2Ex*RbryPEgbi zRbmnHAy`D-IcR6PRH@n?cQKSAwM7yWpzDZS4rvb2{bitZE!+&)rj2_~l6aUYdE1cp zd~)F@^sdC6<01(SeQ;^P#>G@!B#{M~3o#-O3@q>W=+OuT7w6ugTN;NB3aDc#>d14s zT?#JqM8iU*cZ3G~edsO0I1)it-{H2Hjh92B*oI5F>~N!vcPt*p?+&y-V&2ZjoG(|2 z4lm9yg&)Oo*#&*?!^-QoFqA-qmN<-vrVDZdF;6y-IS51k`}|@aYfr&I73RMdTXcgK zW(8p6bDHp=Zkzq1_Ftbr-QLaIgs21Az3WN!x8_E*pBe4f1$^ZgrjeJ7>~COfa9V%5 zXaY!1D?B$107?#ZL|*C{7?Ak(8|GCb+H+(KRdsdsUD5mqd5hn>&Xq^e8JB-?E`=1o zstC|F{`aKW=dZ$9?qG7rU^WUqy{pL3*#aowjGQ-2AmyU}T(<{MATvSQ2 zmZqRFtkpgu|xs<};!81l;ip`r;1cGxPH_sFQ@IXM}aI9NP9%9;e?GZiV+9 zrP~92eb+DIzDP|qunBnhkR2w>C_fooTYGr_{{1zWoK4N%Yi2f*d3V^%m-=qY!f3<9 zyQ2Z%jRBJyd?5P5+fMKWo3I*TOrGPz`JaYQjAnvhxBI*67vt$#Cwj1(IVt=P2A&64 z-!K|-z>%KZ9`Ss5-|yc?6gmj<4iJ!I?^d)Ll2pTC!@bCdF384)2P1G)R8%rf!FJ!v zK>KN#;RZ|@j1-tKhJTN~Ie`JsFQ?4SH!LtkJq$?h_W!)sQ|9VR4t5U$rqX^#dI-#! zrB|(qLPv=aJVi#vhyKO7iqCeKfr7`_uz`n?u+satISje@oU>9rvk5*_44UqBnchsH z6e(rxIh{qj9H86vddRg}2e7F?BrTF{c#LEl@bhOKU@w+^NWZ+0a{Hl_r;^bNvRf)K z_ZzAbdzT^lM8=tY89Z@r39dxwcjc zo6axHF?#{iz4a^2xicR&MI6p<_fv3*K(}(%d(sS-|D_iW8nVhIzG_E~k*lNc0Z#2& z-@6H9Vr5ko6|X58GMO!7*%pRDh~ePg*j@Hr@Nz1GBo9w z3`_XbJ8B}a`R#qYcm%)ucbz)oQatEzcLd)=ku88*`=d=oiYe9X6;7C3cmsP}`<*ed zg1GzZZ=QYXsrG9%mP~t3(eCs@k})zV(m>C~wRqeV}Pu+yyp#QsKrmO+|z zEpbtV{G%^>>7Gj7o;N7cQcC*8C6nu)r`{ac26)C=))jbbM`lr=>%u`jxe9Y7Vn5{q ziSzSaeq`ReNbb-I_kw`i;q+cRn8R%ps<<4eNAS1QgjOYJq_|BA;{Dbx(2PP1L zU8C*f|GtHf@KE_0=M9qgca>EG3BI+III|A~8i1i@RI-04&~qxYo-_XPNFNe#&zd-h z+_d4V41v&gdKH9M_ZcgxL-r+jwo6ENMN;-cCkz^slNi6gMg&JK`)OWAumn?Eqaj8B z7oLO3=F{SI#12{`)2En%qtnx*Woo@2-uL|&@Li*FVmY*d3B14BIeREX<}+8iTY1v6 zdgA0#FQFd%hx1IzpV(3PwY0!y#+J56{8J4AtO(4Ke|q$e_Q#d58W@OWhj+15^>~Ev zryU0)*&@&>gZ>_u?PSUDv~cv@NAG)benq(&CK+EHbhn*WG=DNo{!0uxnSXLqMl@mQ zHC4p381oU6yCeSg?9$Dxl{n4WMFlLVZ%HmK35LKB?YU=*1l~gRQ#dYRqc{1%&_C_8 zwr+Ei)!$#xt)_~Xo0`MV&gPPv+Czqv3mTXZ@i(er64oH5V=Ujt?#J$B3R1hf{p!{# zKFeA~_>XSP=t_Sc*T~KuU~=~eL&zpOnfdXSU4%6)C;H*dpq;sqi=}qO1R&|B#hS$p zO2yV%=8rp7LwbDYj|kgw5sxr(!Se{oPYS+iApi0BO`{-OAOT`z;jDWpoO0_6!ftE7 za56rM$t5Xi$7RoX7Ex_^a*D)J7qTq0Zlrs@4}}NndW(3p=X(t`G}q}?aaa!b=Npc^ ze>@C6GewX?sK^Y0s>9X1 z#KU4tl(`Xlt~vn_0W8N#E`-qiroqp?_M*@qYr!-w7xRt> zQAeujE1IrOWNQ-cC8$S5R5Li-W8wc!|Ms`;h3!PF8*}Pm#cqbEN5S5v;^iRG(GF>c zOxL1PsHWZGSTOvkHm3di3|4P&0>NGN(Hp2v`M=Ktq{AwWN!K4f#NLYEuM}8i(Q1kB zWyQ#fdUgU3r@^Ug8TZ{PHu|ss2I4jgj}!EKxDxP zUj2^R>d3pNnW8)3lf;>2s)#}varD1W%nx;`k^|EWoz=zlF014w0!}BjYyCDYw=-JX z^=*yzo=03PR#JehT&7z~tM-;Eyc^TlJI*Eh=pA+1KIx2R1 zl4XH7B+r{f__3{-ZaGQl9fJ(6gSJ1wBd|x5q|OGm5-|W2i;uA0n7QKuS>+g(}K!p zIBpjl$s0f~Xn305#hQfX4^RJWu#f+B1byTVQJC3Ni0tBY%-o2+z9P`Zwwwg0tpPQB z2r@OOI-BrX8MBi>J3Qu@(SyrODIE%*lVBH4;y4g`6Z46lSsBi>J^*uhOVplx$5vVI zc{k;UHu>iVw`8Lak#sYQDjBIL6%Z7P+?TPlG?9x{fn2Ol$TTs=-Hhqz&#{CpmSMl< z=DW}HN*UEIp>8kNGhsC0?=mWABV4?~q)+T(#Nxz|-*h36PU_dEpQ^-Nv{u>MGi1-a zULr;^j^eGz#kKK<36dTPP+?%g6A-`6nuH`(ao=*yWV#Lz48t~R^|ir=o_we^(&r#) zbLX+&kq$;+zZ}4RvPh+e(lGW-Y&!aW)~p>Hn%0#s?|#4kRlr$5jF|ZWP3?*i6S=hl9Fmw@10i3&K(&qp z-C<-~;U_-C&3z(GQDT|SjCz8r$(|C#R|9%%PC9g2OWH|;0ApXH;=m~6J z6C>q>VE;%(*}ZgGSI*oxE9{8bU5mUAvY9VCa^WGzk#vA}VFGJ=9{(L0|JUtNJzkFV zXMb;?-joMVoPIJ?A#$rr!$_|kvTWTAS-i-vlVfTR%zw79>B@^<%hVEzAb#?~E6AIU z)cM$m^FH!nAF%x%dwG1c&}+4}1x*Vs1aJrGDx#uya#ZxL;e;3=4Ibj!Xg6c2=;h}Z z#GWg@1>0)cg4#yXr9Cq5CXs5tJK}~*7mDHeT|SE;?{Gq(DzKcOt@siui7!OHv_%@* z`4G>`4v8%@Z+d3~l$WOcx{MK?8Y~x+W-J7E&X7}x;J1TCq)N@DZLFh(qVM)+E5Ls+ zGm;6N7YBwD$jl^IEC^lcSkN8L8 z7NQ<#q0b6KLFD9AB6=*%x34x*`Pw+42{qM(FjqB=5jHc9nES1SJa7Xp@U>3zdXW1g zIFfc$$f3_s-)(NXb)CK+jeo=N<()a<&_!+q$fIxWv=4kxqkYPa(`IKAsu_3pZ453r zKHDcoBUBI4$pfs=AlrP$k(`e$23e(%8y|7n3Wfg@PfsJ)whsx|7^92UMK^JeLoVBM zXED}3`^(jt^Lnk7BA*4D)UF91)4A%({_(X=jDrSQ3)MS0E`>lmLZ zM%<_vnC z8>AsSjPZa`qYP_ZISA;92|Yo68E$!EOB8d~X7RU0YQ)jqNqvbxRVL1FGoA08^obwL z&$ZW_Z?x)?F1#cVLu|cW?i@FP$0k-CFR`P0kkO)6PER3nQ`&yK%=F0V)Bi~+efYPD zXKK546FFoCS^tTAZy}MdL1z4&HW?n6Gm1y!_A+HOlTs;`;1Ee?APD0TFDF zFvKC-*F)J-XIsaC{*4P_ft)?mIL&uAQRHetBo4XW<0JRb&Cm>?uUTvg3teb`4GyP%siNuSX zDSf#%6&_gt%9QzYUojsTUIv12Lxn~=^oz*XedOSC_191*{|Lp$d@^JD8fSV{vqD~O zSP@3vFy7DPXdo-VQ#*8EvpQjC8!BbYa-*e4JD!dF6gjhrF!Lg~Mx|NK)2-BSikBHY zeuIOEu&B`A-gVY6`eyOFwD@p)TIoO0=YU}hz2ji$M~3Ry;16`Gjs#xXjIJmv94T*I zOcgb&bjO%nw0P(7d2g;((jl^e0-B*gY9h1rfm#IO3t|4$(hOuS$dzX@&n3EV`A6~X zyRJKNa7G9qac1T30YELzI`994X*K`CG*VH7N+XT5EzExc87=k6OC^{6bh{dWd9@F) zLcJ;bCS_`=R~1RRb=?G}1^7qCSI7yL``Gas578BVR`BfI*WTU=%~Y=}=7dWr|FoEI zVNhI8mxzz0Zi48NIk1iqv{9&IPf(`f0zQQg;2QY88*}<}5Z5pT9}(5@{F6#~HJCww zCf|Vy2S)5Wa=W)j17fZ@S@3WiZ`|R zai8)j5X-8Qoj_YnpKxDG$<}BLqU8HJdBXkLk@7jbNR0MTm+tt@EeUk)2+S(@t}2A9 zVjR$rN%FqG|FY`G&w;-OVM?A{a|jQ?gz-0va!#CA?iBlqAsLA}9I}Bh)T2DO+Lim+ zT8|7U(Qh+NrZWvbZ9s`W{mj9&m#hu308um6HTAcL5)ks>o4)KlaA*4Z@Z+=q2 zf}JI(@=GaD&##T#uBN&l`0r|5;6q6dY)paF`)Vj-Zy+F;D{225GRQ29tUX2Sb;2YV zEw(sc)6i5D!KcJsLP0OC-ZwuR3)l|SE8nKa8-15!orzSbwusS4cqXq{*+jjyEknfn ziTJ>WK|Ry{PO8MI6XXK9Vz|cd%N%$Iqlc*eGH(Be*AV_~M82sMNrc(mHlYDAXc6p3 z6ly=XG=LBtrf2eUK=+XxSZr?Ai)kJ~2+`#WoBOS$AJiV+2KngDZJ)j6D|URS73;iD z^YRlA)#eo`Q_bv|2jvELl?!>06N$Nb&gx$=81H&atv?<(>=BHwW!4E#iVI~D6kT~;l^qsUtz3~C$&kApLrO|uwv+UWhy zH5zk`-gw_d6A|;hR>(vNXtIwa^2hK~`H*aIl@aNLh?f{)XWCO(NT0a3v^`nysSq%q zFbHtuCA2QcUSjlHN1`(yBs!Ci$~_u{X!nb=mz(RBRClG99r0F~${(T2abv>Q;9)+g zYtitIBI=2f|Eed*;t~|Nknbq!sEx{+V9wxspp0f8;KVaW6pENu|4%k88{&G}M4p$v zZiexLwKot)A&^9I2}3Okt*XC^d%n(JZte%fU4b*d9QX#kxj$T$qZR*a3ff9XFhU;7 zEnA|VU5CTt4UTTU-d}R`Gan`Qm+hzK`12EDLw97}AnZ01nYX3RmO|-roohjpT`W zb4pc6=^vuHWzhbk))OvEoX*ek&TS0^+Y@S5!|wt{GV0g?cOA2TITVd>Lx$Zd6WOzL-WG zUEUTec=ufUS-L$zuk4Zvx<55RZ9Rj*zzxRkPTfV;ovb~3KN}Lbkwc$8P|4j9Za!~U z3PT(><4EGmmoNbv27*GTjj#q<0Ns&Y$^&%dAxub zHo538?7iEgwOj{Oym`+CC`dC%d2ufgzUn_F^AcuN@Vk^+Q-?irUI}@fdvRl|K^3t? zZI*l$>j6`L54y+?i!tC%76H)a(;9a^-22i zO};X2SWvQ>dz3V}|HT+jP={n$9@qYb)lw+;T&Ap7whI^RYU}nYVR`f+iKN`Pt3xWb zg~EmiQ2)S)3PRjkVW*piKBlwHPfGYinz&WWz%km_^xb&h=1C!YNnzvQV#TP}LtQ}U zk^T3YB)@G&Gk`)#w<`6XG;-vY@43^?heh%b+k772=rPj$bfU}oy(H!ahxBy6M_ereNXlskBvsT z;ED^-JOFbu-bxDHc<@?LCoc&?Gs4$XX={x1VP+RIELp`q ztGI@xEfWem++)3zMr{PjIcj$wo--dm>kPkvioMI#{Ys6tDO7MQ3rrRHX0B|!-RW?L z-V(3rjsv8ZyD#G`92-vl2(cs(UkxHfoOVtJq*jbHa z-W$UnE||RWZKlh#;;PRYLp$%Mc`d?lmRpyY_FaL?FLlb(K(Oa07r;7;KNlIDWJ#q> zUikI7Mk>Y@8ojzJx5f@3w9}1rmSnS64}daB>J5IFEs?c_5k{J-EgYcfvbnc^fdd#* zt{l5|GKE!Y`c#E85$I9``6L1BDKmsxV;n()^Y_U(L-ogX6U`Kp0T7rnR_N}eFstXV zY0*Goh0xgTbhgVXLlKZ<|M!7W-mA$Eg+DaYM77Jf-o+@y zl&GdkeJasP!N--c2(z5v3vS~XEwvB|GD}hzo{1)$i3g7bMZ$q*Vmu@S�pde3zHc z0xN$0hzz;!gEm0clePVda}%K+EF5iwSTs=z;=^r^*SI8{nWp(3T$YcOvrt=?wg8Z} zYzx^8UtSL?&>dHZ^aIUJxp_AqPp&%0W-_XO{63b7ed4)O#Jq~BrD~KC4rnJqdy$f-K9^t z=6a{fqgg!E7=wx!q8trcV`3`-cgjyvV*jm&`~p|YrlW}JqE_mMKk4^tni|tof9bbN zb^T4M9XfsLWIU@f7sd$DdBU(@OwHSPD(4+GCI81vS3de+15GK@{HP&rl0WN9_~;U; zi;?fV?~bzdV0sS$&&QT`X6@dPhDa81VSE4sI+?$3JLM$tm<&R%l-|EbJEAM;Zr-PR z6QaL9?jYTO{7&{uB^*a`6h7{bD884P*-V{4Qc&T7EYEs)q8GrbR(L6JXZ9arEJaGY zixwLJIcBF3hOSE9I`iEW!_l)f)aA|V=OeV*-o=M&vGehXKXYw;^fT5uh4{5Y1<{hT zl|a;#z4TOw`rb4yV_DQM_<@u+Epdk=PdL$9O<(M9&hYykyIT*WdQAQXEe9VYb2#d?Cjq%yyooGl-IsN7GsZe7w2eqOK`&^rF%6TXBd*}>Yjd& zxJ$b;qZUbUSXfU(FZnNGq)C=5@?YG=`t5Hd|As~Wc-s;~Q2LqY%RhrhnKBo7Wo42M zG1uc*hCQ|LU4HUW-+Mxv`u!$9h<2gvRM=FN&BPXe+JI6rZ%}`K|MfW*e*T0Mew*^n1xJqBCM9Q??Q z+fF=j$^2&7U#?mzQFf4<5$SMA`S_FN*I9v>YBssC^W?{mA78*ghjHKQ8>-66Ry#ii z?tN7D^xP+n9U2@gJADj$Yv|mHg{VTI8;#q%-vQs_KbAN7`788@1L6lVr7~d*cvAFs z1h};K&{@FyiAW*$Z}6q*15R5xZ4U-sG(0I@Ppa1Y^{UkgUv_4tJFI?RjL|jk66vSE zUnVyGI#ED2$76ry+uI0b7t;$wB^Bx&IbxK2tk;#aYm7pA7wBuP@XGbvHD<2paVvE5KKKZFFa`mRW0A$E+qr zVdE#G==GqN=yW6Zm=?Du_pHp5?`Yjt29dCN#fyXlO`8A}6=FL(J6JFSgK3wmB*QTA zK0ZDk3aMsDF^gs$Cz$R7LD5E5-^IUMHdm6|9ON`V9a`Ss4RtC{Mek?Mx`AJe5R6qGJ6@Jhe-*{s+jX!adD6#`0aUO=Od=7l)t&U zJS?Ko$a?Q(1b%@~TC{Wsb_HZd2XFlnXAn>r`PLbgBIGbl>ckJT+#!A14<%&}54a4f zBS^2`rQP%2-;Mkd%qEGn7Algop{O&_ZM~(=j4=%o<&h=;9 zax#MTfTe)mP8)&~IezcsB z?zcbn@pl(ZiE(2p+-1_h%F3JmM|~!LsxnWXS62(vIL!}A9DJ3nb({qQWj;vLx*7#+89BWZ)Y?Vg-ObS&J9=YFNA**0TN#t< zr#wbn`B2oY#Wgb3$DYhhuJlber9d$qf5P%2eUZh%mJ!rYpmJN}eh?$u(U@rH`@7S- z(fG$;hN7pZ5GFREDJZYrU%IwA*GN-!bYguNcm3WUMD_@srJUiCd~Wms{rXDAw4fRn z1;P46`AVX$aaKV=#O|*9p!kjwo&TYk#}Y&{ETcdB-TnWxIiGp0-*?qn+4(}>Yy~tU zK=e;8CxbY(KR~S`QOetm`SbWM4=d=Z}3E zeqN7{R2UH%`N8>ZTsm6L00;0Dwc_Bkuh7Sj8PC`2K|R$rv*4H2C=rZ%xY}sfy9gdjsl3n!aaIj7(PB zVt;kV|2~ySi5_wzoGPmCzH5Lm8wG#|{F6F%Oj!KWTwlsPWwd2^(Y$h)y9<6a*TYo?b$%5y;uTw9y_nUfG^p^>n-i zbqo-e;|-CtyFI(qFiO$&ESC*o@*|!q7&cJi*CuKFEd4PXCACu091R6BVe#^oYy@or zPPQ9`GlW%NdBw%PYAd*r?PBpgX#N#^viPMBgasZseZ;eVys(>$2uHao0mB`h zKFI+*lJaMW?~sHOeF>18+EsWU1XMCF+0#E@?YO_5s}R2?oxl_c@+U1L!*(3aBy}jU zjB0O7;UT>4=j~e87q2sD)1t%!#Xq)}zODpSnct2!aAmSO;g~wnCqB8^xM8xGTR*A0 za;#3WUv3mIM*ZlT5Laq}?fb;{ETFx^hmsZqeX*v21!!A;mC#Uj5oWH|<%bQs7#biS z&u-e{cl53R!@i}FPJ~BiQL9N8=+jQ?E@~S56cfqj(D$lNWsQ>TT{0T;7vfJoDA1(K z_ueKUPU?!Qu}~yRjv~4s zE8o$@`J|sfpZeAIL(<3SPQnjWUJgzqy5V|cJ|BqPXOscZTbgTR^QG){#4Ww07<;0I zB3%>T@O)~r`XI*|`YOXElPtC~@B8H(I{;2KxM#-rET&H|3`t4Udnrpbw9Sa-&wQ?& zyn@-0394`Ex1Qw8`cJ=>)b&J{sruE$bZa*^l{OJ!X5~_^!2tP_(NV}M<%t)^&(hmy zzSg`mUue{Blv<6!^Xh3ETg#qGo#A4&Hrwn2Y2}pIj@R4}f)>4b#`Aho&!@57;`#>@ z+q_w!_IUZV%@Gj|JNGAdL0T#I#y0kcq_AUv_qPIa zFjkO*!6<(1$YtQ6PNdJV^Kjxi*Q}8Wz~<{K`{fdOJIgg4d7|=H)8(fbNMbH<1#+O$ zxgaNa=0vYJq$pOgMKWJ`)>#TEA*ce9y{1h)d&?@TtPu$AkTgTniP4fygM&5-Pp&~0 z2o`8>P7YaOU&jqI17%Hwf`@ZgLWn?&Rw~S#1c}HUDkPz4&^otYR zVJ|T+(d5P|wSHkEj#5@d!=p#tecXv((~gKc68gna(_DMSWUT zYS*W!K0E7TbUacivn~ad>X?-m#7gAGMfeZVB9uMGRGP-Wm(=9MDzW(KkwyBEz3aL` zCcivf1>|uK)#_t2R{IJa$wnKZ2B|^o?-n$aqO8}yS}E|?IjY?T{)p<}-L7{W* zcqwB@Dc{`$3zA*{+6823ib2p^L?rTs*iHOJj%w(D41me4dW_1Ojqb0WZ@PGr7CPr^nsCAC|VO&eoB4=aF8Z0L>E)M9O@3I#&6*pB8>-nqmQWN$WOF zq(U@HZUdCjT9q!(**{}Zup@cj9$iyb&DmMh^uM;ZtT zzp%N{@ZGo`CilpRi)eN=yPlvv9qHH0?q}L}L6~bAllj&yRacRdFX|n6cf%V5BAtDF zk!&zdRxvp+atR>J==lumV$u3tv9Q0mtZII%GXCq3vdn~cwmB!f$09nK5o}U2JGq@W z!oe{PyntDjQ*5s`3HH?!O$LDGUQBO}Woa_9uTxCGOGw6tu}=MTv(oK#V=rX;y~uH3Q32>|6AAa%7)b0w5}dv54P5UVFeR8#0xle{ z|G(&2Kmr#2a{B3-EugaS2F^&{Q1m)(9M9uxUoc1>n?_K7ZD&~}hzCSi zVr9H<_2hRMPY3Q($@uO((d6xocheS%o{4cU7g@L^?k>sa>K8+_eY+G!Jpqev2`uEt zfKHA32U_a5)-9>?tImus_@P(4brmleR0NwzS zWnvjAcR{E`k=FG}u}>XnC+;R>$qeDoAa_hiZ}|Q>M4<>zIOyvl;(*Nx%m`jpFT>X@ zqEO9z5SLt5NxKiFAo?6Kv!0FX1fsBUT0bTrcyaN3{+6>i9z<45HgyU#sq(HceN2Q1 zmjV%2klLX`{l&`PB>~Bg)}nALD|}pp3iDZt6iqpFELw~nL;Z!hl5;r?i>-EcLSA0~ zz5OdkmR3)uV07Q-nh~*yUuOd0VCvA04QE5++)e-|3&v`>xaR3i zgQ1v)$>ynn!VIA@Q<+0alK|Nf45ET{;gWyZE;C;&!yl;gq!?*(U?nYR#8L~4)QDU# zwzwf$6eK2gt(jUrRJ;kRzhps)-8r9F;q)P?1W2j!UW-);Kl!x;wA+SH2q7zvxT&pQ zEPiq~@n*k8Rz9LF{PY_UMv&SCnQOkq!zPq$K3BxAc?scxLi3|~;6g=v2r*yZczV#= zN{A#1qac-G7c%zpX!2CSbJM;7^dKH(L%qA>*kf?jxb=8dmgMiKyg*q{0`du#)R&qP zNI5Ii<*Pw);KJ@}>Yedm2@^u6m!UOI&aGCErI+$*JnB8wBL8x6UTBQIe&j)?jaPYT zZN=Yl?yW$5B9#` ztWm5wF>kM6awI8vgmLSfro^(XlEl|$Mfjx{SH5}-tlRCiH*#Tfv-$hUAViH&j%NAL zoCf4Uq!Z0smsv*ExPQMMP#LAG4L#7xh@qn~IVA??^*J`ZsK>zIML<%k=Ko5jh*ol) zPj|jnt(t1S8JnsRkg*Q6a=e6?2|Z5-?7sI)5l@I{#IeAnConzuh;qN=x6Vy^NCQTjnu!AEQSGO~siYccE4closK2}mE-0~04!Rm7^ZKN`z8RTZ2ow~0 zmIG(}z%4;Ib3D^?9#2T6V$)VjKpY6C@e&R7tL= z$LOTb-AN?{gL=0vD#HE$-GU;#liXR=xZu`M7P0@qsdu~#AcMam0os89DtdAthbkL% z0SkL0J7Mg*@QB|7OyOl2g^S0NNR*Kk%G0Q?t)~o4N%px8;@^K&oNB@c<1rQLDCIye zmRAsV%JDIWSOtkKh?AO}Nh6Vx5P+o@70?AuTc-3q9;lF5F^n%7*n#-=AwW_&FO9FXLpv)K-P3TU;XHi5qMyOEb+3z;I?b{ZLkC z5ziO->256sg8XYjUxL~#x-G}U>Eq;)N}Ky)A=R`dI`k6hGOLZZSkYoHx7d9i{(|rD zwpzXxwl^g|Jj!ieJQ_=vGZ)~X7mq>PRC!F-7g6r7xjiJ7CyRMs)kHQgV!4TPv8Gc? zhd?d)M&GV^Y^^IO@ztRCKeslu%^}w`uu7J*hYBytvEgmJi$_Ge{TH|qukLao&&yRn z(6`w1cc~$oeAPD8QD@b4A$tL?N;vyanI$+~wi(@^Su3kQ9B<_}euBEq^|mwvNLl(w z>?piHVTQbIH~JC@Sah(-%DD2TY|@%JJ=*W9=2QnWt?#?Pm+>%F zvCunhh;~1>^ZC=v#!^wMxOCiBz=&J>y{%T#8D!6_0#EZrw;^6Qtqk<*`v~O)mTmN5 zfHIVoD@Y#sLZ$%E>%beKYPYVe)zG9-m#(DAbL4Y3!8#lHE}rQ7W;x1Byw>+6!JbeS ze0O@=d3HU#1haKdzT|d3rrG0u~@dY`uvUb*$;DocN-6WFxx0g2Ce;?xPJ9y@-~1DOf`KqW&1Q+!>dd0 zCIMLI2&!F~r?B@`x&d=|uZ}gWeIPCxAoSbF>dPV~Dx2}mYI$PoJiA65g3QWr~?H0}pmlMx{cLCN74Y|ns?nWO$5?6X6^Kz40F)Qo=cJ+!S5)&0c$f=Zb^ z>TpTZ4SrcXG**k~aJ@M#i{KTx!mYsu-v9Mw&qB+5^j$0f{z4 z?LI5YZQE;*#3c4P{V*6l8F6YW;NEbTPK+DeU#F{pehi%#13QN4mWu$P>$B7goZ>o(As&;2dYYP>mUjOPYZ^My6R%>ZN&X#b_K zZSQg;Jrz;4DqITJZ09Xt+q3X82pZPlrB^c2SxK&|;X_$cc?JYd7<~gDAx9mJQIvjJ zio#Hs&dN2<$q%;nvLO@_^g%JDy^cwVi@NX828Gba>WtgUFXG&8wiy{j{n6n2sP*68 zC({?shY~l-nI0iN>G4KiKl6vov{tWO##MfBr*N{(N3#**EyNkOEa_NMag58x$QnLp zl%sH!t4;??Hb@(;5|b-Y`uHVKBxyGvg+U5Si+p^+c?Q|L?IDdrKNs7Rc#*@E3Yt)LEz$TP3RMUFj8aDEJ8J)}RLrPdzwnW^~Op5#|#Q5{*(RCL=z zD6}|E7Jtk%cJ_BJSMk&NkK2qwAq|iI201ol?a41qcbJX`q(XU;0JgTlg>F6r!`iEr zG3#^mN`t!=TxH1NAX-_Yyf=I$$5avTg9&-%=B&i?6e+d7aDf(9^6iBn=O@;LU*nv= zEspUL;@7^4_b|knv1S04QgeUwZZBdmAoi}>!-nC;~;t7=#SOpDh2s5(e*Ft zaz52t-(!!8s6oQSj--tj<>W6xK=`O21C=0uw+khu_=c=S=LU3_Jwa(+TXL{ayu0>IPpm11( zI6& zu&qqM73 z7jpQkmJpzv3Z!2(Z#UBEnEHuyOyNa3rc6W*f2X{3EeZ0?JBxc8CW+zAjA|?OlL9!i zgAS_s{G$~>O6Q3o*BxY253g(7P7H~;YuYo$-lS!d4%WMmHUuJhn}erQ8Z zMErM>(9v`>_vgVT%rd`ZpUCPi>s0WJD!!amf`Y$7?y@Xz8!7_s2hT`(-*rOT9gJvL zTJ^O^@Ny70L zc1UtZ`&{^gk>y<9P4bh%`v&PT*58eD#@Ld6wc6S2(p)q!%r3`EArGAzY!rwGV=Aht zUdg#4$2V%nDsU0E z?0v`*C5i9nXI|?n}rYRP08}b~?LTU&7DVLkt)&`7O1JI!MKN5w$OA zi&+?<4`6^^*?N5XdfGvMDJ`0JQ&;L~?}If-O@QF+B|xf~fK6*?%OkS%^P0Q(bx5EK zvO!K707CxxdhSve_8YD{q!4?>>T~dWQRTnZVhyqCM8pnbS zNFGWj=4ntpEfsv%&sCBOdn~oRd5> zw0~&FC8l&YDe(ZiskKpF(l~fDla>DY+E~0{eL2RXl2AzCAZJYnt`rRfF;8b&7wSLb z+#<#+)A!$||1K0G%W6~UH@}8hEM>M;f=chMD;vh?MArXlnM3TQ&)Rw1Z2vuK-oB)Y z$5b$3wp(^(PDMrPdT7oZo`|>*>f`SrwazbW`7K3cl4P$^8#bS`x{7FrdyHIQ|IjAv&ynAwsr}4G&H!f#NIg(BuhMOeP%{A)JflXLI%%7dbSCW1 znw6GN^mlE#?8Bgni?8sFln!o{*h^oj)$AG7na?Y| zWoQ?CrIoA?Ez&N`mEE*JhuE3bMGSZ6_miP zxBvPT4#{ey4i4nwsT%Y(ho5Kys0b;ONtk-GH*^2ai)I4cpr*Nl(82s)A|^Y{1NGPBkwUTo_u$Z7$C?O9;J?aIN0rqx@Lqz zrNwb;+N{a_1*fcBr4QqHx+1Mb2eQz3D;r?o8$bgFU$7^r4+l+z>*$J$x3d6(REofJ zy50!z2!!hh6=xe~0%-s~+RPu-?@8_mU9Ny25n+#w9^8JzqUVz#(c0S~6C=yA zjNDwe8HtYHB)-tc{p74)y}e2-mo(oDbfyTt4b3bOj{s_oS8%OzY4P%b>^YbK%|lTd|ii_(W@3G=t}>bagL zU3O$EY@Ca;Wd&XU5-JX1%-^;sRJGhsC0QDE_x(g9q$nJrOaN5x@867v0HeLOqSw0D zZD2@lc*h`LBGanM`}oR*hrwXQ_Y7)MF~%-)6A-qoBvry9c#uwnm7b#)1C#HIqXWn#T$^*>bvIA$BtmGo- z0FX4UI85|?rtG$`O)D9*>&;pIlxlAHWHQ+{c?G-nI1dEraVRTKE-Ffl!tqPDZD)NL z>ab&6X~GM)CdWe%6ffWe!aUB8LJ6s4^k7t#fKFR~ef|pMLRlwAn^dC0Z&i{WT(^DE zT$o(9OG)cU(;C>S%VUoM&UBaNue|~$Eh{qmF7wjbMX!FBobIJQ_PS1_s`h<*d*lnK zjAC?!h!ybyId*Jy&#F~IXYL;^6j^DJj{&X0havr(A-R8HgR*-Y=UBa_JQy@Sfa;)Z zg?HhV=Bh{;5gK?V-;-anI9+ipag%+af_c9+m+}x_+e`H6U28d6mcw!>bSNQHzpRFs zG$`YN({j{wwyvXdYHeYA?ejuK?0XT;-NVN?^_dgskh-u>#q`1KildAD<+~k4djnsF zeWplp4LQF7!rP4lHB8 zak$*C@bvXQ3zxK9jy5oIaTLWBA?sOHcwX*~BwawlSfMjASO=_Z7a zX5Y4z$!YYLuW31Tqk;ieCb zxoG{{_u16al=|wI}F^!4a7?oCl(lEQhxh5+Rf-Xh7vsp_6lj{PkM~&RisIuOM)|MZZDt z*V{Szs1*ry;u4@U$OIN-^Eg3IbZA#Ht_&5O>hO0p zzPxtXN4gw2$Q?>HYjKMDSA)cY)F6F+bYCu~2NpTv=~PAVqfJ+lCd?{)96%!~udXOA z{L0PRG!a=usw39#%H=4aiiQjH_z69cBcXvr+v&GYgV$RHk=2r zPNNXy-_nsM;U7(I72LmpY+0`0<9x!`ocIpsoWzcvLG85TP@-$Vh3pSS_O;gcUjxe@ z$s~!bXgDY8n5$!nYh0X`$QVB0qLAQoLJ@0-)y zmi9_w+(x84awf<~zr~Uo3SYe`swoRw6+mwI zAajJ_YbwF5zYBc-Q!@neI)waZ%I-`vE4c11s`Znk9^Zzou9rj$d(o4}em`iGuu7a) zhy`?&5uYlMBO_ns4)(o>;5@LhJjfB0ib*^s?eG%1d9D!hSy# zh2P?h{FagIjx@7m`1mn6ZTb?y>sgE1t%8+M${W8o*%s5?jbWYBtqso)mM%kAQ z)1H~NB!q4oizWyDYp*f>%UCXF3Y8rY#jwE)S=SYWa6X38u=Itcj8&yH3rex|QF#_o;%@vhnnw#Wn5`ba07lWV)pgNtu=~Er)oy*iXv`HPmH4zKzpMR= z%DXkM8;m0x$ihSjVB}MU-2$VWNPDx(V}&I6ksUm1>nmNXiMJ%b|>&aP5*|KppKMESxTfyPZ|5 zhXQkd4^GH1b-owN?Q~|;zC@y)Fp>e5q%&xESt;$2Y5w{4LVXzv3a31AwqI{mNF{r4 z+xavbf9tml8s*PGeMe`ubSN?QK{4(FfqfY5Z)KBY-*+t>dkB7A45c=Gb9L+BcDCea zr1;^HB2hFFp_=1Z^|DM{n0ZJCd2w5MehE7tb!XKzqT^)T69V@eH-H~Po z1(K~E;q;Y&-kDq9;!Ma+xJXQ{O^>yD)RH*%5Pg{%z~2!cZk={N-~kmwCbF;c93#UE z$5tKyDif#-G4HOP{lR!)86-qeCwk>i$nZ7xG1uu?PxFIo5PC!3co2KXP#He5A(ym# z{s@eFR@VDsa`8RFvM7!P;n1uTkxw$I4Zn_+r`o+gi`e>0mATnA$wPP+@Zd?6{#zebR>ul25r>CB z*Tss5Uy3Z~&c`1(eXg=mr6tCJ*>y|Mm#o08(Tox%X(oZF>*Cd`15fcTO+o{#9$#D} z88!{EW;B6+3T}W(XsE;DQq8vEO(n0^my^Ss4Qv#==$$yh>&?9jzh&y!uJ~7ybZtTe zy`X!vt#-D!xU2RnDZKt1E@2w0fy9sB-SjIdHm?_nFGpF zWQ?PJmGxE6ztE*i2}Vv5P;eH^3d5jn=r+{?YSln9%AEXsH~0~*@T1Vx3=Nf_Aqr3P z-u065i|9ZEWcRnNU=P^;?e zQy~*s|8;s9TVi}j_)uAy=+StI88k3?f6{Nwe~CqjfuDaTqPC~MA6X@jedTnKIM8|F z1YW)6`643&*_VgqULOnzp}`EI`NSTB#wQa&j)-?tb+6Ql}&bps=jULN8v=i{@DiedwzVFR&6;Xhj`2N0A*LM*R7e$WbuDG2s`@*);;GnCq>j8|DEAS(rfpI5`HkppBr~S6qS%iWOeezZtJDBVGS2xQ73}O!e6rv zD7u~d6h=Am>;AV7l!$pV+rI@ZBzgZv$j!4M1KL!X)y}jV!GVI;Cp=W~FY=#q7v3XY z9A5v|ez{^Gy_UZ^3QL_I4Z&OG^?tr**vnmc_ODj+6J8xM5@BZkjAH916v~!k74k^v zF6*IAf=bKJ{7e;JU*G>ef77mEoQ3*rht@Ga8M)MAFdE2QW>`XKj<^Wt(*lM{L_eWd ze8p+j`;rY=pPMP(U^ZjCzq$=c+=Gr+Fo77cS=z-qf)B4UcK`XiGn5b)7c}~_fD&1v6r8t%mR1^V)L6qKGR0J$QtOH2N zb#w#^eHcopMhPGgk&Zx+h;%~ek`UfL&b#luwcfw?W-XN^gx~p{-*>)mpD$oo4tN&h{o@Vm zh(CUz2an(2-+r?Xmx!h>2>T*9yo}CL7%{8p>Nfcg zXR$&jg_rp_maOzAwg26t3aH4Q>??WS&=8GzZPByj<-Wh);hM+q!;{OL58S-p+4&hc z?(2X&SJ9f~5KXLyud@aUl<$~tPF?=o`1CsRSWe#R>9H3xRAk$=#Me54`XOE-95+iZ z9NciVd=0X@Q%Al>B5DbFB9evdhY#f;N5(`!8SH4m-<35r7hA=b>n*yn^YZpC|1jhk zNMU)jP6ckR#0aa~oam?f+L zs$MCf6ugt+J2JV}T)wl#mTCb>EX00-YvGMNPG~|`agY+<8u5`qMhEPmO%(|PDH(k? z_dHK^U$w?`8)yS+hmwOEhp2)N98Zu)pt;o|Huh@imNAilH$l{JQSEhqjt6k-B)0@z zIqO320WI3lyGP>Cg4_U6?BC5|HH5uesO9IhlP2dxGo=ejlY-mLX{Izqq8N!O7ENVP zwR{GTkq7-a;uuCm2jj+FFp`&pkW`Q|Ep|)6pp>z8cMlq`RZe^JhjW8<=GjGvmhWM_ zYw$S>5@sFlOiA;2?eLp7e;Cc@#;hphJ$a(KN#?EHy>Qgf+bEp7`egJJaq`}^vyf<% zeP+`SA)*5222yB&MQ4_#u^;NXRMys>hu1f(CYJyB;~OV>NX1sR;qGI{R$kfJeLb(i zYp*gIR$HHpuE2q6h=pPx{un2bA|L1|n9!oJ-@bK#Bgy1o)2#(T>4F2l=M6EF@9=3k zEty{a|HRRHRALrZIB!4#9UL4~Ig`?|Ye)yC$VAW`8fI2Oa)$nzv9_UlaLQ)dXDRru zHnLJZg5+S8GQE@je&i{3m z0KvUy>5R^+aqeunPFGV?Q^Xs4y^9xkFVYLEcg%EnCH%PqIyYiFdV0ZE((mCbg-qT# zeBwkvs|W!p54@z;bIBM)1C=gTk;!0wd+{i#TiSyYVQ`#?n_k~+Vu$2PG0Zdr!Lmr z6@q(D^r(=F9HC>r2#OUWET_^hwQiMlb&h417a79)0$KXyjg3IEcsVQlFGToCDJPZY z-&*i>%nbZSU!T*41Z$yt>=75xgO({7D?~EOFE0{*b-K=@U~cdQA%j`Af01N%N33=& zHyZyJbjx2X$W37Vb zQN8Q1)``j_3bc9R4*qqTitMuSce|zQ(@z_~dFWpRla>T?HBtt4OB)eE&2kAP!=3<= z;p#yjgx2r@bMteru6>UcB|e5t(%3z^@EQ^oREDus&m)`pxVmY_&vKO(DnZ@bZEn7- zIB-fCJTxe1dm!FctX}=L@{USdNr=FX8fF4nav-zhxHwsj!hU5qyU?t;Sm% z=HA{qFkR`hU6`{PnFu@xO=UMRV$4JwV zV6f!$QFeM_3`Wb&X*W4f*%o@QPf7BXudlBsgZ<#jNSk*1b}Z6FcxAMc!FAt(^3{tJ z7BIpULg3RMx9P$z@an63+zf7Ih$^)fY3HtrGI*w;7YvM42MHUO9ZaK{FbD8qXL)TUw^cc&6fBlxILip5e>&| z=&Q?U*z5;8Y}IM+!%1F6Mnt+ozWWr6ZZFen*z84-7-_;r;3Xk~L)u(%9P^{x3H zDoUZVYq7R^fFIP?uOCP)WrTeUMIi)VYL)4HClBJ^Id%HCh}tSL0Ux+>BDPc*ZmJmY zDYNv%kt2TxG1eYI(-AyTYvcbhJW4_DE|Rt9=XfWwV2&Ircm&juS_inPuzpdp^(P&(U?Wj9o zM@w=JR;cMb|`Uf&|cuSyJYAtV`{>eI{P;hs^TQD?Nr{Ab(}&KYeX!ibhclmIi6lPNf_-^gZMkW?3e9cNBh3_AIP{4u8VYCvPhBtch>6K#-^qdPhFsna!O0J+`5V$Cp*+W)Ln9R7$Cuv$JSg1Jy=;jpI;HgE4E@t zYbyG8Uumbq)I_pu7Isia7(Atg*+>wPFHn=WyCvIYSw|HI%`}e+Fbv6@wu^`^j%HLL zmHqtr1{F263hR>KfTX~5#;86QxsA-kQ}cLxqLDfks1V^X%jwXJ5i&}7C4wkLqd?j6 zvzfjepjIbzS(=PZ$W7q?3#aG8*wGs^in4tdbn4I{Z`y8DGy1Gbo!;H2wo(?!uTJ z0w=6ZI8QZ0?*zi&8PiUXp|!Us`vxD^?e?#)w~wTzu3I9lXmg5XWgGHFogTc)#>Qsk zci2IQ`4pB($?NpT<$^A7`@w@ZsfQmA4lC(iX!J1pj1g}IbefwQViD|%?3AL58O}C>(NTp-l7SwT*v26kZ#5{kk z1_)Cui&g1G;|E26%SyQqVEP%u`M7l@u!2GgR)!|}bOecEd7kdm&uO#y5I(hr&h~57 zdwJX?iEg3RupDij^1zm#j~}ll$KiFvX9)3QM+dT-fDf~!CQGV^32U6;Frkb?=P;7p6<$moF*9n{3q^ zzd^AO!&adN8+X)VY3o0JSNo?%lgr z1;X=+Bdfh6Yp{Q9bQR2pqV(=Y6HH8Yhx;0^Il^JqTdRG)H4304(J-zVV|LnouE zy88Ki0Q!@0wT^+4{T{7ZSeF&9c{wOa%uu(;m}lmemX5G1DVlC~Auy;2{V8>uzVZWf zsgM#}J8E{;zdhH*?^U14{aQz)fyTD&?%g{fUF_e=9c@lqy)8lVyWGY@prB*VmpC=l zlH=89X)K!Me(k>v9{MU=vyOy0hFgc-$x){T6qlHmpm{+fMr58`16mu<}I*v7B;xX`htS8%Orkn3i{3PMBu!Jg_pl4Zc znku0)cqIwwmB4n-ibOdI+G{kiXAv%EcwR4U3hn|4dLi+HL;b4y!A3OVa<3GU4jVw` zGDX8Ubb?6r1@58oR(Y;O%lz5VlyPV!|8(TYt4n#E6>wYFgU+TMtAfSyLQB|#Me&2a zH-Uq2UBG-TOKGSAri(Z5(+FE4`5Wr&F)OQ_v*lOYSsu!+1-&warc7)R0MA;p&o2eu zbs&x2!pqwupyfco0r9s1LIZH?K)MAQPIPW~$|r_9t*zFW_{!h*-twPrb2@=7C5XTj zhl;535#I?wH;lw3EELTa>jKYz09UJOXh_jm4gEgQcRd%#S_!+42^2U=^Y7X4Ie=pZ zwVQ~nQx`-pPv#C@-`cUQ@iEP~8h;L=z@7jMLI!pnxtJ|+%1Hc*7-_ZO;{seyPE}P^ z!S9#+kv~7g>3OLUBQ5d`FqVr1qYOO0;;ugQ(l(vQzD8>EQA@pW2}S?QNRD@_?x~B9 zkphhe3oDFDu$HSZv-=JntoCRM(80crdv&Qs_sg8Ro|>&}RTY&mV(npSB>EVsM7pbh z&~(Ixmh*enF6u%EVB@lDCx1Y;wb-|B37HD}tTEuIME4{h&|ZA9aklCC�|*(nlCd zXT)G2-PhRj0KAib!yG+vX-Nmh6n~VJMh}^m6U-1FZ zSN#jCEob~cE++Om@37Rw0G>29$t=aHQq$A>lF4V{qtuIP+(_{-}R zYXfHX!qRMT6J$#!l(PcX5ry}cz5?+hQfa@6#VanE~zNLP_Cc?Q{@&kyu74AE!b<;_cz(VZF)(| zz(CE#MU;KqzL@d&SDV)5$#zCY#=|Pq`zLanbwx9>8TQWyY=gf(1)qQE&Pqi|`9L)! z0QMs`Bm3dQ8wm*sy)tfWgyF>kcNGg^VV?)T@BZ2@&OI6_ZWc*RdG}N5_3!35@-EcQ+W8c>IgK;U%iIwRL+}7m6*NERyiM zcM-9%zgX?=CXN2xLk0fCf9UMY@$K8UxV%dRs7j_U?@&t2O4zpr{}^d8a6J~X+&9u2qFb+@{iY6qLk?ed`lEulndnlE3z zB)Z?6cPDZc7s;fHgcK+-_`C9+PTN4<$Fm{(H#K@8p!}Y>T#nIr&cP9#n3%Yjx7tc# z(X3r)Ib~K(HfY~Q=Ac=qRI%Smf?<@v=fc5}5RxY3Pd->?wJ5@Xj}nB>$h~C~O3rst zkl(j#P3ACjx5%k%8&guvvg-W5|DCXRVR-6CkOh?^m`CI3V`HVRyh1(Gp8VLvQmX1g$X@{D_OiOzN)kK{ePe(@w z%~2vSupE`r-;?aQSa-{hjEXP}NlMGgdmbJi6Vnz<#2U+CMy#x? z49WQUbFkE8Oz6VT-=BiruoUTnkSa z?^Z6;|L0jUq95Fk8y$Dt^Lbx4e?PgG`9!f)+3)HWt5d8JhrF8p{CR|evKYi%mztBa z^;O-((eX9d+P`2ESHLs%fdAASkA5Dx*h-Ob;We*Xe?IGWI@6gi8baJcaeLO*baK5E zC1W`79ibD$yr)2`$q|^?I+!b1AXT^H5nWx~Pn(ww@EEWS`c%!~bf9~2v@UmUR}a0exH{-M zKU)kV;<0Bq-WbUq6<}eBTU`gZJ#TX!v8**_q<~F>D{o|h2V}!?I!eM zUfHgF(C?0IOyshO<#l3VuGxFATXQH~+7qx-e|sauLGxRq9$K1TZZ_5Wl}_#vGO|`{ zFp(;-p^-`E$|Y>3%B9G~-}FpOp}@{rfUTi6X|DCBHMh2s4_b`;mhVpDiP>LlgV$fH z+xVSL$Ys5Rj4-^nw`dBhL2m*0?qLRK2_k>3}SW6E($P~E#0<0-V$D?u@!*s2agxo9fpuR?cOa^H2Sjrw++!EO#L2a}w< zx5nwvalx0MV(oj-?_)*=2Hqv!q401_u(RVOMmVRlF3ileN7z|eSrFdat3$BwaYz)d z;qKR)8jxTLf#iiI|6=Rq&c)w-`o;TG7WMK_XaO?L^8$-Ge)GEX6(JD`=ISjL5EPWR zc}Kj%BH#>Xs@OF{tH^h1MnO2vQK)qXDTb2L`Z--HqS7tqA#Ge!lDG4m5jPS$14FR+ zOx1oTeSU%Y40nw>GaVfrDhbC{xQ>cQFkxc=7S(UHYT$29o4Mr`=PL>81L;WR)7FxD zpT)!;rHh6==i#Zg{%rw;-e?K^9RSIJw9ss+Jpz^R<$S@ABWzsijtdCU49c=jVcGe0 z7va#)Wu|bcsi__yEecIKY>lTa8o+W&M(-X`!LNRAyGGJ0vg#rJ>5q%>Y6e~{{gtF` zpFmF3)ulc^Klgt~Q$E$>hejeMDcQ8l9qRjCbe>gHi)d?KFb9qMwFz|Tld*sNMciGs zg^N`&eQ9&?-u(Ou4g1i(nCeCHt@?%gQRl|H+x|(c7opKv=owhUDu47ndplp;`I+?t zsB&fUuaEhx+Sk~wcnO2etGoKmzuMwB`MkL}XT(oe*5UFF&Ws|G?((S^*%IrMot{<0 zdMzSISzt%urTcaPlxW|A*FPV^ zr-e6%GDgRXinb>eaN}RYJAc**8GZXEuCK}fk^5ZRjU&+WH@a{337rK&HRa;juAW0b zeX&6<7t*mK-G6RFS>3sC>DyItM1j#iVPf7`T?f@E)5l1YN_o$slb(INOJV%f z`mc@|{u=Ir$5uD1l2y;pE7sC4ZSckJEbe?g_Pet^+vRi8O@3%r+)32WpIhIYud>># zba(QH5VQZ$E+jqJpSJ0PducRCO^S|$g3s{Feis%B#>bUFVhgQKCb6j5FX$_^-=0h_ z!ysl`3wIW{Ia?IknX9rh0jL3Z1%Jl&gh5IRaM!;<%;bX{AkcpQ{$09a2YwS9W|~~_ zW|dA1j>~!yyVW6mk6j%L`^Qy!Yo;ikF6^(a9ag6alRryLmSXc#At6NUPC`zf^_ZT) zB*AdM5?Gr=VaPO4y(#KqYFgai15hI(Ik~qti6@TR?ga=vBNu$B`$29t2udDMzFy$PjLN8HrC!c|I(Wuy1$G7Yt`~^77xs^|rR#a4^m+>Txlv7KJ zi!aPL%q?$Z=jYXM81#~YsXszPk(3wpX?bH)~H%WX7Fl%i84Ki4N1nDevN6hME-smUrnO!N~&Ve zAm#AZ*g1q>PhFjyRli$vvcyPNPY*6UK3-xhPYq+8gq$2YoO%v|RDYS-XL6UVSIN)| zBlC&{M5da(w*Z>_#>q3e72D}3gI9IgF0BC|#&n{{7a*tx)YLI`7e+A5o2S>AGAYtV zMsza#=hWa0{$l-}?*@Iz>?-9j<8Jrl$W`mRpvbhIbK=xd%9($x*Zre>kZHOxiH`>x z8=G_u8(u`tRffi4y-?uh95qK(|76bHe&9yK{WD@dKfIn^Tiq@)fG$)Zq%zl?c@=r@ zx_SL+Y9eAc#$~R*Vu6hV#J+{x^4Z^`21jcHO437OdyU}MuR+jv+O0i>(9+RqZH*Vg zGKc@Rfc27CUgZk0mzP(?O1udy7ZYX4!4|rgk3=C)e_bvt;$oih=vtql7MdVAc0ieI zWAWEdaN>xte>V|5GZkxiXtN4MW_uqhU^?;0odR9vCVk`LRt*W^eB?6p@}|PVqa>M|Ww$yWQH+X+_?Wv3kHOnO6~-&OJ-O5owLX+7vpjZval8o9_3C1n zfIb-MaJFK;%58hQSUjf%w7cs0``9;1N=nOP-bffLLoxz<+B^+H7<|p(^=W%jigTt} zg$ZWl)jDYsXvPy1{r?I^OC z?mUJwSFOyeNJb#__@EMU#)yw!w%xHSbX_8Y{%2VN&C<8j|G@^=2Ji|UfM>d6UwL!c zth@wB4VHdpomR=rYxY|^p&+fhm*&H5jOA-=Z<j6G^5@ zAMjd=Wk24YDxX~2Y%~$UFh>gb@`Y=OU&tSQdGxczGC;=K09A^T@{zIXqlS=h{si?A zq{Lz_d3g9!YbaS)59gd~x3f&i{m{#ER7xJ+R$v%b4o-g>HYhAg6{1)hO0l2eUbKAu zKvioy-NTvNZST17lGhQ*bjEe*1QBgv!5~}1<-(P{mEbHLQ#{SnevE%Dy24IY}gh*zPUdvEyBciYQK5;8fyrhbyz9=y#ow zg>>d}tT=R1(iRJB^Vm_hW8u!fFkuEju)~h@u+7ZAK&5BB2B}!3=fvB=hcEdu*+(H) zWxs_$Be7oxw*1hWbAxCmH3?(m7v*zM9?ltC9LZ<~uD^Me27h3NA<10ZEU&2c&erzm z>9%AHliqBN69CJ(lZLCawJsgKz52_Y-%1Pz{=Sc9fMsgCSTMYsF6IjUOOI$0#Rv0+ z2!*MV8me*E>*Hx;f`Wk>ZQtk8-c(--5;`?7)%krqHtFJ6VX9+i;N*;<&#UlCFt7R& z9E=JaG>+4P9EPI_)NDVN*7^GS`X?F?V`IM+7Jdkz`(F@Ymw&{lQ?idFaso%~V+BS< z?z$&gVe_ zko%bv6pwhLxu5;VHlICv<_jt{vZBI1fawTdX$zN{l+QZTTht!o17l_7b3U4n{%oFQ ziULXo5S(-k3>2l0d;0neKvj^bdJ2jOF$sy^_PI`nE25}%NEV|dDQ$}j-WdGzo=D`c zO)vFg)LOfk>$_R|c;VlC{D?)yZTo99(`vCbN3HrKV*{4X zXx{nx&YL=iBWcB{AYJb_ywSr_4y)IxmuYg+ck}~wK@GnEj%04|3y<7o>0}vGVckac zyor4hvq(}lqYOm2G5#@Y+WzHSKgv&W3&UhjDm7$V@Lj_7E zQ03W5iGPIA(vu%Q%%f!z#nL-c`soA+JV^9|4W`2BD_)PMYF+9-{+andAkg>kUumi^D8m{kVHKLnf38t@&X&I8qj z%6I=p+RNoKLq6)hN1hA43hdSU0Wp;j(~~>-prU6GNkl+0|F}=;AIW6hJFbSli}%OC z*ItAP)B(zLn^8j(qYkvWm%5QeBxGyYeMbMebaX1NI7&*xwb%Rl=1np^Y5~iM7YWga znxNor{tQu3#46$cP;0%~pSu=jc)hc4Z)nvVa#pcLsf#bwyO(EcQP(B`{><}a`iQQH zW(y~)w$pjVdf{4Z(ATP83<~1@rZN{^a&_1Jcii?{Vupsa5fKq3CS##6kOP9a;z>0i zcnV?M5Gp`xJ{#wK?l(gA_8h<@l^F034i3=Qi=B^+nX1+(wRLp91O%iy?9N_+qF%Ii z_qTlZ+Eh6+GBR?7Dih#zoR%U)_nd3LxdE!cP3)Q}X47Yb0A|~hTAM!^c`MU{CCf;H znG5&S=jfGZslCzBu+JQF8h`Wt zZ~gWpn3OBBdZ#KVf=aZ=?b1FnDvExpv$OLxC|#9`bdhCv_a6efjS^Jvz!_fZcN4;5 z(Ee6&pTY?Rn<3_I-KBZyB~MZ>&hJdX*$H|hzB2580>Tq?oS#6|5>6_CW7(eq`sDTN zSVaxDZzxO^9(J3f5wVVE+x6Z6WdJe?#(I4G_z_m{f@raDdg-(hXYk?@I7xx=$nVa4 zMtrh5Sp1cZF;y@3bW4GXO`Q)}skTqD!%U`E$S( z@%%l^%*>2RPF6p+1G#7Dr<4vT<3}!(8KUK&Xm?>_#Z0Nx?~jZCwa!2vTTaC&qX8q? zbi!Ixl;JNOY80kz)No2n{*Te;XubviHt94ri zXiQ`5)jC#tM}I5UR(TKTwEW{8nT)**q$tXAIIXGlapgS78DpLCM5-n z=0QwV0n1%6DYCV9vvAH;yCLZ!caJUcx1a$tfk7nQBi)^(uz~B)>euwNfYE~3IGaPE`~VH+qecMu$4~u1-MZtM>*TrU#7e)XB#6=v_$AJavEOACU>!gvzcRp$rGFc$sm20qO9;!BMOWUm(aQ zA!iH<_+`5x5nLX@c}Z5>WN>*Or2QTkLq<%<#7z@utreH#LzBrv`I;3L`)Z9xUaa&c zb)D@m_N*36RsQ3=K8kY9xgJUZ-pFaYbnI+BGv#+FfP*n0VP;R3#>U2W_F<^zI~Sog z&4=>rJmKe0CSujcBqiCxz zzsPZ48_;!7b?5bGHz(!waQ*3`7|us)A1BH|K~iEm5$S$=ImdfEESITT4J%F(iJL46 ztQ#NXEb?cZPday zef|6fGsL6h^0p13XA4LG+Bej>T?Pca99spPQvz(iYXEb_dp7S4$o4F2huQi0ji7ls zSy_nT$ZtIUl(5g{mA>^LLXDgH*CAu#;tKntlPOi(ZyUKu-C3-y9~|op=E*cwiN*~I zg#0rm3b(;xC-ED9^zBEFWlOk7)~X$e5qwE6%gdp=6-}YvRdPP$+u@>JJ|iz0J#^f0 zVFTq)l{~bsCvusyovL?%iZoKGVuRrrHFmmp^}eQNk+FkKfbN(ZMws=hnGS z8kZ_aQ%Fnk)gkOb>nZZbf`DzBzBxX3Wl*d7`c%j-QG4WWfGk)10z)(SvvehU2}pkI zhJr!zD9Zh%0$R$~Ytu~d)wL@IBogzqsfgndA|KHNY%grOhOE0gZm`-DEb8Lg+uM!J zV$|%3U~F&Ml=)(^%Z}FH<}XLPb15)-o!{*OlZ>nfaK>@GP6toZ@^W&5L5sq8Y|Eaf zu&@w1aK-}ixz zQt6xPSu52eCwx*z;~<2M(qP`dI?}M_1kp>)hNla--5wWzP?!sJJFr<;SYiQ90eHX{ zAXzar`D3*0o<>DSx6U_uSFR?z{N}Uo{7Uyt&g0Z%wuXydG4G*fTPT_7Y|Z(v(%S2j zDc=2NoNpQi`uY#{cB*%+7ehF)Nl3at{D4(H>tp#8>iIDM?;e6?!C;dF*L&hjaCPsBn z{9$8~hxz}A$_!^&(Ba;hdZ%10-CcdWt2#f^))KMIR=14LFdDCM@VqqUABC9s5#UUP z_wm9T8HKi;eF&Nsj%>5f86Eqo68zS`JpQ>#`;R)~q5|DT<^5wtw&W|iq`(8nI37_~ zXHHs%o?cX3Jofm5XY>ETjwLS`UTBYir97JITT@kqypgtjkX_82Dz3m0hZY%Xg~X-! zj~Q$?`WUX!u(6*qbalCJYfk`Qz{nA2H$l+P%M;Yy>;qAxEe-iM(BWUT{AUH2@%882 ztBhxG9zDot6R~_>qm`9)TiXyT-e%?gdwhn-(oV;66eY^;)OR{o2DVL?XHwQ2MeHt* z%vg%sgG115zsPp|qZHfeI_Ui0X}C+x6=ZtAZl-vD6ARZQq3N9A? z&tSzTHrO4@8~%*7AewzAdG%{rGHB+rV}>p(e56i5z%Pn5>>r^Y|3Ph>BD*2{6W0r@ zAR%o+_r{kEZ=H;Fe%{VK;$#}4di6sD)4O04IgeW<+{Jo{+ODiiYRoj7gIjWUKDk)8TeQgx(uH7!H%ga`va|!yfK11sn%EkJy09$D44Rnx2gdDKjE-^QJ0y)MB>V3jBD>Ri$pcl)o=ss5})LHG!Bl%=m6 z7Xq;$TB=&h=gQ+vCdX?%(JdTZyMtX6_h;c!t*q!aRnXfJq>1dAxpmv*4}3}7 zc7H(!?*{;uTQk)$U@nP=y*yzcl4%xCytu5r+^HV08x8#wA|C?;YaIyqo%!4L*C6p@VNDb`qxq(|inV@E5zne9`z5b9t-QJ~n{MeP z^cP+wC6Vu_ei!nBwu{gBHNxIS7cKaW5w7(A4|IyZf6x0P-n?=-y0edj-MASLTv8yN zjaOJv0SYM36hJfXv{hn2_qm+z=#AzmKSV%~pS{(zufG1O;SHl0C$wh*zkP)sz?nt& zz%^JD7W|TOsEJ!0$P-mm&BGxH#^l16+UEzyAqKsjk;$EkMRZW+tWTD1KDDFh1(m?NFmk?%#ZVqGF|kxoBk&$}v!1!u z8DE1b2w7XRtgo-bSXEdQuGoaNmbpIXsMmbO3*&#Yh~+S-KSAn>Pk%Uhs&z9X(|^$@ zx;|PS_9rV5|M9QPf#sA8%X1n!+^@?D>X%pL?pEMGHSD_h}cpyuTrVR9mL7Tl@CyWoV0VH60iWmU0%gtv% zfw3GV!@sbSV8Nd^2@53~#7!Q`=8iNJ#5ohKawhnTr4!2iSCa-zrIMd#Ti!96H|ZA^)44B4kgN2to9*VG9RCW!hnp`zNU=2obI+)$ zshRvK=BG7p%k6Z1JO&844B+TFD)Me$Iq2w+f06T^qM)I{y2dnWLr_oyeCwO5b#eHf zo=zkHCw7$*c=VXOm+?|Dq;ZzvvP^yN4=>V?x@JfM~@%>E*p>qMIaDJG%oIc zB1xNJe(@quzbC#B^ls#!cQCXx1Q3ZFHu!Qu*EMs$F(BEK21CpSjK@{>nR1t?TlQ10 zb|__w*;-E7tS5x5CWNwcM^KBnEGLAJi^y&hue~pK>hnjet>@|v4y!QBO})y|~(NfD%jxv}MM(?c>>u zWX}r)QcpHUf`BOF@2O($lv=GbySTWxKU$`yIb|v6)pmYh0_fD5V~=D{4Y`J2>xJ3v zIiX^ROVkGoA_C{rgXdhjv(_j?Nj$WP5^q4YN6M!4=i$lrR2v|r--8ORw5*G%Iv7w4 z)<6Se1xn?YR)2*rPIvo&9f+jxy9I=X>Vt|DbfGIJ4XI<>2A7tWK2__NPkjjqLC`$g zTQHp}3jsX(ZGl~`Mtw4nd{_g57mI+P4InS4oyt{!LiO9jpF&*0j&4m?MgfeuXk7{O zK1V<%Q~=-?dJ%6?e{HYser?qsfk#ArO`YgP^g-jkG5r=W20*2=Jff(v3_4zVV1|GU z9~>McJuPiKm+SR4kT2-g0B`SZZ*dXv_#!{Kpb{G?BN7mMn141AL^lQ zuw^&|3X@MK6IFKfFmnN|yyljcfocbfmF_qpRn_SMcOjT78o$afPt==p6a6zr5#{GA zg%M0W{6L5{wSyR>q~oWpedjf#rO z@^gL~ZN>dj|_X^p?;Xyb7cB4T#pNPH$ zuha&Oc46{(p(iEHreWO18-N@N&iWA_r^3o5S)J(}mS~xH;ifM->#_An9<>Vt44bSz zeiLq$Ss#CUWeuzRBLxjSBO_%M-k-%Eb)*btSyDi%sW$gNuOMXT8NeXu{Ns0_Qum}} z20A^%3w^LNgGUKgwoFWrCp6s2@&H#-vnF(ZUDBBr%sBZc(#!IGe6=^Ub*@``jhiGH z1R2Lq=$_0;D_KjBQqX>@iGs_84AY#sNOkNF_QBfOiGgm*h!nWWXBqtscyXt9o%oIJ=h81(6(eZC)2AX zoj@D=y&Z}a2t%`wqtW}%@X8`oDY zLU7LllQAaH7cQ7E^<)x2+xBFcajVyLULV?EhEhhQNh9Yb{JM2i^G$JHuqB0}KB(hs7 zrhd2a0%4dK$lU;sPsz_uoU4qpry`r@KX7_-pc&7>H#pJm%1fkL9$P5RV! zwrxYhXxKij#&%A~-0vf`2S=W|WFxpxAI7nbZ@XJ{F@4ofk*Ox1F~s>E@_KnX&Ermi zfeqPI$jLYw!Z0efwO=kpFmsvj;SCEWS3|bvf>%ls)BFeG69rA88Jc)@;8k*Ckv#ge z^|Y$h3FF|~*G3UChp>PNJrKQr^b#8@YOEq+R7}23bFn*I>a?+*p#S@vxa*F!L1cfS z#!tfkx$e~!A_|AuVn{e5!wdMo#5U^1p-SJiEp?AGh1$>`BCOXhQC_agz<^wU7#g@~ zDSb*a0r~flP$^T_C3vs5RBIaQ9^0)`>*2GQ)oPgn0i^H$S+U<4+F2UzY={3y@+1B| zA|+Js1di@>sjih0DXCWdu*bG>l%>)4^-(+B!M95#ZZqOui~7G`1o(ss>2V1V1=Ori zqT8S384Wy05PAPDRQ%tVshw(<87`qO_BGsuFK4D875XcRO9shp&jiim?fM#wixDd% zBC3S`UH#CBmpoefJo*BM|7X)IDda%tkMf|)qt(-`x6Uf4_}R}INSJ2r($>B8t8LO%4n9Ta_}`jZHk1HB`C<0kRbwXdr*`f!F}lp0WZBc!7y( z#>;`*fE)D&-N*&&%C*s45}VatKJB^No6~w2j|S>>So()C3)g5(n#}=N)X$z_0q)HM z4qgeg^w*(8chN``?`&c2+;SZqC2P)IT-OS2YV+Bv>mseaW`Xva9hD9G#K7SS6@m{S zmUq>j&US(9*9zpKhGThTt10gM0N8Vz-U2XU)x$ov2in~%E+?k4va&EPejJDp^in{6 z@&rBo5YWy{(14!%_V<726}WYsHb0GXR=yho($aR<>S|b<^+L4uO%jI7mh^1(eAt!k zve|fwt8b1;9%UL-JGBd!%S0Kq>E#2pX3r|SO%XuwID*Uxw|99BBvO_jH}21SV~`*2 z14<1{9+ouo>TjF@ox#Nw2jkbK0nmj28DUg-c*EL2dgaANHb$kWvNDmLp58YN0$kki z$jG;VI|UBQek1|QAsJ=ki{2OquBz7!cGN4|D~$rY-JSM)mD34b^UhC)gT6er{X%J{ zA}9z4AXi)Wr&8mGBa8bl-EUkGQ3*dd^%$43Xf{Cf`;y&MPeD9v+&l)7Rrm(L(YJSW zWZCxtK>(PEeX|Syh0_mmI;lQEgY>5B!8+dLb&>r zd#fYN^GxD%EMHh7j{NqhGUy|B<);9hmytXgYU=Q)C>zyNN6>8)la|gy&A6m+pgbi7 zd=^lJeWL)v3a)_|*s4>Oj`wbJF*t6^Q|{J;GS>J0Kt<_s{n327A+&|VJZRDX=6gC7 zyxPxpuGO5$mQ%nwEyBbMKyp%{nio|UHniTnZab=}cejHirgJslk``P0?R!tD&)guY zdsC(tnKVPpbnyXuBA$#NmPi$|9~gr^JWviN@i-_{*V(K}W8;L?5nh9y@n6{8fkuXg ziYoo!;-+mIpdqjl#-{+(xb@&M-wk&(8ZDvydP!)qH$kLm0ZCJN=mb|6nXXj%3`#v9 zjeeiRUCI)UkBhqpY8p!*X-&!dw?YlA?3=V_M?#YfiGmU>v#F9Q_CH^5x=x;MNn46p zdeGxWz=I8VYzZ_e)=g-f{gpNbRrcGRK))ve$`p5iWZ+=UqAZPi{yzRo1_5f_hRa=d|^sr(5Q(7L?5_B0uY&ckM4N3;;sukdOGscr)Dvq z%mOP5q&RuwR-*>e=^Gnq>Pg=VOQ!%2&9B;c0TXQjf)kimn%m_G=!X2Tj!FjtU!78g z?d>B_DlP0g!lby_GpmJda}Vq98Yh9Rk+@8hf`Hb33Dz=^Wz zM%%^Jqe-R&c#k=4EiDn5t2p?MwOPFT{IO(cJj3;?bYMSu;!ZqikgU~k#d2oBf2D#L z7UmT3^srt>%l|!t+eOqsDGs{7SC-flGK-(T?fx-%ZA~vVTk;PJ+)tkNsht>%(s2AS zCuAUUq(duWF`6r+5)4g!6GKNyld6#9eV6&H8T{aeB2?h6L3A8rz zu*aqml-3gWWLk#8A;>BmX50fBP~q0l5M2j~&MW$x?$iTbCUN_Ljo#|Q2_Pzv6E^m^ zkJQ5w>K0sGbtw{8iWCFpryP*SYH7_PJ_qPLh6A+7*^JLYst}X9S0P5Iv~2Dd98Fn> z-(2W$FU1>7uloBGXN+k^7F|Y8lpx&DY{EL%{a734~!snY0;sO7uEbyxTS)iE5J;rD!D(pj&thxZR~&b7${> zVwlDM)N(n%W5N0RK<#_L!`S-;OH^=i-K&2dalEH5gp9^E2SEm6?C~Qo3&+TSmO_iJKtX8}#NxCLO zhEhQ4f0XN6oL~a74-+dbtA^6r_I|mnCCW^vg?DHu22RE(#5t}Y3?`GIUR#YNn=?_- zX-`4NOnBq*{XMzpNXGIq=c6zTi!Bl9{NNfQ@snsf_)~(D`GB|_-O`s*cI@ABAuHEg zv$v!`-%Pa>zsP4a9YT{?ane0n6R|9y_ZayiruOsR0NV7dh-#uRat*o{%36x|J~J?w zPQh!8I+bkR`5tVkLhqFh5mc+M7ch+a zZ=60_4Wyhow;L#V*GFiG?8Yq>JQ~lYG}?chxY^dN@_UgA!tA@3<$eWZJN8JrXFoSj zEiW(}zNsBmzS`Lw`1<_k-cJ|!ZIVoETwJ0xmUl}GKkkQo<_3+v=8f9hr_e?Y(VfWc zTYPzCi&0jvun@C0%|=!|13LTQ>dd>Vt`d&CaJ@RO& zi>q*H!HD6G|{Tnbo{c%%boK3sqDIPc8(t`pTNAiOQ9iysx=B$puY=7ZumH4$fJbOZ4sboD@Q^%fg{zcSgR%5Web-fwEBk zZqxBPXrQEc;=HU4v*<0OD&{uzjn^Tl!~)u1-822eT0nukKXfos6Fd4%w&}t8_Sw&= z^M{%2E6W$?+KaHNEuh`%-g>gUPqrqTTKo9ZdSr08`m`5HMfs^;HFp3-iEZUMzP2{y z-POqdt`@T28SemUx1p6)I@=Q`IHjn;;QHmf?=IGo-@iw~gCNr0@$XXjGK&e3-iok} z*lR|ZpV1Gg6vDK}wJrl}EW7~51|)LdFN2EdW^2#Z`4QD*@3p6H6Gp?qbD|{!jOXbN zGAcg402_nmb^4vv$fB63R43QS2xM$~r5I`wLKw^jBED}4mTXRVhlkID77C^8;r+%M zN8pji-gLb+zg@k~P*D9mTt%-3OPj?cjg5I8qcoJ(-2YbVLD%Whp@loOKy~Bj6YsRb zjxBL>A5N1e+f{Zg%ho`AgB39(eYXkJ9?_;#A&Wf(0TZPmTupOL#>GQjwEBl+7(=B_ z#OVH1ATS0bzPdL_a$D2-?tc0TG_p@(g;nP$zz1z@(3vnAG&H6Uk=s2 zW6j|(@yN!-%5wX+$N^)Edg~5z5l170+)F!<)R!<2_u(Epp6X-AoaZq{q1xw z=nny5qAUA6_{UL+_W4CTkcYg`m+V*Eg8_kfYa{ zxe~A>eWY*GbD&4&!yiC7y7cfqo+hROJ=jXmg>RQmu!=fw*D9Nx>#<+O08*s3J)gk9k3oIMbm zB;qe~x?{WEYitW`%S2F&3L8h>uY;hq!?sq_YD&NUg)p~E7v$_ZU(Pb+lm~GH<=M}V zi!ckew!a^6R)I;IbXn+SEQf$hT5%sr!{pbWTkYf$x83~0BBFP0QJiph*Th46(;4aB zOdUg>%g=wW`5_AI#vMCbPj!#hrJ~yR?rv&+H`oZ9(Xx<)3BDbw$?j`U>Us(fypXA) z{9Q~I=aWbA!hB7hfJ%o zyXsXAW?zQZAA$Od(i(CXL%6aDq2Aw6@b{cmCG|hQg`hOT=P&;LF=UuB5Wh+C5NF8{ zNO9i@FIoN@h2|NW!W9d_ssTm6^`ZqEh`rElhi7hGC>1%%@Z5=~5a4h5VF6-hKkI)0 zB%C3AczMN;!k*9%PCgw+k3cH6(I=yq52GDWwu#vr?r|igwd&p7Go)ec#L1A1u-iVC zS-Axyb$CHn@boaCb3;Y}=mECMAc}O9lr;C}YK_TK;DR3WDG_ux&K2@(H<67q=zn&q z4AT?1db1UyV_0s(3Tf%Z#6RIpsn~)Z84i$U_YgO1fVt@2nW|VWOX;}g%2C|(!8r-2 zQ}snZ@w(R^-L4H3(-*R4MxGrLPVP>iztOTJ401-Jq^qXjOW^qU5)UhDk-<-k(39zV z8U6pJK*2dx5MPuxW4>(`hB+rmZ^q0QD-{rlEa$)L#r)GL0cl4G(KSkGq&7IFs=fEz zZ$Sa=1Edx|2Oq&s;0{0LhyOe48afP;dVze6f8Fg^c#$knM(d;3#ftz{$jq-afJxew z@6nsFudg2F@~IB%mA_fJcEQs;xU{jWh)-igOwyn`d!HzgV_D$wE3~3X>gZS;4+*c) zf_(YvSY_h_0v_H&@x+e_wfawzLQ_a&w6YFXh}rluY?7 zij|ngZduk?b2@)a2ju#MOSIEILK%s?N-7JtPP#&+J>?w#q?OHLr9zclTg&8iMQ|e0 zAn?x1hH0BTLYCz{Z9PeN@yx_sY|b`=nJboJ#CNr5ESMumUwcM?n>Yqi zd#T+){OFj(tL3eO=0-q_)894OOp>g8>1MP1U{+AVZvy^{?0UxQ#BC*H57k|W*K zN3uy;4U>VT8LX08ABnzF^qV88Om$YeuG?O`zYY#S%g!cFDD#-TPIKT87NIz~;fKe^ zb1qVI!+#04_^@AcAo+ZUYsF`UBsWsDyWhfs$JtW6aVkpqcCHjC9^^}bPlNqqf z8!utuB*LbfUt{Fax+&)p8JompgL-LnNel}1w&qN|;J_^3UXSA540Xk-)+1#0{1o@6 zsFe>V?R=iJ5xMb!fOOBbb9H?qDVWwl9E>x!X+COTyz*x3Z`BG7wYQ0*`q?<@ZC+%~ z{{D(oUm9Mc1zIcMhT+Y`A}TQy?{Pej1jMz8gm>d8?l-6C&U=(mUy(MS`f>1+%ZSQg zGLsFG`etKW#hL3$)gW?8qlIL49;Y#?+l64t4JMAuq(%_V2TzG_B`wJ3J#l zyRn^yZ}_>;uOtCSh1C43ZGEKnnbza?#2D4q-6jh3C7TaxF9pYDF-cujG{V3g67KG> z@hkD*_nV6#l0b~uauc{guWl+$mKP%8I%X^UBBCWWJnt|5pl1Gfwo)4YVQrM82=Q$Y zhdc=tYzl}MiXtF%hVBs-6m+9z6i*lIfH^#(FUftBF_YBaZM5^pMYYV#vwj*?q(yc9 zOxUJ`&BUXUe)nTkF0i4VyM&e1QueK>JMhg#Hi-lV@iQ}QUBtl?yfn5IrSyzTr`iG| zGBzW)mUk-wM&5pyq}qr>>dKfzZdK~hAc$$**}^cTxj?soCgb|ggN^No(ZHS%(tavJ zVkFN+VIJMj+(9C04^(&##hhnJ%Eo>} zMerixxo?UCKMtZxuWk6OMV*gT7eM|{btgH^n6vss$28?7_1EB0KlkoYkYkn<7GBD@ zOJ<2$KcHu&uvM5TI0magnC)~W>4)Q7(cKg3C9RMAORM3#Mvsp6Xr32R^25w7)9M=z z!>{If>_AG8_3UmZq*SnNMI@;A5TrIFG zcIwggL^J70a>R*BvnrNzd;ko3=#JiAVxv81Qgr}EM5=Lo@|r~Vb$7%dIg_DdQF;ba z=M21DozL#`Hy_iSde*&|_|jzD+t(n1p>nQ(l8hL-YZYW55+dg8E95>?`-F(3Klr5k zu9rF3fh{Y@x_4; z#@!Wz)`?e$IY;qw_6C(&>w@Vp*S3z8bKv1gOG5c0J=U-soV9m>va-rSQnIOwIK))@ zL`!hY-Z=3r2=%*FCMvn(9;yXNm21 zUUG5=N_v!$JuMa}G0oP|2BzG57n!&``aJNGe;ZYI@mV$$W>hfrS5b!BTfO~ElUus z$!4u&d16c#`^K-#3)SKuR1MW_s!~mu*H|HwW&WwD5Ih=?B6wiq7fUK?L1CpIjqIg| zKZQ%rP)HSTp*3=$v9){q{)vb<#%i{V)}Z6zp|e##J&0;=nvPUtLFIK{Q;Fp&Z1|t+ z0mQNH$A}aXDe}1o3+4wqUaf+dxN9}5hmFhv32n{PBmUc;)69^RN*_3%vI~6QM5qu0 zt~7b)O2&Bqg%e06Q!hE$j8{ECRQc=kYw{$2LX>KuOD5Hhr{YH8P~|-X?>=^g7yRc0 zFa$=0sT*+ukfc6*p@7;cO3lpdWY4PisT5X5;5b)3Ddh-`BsXm1u!%Q!rQDi^3rR>= zjeX7z@rRF;vwa^7w!jJ&StD3`Uuw?4nTQiaH+r%8Rd~3})qt?Twb1E( z_Z3%v9;@o1Xffkc!-mDcCrUHAr|)Ex4#3 z9u9gSz!AKRM;?K%+|a26I%_A`S5kmx7)&|~>rVk`4`|}vgx`Rp02!H?HZ6FHmat^O525%gh~n>$ffhK4VqoQW)X& z7qBP=7uy%{boH z%-;4621kIK`!riIKJ2jPzY`JcGd+xrJ<`|A?debfv1sQPJKVp16F9u0{=fT85~u3L z`e;DU15V=r!F*$JAHO6J@`jDq1NAgGe%F}~`q|R!=kJ7j6`=6Y!%rZbuXqB4HuNAD zc!Yh{qn~MZ&$@b2;5FP4yYLm%B#mI$K;Jz;@{y7en6E*$3eJbqtqJeGRjQ|H7XoLX z{{-Zh2N}Cl;5;2T^dkjicN2v=NU*~=;GnA3M3J5k`0A9CSFlb9c(YktAQK>0)095a zrvSAV&xAYl(;C6^=ze-Xv%T)sT=i1I`L%|dvALIS>Dz=8{g>ObNN?Z5tHIKMa`x!M z;UT@f`NnT42D-Za;EA$waxm>0?5h_rE@QzrLD+z%i~>~c?puO7jq>G%GdK>2R@&Ec z0P@e<^RRm3Qh+e|DLB&JE-nRW?Ayn|Yx`XvI*rEgptKs&z{hC@_`^Z0qLQD>LC|;u zE7q(>v)SR;IXLhWdRoCT@@%y^(C!JzqX-EM{0_9Gu;Y6Hu=9!1nZ>Qia>5yT6N}l8 zGi;_mSb}-|o&lXWQSn7H&DT53;7ugY*AA1++Y#f?omcpfqhOT(6D^q1YU2Rs0C~y9Odb^OuRIrnnQZGw{Qs+YWwo4FH>Tmvcf2{a z3Qp)FbccLX$Wi)ueh$QNN+pI^T3T9cMuQJMfEG0j_PsaYJa3uBTrX%2`}OEA#+&3J zcLxEE=$U#PJoi4ANBBeKd}3zyti5LK zwfPUMIUWW7s#c(7OS|E@V{vHv6w875k_?UucR-zM4-iG+zcYBk$;k;T8wMIfCF|sB zms8_nWXp{;GTE-1}u-#~Nu&-8x}6a17z$XB|Y^w{R-@;&tWjxFoIoivJeZT9h|I2NP|wQB@~NlIxRe7 z8d&1Qql<{rL@OMG@Y|jwn1c!C5ee2ydOB5V=^})G$1z<$3Dhr{f?NAf557}Bv;;Qf z)BeG4jcGWhD(@ucI#9HepL^7T9U*@ZT{kSirZv#_!|9JMl$0i+GSATrR1P9IdU=2d z{)vgQBWTXM%8ZnMwOjI-#<0wp%gkDB`I9h+qxz;-(SIWuGzd7P`mxGF`}0E=i$!_^ zw5+DonjMt7*&e{8-~}51DaU{@&n3jIUv0k+x8%1A!WZY}O0PmC8`ibb5;~MVm&ey_PW}Pxij6R$I~$kwq^r!D`P(pU!2e;?!U%6OXNIuogDq%K z-GhEaTyCz=EyLz{$19=F;;*5=;wDNFmTxMc{==qL*45=`Am0u`S7Ov z7{dM%%6O}vRB7OXww%(ZgHBB~h_q(Ho5@nIVetIJNH?#vh2Qc&yJz~P4Yq+x04=}P z?ufOsJcYk)crR&=S8g5vwnRogzg6}TI;+KDOH%iD-4w|IO+2tsoQI*3;pc5|&=$ZD zzMeExqzgHG;ishOr<&Bk>?L8YTbjP~1b zGOGV(=YJe^Hqtek+Uh%mZ8~{DL7mM-hKefPE0EukPVz|dtL^)zx76dsoUlCnttFet;La7f@jpq%S)Wr%=* z3l+R`O1flC2l@iIvu)%=gxBvlKZC^;EZz>oR>|qM2yx0`(Zh7C)3GGf-SAc*VQgwh zk45ku*^nRWI=H5QGeB^^dlGpc-Rd1!?DM}KJpfhcCYa8=*uJI!EA!3n zjIjMT{~D~RdG%r@;Iokvcf|p?1>n?*EAaF=FX>F10%S{xcYXIhJ0u?ERF{A(VFn6g-V7+k~6 z#3f7%3T9~9JdO08us{8v2x3&!dio=jtVg9>W@;WC4W=-Q$gEA}pwj4AI} zH%Illxet`aQ!IAjW}lg=O${S{1O{|TJN?*|g~>LCUxT~g%(}S#Uy|7jOEPDM9J29o zva%%zC`veaN$Ux2+R>U(9? z0t{Q4M?~WiPR@_-O*$=vSJAvoQPE-41F;PEl@CuZTHcUGVn;QgLxulkW>`^Ku(`j! z#;T{UJ~^@Y4Edlp==-=FOG%#Y!kB;FZ z8s1@yY99+`(0`;8Z7hCyJ8T;=bUD8ex0u9YTGSq$fWtrpzkV1bayob_o}H#DLE=J0VPIV+Kk_1*Ia|`)FsAGPw#eGO|_w%L`eVHZ_C?}aJ1QA&YB9@ z-c~T?!T4!$4Rpw?8F)-hC%|`i3m&!tj)2BYZxTZZT;28pCf^7R03gS%ddfXNUzb{W%B$i7yPEjji9~dza12d69FuoVfa8mi&gS{W1#gz zFgZYiqbD+^-d8)u%0Sn#z-%LZaOAesu<^920<_A-0kXE6FO;Jk2Eu}q-+)_p0Gzky z7g$2=08qPc37D#RFA1LbXlG^D{5nW^PH5BGRBnfy&Em_`lba07PPiN z(3-&VL{M?jHx_xVtpUg}1?16wGZKXHS(JV4=eb59HIe%5d}%(3<14jpL#L8(H<&)q z2S^`!wKUA_Gr0=fzj?(6(!nnPKsnOA}? z&VC23sba;twQ4-40YS0+*xblrP=Fm6#7_c~=ST&kd8D5(yzBkjCjm1ay)|2&gOZ*sY0RSq!KYCp9xOI|B(tt~qvrT{99L4YLp|zODoI?0@iJ z{6p3RfCr66BMb>A6z=ROA*e$ZGOz6S5j~Lj=Py8U_9)O}fHQ(0-!byjJTCCPuDVF; zFXk-N>p#B%GE$hl6jX(c08g}R0;obZ!;HMO%q&Q6?H1+S+o=l>#WCMUdYi!jb#To# zOB9#IAxZr@=1LLA-#i_nvwjc+N13FT)nLQ<-F^)29F){=0?VmQPV;mv4(e(wP68c9zQeX2b~ zsKb9#n=Ps)U|ud82aX}9`36&;-k{h0XgY56MbJnE_CmX>Ws6{NMOLKs_ak3QV z0t7ghG;?jT8sB-$Q>dr}U~CmZJfkjZh+yf0 zRU;Z++9)6pzl2E&Z3&X?`H9&q@w^^R(_k)PfK~z}mdrqC3~FU~Nj%Pe|0tIK6ZQ^m zMoY)x$>804YHkp7kyy~*3z>;g*?$qNzUbuT#zUghd;$=U5$bA3-kY}*mQ6dNrr+Sd zp0mFFS13e~a^_V+3Ji-t!hL^x33CP+9Q+6pdRUPSaHmj}o}#wZ`2PT!|LD?J*+>H4 z-uKUTt^1^TF^w=TR=4il>@25yn23w}{v7%b)Ae$88{h?g*|QegJaz`v{q!OtBGu-T zA?4*&hs|xizVKw^A#$eMVcLynVQ6=(J~jOcK7q_6bbUxE?*r%W)z71#nohALyw^-L!c?jT1qD?F&8URY%th7ub;)bu_`k_ldg2PHVD2*Z6tcXPzIj}lL z6n`+=fg9W(`FXK0yf2k?xSU3Ta2CzVfH{oq@JVEOYN`$r%>skz#i!xXsV#S&YDZE% zH)A5o(}cN+zq-%1F~1zcL1Dm3_#+ju+^Z^wE}!3Lv0hMvQy#8|=Nl|| z3Ogg(0)V+2Kn*miGkXCK?ip4|SL*~mVkp055ig5TX840GbsoX=;_&b zdydRuKPmX-->{frU`74!{vx_0kSBnyzGQAXP`}*p7Y5M%KfZH5T2W;9IIQjF&eVi$ z+^8Qhuchgl9_YyYt=8@bEPZP)6sWM1m4D;TheGM49})84;NQ?XLGt91_t}t!?>Nq1 zAd&dT@7nWwY{aS-dRWzHd<_j<4afQ6eD*~mcu497o z@?x;V%z+@)MQ8ka=(C^`6^os>R95!daeG(+)3M!*)^Tn^4?O)`0@&<(-?Iz-6V_LC z0YwxwYkJfBI-> zTJD>PjvYsaos(U6wZ|)9N~e(thBkPj`Q@|xAnx0<&vcUbTiGzBLecPl6i(+ed5sdN6k##^4-)r=b>bumR>D*r7eX`UyfNw|SR0?yWxxk~6L4SI= zNy!ui9gM2Hqz?PVox)w-wAnZ%QZh1xe;Ir51T6?d9=xQhtE&*;Y6o+r0#=VQz)1-l zKonNMZ=6w|!H!)g7PSH8_;VhXP@h@-$aA=UkH#@Xz0da2(ZU(P=LkJqstZ7Oro z3LD4y$7l#=PjPO0&*e%J;xg)d1Vsyg0bU38Iqj>TkAVMU(An7;*Z?sqi=3f|Mh&pA z=fgu75-g3H6@XBT8~k~SoVQw_<`?*f{gP+dQvECKA9o-cTp1}{T4Hlci27VZLNXJz zLrkl72@fd^!`Or9k$_fI@iHA7(=z!_bB_lekJRN47O?t(a|U(d4J*E=f5-DMK>@5G zsI+EPNmr@^m#_0&L@aA7cJ2CEDC<`&^Wd>s#-WX#uwKfAL^-W{|E90Dkl4ws@%1b$ zSoZg+y(evbK*Jp_X^cyThlv;9z9nGS&%x$I_Atk`w<~a*RrOo~#w#kNT7AIZ@M}aw z=|Z2XxsHJPLB{IYYaK8AOUn_X*eW;xw(}4*0A&3?q+2lI->3Uyb;7_$1%H!eiA4Q5 zF3I2ie;(>0Wj;N=J@BYE z_mM;N#^1MFedetRFmR#VcC}xY>$VJ8i?vRU+Xh=zP^Gxs`)|$?&nmV0QtEh+_ys&k zoZJ(_5m8^=AHlPEJ;yByzzL_Spfuu2Arh)zkHdmEw`?pNJMz(~;a6Vi6Ftb$;i{#u zge#+rn-V7XSb4eDpE%r|pGzIB8m{CvpMA$im5%H+ zz^HK@kOW1}JPEhQFW&uZ|MP-78?P;PjOdncgd&WpK`qx>>}C+@|E4iW6Vxq-@@ zQ#j`On85v>wK|37F74U6^nIOY$sakDRBH>^xxcOvL!`o%6m`RJUl&+T<9-N zn6#XosjjqXm>#%r9e~X6+OT6dp+J(VrpgN@KWGt>LvP`WBku6KHnaNN;$LW)mPYC< z8lpgvWO`Z(iZzx4A|#x(DY`vpLXTR$LW&RXprJuwUWI8IG2~byP{(vhl*(e)qS(9FyV$WM$_!;ZL zr~UZC<(zH&w8c$AZ5r1*nKCr-{#Nzt(oFCSM->B@Sbqa#%ek#t7k@5EoD|AzUNSpS zFk3sP9xc4hG&Fz;tq_hMn7G|3aD|hKcIEKE&BQmSnt8c~tlYWY@mMy`P8+OFe!VQG zSyi2rtxv5+^cXtS++)jqSSII??7Rv(l%L@`^w8bniYj_+_7ttMV%8(MX*oR z?rL-7((shadGQ2wIQTW4nv2UG4_)YeU>u*0U?_eYLONacH;Ky!d{o?}gG&E$e?2hO z$~;(-T{?8fESFx-4K|>K;`IA9f2`jg(NnuJDZ}s1OR_<0zVA@H+as1*XPvFqbw^aA zQ!8P5AUj15*t(Hu=K z5XWP0<3U2tJV;<$Yh$=md|XebUu}0*cD2;y`Y8A;oTu7qEIhYF1MXX$4I{IOm(;f* ziGh{WSdY5+vdrEYF%3!R*bkO>k94nIRhX_4?XhuhXY3EU(&Jvl*kn!U@(XGKnS%o4 z6g`yHLPf7?M*Nv{k@HK`kp5HZ)A$$oB+~X;Jnai_JTDK3igBS>!+3NmMc2%$mn&IB zL0tjk8&BE~FV|16D`ty-Alk-pEE&;(T@`RcWF`dwyMhu{3gAYx4!ln`K#|@W=%s-S zyo6SOW6uUa;5@(^y|ClGQCt4{LXYWa4&!ge;x8NcHG%rTzJQik%4GfY_RBds90Kr6 z;~CKH-i4Ca3sIMj>Ol-L*Ik^qOw_!4z-wBKTT46`?_3LVA zxuZwxk{y#ef9H-As6X0%iTv!&@9Q?6thgy2Fw3Yy{^BsKh!>bPfo#yhWD&}OG(NW& zF+X0;iaGs%RfV2>H7|Lx)zo@F30+UHr<->=Jfzx16KwQTO)@vX7nW$P$lHZ3C} z%@FMeFYLc%pv=)&9uA0?OFhgGXj9YLFxDlnrsTtLmiV&E z`(zYb((#OHN~6W5u?e+@`y|*xC$bj_gDIVkELD`d5o^Cl$HqfeO3=XTOeR=m#B z7bqAQ9auJq2t=y_{@6dCYY~VDbhP%jI<~zOli(0wqpE$58VIKngqZZ}>(K7&gKI2* z+&|IdlnA=Puh3BC&Y4Y>nz4N0=IgAxRVwml*Uuq(?=bFMSli9@^vccd&55ozO)cal zcsHV~`#mF24hf+n0sBcRB4eHdp3MZxT4T%Lztv|Tf2!r74 zFa+JRZ1ivaZk=Vb9RRUhC=ZcOb^C%N`tB-LmG<_*_L|VrhBb1~g`L^{h;=i}Z-~&v zYI*2MgI~i+06X+{_;Hcj(wgsks$$tzNT_v(c}2OK35KjqD_ZEt&mJ$YyvoDOjz>eG zc+$U>`?S`LJ2nvP&8^eAoO?+9-|a`0)~_}8?P^mO$$~*vuk0?*M}R5AQA|UFQ6T^irVb0h04WENNp3+=?Z-roL-Guy{9FTrv;}UpL^=JHB%7UEap6aoeb-a zW-^6hIXw`brl8ed^DQ3DN#Y&tX9>r3`%QKRRwvR~-*ZZT&~~|Fd@OJ$cDmdBAW3(9 zrhWA)Gj!LmLSu%g%{w6c*Y8o&fh;H0`v)|y^~*oEPU9x`Ogph`-3B$~JO+rU1n#0_ z;rN~=lY4O{k9O>CJlua9cWKuK#wyhG<1Khl4Sp$(%z3vhJ-8b!*DZO4r1T{Hm9vLK z*^n+*(@*o@KJ99I+et8>?d6(Tc__BNq$jo{s^L;4k&S|jimhR%{wLvMIYlzK`MUnr zmsDPZwF~Dg750>UbJ%opl5eEw6;V2SCgYa_Yu1)?(!3txteV)q8CZxI$Z;tRE~%;W zzAWk)9z8AX*ktnZdd2udYPfW$8<~}CY4&+&k02+><}08Q2S?d5X6WYj_AH=-2`cOx zSUed4uXtE111xe;IUOAxMb>^e4Wg~F*5Pw9iDK2q8RAH?7PHg!gZW0QTktc(@Y2w! zaI{8q^ULM_Ld}SNDaHq%)-BS_xu_cq_ygYIRzKNv#`d(xrb7UJ4j&WAKZ=Tswk&!P z;%%DN>*HOa`)x7v!gWPHUg8MYsbUB$Tdy1xXqU&tK^m_7gn~n)Hv9GnU-P0EmJc6De{&v?c}pR|^A(wY*-Oi#*?tt_LK7r8*6&07O$Y zUK|?D&m;=i!u@HXj0)BbRNS zA9#_pEz4?UJt6AA0CqK+r>EkJi@u|5zq@O~elnqZhom9TBvI(f}R*A7`iwf>_j`kvj5A@OJH@WO_c8q=l+N*j!8Y-b6K`~GF+Muk-C*aJ>P2|?M^J%siUN(y((%f>&ix9vy~KdM zZz|kUUwA7TDEhs%;Z;V?J7EW>gk_bk*A2~xZ#eaZMU*B9*Pc`Pn#)@yqbC z@pHEZR5$7Sb1e~hwTh@TlTvaz>Ot~eV&6%duAR)2%W3lp1Nypk#>*;Z6DTAA@jB>U zy(}4L?Yz=#oB;BHWCU(#^K$ISC(ZWm!ge85L8U}XVfNQLZD;w-@gKJe92Yq1b6k0X zA7UM;Ep$3(Qbx#ilpZYG;bh7xlFH<4*AN=l|G84Pg)<}Xxsn--W;niJ@|Kko5& z1ipqivS<%STTs5NVlL5G*1hl;O0BP%p`502slmr{V!sKWosN8CAp4$Y6C;1`wks~O zPeM&*b&E|QE^+y`rEfR!A&>oOUue$#0!gd~)!hY#=8IRO54(gCnx?H-D$nb}3+ng+ zvN)1++p2#md=bB(YPE>UH6JH*Ozz3~AOlI3{1zv$Jq`Q_W06!~7pX3XQ`{S{f! z3$N@+%=q7TTc{9fR2sc8k4Tb-Td!|DkLuy9Dm3gq6K+oK+nu$+qB}! zxoaZF7c#(N!vWIqfQEY)Cm6PQ2~x8fYtmy`sND z=gV0VlpF~C%<1>FRCUDNvrBLMXAN+Y$}EwXLF4x9lJ#+73~1F7)LwndYAUDRWz$CA zxpf((mu*P(w9DIl+1fU|#J?$1!eXqtaFUv^rY|2ui7{!H*EU( zYGxr$Ca+_(g{2n?i^NYaM11wX*$nB2TF~fE;c+<}C|}=lyFEBzyF3$T+>xwj$3>el zneS)}=JdysHXiAS^~f7Z;ZHSTm%hB9oYP(|W~UBXUTdS8dDXE}Tm-%K%_S#*!}Uy73{~au?o{`pdqd=*V=%wJ+Y(_2G<`@iGcCpI(XwgR~bR|2nJs zrsYeqH;SH@cobM}5!Y4Imwb^}vExs@Gf2-VbIqOzWH_>UHl-}YA_`~wKVM>s2@cHg z?{1(4qP3`Y&ZUnIl5pq1Nb(O1u>vh<7YLWzIq|l@wRx;ex2?)tF=h^1F0$UI8?M^N zpXgQDE8|C?oIfuDWhGW-sk(DeLb9yLtIt4L;n-}`sl)TgDmXovXD^G7u=H1jbI5tA zsI6k(+w2Cy78DC+CK*9s)U_6Ja@3|$cBMP!g`V3+HQ+-yTY%6l-H49efHGbnVDoRm z5#yZkOE*;gJNb(15^}GO8>KPmu`kJB$r}9Bgr{H1-8rP$Idni`4_insIDCzWy@y+h zW^w=L*75hc(%?Jv&7esj)(fyHHW)Y~5`5wNRUDmyjADYwK^ldkS^w#~A#$i+8Q2Ip zVZ4{u-Ivn(wP(PA%DkM2ljJx9ofg5g3NlUR@T~`)&(jc?{fhrhL`g)*kgx;QDDj|( zRkzsvJ1M(+rhINAO+1k9+P_fbkZHlWzx2?}?~bt(#?L^z}>SM`9}tWc1O06}lj zojb5S18yejz)qtkT)%zI<>>w`-o>jK!vl?h>sP)_6KMZbE%L&j+Q6IfEgsHdFs#rd z7H(QIOBxN`57;$({u?`<=d9d=SYM#KE|ju$F=GISfoML+SGs3UQ&IfkCs{~stenET z6Z5N%?^`|JO{{az=M&KPw3X#rBJ>DX(FKD)V&*Lur9it1-O`Z7>RUAMaDfU*l|1P! zI7}!9&V8UEfJJ7mMjl&<01oFHUeW~zguQ;B(6T@hoF+0VN+DA;<%N5Io-NzQacmnVSC_NcyxxI1#=7XXjNr9o1-qTk z)`<<|Y|n|d{xsLoI_A~24`PM(YOC|B*_Lz8%^i7fccBY?HOqYz3+`>$t}YYckwgEa zg;jvk;Ioxw-~7AvRywbNPCI&1vol=pHd_+cv&fzv=om@E&YJMD1mk>g6a@gq?kR1 zt|NSGYnpc>7O4$Qm7E;IeIo0XpZyW_F)J#rmMxgv134WyC}M&q@>ok zC}E+L*AxvdI-AI{i%H*m+EtNzdu|D7k*TpReiR;N0I81IZ>wP29{sABuc!qhrEB!v zLAl9OTMmK9QKJSmynq6RAx6O7(|kAaj34coNXYJN3gk%-32q1ATQj@#o-X zaLNEv5RIedLgQ7nWi8<4-#sVH10^zlicRW}zIc^A+8XV;9sjeEElDOzCYTL*J)fAu zYTz^*Y(^sS@w8WH4z10nuAWF%o-k8dh%6m(1@9tebuhZCV08Un(9q|Gh*?m9(F1hZO zzzpoc`2zslPl4BF4>$mk1x8TJxuE?PIBT(}l)>to#rXa+X>~%|Tn7~;;2`naEU88{ zT$AyBXm3M_fUu%%2pc@^U0@^+#rz;m`_$b1Wmb>D8;+k6pH-;c&JcjjRnmQ*s8wpmgT#zHl{5`tPU-EGI5Y{bdYqk zOLsbh=Y93|@8T;^2xyCNY6&EX1u>eHe&@GwSj3hL0wL(7vJI;gY;QT+V<$hfjkIh2 z=}}aY*|ui4_-T_{zt)=!)^k5?!~mS>w?zKDrXg>0JS1J+^Oq`3H3r$N#kO6!M}Zl_ ztQb_yp5p1C$}ibS=9Zxqv<3PEtOFwLf;r)0 z2Nf%*)CQclDYkrjyA$wM{!bryo+-I**#qXfYHLSHO6t}frPot?7uJ6Bs+BN%@aMS> zpa0dxyI3ng;WXxjd00H_)zlUKHlQ+F>s3XW_DgoDk?dp&N4d$StM%)dXCbkGzJS_3 zt}$Ot4A==l(1zw=a(DU;13`S0-A`~H0COCMbuR%WDj_j3g^MRF{nWP4LP7^?a*9;j z=`Z;ocu#LOrV~x#9ruuAO!%dMkY1{jNIqMnW~1$t^yj)Au!=<#N&Nu+&WB+?40Q7a zTm93ocJgf|cW?Hm@45W%97OgsHTfR`*ZQk;q-+=bDUlVE*O3N)&%_$Clbkr4R5wi3 z^oh_^-*^z{StBX`&=mb#tSGh#l%L$&G_6x1B`|7f{pHR`_jHfivE z$UxOV_=n*Bpr;#4t45l+H&R2PQlKG}9Pov<2i~qJM+hiL*!dh3?z}Wk1!wz`+abHzix2n}tTqvU zA}(azvC~YA1tF%6&Aer`I3Ccn)$uTjHf49`!k?E(40X&Gc}}90r|Osx5ormOjRM-9-XHOp9Wp#tesPj0*uT@I zqLf&5&%}h}jg9e;?si8@z=II1Eek{eKTTeBbQnfloOe964byx)8y%yEkPmp^hXvrH>M_Vz2I{m#A`hE6Mp)h(dzqAi{P= zt5TzQ6Ukz;d6IWBX0kB1SQMGvx!TUUwZ9FjGw_U7Nl}AvhHZPSJPIu>W32fZj`c~tv&GlU zIT55`)x~=wpE$mnhy2@%#*!*7Z2)3}pX1m-#{<1=9$T%hngrRp``j_S)v4tOu@Gq^ zlBS{b>aT~u#r20S2j)#A{Q@QYM&b;1bc2Z@dJ*O}IV4wW&q`<$%7(vquv%RqSI#G} z@+9B|X7qO+Y6R8AEYcVWMj5E!n5na7r<-WmNmvI0`r=Zp>bx^y?WvFFR zv%U4`Ri9g|0@gyZd{`@d-U~!?@=X4oFX}Z~uB#|!UOtblLzG6B7q4o>`vhz z5&6xz!i;oHQYJa~g1<|rY`NF5NmC6R=~%wi%@ys8X-vjU73ysW?BCz;uS9biA>tI4 z93j>2KL*kDnA}qRoNLibi{opM!Kk}$s$K1R$reCUX;rV`@O90#jGx@pRJsS-jNkCc z^*$hfgv!O@zQ@ej-+ohXyVx#!c(MK?8std>lUp|BxtC6C&BomREVb+;Tuajdz6eLA zgUBT}wn2_KiZNS|bVdbRz)!9XYr@jO(0QaO7Yh&CMeW>9X$smUjl#bdQ9ceEx3m-z zlc@y6YTDTdMWH)Hm&Im0v0NurvlMD*-`((Q%7L)XnoOSj}tD=!1wQ+@?OcK3*t{#f&5Jx%29?-})l>RUkv?}Nw~+(nTj%ne!|E-5xB@w=g~JqGe>$x`}X7$`7< z%j#Nd`-^`38@hbuX=;ah>KvKf^1A-K%I0UW8_N04ngz|uyb@!%myYK9ZMA*)>rbmO zNK?!E7TL5)8bzVqJr*ce?}i1eAj1LyZwu<>Zmzr(q{Ho(MzS*nA5UEDvP*gH$a66$ z)ga!RfCRH*)PR=BXKCox7+blEs9q)%`v=$ZwJ`r+wFy^EC0?$Ow<-tSm2@p@vr&=JC`~=r2>R{*8H09It=8sT zmvVDpBzum4rkla&{4C9o0GBfS8htAso}bycLM?`5Tsmh`ex$^N?>Ub-2BCV7JjO0omW{d$(AR5!SoO&cG?XklWVl?*(R}(YUE_>GyINNtC0*7SM?|F-!pwG zh+8Cr^;JJa98Ix*<;IJ7Ld8{CQ6md1H;Rjh?>uzfUI!KeIsK@#e~R8IH8yGGG!1Ob z%I8+PKYo%adZ?72=j&56h31is-&u7%NF;UskwI70x-=El`JMfHZ5~p6Rr?wTXY5s) zc-2zu$;DN?I-SC0>e!0@gStys=g`no2vh9HQJjB>E0(mU2D!WqQ@x5yPgiSh&Y5fF`SS2$mDTE)y_YlV# zm27g+T}--3iv~<{uWM`K;@eXWr6`oAHYhl zbC}WGP_$}LrQjZTD?zw4D}PwYsnR5ZC82Ly7dpzxe1jya3B^$AC($=qqfB7<`)mT( z%>M;#?W#Zn`Ph_{5|dOHQDBtGvsMfGasBqVT+9Ql!YqK-tt$|@uzp$V{?0|IkzV(> z+ID?cbx@#eVKzGZup3`%^~=Zr0ulRE6_{^Wq_dM|>(jb$-8%Q{lUbd~cZG#SV=*Bx z7d5aGiE?}YFqxSeq&NiX=ht@f?S6JJ3s(qwOZ}de?sH%AiAU_oB;Ls$wW9Ku8jO<5 zCl~iOk;|rD))}2^+RM6IHCAeRXEhEggWI0@rWwA4{2rjcIH)Q>bB1y;r*kjZRDcdQbWi_H zWl#V$-BJ$oPp8tV*4#{$9!)9b>IPw)0A+_MWs<_Ux3PysO4qHD8;sm|YFlBI7H796 z16WvOV1B6F8+|v2n(q#B5#b(2_w)zdaJUFKV3@ag-cRJolJWot+~~JyBYB{bG@O)A z2d2q-cWE_UnnEd)tY-7%TsT5qSvjY$@Nl`BBvK3*-Y5Ib5e=q6TOKOyr=Aup>pi|N zQ=N;aIzKqH*+qn`JlTiN=NP$d{cXr`%6CvJG}bzb?c9qp{sr$DT{o3C#Dz$4cc`0vX6bt8Lf8TitvyhK37Ld6e5mtVNjjK65Hy!PoZO(jlI@(KZwye zC^dtX<;}1{B#ZcVZ14ij2U-dlO5~;0OXkwjipN@T9;7zir@8h@E(%Pg3g}d%QciWY zWYjV%@16xv`1jv07I#Hi-9L)vh*8(R^yABinm(HVjrDqW&uQOe9Iz~aifs+>_RV-U zLEBLGZ@k6$4f-?4 z18{V$R7Bjf`=`7?X}3uJHi52c9qtzp8}^bM*c`@Yd$#TBn0Pp-hlkX~6q;6vvBtKx z+jg1c7uJgg%F+%L$*JoEoZu2aEspF9o9KdvkxY_8FSG|+zzJMl$sOx25t%VBGujT{%8XBPW^ zev}Q#jbi76>f*{-OIm8`{HkV9F%Eo%#b$TUNM8yR=7SBhZH(&idr0Wrz#hhxCQa8-pS4|nxj~wNU}8QNz2A_vqJ5CKh*Q27LoLV) z6m?+RxH3_pQvAR?B157gxYZCpWq`m6KP!F})NFz;=?c_0-Bi}?JHihUe|GOVwR$)g zWcZ#8XEFk%|3@KskHi>3uID>Bz^cIWcWHl6ixlgl|@<_ z<$UG5E_xQ|p80u1SdOz=D)jX>v1HMm*t2YOa@~yvMAaC`1>n9Z!2FaTU^WhOy*wxZ zZC}hmj~QAhbR4v6XOw6J6&SI}$;H5iT;fF5w;FUUX`gnx*pmm@8c+yCsIyIxAJzDCM|8l~Q#xDt#qIas!by zf}j{GX6s&#Q}fFtB$>SvOh#HUg~f#T4u1N0w2PV zcV_UPa@Q)1UyhDYvafBdvNh?A80O{Xe_7o=hwL$aGg!at`P=Hg-NK%On0C$hlG(Z5 zD^RCtaW4h}A&S@TA*=zfH=1l-DjEQ1icsv;;P;&Pqwe^y%YAL5$fxpFMkR4Ptuj#sK_)~P-Q&$V)SHFHUeuSa9m3_(N4iJW5`{oFM)y9E8Os0O!^oyob2Ml%mV2kx~CvSu_6m z(7_1AYH?Pa8d&O(IYdD_r&Czj448s(F$$-9G&@M(EuFAEi_` z|JFvowW(2!4JyQe?PqhgkB(NR(l|==t={Gq6iGw6&T;YAjD+i_5}NEcs1s8t(Mhs# zaF8LfkEYFJ#P5Doe2SJV3a$QNQ|emFshQzu{032m-OV(3tx*J8s%hWiz+2YlP@h{Z znsLnF(E35z=sK1bnlGpBnNt{2sJvhB+hRZ)HxY!rl;_(537nPIsdl7lI9W*9JDsE^U_u_k-rVd?foVW*) z`0!7+b$G~gOY>%BSCf53uB;)Z+2S|P(7(zV2y@RChfzT~hMCZmiHa3gMIW=Jv8)7f zQlHaG^lRGkOOa}lcRBs>u(RIIFICMOAkkOdPPHxZbQr*7NLpt!CC1|O;L?LlxZmDGL|R zoJQ?=ony|5=8hr7Lg=*?~QSxsL&Me}Pk0^>ay?@%dz~*eJ8{jpTOHUEf zclBVi(JwR^EpjqR)bM8Nh~UH(eW=YX$Kd@!$S#RTA*p0mdQTmk=`oK)0CLXkV=Qmt zHea4nG?7e!te2Pmk8#b)(=>VjlB<4IspHh-aH*x1)lGdUJ@&|h^5iDXRzMPp#}rEv zRox5Lta5yQkCRra<)|!Xo>zIL8Qs*xnH`IKriRA;)V{sH&Usfc=AH4twseN}SR)Mw zX@5u2#H=K*Sg5M9R2GgLzq{S@@@%Gol-cLSXlKI$MhYjV6zQYuD%Lb1Z^5*c_D4pU zNaVK3(fVc`vs0u3Mb*c1$1bVgx665ru?KnyT);yDrd;O3RmWeE$yTO-kQt`hlWnEEzLrmQ*|l<0d}9U!3Pw0ste| zG#XCrP2(q!bVSsO0BUkJu>c%ISHtr(R*UiFYQ5>lvoVnYqpG>V2xJJls82}Ne2dTx zpfi_<3T~PPx`i8a9)z;rkY|StM~6S2LBJY#mw`g?`+>G(@K&p9UN^%^WSO=ng+^7p ze)cycT>u0hZ`{c>3%s$y4KTqLa+VooC1a5=zavF{doiC7j|qX?WfR!cJcB;_Q*hzL zOI%3(Z5+37ue<7_3{rYdX3r}sZk0C4h)N-1QLde-E^Vxe#|4(_}85HH#tUKli zx=AV$R1g6{M24IV;DBTpGKffyBA_720JQ!o2TVtHaYz_v-F=?1`)4A}U3ycm7UE>$AA&`n-<|r2WvF zfjH|ELx#-yE1DRWWE!@PqCDHku^Nr$p#3QM>;4XV&;tx3IkBmY3B=t@+){r=&m;e7$U}iCq_Wb|5(AaN}~Nyl=yK zb&sSv)~Y&PTsO?j8}_taRZ9}OF;Jr5{RpeK+5F4*J5bq)bCCv!U8)gtT|r`Mg;`75 z4)sMdhlrQeukU8;g43*b~vGsb&0SANMnf#^IXH zT@RyBZF~E&h2TgtVGCboQCoJtr*FF0XYR^_;@vx$v>Sy=O89FgPyMC1MulXoS-wuu zx@xZaAhTKFm%AnH$@{)`-QG*&D$v_188E~ODqmDN%5^mgsJyJfceKQK&dQsuSrxBB$gpyvVVdak3$g4hEsrtU+YgxRLsf4 zn(#REOAsLYnWa*(Vp5u7xpG?%jDgiNw1q=cI#{?SB%|6o1~&ZovzOezre)SyFda>A z`NEEeq!)I0**kHg%&mZbXUD)NSvrF-y>za%yfJK0S+>ziSj67E;*9O*`y90Y%!_v9 zQ+zZ&m{X}KkM)W1nFhcngq;jYA4*UH{^WQq*i4k3$1d0*WiusT*GSt}?CVDps~UII zPdL9-0}TfoFT%{Ir@{XOS(`?S*)c6S+n~V~?1odrBX^hXJ>^^Dql+7F!B-u>&Z!EY z(iE);p?Is{wF9#tJMp~fh~^Y;IJ;I) z1Q(iJo%znAsJNr=@G|~<@Doq4QIhIhYNr(LSu{;Ak%0Rltp-1zUb5Q}0!u}!hDi21 zbnYw1G&wVFA+#EGtYS#ZNqQ_@6!Q@u%zv+o7XrbQhdI`sf{)FJQhBi9Tv@*S^hx-X zx)bmiB|l);D}LCMj)(GQ)ul@&@NNvnsm1)Bx3p`E9)3<1Ci@^k7@;z} zK=;~Rq7Jd4@CJHo7w@$feXwYh536`aO*aWHz^_KmMDX|()8(ogSQgw3d2N`}9CY9- zoylJE$8gof(G4#naD%cf2@tPa$a&&L^>@;Oa$4FFaLov?&w3-|8$5=MLhz1FO-ID^l)3|X(t*@Spxt4}X$6a8m7Fk-4z^1&W1DdzSbx_%~6an$cr zD7#lkJL{O`dFz;+WRafntcMEUrOkLqL-zmFL3!;iTtn=kF7VWh?W5fE+RUm(Q&`{r z8X|FCACOUG-5q{7a<<##vucj$zSEsH#9?ilc;P%oswPWo-_lC$2YoFAw|C#1QC+pC(>a7R{L_GVo0YmPJW)r6?NmCRp5usMg#WuZY z4grSC|CdK<219T!b7DYP@1&qOW7{27L>W=iuf|$5!OfVsmXy~e;sKpCO=k&;Gqjzf zKuq|VA_)lGHFb2)B#yGm5kJr-8w4(SDC-B%%~2J)SY|D2&zO-9Cvk@Wn+ z{nn$o#{eLq_31LVgxsrfoN3@V{ZQ zdK0))B^oyJn;s%D_3BrKwuB6vx`5f(BuJAYqPK|dBfa3GVmQdI;46FG^9)X|*H0sU zM&|$#x1#i3o3M(FVLoE%MA;KY*(f%3flE3`NOUlanY082DvQ7Ol1fSSMYp}HL=uJ~ zua@laaKmVqNPzkn9JSWZ?ls+~E5TaF@IBh5PGV=)$Tkxd_?ez2J>UydPG8B*3W?K# z_s12%#8|rWocTf7q_}g{KgDG2EwT};Go95Ai$nIS*;+uH@pu^77owDt?~DCTyfo{a zWy`SRmYL|_tymp<|M8;Y12EwSr6}jb^(TjSXw(X!A@mBplZ}iP9)W}DYxhYaD+el$ z1FZJeXm)RSsK|BcY3IUX2CtM3(j5>`*{77#2*eFBFE^OXaq$xT*}1BnW6gQibH2|# zZ2flEXPs<4P_);}#==;J4E2v_Pp35J{b=7OY(2Am1MJJKIv&K|_+V^%j>iwpUa{jd zNcqsTTh#W_3`{qCDcR?6*_4;P6JYS0_p*I3Brm*8VJ==>z+<6N(af=GYTwDcD#cEeCi=J})O?gnv<%;Iy z)Q_v+6bVJ;I<35w*Gjx43_h)TS-YaYhLJ5G>PZyBLz@B^}EjfnFSx!_7H%D%O9n@55L#Vm0P0c%h7oGs3h^>Tl@9-TRC4gqd`t+ zY3{fpI)}P2Isd{+Z9+<`D-55Vu0t=F_U9ZZ(k3HtoR%@~)TDRL`A1UNtJevuVYXPy zo6kNltC3k>mbNoRi1kM`KO6eq_OAE@h*K6jB>4&f;0i4N92?M@$w7-U&v#Nz%)A}~ zK8RWMk5p@!*+mO68RR~la6^(#G-L!LBj94z6HhumaLvd#2Q-CfE@ zT{Q=};c0CFD@rW*ZTtyNbgi^Whjg{uO1soYJ7rZ%%uPybZJga48mtk)L6akta$k7wS)EjE};j007Ncr)9`D_xeUx zcf9LL{Ntb_L38Byuwxk5J{ko=t)m9a(_a2r*s6f@kV=GBzJgxA9}Yn_cBQx)h81dI zvFXsjb$>*>+xO_E#>RH&ID4j1`iY*VW-2mZ``Hy3*b4o0@TH|X_9dIof{<124K1(^ zUQ{SSV4$zr11p^k`tqdlzyiG|_AuyD=9$$dpjTia%Rae|Tm&h^{T-PYYOIJV zw?M;OnwG){*}U-Z)7Bbxvg7@YooXL~Fzs{Da|X`L!(AE^FE8dE^oS1+Ph*jE&%6c{ z%a}hO+GB0reLy8aLN}B{>G0sMhY|`(N|L;~uwOo%jn?_34tv^(6*pqe5B>F{d0;HH zkGOg!<$ETmhFxqyvcOLWb;6e}DGS9a?c2A{B?4xqa`N*pyx4@BCM>9RLBf?2Bp+xn8%7=VI^{k%RWGJVlpfwUWe`s6l`f zVSX(Y&(gX_jQE3Gn6vI(>j{4vTRg(VKyj~HNo49!#e?au@1I&ji{J6R5CEcL{{Hgj z`q1!>s9F6gf+a1Nk`2J(Lj1^kU6no)M^2P4cPP5UJ%=LuA+aGCarwWJMuKjO-`=g3 z47tX_kk%ZyAYlM!)4TO+B+u+qgwhx!nd_URQ_hCqkoTu7XeU?;J1aL+1; z$*Re8FTBSS-3F}W$~U+B;f&pCxT1kVjJNTMd`?rMgVPoC16l1P7&d6%Kf*EFB^x_?1o;R^J7{sAwd{cCpUJO(y=#A7MY zYqc;DZ`u%44hq%{jlewDCnBB1;?pJMkWJ=#aYPZTr+H$AQ!k^W_g3$m^y!?y1KJST zH0!h(9uPcvj~R&~i|&FEba!oJ5AUX%+HoIbD=7>gtBJl&N7dUF^Kv(F7sWZ^v&*jo zSH+I$9#+U1D$zOdpz4NeY|Xd32VKE~J;^1QFDRIfP| znkJv3xD`hO;C)E(=&PfvoGXf=#^Ayz_%3D_nKebi=%gx8)z!#3Y)+mY?i*erQwS_O z$CV*?mJr4IillvDwg&`HsD0rK2RsGk^Jv!|8BdM*@V@r8>lBD0!u3}W=lN$P8sIG< z!vb)fJLl3BafX;P|2*ky1~{VP6S?6k+e>P83>5_HPlyWveQKP#%|Q-bP;pqSzt)Ut z#YL#5!YwPk_ZZ^0NKN+?l#{Bla1uiU?GCSuVhpDM_$C_#Fy0eye652mLi_UD5Hbu3 zZV;Do!F>EZ{o;l-KxuYNd+tNuJ~le@$vINQGqSftrB8n$9d&`GYHBSam<|p9`ss-1 zJw^6AG@+qqPySibgdV`Wdip#_vuo-^=e_N)qo6!l4hp73>G@$zFz%xt>SC(542glH z)cCsT3Djbt6#Y z4K*L==3sSs12Tx{-?fPCjUvTSYul&}v=`|9#H9-NN)SexMUD5Ri7P4lbq130na>n# zdWUH_Ud!@yGnCTxFzdWNCM3a^I0|@CnT-r`QL;!3sMTH9o(v#l}mnK zzGDm}dO&;`b-B&gPYMTBLdn=%+GAC*d1N7>vC)yhkD);pl|(o35}{{yjFz5ZzkBBj zZl2&~D}IhUCmzL2m2r@=@+7lDzaO|T&|B|KKJE+ z`k8^BBJkld{+a;4pqdMp>S0p#~)6#F6Mqe5}V+p)cqgL#0}5XRb0DlCi9AsnRY;6KcS&sWove&E*d zZ|m7G8^vEQuG|z+q;Me8J)pmTAu5hi!T~>_e)myYsQ|(_WS{Vlh-0l?<%Uft8dO&F$g zk&*`IyPs=1{dh(5q4V3}L!m?8(c(t_6r|_Fkn>^r^=R2kUDdA)SrK`MRHcyWXwzF zdd^yFVR56v2C@*Me#_YEJVAhi-MM~6oGU|KXWsUJ#?HVzjlfpI9m>NT_l{DRh}GVm zo;DP4N%F`W)|b8p(f8+|?raL~M#-Dx>p0(^lczfofpF%CSpx9@GM_~!xSp~o6w}i` zB*@MF^H9|_+C5;Cfz*{}l`i@;PQ{#{sJA65wi}5lZ;0tlZLJ6t-EFl6isxRTso=#w zFT+H0PTggvt)yGr>X~2a7C8VaDE|CYr+GJ7Yf(%YK{@WE?c^OSP+7QCC@@(0@x<6h zYuh67cBzrn~$Us}{Gnq8Xp)Qm!lRFU;9Q z54tIfQHQ$x#>N;Hf0L7beP^GI8Zx<$ddGz%C^n;5tWS6A0*(ZN z5}c*_Gq(Ppma@K(%S@v9chmV(QuJZ7nz~9M?2VUGUpIM@;+=!QbeD}PpQZTAGaq$$ zvBbY^GnRkwU^+7NjeGYj<+g?T*T=;1h)}HbJ1g_T{;3xyN=pHd8rgHJqFP-Xvmq?NJbjz`i z7L@^iASm8%B~K13QL;%uYe5!NOIJU=ss9SS_N+Fsq~oVf2K|3;VP_gp$YtwGP}P18 z1J&(!OT_4C86BJoXd&r}90Xbx_z!8h7){>pZ2RXbAc&M0=9=w>_xr z9^m`b7@7ZknIFPu!SbaX^9D<2ik|o+kttIM5D)){FSP9it^#%}xGZpp6gJRDLZ26N zJ8OCultTj7izj_yMkfzAw-UI<=^CN=x( z8X9^Bwx{!|d&0Gi@K7T+_2CF#7yLUH3EiPjBx$&^f_@k(r!kludUSsj7$ROM8A*8s&wAh26as zD>UB6-O};dqGj+X<>WvUuM|t;ad&a2c8n@O3KUiK1K5NLae^~Q#LkB zF5qOc?~xNM_Y&dHo<1WS#ATfz^^V>^!|8py{Q=k{HOOO3TTqAYCbz15-Xz zJb=FY@wnvn+ITtic3l1*>tGEdn>IcfZ=b^y=^lu zpZy#GuBf$;q>HM2)xVu)MyidWU2-B)T^|~n(pPA4fJ3yu?0!ae&)fm814mCL!J`df zOjq7)*(8gZxj6|!++zlNv~aWK)0e`-!>7_??bX%PLZCB1D*QHUuON~fgyOG=I*^{9 z$KSV%FK}{mD}XfI!jU(s0dl=ss_{<|Vi9FoMhRX~vJ_4pb)4@1l`nu>XrnvncNVkw zP=ezEvM8VQNk?9n(qb{j!(ID1xwt~u)6&yp;>fFt$;IJlfYM@isjOSW(=aTqd-PX4 z$b%-)WRgeYIiL}1YXTIyo(BnYWkOlfKtXIunj+B0doDB2?L+U)3r#<-<81`j4pLLE zV=$Nkyf(5Lo&)8KKy~k!YWXd`Tt`)tb*^F}h)=Ebb^Vm4a+8Adq%`y6C9F=Qb??`6wWitC)}3ggoF<}B76 zgv7w83%-X}(Gc-_+Br0a`t|3s|kGj?HXctwT&Ax`KkNX1_rs#aqt)U#B)R_?s zdq>a8nupjtxGWL4A^E*EG0*=}`AuYRba>o%wtfYd4*eUiYSqQ`E?)v#nUmU6o)6lW zz<)qXh84H{!M#&rSvV;+ zuxg1DCE)SxWs?b6Fn^8BzWVn2-Q8VXUHVn7GkRbPnC>MO6kIX0u&}8QI3?e_@Skbe z`~&-$GQz^>B!AD>AU6;qc=gjwYW${vmg%MOVD)fgV|Os>wzjsFF4!zBaE2XC;TK(i&1;%mvI3@*QOGt5 z;h^C<_4KnU3l|q+1fOv(w5aM@H)4|uX#3!MMCIpW)P?ucE2L)O5lvm)XoORAfE|K2 z#GWv4l#Ng94w=`Jy?lgU92H~>v-%hXt-I8Er59>xH=y}&4){qU+%kB~A2r9MyGFKG zg%M&p<01zt&Pgg!1={R%0lnJ|McQokpy&|^0eXFg-gT*c6Lkf`Hwe|w}cMunm}>GkydW44#@Mc_|UFE(|>~Z&Nd-C8^$d@ z8-6q==`z#5@?v1o$g*tMV@WATC;zHqq-uZ^<-!Ok4;$y z(xw>(;c=Zm?>j~>6DnXoDAF7!ssUZd%GA}>gUalnx4M1#6o;X6`wiecdtr%Q>LcQ0 zJ~?Oj?pdIe6>i;AuoYWYrl47qv1H+)0@OOGcJ%$O(f$P6Y_G zsNTH!;_B6_Xoq15$*twi!-o!q^iE5TdBK(hz?S4ge*(?TUvt`UC(3nhSZR8%4@b@A zqkt-uq5F3N(rW=2ch>ux001nZxjCsL&41YQmmzW^!l7~{VzzWVh!%#ch;#wh3SSg{ z^BKf$cChTXlrJ6<6$Anys5I!;)la~yJ9@(4N!UQDLF9r$R$i4JaJ+CKWMy@f_~iBt ze+SxH5a^hSeA5OJ+*#;7!0M6o@#9CC2R8wq0IHj|onBf;NdL67w5gnuVRcwqx$6u; z^!|6tFKmh@`+$-groSZ7T-tJ1`!a3ItKnn<`+8OEf zZ?q}U8fSQs{v!4yw6PT%lY%2(|Eszoir!<{&8o9TFWR_udCgK z7AlgUnPPBTY)_&p0(y}`Jj{^dt+aO#+GN zl)nHj4~vS*ggArQB^Cy(RvT4JFHd!L1FVM&W;1EWB$r>&(9qB^Gw0wnG6==R*ayRI z8Fx%g0hGMfhWgmy1@I|(@cADnobZo+&4L#-ieJgn&g;okOM%HH$$-%fVY;K3<5!v6 zTW!hL1i{iM#fhlF6)Z+kr*D6;K5w1u?80ln2cFC5#K*-kH77`lzZt%hZwbl17%>+D z5E!$tdu%L|@ehX8u-FLDKxpuAG4Le+RZtvUDgY@`-2E0c1A{n_Z3G#E!F}Db4T)>S zts-6&_6ZLbSg+JE8FVr``Py@C2?>Ke`;WH4rjfRef>7Q7K*!C)b1Tx&H5!Pc;HZW9 z@pvJ-7-)w?&&WssKUxV{*~csJQRN$?tnP9b8(%*^fY?hfq*)txmYAiz-nz~Xa{1TM zto5t0(Jhx@A6>uPH`A;rj7xr}RSYI5FM z>AiU6iu$Qjr#6111P5)b`N6p}i@W|<9dLlUCA2RwuoOj12eMWqFZlH*p?@wHQ! zj{B{W88H3?^2_Jh*?)kyKP1rt0ALEAk#LylKDc=KW)vzj7!k@3wnDKi?mx~-f++Wc zAH*;*v5kAhE^vhD{UAu9FrYeyJ(+8`C|SnHu8 zxe~?#ZMq~^znE@7=z@0oc5~~eg*0ReW7#ooZf>NWoLH~Tfe}O%9t_@-uQdHOF)`J2 zF|UhCcreLjx@XFtuc{5n!JYz$&dtTu4#sO4*%~lcO`kt^txqQA;cz&y2Dkb52M`3p zEi9}J$vd*2hqdU2UQp?Q7rlGZ55iV$i^S$w;pvf`?Gms_J65Yd`;c_GJs7N%Z3%d( z^y;0hId>S!P-NcBIOMfCvr)aXS^e$+3K=K__t*4bsExc{iG6&6_qH1ZJIpI(;s%40 z6BAZ2kVM{d7AEheEVW7-!(`odfDg+sX@~68kr1tCGa7!wsu6dd5#-0dY=XhieJYLd z@@*d^pAQGC-D_|^u<6sM;HW9!6|@u-UZyL@6W+d+n3$NrECw$pfI@Ce@Ok4Ms@CNY zM_2{I`EIGqw(p8k)MZ&f3f(Zd1v!#= z6PXP<0H)72egTiC;w240A+Oiwx||&2&gRI@?oaHeAZ&H`x($$$3R7>qv(fvmKzR6J z4a~lNys43XiyyQgAFS280tgL0zR}B(GcrmrIqBk^0Aa11j!x79;`STw!!j5VD+jFd zJrMR&5Dovcl{16n=>3FXZ z?==hd?u~%Mf{j3!4?zt*y_f}q`r(7Ag6EVZfm(nAR(VBJs6q+_uT z06BP?-vVMAKv`gxIuNJ`-G%Ti>lJ|d$T%B}4aB>RGp<=hMVjIdX0z|dLFK~UD&?Cu zU!{t*YQft;>V9J3;qFfel==4U+q*5eHu(t<8H95yPWHoZbzw`yCgbjtBp!Ifq3vlM zK&mx_M?5s(QYAD8t5}935MFazOJyQ3IQ!mj;c9h%MtRqE4v*_y9(y-)|9>2O+hFnJ~F!-x;^2jd#RIoV=*7Yu$;- z5Y&%5_vl(!eft;^BjHv6?z&uTIvZ<~IUT^?4}`b7km&Im=~RFi4dTOvJ4l@fusUK7=aT>y zbHU3uPB|mt!V1T+jnO5i(pTag1>_Tg7^Dy~G#=3EY( zz7853zU2J7J%}j0)*4*?9l1bYG^$Osc9Ed z7k;?du);MQ*a_fPrzIVvB{B-Y>LcKBd%e{gxlN2vT}~aM$5b|!YkEJybLmcn>L>vR60wR)L=)*|>qT@P((&Sk^*-Hk7I7c2p#ME$y`3Y1kR@+0ttez*T@+AY>f`>byE{Wb8}y zAr2uo(lDxY$3x#}2$DKJM+@u;9=|&XJ?~1v@)rRW zzBJj|ORsHk77z}wq+7EOsym}C67cZTQ`*%V;U8*hh~ONNI27XSZ1a{lJcJIU?7|lH zTekwBiQf6d))Sn|0|0aD{7={bOo54ns(_(WCinY%4;YC;`N#=?IJonM8mwC(V@FFakPu~oNIx6EnI}Zg8*|<}r=yfs=QA^Ur@ImM21@G?u-V?;-e8En z1=|9(R2>f9oB9A85l4^wMi$J}+s|4v<7%`0dtD63qwaiD`5};3_umT*z%OuOI>3Wy z(=#xTAdGDj>@`RMO@kVy23CI=Xw=DiDW7!q(Hx(-YZjvW+z8vfD! z#-yezP4NWMg2Wx%Syzs}Fs6g~!QfdiS>SjH@G&bbtou<+v2|+;f6GFFk8T;*ik0on zIbmxXL11%tQ&N@xBjZHL@IyA}-@fx7a#8=|cmM4tc8+2EV+Jv9%a#ZQiMgSCJ@@ME GC;tUCDHdD+ diff --git a/api/_images/tutorials_nihcxr_monitor_api_12_0.png b/api/_images/tutorials_nihcxr_monitor_api_12_0.png index 2e5ef707978165d92d4286085f3ba088e0edb664..14525b09589bce0beec4eb83fbe4e55b5f299b84 100644 GIT binary patch literal 41767 zcmbTe1z418*ET$&7$~q+Fc1N8lm?p)17Sp@yHrFBW%iMh2 z7dV*=tgX$h1bBE%c7B1|%u=7{YDP{nJmi46q#8Vo`T_Fqt_0C|Lli0|0CVfQqJ7wS zx1DqILVx89fuPKte`wDm3Nosnm&A{V?K(+8o6L9EmHUofmG1>BizpNEPWjYW^+XLh zW8>7EW2a&g_T$`Q_+$@@%jKed3%k}fHeT+HjS{OEt{7XkADm$&6r-n_*MAFgcIKMw zf?>cPv3Hhl8Hj&Hq0S%1Z2vg!Dl;4Lr*7G|(d5Lx`nJA|+y2!?IzJlXU&YkV;>n1A zl{7|{Z0nEV4?Rb*ORp;jR%UB>0{#8Z)@0tT-+ne8XVTeG?3AaTV|325tZO;!R-^h7 z{94Ng=~GRYiQjjNTU;KF9D8}z`@-V-tGFCrcm&3Abs{f$lXv?!c4s*eOl>AQTI@B> z;#q4LaeS+zCk%$4R+&t}rzz4c5tNp+o=hJ+`b$~8e;fgvG= zj#MT63ywp!g$wQak!*Bc)f2X%5qpU5FS9pS5Y8~s2-36o@Q`d}(dQuHC2>>SZtd*O zpa1vWLBILpzAyRX$Di|uh!2iC`R{#}-mBw$#<=Rp$ZMXvJlne^Pvw_=raf0t&O(;4 zRm-l*p;^u{!Z9gK;`F((v_h&CRzzPw3C zc7tB9)}s4A?3m$jy9nFyU(x5Jf)q=0t%mOjZ?4T1{Ec~?q?4SG@KZ@e>wTNHlXSi4 zW)VG=XPw|wkqh?6ZkxFuykmY63=QFSJ&9M1TMb5=6AQ*OYv#e68E4ywyC>#o5yIg1 zZEmsCtY*S?EHOSpzR-38jcL#L0Oq=BrQ!C#9@;S{%<5SS*Ib)fZwxm)z{ckmO|?2C(?@?)+0 z7F?(+-d#1eUToJ_*(Z;w{_!IaUA*-B^}9=YcNWI#MOIVpi7Y?zqPu!$pwg%9v|U&9 zn>UAq7k}v%^gTN`Xg)5iwjApt(zwv3lTOQ_Y_PgG(W38*-B=#>q``=8Ea{Sy?OIWv`FjDhud8eYXgB8~-|PCM zmU<=O;(|3TF{BH0Qm$W|H(Hlvic5pr}am)U_uG8w)d)jOnn@CS9NWq_!8#{QJwe zs=k+JAGKN0ueX9df{V>I@4pdlSiU$?nyL|hkf-Ql#YNAuXbDCa#ikF^3Sbj9 zVE&`68fGnhU)%|+3y> z$zuvnQOmlmRbYKlm}n*_gA2Fh6|+n<;Cbh^BO_C)xeWY_Q%cZo^2*Nd$%bJNqyc}J zQva90>l>9K9XjYZM5`8hEhGZp2odO8CTDvt7sL^nF9he+%JNLkCI#XX7Hj5y-ZW}X z4YibbBO5!}J>)QWxXEAsm|u1TU-&(Y{Dl)&iuUvpCK&zAHct>w9GcF!>HIRqK|L2M zvItrqmGyU*?~IYl&P_;MYCPL?0@+Y5sVv`Ke?68>e}3m2y`_mq^BQPFF}uN{bw zxe;R5HRB#^60eZ4I6-;nj?1k^$46>G5KrT}x-`olUYwLMdaI{qDG(lZow!Ix)LV1f zs+ULNajVXm&#tS@e0mbEKR)CJOm~aR9MfpHNQRP!{OA3 z=C_?x9RC|j`&L+E)=@hB&M6Yg`TX%s>6-ZDIjKkbk68N%HKuKK^KscXNCEkfWtvuU z$|+M{w9>t|QQuGMpU@7#l47(Q+m|S3-O6eTPuh_ti9rAJn0xUfN`{`2+a_@Wf7LEc zbF7uE=Tin*d3h$aU@bg*C)gh{-<)!t-B?J+$MvPC;TA@8?d4XONkELUwxd9)q{{ys zCfcfA>F@8?lstFLNTZH|XzuLKQj_6Q_;8|=gHPW(0KkXRe_$LX>p;3|p#IFmcGEm~ zHO}tueMk9@9h67;ZTZW->VioDjQr3i3tX7PhkkKi(zL|N5>f)Da2$_3Zr}!olPyOT zt46LAQ~YOS%wuh(L1V=P8nb4}FUjda-Jdc>FiU$$Xfi>6^0>AyVY2WX=1a(BTHz6N z+3RVoouM`LZ8sgDx)~#w3T8@eR;!7eV1S6~SM5828Vdz(;cm}`?PIi1|=H2wK zgnza{t(zl$rq6wrQytwoq1-o`Oe^~5M3etV>i;~QuQgSnwM9h=&+fXwAzmj?GtE3s zy)!i9Xy43AFMrxY?2TFR?CAw}Ec4;<*qz4<1o4|iXigQy+MA|5gDr!QE_^`r8EHqG z&$LPLumK8ysf{$zPW1LpGq2I?3|=B7TrkjOC=eg_bGo0xi-Aims9$M`ZD(-YzjB>D zJS?3T0w0=mu&QcuE<1lv=|}zN?R^gOat<5oX6@X;WZ2T*rv=|dJl`E~#cv+KiXs4x z!39SpS=lHE%WHpEBb{e4HlxiL?Q|9JT@6*Kq0T*WF-7n5}0&^G>Y5)5G?XhE{1!HMVqb@=UvjSA)4UK7eyJtbKdY5zx}rhu`*low#@dykjc19-^VmY!yqgLi|1T%txI+d-3A7CZ5Kp5=kPYBZSnf{?smiS(WgnPsHIUgpu%{zA)LX(OqcQ)@|3zg(;Z+dJw_d z(`D3*vuU%lmP12BhGj1(0r3bArf);^!NBFvUe>uF4VwC@h6txACF|+?P5$`XJ7M5b ztP59vJ(|+94DdqWi$f>n*WZ=(|MWd`GuwH2)&*NPJ5*y_q=SD!by|IW!(J$D6TpuE zz@@9!e`NtL-X$j|cU&2XceR#crICjSo}gaOugA2$7D1cpUJxz_q`#fpWnn! z`&k2`!j(TX>M3&YY76BxO9P-VHD`6rtY(->-J#{rmuAzPY)4kvLl48$vQd(Qo1-gC@*b{}MPhitC;a z;-~fTjzSCzc&C@4uLQe<^4OvGiS*}fDV7!aUX+B-0lppvewo@c7% zMR102FEIQ4?AQ_u@!4YR7EgXL^`@x7DI5ysaGuP6aXdQr$i`iH3_B-hGb9Tij>-th zEiW$@EVODU$;m}G#7aovxr^uJb4$ZAi$h^a)myi#8ap zqqrBzo!|XIB{~StjQ57GB6gqCrkxBspX@}KRL?e$TPO>;X4=K-sXK+qa9Le!`RZ}d zW}!u;W{NQOR@b|sNk%laE?iKhbQmyAE0}+(!`vUk>HxOUUm3BGM7jPQ^p`Q6j@-7r zsxwv_&iTq|0TXj<5Y>9>Cz$*+iN_7E1f~xlEc-#(-l0E#-bHL56vsiwb(^6uix(;O zny}$Y_d+Y0#*GsJbxm~Usi>)iG?WBQ6G(yaZdP^8&?!-EWudg`#Q3CH9LN4Rw&x^2 zx%M0o)nL~rxtSm?+UeEzVf0P@vYw;>^Vw&5ZGEcReiqYCr7laQ`x{;Pe((*|M8jc89W`Z1r551xNVLA%ZcVCtdhVsdIXI>H) zv{f{39xGt|p{*M>$9sD!@ z^K6zYBVhE=B$(t|!pf#nNo=gs)lcKsoj>Fe!5?>~p};}%Bs9FH72L&C)qsyZ&`dX-c#_^-z`qoxz& z9`F0Yy7OHrp|o+1^nih}bXvhbC&(Yy2Nh{ICEx#tG;70hCqlPn={$b?%^~tNY`X-5 zAv~M}RG3WodL1M}N;h)QiI!jYh`*rbE!zKzw4QGB|LkXV8dp{8|H$mJnq)cqXbY$u z*!eu$*QVRX61x=r+v^mEtR`on+}S37U#6W!bC?{C3?`JUqA_3EvuMYu*5MDow_u6%s`HNO*{4T%RCy*wDWBI+&Uo;&>>8#i%%Rob1=)@_v6mEgaZR- zwJbbRWF`HcktqQY!XN%Y<;?Y+?X=7^{d7Hz(5q4;cb5G1Ydv1mCyqys?3^FAaxHcC zDV+^w3`O0$_kS@gCt>6gq>)#D%ry%(YeZw@4ZiL7;4W^4N$=hnn7c_0uT2uYMjm@> zTKF?@arws|MwBGUNQWox`J2_LVEqPW1Xlt=kzh1&Jc8dt+D%M-hG{rrOn60ya#~!N zO;EqM@3=y*1GWOlG!^L`M+;2)6fa4XL6P$ z|Lb#+TrRNEstkuL1bqD^NU5p8q5|~UJ_Od67#wazY_3V<*1UJ?O}DS~{=jnP)y~I? z^o*`4oTWN=#buxmEbI7R96!^(^Qq9+2YNoIIXM22&6c26I(F<1cQ7oQ<<88#YD3L} zjDOITTUjD5$z`b@9!^dIe!euC=_Tw_ksD|X#j#`T0tUXYY_vOH7BX(*Uas&7*6XAI z>_Opm@~m3Wh??Z#onN@tsjU1UI!p(fs5;h4v9yk_*LS3q-%r|=13%`L2CA3ZN*@V^ zQ>?7x7+s4-Fp?K{zRp?sf^zmp1Q&)v%QoceaD=h_Vfn+PFTY|tBDeU-B9on+W}-t0 zQ17`sKmu_)rhG*H&)TwOs`|OkVTGs!N!!=QU}oYw3uCUCUVMIPZ5eW$Y(pH7jxaO5 zoj21Y7ipFt&USzz(lLoW{nHIdhqHXY?rbWn+GYLf<>g^q-jhVPULHOD(1_%0U5=_Ni7cYZF z`2tIj?0cT{?hAEJW2u&<8wKMjoa8v%qdX&UdyPAbdYix3{$@z&YB-=fJzUI9Pde@A z)+AGP<1e)1a9Xoh%Xs_MeQ%=WxN6n)%o}CD>-mULYB^K z2Mk}5!o*o22=;F(8TgA$E|U&0 zoigY7-fyog0|MDP68)cDek^(NB$&C^&bOnA@_M-m$?4ULj75-UsR^_+*5^s#;8?ee!@j3|jwl1!=j)D#fg>$5eP zmoL$M$`rIlm?uu!Uc|q*WW$W{Mim(A5)X#)Vnq zZ)|7spG8QkCOe#&R;*k{Evi_A@lUE5KXvtz@PS`EJ6{iQYG8Jl0_Q*zc2z3l8CltD zH^v<+4bRAZ;%8P(1N&7phaejGG?FC9h;_fL916XH@jfj`GxqcPQ+_LSdfPmEAIr|G zSuP#p^d0s%{>Vv4iEzfGw`U&R=e9F1<2pi*LhC{sO-_G-G;pJHV=qn(I&Qj@pSmhP{m%FiqwQN*w(F$e-shWt zoF|A70fg!owJe&6rpjsNzCO~>%q3GyItN3A)bKO{t51lbr0*wbXy((~seFMF@I$m= zmnEuefkxm%lLkkh{bqI2e|ULVudo}O7LL&+8{U0}WD$K)d?HI?YHivan53fL6ykM4 zP1DR#wxr|9XHHDzmDCa?)3uYr1eB0ep3KODWN*8JmOFc^b8J(8J2-&XBc}2RJDM2P zOAtx)dK}{6{OZ1lSzkG+y{8$dPogbj@i|uUnJo9fb<_zdMAz^HbJmQrMtPGaH$CuQ zJOwhj>Py8G371KeTT6K3$rv=8Km4dr6PcXdxPjvl*?7|EfALgGFtR0oQpGFsKYqik zA8BHLSeCH!X`Z<%5-2J5&`dPk3~c&XYhXzbD8{ z%?Ecz|9PRBW46Z@xIbiW@nH{b|B>|}Jw4&e%8Id`%v&Z%6-CyqJ#PC1an{UpM)i;; z_c7R{Mn#piQbmWYwIBz={NP-OHhD7#>G4Sp3{H0=^dtO0bAaRx+hy^AW!D0CBJ&6$ zq1aAzRE;epMMa5mD5oqn5JZ;;{XtUkFVapgupWsSj&Mq=n5p3@)eO>WSvqm;iK@%S zHdl9`W~Pc|_D9HB2t?R?Vj%i?0e>DZGV|>ylDpZoX~nlBt0V&}K__6HkZamqP*30i z5*vu)#1x0hR3QxC16 z`|fuZ$r|+|U2<1)dWxNp46a}m=q{yjOaX*y;r00@&uk=dBGT3FmR45OBgRC-LO-iL zWu^!rGczkIXSK(P_VlH1^XRyzz+U8-^=j+s>D^vcmk-0x0ljV1!cMtdrxONT?#&m6 z8i0o&Ec4d{^Q6yUF);tX)IFt-s*WHO#A!j>=H~~FX6sgZ7i<#o4C=^R<7G<+vwU%I zO4p@-v z#=#q5$`{7kkSugqbTdDQM~6GUY1uvfB!veJg-4RBmbSKbDC5DcxqaqKPPt2p=Cbl{crjwF(k|Hxd|4h|Pws5m<>o!2*p{H8 zmi4%5x%@aTXD90Kx$-IQQ&)*$(+A*_J2Lg8yxQ`fw8tFdQXikQg8bP+b}BfI>a;)t z{Km@CfDgf;C?P=-ma~NsM9Sss8))MCzbcy>^sio8?bQ>cN3f9H$V0~?_ixGHlJ}{M z1?4CyJ3D(N2lgDKj)jpX{m96sc$r8#csL%9UoX+Ymn{80IPojvCTJ&J!!sc0Kn~ry zM0~j9ZSQ&!h1S{-NbueVvpe@Vyg0t=4_X`@829z-4KCG>V$>o_Q9Z7kF4Au=T&Ja_ zr4x3{Mvnlk0|q6xuo{0aJW2fZF~g0u<&{2nYLH1Z5slOTyfhv?(Viu7S--B?IKB7- zBBcODf~Y~(Aha6){TY25dwXjPZhH@VRr6wt=mCIq8ZsX@Dfz!M4^sHBd+`XlC%n|>-jQP*3~br^ zrh9_YrNCeZ`uRN=)FXOHYhGxA^ zv2Ywyu%EuKd!Y~|;dp1kcB z7kfye)Z=1=odSfhMUbEO@7hiC?!t9T-)C+v{ps6m98G|dCg;31Ow@W|3zf zBR#wPQ>4S~9tj3N6E%w3kXY6F2=K=TytV_O?+rwQ3cV%`Y|8Wv4+*bJMf)Y4NyAn= z?8C8I%`x;VN2)>BM~TEcF!hsyy!>-Qy=%~FpvohsVkC@q<^m%wNkRHPO`r3siQdK^ zUI6&tUf~Wgn%W=s6(WV2D(-(|7Xg1T9~QqSq81HA0R1DzKCu}UqQ?-!*A)Dr;}>0# zoH;MOh1wGQMlfRXB=~{8NO0ZcnA%M(i6_g_=Lm{4v;D{SIqBh;>W(5c5DP#dnX6Y> z+T5t0W@h3ijT_6 zNLI7(WgiXz)iV_xuGNoauw{4#(w1R9N!=OL`Y5&q7#l=f4)Ku5?_|dw@7nD&yI!S#QxCqN5E4D$f$s~yUsrGM87zy)=&q~#az|g2_m{7A^#ey){5U7TR zAPw(hB2C=r%X;nQYWsOP64^Tre5{*0X-D~PwSJJEl@2`*5Zyld>v3%Z`@?QGNxp}V zX66%;H0ic+|C_`{d6Fmu^ZiA3J#2)=_nF1o$iz%KkuCd&G;}Jw)ekzojm10&CV?vK zTP*gj1X5D=`Ab3qDVnS-C>Z>{RdxO0F8oPXaw4jyf1YBT9ymAPLu=M}3!$;S=wND5 zL8MjP_kF#~YF1?04b65z-y7i{PVb4jN18a5TaH84Rwcm=gvJ&>4vQLIjbO1cduV15;J#;?(4iYCf~=d_Mb_|Bpffcsyz1i!3Js z%(jW_l?2O1^cImVcADha#wA+2@-3m(X6b<^8xYyVa3V`hn%Zg~H=7>;6o2qd^~xzS zjAgG;&BsaaCa7xURTJaMWIlzKa|Rr<(WBcwx33U96Pv=|uUzSWr|DwCq)6y2QK7TR zE`xdXBu@iYwOr5|Gz~Ff($JjC{%0uxijIW2#PIAKL#G6lm09CRS-OC9I@wPYY2^4! z?A)pR9v79F+g>z9f9Tr1PJyjQJ>6b-u@0-^rI;eS?sLFphb0>HmH;R-*edIVfaBYm zGSRs$xU1>2S&zKO>z&jlk2V-$J{rFo)Mdn0u>HuCGV55-(MaEPU-@Q;%}7UOF`H$a(CSPcw%*O z8Xgg~Q71?q#*k&M;?$7is!6$(6)h)s&=%*r>jH`8Ys8Jc4-Rlxod8>(AHgk7nStMJ z+FlkW6IDSwcEDwTZTia~P1qu{QEy4C(a4wFAr8)ff#h@=!QcBq0yr00KhKWZQ9c@< z>G$6t6%ruj9|-&4wuf|1+3GW}#m-iLB=PJLKFWjRS&$m~N|N54BmVyo>yhLbg(fLc zl7=C?y_{{KX6zCEv52LsT?R`>pV+oGNwqY+n!(})WpKM4SH$;GUJ~3dc4OO^+yWj! zIUA%WoSn+{zb<%GyzxV*2h;)5s>u78Abyjd*F-)=i37a)mhOx?fZGlV^4`N{t_l^R zn{1u^vL9i`BG+pnq#Srd`W!dVBr_CxRSLlFnx#j*a2q)NSO4Fs3DeT4)1olEn#R=L zuG*7ZpavanpoqlRjx33Wx^UVs5iQF?uwmc6|NqRysykt0E^>1#nNv)ee^|0WLj=Bfl2Y=ON8f!%+n`VuN+M#0YJ#Ce0n&f%fpz>9>%TwgrhK4Eau6?d z1=R5Mag=EvJ%xuNumJ-^XN-26wOp=%N*f;z=g~xjzymG-77YywxM^>RR)*?bU>=}` z6!dn;MgKsZ1=JtA&aNXB!kXN{AMS=&iV4Dx;){xkMty*Rp&yhXR)LSYn=L-!=QUL< z(vw0ggryQJ0E32syQo41$HsiTC{iNqYvWd$rKqR~g^rn{K1k7Tgv!*fi1{#HC?WRH9dNEaz7}mxz zNsi9gH)rX~KxKn+=`o*5C3W>AsBHieV`Y9s0Tx$LUS58ELka{7v(ok49>=lNQ6Df7 zWM>_r26t@AlV~b7XOH=teci)vJEgn@A}-$C0ujE?H9zd5PXM|>%eGxl0En}|$jEdJ zvtp(Hq8r9qQ-S^w!ZbD~DqOw)8TBJlRHw|7x^2KmG%b)rWi-NR(hq&ru<@4kyDNz^ z!d<3$z_COFNqudcnm9qKcZ61rA?(D}b~QBsewiA1*B~t5@4S-~upE>`3gw}|Hx-In zQYO0#jT>UbTd4IrK3T-ldl$1*EKYQ)96Zk5+ybdlX>Yo&H~($mG_s)-`pKxo*7~7r zzU3PQUNS2Iayjghc*BD-NRfPN|7Quqq|6pEAa=98Si@oWzUur3?q7HBGpa8p+yNO| zWf$L`f71v#ai3U-6z}IeXKX1_QP`6b0y*^_c~lO`yJE`L(_Ptg`)>dS5|i_LDD3z) zVhTR_l(<5a*y^sf>QxbBl7Lq z>CdpGj&qxnHlfOB~=)mYKizqNe1O)RU zX?0>>GfGzOlt3Iqd+>Y`>z9kIr6Ti%l2zifGrkQ}M}STdF8FUD9~DQ^5+qrB3a5gc zs*bduJc-zYk5D5VOE&Lq$9&|)T)17p@|X??6)bmUA1#>!M2REm&XR|ox@A^+2hvh; zH0GtVv&aO6-9uJw7irb@t62?KFZX-mcuh5JLR?~R1H&PCbURMp4_jRx9x5hiL&#Zt zQob^Ov1q@T0127Jrle{Ngo%};aa~- zml5ConDqJEH{=Hg)rwSeD`UkhGJc;HKum#h8(+8`t^*Mspcy`{+G2oaxts@CvfSik@5F1 zb(5ftd&Yms`1#);&~4`*ZZ95o&Ps=~SGK0&PCLXQD!y_Mq-A2;X*lKCfv5Wh)v_gX zJ5!NKZHf3ONm7j7+ozg$PpwV!?6&TLlu)96k5K)m!>fvxALsWt zO3j4PBa$$$@ngp$s5La{`$yAMbOH%7u6Q*0!GpA?uY8Av;E1SXRH>+IRMQuan&u6TV zy0`ImAPMw>*|zH5c76Urg1R@4zG8Li;!~rg#o3O;0OZ7XnmE#;=td+T(d{Nl1kMmjYyKUPqguC5 zQlA^&HB&_*uMRyK&Kt{+1&DQ%%sukh4&}X)6^Te*gEMcn$x${WtsjfuidE}2NUWlv ztuk$?2H&(J)=kI$cSYD=S@2C!rlg^7AQfQ%^pT1%y11>1F#cU)M*UMpTibHK)LC5I z61$T4`^P&rC@VpVr*`dVb#5-RLhIR=KrqWKi{1$)sD+)Oea3%&N7;uMMimWSQI&_qdKX~BfXm&cBwk0P+Po^gf$te4lJ0f6C7G_ zMB2X+p%;doi>n2Ig!Wj*){~+bloYp2uOR^nB{{ATu>Du8K@bdI^3iDH)B4_B%^k z@|QWw9ToMog&m)3)N*I4WYu&bUB_|coH+C01t^=WScN8vz)H52tuLb^>^0kuvQ*D3 zwBb%$y?K`P7}J}d%7BVu6by}wY1?XRas2l}WNAyunzabNHd z5n0b6*)XAor>5?^ETaATNdSj}qJ#-FPZ2l-1vSdc%LV$MADv$rOE>=RduFsfOMk&h zWNrGU$*+&si=7B*3#!Dq*!?dx5vW@8mOuVJA}a<+bI{yyeH*m+AP_R-vVN<*jGuOLopmJHw)w|xh78Ex9O3$TXlRqMNFU) zz-rsBE+VJ<248|Clzd0FHW3vX*~qY|;`o%Y^k85LPQ`!c!9IY%f~I2V+S0_tl9E%l z_?>89W^(c*z_XSJ3*z>C8#OYO>vfyEYfhD>+sEFf(00igukb?R*7I#HfypCZN@@t& z*0#$qI+3haQfQxzOym0UXma{|y6d_W7>@!}_CD#{_~HclYcZim<9II>3f259$Iw44 z(m4j^xrNeU!J5w+cV1gYWJQlU5shdmo~v-Sk0_*`9hu1MO@pmwKk`bkbkPKz!AjJUZ zfYh9Wpeli%4~B*t5LH#S8Yoq?YyzQmu0-7jdSN{)I`S1xx~?Z9A^@&3S^ITm^0Sc- z(l6R}q1;w{EjHI@g*JR7P*=Q&Xzdk?UIGPxr?YLkBt(DPrFIb-aSHr+n;e9B#;@=khP;WYkKZ2~c zdVZ#WH&zEJ+W9nczTNY5>*uq(P+~3?DH`!b*WDi}DYNrg#5@BjC4Y3#+X*Eb4~M;_ z#Kj5n@{<$BIRgIHxGQTIntyCh&v_y z*WB8iZDZ**xZ4B5Uha?HC(eB zLp(|Jy!QgZp_z95>O;~(Dy2VWt{iQGQ>+oe@xUz?8Y+N;X6gs`2(|61kb$<8ij0TW z%)|dnfMim+l;L$bQnaw;UYRgXi{IC)IV^d!Iqfj7!g>oM4N^=r#OLN{*;r*CP2X=f z>5%j;KJNXTr$p87>F%MfkJo{+OpY)$>zqXj0f*~Zg2+(5gPKx7tPqii64XQ+$bu+I zsvKM#B&99G;7-=Zppw2O*JP`u#Lv1uLf8>j$}*syo{Lo$M$mue=A%4g7XI*@&600$K=Dwt zW7nc&2}KbgA5t8n#US;qyTlq3TAC($?FT5A*Rem|Uc7nJlPVC6lp;X$Z#ve;q!aq# z!(8Bnq+^pRL~n*-~=%PmW1aVgc+qq>kO7__A+J(wT#r=955u+`RH z_gU%DTf#rm*F(x1m9!nsWzeA9_TXox%VyzB1O9e`b{;<{x`b0oB^e{sU83w~?W&xv zoyrpFEDv3j%}`zw54{&0>1Q@{)1D%5%afA^k5sLc9Eh#+5lOP(gXElfc^QYbGHY0p zlL&EQ=R)4{{Lj+gvqO}0XsEX}@8Tmj`}8!veYYeX+i6S_IXG_f3-r*CE^1!2-YAtx z_7sL+7Ofi04a1M~M>NUyUZH<3KKMs!7dX-WkCvX4{!p4L?lk{%5{fPno>pbo=Uq~- zBv+J z6?6qn1KM?)%7S9S!tCtPHw~aA#1<8;yoD-I+b#>G;GfWE{?~06QpolxH|XVi6zar~ zdVwPU+1uYUO_XZGlYhoxgnlrHHDX>#I{tpeVze;YqNMXZ6TD9pEVD86@fsecdqu5nI&qp$He!YE(Mv1P5ve=YN>`~Xaaw5sy<%2>%%p`~ zxbB$n31p>5!v_3i0_>{Upv)R62qXgr2-MC9aySw1&yM6h`x3Q=Ek&5ks!Y!EhZ!p? z%C{lyWAgZw3&10f&=bR<{C%ZPG!Fzrai_%;$0O@(@vN=If`oMe*{v7cM#psZmkp`s z+-XSD%2~~*e3WPK0P?@)J9i`+fvJ-w^tzUU@>Yt}t>u~|WBkt}@QO5(LEEXI)uCX- z4>>O=fggg^EqGoMCFb|VU60Y?`Jnj;x==F2CY$g4DRQV@D`R}5uWwAy*-ZMI7>@wd zoFGfT`Q-GHMx;A^AA`LZBlKlF=?sEaJ3#wMh=BrRpS2gVnMpl@^pfJ=nAFTPNX&9> zMFY*6;F^`X)cepT0tYn#-mN1l?zDi<%%Y^aCx=Xt>fKmQTfp3Fo$t6x+E0JzlSnCZ9JNS-U^mew2Ke5|dFj~+_S z{hmEbT76A*GREGM3W^{MI2Vm|GOk?CVh_6a?iM(&xO4UXGVD;l4t4eHro~GAo2#No zrgiWAEwomiX*k>rpc?FiM`}uHEu3e{d$PoJuxiRovM#kiO^h|ZXMYo6jgMgoM?=Sr zm9B+3Vi=Nm`bd`#UAuM<{wmf8gf6_#Pz}Ylm_m(`43Jb$mYBb0%~T9wyCqFa(4knH zmWIXv;FIXe1`;m91#G~#CClvpf?2 zIou!-=(0RyWL_`kl32Etz7p73NAdlq)o`etprs|c${(SMpeRI` zF-K30BGQQ)VyJIWQC<%_0f67)@>Y{vQXtTDzKuqZU6s7q0ne&hST)!Qq}{S$z*`WF zfjeA~D^~`q`~lF1F&4Q(R7rx%RkG?uG}hIpdWu_$o$Qb+I#$;hdbLGL?PnfRG6*fP z@LJ>xqna}e6w{QFlenXGid54e(|`b<;1^Tuh@7zRQP*)cqiDTHC+J@9)dxhk5P(!~ zaF^{v#a(GTWyY$%WDfllP*R9A5YyXWy^o^M&u`^-iLgbeA10Q|0>V@({bSAt+SNZ? zIwj7Lky*~mmeAMSYHtFlA8FGitO`RLCj*EAiBLwo>MR3IyMF~`B)NHbM88MwK~1}~ zE>2hm2Pu0rAU?Y-4bX!gTPs8>a&n~y5GtT9h+8cv|I3Bp(92R~!(j?%gC0Yvbmwy+(pwj;DQz8a+q`H z&cW>%BO;~XQ0J`I7uwo>v+P2#G6c`1<_&5WsYc+B@b@|^wAyhSy&N87g^=GOccnEy zYjA;%{>}5bZq=1~*Xq^P-kODePjHZ8ccy7+tCrjKanN!M;M}5x8Fl3)XkH73aG3|_ zOnKQ*7mOgo5Ur@7GE)u{>OX zx~q#wSYu3;#9|lp=51?&!nkmekHOHayua#47Eh_JBoau<9&w z+GV~$06<4ep`F=jtJ;eNgdQhj&5q4fD96<^pAtkZ8Rl{gcjP!taTPrDNU?XG>W3S1 zoE8=1AYkp>5+Fo0~QzOF9BpaO&l2zOca^&^nddJ&}LF_D20=FiuJqwV2b=X5@{Y@{CAP&YNw%U30qn1F zG-I8?Vz`1CX-+Pk+`CS2^AaFSJ#zQzqIKJ=qdi*S*s520)M`;+{!mEt>gW(Fhr+)# zK(}mpeSN&LvT{;P%nj+$kqsRW4-e!@BWpl~?4qJNdC-*3&d!c#$(Y9X!P-f{@fbrp zIzBE@A>Qb-+pc$_t|c$18Ph5mT{SsW(wc<{U7!ZQF*kEv)d+X^6M|g8lWW$S26xsd zgkCdggp0m(ctm%j;%GX9bh`x{j`0K)Lhc0VBCXe?@c05d5bAJ%CZ@V z@2rXWV>T31mAzS^G(uJq>t;hc3wDXQC)=Q1AfZPJpo`ZRJ2Oo*?!_x;7238Sfs_OE z0e*gdn+%1s65h?ZCY{z3Ic-LuBaikJ7Xss_xNiQz>lAPGOgPI1kZ}JOp^*~#3A<(8q};~PUi)}|u*swd}3NXk?f{+lfXot|R$ zH;ZHOl2{R$`{KVdC+IR1@c{fDvY|eQK_M}(fiI!~3f*^Op9CUbI|8JipHctKP2l2y zyln)P-@3xngA4*@{^kqTp0x16q`6@f*@7p46v=138cjH4bur67zv8u%fZa&!N=KH~Z^@ zd{FPvr{A%}v#2h>@>ff4q!d^J1LJ7k9i)z_>KlCBq2yHz zatDo)q9S9~X{vJUVph_Hj=XeeOR7T174^?w8(h%2E!p4{lVLt@*|H7MGsZxpz$Y9 zagC}M=0XM=dmD#!GHbZ*PBYewnYBOUMSjFhkIizi9rxyh91`5Hh1HD1YOIL00@!bdBT!w|Usa;;|tQMZQqUQG! zN>h{IG8lR)5S2bB1n~JItWkAcT`Lq9w7i!(E*&YNbsRD+=vU#v;BGO$6SPYM%Rb$W zU7fJGbOJSfI^!+q8Eo~x%asVnT*gxAJO}vsf&Kb3%yG#)>Y?ar$l$`eb_(>VI%Iv{ zi-~RN?6+w6mmhhg72(AIN5?7aBP@SXh0E5O$_KsphYa{dM5FjOcxU^9TADKm<@(KSHf?S!Iv&WznEy52{^$ z{M~7D9mi`J)9oV^qlzs-V&XqXhVC}1i_2q>`xkR8hpOoqJE0wCS(;PoH1wROYZoVp zB4Q5Gl`9;j?lv$^0h;Khp&reH~2-z#WXfR?_AMHFq{3;5#&&R|aui^{xb?1tuiale;}t-6H?k&!3COrCb-1 zlT_haE+nBo@)XJ}XIBWpaCetSov03NUQhLe52{a4UI0H?gT$ND(g<5s40m&YJ(;~U z(=tQe1<4@Ll}`1?T-I&W8vgc_X{X1qgvr|E0waP8H-9!bcar{46dfSjkD@c5Ea5y) z9@kMEPl#3A_;xh2)ZxWGRMedgNZPYZ3RhAZA3;gFEC-QqM63^3fu;|T?7?+(-749D z5)gLHu&g~sj2Ut5B`gCxu734X!4oqE^;&jpmmWSxcF4R@1pk4Ina#}|oKT7m58-z? zvKT~PZToG}9@_U}w|un$wj{t`*ZhLpP58~tF`eqQ?kPx$d@I7HN|L+aWgcY|(EI~8 zNbicDQ!pDpe))9j&5Q&fKIiYx8z>*eg#Cb8b|* zkkF+d6F9a`pdIPfKw$sk15YTOM;&-Ye9&U~OuK#y;h4=1qgV4D7(LuE8rF{V$e3cM zn!1|HpN@$Ycj|DSzI;2-pXI33E+%q4=*F9RMvk;GEDEiCjB#0k`Ulj3*Tjc{2<8j@ z-O7+F&&B#cM1cMjpzB~k886+Mp*oF5ydb^uqIVG?>nKQa{um=4M~>Onxcjh2RLPA0Eg%$CJ7w*j7}5qgp>_^`ho zDCy(i>p`n(_CpGfpp9Ye?8cg-zA}n#^AEYVMAc!CveB{z(u}X7W@E@Sc-uL0di}}jwX}Fkk=PXmz6b8(NcvTwK){=wBr-C7WMt~z)FQGyeP1%!IcSS!?~ud7L(417GER&*%Vo$=zpsBi2t239@xfpD zSrsz|mEKAZ5PN>QTaVWa@|NfvR3jN!3|@*guB+*uzwv}Rbb2&KcpTiiMS>QErerpx z0A(G6BpMTW1d&(RExxQX3a*lAOjc=WkJ-JCz4iS;-p+mZD@q<3-hRPe`Q}Uz88l}= z{jT1|ay@Q%$gtj>njH)aIVFlO_v*(Z@6?*3B(Gby$H7=_Hu`4FNZQs_(fJEBg`Uil{)9ANIshC z2M(*yE}bHFeTD5^BwT86ivAGF<_%bK#Ur74UqofI&CedL6Qo`KgLgt9H5`bs{QOL| zD__SYXXTRPFi@X-^u{fB8q6lS=onz}3T^RChL1T=S7_jXU13GKi$O~Q#^c#Q1)F^t zCDQA1429+*Ztg;T#)F$SG&ZFxNjvmDgljku+s@!mx;SbC2P0bGp;w;#_yCME_U{1} z1HxAiAu(!{5z(uN3Geq9RL@O8Mzpd3zA5x-C($=e{e0S+zt3%o8SJ9C3dj>ZNRfZ@ z^LJQ5n4_YHYGf2zm^c=jvYGPZa2kUGz9YzDi>_}VDruzT1 z_nl!;W!tu8+iJJ*s2B)>p$sHZM1qoR1uYR#l$-=C$w8DT!ERe^K@f{183QOe3X)X> zB)8-wC{Z$k)KYOHHt zyvi5UNRv(*3VN%UZ|*qDz4v3&eekkh+jDS8$lFCId5>91wqfWNT;l@Gm9wL_!LV2SkU#RF^kDF!OJ`}uuH zW(a$^K09-fpr8Fp2>PCX^TvxMQ9HX8aZ2ysR1!wHj zUNOn36ZT7&zhC*|#i?i=?%}{zOZI(~7y8U?E7Ry!*y-5E|2+#gV-!5Qj)$?5FBTnD@y1RMIHHsvr@rTH?!0c%T{<3_ZHv zh(X>NsdVvu_H`rpu<{D2_^YC|8P;Q7U-JGHg)XCPJ;}GsbGf+7OkmR9GoAyMFWOR@ zSU3-pVy9E~i?225Dp3twJo)EdVDH-SHfCo&!G0qV<*{Gih1MYn1`T%z?G$ed!b>5qkwihVvaUwGowKz1gGiFPVRZ6=N5U|Z-F=53XWd))ZBj@>VLG( zCRIoVTA?_zMh;I|#KWdkF5tWa32s-L!I+OI`N^cqq11Cb|38>-_}=@(tNJzmPu#YY zAQk+VH2_lS=;r-<;J1WQ^gwmx_GNYm{OBLAd!cMCb13~J3WW(Fo^p)oDyY9(s>VUb zc+tOVsI*%W{f@mKwy^9IH1upMFqNm~eQA7+)NF9d1#+*&Pfh6O2&8qEx4wuPLpwn|9_47L-9f9t_k? zA`!+4={!5P%{)4<&V4oi$b8!4%%`p1i>i+FT!iOv|ND5Ondcu$cDFyYWN%^>J!exD zf&LiH)fDu($t|JotGJ-RJp-N3ztwYKqsT4ZVz6s|hvR4&&IdYG@d}v%lk0dd$zCB; z1VMts4|GRayCIQ9`Uj)|Zj)3Y`lEgPG@ra4axU~yrCj=ndDzZt)Yj>g5M<)_A$RyU z4yYA~avq&FgeXbW{-<2xuX-iT;rl74u3(Eq3;*1HCjAl zqK4r1jt=!_r+q2*NoxC=eb-6yZ#l2nKuDol9-vUhI=*kc8FS{=Tk{(2f;@d`xrAxL z$$k31=Q&!9C`OCGQ}iE5=Ad%meX?C*Gj?AhBnH|^dBOh23*)9Alw+xP^ZryvQgkaG zcd1pJdU$h{g5M^0o&zSnJOWw**uDP;sfjrI94>-FJpfacyAYdU&||CL1LZ?eYo0`w*E>oAjwqoy{Ct+$ zp#kTPhf!XeD3k)GITdnmNCmxAl5LkL4*ZEWP+pFf8};qyQ*KN|t=J#zm;|?>c-G_1 z8(f`LkNf744(Be`&ikDFpj8gKcBw1z&!ubw1qrU;W_)!!IijB>|ED5Q9Q0M2`O5p+gK78-;qojgw(1b=%2 z;LnUvuxUbZD^4@TT_F%Ts9uLF9Y@xYIIm`!gN<&e@@^K$ zI%mx~w@ToB;xz;Jc8CweB5N(8TW#K=nZ$S81eI3VK#xX6X!2*qcGsSh#!OdeOF%&| znL>doFA0(FU_e05+<4305Ao`|`;NLCX_5@xxi>@=*M9x0tMvd6lk&j1<-l!m{f!#< z@>B`3o=Ht?*<7@F^|0}Ui|OV&qKQb4 z+jF_#V2(ykn;zO78n4x95v@A}J2#gy@lNIPOHEce3-h=u2#Cd~nhxp4t9%HNU=}jH zra%|c(^2x)Ej;5daJAe;Q-hhs+XPQ2i^hCXQXxge=(<tYVygArI>P-jS46QZI? zIhdI>Lp<1&^4at}g<^>`t90*A%YBYs{sZa2uv4LujibYPOxbB3%IhUNiQ6{XmPo=8 z!y&IPegb}*?)6IqJ$wvNUPOsVsE>|9s*`zN#q~OT*&Q2}#b-qI)=E&I+}+nb6re%zgts-*Q$rt`ZG7t z;6|?+v=Yagt^J6~6ET-)cZLbLs7T#e=emhdGT95xfKLVPCgS%bo%<6}m~V)>%GW!H zeY)-iHR=mvuqg-Ll15tu%F6U`qVZ`r@KQV%bzfU?rk*)aUkaNsM!gh>h?q@Z?G2sQ zEH&(4l8EVpRro7TSu7;#d1?q?heD!*Tog*!AfRnB53kRSMkA~2nK)4FMo=S20-(Xk zIJXL~#IyKe_2~Our16`V(+|MXs+gtdGs=0s4WyZ5iJ;n#*aMOs&G(SfhD}f5z;%}Z zW$a3d%TaI198`o}#DM+qF&PC(q5&Yyk42D-jMKC_wX$`F^~~_rx>>O-w^~0%a`0_@!a>&`{cd$6)1O2s*q;u zsg-}Io5v#7$&#O8Yg}m5~3Bx z*fJ552MbC6!HZq@toB6a)!WLxMd7V-K2&MvyMBI{TBSB-f-9q#Y-YT)5;W!1+uLZ$ z*vY%$A;d_lF&M@B@U@5-fn1^N4X1cm*GcZHfD8%>M8aM@0ulXUOAt+cRiwk7o;0HD zvRDO)G&AaF+nNr^S!6^`fA$MfTgf3x)G!DO@FwiH_Cj8}xiN-YX2B9^p3i3#sp6T| zCU_bCxFE&yMUF%=Kx0%n-$0|!A-P|dq7jQUi@XWj2}z`psOXX`$D-IDo53va$$5+2Vl$nT4P`2kUHe%d*@;q3UZ&?l)F1jfBC}_a5gHP|LmLD?*9GvWcg%{ zya$^Lj4V&oJ%?xLi)}&M%N9RD9e$d4yCoBwK!M%A^a2WVb`8X64v zUtyKK&Ego~%$)Y**sDl4XmW z7~xnc=N1)^p6$@%W@B`7Eu1T8o!^5R8K{(gjnhJXJtb`UP8>t9@PCBAu<)pmQmKWQ z^fO5P@-DU*QHGDxHqnN%M$e)+=d5@#A%9zPhsf(GGiYl$%n9m(n)= zM@9Id`tZXN6m+WBXi($^>O9gTGU+- z@i1F7=Sb!jvO~XXcGeLp^#+g^8&EJu;zmVVJ4D#DKCHR9`S@%R?%?LTP9E;_weliG z$m}qvO`S|>6dy>=pnS05>M6r=rD*S&(a;jteA1TV1LabWXJQH~D1S=-PpNC#SA`dr zqA^%qBQ&?v#EWsPUBfDP0%-Ru^L zHub~Wq*RAlw8PZPJC>cBl%$w!P*IDDu5pdn?!Pyzzf}O}p-@A6Rj1!=MD_SFzWfIx zQ*&g>ie2)Rm7BLL_KH!4pQ1jfHtiJk3CTmJnxRQxuyJU{)z$SPia6%JqPRlj(`j7l zb=DWp9XvW&k5paftfWTo3vxPLL~+tTHDa-gyl^G-%3nme1nOoYzfO}%^CvQHPR?gh zL$mhFT^bu&3=<#RQH92UriUL2PhL#VVZKBSoafA%eVE9)b zm0Z9fro1&Z^vkC=O4##L&zM=$D?P{8aSuTo;ILT$N2rUr!%k!FzDASI*-8C;kPC}A zgCsB(EQVUzW1{-zzUJO(vOKwD*|8I6E*#o){KsmRP5IaQ+f?|*47KIH{>Eyb_35_I zsJVZ@x*W+PktYucL|*3+SkDt47J2Vv%7Kb4ZI9L%FF)R_TRXJQxu1j8+=}(in4=`; z=*{ff8?kfRH)^L#L+WC(VXG3}@QY1;s`g;t%lEM~WwukGYC0}c@uCvFMP>`#Xkp&{ z;|7W&-!E{5m!7WoHJ6Nlb=ProwhuZIvv9|7VXY+YtJ5*r) zGo|*PC-8vb^|zG~Pp7=Ojc#=M&=|`MLj3bja(sBdZOQA5jYO9%@V?TWaHOmF%uGkS zpMUIm{v0E@_*!gR`9!;ep4pEU46dZq`jbo5cU*j189FcI=65$7>@lC&WwVnH&bmcj zxKNiqn)IN-BAu?E_9Lb5HuJ-m`Nh73mEtKksAFWC`a+=#mDZ(Wr|Y|xt(yG$^e*O8 z+P|$VP#PP|G_oB`r!j8l-JyT}S}0<5l9J&3Gv5ErJ^JCgM!C*!E7yeYt2BT2hY*Sl z_&)01EzSM%1e=$6cf32`3jgeg`G@a*Egrs)(orsxc`4Il@fT8zeeC@-85!Gb4Eud4 zm$I1;Ebp6eJ-2tFwFadWxy);-_AAgxwPC zR>{Q$Z%0kEDr8t96TMpH{{fZBzl*Y6|L8%F)~r(hnw!d5RC(GkA&+o zWf5oPn@aY}G598XRgx#&bWA%uD3{vTlRXmtvN!?7%T@gqF6RB4MLce=s+zxlNb#_X z^X8#!+s#3?+Lcda^lg_>*xktj?#o`DSIM;?8azEAAfwvY6<|`?_Oec~E>XYh0k)?} z9oe43JY?}+FT`)~m7KLC*WrF!xq0KBXJxTzduUyuF3!FjmeS0(5=t)mX_xP6&LA-b z$@GT1;Yv6V;|9S#RJF3M%O4BcN^rre!1nv`N$^wZgP)o%*VO3 z#%#Z?QF2<#=}b3)vkX4bv1&fa-WRfiKT+8H$gN%CKirdmoL!1k`~8b$fquJh4EQW- zos|8)DDJ1pA`c&o73AA?P|s_%T$84)min2Hpp3QK1c%z(E|_LplY`@amV7S3gGaaL z>4Pg*7v@XeR?ZAIbzoU4B>ZYcT7#(mQdXCJIUFt9g@2?3GI!r=hop|1O9i{{?G-Lc zNHMOBNjW-NdU2D?=55Y)n?r2W6_siX=P0iuPB5<>5-ZFXEa}uPe38XyrpzK@N@t!C zE^*^Z%WgmFK%-eRC*{&creUd3T!G62%Zc7cxSbnqY0eLH75Bb;0 z89dmQsr|Mxs{w!t?w`_peip$B(a zH<^0bKb76R?TBf8!IH3h%#&oQSBsw}(DHz~MEqWX8xZ5q~Te$2OHc9{|b8qf3m&g6E9;%#go#!v>DlK9tIPr|; zPL(}ViY_qUMhWH$|xMYXx*wMI8R+B;`*b zVp}Nz3E@ZkJ)fw}=?u7bl_jSrgv$2*^!+}iH!6SY_fKz~(Z-+rB+OgHujS5Y)lrw- zeEH{-M0U9NOCR~rAj&8CB}^z(m|t$@+j_Kds&63n!gRT7h(z)U(UlY~w+BrGNm9a@ z+loRtEl)NgY)$}qN3a!#$>X9G*O+W4ytQg#*suVR%v+?~RAeswe_wzs%76YMs(bxR za~ZzHbs4jb6%cnFy7c$1>n(_}_tWMpJ~>#gD4C42w9%oeSbU*--La(Ja*>+af;J1IkN#AvH3h#=f& zJrtom@U5qc=wN5z2YZ^*hSbNDG&BOw1|OlLC!nW3vAxk^EBPsJRWma))Wds0b3nv6 zC$%V)mSOneNftP3R>8}s=<3N=$^@Y+b_S|aZ|Im_dNE#-hR&FbN(b`wuq<^Uo2AjC z^D{#Rm>brED&g#&j~Uh_nD$$^+%GaR(kLM(BH~K0gW4-g-Oc+oRqZu3G&0ZjF;53u z>mHXqJrNxNCUG=`<~%wmaW)2I!T;T~PAR(k3_}JF($Xq;z!iGz*7C!z zN+F-oTeG+5)zx-o_1uW4=;*3M{Xz#F=2xpyi*&q%XtEw0{$6K~aNmG;MuZ&NjI65v zQCst~Vx8X9qI-Ko9zk{-?mdpia72-K1*FR!Vfq_4k+T@gU6{`TiI9%o8=k&dRH_T= z7u?T6mlTbGQvE$@HkjBKa+PTegtp1=q)K!>(jUQq*iMv;D#**rW3F!C-VnPdR@Wjh z%JrFAvP%dHy6tDWa%KigQ28H#v3~UD!8XP9iTa~G3N9InqdE&?IzFCcLznY5cSU+|w_qFkTsW6Qi35tW)MjIOL=^n^HmV@@BhRs1(EU&o7Soh}_`+Oz*3 zC-1-Q-+%i6oVEW-e(>d=nWQTVQ@*Tz5=C4Kihi2*3%j)H@-6PtdBI??H1Ma`^TI>Db%~ z$ou&}K7O|gS20U)ZhLo646L6O`V66ipj||q$*u?Df)^srL{@9M%#EdY`f3PXDSea$ zSpp-BScb(8Shi}jX-pZRHz;gsO6OT*^hFZ)EML9V6VuAOQ=81?7}Yg3;piJ=J*anL zKc=v6>U|*A^{6!Xs7UT)z5q|v^0gd~FmC{tJ;?34Q^Mifdl3M*APj4uG2lL)qkkYB zOqdlWNynu=Z)|M5-doLWku!A#lP?n9&cbh|m^LJh*g;y5SF7$$lsp4w+9{?n-))P5 zQf6Vqxuzs~$weil-85f5HR9~X6q^WtWKwJD6^VhVMhJ8>DjSK!B#6DhGiEUC_+(OL z;}tZdV+;fS={$>Cmfcr}$d4=@H}v00vF`FcC>x^@d+_bn#MGAse^^H||M2_4od;$4 z4DPF@sq6oKP|wVyL{zra|Ipsh*^a%3ZjAR|@2|faUSeU$&olMvk?f(NmBKe5AYe7C;4{HoFkq|)E=j{}R$n@m zVfpzjpXRHCkykLpG%IwP)*SWpo$1&s<&W`}i6fKnC~7@7)6hQE9j!BG-1*gAq~#Hz zFjbqtR|cVp%cn4{*-8#iTXSguLQ=sHfl3>(!~5Wsn6Yu=Pkr%Y0c|9YYyN->MxL=@ z)=#RLtUH^MJu2{Q4dCV1)TWv?2tGaeAWnR~NWqywq&wd7G8d&V$!NOMrd6r~o__51hX}#gA?~A{08;Z{S5GxqyQEtjU#)x7HrncbCKJ6r%&Q zMM-R03-%HLUU#{i?HF{IZ?AeH0+rQ|0tz}p>Q#YJ8Ym(Fe!lFq$wZ?`{AzY#zM>>9 zZ>&e>X%pKfvor$fdDmF5ESv=V#bOpxe7qS|mK_tS5y1a;s3zI@{(&QvF0XWWE}Z<9r? zgo@@>nJYj}_crdmk~=qE0^ZHbEVUs*aTIOmVoFL%_Md)Tp{#0f+<-COTT@avz@Av! zGf*=5Q)x!c^iOySGZXjqeae~K91{gU>7UTMuUft}(flR;|96eGY`bb>Z7zroy00(z zO#&0>n@QB_W7!2D8-r@4->D7A_gq8DrxOEf%8>6!!uS_@e|@4) zrs3|AI3uXHHV5I5`X4q?9&dG7Am29nm@y{XDoK7N?5fZ`b`i5EV-u4qVAnH&!m;NC z_*RiW$)8_Dj#Xbo%#Al7J|_QIf9}6v5Nq!M0H-iS^t3qTlz-wC&LVU%nNbW;l@#wP43&Ogmta0A;XCC3il1?cG%`8bVWxTNOk^ zDFXQ#qM6_@F&NBl{z~`dT=x8QA1l=KQd^y8uyCCi6{h{T3y?!za$&0C`N;>Ikx@}3 z45~A1s;jg4aNXP9B^P0rpxy8%IPin8ZP?hgD-V~1PUPtzS2VyD8*0_W;Sqbd;m#dL zWTeDUPDa8%)5QGE%;5Zi%k0w@8;of$YJea@6&yc@eaFLSt-XP%fmuWQ;ZeQkZNdZv#K?2ueWbb9x9oxMSC$ zP#Sgw^nnVSF&!;>Aby{#rt?&1!<9g@N`MCd2dWF)UT;lI(bXEy1<2o)8-UG10^|t7 z8>pHTl4^@a)eX0lr=s4`)0m75%d&?zf`o%FHoE7rBn+3Fk z^41>ZL*^^C+OeIz^?ilQ{HXZ1KaUeHji$?B4k)Ye#`INRP$+{@sroc3j+G&+bI5UW z_>8~c?zC3t8#xo%L!H2h8gv)L0qTmkizeLB;XepYBYk4qYa&5W5ye#f<< z{#od-IfQ{=J#yU;$UHmi+YYtZLx<)XgyA|gTBntX zZu{x7zurq%b~RM=`sQXEpwmz{X|G6ee1|YzgUXFu={Xje^Q8fYqYWF9=wJUlzD~(_ ze)z5w3(XavGB#lr5xg6zPq^JvxXo7cD)O^+fi@-lX)FXromWvwlg%E3Cz@=T$Vn>> zpyoe)Aeqr<9UDLJ#E7?KeqI;CIoBUPgXYY_d}7GP+7lO~QrQ~s+{r?-s|=%!V6HPa z0OQ=SbK3-f6jzQB$MrQ|!1=2C^s}CQ)Wuc!CHTG!|{DAXa<~&%$)UCuh7}cx2Ki1sc>0? zZQG(@o=#5$5-v_5KC~X2k3D9B(_-|Z@7!FT^0>CKQf_+;w*lh^-bbKz7|*b2X})ve zMqk_V$L95tOZI18&KyWB0r0N1%SO}t8PIoq@+LTG7!}qvSQvPO*%R|`{ac9`Uc|l9m zcZ;^2ZuWRyL^R*bOrt2EZ58TCh+Cif@W9#o$-deW2VLvhy04-L790xma1CYATSTxV zTC)&4O!2~n3l`~wZ9^>BH#<{+4_LikvI1nc^4PTh5o_al1aydYp-A|-kLarscCj~b1fIyn3&LYQUZZ#f&)V) zdgO7*A%k`3{(P6~EZiY6+$7l5X}A7~_NxOiVX!^)Tbh~+COR|fIu459@%WE2L~T} z2HHF~ppM~<*@`tYZq0q$I$G{)qu_i8j|jqCZ&xAG17g3I3xM zQn}h@ILCy%t_@7RT*M&0(%IKrx?z0cfeB$ZpgIGl{mLTqaQ!aXjt?if%Ha9D zFp8l%uoa66Zb1+Vi4_UDc?`Zx{bsy=LBl`8UOMLx!oZ*+gvKD@J*$x6xztAEXlfA= z@$=BAN`SOv{IFZzbj$vLJ4u5>Ty<~@RWWMGFEe?m;VEJq8qrO65G^{~*4O=?ny zP%Q2w0ERXKj~N~p7uO=N&Q!ZNBiBU}3eDy4AKcsNw^Vfs+lf!RwN6r$7}%WA;Gvjd zal~uIz>CTjn61#x(+8Vz9Q?>R3+GTtr%H(Z-sh6a*|4Fewzli`7H!q&qnK6tG4qY{ z{`3w8pLUigzeZ}zw`B0i2Ji@)?bcN(-qtP)uP`h`Qy@WW+YW9|SgE6k_jMpi5gJa! zBVjE-#6Sd!knDsrq9aw&)0}<{s$h?>mY4BZtfH2e=n^ET#@G^-1q zE>`_z@yt+eXejjTSjFuu;SD_zq#S}=>p8fygyMO!O+`>9GqRA2`VW6`dn+J5ovHj! z$OD`tBQc5vu>(rT$|7H3isP{+&eq8cAVFhRSJW1qE;3cf+h`WX3E;1)Yq$#GBpa*kywj_{FT?A#+<&3|?Yu|%CM2v+OmN~UW zt(k01a)TJHG8QD%?n!HA?og~bXM zqk{k{upK_AlR7{aMx{{$$M^pf;GO>1>k)ltwkdZ`Bkon3YmiN&5wSmq=*8XyMaEBj zXgkch%1|AfZEv)Tfc0pZ2tq{32D7w}Nx<8)z!9b77j@=(RZQl8h@UN(kXEA_4fhd* zR9zY>l`D!Fq^|sF%}Itp+h1MgD;Bs>kCR)gLGl>&pB!*dm4Q#P5LxDfRdK_tluZD< z{N!-A5!E0w7raUn%WSC5Tng`krm}fL*E6rP>YW*Ng*G2jfWo<8Z+Oz?P)E5R{Ng$6 zzDPq59Eo^On?dkcC*n>I+Z%DGmwm2R_ks^@g^pnx02D9THNftPqMhCsT*a<+RY&&# zU*77AFya}Vcdn%EJ^TtyTvA%NK>|@_VD;UgLA?cn7rfAbtI)&y%tyRY*AagEWvZk{ zp-=Y7UR)u&n<$C7;k|CgX6CU0f~(;akU7r+gpyD9(^7`dihU6mx1T(v9`1L{SlL!H zwiNP*>izJU1j!%^UC{<6C|1NpzTk%dUql4aHw1`c+@{dUcY9qy{cZ_9YP%nfMpJyO z`a<-;R36E_Fj<0gii74%0_Q)*eD6z#wSFEI#RH$@qz_FP3bTgg+z;fxf#U?7roR=K z)1M+DI*lEspN5Wxjf)xUu&ZPJ4Tn%0#8nA;wZNRzPmx-sF!X_&`XkjDp4fzZn{0dg zILe|DGY2zxafK-iI|`x_iL6fjFZgeSE(Xf>@|EjcF3*ACD1$Zj!onLw$EFtJ#P}gs zMWwkud5?YQi&c&QZtekLcvf<%BMTFccn1ccW>de@B%K1A`G{Cjl2W|0hTRv-sM4ha z0W-2Haha=gp$~t0 zLxN3Y3DU`OH^B0ZfUb@pc(Zl}Ax7uBjS8i|EnAgD05np~W&I7wgvY&%zzu253nNdt z=3XdDp;mVF)&tv-M<`O(F!T9!=?d~Dk;W||30-iL9T3>Pky@|kc7NMZVJP~P;e`cL z#d@B3^-4?-zB*1TvkQ{s1kY6>e&~mQb`K_ilPq_U*IwX_7Uq=+9f{~BCT$ik=n$Ao zl13n$Su$?Fo5TzeXM+RqjprE|M-(K+E`oOT3BuzMN0s`~rU@x{F_K##%mUzPc#8w< zp!O6e@yk#ZuegR+96??eGBJJ&6ASY?D4Fb;#(vN z&hGSeS;t_(JLlI1jCLq--+J)Lh=h8=rDOCK?&m>x)VPe^s7=#BA{N>Q@!EXM$rkS* zwj-vNz(@R4^2jUH*Al15=m35OPHARf?NqvK2O1CK=C3d=6N0sNEO^LqFCciSl8TlO znEj}hEPSk6YQ9~HK_!U}`ZOG{7Zq8wFDpeJp~_2*5T~2Um9>IF@OP}znS8sl1j37g z#HkQ-fyDVvcz7erDa6D_026-6HX^Y<<1$RT*l6jYYdGr{yT~9d44^-q)MhfG>!A^ywNlj8k(7CH;)n>j^48oJqtO&;-wJ<6* z3PH)3yxQssge_f}t#jrO6@5sOBhXK^B9;@mEh-G5J*W&e&A7*PBp3#pR&u&qY)%K6QPlWsW@4iUIcwDp_DcW)$}=qr7gsYKxiO$|eYzHFO(COajf5%Y=qvu)4(y2<;nJBh5t4{V1aJE_}NLmd2le)VZ073P6Tn;F#E}0wj^e z2{B4&EACInIj=%-&2>1Ok*_l(7z5%woyeF8iZjow6Hd{(z%}?B*oTm4+BjN-ANLo% zs<-EC&?9UcZeotFVT4NO3aQCA%X^kmE?wJ6cE(fU`Uq(?HQKE*D3~iuD9rm?5AH4=$JFJkOwJ!)fm7B|+6#T0|W=CwbMtuT9^x`YxSPH6dkzjhj& z+^?4O?EH)&Ow(G4Z+}u3R&&?MEX>c5Ti;D1k%L9c2)lT!X`r7@-M2iEAoW2s%aj7~ z=a$boaln^WtgIpc8i;Q@jYR26`&$V&ighI97-N&p7Q7*HD9F!o<$$<#Z>9<2M1rm0 zArxi^BHqlFlf!<2g7njz;8cs-QTH!|^s$BV3#}}>t3-8=%6lg`x~U6wP={$&*z>i4 zl28oBi*@8rGoE7xoup!lvktrnTvsWuPcTN>&|$uO>*p13L&rU~)n*aD?JJgp3y9TkR2fRRPRsTE1DvYdT6i z;*R5YIzVv8H4F8?8A2jhi>wS;ymais5&Y>2;-M0(P#`&rQ~d@~ft(T!myzUWAA8w= z_f0qhLL3*tS5_fPAv02wt#8184?w)Bw4fD61WcOK{4|5qp*TXgQ6~Pf8I+9<66JWIrhluoF+R3 zHvDq)tE=|NxF%iisRUZ)NA#>uqAcz zAz&Dld!R8nGwRU~0e^1!pm4A7vxENEJvpb4xnRsCF2DSrNF>(p6PIO}xbyA=cl z!oD-9Vek;h%suZw)PdfSmXW2Dn6pZWNlhfF$DaSadhQ!SZ>w8Kh6r*{1r6} zW*ZKJ*>Y{icK9a@UwR$kZ{kjJH=WdN?>M>MaxlXv-Ey+KXX|v&;x?y?nS-N+t<5<> zF~QRUoOhj^>>MS8gslJdfuOB}xsXUsK{_n5(@tIo7TbFZ`TwRAnPdwLrkaeqa#7=c z^kkoFn8w0~FLR^HaXOue3I`K-wXOsk2kzc>eJfMh@qgYkMBUxDuhTCvkMsDUhx@r) zgm0Jxe7JJ^8B@4#;Ngo~uSk6Ss2t}pAals=GUK+w)g(`u(XZlVHIp$jUsw%dE6#N| zu-5K}O(1`b@I;QGf5Ko+KMP?*|17I)g58GxF}US0ZWH>)5#g&K5$a#!f&bU1L1Vs( zcX|pd*B15KGWE10%wBz`Epyg?Sgbq8Jfb5QjBiG;;>iN*p7WoF=khs-4t~R8q-D=E?d({| z*!h^_Ek(P~U+cW~V)$-Lk`l?i!m_`-#8WzM3@h(nJKSCFmUrH|J0VHwb<))RZ+};P z9;tYeDE1;s#45@7^j!(MvaOppxm6fu>J})}o2nURcQ`c%{rsqeu3dNk#c*A2M!uB# znMkjVMy{BF6A}N{?fgG3vhJdJjB~`3J#3Z|Cr+KlZ>BA7@jL;=Brbr@HH-&Y4#Q9jooi{<<*HL6}$=pDvqe zpR47_mT(^b-Dwikre|BR@GdCsf@_v;fhAW@A-QrZgR;nE>SEZ zmI)`7qEfW84Rv#Fe>S|(U1XbGHeG5JL@9L|d%N@C$;tKJLTjbh=artayQhGfq<@dO zF!9Pfwkvx^lp1z3yKr8$YA#|QIWrgRJLbvXppc4QkFNqH=` zt}g#^{`JaS0Uzu3>xhVDt9){t_sVpwf#=+356`~d634a-opWC6%cBx2zu%F|&K(L! z&B#z>I3)1n8FwrX&a$U4v)`Ly{VnE#cGW6Th)j7o_VBN&bn!B(IrJ2I`K)#qIB+yd`;xa4RD z|EzM70uvL{Sii?i_`pmDvf(bX$a><+2J;J_Wnv_YjCc8=Q@RP?UW?91KXUpOB|;~R z7c{EWAF{hS8tXC5POcrccOGxGs0xZy{_A;yV+5`@5PHb994;>>#T`dj&R)^tYttmH7ER45Z=ZFUYKV3;!9Lk=Y)tBsV@lcDu}95cNo z>iGGO3_>Yxe|~vLexD)FjJn1c{@tLjLG(nn_IR|TY39vi$p#n31|M0?FCP#2r*f5a zJy9*SkK9$5SvFIt*J0?9Nl#C&p{hFjD4SvH=JCF=qF;@1*-ZReDVLw_8SgFmGc7X! z+E%&rlcCRbz)OM{rjE79W`4M0`0i?8zW3TnUtDBlq!qCtyi7)hRCj_%rWCj@j6e6b zSPQ!K*J-c!e4rzw4%yFp#CejQ2@skOsz|_41LC3#&xdj4KYiQ{M*sIYF{oo|ioGtbX`|8XKn@-2g4vFx^O+mK7_ zwINT-Wa|}WfyYR@Rr932&^pGGRNr0cRo3q|%0?U=O}8DWq+6GHeCw|V@jZ4uQc&~h z9yZ~7ou>`Fmx;*7-^E8+Pw5w{!pLq@tpsi(->Y4KNcSko5fiU_Z>pu% ziR$|%i|$Kiozg4(9ejDu4bFY1WAYlk*CvdtdJ3)G=bNr6CAYr3E1ag8u9XU>2dD3` ziY(WiZ}D!br)Z|~X86vmIG-J;k^4ry2iswD{CXzooCEs_Ui6H<`^q*3=hjvhLd|qMdfgW%by^0Hd=AF{Z8}mH6iJ)3p42jR0n$cJNB+ z>{9M`K~^#=OCUT0a9xRp9#bL}l<6|duG~cAPBIP3T!LyBCcD%p+B18+Ud#A+TYFwW zm&G(+`SLvBocZ_G>IYles(gId+(tr5XDTU-^nSv&{pB29tHVJuS;sCvNdaq;Se>m| zsNS--uFx7T+AgSedCgnIy4#7I3EEsRH-)SzTaeqH6+Rlb5w;-1{RB217rFn0g(Q2& zH4d)?IN(fWBhew%gFNj{?sFxN9R_dl?8>FxEW(|`>&OY{*qnkToPNiDctmGKh&bgT zbyeVyx|`cFyC|~y>2KstleCW1P?85(t3o+u#AEVI3l5_?Awa+ni$ONzM8953-q05y zoQ=uVK5_81(4JJm$$x3kEr0Oc_ZKrH+?=EPdOxc=sxe!MSGt1vx7JtVm z``x~*51$~9y{_&7yS* zTbZjZuG?#W(rcSii)hbUG1<;2U{mWQEJAcu@$q`t#5_$m!N`Q1OWhzDn`MKI`I+zj)Y#(jhzXU`+4M_umEjdQzH9zVr1{ozTNe6t!H4wYk0S~VfJx9KQ*5D z6MIQ~l4kzcdKsTeeL`f10~ZGK$`8$b&dNz<{djo>pU}w_$>X-z<>7Vr=VV^E*n)=6 zv&W<-yVEl-VK8S8pl;iA$40rEL-x&MWrk963=CXB<}-T>1^fsNBgOip^*?c>@)gS| zzs;E7TWE5?x#gx_A&;0>DV7(EIroCgYF9Rn&Aa%v7exV2@()PVNV|G;6Q)iBjgrBe z9=0Ua7kHJaO?C60H?EfUF)*FKEABjASK(Q*N**wJUUR{Sa`N#IP=h~S(fEbBd z2N4Qx%ZX^iLAz)NHQ+ixA08%;|H*8WaV3bI&O0SmDqL*Y6oh!G=Bc*!F$_lM0V?t4 zu#LSw!4!g!Sx0)Z{Ed*2Io72Q0@sI9)rla*in%9}*%ew|Z(!$Qw3A+LcOBprvyQ^@ zwr9spf+c!>ZM|`g*JYs%pHP0|9kwTnbOxljohHR64_lH61=g?Cth;$6jD1aY+8lc2 z?Q^2bB}=MS)z;}aG9pZ1>tnR7e=DwBx=r>ya^&n45&}%sKHv}F)XH6L zx!mVda*`FIU1JYG^3ETkdbfix183Bvo$=)AUKxQ#W}~|AjoSGs@+5bw>3UR#HzSa1 zleDeWacta%k&Qx&d0$~;>z*WIomW&Ds>MjOEjcE=5WkwkpB;wvyZR#RUfGwpgJAlf z&@$A5Q_SRvzFrZZbKNoje!EAeIt8TikTWJDk1vrt=loWEmM&*Xa$_)KPf)?^ay(@u zxY1jJPxu{t%t1FlrC`)$kA!@Po^3dGTe4CpAD`t^$tH|EGrE7{n}{6Grd}zs@i*{x z%arkfL!=%$HPW3c_vYC_tF`4#nA0?vVHc@bSlpapMVJ^_--P#>(VD_Dqt#1VVCMhq{~`ei0Zk8g z&B-jjlq5vdXX$A-eY{jZA;N5;LmwGlpChnr=%qPb)PJ^PGe-6l4Gr0nL2}rZtQdm* zoK>crDrm5a8JB7jq`8_)z~bCaTvK>qQoIA>+x-ER-}bH3#g`$246|%gXgX>WEI@F= zV|gWAGNO%DW5MxxEZu4m$6#9NQ58=y%gU})8zfgnYPgxXC7WHZk=tmr=++1sSl7Zc z^6`g$yj3FypG*Gz{7thOnAQPhZaKk$`|^Ex>&9P}D+rTD8fd)w{kwN|j1 z+{cacKXjE1pJM#L9YS<9Pud&P9-iVql+@=%4i zs5k%RsF|oWU&og~`iO7@vx@Jg`NQ3$^0h)wp-P@wqMFmJacX?EQ}a55A7kw4i+Dx| z?>YnC)Ps(HM(FyYH%~xcbNgZ9}fbIJah0d67~L9!$ogD9%IE|(wI=g zZ{0T#s?zXhuGWD>Vmu`f<|*BRqx+t#aRyvoJ-MT*q2g}H5GQ=Um-hW*whN3=!ZM1AnnPY0bDq@ny1%MT^y(Bq6nv$RfPUgQNFgfes3Rb$3>V)r0PDd z4GbM76aI`PlfK2-O3-0^Eoq;(eJyY=*zEXA9{*NO&S8)EC%YR9_PY71BcfFySih4h z5pQoGx~Rd1Zbl<-aA_|0_8G3A3(9lp+2>=_r`}er7fe3dgST39-Iq|h`Y!`P3*wb${R$pb=GeG)YnVfEd#)tP&=?#|!Esjc=p zhC?A=b5Vr5KRF1`cA>%lN|>la0#%NW(Hl*BHj|n>qEo7&%#-kY@B@CpRwDIRu|EBb zdujz)$R~tSvv)V$CXC%6O?f3IdsBaWdImmAq=Tm|^Yu`CRODp0W{zQnsrU=h)#t%b z92~%4=>9H$adx_l*!})u>YZbe#8RDjYKPxXUcmktB-Qrvjf)_vx8KxuIKx zK*-E1bHu~ES6RvyLxecV-O*h@-|HBJQeCk{T8%+2S_qrj{O%~5r%_O|m` zdb6q`bE-C%5sCk6D@mcvDt)E&kr4{`hmODMy7TMpz-P$NV$ovwFi&>zO?=qzrpwP5 zgoIhcDt~GlrjCSMYe-8`z1zxz$Z-{m3a0Z~rFmTVXw6>Y*3IF}R`gpHxf6x{%5gL< zk}@1by(3rD-Mtt3IMl$fAH?V!j!%xhEylCPr6Pfw`|~~2tcSkOJ$*zhDHMZQxOs`c(gY@tChCF$LRcA}1$Kce57aGd$=ae@}nIl%s@!6*h;v*dS=74wlpn)q6 z4?dvYW}x5h#;^AP;jo5t`9byY(>@RGbae;1^`#?kaG|DtH45y`VYfRB%q6&ouh>** zx;)zM;PVGm`VQh82kB_a#a+xS6tR(-3~v3{Wk}A2SR%HrAKj4T+YO zZF+m07oeE1l3p7~xj`3YHgvL7q|dN!#Z+(5(j1P1&v?YV%dxyJ%S45BQsk3IXN^d$ z>P$0Dmm{qCZI|q*iv9)FM498K&0q9dwb$A77Lx?jn0>s`_6*@dNA63Kyk{Sj3zZv# z1Ti>N-m_cUR~G2|-IB4q5_a*EHG9tKhe?4tGJz+65Pd5Az)r+1qOquY?_+S3Ondm< zKJE8kn6Z`Mp1AUKZ=^w0WpBDRza6;`@Ft8g6|wW(_+^-TrE>WXlx2UVM-f|I_Ge^9 zJYw$&D63#$U;SEi(*usI5T3z7{WOnBT#{pcCD@>wW0kE*dS5fropbq(!6U#Nl4#oy z><4=V)P%UShG^h+C2ljJpld_9XL0zMv1H=Pi0h*O(?a@5rIH)x1!C$-4&#qtWfWP~ZQ2yVuV97iu*Tu970 zEhFYa_~eg^IqPdmqa)FE|Lo6YpdT?TPKmPzTM10Y2Q1R*HOk}C28C)o7ATY6> z`vN|kvlf+Kolbw%s$753K*aDLUfr8KewUI$9U^Pr`6I4yU1t48md{2H_y^8N+V@I1 zFE1q~hI1IYyuzEuT8QnaKlfdA_3JsaM74&a=f5ILKc#(&dqA0qq)cR+iQc>Eb||&S zT4E>uV<C(FRrZWkrKB=jhGX=XvdF*&tT=ZpsakY_{89X%2|^?G7U$ zT*J|GR~1g~1~2Hai5fP2qYn!3hg#L{;o7hYzP$2JugmMnRZj$h@cGV4UACI4Oq|KZ zG8D!2YwRIdIXb8zi*tsKuL>o5d&yl5#ACP3l&iNdP9f6kdO^K)*=akf@^uydOpZyq zA19p@@SYiNDBQ9~D{HEUiSZ*lNh2%lV8U^>Nz@3n!o>4tdKkwUz3tx(d3@)|M&*@)Xz8w*|lAH-C==7Ljm zs>XC(&Ku3N|n16T|C3Y zx-V@o-vV@Sp@T5p*<`mr?fUpXCm72Xb#ZF_znj$f%%BDe-i?L@(-`>H!FnJ|qo>e+ z_hIm*Z31WA^P?r4M+__V*Gn9!d%@7w{<%V~B5u@hU~wUc7qqr4-qH5WqE$X*{|S)d zk#h-b7mzT27R@?+GY){q4Oif`C)N8Kxx5-?bH9e@=GdzT}({{#&R!6N0^ zm3#x~*$s2|k@T8GQsjPqe-!R zaH@y^PE4V|;vLvNQUqN(nCfcwDRAprl~_-tT;zuij^!O)qwY~YU4xVh$5Qdah~G}MZus7 z5B{dSyjT&2#TOo)jS$&l4CpyE4HzfpIBv`QJsooLsj0vSr&AA|{N#Tkk( z%<7Bm-bik&CXd0kpPC3X14IsL~@A>*C)WRI372#nDKDK+Oo znvWHGaOB)bcd2G7ba9*pW$SYlxsL@x`y%Avu7*D|K7@_g8YD^`K`TPptM;divZ~j} zkgq?YBUm(jwA+t(0U6L?X1TQu?sY1=h0;?y#1jS@?p&gef@ z3;}p~?z&Jome}X=dW2enkNt!C`)-D>(YzhMzWql9erfy8AU1yP!(rxKXP4Q%S`k;c z8+C>9R#X(Dl7iJV%;~l0f*^G^uqETw@uJ@2IC`ZRKEIkffHYV>wBJf!iO`Oar9;4yLt@6OuI)-XKugs&g zX8gu8?vdqrbwFA*V&%sFfQ2Rf4-lim99dhCwv{*<5F|%g)J(I|uDMuuDD`^`(?rWP ze3)yGHGcRoBJeFVfph;y@x6sk0gCUPI#?*vxc3E*wx|$2e(prfSC|%%GmEt{)r`Nh z;?%$xl+(4I1O!`0|N6#MvU~@pc9&$zd*F=z*1yo0tnN-kg6!IF9nC*yS9Uw?$<=_` z(p1#qc*m37^waKfY8ct+hLjMe#mO#&U9kCqZ>jS{l3c){sf8TJ(eG`k$+2lG3lr(k zj2rK-pzLLz5qp8OI_`Xn;yt`84SH@XB!ZCDN)J+ry=RVf?GKspV}>B>zlU8Q89lM{C>_0sl}TMP&6GCwOMVd zt%CMdDXD>fq1!5Z3_9JK(6*yCE2g>&$~ewJ+o#Wq+=nz3=hrDS&_Pg;P3Tl!4EA=7;WgDxb_0Dc$Gvoq>(yZK{i~N>d}5NjCA-*7uxkiph=BuUYzP_ zOTZnJ0(J<}kM>@CNhA{aczAv+>g0uS?9!S#y46=W$GM};a1$oQy0Vr-J7!?@sOmFZn8&Px>w{aE<|lb;b2ZjU1ckMq%uvK}CWl2vrb8zVX@Zmf{0Ve6{q!nf z?!G>U*L+B+E1Vl?)@*8P~pOVE8TXZ|E4P#vN@ewxi^DTS5A5W&|hdSBeTN;1y#IN(`Gx^_4i8o8R`;o)QT+;OdO8>{BqHb2-R z{XONzJLm^3_7wr`Lc@d$77Tu^Z`IB-3zQB#gdr;GwBI4H4*)CCJ}mf-D6D-9J*H0l z|7=gLFBVm$B80G+jrEDe(U;y;M$5~~9=*t}HI(dD@9X5e1Qd?f`YUK!cWOA%$09cuKKL!(GVI0=n75;e2-nm5YJe=;jJ^#egu+^ z)}-f$aa>3THwxHL?A}YafOeqxh;FZzoSfeZc}55~-cyu)HISu%GKVyqfw=-*cF6*p zKHZ6q><%#A0%$_w@Mb!t#0WiMi)L)a>_>)`kx-S^B3mO7+kX8DsIlixA+&~)&xK4Z zQo8ssu^CA&!QyJWeGUez&DX;xJ8x)-Wt4BMP`EIh6gNe>$@KrN138ok9Y_K&dcL`S zj}`~6%y>(3BYQ3HsZ(vm_QP1*iL1|5VdL9(vm{ve6pn?dD>psd#*j8&3E&k5vluuN zwXfU*q6yOAHv}1LXZZYpuQFHPbW_$pN~@ zcPSYHl`p}bY%XkI4w<|%OKV;{@ zktI)(fC1k?+`1`*AytMY9Qv^XFyJb%F;;3QMWPQ;vjH6 z@OY+RBLrqJod)ujfdf^C8fI03@Y;Ml@#Ys_uESDt?$4JLiJ@qBUk*FZFd?Y0KM%}isFG% zxnwDQ$JuM9AGbmmRx*H@K%UG)QY{hRI7LJgT6wIdbhiO13eU(Z5Z0F!Gj!Z|qw^{2 zTWB9a2Y6{tP0|LkVAVdFXi@;D%{{)KD@a;*uF?y1fDTLQ8ECNSRGlucVk#cqg9K4a z6vv4FQY^C~zb>pj(Ttk>TB zyp2=)8SNNWJbS6;qHNoz?BYxHCtd_=-gxsPsohyXK_N6)g0>LX!5MOc6|Rf0NbH&RIXO9u6(9vi$>@OZ!(YfbO}^}Z*J9KYtO`N z#iY>MmuUvZi}y-8vckQ7T!cP`g5di2gUS7|VmDp@Yv3A3J!SO|bvM3o8i*h@_(A5| zW=gN)8QH{C7vDSuASErbFG-2GB*d$s%g1#9Nm(_~wnV(H-$^Ar0!xjA_%BQVK$x;0 zY0&{Op?ARZU3H8r;9}A@DRRMPYDD^LYsjD2WJ<9~$l=JN4{N&egc*ulA&Er<8BN$a~* zxI1JUW>)vPA`PiY8qi7iwZbXYQ$_L^&VSF5(nIF;@LP-XiCFBM0e|&8wEUOsb|Ne1bz7%h0~&q(XZ!t|Lop z{)d=wAL7Tb)dE4+nADRM@ScEZcZ|jzh4?bbkD5P4h(#0nT{yMLTtXOtdwEi_QS!0& zPk#255fl=`MDM+Xg0ET{HHh~ENGpb%rkQ*6e1>E|>(u#}tqFn9{CDWJaU1Y4ij6cn z4+(T99hyKd1{B!8d+6E=2SsF9vsYAqYXWnbm&fPryMnRAz#}KPLJ=*LK@arjjgDXxyH4Qt5#-;1Ir^)?hp zQnj!kK8-X;8hK?7sKMFGKfj)1k{RBmlNv^=D>`YltqlKZ*Q{QC?FO44@c=Iu^*9{} zKJ!sMsm{J+#A}odxIa*JW0v;Qmc|#j#m@4hrCyI3aRFIH~cK2}G7z8T8}HaLS)X zB9&}|bc+Iy9u?etHnb)F!EtC@%J)#uL$NM*FHHYe?+$h_&u zDVMbc03l9v6k5|ym+oW1a7v-7xOAgm+c1RuO%wsC7!N5>g_!47L9YVjDN0jJ-1@Pea(64F273Fb6*clz{SEHAsQ$f_l%{Ex^|RJ{x`4 z!UR8r6*tMGP~S;o9e>3bzFH!loLMxoOc_A%6%_v%^!Xo*n;>xr(7^_3PdTzWojY(S z=cWOS4z2jB*%88xreT%_Wf6s_>J&n5yff{{uqRG5!QK zTQTD32uPiMJCIqF;{SPQYc zP$?C9A#gkdWZ5Lnt)?%)Eu=C{BoKWDH-WzmcBHDJFYB+BpA5^R-$Jo+Pj-d0FmgmbZ}TwdE!vwB@WH`Z>(VggrDe_UVQu1^rP?mrL zA&)=>VPbPv{sr^-Mx*%q2z>l57l{j{P#PivT;5rHMxMujc7|x;1geSRpB9LbB$-+0ok-k&AART)+|bgQ?-%Ky=^=%C)RKJt zf-9r}zLTgmj|8h)q-L0^Jv*qZI_b|3*0r<~GQh+=(l>#j0z`s(&_h!ZszcR57LT79P9HeF=|VMX$$G9dz1XWfwu zE$JtFAV(xLB>2;VM+`PVl||qXf;Y?a%mo(_YdqiPO`3{P8p}f*>zr2KSU^<4Qs~&Tv{+k1}976nu)cgP0kKDZ#>TGrDHkO7-o{O)b8^HvXcex>4P}(CiUVSZ~+yGDB zp^B1)IEp=}B1YsuS1Vdl2allii7#aO?e_bQhe=F}eHN_H!1FbpbY?}4xlB9e!I$Fd zS>IlVTXv}-2@r6ix5h{LUB3=3Y?9}CiD!`19f&JuQ5t)&93ba>vy=gp;GkOoZXy1p z7+^;Zgi~-sVZ3VC+vj&+&a$G~B6n%{OTB+>xY+uANQRr8_V}_eR*aqOQhMEhBoOM! zkbU|-N0rueXQQ5NJ-PWh^dgYn6g@q-l@v&GJ|5&&z;E6w%`?$s3mKy9FEnMzy~vjc z*%Ox6`@=SbHU}aoIOg3Xr@-zS4WtU7AwX*8`y9=KO*aj!E|Xw70yu$k0sh#yMo`6W zW1X~@=aujydhcbY$pfO$R(?g(M5hZbJi>0dSl;fUY_+N-#1R)DRqAbKBLV2Xow?*d z6`~s|#9hqMBG|bTmMX*uzkd^Mq~;L%Pn{TgL)#rQbrT_D#V6do5fZJH z3C4W-gGJM&kk_^m2@U56?-068unukQL%?{@5=b%~{qAq%RRGIum-AV(f}*Rg;MSvu zW&O#FnD;2`?7NHTMmAWE^D%ruNCci`^ux`dDvI=eCH{* z_T>Q`@Lu2t4Q;--ioYHvxp-42hBY+Aw3) zM77UZk=-6JYBRl8`ZOXzlx$Zge8H7Z*a9eU?%zZdV(cD*1jn!lE>+<{a9||{9zG`i z0#=asKxOh|XTMjG{?YS1ZRI84@2RM%Y}7Nwmz=dTk)y*wM2~S^B&aOXr1DcY@9KlD zJZPbRyd-Yj4FGKLi%Ec{D(0@@(j@;#vWP&y8bbqf9p{Ig2LUHkVE4%Q*`W`4k}OL= zuV>!mmq4O!k@ANgTLc`opnbeA7D@)6MIG^o#5!O$j<=nQ*~%HymilhC*dDU@H8MfB zs{h_zOaj`Om*`0UQD-k?%a3-6WLx)BBxN493c3mnzgBR0aui zhGNT{)hD&9@IZ zs2*ovNqd&&V7~_!F681P(;{oDV%U7HULgW1LlbUpIFZU&No_PdQ>x6k+9zABOeSCFLIzpxG8d{lE2jt!h^toze+ z&0+H<#GI=JVC{Q@4!n|70^LUj2O$GXh+55CP(NgY5N*=ssYDy@xO;F#=W(%4_@AS3 zLWII_D21p@n`)GP%=v9A02`DZTQgCMw|8&78Tnc3f@$NIw13N*tsVP0fJpfh2XV#M zel>p^2r*&*zkm%OhPY4`A+DI7pafs$8)&$!X4fmm%Px9!E9MER02WvkA%b(zGUZUcDdFYvjp_rT+up++NRh&LXj!TqzXiCEC7OR2t3pdeXXrit8tWS<@gPi&y#M|F zR_;Vcq{lawZPTR$IAbdxRimo+k?~weH3CKI{ddvZcY~j;GgJ1iJkG@hhFn2z=+6BN zl|d^z`uSEGOKAowlm3ctix}U8&VmlUt~ZbLFStyuyE0-%Hltr+W&(s7DE%G|tKOh} z3C2HwGzbGUAE}jiqvVMW^EkwYY1H7>!n^sTk39I>kw#e~LO#F|!K@pR@>>u(ln%@W zQOh6MOcW-u)ETU#j2Kqvy1csz?Y+`I$Z3rC4%LSefukg-i-liCVkQg94Qf4ZRkMAY z`S&oaoNe(%m#2F`_XeL%x=b-v3~h(3bMhwdD`9YiA^}t%o+1ZSTvLGg+?Ix@Bqch` zBA>+V$CD2?1F=VIFxCU~Q8o~bua?h%u154(wFe3XQbMvEfz+$Qk)EEh%h``oZQxoD z=_>>(Rhs&BgZiOmc%!5`T83j}_+9#(VPr%IMnvc%!jP1ShBmftp1CemPg(47@RUZV z@>ChFN&=i=W(MU?+&Z=+*9=rR{tlW2iJUs5ez&){VXsh`B2a8j_iVvXj=6m~;veUh z1XE9LHAs)%mj%_=*7t~;hG8l|Gc=&B=1>M+7C;DS|HBw5xq>{hJYj^Sh6QLgZW)YZ zBmb(zf9`-|z25-FmpTlcKq+qWMZP`(YLpa1G+6D1)^I&g*XlP|4nyx*4hF?syepBy zf1_*w*@q>Xb+qmyC&x8F5{#1MSwzpnUC@0`H8KimddGzWr8l+ixdZu98VbOv9;5=9ml1L|jOOS9 zA2lBx@Vh+x$R?c=ZS*glR*@YJld@4}HPWaBW0g!p*+QOL#2aLmCthWM!fM z*78;^U~#3hQJSKN%t`4M*_!&VG zF_o>mLrS4)a{S#@WF%lZyAr=qNui#}^pm`V<1fYCtYWHb6mmz%HTG1PmQ;D8Di3`! zN>i=tRJUf)fOlC|@lX2Ywe<@2j^R0^D^z9+gQ#h#w#dQ6t1IrkLZ&uw{=1GGAB}&6 z9PFDt5QR)fC2{T9LUgP*^Fa}J~U^``k^Jt#|CpVRT}WC zZ7_Ui;I+`ETjB1k=?Fg%oc>o^KBXq}0Y@6D(G+_svj`oN>UI7gfvLM zwdpGzd-IgN85%ai=HFQ}^-I)}W8KqSCOdOFvY&mv%_k%@FpLbB%HzqlKB445(Ge8z zadQK=6#olBd|n+#5g!r}taY$DVNG6F{ks%d-@tt=alA9<9gM}jK_;=`W?DElmTD`! zzqO{S!?tz`e-A9ok zWRHAzPy)yo4})({b{}0V_NjTYTgL51(wb(rp%gMIth;`&Y5`sm2rGnfJ_#?3dd@YKSY|L8OZ_he-1F-1!o07HM>y^HMvQjK>CnafE=*TdwO7F!^T% zjdI;w(|UIEXM2vGSF{E2p>lo2s^ZW03#Gr`28_6rITORR+gHeRpyXefqR%SIpK5NE+~|0x!}jbYxB<{(o!xQ3nr^wqFJCNvhiHYuSn@e~z5H zbN9>hBN9{jE%PfA+1K%v%fF5qxDmsV7ZX@SZ8Fq>b_R|2SopJk`oK|;{MpEffsF`c z{);-arXFZZw+-{^i$$j@@VppVE@*wYFs(WnWtC9stYp5aS~}-{?*Mj#hHu5x9d;Hh zQ>^r3K!(kxUdqJrcW;rE%z9|kheXY$^);s0Gc`{8eTB6R4YQzEdzZ2}b#)hW^)(Tm3&pD|FDYL*Wi0eg>?^ZAzp?4l|pFChKd)|0ag5)Klqo zn1s0hIp~H&3>p``bMIf=?YuQ3+i6*}#Tfz31(+fkStngz=J5Oh=?{&KZp=}#{)gk= zz*~6<=%2h1;OYL8?kdfL^JC55W5E3w&!D^ULMYAQihTAzpP>XhsLi054Fg~x3v@f` z^aogb5*=W9zqcGl&OCv0$y%fbp$A2cg4Yq~O(|`4_FvH3dvyG(x)FDhNq`rDjmTOk zY!obhU^FiK(@yR>u>I}@k_Sc}h1{zfXJuC3BN*5P86za{OaPdIc~z6kD99gbqC;AP z5xer`Bye_1o2cp7AUBM^^4pf_q}Q0G^d#UN;%Zd9!vW=D&Khlo)=x*oDPUhF{@yJrk5HU2xoS|BzyJv{U`M9X z>_*Uf%9y!B+lUtdjnc|D=e6V}f*#fxDz_y0uPzqh6I69xG426aFPMPJ&j6t*9@xoM z>Y_QBmX1W@_5cuknVVw?nDd$zH^z7~HACU7|I_HxKqe6!^s@j!N57e=R3W|0Y> zYCzp4UfY8FXd{%ef8nAbKN?(A$A%0IPBzOyzrLKxva3T!E$ZCXxnrqhEeKUW)oz5g zJjUUvS?XKBcSk&kOeF(e9Z;a^Q;T%pUM<6{L70{NThEx6N{)aD8rRVL8RCPH(%%0bksJiFFzHT2P>ZNQrHxKo|;l~a=Z0=>mlPk zFeV77vWBWLoN^yMujH+VSYBXTqvS4MeQHka+Z(FDixQ3P9)RWALKQPxvGkdlzbiE~ z0}7nu%D|aGPw42WBF)=a%R#6or~@odS_U8wQ)x~E+dP)dN|;YU^2y2E+9|*C<*4oN ztg`85cu#@5r_gHL0-Ut(TAs-@;yt(iqwA_E9Jo#uAs?_Jav__=L3ufK*f{@ z!);DKIH{mJFq{6en7sJ_Bm~i$mhc58sK~74BcVRaplrHwre?29E4=Lkk2AEUYYP?J zZMww3EZ7>VBCSKb2`k6*>BE%A|0FX3859Ae))um%tIULHN&&U+%1}5l2Cw*}nZP8j zca;y>OGSD)0bXo*7bKl#9_OVMaOjj8=e{51Zhz8Pk>XfGjz(arWlLTX>7X_;pVz^w zMwIwRBS;&2tOe?ry4#v8xT1SqZy)WIz8^&C_xz)TyvX7@(~n2qni_9aS7{>=3F#z+ zKp-1_zu!Y;eKa-{?)@xu6R0SmZ(L|(^6b(a4dE*Kj^Hnvi6O!v@{@Ch?{aP`!fP&V zIPMs1)zrVJ{1H3VHNxDkv-%IgqfCW^)J}W;K#*SnSS=seb}N&4 zjV?axaPK@J^1l;8mAi-S5tiMc=mM;D`V+ZT9pT|{Ga_S`V^#fv^qAmZ`htG06|Mc0 z$f~-vp{I~(n!bZO0!fx4Pv-#N%wnuLk?+*0a5J6puDnt9APT&+;xn7;2}{On{rA)# zC#HH`!DTA#X0~B2>ovC%SLI(oi%d2mwOL-mef};yJag^y=g(BF^4aim20#FwtLR#L zxv@Gbqg&#Ts4O=0n6DNgSW)=zH%d8JcgAbv-9hO3C28{~PGhQr>mKif!qzPU5Vs&7 zKv6jf8e`m_fL=He@3J{ul76CJOo zHU*1FQvM7ASxkGZUbnzfGcg-dQOx2qYkm!V0i448Wa=kBW(ZmsjmRZpB){8$7s+!a z6`<4f+x?QTrQB-ozyzq)BFuE?=C4GU@xD@I|ItAeat(RDg(P4oz2pB%cyE^zlkct~qZ1bCTA6$9Qzt*wIoYtJJu?)%C-B7Z0YyV} zzV{ekiQPcjWk70Mj&-|gFDOeNPrvjGd16neMz>7sfyXoq*KFU7?<>p%lb2P>(JMeE zl^|81;i9!Flp-DZT8I)MmmIGidy4c(VW?1EA)%QeP}vfqr{7ycDO2r~$SQdP?wWpkcTP z6uZ70JD&0jbsj^>X%7C>-ChTl+RxD#ZbBhb>4MhSHNzo#j7%c9Sa{8ii;z3tz@L4W zG*T}CA%Y9Hg>FwPygQf$v~v9p1J{^e-(DxfTS*1F50T|J4lVV~j2M<_{RJ)W_jqCI zq|BOp7$x693 z=v6V5PY42b_Jgx)st58L%*)$FHU`Utv$!|*!wL6$@9pz_u9g@w53e1mm$^*2_)IUj z0}d~5O7?=n5~;(%DclTCMl8Ua^Dk=rLJdWYF}nhK-P0$x?;ctIb#&XEZ)Xur(XhZ; z|A>FU$H(X5V_4I+IHi|Hb^q1uy&Ef$2-5}4XD@Dnd=@iI`onYt zDZrzp^xA)YLmaF>I9Pasuo<4;a`EwoH?RoytQGUk*UM&lpbB1xNtE%yM|-mx)Df&> zqtTv`PcQ=exlvjV1y3=}S0~5Qk%7MU?=kd&?AFkAd6LpB@7`^ZJeJoe-2xRn76<;W zl0+g2gV){7A+1k_sb6K8H7DfVJs^OmL>R-`)u273%8kls*?7|0=;lp``*IorsG5rP zkIE1h>ba2(KZFg#!*r?00;hCxuc#3TGv?o;Q%%pNzB*?r2~PYNda}OE z?oBy|C+7?>Re`_>C`v*OY}=y+QK#wNl9PL2j@*~^PNq>dJc^?L%pkgk=^q~erRFr~ zvhLxNxEuTshJYbO?glm?zQam_K{hI_IlIrub55?S(7@mnA}|$trC0&zJ&|BkYhqvk z>Nd`Aa{oPzO8wyq_XRbCir-^hWYLvt*4Bn_URQlR#?+R7!IOV-Pl2%!{{V4grH-H? zyl}_OLnZQYJI+5)Q%O9UK&SNaMp+xU=IqTp$`>@389W%uk{T_-za z>vEOdssV;#A51U81Q#PRKHGEZ-{Z3huPl$^HuNAb5OMmgdP+B6UUa}SkNPsH$Q+Wq z)!hc2DZ!i#?}M>L(Oym*!m^?=?-D{;j^GA7W~7)79ZEw+900xK z!tE|z;ekaK)$PVLbf7;AtqmASLl}&v#s58T%NeNABVTIMCxN`Sd5zWnv9k2CDe{yg z^g@1!k4C@aj`LIlk!I2kXy-$Ewi+Y_ML5!Ixf%#yC+2L7dUovbvMf7};t4^W0WWjt zUzH-Z1ke_Q6LDnDVub?yot{E?|FpZnDjCL7QeoBsUgDB-E&#!CYKu{MX{^`gkh$8o z0g$C&a<707f1%}dhuDMol9bfFR_x>-2Fa_g%0` z7?Y@AcmI8CyBbJOLrEa%N3s3CMt%!nX2}_k%oZOpulpCV(js2L94`pOel`iGl&nMW z-^o5GaU>d+sKLVoe;Yd(9Ug$w%emtOX3Az7@{Awgr97ZeH&zY*jy230 z$q*rg%rq#Lc|dW^%AAPRKfzPOR_n8 z`urePg)u}`7EtxX-K#0i8?u1Ts2d;cI8RnLC#iG%kBr4lD&l-A)^~08K-PHFzo?fq z>G+@atf8pxBedhRtjTgfzbmLP@+`qL;&)upb^66ylbPPcfoo;0`r^loq6<-jccm*1 zq1qay9!?{mz*Shio%^=pv6K85Ide(XF2x^I<4PkLG@3Y>Xp*-;Wq11}7tnaa1Joyu zN}SJI2-G|2%@XSA^#ITS7h{&YV%NaQ=&Gg94*9NXZ64Vo0iggDKK#sB^_5q|rweM3 zrF$Cx9>*WY+`pg*hB~`v6a$uI!3!+@&^3tY=SAILIsuN{AZT&_}2AIf0F7ekGvD=GHnMj){gY}Q#hDizkdI(0_d5vv&a9P8fn;c z01&P5N&h3|2bb(sL&*)JFrUq3lG5lMLiw6{+f$6`?rZ}1e;qC!{HHV;bY~%Js6S{s z#DO$9bb%sGhHp_f;>v8L%MX?A>H7gu)~UjL91n7BTFamu!_f}8oWP59yCQ2-)J@*f z5V_GNBMN?evh1w%br`oCZ!bl0c=#N054c`L5mno=keleV>adSO#FdnksoU{mKzd@; z5C@aG6bjW8ga=Uyd^lq{I(n?XfH^Dd{v0dspV94;W=8;Eu0Uk{<9q6We~;Y(buL88FpnniCdw@eFEC0 z^-f*DfDSxT@^4lUfd1hA{Z~`U9z;$et-P3~b|=p1*L_9WUDM_BStkbqN%1xjpyKb% z3`F*TCUU1GrWaAlMCl%q3bolc=-IKE#=RZUgC0(C=r7c%Hd^^=#|`7gB|t(iT$w!b@B&bm{NEQ=|!#kS#Nps+E% zqm0+?R|g2r&+iIx8hK5!Fd#qsX%nhq%dxgulACM|11@hLN*P&@o=Gcq>H5fO)`iH?mF!xwug>v}Qp8(fWbyEQhhlH$No zswWD5cM;>;btWeHy@Z&Wk|@b6EL;yw;ni1b(<%t-@SR-~1{|}DXqOd6EawRc{}QjU zVg{7>Pz&~-mFHDV$)&2&K`?8fBS!KHk2f>(3N*DP*=Hcr!Y}36x-9KP9I(T13F<@% zxBr8Q|0z62c?T&F{SQ8>8nZH2O@P7aQ$VV~<4>o8o=@ngDDo-(lUNYc;zev|^k$wk zD;08w*PbLPck5?N1-<+Ya9<#7#;iRzyY;*F{C6>o^sD(F?{9)Apxg#a_kUnr*L5op zRVi-cEz4#IGTtwNtEDvCGlERYs(4m`m7wG?*{F9`k&`w?Q}N!G+lcG9NIFAZ4Xifv zaOyBr68wXTTh~nu9K!R|l;;A}aL;*8(LFyTd#mohdro?(D3PwJ-Y-;nb! zX2VrigdZqzShAO^y0Z%L5*t(bM@`{3F8)vPIW+D3Q4_`OP4Nz)p@+rIMx)SZH4jE& ze(U(;Wuz7O2{|9t=eW6c0D)pq#FmAFpf|M<6&Pows5$)RiX1nKBGPNOhkIfx`}0X4 z{MJ(qs@rFv0LKS)ITS-_{dLxbdY|810ebl1ks?o}sQs?rpFul&?B6mAKb~MX-Au6{ zwxuMqK)`YSgzm1FCPsKcwB!(ob)~hf0{x{^jgM{D`oGSG{T|B=$R2^xi@JJU4Xty? zD7(H~3c_Gb$%Ddw=%_Dzs0n}3NOTAsUB>UgYao_LN}r(wuxX8&ZSx^nm9q_!nis19 zXT1<+UhjemWr`T>GAzJdx~GgBQXSk4>8bRGdy4;2fSX{JAxwPO?UF^xW_g4YV2Ol{ zimN{)sVNgqui#0JQHMSNRX>^3niqY@&O9KDUX(09jn@VVmUcH(g{asSg2|LoXLgS* zAL}iQnFDZI_1|n%M72=3Dw_Wnsd^s|wMFf{YZz6>=jzmqJ_A?9FN1&ec(ZuiDP+%R z9GT*Rr+6&~OXzCja-K(Xaq~MV0kekM!y zWpFkw5JvqA#knRm{McX){?7t(S9U7l>KbNH2MQ51MM-9G_Ubi@F_Prm|ETl+O?3Qu zkIFHWNB*0D9yX>`#VUtMQQico*i$)kVday;l;L*Q1B5_LvFyL9q;dNAbwc~CArsm_ z009Gu_M0n%Ift1n4c38w=%`EuJ?!0{tU=rMdp8P~@q`tOw%&swPBNL1lf2arL|HzD z3NnjC>uZVZ;M!6%(1C-^=>O8t%c5voC<*<|=_Sj+Ar4*_E$Kk(_h9|qW?QS@ShF-Z zr{ibo%q1~bvM*bh5ysg1Td|BeiAe|lOG1w+LN+P<8;mEF4U~Q!<|S|}GLRpvO%M<5 zs3Otuh3o!Tweg7>!>|szypS^BLw(Hv@Ep|JAe~BUWocw*@RrfJks|#=xI|>|fvV({ zrH@7iwod=x1c6vYm&>X1Y4lEnul@l6#{JD7Bu2iRuX-Z01o?t~8Fu!?w+N91i2YO0 zWvVPu8|oUOgpx~2m9I)e!0z3Ayf#{aVj(mdemQq5aQBDem!sw^W{a7gn&>Lv z^r-|#CK~Y`V%(`8Ed-+hT|rwz%ffBaL45F>i_d)cY74GGRST8Va_F!@2%Sal>^QLs zj{5euwEcV4Z-J2!L-o@CMTh+2@O?PKfKsW_@+3DT7gxS+-$)^ROa?NIBfUoOG{1d| z7x=9==BsQqcs;K``~O0}d1e3cscQ7I@bI&vacG4ycW4r)LIqBKi5R|0(p*8w)@7Ur=jFW!Sq|1 zNI$LhriAs%jk^`;D>E3*n(KGn@0nq#_HRTQ#&}>ZVbjKTU+xT|Eu| zRc!nzHn52UTrK%YLILgM)r10|*E)TPxdpO#zF&^}2p)zA;j2@aY2B&U=8qI5`*UB4 zZ$StfHL!QkQYbI_x}gx@OV(qD-4OWbbkK6);6t z#S5lB$q?*=$x%e*G#Do|F4^&M7O1|U>NkkDPEr~~ zn@s(8n(ZHIwLv%$`Zyg|{x3Nn+q0*LbLdVy}2j zm-7IW*~k$# zRVVp~O-r7?M!q#6$)ZYnW#~>>qUi^@(X5}Sw&RGU&LKTMBJK)-I56Cr=G1JEfOCp6 z^K+>eqlr>4`~+W8IQ_fCDM{@@(MoI*avLpffWJy)320Ru5{|FC?S~0Z3rVu=4`=Bu zqF(#fRvn0`f^osbn`3;*n^D?;#PnfO5O6iUFW{AREXoG=Fh>G8NvL&cdOsP{G~`3Y zPZV5dX;I=}qNsLpT3Llfs`MVlw?N%b}m!QR$zW@3kWE=@}RKZf3bapbKvljqy zSW8uva2!O*gMj%&4>qems)*nW6!ucGk^d^1E?}c3Wi3CVH<0&v|B>|r0r2Yo#6Xz^ zP8_q+kQihtBbsF>qqdSb!l-aE`dix9mlN4r#>KwUmf)BbyS=6E?JW6p=gHRte2-mk zhZj7Gaee%)ghk+Syesd@rPb^+S^OrBC`$%fUr|5tdE%|LhQ+cO!fKMz%7>JfE@LTD zzYy%;?6Pumq~OcHZRp%t4r)q!>HXpBSw3W`wa$3bRQ+F0OAME4#b_KgU zpTK2{1AAP|pWJ{W>d=Z?2gj2QWa%NG0Mv~(o@Sfp?(7$V!y+-aFVGMX4L#vF`|R{9sbcV4 z-H%-Dt#8Zzd0=f$IQ@uMlEmVr!@Q(Xny&kx2ag`3X|CJF&wf`5mhx@N={yP;Yu(zL zECwZXqvXQ==?S@$Zz?+vNvk~}`FAL=$7@>>_S^uRHuJ8}crY66)7HwQNJl8~$jYsg z(qVDis`%F-VL5UHtZ53}A(P@Xu~K4OZ+y-od^GMcV>ZeNk0}OB-C}Q@>^c+YJ?oGl z^XjvVk<;SPUZSgQvx@onYdCHZ4lmtnn&~M6L~5ipi{Z?-ySn+1wAEv3G&WIu$8AzP zm5yE=EDL13>3Xh6u6OVIe44eW;I3)eM!TqEiFjOp>Tw^3wDhF5oy^iQIB=lp!vi|~ zxi`67R`>A$sksnm3=7vdkL5H=OAkGwZf^jc@|qf~2-J<3cSNq5i)T&b{rkzSnFs>s z{pGjQ{w3a2%t7i+eF%Y4!~}%Ts$(8qdvq}J#$U0VScE6_))a;9JsnlDCBMjD&bEC+ z?1~x6ZgdcsIONtkj1=s>63vR;`vCW0zBjcv{uA0xPGcANPPvNK-baYdPrd)M^+%>rSe+34@| z{7hr>A^4OM+qx>1b8^IG>mh;D(|E~ZGlzr{>9cldQ(1(p$bn6>OZOa~?ut()FDm9p z#`U=Zm9G;`(ytWnFnvItm1&jwY{db579A=<^XCtM%*V}hnpmY8k7D$I;YZ#KB$JC$ z?2=#Ex$-ivS3m`C5~};Abuw3idD|>ahQgxdoHnyPRDg5oUBgP=*cMs<)5JEHMu*a; z()(5_D){dfkhc`0Uehzq_e#^Sowd#Fm}iKv@}YQ&!);nvrhh7$a4?xr^uv-xH$`e;`m$ z8qm?td+z-l@i5zWono%~%xQErZ8;*&7}+gLzw$#V$ZMS@^_pfSn`yItwGQMe#2d8w z=K8^dc9A)gGssL{+do^v#;@;J7p$8`Yj($jJUZf~SNBRjw4(w)J9&+mz+2tVq zk6*V(2RDe9)m=Ak|+_`y;K4p*nyyjKv zELJ}_-eci^T!U#;_oi-rpfoz{#5+hHM@JOw!Ome$?HsxPn#N1naW_UAQze!uMN$vC zRkyp2XOwi}X>^^z^6H|Y#b#_kWd}@a3mQ`sxC%jSQV}z;*c{$TJ?F_>(MzEw={9_o z5gr+csc)XM=EC*u1Ca0Tun{;nWiP&3=%vJBCFV44Jv-4fH*KSf7QGd!at1AV)Xs4i zi(Gx1Wdvr?Aq99b?rzMy``aCMNuJWuR~K(+?W!*8BvRtb8qU36iL*JS(fOXk_haNy zsaXua&7Cn3zr4}*AXeF>69Im7T{0Bc#x$*>uw8LKzeAjVY~1k9tQr13WNO0s-3|=s zLDhW{9HO^vf!ICqLoqU|U*aDw3_C7+KJVm)xiMDMj;dZTp5VgQ1fkz8JgYYz?qtqm zxY&E822%5z%a}Soq8__-@n32}lzH*%wtg?#d;TU@p~GMa%frjwunZbaZnZ?$*74~v z8CibG2bDVo75`G($h^Gy4a2#{c|ze4%2zXcb`@@;%-vjV98SMgn%~co-Evwl3p&N5 zBdJX(W@d^)aOzdyy2=WU-}6{gl!0tMYPT3+5_xY4axw`omQ`Y*Cp@&nuP` zQ-Swg>g7K^oyecT&qf`7+;Wb+;@pnok=U>7l9M8G50Nd5<`;I3_Y%=eY^HN3L4E1N zRoB~xsljWGz^Z>)0g^cGq7rj(F5V#sirL6m7hLIig)I`jLMmR0EmN{!j>f}b+OY;c z7U%|cC^}~@Z5j`k%Ya^xV)Sx^49&@9r|@pKQSa9O?MTIO%c(YDIv4EbqvygqfU{{K zV#&&!tdrwqbT!*N&+3aXN?pn*)n<2~sxg!N1x56r00YV>Z@2XGxk8&C_`W+w zJOi$AG>^I(8=pjuZs`w$P`5Z6yi0_I#m}m2FQ!s)4KkR6Z41vBLjnTOb($7Gb^@ zwWwx(ah}$UmtprOZ&uI1;1sdT@BueS;5XD=3gohjIv(h_4-=e!i+TO)Xhr{~Vg4^s zUX#1)^{j!Kx$>+2Y?l(yiuN|COD)E}iW8@WvSRaV%lC~RDg{r^Xbu0GUB?W()}4^S zE*~RNSXdMWEVb2s(qgT+_~-94yeU8Ht;f7uZEFck^154OcKn;7W@(IGz09TFnkB_d zkW=bRXySS7!+z_@?7W?S6oeaYG{!jwjj2ZmxuYwn*;FU9Nv(3EL#L9lRb&h0Lz$gpJ$! zop&!4EG^7CEr89kktIsuUWYmFxt>$pS(8b4T#=TCk{FN0i>ZM-TBO*F|8>tUw_wp^ zF)$Kchu=XbV2|T#Y?n~V8^lS(yPjINE#HuIKeGSowYby8pe|KeU^I`9ua%zC zU6)dby_(#e+Cq4FU>TNKL-b?sm2zI36S-LVLIQ|{^w3dR<>?4nI@jp6*&@zURn5|G z6P1Z`;CIW2-)PcSRwZ0!$?W*7TIyjxg8DENS;j8zJh6bQzupU^MSzy!qOatSKcpTvFSCj;J}mq zV3q8X9EXP65wYhHAS+b7lvu9BPd%%M<=$U0cqTrrgwTwGH;?XWkRzLd!t_fckqwKv zp>n~NkY#Mm7Os|&49+U=tn+od(je1|gGcgY)AthWy_ou`cWc+Wxo8En21#lTOu*6f zW1b}oCDDAUpiJW@ya$l2sDo$wlW+0qE92GWN6t9=c3qu|{nF2!81c6?-C-_5?Sp0V z^o)bIik@p$G#|puZ|4$KpG{;gzWVIrZ%J*0*{r12xcSZ~zA~_~xftAm1&y(Ruk3KO z?%h7vkV%co5uH%UmORZ3b9rx4H|JfBwhS%zj_bYA8Zgk86$+$Qpsr7S{3MY|@PH`x zgvJ?7wt2j_sTH+z_H0W^5?k9P^V({i3#Nb~T-U71_%?IgVZ?9Q;^G~~etHkEZZ=b! zrCgJJ_x74pGxgVI_3vVnYHhnPFXo#EkirhS%aM;#*Zw}2(;Mcxe|xwO)-m6+r>-qj z>I}UVra8T&N{S#f zPn|ewQuF5%x18<=TTMdSp$}J=_EBS5+;6`?n1iFRIyK>%_M4NGYw(N3reiaCW%F+N zQ$GLFcILH~$n8u72(m;+!!s~WrM%$qQ^jH14;mb}#>VclHNPtXGic#S-j6gLeY3wp zmrZt{!9Mn#;3?|l4*#_v%rPm0C{zy|3*nu8eHG7v49c&)+Zrma3Y)klc)Dn}c{sJE zn{QtExW=ubT(2?daQrRy6p6*nE6JR=JB*;*b?^*>jwxJpFDTTEIB%|F=b|E?e*4DS zs|~%C^JN?Ftk|@XtZ3IUg9ihi?85JNwn3+EJR$QlHHQ}Y)!Eqxz+bAHp0YGFBqOKH zJXbW|g&~j+am!=JNSs*MlR|A6ld?xCCy1*Z1@tM-nV7^&WMZTz2gX~2c0T?2-MX6Z zOB~KPyr5={7pHfR3%@yfgf{{!`nmUYF)DCs4(RI7*Kf?wY^r^=z-RNTI?4xLT8&8J zu2E`n|0fwa+d+lc77lN62D`r2>;B3&>NE;@4Nw*wYmF#BQhKaXwJn`w3Cn@hZ@XZz zId=isES3g-1(qvjE}iqf!5xnHTl?97T+NN2bqDV%9RG6uME?E|D!8)9&oX-$0@*zT zw(GYfD{i1Xfp1Hb4HQ^C*Yn6)LU`bOpU%Zun}n!gjOjjr3t5aqrmt3gx*;=;Y$~pt zV{;ZN#c1xR8R@y_(0mAkUd$YH^U0(`-lGlJ>sRVLFKkI9(?|1eHRpBtyj7MyINq*5 z(Yxo)tVeIC)1n`~eET=wd0G3MR%VRpQb%?8P7=iTl^;H`EhZwp7m@Tcaq0De zyQQXM%u61SZNes<+9u3bj_)umdRfyt_VXZj#&AHDg_0Nb>R+Fo90}GU3aA5%*G2qX zYe<IzRCx7FIn+**1;ior+ORA@aJR-ID5GPBv955ed$QzttBY|T z9$|O!yPPvKwk7-lWwTYGPL$v8$HfZnK(fwWY8u0ze?0X{&Ae>GZ>SRrAQYiwW?oPj3UpfnBj}m0Ou4^8gT2euRB*q9P2liN;uu?tbu4(xxoI zxNxtbx5>l^U*+>4$Ln*j*<(Pg5of=O1r-)1UHZxkaU86>s=uha+n6*u3$))mE=Okp zR<4h&4DZk1d6XF#EFo9AYBv?YK3Q5_>tf4jrtF~LzvAGT%pN-$sYHM>jc3XirZ z=+!05gz~9k#Ts)M$d!ZStwT8eV3m=^(}c6s`RU0mo8GUQ&0|YY)_{Jy72*4@4}DmD zhV*_1X+02i`x<&$Wube~yn3V{AH3butg%>+{2qX0{9l^{eY|nw-5t?C?~_$)71K?tFz{IzN}EJK&5+YzwHpJx&6eZbLO(E;S)qb zJ|~ncBDRe5XPnGNyNCj@=!&P1T9(;ojPx4wlMixmFasBaD(Lk}S%zAGbXh11dZ7Nn zBslUu9FpxEofyWQNHM?fgvqX82z;Y$;R*k-5d4>Qt*|V(?Yz63Kip=0hJH-w^ZW=6 zo56}+_9*nL~sBO%Hvyug*^ILB?LmK;q~$U-{N`6@Y}Fg9HaF$bu=bkBPa+JEC*faIvTk9pwp8xPVln<>o(Bj8;)qz2k^k>Z-|_5E{7oCD@-k z`P@O~_@CXk?uwS@ofJMpgR1xh8NNL5yDdx%4C z+TlF;^72S|`3=Id&|XI?=5%x{zkYi@BDrTb49mFykrGU*akv_*kSvUkz)lXJPOh%E ze&E zw-d;255R-lH#MYM?@Tanl(1YF`tb>?)(4ez21GZ!TI;eGie%z9YRz9wbG_dLypVgk z&qbui#tz*5-}sR0v+q{?E_t5sf^lBeeJ}a^eg8*~Ao@#)BoN8{ofgf92#*d59iQ;o zn^zl>dVXXSH?DO-clVAU!_ZHp!#B!re?$iAl#?ooytRf$>D@NzS!j7rR4F8eD^(#^ z&jA*^B4KfcC`NO4A)YJZTjRH950KctD*3CSdj%Kc)T71z761CcRcQB*O%1R~PHp5B zc)wGjqH}2?|L)xyMn*=pV8^J`n_*LtcKcEv?NhbPRpc^StI9zmqN!4?$7NjKt#n@< z6>+_|I~AMYR~r|Mh_tu)1B;IN)hb`}g=uMNMIS$ce>kx)`@$=4V>G>dvf9wbYUQW!b`_dk^87oVn~ZGf>-r+N%!5 zzE#)Y`#UQWfK}-B^VpqvsTf1|=H*YDxu2g&Fqe~SQjP#YgT(Di;}#-gU|76!A-9k= z|HMQejxc4)EzSLlbGJrs&<<=4P+KsrE@eKa&7%}kaumR$+BT)RYH-mR)&31^7x_;P1YMQqi1U6ZCCxs?o@j}Qv zvKmbN;(t8|<$J@=Tlu6KYo*=gsEO>fL+7<+^LX)Oj=R5}CAa`BcTL~VCKlvs>k_h$ zM48WAOg-u2Q|}!5`1-RM{zl2H$YcGPMp3iW0ko{;N(*&V$@?6K!{a3t_kI#sN#`NP zo88GjTPXW$voslqIsv66CrsArB+&Cb5yn2I02B99rG}x(@7`F8+`9+2RN)u`P+YF- z{|Bmqx?z^FKU`h~%3Q39O8gzb?5B@@4`wxPY+&Bp`cZOO08%lS#riAq)GRXnQva`z z%L*W_HqIac?=*I%(=bv$j%XOJ5?i6!h&YYGnyDkM>%$X@m2b64Z zZwu4ywLZ7YB<31;{9JYhAMdiTJYRH!3DH0HHXP7f>zqBarN@qh_*oM`VZ_^ zlN<+=q44>~a_?@j^Y;%|>;DJpN2~J6e=S2fGxwWoEAB0w@ z)z3!j7wTbS;wM4d{E`y4Fd_BlW<~dl)VPhg_Kk)t&ze**P@w}2P|ryubNI0h%{ z1q&7Su=GM**ff8!8)RfiV8R4XUB#5P>EAvUtvbK!GhcsNJL2^_#QUNZ*QA*Eb|vNm z1>1B`&p?mq`u1=B8snRRvSB(Fsk~0Y2amI}$ym;c|AG4?683TPkdUnGEPR7L?Qj7AH_sYY5iOHWXB0{Udu;H==_8Yocw1L zsM2-gJqf|EsBMB~YUmhIi#k`pC2Su{s9lujwVB-Ymwn*1e;_mNs=xeNjz-by z0s>I2! z(BU_%d!rst`p%JaDJTfr11=9&dTnu@K+E)2kbwrqw<_LvMj6<%5Qk1REU;_HB`~6; zm|idM<8NgyC&cz@gZ9++W>g131PkRO^ZWlSAN|3nXi939Ndr8`1Gv%{ zzceVYZ+|2eFRAme1t8=HK4p0PAACx>aMEdl-!^Zp$iN_wz|u~!7(HT<;YD14zLulq zQdFHFP~TQ7fSwpUZ%|3pB;ieZBxDOstUiO#-`|7m)@oiEl6Fyw{#@foBqCPfPE$F zm|&lh>{t&@EH#Oiz%#ARKQ_s#YY9D@aYuM(`c$auUy58D z>|=JB*um-GOTYkdcO{|Oj8PYs>UhD46jRH37eIhY^QpBOndI{8X$Yh!E4Ha^bA0{r zfhc7=$Orc)oZh-jV(CTb`rB!vOA_qq89qhK%HlAt2C(e2u*C?bQgN8 zysXe`Z7bYi^BnijVcuWXv5l1*wcpsaaF`XgB~crtxns9Y8%fH^IrfOwWKWhOCOb+^ zk7aB7YDE)a3hoPa$)dmk*A*+eziLhw3nMXJe7RbiLZVr3P}9#+ecq=Kf5ie-?>=;w z@Jc21&hAd*kp8w3YaN@sEWSz@v%o(uI}WDFVrbGR1d@^*0D`#!Uo+CEn923_GPBy3 zKRIZ!p@sLjvvJ(SETu;Cj^NV1VF}+lqKkokP$-Kli@JHWHcRz0?upNFmT0ex2$4oj z&7*Dz*|c9S1NuO+s_F!j!p1sVUO_#FWadVn_!JSON?J^rx_k3|65b-y6sWb?B|!)9 zG%n}&=*wHrYVzqo-ql$Hp6d;**+Mv|yPsQr#zDc`M=GGhlC`v=)sh+9#<1C>51{7- z7kAdcZIiCg0Q`6;tWpg|kVe+S_^%Q57xJqw4&vrC|E;z;vj;|hY~o})Q68gwB0pz7 zWj3tuh9S2wJy^z4{Z!R<s};(%5aKnRwsn zmoEqcjk*O_sY(wG+OO4f}N-pc_EGq3uQ{(IV@d*j> zO#sO(_YU2yvM^^OM)P)lVghy)NDxqP)gQ#q^_hND)U&f#$@H$KTl(D%rWTw1R+Eih z%=zCjKeQR7GX1oZ@2-#>o8@hjiP7TAFSZ@-rXDrFr2ki!rQ_Hm909~6nQ#^Dtk;dd z+Daa9!z4SnYqG}knx%P{kcl^UMC)RB9bDsR4WA>V{k#N06YbpIN zi^)6v_WCt?d)B!8lKl_Bigr@SC2wJnO*#epxlEt8X7gJ{hR(bDeE#CJJ_uD)!0G7} zq^ofEr5oNsdm3eL$k^q2P>_}1Z07aI!HO(qQ+jcD!T6lTRFa9dRGlTyQ&~(4J)HYp4r-1lsL4x}&3H*)w(Kz1R7d4InsDO#gnXBJjbKYVz+XCwDdn)|k z1Kl(#YQ)32j9sttz+hZs0Mbf7x_6uaJ-zc+;P&UK+v|U~ZCNDV;Bv-5_c6iRH~LVg zx9bnTyWtcFT?#&1Pu(S)J5MMdOTT3hhN03_g666@cZ8@U7Hw($Oti0ZNi_q(fC;#; zF&}kBHF^?GL@AJ^hOJmHl|oQy?)Ja2tCO$f=F0~laExTWSG~z!v09`-JOy1DMN_GG zn){+A)#Ltsq)R-(t_b?)M{ON!_aI~lJXqt0pK9y+ok*hMS*4Hhf#>U{s;b}kQnoaE z@?+nVu_$PKZ79e8#jkZKHGq!Y z9UK6Y+HVRP5!g_3dB1hNm=ZMQ^y*TN_j;^=m&HjPYbxRm_VV6W8gT|t33(=!hvu%Z z_!g6Y66TCJU_kgczu9nm5Pas#+V%^&GVe zdxSv2i-N979=OT)*7i{DBuzK?T+G?eTZ485v#~pd-(XCYbsiFPCtLgtMOceOco^5H>QJ&JKG9N0|+Au8yBdnCkUsA_KdqRd_Rk*DSur<=D@K~6YG%Il-IwRO+K(FQP=I* zt%D7ax{ctX0DW4O>K__UnB9>Sul0h9S2j{J^GI4cbp8so`$etaw{m%A$f|bfs=Tmz z_+`VjS6$&!rbsAiQJw^yt9`}sf-H+C@34M21mxw8QmHZElyFxOY7$CRZ@S#cl#iW< zEbfre7ktS)O+hOSS7)*QfmUe!o2+V$2I{Tuaq$^JGI(W@n6e`^kAypg2VxPuxTP^J zl^G_w3(N)tdQ6V)#3Y);w&YU2aC3+$#YH&)I+V$MFeRwW6)ku5j=kEmK`x|!9sDjk zF?u?LcbXX3(ss!eJVo=|R-!xDIActP0`X`TWV0r*T8cxeq-yl34LrTn#rbUDf8?Tm z7P%grsw$RA%#}UncRyxw?G7$k&_@DHE4JL3^i{ z++I&iCU?`nV)?~tF$(J`gok!F0=1+Ch+nWten}+klgDGkp_C5U?mT{27JX0ZLiZ9I z`Hea)fZe>^kDQUn-i_RjqYt%48xw8-cJD71K9T?IGqDGEPLDgQo*t=7k#n4~mQ{J7 zy(ehV`comm6KHRnKEAP5-)8KG^y<@zcy9_qx2&hav|ai3pa?bJN3im18`#g*;=-;_lO_odvRq zwhSFR>Zw*ujII{mn|ew3)Xm;n^{B&G@c@b4Dk@mxRil5V6mwTYVOy-5Yk7s42JepK zq|X3zkY*-!SYdF_;)`4GpIgP4MDd*;?OpEkYpdm7KcL}!I;7&MxxM|le$8mbrk?AJ zo9jhY#5fN&-BY9o(Kn}Q9TqBD+4=W=Sxy-kpI&WGQ95JV*!mgem1^HdXOOO|@v9#!OY+XbuSeJgl{jAAz^OiIXx&&DM6_a>g#<${(_ZF>WgHKPSmej{< z9B<0=A}m17Xz$kkqx1boIcrTS-Nile`>tzpCPts_hatHiPfLp|o3i`Sm{iI@w&}Tc z`j=(l1`j0wHiVns+rlDhv^n{R*SndO2C-kQiB~}LBj;$i{dR@5={6gzdym(R^yEu1 z+MA+t*w0TNCs#Ya*5F**f(_j?h;%&i_<0D|@Ymr9z zWSC6ABPduHDf^B~`H0P|Ja$~;_5N7^w^r`k$%w8i`TYy$$+p9m{l1+cS-ULU&QAaI z*GJ=0OEwJKwN8d91g|P(1ciM3eJu+~$nk0#4Z3W!;EHJ)4K%W7^7Cts&SKxkFvMHw zsy6)ng#OqqU2R)OId|8nj#>P)=|o%3_;D$P_jfgu4f<6Z!8ClWllgeiWec~g zje~vy@!Dy$Hp1tq@-ULqx#U}(T+nlnv9WDv^u5crl|hVT#fJr^$i2C(-?de8rr)>} z@s?@Z2}?ltu-I1gN6YvrnY3_tyeK8(#$SA*>TTExmJ|TZGfZ?ZB{GtHUQoWOL5e1hiXD={QD3$rTp5G4RJLW7&=ll~bphUf*~u z#p3AnOKqr@`p~5W=m<~R@PLsV@nqi;r_kWjw$B_jxw!pp|B5LuXDKcl8hWQv+0i<5 zg?t{Zh=2gz)v(5makRZflVOLyn0&ZXc2MRj5)LPwKgSE&Nz&i%pF#E+#0&71ThHeI!*0#5A&W()<{E&3r>6fL8lfv*P0&t%LDOei2aR%+y&Dt1GrlIv)MjUQ!v=T) z9a$uQza3XOU=-nE6@CMQ@gw z^&P9{gU?8>AOjy%I%P*qKFghd2FtrcPUV~J?Ca%OPTcIncD9?=Ee={UY3jWl9;Er{!M< zw6yG3{kEip5fmz9C;9tz(w0W@$|^fiCN%p32QC$7<1U*DdT>e%x0Luj1vIr;xZ$Fl zv;ArN57U4J6>!3c?ee)R#ol}qL%2;m#Kl&7O8zAJyfmHPqnfiVrP%H z9J?Q061=;MbRrEAzic($7AUiEw}L8~-j+8`kL>QLPuC!#MQ5f5RzI{X;!{tQ_|!8s z8hQ8*i_aYYh!b%vK7UK9-R!N?n8rSt!7_;@8Wkz4_{U0s2YomuOLR9bBBg^;v8yC^ zIzHGQE90}V_QkpDoyc99OhV2g25L4&Sj|-9BFZf~6FJKzky(R>KMC$eJ)8_w# zMaP2`(5&_+OaEN)C3{4tFBI>!G~r-7@%mccmRb{$#Rks{5*G(6q+CCLz3Ih)RX&S? zqOQpVHE`q@+}nFQ@1}z4)hC{>*56#d*evjb*Iq})P6gFzxitbCoX&WEuAZ0Oc&0OH z#flZ2sk5%WRUVzVu%^pgZ1aTEwl!*Fyo@VtYlH9J<*3W)JH69$k=p^54f??^>Uxsc z9ZkJ%CgK(4oPAN5hUv{Uz@^Kc8VNq|=q~c- z8m-ev19zYnR*=d7b9W7}i{ z-?Bcm>Q*WCSEbX3TyB-PNi+ptvI_TG6zfqJ=Wyz!J4!vL?0batuN!}}G&)cm;9J%X zzd6MrliNG4&HTcz4ltYeP!Rq`O6tt%#bHI?+QSw|adFr6Jg9qP-TFwzWo&Xb2G3Dn@g4G}fhd^_+1Lv^KH1v&z`^=h0^FJvKkQHtdnx zu;+WFYE@;6FP9*rXLsfsQ~Vmj9leJS=$mEj8L5p!lfv145;hkMqE1Ce%F_4MWS&0G zKIy_=7zgFl?(6!awN4X5qb0%e8z!RjysXW7YUvS|EH4iSDg?`Is7qDmw1!+L{bm2# z86{{qrjkGX=-feVOY^!~6{T?K1Z#ADDekJO@L#mqsqkkuF6lZyw=Im zN5-ZeD3$MAHdp(8XnYr#uXHPpmF4wapZz6LR7)Pb5$8Opa?WGS<&2Yh=a=O2a;wt@ z2Cainyu50w-Jhz;vz4zLsU1-7BL#keGg9A1h8Du>mt_3=1no7QoL(eOT ziEc0z(KNmiS~=RCUjz~|R31uL)43q{qIn!Oyid$_k1IUS`F?LZU(3lEHc$_vF#_-6cjFlSiV1JT&Z-FLxTsftT&ST{bIHPH(_8)uL6 z>qU(tz}+~q&*jIXTQ4EFyF8yTSFU`ukZB#9yJQ%Bi-$Jpa5}HX63*xUJC^0%p@8?#(P=&)VAVL9og`NI@|TUb%g?<6UMBep zm$>60E<1&e>l=M^>^rzYwGgm$VN6fGy3(hUIZ}J^Ludus*L$&vt6XWYGi=R5i+3ZG z;GasjiF2OpmwD(oQ1}aCQI#VvI9I1zbv%ZCO($3|TT?#Ly}1a5!lpD>qd6qvlRdxb zVNZXt`YitZBk%c!Ld@8uqU-whbz6@d{bYV>LG;^|?CTdrXIVU8i!R(C9#B0`htt-J zm+|Gomp;2ck0+Lxm~rIiI^~AM{;_q5E)3^~n9zVS*>x+ppQ_ouw!gJ_!{%Grx89!< zH7Y-ZW*QDpSDO`;l~s2oWN%FC%NQ)J0P#Sx^_>E#bSH|QPhSi@KbeuE} zC=~w8yeZ0Zow#KLI;SUGE)|!7-rC=jT94XMe;nrg>*+?)NT1vh&uhUB3=O@58Rl)qVmPL_nT#6ncgxjra?D~ zi-`I;PYr7*pwTyRK@($kdxO;%R&@Tg9SM*)W3rgGGpEP({s`n6yC6KB)ZL{@ z4|O#cLqp*dK5p*AH^D=i8)IX6`7(OjpP#}GBB!A63KdCDzcgGe%E@xGeK)fB(2^0E z+C0LX?{_CSVlQJ(iL0N(Nvhd;r z7C?RFiW1n3`m&%ZEXcRgOqh~}pY|wj(y z*21O4?YFXeo7j^L%Y-ThmNhZ!oW{zP-J=xohv) zw=~jl2<{WSo$Bp@9zRx<)lGP=-C+gBQX!i09PwJm?JYjg?tX5KeQ#R3cbdsJTeaNj z*ET(;u)!b4AsJBDa{}kp5L9eeO`H-q@%(Ra_5{KEgEDXz8VyMp?5o%*3T_m5P10tm zr-{otieA`y$23P`>5hmi-h8{Zpw%+162<~$%+!JweLF#E6OZbi%&mQq5RX@GE(;3@ z2@!ExguJk8guj3WnPZB+W!0fFd*%$%B&Vpj_>SjzHe*6669=+=|A*DDEZgK@kqXs1 z4yK9vL-XaG+D;DM))dYSux)4<92~3y84%Ck8`Bb{`0yF_GnsuyJl814CtM#> z+b|NB^!%W#Sw{a6C!Eix-dH`I25<03{guY5Z#maFeQq7tlvZz6kA^Vt&nJ`v-M%a> zt4nX}t44DlnME5UhGJSmam;L%k{@fK@yj3X_JQXSgqSGy@SRm1*xNsk^|y%PEZ#g( z3vGI<53Cw7Al59U;l>y)JN@41#x=-mY&1IV>5H zhlhI|FrJV16eS85-g>WJ6yWQ7ZXc@GWj1gYIu2K9_@q6*eM&et#kQtlNvh+xr79g{ zv(T1b52Q77e`TqcOZc@Sy4%hj1fR(JD`-EL9^5>4KN}3X#C~*{+MSU0{eei^p>FrU zo+)$E7$7Jh;6(HJ{K4e;F}yr)q&A9}eA$+a$?`4B_gs5E6xH;H^M-ors=Gfuk$H-& z<9kq~hD)#{cUv~Xtx<@sFxm%y>O&s8X|_Z;^yLk(`YVRU9epQyvnI@v@kY44+xO}W zuN1DEXp(afwtm@YQFI$S%F1K}Z?b5t`-+QoI+Abcyp`j36mY&(!M(r_pM5MI9(S|^ zl-qkby}tI1bu7jb&2m&{AL}a}chml)%)orKOHfa@F@0$LS@R8qd|4OHiSxd(h8P%U z^&>7UJQcJ#vMLpCKh)cWW>=ue?!&ggQgZzVt8krz-9pGgcXV`g{{85BsBQE7peW5v z#k0L5ACKfCPGzlOKM{9Iy?b5?LS{DWwRlY`ii(Q9?U9j@PeC{3nViVOOSEcoTg|_H zd*ad1MeBE6fHTPR(j?a#uc!D4)|WA)vW3!Gmph??vCUqHo6mJK*q_7*p~S3d7-Dgg zi;ss##>2zo!}kSG5xb{-AN>K|vW{IFE1_N@ifcpzAM6%9vb7L8bc;KvsZKVy4;3Ri zC*T6!A{w`XXR@>o-dyWYBqLe1Xx+}g!FwKp)?-&&;F%Lp7p{7BQNw8(MFcu? z$YbAJ!XA(1phIDn3J9Z30Z4U_;AWz5pNkNB+*4Ea7d_0Rl_rZRtJh{LD46bX&5s~66B`tOIb9xm`B|H!k$eUY&rISSSM-wA}Klfj^v4K=c&ya^Q2ySBL9Ppm~d~=X6<}y zA`ZO6-eV0Y8CtjVf>Ns;EL?E#O=f@IdPvjLS)#v+oeDkZ^T_^AYR{A{;IjRF*$n5P zd{z3)yG9SzZP&e_11(Mvwoye9ba>+>XtS~{zD2muRDhJB`xW0?;Uo>1=mHxXr}0tx z5D=Ztub0cz5utI(0(6tgdBvxR{o(dhv(l$791RI|6a8dsH`#T1Jf6klHCg`W;|?NT zyVJ7({&)OHZ+$Fj6i9pwF4E16<<|Sd&UVtn%m4f;2>7!5Z_6nwPqaXBDejKYo1>&9 zACCIlP7lG;)<7?`Bfb*>LfY#zkI2d0hG%nIGBhZN(DyGAPB)zwCj~ov{IvM)hrYhb zx}p6o`2tJl6*QS28hD9TE_kt92a}eaZnk!i(g6vYPvy%-lCvR-^ktHRo`_3DBO!|U zeSxgJ{5^OLr%pYXvuIs}FQ?2iY(sEjstDSKxp@ZhDBm`dudkKof{&r7=nYBu%`&?} zY-)|Lm?{ZDA4irf1WWy^yQ?FlC5`vN5-(+qZ?T*}x4ciVGqSwLKfv3W zRSW;3RUCU9(c&k21p=ms+_n?gYf^H%Mub>PSNPq#x5BPh*7;>_*pUD5Zfb;dHBP!T7+3WnX#S@GRc{4RqXN^_A zTKx6|!6R|H!x4LhNVCA+zrBFvkdJMB1Gf=YMs21;D%lp4cvlvF&9J-7&BN0LXArW} zd(b+GCrwL8Q2UMA4#U#tFP^Ae&<*7_iq*ukoS=s zaK|R_gg^&~|GafuS+mzoa}XA$MJ#X`9pn;jF{qh_u&I39_>9&@G@ky zN3jGx0(p6Y6W`#CmQXV4M80E}RY<5l9dJpoS<|~PIi{c> z3M;$Ni}Kxq`<|Yj%LBc>tSqZ@03IOk*Z^2Yp<*XIM#l;hgs4FwAtq#Sz*e`f-g@%v z%>$2;94}tAjCG$%d^vh_?b@}6vp(Z@N&pEwz>#MFfW$j3`+k(s&G+Xnzq>IXEcW4J za42-J8-0gf+-*q5Fv6{Y#gPEPwQZZ+P${JB(K3qUe|I<4Z&g-S)>7i3@s}5mh^Dy53LgHY^N!ND z91qoM-8u2Tdh{pX+?iKhR|%eqAZ1+mP&H%YXV3^IB}XK(Lr5pET?QaNXJb0d^(fIz zL>*EbHW31p;H=fr>qbe46{3<@1Q&9Oil0eWE$HNCd=Xi~keWB=`hz`J;t6bq!zeO3 zy6a6>d8&RIudeSNrO4H?7(U+{zrxl?ayW`KRnAoSJGZ;Lk6S}&(zHR6nb%)@4 zZNv6eN&51n1Pm*?BA?ymIX<1VekFLLo+E^-Nrnge$x~!caFE}l)9Ki7pI|#b0R*V_ z|5SGE(NL#h*j_sQp>%fB(ViOJMjJK?x#rSlwth6O86~$w5lbmL<5Jk`Op8|gTk{AQ6v%mx6=4;#M zi>qV-+cVtTdrc>$}rOrU{7G3l3*?44QyL z1=|^5X8o|=^L~tf*M4j?ry>TaN#c5A3?6sow_M_=5_r-e@fAt4j%^S@w#a3FghBA? z;j)d2+5D$iuLIaYoJlzWb$dHpYTA&SwfQK zUZ0^%8c=U*b?CN~tH(op2xjlE!)v0XdV+Kz1p`JbL@s=?`Md ziq0GDaGYaYIwY|Wh$zk47#zAN}JmXR5$B}(f zW0`N}A6H{tDQS<^9iD;kXEU)c0>k=L7L#_CAUzZqS`Uu4YT3o{wkLoyM#tq9R@EMT zVSEAJWXZ?=0sM*-)CKSt0VwH*fZ&GM8L;rUgITva<$%;&mtWea(-P7>H5Kpeok>Lu zd850JW#6rhQAu0t#%y(_CGU{(JgA%(>lkC@bMpCh=j`J^1Lv+?;L&_CH2Yy-k!5rd zq1zqsD%jHrL98)xG+R}_%!!7G3OsR%>t3x=wS9f&G|whYm;r$yxlN0;Hi|8*|3-|q z+Yn?_a-vpKgLezy;$=eu0hAVoTplnd-W{9ctmrqE1+PFdc?GV*c`c$nSCK2*IXWg~ z#8D$(5P;IaUR)zDY`R^R^W%0_X62iqKp5x2Qo5L|hN%~KN!<8FWyc{ck#Wcw&DfDz zyT=G~PUq>O9;)90p|JXW|~VXw+L`@XLe z1j8n3i>%ZQ3f20JpNOtd}j@ zK<@>aiM>D}!EVYjB~4ZNW)(1oYwco#ucf4-V-%80aA)~19EbbX{zzx2q_zCQUG%_4 zV=pD1n)~JF9yk3@3c3P%3Y)~Bb9@1A1l+2cf!gZCn@pyTVFM^2kb9y#gWxl_>;#dtZDc^@pepsHp7E0&;msV#J}P@|C0`UfC|n z6_l$g7F!MOaWjSN1DDE6Rc%HfG}Mgwuz>=^ zHBpTVz6_Xt9F~1kD}*w_hqb#Nsqg54g^(j@pd1Y^b#Y)F?pADtz5~YxhL8uvl96&% z{a*MkQhqy%(p=gD-5;xZn26U5t5C>pE4e<;)P)N}Wr zrdHF=iW9nqhOQ*SprLmZvSAd+8nev0R@}k%m%By zFx!07_;bZ7x0Zwz&}|EHv7C*Y&42ev=aDrM4rQaz@j}%&HMzf!?4KFy zXa;T02FSxvl1r8rh`D+9kIlXcK;lRq6$RD%i&~WKa)|fCQ!{)4_!wG)cL2?=^U##7 z?V1}1w3);gZ@9MIkPDwDDq^8|)+485J_9|RWOTX#0?z0GvX>7^(Eu5od*0klcs|l2 zd5ESA$1A3MXdRS_F$B3rlonYQkqyWR8<7QQu|K3OLGal&M^scDLB)^DU!OAx9zlxjnhA=?0>KLZ09T~MoZZn P(eDh$!8ZSU-=lv4=KfGY diff --git a/api/_images/tutorials_nihcxr_monitor_api_6_0.png b/api/_images/tutorials_nihcxr_monitor_api_6_0.png index d0e1cb3dfe2457a7f381f18041d22616dbd6e858..4d24f3206ab6ad9c34b4eca02cc58a43ba5ab463 100644 GIT binary patch literal 36228 zcmbTec|4Tu`#x?bS=wwN%9dUBB}*v`S+cfR6SD71vP&w7hDg?GilI=1khPM%n2=qC zjJ>jN-}9bP&+~lV{r>sAUvICTmoal+_j#Y!c^$`b9_QRJ(9@)+-A_wGLPC$yI$=mc zLY_lHLY7BE1;1H;m?a7SDEOQ_<74D*@8fUdWk;fGz_XmbN6x(mwEm&4?bjvht^qd5)wumPb9|4%zPYCXIfrm1rg>*PoXwtv6X8H;e!hh9-2_gS#@1ZhA{xvj|$kIms0v$nW zg8ZAfk1hxK7lW}@y9@vF@(Cpe_Ix1!7*fgfrVpZ_WRk{ z>&4WA&Ci|NFDNKjF%U<%7kv1ad3ioQKKS^9Q--`GR16$io}Tj#dRL2i2zQUAcG{60 z6&3YsvfI7%czCfA{C%pN`;(_n>B0`GU-Ky!C(lI|SuZUoCr~$$bu6+@O!JVi@XoLo zFC=Mq?oKF9P^Sg8wOtS_YwlVV35(3cd>&>HSX{6#@FBf zI;YJklDk7iwxMEao?rL=3En*@mq;r53w2j_RBof~`pf6(w~-o_LcC%%ngDRLVqmyMHgXybUI zm)<+p1JAj9w$ZVa)qrsAOK|PelrBov=LR`As$XWU9d~NJE}-V=c|^*-WqA2(Ty|w; zT5TjXxrE1X&52aVAJ5f^?4qC*FA`aoo|>KFl{IKS9r=-~dr5lyhl1JQU4C&g)-_=# zRJB7gz6c|kMm8^xd*|oYhodXaA5uv>?jfQl@uD1id3-fy_MKyGs;ujm=M4vJw>Fk$ zJ#@R_Q<7CTCiHJ{DlvymO}V@%D!L4p>`PnB%MjlaH`^9xG-P05q3h-*W@2LU?c2Aj z7PsL^ua=dUE1Kq;H(uY(^S-5pA|h+~t$saryx@v@mmWi~?tSSS4F|4>oc7n%rB}a3 zH}csbbM*V8II0L|11Tvf6bkhKi@mYB8mOlA4Lza|ot8Olf1&ld8d!5FVD}Fe0-!ii_Olp_$GrC z21D_9wjCOh{_lP$mKA>~>Kia2(R2v$t7v)OrtB88xv^HXwYess5;|8)-Pqb{x4FL3 zAMiC+&BN76CpD5m@p>$~oY&yxanG-@a{RX)?Crgp1hYMmp8?-)&yOcrj$B!EflZM3 zy&@|stJPNUl|lqkuolSfXnEY9Zga_Or?sD)K5V8D_AoJPpzRmS=eJ?y!PC1Remo2T zO`;sny%=M`AKIAsLywkhAY@b2fAO_t#Q$1*zHE^3-3Wx5eYI z=D`b}Tn|94KHG9%Ca?ARY|yw;f9Tf6z!JqL$F?sOd(ocELxs#HN$@O}{iM(1^SwT( zTRaxFpZBGBNloj0+71b~nBZ>K*H_rg@RE8+{cDK4(|McOgsRLn_=6r&j|2C>UHxqwT!T9got5mIkBxFCF1k6sLZiyc3bwWtQaWE>om9(*eL;MWb^!izsM z3UrVw`9)7=EgA?cMeZ%?70V5}sA&G0fw{Zx7HwJfuG^lvNJT&?U**YBKGXcLY40jE zSLZ_yBhp)qVN}B}yq2?@TeaX1@CWH~UY|NgF~dq1{kVQiKB$z#ROXrma;%`wsgsLr zR1e$ArAj;QxueDVoPNLbbtso}tCIz#j@{+DPEJB=Q$>uO+4|X4A(J$xE?-uFF-uMRSPdgTWoE2pZcd%ZN+{3uSPDOPUqUfIUeqP8!e%&bQ5XdW0D@E;mYamW~XvseG(K)J8$ zYKoMD-k14vB|74-eX=Jxp^WJyiLA8vL6$oIWZl}F-D%c^e=ev(7^~`#8()pG_3U6_l|S2*TGA8}&KB8wLKRQQ$Y@&`&uovN z+*y*x13<)M7eM!cl&$>^02fl6O*NvZsF{&?0h zvR8-xdL8*miRTnuveX9`Sl-5uuOj7*Z27x-z_MGwr0;c?6jyHxh4o*7@>4Wrb8CgO z@7*qcPx`1A2G7>MF>$_>Sio%bZ|XjQjX+Mz0J)+JZ{di*AM zbA4R(=SVbH$&Q-7n+;z@&J>0L_)3Q7mKuE^@cMJx2Dk3~g(Yi!4~my8?1^MQW4Og> z^HN8Y>WC{5ZwI`?xeA;ZEPYt)6KirUH^znkHlDOYQtSK%SL!i`hI@0a{V6a z(bHe&<;5%K$hKgmkhRpqbM=hlJ+^V9uxhtXzuE}Oppl(c!^4q`GlkXTnV}i2sd7?o z{qk+9TR|ZUc~+;5j5=lX-Q?sWdYkEW>5tv%DWz{M49xN{ zN4|LJ8fW39Vr=F*v>3Ws);ypJJNBZ31G#~bQGNVD^#H(6H#GWgXQulPUdCWBA8@!6 z!NJPe>3;jA9NH+jq0C0@WRdj68_!g4h1^zIy`(2ULeZwYWPV%z%XQfebKg%U=2xa) zy58QH@vr_0IA&3zQMJ3;QtRk=xm24n-Wl&*^5hqAMtvNUv<0sh_ctetXTvtGoU7Y8U9!?uS_LpgczM!ls|lN((InGt z-Z>^c3|l)6aQx<4^%i?r16OF;CFv$84CFOXBa(7fa7Ox+5uJ}R0Wm=yte;SY#86>W z{`J8xZV00Anx0d!SSKU&3dgZ&9u2#?O0u$Ij-;;Imy^R!j_va0h4UZle|aj@KY!rX zY;AU)VpZ^*Y&YlN+L>|ZUX88Ijn8mC?#)z%WB1$Gm}KbYx@-bB6AOz#FQ?CkV=nz= zcaZh5yH_6ZJSruXV5FxIh5StBSKN*fE5H7^$f1;Nhsfc>mwpCh+O?%An0vluy3wwG zbpC|ftI;ICf{#;AuU(^p;`F|>YC#mqp{likS+8ElY|jtJs9!oJr>3UnY*cTpRU->o zft}G_=J}Q6ePiRuR8hM<>Du8qE-P1z#}?xv>9B-QJq;@G@A=bu49 zUY?)1g@8M9#-kFRmB==SbM>I@3u`yh^&GOzLN>2M5>la)GV{pUM=4q4mv5mhbmCF% zL}lMi4V%F&$k|XeFj1Lo?zMwab={*>q_(K&=-bjb z1uU0&D%aGOK7D_8n;ivm6XYQhRbylp+X~|4&kUs;cQ8fiiTLlt1~EE^_}eU>_7?3Ln)evBfiLMR68T!%Z@*w zZUfTb$b5k4d0$`OQswIQA3vJKy_-c#=RT-2-bqc}SrfY65IWbUH0#m8=|44BHMG*^ z9{|VLWkC0P8>%282r!oN{BnXpWqEkop3Kb^HiC#%RT`2)ryps&{0whCdf@W6-S_X8 z_MrwhgyON0Y6_ZU|%y!@=y*=?2dRFy>X{JU~*qo5Y#Tr zlP74{xjoNqkq5c_Be}XI=k%kpnexedKujQ|{8K~hTkqe6?LMukx_TM{z=dwaXXmp3=eLpK)Ql-vr@JhWS^a_)FnfmJ)4 zjAiu=p-6T6^+CNaePpRcsvYz6>8+v7#nKzLqC=5geHQ)$FZ1-TWP^&~W*Jq=l9Qj$ zFDI9rn=9nyInC+54}#VntzoqwLTxggAcUyquWD2d*ps# zGgvFsqR4NIPAJM^E6XKI`V>Wgg_x?Qu-=A~JVY$1fnZ68;2skMZQ^6-at?`-`O{si z@38Uas5;M(x4%9g(N+wtY}J@Z{tpssugV0N$?JO;Lze>up0PffQ2=TSoX|fYWqo@V zp*miG(u$x%U{&6@)0*?ZBugCk#x?9U(s8h}I|8R7aFf?FA^Vlv!VVubpino=x}c+F zF~s3VkaAXUVs_@lscy;xMs--6`ivwSPux*7kV7L=(=NBQ_4T0qS7ZB=#4MU73#!}T z+)6omS+aU-V|K4AlK9A(gq(cHA%^h(<@vAJJa3IGS9yZu-vIb>`DKt~LV_!u0jBLJ2p zNrcVv;k?J_X1;m_bVRA7US+&3UB}JM?E>Jo9ygVu42O&R`^{)lb_cvBeUhwhWcd2- zLF6PYMdgN_JAL|?x3|>ElP6tovoJB8HZ<%Q*?{%GZ)@XMR!%Pno_6l{?Y2k*YD;os zZCX1Mzyt=;_IWVWf{LHTfluottu0A0q&kzsy}rAoFi4W%`B6*;O3t9K5jeb6NJ{4V zH-S@`D(QSWNj~M(w{Fov+V{Eyf4V1f@BFUytaTfye)AoTzJ_IxN9A?pp{BlTwxG>% zx^-KHDpzkzyCbAv<;SS&%vw?A#;u5mh&SAw7*xWZB^@0d+c(#DuYcE6)ozjUULJ}5 z3CDNofZ~DRU#9`B_^WZ5`jsPJk*>d$^+D^bTBZ+x!`pYK(~@cN`%$G z0SZdi3zyH5Vr9c*hwjjn_IvF#dU9$63jO$Pr5SEv;XGYV(7cANwic}5j^XYFGK0`a zd4xRe)K_fyZl-5E|Fjr}_C~Z&|GRAFHgDOT8F*5nj6)`Dv~hZ-9uYhAd~c zLS*zqZFkJ7?ltdN+;mqNnQ&iES(x>2k9qy&%a=Dvsi``=dmOz*l$6-R;PWGOQ)Lmc z1XPZ);fS5ftKHRA7FsRu-)EJT-9r?#cWe$4P$Dv}%qWl`=-J8H899vl`W>J^iky9M zRnX|kRACpw3x2k%W+FfE-#G)a6^3c?9V(F@#H40g&sWXF67@%j1*51$*OZ~YN}$T zD0)A|#59vahciRIHE+HME2GpI_ zp~WAcA5tLskXPo;}MEG*^3cvB%bR&|>9dT*wJ{mBlLP z2*MO~tXB8LFpGL=&*+u;a2vlJ?v|PRs{Q_U-HnYp!WkkO;`wWvRk zTRk;ftwApbWar1^;s2qp+$bX%8XsHZ)JQhhzK!RcA1bt16WlubS_ePag%U`A15#vb zLCAvefzWkND*FA!7O9992r?2RP)n$d`>|k@TI&P_CH-1&=LS;cVr*sBcuaF30~%ymzURt3o6k}!luQaHR28o zJhqCi;-AnkxV!#vcNvyMOf)hXKk~vWAZHgt8%>2I92~mln=cvMV=yNo;_lEinETOG zXO5RW=s%`gq7HhS|Nb8m|EM zzgp~d-uqxL0V+ZTItuJ?9m`;{j(tY+I8<35SE$A!z(D%8` z(b3WM*{w}+7IP2MM;ftCMY?J7cd|1>?l(0xomd0u+7Qlq`@DR=S1|)NYMCd~9sk~Q>1Uyy~o|R>iFg(tH-302E{7l)`vgI!^dmGjk zCL3TAyqc|ATmG53)jzUfWMs6mxm4W_l)l%#*taQB@TpaGM(A2;Xy3>QZ1wV6@$W;` zs&Fp-@GDIZ`q6mN&JJNKe79Tg%fvvts`zuruSZ?7KNE~ZA6wCZL-)z4CeMJkm zQ_L-*G$Ca`LEZ8x3VZ;nqko-+&teu>h;;rLxv_-}U(2m~rU?j3&a29ZFCl;VvUFB% zU)mk|WO}+quBX?wd{Bo09f;jYN}{R(VM#szL~ris`18^6A}Pa)Tvn_y%QrO>DUp7f zQuna_!)ZyJ1Q4uzUR#@%oSFf+1szS-j@T224w^l#5(2sK@=tqss;u%J+|V*ipJ@)u zb@QK4%eh%w;5^)LH=Z+U?-~Ku8n&C7o72V9U=4eqfp~BE)szT%Zn*_7S@$<}Upmm7 zO_)6N58m?Ab%f>V#hf^V5Ujeoz2l}k97$N$1BLjYVfiFd0A%QtsvO^?LiVS9`u(Lz>H2efTKHG#q1oE92r;Hq}fXZRr8{ zJ?cslsR?QnNNo_2)H?X)j3WH2H)*}5}b?R|ZNC{NOfeUIThUGro zX`i{i)TC*jd7&_M6XM3}D@UG-HbfppedE~=bmk_c1-NZ8G6SpaxQPUuHGwp?#%^@Z z?>A8sgY~{FrfFdZ)gS8Jle_h~?}!1zal!%uQ~sivqj8@gU3XKRunE~shYG(bdeAr6 zdz<)aQyDL?t_U8}YK^PI+n1HmIb9$=8EhV_!KX)bx>3|Oxs}Mcr0e+p3A06QSnh#8 zB;yf6G7=6F8ddXfp*w$z^Ch^>8AQ!FHmANG-6~P~JI)P~S-F}@M0G^F#hUyPxgp>@ zJecb-iG*jLL{_f8qVoTQ8Gg-}dXGGTnqm!V($>H}Li7zY9n?%R7dMFNgSXJg3LG3r zycR6r;~nqNm?tm_I2@CbctmE2C2I0mcX+_wcGvRVwn_;@I_l_pB&ZPM_(d zV@W=yD?)gln8Efip_jIooOT&fpBRqRD8taibg4tpemaQib$(+nJ^{-^cv9lRG zPWK6vHCK`73C-ERS)_>bg0NvM8{iTVHxwi;s}+W>Q3cp>QesXGIq&LZtiZ3}Ky$}yH>A^W)-xq!C)PbmoEM_(i{-!ov~VxS9TthB6F9nVQhZTNT|Zo`{0?r-7XvJuNm^sQXe4% z^j8X6GHVc8Ms!>%X)P_MkghQ_<#0BAD?i7*0j(z_Cu>?-9stp#FMk8jBnZH+CD7^g zS?V<4lI7ny#!OLd-R^qr)!kikgomn>2;2v{Uk>0#X~|Gd9c@nb1_UY@vK{~@YOibc z#l}5|mYET{c^T1`Km=OGn^iXfEbl8$m9Qa03=J;8w6|UgWZYgYOjxb;U8&tnknwOg zDO*4ef=01DaRS|CZ6HW00AYFs+A!($w-@NxWpBaK6QPY3G`0bvd1G_)SEOqXBBPo_ zM7d2pRYu6_M0)N6f_Sw0X8hBqPsp2ynxWqY3ah_%Ql_PE*OWdN&G;G*l0Pa>%FFNf z_xHEA7^7q&dOv)qd12SgD(7bY<&5-xyZ$my5sPx4?A4yi%TlqivERnWOBJf%2EqQL z@I5Q?o~-Ns$*yOUg>kRE$I-B)o@?~%U9SXqN#Pj#K|IDbjJT$PIR+h&)K*fg-~97;$T9%MArdRRe`Z939YVy76^9kInq>2>PP!+_X zlU6qI|!aWW4PkqTP&AT|taI-gkc-v?dAbM&s+ zkEQCZ^f;B(>p%;=5jPSd--oO(8)Q6MEor&r5jguEH=H;Wqy3;*kXRt+_y%Nh#?!nR zfJT7#A_k4#b6XLA7-WaUd-9Ipt2*)My!S%z(tsxTr+|F>fvDb|(YnxWr4Jyrpn6jg zSu)50){qN`rjCSQPSGgJUTxoj!x8SuHNE!t3~A$-)h)Gq?m`ezBPb9(6F#=(f99Fa zmC=Q6wvcV1)qW9?h)tBgWhA6`@s+@DiaCZ>QqoLgEVW?>oKH?X_S&5d-j0ov%+fx{ zeurv_>9{?`;H5CGq-_im98YSZO%`omQ%R;pzG+F_{WS6(;Rp=A1uyI&mTjFCLfN)F z2yP8b)tfLOzB~WBldk|T(3Z@0s2?Sd+=$K{c}|qO(2K0(xrtZ#$7;Tj)^1L-52xr7 z^LKhTm9ZcyI253sYEP!oj&^s3mxzTC+XtnYmuVY%`P>Qc4JMI(?OR#-ZXyM=ZaS@OcNgrD&J-)xH1CEB6t= zv0*oaMfuHNkH_-ca10##VKiKO=zUz>eFW^uz9j+|{C+6S(QIhipE1^I6e^dl&fYy1 ze3Y0O0}g6;1G9EJdRQI2s4*N%wQQpx&1MK23s;XU1OI`@n}#Nb?{DkDSZXO)L=O># z98xW1bIaXEAyl(IoxkV!(;S7k&5N+ag-5pzj7k)>iHe%fu#8IDg|Q1 z79lQ{Vyct}L?VE@I0AREHrmD^)9{jtwU$tecm(P0<*eOef|08M#Lsg@Ub=9CsN64W zlCKwX+$Ydb?L+Wz7!{<+$C%Xi&n+pI*>Cex#0QIwV@sg)-Wg%FIWAkTyM4+D?tn0; ze8+@%ScDXA8PoS0F}W$jmfM5;dh!>MyLiYPJ-3aiAu`PnR!oefsp3(b5wjpa)_y_3lqY|lAaF8 zqPd2tDM!G`By_uwjze%bsY!?5Uvv3&I;n|a#Wf5{!NofN8|K&7;a0@f2Gy1|{0ddG_hbxl5U@6$ z4}$4;mY2+Iyta&(%cH$SSy>;pBu?-n%{qpJkjs}Tf9Ep35#FRI`qw}kAq!6WCzp+y zvoOT!kK2p9RPxtIE5|}Oli%xyQ^#hsxwF|#A zS+ZHp`2_-TK~u1l8{?2_b}i=!&5+^!nIQ11*4<)z6(EJ4+Z`6tf7P*V*%$2lN7@$Ua*v|~GDw6-E-G$XM(KO$CV44gAUf`b1W=U#G1LUh;v##v6M zDJ-yEc}W6Li=>nk8?;*y+hDZoczb3$fO36+@|Q1PhSsNB#o~Mb(wsPQ@%^qBFJ1tq zg7r(pV$gs3$F5pk3o_BwJS828~VQscL6I9hZ(6k1)6oAL$7jd0v z9Ez~jR5FP*&6KFcV3kgMng4d~jSch#IIc`R?+0*10+w6A(C@&e)C7h(m7klft*zfi zM?Jwzf!HU&=As_WFgmogG4$%oO<|Ip+}wu%q@mmAHS=oRty>cuTnh{5tw_xXjbjO< zG27TU@z6oY(G2%?_=_Z*3*S!I*c_zOCn{dkxA1r;FK=&EDI>m5G){ocppj?`!2gEr z$4iM|<$dlm(UFd~{W;bOT|{&y*HfeC&{2Z__5MmpO>G8}qBP|V22Jn|@s~j7ZTeji z8prexAv`4-iQaZznrZ*7ef+{G7_pK;FHCy3*7=!I;b1Tk{XzOuc%wTwdZO~A``>gg z*9Jy0;QO;x?q{CW#!bX+dePqAuRQa2w-}8EthmeY=YRKtZxn_$=YPAmN|m#&r33F; z<%U|gHs`1jkK3F1q&43s`lv=nEh6u)C-D9Ryi*_oIW*w%zkd1LRv2St7Pm~3XO4Lb zVEza=V9cYJDi*rVzZ$v5eg;}Gk2K@ly!*g352FfhoesXfGU8RsUl`UB6Zs0Pr9gFht!7Hb}|GK!ebkN#|ts+@nvehS3=2kOyY&=|cszmL!Nj=I$F zIEa~*XQ<80)CgiG&i3&&i<*))g>jCi=H?U`XJ)Vqaroj+i<~Pye5COsc-yXPl#bzn zkj8B>%JobPy$IE!CQfKL z?xlwjABa46v6=*8p8sVb1SDVQHT|UmEwsnWkTV^nrX+>OcO!02TI|o z3$aE|!?9~vaF;FW3a!mWA>#(vT)%6yFVr=x89SjrA`QyN@I%8h+rAVhkgN;~l9P$D zwBt3bU7;XRmhJ@zYnUm)D?@`NKQw2n(4zn;_iJ3 z#T#z~s3VgFklh7Na|=>}?m-xA!h7FtjY!=Yp&AzYG%8i-pc^9a(IVg`^Vi)!$j*X@ z?BD>y*KePMEXMWXxrCDt+YT5N-&vJTZsZlQarqBZ!DYjFzi>JE+wX%gyOn^$ab|?y z|0T%SS-6WmyO48m_$NYCEJ@uz5sodxAwU5b(T+nNS4asmp1C1|Fgt-(U}xd}42AzC z(FB|>ko-CULX^4 z`G@Y~HHm4~p@V;9yaixYDEw6&uMzgowVP?$%bjBc(G^dR+~JP@gxQIZuvmnO7z&)^ znM)vB4*Cz?zNFR1JmKeYkrWMH-~CcYk=Z z@bI%$Lb7Qyz#HWT19+B(LREi`w+o1hih8ccSgjudBk?Ty3p5A`wa6nt5%<>S9NTs+ z!p!+9W>o<=L1ttIX98eu3vqI#-{-}4H{YsLj*^gMl6^Pwr$Avm;P07PSbjp|+1-C# zJalCzOtbYrd&r9w2ipbkp8I5z7bG74MwW&Fikt@7dg)De$rkUxMxe#J#|HYY>*JxD z0%qo(lpr!qHtpxbb~owlIF8Rc{M7Xt_VMq!Hlj5>#p%#;@0bYl*KY~>_JAaiW%7er zNjSeO0wm31Vdq4Qr7LpCiXRSVOpS0h9A}}*CWTp-1wN#kJCx1eBp|_7?p{2j(aco65IMns<)}hKz=jJ5d;lFj^z>l1Z^(w+`R5BXIz&l z8;!KY4E^!2Trm4Pq_%@45OnC#kD6SgU~3teuH!}3e$$frnN`k~kr$Q1lx6YC4=fe> z+_Pd$qY{BZTbJ@+G=|yz^#XIA>9dCq9vt)(*>htKMoWYJE0TVn5Mn}+a0>tMD$A3& zXMo6a0(c*_4G>cm0Bc=_**<_@#dL2<(gyoLT9;wcMl1SUqFS#csj^}a|5Pu-tqW*HXe;zSzrJT*;t()OLhMdy0sJv((ir5{b+Lojp0;~b=Emd30zAR zOCdf8ZUp7i+2nXIXThWq1AtjDt-}nU)oMrbJtcoJ)#X~o@)sJY4u@rJ)q8irHC|3N zlTYYBW7@v^sJXhi*@M@TWZ%Ahh4!ucNfrnEtzaxMJs+!wF7AY~`Gk>f@gEf6nC!c{ z9|tb&d1M^+!W$Z-ivmUs?Z7}q#-np2P&=kz`=gW~Ex|&d{z<}}{F}zeFQSL7R{?4o zVvClMks(1$=bd^=vEU=iI2K7Y4~`Z8v*Borg*Qsf<$7&G>hLvf)?HBvtAs{&hr?ut zuYs_zFtj>!TE6w2FJs8XWbiXbr!dW#i(*Lq>8~9*OCZy$x#_LO7Uh^LAt50JJF_AA zKzO(PzvZ>}xgIqR9Ov&xFY*fB0Oq}Y5=uOyQz4={%x$QQNibh*Q%8aDFl2xS?37)1 zeZgj`X1{Mn@al%4jV(u&5tTEsXNwJn+pAt_bw5+#C)#b{&naHLE{V*MMsxbH$_@DJ z7FSwV6Ki6D&J6 z0Plg@Ncv5ku?(De%+Lo;)YLTJuCqv6ON+Oz^72m@ve{VZ-h1OjuM7D0JhCSfFd2u% z5ef0w=`(#CSAUBxPI)@~C?^+}Z*XfP;7a=jrx{Sl9HWh+o6BDj%PmZFAj8MEkN(ht zDL#Gh?o~|7xevCyzr*tiE-NS|Hd8o+xIVCZN}8;8QCRze2cz($W$W@J(m#?j-zx>z=_ zh|CfrQ_2e95N~|{{(IpN4rdH~m%ZnY9jj%S1lwMAd3kv&Kk9Yue}S7tNzXm-P0URA zs13lwTTTvLVG$A%3IHeFVNp?J)@lq6q8Xf_6g@q?$oZ06KyzJ1#eVm@ii_;X=D=Hi z#OJ$##%+#9WNgJ0T#faM-s5e2a&mId>EU!OJz#}KH$GsS`x#*!j04Bp{hQVUVEn)o zLIzoa=^q&-L^x?$@Zx7Bj@o`UCMG5rrFZua^f-NbH!!R88Gm5@A~39XGKSf6D0m4W z)-dB7AnVrOGZGA~8Wc=lUs!{+DsC*J6K@gWd?*>f`AlP?=k;)8Gjz>Mt&IWsMLt()Dmp9MB6A!ID1+annRctXML+O!>D%S7g z4_b6(Luno-;$KUqb$cVE6^g0K>&#yEiv}+2T}#O#5%}v8GA9Yio`c2OK+cdLq!!GV zG0=V_t9_#lb=&kp=mP!|;v%1#ntF5YDFRQBr|=o(I6w`e2W5w!k1q@@4q012c@FM}s>kZ(cT&>f5=Ek|?Qu8lj{ z*i-h)u)ez(Wsw4)Md#4GUPk5`@>Ic`tor<-&aq>p3H-WW?mOon6cEVPiJ^mO92v0i z8=IIcl#lbHp2@t6e0e&#i_-bA%JvyttOU>pDc;B&G>6ywgO%$)nvqe`^RAQVj%*HQ zYJ7B~P&K=aQNgWGSWk(CGv2p0*cWn|P95#k1(SEU1fMk;JPeH=hZ2%%dq?XkILHe@ z5@_=iMro7%tr{-)K`}*c5~e^#6ZBOaz57pVpzxeO42NqUT2uJCdharnBet9t?9)}= zmfFb&vrBA^ZBw)qYa(46I1se#1PV`Dt{Aa$r zOFEEU7Z4;y?gZ|AWHRt&x25g&mk7XPkAtd;%)3LeXxpvHQH%UQds=bh1R6RAhE_{{ z1`^Kqfj{lAtUc-;W#&<@M|sM%z7 z9xxI08nDJsm}k+ zBNxEKh3XJn>2|pXb`XT#NPsl~BL+O0clyOoZ|kO{BJVMiT6bB36$;M@YzU+GikGFW ziDA(_=c=kJ17bx(3?F=`^gT!d%JT`|lXkSHtTZMxVz2_h#h?waKb(E%a9NA>N(yk4 zRw74Hz6)Hb_&o6SHEa1p1Rlv2)U%6FJOn^SK>MB7pqLT6y3t|%?{jiN8Ws(GfZKKC zQ4-stNRA7^4uTBM^Pw#G|D0BIMmjdchL@o}h~&J!Si;$&aQe*WKTOgO`N|gD=--&6 zwjXk-Qh8p^84+j^JPs@?C%bSBYI89;;RUvI%F=xlTP|Q<)ZdmxIFT=cDgSh1!`crT zUX%OFDunt2p^p7PZm4{q`%itVLmo{pvZ(3Zf9loI*Mh{q27ZrTyazOL3TWiJKQyut zR3ucd?V;WG?oel6g#N%;Qt?lO{(v?(8^Phn6k8KZ>0wUf>#4;40Fr0u;sykz)Owr% zz6afrW%w=^L=x&jo~Xga6T>sd!ORNOPRXvYgwTpHyobE>;iBe9_;CV@^EfSN3{Eyg z`iX%L+?QL4^arR;+PF%c5{-%_c4Ckw0Q$ID8nkb@1!#p41~!Sb4i~`P2m%yq#&(z7 zC9Jvm!I1;Vvv$-+LW6#HaKgg@rg;F@eqtg_^ANfKD3qNKr1`G($aCg^Sqa@+j0$*< zP}+(Di;Q8&txMB2J`1V1^LT@bJn}*i1HIHyDg!Z`XwVN%fpln4Ez0!x~3mVkFb~!L{>yGMdR|) z{%@d_!19K|`-(M26%~QaM%ZSas6Huy<5x4 z3jflO=Py+Q`931Uf~4Ky6+3OJrF&STq2KLFXp&kS6>_cC(zLD=0gP^ zx1fD}mU_oX8<;*Ua~Zo(v4}?jkxS7yf$b>Mu>7eQg2sev_+C)GmrmqYy}J;8 zzi^rG`^5!fZ7$n=085K_I98>RY-(3hrGD~_VokLmB3q77oP&{S$~z2XT}i2@`uQGa zcS3DmJp_M_QsX6)`Z1jM?_|chBTu*Zq%@fvbB*V=klIDq-@(!FQ5e&|g?ND;R)sFP z^Oq3g){rb-CKUDgAxZ5kUDkjldv%?4I0B787-<7dsc%|^57m3;|7Jbb3}zOQ!3Zh%Itj#Z^kcMH;m3O( zHr0@$c6N5tB|~6s0|NUEKJZCdS((miBJV^|kTQ`1yIqYU>=8ro|28Cyf5X6ps@K%> z1}|vGk?)Fm%PQ-_3g0*+2w%wrh&`H-s|_ZOk)Nu*;I8g&BP*-Sg^YZ=m=@200Lq#)1!OuYs_T&?PswCqV03=N~>i1l_vD zOaB?fOb-k~8O}1_sJV4?*$MifdB3$w?6~&*u=}TA4icD}V-cW)3@{gogngBKu)D01 zZ1Cw;O9hY|KVDrm(Zh$i0ZPNSILS7^P$f_U!CS~PFm*zJ2jtS9)2x?~9gfU=HL4`s0|JUV1{5r&Og z?;WwdC+B_uw1iU`N7=$|>=k$c+QJbSwB)`=F@cB@Q@~s9!*EhO%tnH~S#1=ojmDY0 zcr>SW@RUgSr&c%+kDjAj5wtPmN8zX83&@<5jiuF((FTc;8y>PTdpU^~%F6I=Q$W6D z%(+VhVkeK!c?5mD(-+W>O!7>3$GUO;vH&W92!DGrhy40n`{4)qo)efWyqJyLjPU5= zn)Qd=n0$f|TF6Sp+o}MFbI|_(eht}Ll$n_W?E7?MfN&BvqC)IYI--+hIESCAgp2h1f>i#(}>_$I)KVJtR5XZr&q1U&z)ZsN% zvT&>-11vBw8LqI6g+>Dbdptkz>(DWDV!!1x_bcaSOTMT%dVk2zMm8=k_I4w!UV%30 zrtwZW(+HMsEwo}DKUL_ns0!H{`bobT6(%K`=Z*YW#Knk}Q+xm&j_A*K=X~htZq+gV zK$&jsunfutK177YgA{-c6&XP5R^l}Orw2g zlG-YK3tWM_YCMBpcx2~Dmh^I_ZsEbM5Ubr0pMzABKMt7q!z2{UPP|`HsC`<+Xj-3c z5}!)uV2>0&!Bgz#DLd>I=Gv)xWZjwFc3`40_2V5QA8uJsyM{$}M4k(0%5yqF`LHR@7uuAasK9zId63dJ9-(PCQ z{3OSOTUn8ZRdo7re98E?5RVI{66f7ddV91^j7tV~y?5M6xV1BclK#%?%sFZ>i2z8> zrM3W%u9MZLBs+_9WD^zB6dhk&$tI3fuxj-s>1v7>b-0z~IW-(=!Y4koQ>yksGlW-=m$2{n zlj~q|z>^JjhWh%f2nyvKtiwGZiT!vbwy%_}w~fXzDcmP}S=<1P*=460*?9$IRhah3 zk*2|}C|_z-MB!V{kvTStRLq8Ia4Xw4(_q7ky^$j#N<pSgx_bk0k;Q^O!ZS;>|GBFl@oxEf2B0tFUiQSc*>wM$RDpkL*{tl zbMh(H6en(71lOa{A9ie5o2srD|*(rBiZy*0CLKC9$Feco=j}NH03dA$G2RG%17i$u3{Y_hY zIG*+B8G3)yV{Wu*DahDY@%U3$C#7aLP55xra33pj$2h`+ZiI~2FwE?sP{q<|80ya; zYr!dZNxO1#T3Ax&rS=UTAl1OQzPctYDsSgMB&{VEzX&rQa2MuaAseOS!B!8^nVHpC zMB1D(1?j$H=6okbfeYKg;KvMI@Hij2&|^f4revOofWTjDSc76$!)&<14f z(y+S<%EokMz){xS7F|N|NyU4$G@rb*ShO3G?!G!BOnB2S?C!E)iJoT{Yl|CF~J>gzRsaKyFPv# zT`=f9#;pt?9OzTa6oRzYJ*M?KYoDoXZLwrP;Vwzg{L8hDGH|&TP3fF`>Y8dCp%$nWxJ$d?VvPYg z76y}`R5O;i@9(#wG14A+MpgEdV@B*()B{Z0jfP0M%5&5mzI_xO($-s|&hZD(2cD`c zO3U1PuiFc=Gr*V1pmMg6fs4#C9|Up_=VOJ^vAomB^<>?4JUXAx^UOsc{y==yLgK)4 zwpun0Dnnmtr1HG3Idb;c;nxqz2t~incV*W+e6@k;g=b_FFGRcVY|@EetbtQ$X}f<6A_0p9wo>e&A7i*Z0*I<1GyzTFcZb}7+X3FEy67@ zmfwn}hTo32%hvF)L+hPT_ooG)2NY^}P5Nq;(qq_m%V#aT5Kl2kBom}E3Bi?x>|QT-Zej*8>=WY1(O7wizM?Eq#UUtnOuM^$f^9a%SeS-RET8 z`4U%2I9uR5O^U;fm5CP;0#Ssj_8sf`GX^k zS8-@?OVI9&iDV1m^NoEcU-^r)p@5`n- zxDa7T5N3vJkH443Xs37V(Xw)sIexBGm%G)?x5=%U#xX=&qOSx4<7iM9j;uYY-H57n zta6uu$wUwTgP4^IXID?fdM;~jBspu9Qgp2Pkxd*tulJeLj{B}37$||XeINEIbM}yk zSVby!*!i7D-x~Cqs!yt&qb`tf;nJcmRpqn1IJxyZKG}m*v-9hp%5_sx ze-APC^I=>_59j=?a|Sxo5)T7_4@G*uLY%5F!2@P6=D0lH*ch)pmp8l49rgvhmFvBE zsT|Fmwkxx7&OFaIs1V!!j`grnqva}oq)-%ceEJ}bsUpnXSn`GNgDnW}K#f$9^@FwY z(dHQ5Mi!0wfn$xq(NIC@7JcE+^(&o7pW5;30GcMJY@jU#GK1hzivFlc$?K$rN0gAi zKoW9%2Ap<2;jejhgTsRg zZhf=a(sOiw{o~}V@^UJTyl|@*_^cjrv(HZ7k}!ywqFH$rKdK0?n;}M5l@>(>WAO=> zr*<_UoqS}>Ba9&fY%r(-Mg|CtD0;^0)%~8hCanCD~Czu zR8!EfPPeQ_4&{Uzp-a{9HTPsC`I6f&8!jHuD06Q!(Gfs2smmRC?iCp`3FoTJSry`(SpmMSVXTTUHL_15+LZZiR-vJc14;9?8ss}wJZ3L70X#O3(~ z3cuG4mZ*fYQ1{v+MFoFBA^2X|fN8KKC*9e&OLGFqdk;8%@yHaW(02(*H>Q}+j+uvS zWF+3Rr=>c(8*QnHw}szXgk*P*!cf}}2JK+n()=I``40wd^yKkSaFwW8x0gkmA?CW8 zygcUy9BCTFY4GC`p>$;-W4Bwv$Zy$_L$5CTTx)5uo3Pu2eCFp0`K~j{vV*n4^by>wU}tA^^rCMYt+5Mio6ord)E|;=Xm1KmTJB(0#RCr8kL_u zTi8hgQl(m*{Zl)d|Ex?+4=U54yU!(24T11${{4D9(;T!KYwghguzJ9wm;EaX!5_%n)xHJB%)Jk;>#jiU3* zk=}~B+8P{=F~sN|y>@u$7n_ez>bSzjA3~ZzhL~ZQ!+*rWgmRZmNnxzR`?#t(H@&Iz z%gN`EQ1(a%OI|8cc}Zt?&W0PTQVDUNPiuQxX5GI|+K{b7iFt)s`3zNJ-t3|8%RCR@ zgkGHs`SQxbnN!OmF+dzlpa@yyLJL?v%(3R9N0~@Q>A$)7JmgP~E_Xk;3IKZEn6!}JvnIzm=A~2?Fai4RDfp}DwMwB^ zb%*&8PJo4CocG}wqLD#)xRga$9+!c0>?yDug#uDm!fBvDz3wmXdPw^WTt)l+*w%WQ zv+*y^+gC-6(@5$H<%uc%{3t{Yo(5cw#=98U+fyf&VJysxu_PKE0B-ye;fkC6!GBA+ z=7sBnL1rf>Cxqyfxl;)!4-p7T;OyfK!86QEM{}BI&hgw5B(a0%lSD)P(gsH&tpxGy zEGfhn;q=X!0`?Xr;sfpTF1=$pfwwvwG#Z5TCzc6vp(DMd3 zh1`y7B%Qvd3bXluU`V~!uZ>J^)3Qkxj3e}H-EdhuJ??i79C`j)Y-`Yw)^;YdaoU+A zGBE>leLdr3lB>U3x<+;Kjy$1kL3{F)j0nWpt4}^aB?bsx8n0;<(H^OU#+IqE@u#sd zohw(aq)Y>a+YTUXT{e|q7y*YC6B5$)SAw}0}zfr6R_4+v9!Hu0;>3Co}b4ayDkTEfaHpJHPAL;o}<$^s0Uj;13r9i;D)^*p+ zyh<5X-dSps`yRnJ4Cqt@pnE{+f|EFRu3iJuHpOBd@_s%Qh2z}S9JNm48#0g$s`ZC< zMaT5eYFL7+9a!Zz`H!7Pm`HKmR05i@x&bbmAMfK~W?>0Bf1tSl;quj{)9%LQdKVGB zvxQf>XKT*{-zyI`e(L)$$J`zvth0-edjud?!I*b9#9@s8BhbNq{S$z2m`US^;mFm{ zjgtCOLSKbpX3{0Os1v^O}%4 zHH6^uAKv~NINKus8v2TYg?h^mZN4S1tat!Ze$t5kgEPH~D}RIRebi8F@K52(|a>d%jpW0Tdu<@!@I{-o*9o6h)Z?(lGHC z<$LQ@RbMmSZ4k*YwkNkAa2aOb@6BfjWT#nG0!<0-)w`6?Z@!r*Efnk7hH4u^u06E& z+~9`2KMj#6z?UWv$a(KAN#_%e<+13UEELnKH3Dr0L#&sFvaGmB@*pNl?ydCtT~@uY zzvw*Zg`_>Bit44Uqk&!gCDaHrd;dU6=@Ezf)K)(MkXnXws zxA>>d$^TPpu|YDwckQSbHDXa!qqM-2KmAK!&#lAbm69FxzRX=Y-D+LiB*eV5)9h7n znL|z1Jzub9t%N>*l4e5Fc36JXvIG2|oF2%4?9wC0myCePER+s(v zHlQy(Y-gM3iElvsnE;%JCMHManQ?!aC(}Ly+j(fe09O6HTh@?wOer_HYJIO@tiX9Oh=Dt67og;8+ zk7%I8Z88=cBz~Jcnrv4y_{`=wVJqv5l!_6Gxo@9PA&p^<4nX_SF+4a)h;+=E@D-s(|UtO-HBO z6NalpY$w!zUwzgUn2$@lP55I}bo({x1XDCW-no$1&PKki^RRZ6)w(}*w3Mzz6J6vU zZ;7?AU%;EQpV9ZW<=LEHGFgWYZARv43gImSvvBy$*N$UjuOIy$YUC4QT-m_l?_M)9 zyliB3H)YSx(9X z`~*f!3;oLT(!2nHxb!7`4@m5pkSR%E3KoUIv@f;9$y5YkGs%?bPO%Q5@fGAP$9 z>fx%q#Pvm2vJ9u60@6u?o<8Y^7u|BcbF&i-S9wXWPmB)Rj;7k~GNYVD=7p?GzuAsH z`*`HBCOt{Uo4iPqAmQ0^l$xjAiR5=Lr|UP@1Ub=XxD+E=vR9bW_ow6OBV?-g124Bs zk#;Gcl3Cs^+H7PFYxDZSnXL9_X`y{a47(xV`5f2emtLtKRPh8u(b&{;Kka38H4crl zPVExf3{qMinS1DLYEbQARELsS?cW{=3KUx2PA@a>t;LKeTk%y}(_npmiC8E-S(+(I z^xWEw$WfP_(a$F%#8Zh`t_r6&8VtEwJh;2R19(!S2=z&^O4Fs!+(YO&m&?D$R|ML= zJ<&UH*M>qpMCOpv7FOSa+rp!T4ay>1J7<#Qb-Lv8(8Uj+CLfn*c2O@$VL&%_P%+Sg2({V_)03M?Dnd? z_B@-1=1sxC33h2I!#zBHa-;pLkMro>yB9aVvIbL5mgjEV4vQL-te`nZ z93k~?xC-r6H#1O?{_?r1uNND`PJ`?4a8+)TDJt8dN$|6={@(1M5DGK+tL;B(TV2G@xN-;D+{ugv8x^X9Dm!vw#>x zlH%9i5t-?IJI~eQ^7Xp~yVrSd^%c`D2}1{pD^Ee6%O~?Mu!?=z(vq1Ncc6>$fzrupb_K z%-L}^IW7-9abwoiC(g(!PDA%tcw_gv*>mj4rHTW}QgsJ$;cgFt>X#^H@3$;Ybc$Ru z+njwwH`=&NIC_(guC-fG%(&tgH>dU0W&B;CwNXK;%A(^*tFzc4&td85ataDsdM7hN zkcoeN!L-b^8}CxOtXOxVl6E~6MYzRqf6vipF0b&u-Ee% zZI5V7_}%slM`@;7seGOZZBjN_99r2R}b{eG6fAG41OU;J!*e3U6G+kz0?*)=Yfz-P~qTrm5*2%DE# z>*&1Y=ExqrrzRo0LrLHtXFH5FapzG$L$a3BlFW_qqWMBAqa>dN6hUlH zRW!b8()rqMi@j4fTS#yJ7j)qGOZIO|liXYG>%8sLSH8Oh+%0bu4ebo_J4I+%PN%K+ zQT^^S(Xy-EMT;M=&wJIAyWVoxan@p=LR#v=d5t~WnjBg!`jOHJou1b()s;tI86mgcwhOacU6wfcD8AiB?U}1R^S{(uK3!s@9Lu_`eoyL#@%P=6JDi!n8(5!Gk2i4)OmC&aa>EXl^8pMA2Z!|R7^1slrc2I>=8*(iZRfoojP~^6Svbo!FAXgwXQLbyldN+pFi6xna0+{JJ97} z<0idJZ(Nje-mm?+snkD5I7W}>yrXgDyLaizy0Gbf=FjSu4dqV4D^r!;z?S)l_5I?h z1Z*{))peWwO)l1U|6KBId$u6LEWtwF(P2sW*i4NDHs3y-)`R{xc53w-v$X4i&r(se z&r{$v)7kOE60Uz={q^hD7VzUw1Kt9K*_8ow&DPh(jcVym03NaL_j)&i48ZgOvOGU4nm^>c_>gxnk@ejbF@NZuw5*8*VgLJDl zhG~L>|B~^nYMcPPXH~j>2-maVNSS2~FqJ)(MgdO(P)@jn2lS>XBmuOm9YB`l;{i@c z5s=dtXPm$FpY&J8COnF>rAJ@N-4y^-o4)_`zbz*pT=mzd-;ZF6Q%VIY?4?ZB$=fYB zV~J{5kG4N~T+r}CQ{fN4l;^yVP!Duj_2a2>^4(BI)=l&8a`VXYbyVDI)$QyI%zQhB zqz|uG3HdwZ963lBL&0O>A~mRY|_6l+;PRl5g9Aj{ANCwb);IllRb8gAqe5Wo)1;>NkMJ$+7H9gIcsrV-JoGr~ zp4B?Lj;wbs+yGLKAJCxK`RE1Rq=bta8WgN0LANn1Ao=*aa*HHRg6Q=*p$|?DJzs7M z{P@}O+iug}3K|o6TM?97zq5sh23_}6oefOoG^1|weBYPV9uXExn%)eI#+L1T#ktA{ zE`DWssz9U>MU`2OeqA)$C5qDmz6t{a72qe!%|!|F2%R~T3nPN#gd@j~FO~;%cLERG zBU;w}ydGdbAAC5tctJUtn11}QTLV|U+Lv<#-Sc$eQ6Yz#xV;|2{l%pp6|5YUv&!4M z`_+o8LVC~aI-W7rxM*lS*EW2LZ=v1rU2@fn-TRuTebJ)gLezy$+J{1lBJBKwQvV~8 zeXqs4pl(?0NWTPh(I-b@LG}Z<@}*I)i;C_83xmRf#4JvMDR4((>vOE_r$p8fioBXu9jlK1y zmI;G66E6SM0HJv9&3czOp#3KT^F0ti0g(>C(>{VGFlbY?0kt@BGKdj?EYxv0yyTM= z-J;WB%zBd!$^=$x!pK)dp6wm5hqnTLh=^={)#@KC6&&u(#F4k`k;W6NLn`CYm$86& zs;KP~9G<67?<;VuZlk{nYdsxMyO?!_rtv;W>Ydd6X?{nCwJevo{}~lMet)!Xv*1*z z0^KC`mJt1Y>X1__=YrW(%={UNkCIRYU$SFfA26$MdMywV(f4Q|;+?dL(-H2if;Vhm zPUV=o7-ujUpQei7d0Fu3#!07(0~~GL$y9y>%@_-rIv%mM3~ZlVYTHQgPS9nDF{ly|0m|D~j_KfevKnVD zh_3TsoDMM$(A{=%AtRENm0k1T|NDpmS3ySX^y$+hmSW7Ymu#tppVNR!T=R+60*_z*ex@8RzYosY!aAVT z`{@${H8u5FNy!DA!QYjxeJJs7+m!mBZ^;#zo$tq+9^~ep%+q<%Kbpy~F8u1yz!eUW z0j`7X9xn$ehlPoTI!qhSoag!D1=+Hu1&TTb={EK97uDCc$SEjVKYlF!mp=^v+9xLH zXOMzuD+ur~0O^bd01;zdr$K5YA}T5@EsgW$IaWFj*^J8TAUd3ymS%hNW*Fc+xqu^J z?z3#fNad~WV?Ouqw~UQ(KrCNcU%%+(*as-^~zuHwo-xD@$=Z7MSfoN6T>7#y74(E$mX zBQ)eNdpr^avL~d_B-c~!+OoLMl$BsP$C1WpCXM}v$!~|DYSJx>Kkv1r28IK$Z zgL!Rgpo{u?Eq#XMd1B&?Q8a34WyJ}@)k&kB$fNzCukSb@(3k-BcZ^8g-agMX4LC8W z1qB6dZ{I%U@9(d!tsQBa2I^9gpb`61Ga@!>1aGfnWP$yC9T+KnA7xPuQzB zZ?1sS?&GmBOGX9;o@1hx1(nFdu{s!>oV#+h09mY80^kRThyWU0;tAIJ{=K!Ps; zO7B9h;S}J)sc2|g!5hEv-(C?#t-|$~+O=z}s;a7z=%Y+bAz4{jr8uf9GF52w2}MOt zNR42R2F?5K24`hwFN0u?&a~NV>l;37b7`v0bLdTFWgDPUksCrp0}WJ;RJF9I z&@SKlf8r(@1K3MSO3JIN2Tx(Dt1sTVmFp|V&rjyi_v#|-?*b0D4Dd%2hZU6plk}iH zIsbrwJBt&F$uD0*3xWC1pFi^RE0#XK05Q$3ujc@CD(CAyc;*R48= zjMUe19>>IV0KPgHRDitZ<>ckR1Lj#(MTO|q{a>sAkR?6$0%rO*0hX+|f%^0XHC%2B zlk+M-rL}<@rOY*q+}Qz5JmXh~^wW#3mLV!lp!W7KKK@F$awq(~b_;((#zv{$_}e>b z4IHq#fObZ7vNtw1bgoAh^hHKSwgB^z`@*pJ@aQPU0#jN_2f^{;&71sxCK{dq_}9~U zbZBTOuKTCC*df3Vwt>22?V$7(2No8V=6CPNL5x8ajwIMSsE1+g1CR#+4eqh}`^$`Reg6@dx?kL8MPga%%RG@~Nf|OTQR^sC0gMsJFOOAq+lr)M>iUzJF=gvL9 z^sv7Ed|i`E30|dY8eZN0vgX9&hv9Ym=Xp(clBfEz= zk1<;t7ZBH@U;F#_?S*fZltKFhtSua`Mum2WY8@RNY@Q~B*TM! z`^<{2%gf7Px#8K_e4t41#-WdkLphLRA7oXk<`C0?6>wC{cDr#SgqW1#x4&1q-9!Eo zj5VK5ECpxT^2YKqqqw;E+)p^a2#s9HRUc-?^@~LJ_7=u!j2w1h@gv+Cw>66D>+3Bo z8+=V>9AY>X^6s)<$~DZMfXMzZJ3IUA*|Q8vN=jLfIM&r^4%h+!`Iw%bUTbr+%JA@T z#N?#S9k{ZTo?o@hpd2B{NT|9O$KC4+WBA^w6H#c#)u<{3SFwO4KL)y?A$S@SNPC}M zI*CS&<~7Q%0~K;cMTOz~x4*$YtMLK#YjsZeh{%ggYYYq9Vath-E5%ms{Vh$Pbt9da zm;n1G1$ydjZaKrhq4rhFKLfto^8eXOe@*K8~9JxXRJq-rl*Nl$a#s zjltzz1m(^6FL~2QBerbA&_o67w?0PF9R1B z9mu2%kBpoU7N)_tVNJ{EX=&AUbZ8;#w?Uzz%gfKE5i$)6{ZLw{>`!1thOjz$wF_AtnMZiX`yGB_+1Dw!se` z5CIIv+5fsgf-S^JfCw|;*XJpL0|E4x;V7~N2M3=O7Y~M~6$SPUPg<}`3Q9^!AaS4v zQXsW}fQDWc?gcmSUf^YD?Ck7L9idqm#ppNe!6yYQ4~2`1i;as5%#~kF>!jQQeRt3z zx>{-(tRrB=O+e$7l$E*R^gyQ6KG_nAgqh6T+>7JaZESdsoi=;$_N}a$xjDqwW8l6t zA!fksH#wv&u(do23UxiZhiGZrldJ_~kZ3q5~ z+QA`+Zg+O^o~g2T5Nh{}kcEJPI~f3?fRAqykl@Y0S5Sqn1pPID2a!4SrUsXliJjo% zTLzRmF;U|l-kFS?+!hqUWCQS$pmJw$^=i1|mpsR+Wx$?;n;-(+(cxOpqTVfdo><^q z;0Af~7C0G5nv)Jn!dt-AeVC}Aq~u|EI3*Acgp7=sL;J$GC>s6)#!EQC<#fP^!=0V2 zI|%;&Akk)L&omakVqk#iIYY7met-lB-q~=)*BjUn;aWJJNL4un5BUy000TF7ER=j| zRKdx~EYW?SEIkeI{1#vXicd%g1&Kc!(7H!)#pdMjL)OV|fpL8Y1pC1McVY*~?+vYq zeBkE59kMqNAf5&eh~bJ`hrq^07wRax0#K+kppQ4YKmfh0CP;^y!7$u67OuH`s~}hK zT4;tz2)`0Ld$4fe3b6$}J0IYD6bE7At?g})Ame~!KjQJ@*6})T&yK2~{XmGaeB$Da zp#KDmLcX-Cvk0735sCAx7tSW=`_*UI4p}?klyx z=*h~-IadAr@q^#o!ea0i-1RZTwZ~O4OjQ*XGc)rW@5Sr9VGK!P){tC!cvRH(g3R2* zhK2^`V9^e4H_aKbGk&utFEH*0IpEl`8L1y_UZxCe9)&;>=O1- z$;v^EzSlAhBErJLq(>pcWhMeuwH`iF0W0FdA7aGdusu%b`_It`DXSKy>v?&n-A{*K916BtzlKkpeNP`AX5oVP4h1S;A+JU#94^+^asDbbQ^QTW4 zl|A5p-hkCeW3<)PanrPj|3@T^ly;WXEbD#VbfbKHd{p!o_k$8$P^hWd*~06I-9O=0 ziO6-LzHnL2+S+=35gat=_EpKpz%lp^0MfHkQYQQ7fm4PkoY-GcX;R%H7!a{Akjh!hapR>||!<0l- z9o^Zfihjo+%JmN~g7Ysh7Pf5kXJr=D3rk2~Mv`0gix&|>A=kT!i4hU<`h>&eP=%&R z!jM|N?dSq2h8%}tMTD_FbEzxS1%`|@2J~d6G)gnZB%H?8BG=S_l47Tj*jbm1i)dVJ=odV!8X zy5GG^N(4gVOi&?)S5`_`T3Sj5$|tY@)oojEFCDmIwx95iySMkEaXkdpy}i9HP!A1< zb!-M#4f*8U1_Tvo!VuHb(?bMys{d4|P-(%;r9*CRZjdN51Mkrm0I(It zG+-_b3JV4{w#U#7%YrU7#&z6KaGd{#CA*Z%1o7?y zv{GPQ#Ze=YkaTGkl|rWnW)dGGaXr`27B&;;pfsUP0Nox4YzUJQQnGMyaUnIzo!_5$ z*8}f$?rg8dzkK`9TqTtmo|kkB3X>=_wkef6N;C+oj;7D?tN2`^f=wtS$?W7`@=4aKXLzW$iPMxAcYSLOy5r|rc;7}1Enxwo*-BW-5(7`z_nF)`KC>eBl5-T4sAS0* z$w_j0b(-(*-kEo2-g4uv8&L|!;)(y8Vs)H^}+Eg3bZ z*o7fyx32Drqt#wV*1bv@+!x;7A3lx0)aL3*emLZ4HT1T>=g`9HzD|L)W<`NTMZbp5 zy#KIv=0=8Ex;$4;>DbE;Wi6nNNFDdpGmX;H7j>BVLo4Mul{cbRki7)V`C?yO} z*}>m!N$60qg4cAy)&;z~<3T(fRi2(i#KfYLZ*LYK?#{Dwb1$vE&&tZmFDztT;(74J z3$EmRxgEO*Csw*O4RTwB20pK@CK08ntE=C-bXrbcUc4YOB4X{=9Y*_|*tNAa?!Cy! zNVcV5M(OyoiXzWH-V9jVnMttQnToWlKYfSSefL@I*osAC`ItZ5cFxgmPIrIR?i>gF zqR?~~vZU$l8JU@nRz_C_Ubtr7Y#W)3b^1f`i;t9^5;!* zy{seSNWC6&HHRIxYdk#d$M!>KuBXZxYVj^9B;-u(7;g|2&r(;V)2dNZQ&Xv%qL$Wg z{0)LWkG(~9cJ{HncB%Qb)xUrL-l7%^L!PrE;+-0fAQ#u`ip~BY^Uf5O{!hQIbfzdg zIy%@|UK8D0uJTMhM72vF?bGhzwIoO(6WI)=Whjw5^QQMe!RGCCa|W zy+}{CKJ2=@T8&4ptg2d9{Ty#+TDaD=(sxYI7h={ImaLn5>C2h2- zp@qGXoozl85zu*fuooI0UeMNkKe?5KGU!)V*R9*PPgb*LZ9KwmYL}?H%pruS-@bj5 z)O&Nw#Do=f{`~pB%OjqNJX;E-w~ zmpRD1-BGagj>-IZ>FcK~Pik&<-ogviUr>Oo(HF3eJTT)Fg_wpA7J0FXo`PQe zW^fd}>0H9Xj_Yx;LV;L6Ip>oiSks>Iup6hd>2CQ!N=Pe}N@TDTZdiEu)7j)m+n+K7 z_qDXpRUQYZD_5@E{foGxMg~{TYbGtI58!bk4LqW#4BX!3K5E4MGUPCjyIi@Ky{TPN zQW7|EWyd)XdA|JfFTQ;cE%hk!Cmd9(a1rry(s{N0-QwosgEv$IzRlirw6snuH3T$5 zPx@%Lo*hhvDuKOIQC~A5L5YfrPEJnp8aIV0Mjm8r5gX+y>^RKP&CShyZ*Na6EQ}~G zFOTQG0}Ji0D=$xM;IYGUGk}cc@@2di1mAL6m!n+thw%A(?f%Ti+O>_<5HQ~B8tUu& z?uCQ*Ud;Zg>rx3DMS@TCyLU1o^eKsnK0Q4eZ^Y)VFnI1iRZ&&Naazc26j?4`H?y`j zX_wr3ywH~$>(Fn$P&i;6*h>rHBZ!hqPQtXrG~U_YhfFMuu1%L?es0gU1kCsiHXQYT zs$6|-!)rHv&!jE(M~qG74=@Ii@fVlhi#u9>YR@VfZfc3T7A0s&shX-d6{;jP)^e@= zo`lDEAlp~W*o}C%HFQHTV|x%!<@b2kr5^`dBO|i~+$EDC^_E;!ixpeLI&*3T&trX% z9bgEb5IbcaT_~B*jW!Ulg*Vr7rO*yZlP)+GppdhUFvEKl}UT zoSj8c-QC@T;D7}L1Tf(G*ml9ODC_Gh3eZl$aHsk$bBr4=I6h8|b1?c5!V>GY_9GUS z6k(aQh` zicz>jLYw%L!pGliU!!VaVy$p$YsUUr1_dAiy^w(f5 znf(YF?@~gEs_8}2vtM<~Z-*3WBQP!G9y9)Hy;myP9J<+VRpxd9%^&Ornzrolz7yZ{ zAY8+{LU>b_P~~~o!`4h6StDLcLpPbEf^g5NGuws)vG0l5{ngR^8HkgfleHv@q~i}M zNv@k}vU1M!ZQjR}yX%d875DYo*5H@U^!CcWX<cD#Xuii3R#XP8zd%N(=lglvAgV?vZU^=`1XbEZHiflevQF8jSf^_o*DemV zmoaaM!6bLEYK>q@QXZCw)*4S=#rc{U{z#K7()puPwXW0*e>3K{B?;P3Tz+h0dfT|h zz@d7vV5Jv-+Z@O3TJuhNhl{zTkE4D-#imbwt82wRZ1*}ma*4Oa25M^cQhN(^3c^G6 z)@6$kX5<>X?Q~=TG$NRbY;n)d2oGZLW@l$nY8o20-RhdFTUAGK--4)AA3XSu0AqDc zy>Gphn}R5afVG1qcAA+J{&d!(9r8SjJ$5nIOv%7$>scoJ2xaRW9BcuY)&SV4eYD2s zY_J}t=A;BTt(I8P(9fSa$)vU)9v&=v;=PTJZ-Y(V4BN2yZ->0Ojg9GO^>baf)o*(7 zjQ~p;7mG&P_IK9N3JQx~BX-tj@{o`Su%F*`bD^7oyk`aPFOTOAF*uHX?RL9IG|DXL zD$Psb)dH=J0{9H~rJB7anqk<>~L>+X4HpV-?FO4hak`F*Qfde#2+DWaeqDG=wANR z%uFb_^Rr44HIR<%G)f=hROg#_Zr3p$R?G8L+|tm{_;iFgC_o7EmX;hmBz+63Fu=JaR4kZ9=yMk((QDuF1fMtA?>Nqzmtp<%6H53Wy5zU2@1>6GGPWwT`x9DHcw-G>5-Qj;!Al#l?_|evHpn>3^ji-J3IF z<8g{O;`M_Dqd4h9Q=!34`QnXudq&~Qb`x{DDUc#S(0XfF=YL;Ux4gk4!ENmnvd##k zr6Bi&pmi^b-w!qj&(q&FHheI5u*roy_9qzE|8^>c!XIjyB{@#Y2>=6QiNR7v+bd(J zh0^)#1;~j89Y@^baOWm}go=)O;Zcj)PSOT%<#-+hrKGST86`d`Z9S4%0N9apaB$d) zo0J7F+<~vnz}-vD+T-%p5EF;PavT^gSRPFl|rOMEj9nJ?Z&78XBnHwh4ngT

i9#z%D`%_$SqYYwZ$sG6Wa$YYH4wPn~7Oz=mDzQdL5%{~66! zWX0_OCjRW{k#%(y2Wnw|yHQ$ELh9-GE$+%~Bagj-k&w{Po9^zCM_ZmpjW(Wp0|k|v zU<%FVsd2I*^d?vHK@6P#6`Vb13-WcL1Zuckpv%t8A5&;NIPv`fH6fIlfsh zVQ5T}MZ+P~a4b7VQqrGDcOkeG(v^uKPweJ*FBbjvG(v;BV*7tdeIF z_%Y2k$t_(5=gHGIK2jjrE2?batGv;>G-SUc!-$TiMZmhg^Hg~K(>9R_5@cs}ODQ#1 z;d9W5U`AOJ_M#!MZqVk2!?e{r)f;&GC2l9cz)U zsWT$_aqJwS-+1JD_SJLV>fG~#T_q`&XHVdKRDLl%UC^GOC*@sI=mFd9nrh0u-$^dJ zTgysEhX-f3Af2WbFjFqVF8~rPB3VAtc0Q{pBq5>wQLtnK1be5ca7~S}F6WZiSbFaA zl^e*;8ir)1UWoTBo8lydLX)|!^m3TULAUkRz?shymnsI4J$9Q)FTdYxmfUmuCO{G? zkBv+N`vGU`EAX85+6kBv+qb%%#<@CTx+eIRC7eAN_6_rs>=-M)*f_d`gk42Tx1eZK z+Ocv85lQln{ofz5hJtzgTs5`72~+BxX@&A(yOKlu9i6kCED|4h6qHv}a*NShH}XYg640=?@(ZrmGH z1A_#oim9((zkY9S9(XcSEM!x$K`A`!bQ$qBKib;~MuR=~F9Sm}-lJnP^(ly3d%~{j z=wR7y$i8>A?@{p64m2Ci3Rp)RIRB?TTBdxqli#~FaP@y9c_-f^e9y!61Wlb=voNw5 zNT#NC=X2OtSQySndXj2H#Ke^Src{M|K&RvZN%W&<&ZiclxkL2?pEx)cx9GB5cd!>- zXd2@e&VM2vLUGP_Jky4jo5eohLdWQmic`TU4?R3P@loM|mAg0HSVnJN6Q0+2tJ2F}80ixw07uBxIVNwhH!QYEQ9I z5cv^$dx2YzZ04zw$bHcjJ?Oezu~5F=rkB0qy1&}Ep2&FcA~nGy`q3Lv{0FPxu}Oso zzw{4h4zaxWW;7&t!7@`_Q}Yfuhk}9v$xZH{-4w_-HcFTaneboVfALIJ5>gqCBI6tu z-Dw`;Nb_cI;|$NgXt_)8sP_vPma=`KjhCAiqbUvUnnw;7xccpSMMO|m?yt%FlU
    (2H2u#jh(jr&BAl z-!c5iZuCv`HcQoVQB72kp&R9XF{)|58Lg9V|oAP?!wD_x^gNVH1COuHUgruFcT`<#TS;cd>ZLSy>Ugv#HHr0 zqUWUWyYxBF_&Dl(yo$?W*mt>N>*y0QjDf=l$@AQr!|VKP`A;~`)Fm@p3CgC{-85c# zc6L7-|LP^oqRO_Nq^=6#opM?=t;VpUwOI*AzdsR?AYRIP9njf6Fh+15^HA39+Xz#- zq+T-fh6fDKO#AHqXCe(fj}rbfHdX15>u%0vjM={4)7yMlykJ2bvOyZjUaa87Y~GoC z661jr8;w`gRc)uRB1e4B-~`)rHTl|vE0=tT&>I+GVEy>zRJ}#g{PIQrev%3oCjC1|v(JEg#%skc!y*Ea!=>7&d)ZkJWUAVPZD`#42-uQA+P z&hqg)U7U8cvbuxC?~AH7q(JBjA9xUUt#)UwDo%fQeqkFf;BfsgDAP$KE)3AV@1Pj@ zH2unUTLUq+-JQrt=B)66dt3ajNsXHGdY#oKs4#y+rO5I~=JY#{14h4Ia&kktab2#I ztsjXQeSdqUk=E?Z<}*K)-Uv6fvfl=m3B3!3vrDFF<2`oGJ32bv^F5MHof!s(JS;2> z2qLm-NM1vo^err|LUK7}D!oSou?`Db_eTk&|9pKTeK4zpFtq9g)6P#@TU*baKYw3E z<%Xr@yhSiM4S!Oz-FA15M?r1^15AxQY#SA(2a-wLRh~}`mq*CeLz0HAm9Oq+OAii_ z`={QpBsqLQ(8%eVPD-(8@$F_hLB6p4N=Ndw_qKyU<shl;&CFV7Lh>>;!Gpdog{!}gaS4gnx{vd1@4C>E{5}dD`6G&PM31Xa%VRYS3jq3!&?P^X~lh ztLC?9LMxPfTGLbG`)8eiB>-+2Nip7tFNq-eLA>XoGYY|O(J?X3Fmy4=8Su4}P_}tI zULRNLeT^mb1`NhgYNi#j`wrgkfo$EfB>vAq` zVH2Hf)2mJ0c`t4o)ko;LFa+HgDwj=(U9ll6wiT9*EgupKj*0F*cy~!yIC5{PEcod} z!zz$^Yk=TZArH#l5Y01fpN6S^RJJ%S7#S9Zfrqh$Jo9M-jVbf)kmu3Cle|_TxAmA2 z-HBYOqkU|ZZ6a7&5fZCZ=>vAVnKlJ_otR*p0xDvHFGY3=Ky(Rq;1z$MP;B=z=&fE? zSXnl4N~Te4eZG9YehWWR=-biK&X%B5VQZgC!@*PO43plK4&!Bq-)xkDr-SO9rkbM8 zEr%)nNW(=Py8KzsS1Zcu@f^R?=pa9oDF$^sk=dkBCjj`)lke_a;pW!QYCle#J|0uy zfVlz2?7i$~Rh)cr`OPS-%HuyjKSJ$>!D$qyO=|DSjgNvyrck`vL!kZ@&R6YOP%fkg za$`E$GJCdbc}Dt3R8#lq?bO15C~~v2ZRIxWcRm1bOsNrqTXpq$K-0rsffp!p!RlYc zqhn%bjvg68dEAPXsJmKxb^5PmOe$7)l) ziVvtk=q&5K(fYGWK%K+$z$_2&BD@Py{wQ}|M~WnRa9G4TmG;^1sC<1RejXoz3 zdtDk2>oW+8b1N}UQ?v}S8Mv-V>Ht{U5U?1P4G8O+#K3=vl;MgGRrF{N?Sr2J^`Dj}vx(?M`0lY~vkXiK7(d;IwtVgrQA* zSpvWxkH>0|0S1O?2iT0yVWCga{Wy=HreNGac=;0GAI`4J-~32{;c;l|g(|!*<2=5I1NR~f)Fh4)f&cn0(EHiUJg5%=W`Qy=rQ2BENjs3#;Vt`-o z#YQ)=mpZIU%=OEj;fA)257|OvZgB8aU!z8;q*R2A!F=!K4cI1tDZc|h*S=M`RdLG| z65p*6PiaqJ-nM}st!S7@O-fop;3Fi{>78ctK+mOTXHO4|9179USn3=9^#q>aM_b!8 zQoUZxh01JLOUpe5x0RY(0|=uERV=X~kIlRUt3T$JEHa#wcC?3LUESU95)zcGthk(= zouMiUwf~#LPyAynN7pyE4?GOF(KxS~z2B~@?tPAkh^TMMw
      h{!KoZvI!%iY3?m z+Soh(?b}S}0zUBLRz1Kq4XbPEfhZ7C8i^DQ*?;)qittgz(-N9a-H=5w7Sxpljg2>L z&sBxw3u0v$8)s;kw$V)YXix!STT#-boK}5k;!4DmwLOFXoa|gQ1 zYCn?1D;Y_V0#wBVifZ9J!=~%ohEkI!c#H6Wsb8n6o3WDA`zRF9)uo1tj*fOIK4b1T zH4@xhB`qu~=Xm}y7+icPZMEb2*d#r`p~GQ9oBUe#DU6%Y{uk8CT7Y?_@=z1}@WJcl zOQMUFN@f(r%Wqv|IVls<(*xln_(K>Vd>HV0??X1h7E)ZPXpOX5$+U2?{H-Ang>$dP zXL(YlRMaGsBIw%{9-h>cl$2EYcSsQxILpt?!ty=Bsx->IKFEY_XmrMm^>(jJea$kH zt6S;B6_McZaQ@;_b(i^utE;P0CK)<|()F(Gi zM==$rQKXP~mILBeU0giNr7mpsjMh7MKan7XUxK*LzX;F7fWT>68PQp?PbNbEQ1z?%ZgS9C3 zkGv=JnnfM6WVHPy3kI5BfPED6tXdp5aq>ec3J9@k z4>jmw?~_%fd4IbArj(TBhrP%=3&#m*9`8ni>gP18g{IM?eSRx@2sAZw4k^S%dCaDsdD{ykG~Nn$v>WXps#x3p!SOZQ7@-oXVcgs z0<=_YuoKcDON=YRN&s8z?E1xPUhVy3uIE=miQe}PBP*kTU77yJ<~aLRxK0+RSIsYv z-tDLm#}*S>YZDc`i_cb8vBAooREpT;p3}*Vwi|zO6}#mXKsUawdZbIR*rpVokI;!B z%=Trc&3Q}CS+hU4Qu)Ay4@pWO@z{t0#kDlKxnn6+OsnwM@qv#0B-GjsUTIwEEbnEF z>PFaJaY>J{GK>zB@H5p~&R}V=VWjERWmzkWw#6=|)WoFKJNS>E_p~TeaXIy&4Qe3) zhi^1pR>Xv9P#v%J7cx>MtSOoY(Z&)v{tb}c^f65TN$Vp%kId|r>`m%V}qCW5XgWcco2*N^K5 zQt(Y;h&=60Ogv_TH@d<}=tUJX=Igg2-L1U5ua(9?aDQh@dktx$*!P;Vo3PrWyZ(iez z`&Srk@!t31NN4*lYgVTsJ}GI*1lhqVD)OgB2luyc$Tb?@BwBIch}9tL<$lhBT|7su zIi_oVC$3Zfw$h99#YU{&i~aTLPWo0)!M<3>Q$5=WpC6gzWhD8Ie4ClY-4>_8~(4SaYt>xZ)LRH?gkT{@w2{ zO6p0#si3hCxd(l}z|Q(9u#30h62&)+2`cF{R+GKoWLY#y)6UthO7xnj5k2R_o(63SgY`euI14kM)$CHm+yo?5iGlGsR>jA z6%CaLQ4PcnFyC1*nGvuY{2X_mA6@kiXnvUU?8TXcNEcZ350w3|>KnyL#A(42YlH~i zn9IyDX?R7mP`S7Cica{=%a<>?_o@KY#X@NTNi@DZ)}^MttZJ)2|i_%JGsjvV$wnlEES`5 z)qw*FG-W;n85AQ5`B3Hbc*P(YjWDUd3Ln)KVNvgO)%-inp}Vg@a~M+xQ&MN+u}-&Cb>!iF@j=dvuETHRuAUxNYXc}Ym}INK zWqv$-cy+Lc@t^3nlo`a6B#?}A2`wn9*uTrHew~Y*or#_dlvLx2i=YimK|=QoiE^v@+k#7sG)#L_ zTOdD{Z|jtYM94yYn1#-cjy@o}-wRo3f8wHj%?}E`%@NNd?u5Lf!#&42@)anl5u>kSJTh@N$!ctBBqCmLOM*p@k|tBhlZY#;Oa z(2mZNpDj9)(6J!+TL3zI0kXD1kgfd}N<&VhPzU5Cs@jiA|9fBVqmroz9g(%~mysHf zGssa(=CjLCkSC@T7Z-P0CZ(jPfVl0&>C1%+KVSgqy=dameOwVig2Pn&cq?yBozack z7$dU%i;P4Fp31ksTk7R9m!7Hu=o{ecZ4mb)-U*%t5U#-KD_}D$apU88yecTNqL9J_ zq>U#b)f24?AUACaV}C^}n31X|152j!@zc5D$`ftYJ_hP_5Nmqzok~wvCXlC2-k96v za=v6v8e+}Z^>|VW0f*Y%RWXpUy)Oa_e{Kj+hpg?D0RyMGpMD8BA}H?CdDZIOh+lpC zgwrBo)u{IDcPSN1cf`6JG#xvAwd2~ux$7b<1S-#gu#^?m)jD||2`OD=SixYD zLf8dw`JmBN9Lz(=4XT7|a)UK^ZWOXQ>;SKJ`_{U_1 zbh?-GA`B(W4SSIelQ4$rlYT2jIK14%xTDFGB2Q26yRdhON~_CZBP3eqI+|!u8J9e~ z#@d_$hrz-tk+Rxg?!yq^D6F6E50Oo(IWS(CKhwv0lGX@gr{H#LBiZByjaqjAHs&NT zVD4(T=|mF~U*tKlEM(#N!k$BuE{Kk~_s+uRFnr4bOuK)%j#E6Z;VZPvg z-eci_EdmGn#|FP)p0aTM`7=wDykv?MfrdPgB?Q5NDt`4xK)^f#b*scGLR%Ol2n3g5!8`UEX0cl?Eef3jh8qgUY0AJl>i} zXfy9THV}Q_lUJU+=cn*^PcDknvgk#8b&McrEUysaR=>#cZ6f7JN6U5~3wqP)&%0v6 z5vxts%kw-L32ptn|9qvHysrD(${$o8+XbWQiPr#3igSc26EeC$X@@B3vg+TeZ9ifk z{6+4ca@~%^I>!(2yfiJ7iL!dg@to;I9bB78Opm0zVMs`MXS9O_(_`dRh0Iw`%dwI9 z!JLHZ9Fe+3Sva8*J1ZP9=c+P?$tk27hj`8s-SQHL2Sd52}L4X@kIMg^U3I~CG~m_v*K`@(x7t7=JmOv{aJ9lTp{2^rSMhL%4J#SVj} z(W;jpJgFmO$EqS~&8Jp0D7KaD37U=wzrrLCI<$$R83+{B`)-%7k zV@DGrB&Ur6-5F$C6M5rf<5QF(=BEeq&skgsKjK1n{6q>WVYpSC2syX)49GcQAm>0z z@N;QjEsO2=8`imxXzy|R9sS3=!Quke7lo8|*J!P5qd;3W38d2r5ABm9S%AsGx3c^* zZ`P4#s-ym!d4t}umGnQcy@7G&gQRV<-HUof?UCD2SDD2JQGlLTqp&v5Y~?VJRD0oI zEcoEzgRA)sqiv;5%5nXKkZchh50uL+0dW)AoW3CxoPo9K@}uHYyhwVgdYpKm`#*W3 z-n9Fr;@60lyggmrxVU;dj8(l>6Y;AqFR}hgCHOA+Xd~iRF;0{xs)JfF_xFH7)UcW zEiv$Czw4hIS0yLcfOWrsgqz3r6NQ@W=o$;gM6|_Xads|0{djF%!j(~MQ@~)wzoQ#b z+Ng7Q|Am@6-PaEZi$cdfUL_}t#v6^Dv%9P(s`E`mJec-VXlY{;`sa_AZo}e0b+q?j z)KlJY2D}7AS};%2U(b!7WBXnDh`tg5{9ok7_S4UKXptBjroFD^$s7y2&0A5Dn%TMg zkA+yA0PTi<6{#=d^i4&So!ID+dM!D}XwW7&PRrx9$?r!0%eS_HZ*`G(6WFMVyl$Ta zo<#Hbc?z|647YQPz)m(51Foz*c;x0Whga}(dcP~_*iGbj4@i+NUG*CYuXaG_g^{k> zr^I6kh@W6R_IXKC6P8*leW-0MoOAvkByd55nnzW)fcS~y<#m_4;?;>o5|RWRUcart z^%j37Y7%!Tt*tzc@aalTBsDCzd5ux8T3-}N_MT|u_8qYNz}}xYwSoTUBHCJ42mAj6 zU~N+xGCF>e6ASTVp4>k3FF$%xgZy<-MI?)U_{r?-+%7(LKQMEhJ%M@b02^t2?IMTQ zadA`TWQ+OoEK!m5@lCXETcBpB0BMZsXswR^wIGfyC-f*dXK_hVZ>;Co5Yd*(VYt1K z)do!ugTX_1TD@pja{ofsAD7VokDJLStLq#cRw*txQK;~|fqGwwl)j4Mu=@m`k44e( z+I6_l#+(F?7({eY`ULT1%>DECbV-iP=V#|!plS^0jM>TygBtnala4nQMt}FDNns7m z6z2AMwP)a1E3i}~Iz;G(10grpF&{&L7jNzTh^i(|@F)G^ERpLm3}CkMKIUVT5I#ox z5k^zbjVU>m_Tt=r*9JBh4@t8AVk+xaFmepOWXIp$RYY*6<*$!Mp8 zNDi)t3eGyf>)OeGT_l2`I+$qe$A1C72FuUQfx#cM0?byd-`FuXPf4iZm!-;_*p|nm zFF+ltAZ*NHJ=WgQF~463yw}CA;yz|$gnR4ns2N!Jzn3}x&y-Qx{ddsUyz}uu`@L0g zMa0R$yR$t8UIBC~1tXb}*VVz;7exPg7Mv0Uef=97)3AM*4(LmsQTOgYiz{h1pjMnH zy`TGEp)YG+Gsfry3vB33V*a9pxQOg4zT=3Cc*z35xaA4Bh(eO%wPOjq=yle1Ed4pg zf&1}^mHXncWz^i+z9+#&j7=ZM?gp4t4LWu~R#U1rST*RO@=|*OY((C%sMM|ea zzC%99d5INg|7io%o5zANa_zAOi}yqLo*4mEg0ztu{YeBX}t_Ix3ZhvvGj9DS5Oi@ zFCSwzkCtl{^%oJ`<;_p$z5e+xV!@o5?`GE)dZg5Ty z-RH4Y)D_aky^Ui|4n5~rE91sN^RIGqxq%I6X<^Vw`g8xP+P*6C6mc$m|C@qcQqK$7 zE9MgyqE8Z-HfYXgy{w;!U3xcMCaV~E3}IAwsK_2JzlzT`>O5}AfflS|AN;?rkunEr z^+{OBF}3_;#T7qfm289bWq$}H|2hzx5%cUZhTmx)M|AVn3QXn39Y>C>m? z!<>puT9Da@A!Y9&$B`+h?o7bz(dNSMKq>L1;>(EQYPsr2DyMvn2oXku9G4Y(v2^D0 zu{W5f_)j%h>Q&0>>0N-v8AMc#Z6`EUXx{7X=?RI9EP7|kiadjR=l^@=q^GYcE9*71 znFj6eyE#CSn0pVTNh+F}y|dVB^_N3$poY5o>A+i8xVRR(^tH928^$@Z9ZFLMIfuag zuz&#S)hiO~iVY2HBpL507ynr9Wy&+)9K<4G}FAFdvxZ ziY*7{mcM_WL2stm5O%&}G~puo`2tA66Uwj=WFim9p^Z~^bk(X*qB9A&;I<>)D*&~AywsEiVi3r6Z&b8>@$EkRpRf@o4QZGo!9l) znId77iiLJtUW=|PC}_or50LU&rwlAdGG3OXTv*8PejOU@LPY?nPU`x`SQ!eY@%jb}x zc%sI4JZwuJ+_|d5jht5X0OULA!2^G8heYhH)R9LC+b}@OPGI3hLJ^Se3vc|y{)W_J zm^|o>tpVF;hXw;BiW8s-c=&Cq;@#aO*Q;UJJDsAdc)5)5tsqoLPfNQ90vC{edqKB< zAh5JC@awsB^2c92Nhj$o20iimPGcv*+Y|cT0O#x+SBhb^rc-M~37581UrpCG^O_lH-t~ zEHZgrR&_ub6;D#3FL)0!H6Le8z1iP45=p^ zTSea=D-(oB2Pp{+NcW&Gn+gh00w8-E(u%=;h5Yv)FBe2!y!L}lRayDxYwWy)>}I^K ztlt7*vAl052>il(dU}>Jkf#NxYTtYbjp&y^=JV&xP3(ueY1XIGhVoTkA767m;y8im zNa>&SDup_b2k65)a}27M(va?G=rOkfj|Yl88nI_rkeUS|EvoY;oj@d7P#hZ4`nU0W z?IMC{Xp0Lh8g>Z^mOgwBealgZPJE$cCZ78}azk|gLzyR+HAR|QS|0a&)>;507FY=V zVeF}~xYf`g)Gv9S_4$7TbtmZ?AJ6m>h=0`7)Sg)odwU^5e~7jYkI1p`V=fWaKHjcP zR2N$R++fIY{TGa}Tfpj7*lYK3q^gDTCueLs#THxr=T~CjtxFQyqdtge{=ZlS(KM*n zm;m5ui53isx@O7`J=oA$q6#h+=@tIh0TIX{5zvS?q_;&mMUT|O(fv;IG3hV@hvejB zKM?Fxsbb|Yk7*eT&SHhCS=i|lb1J8h+rMZ7n|Nnnu z``a*_4G>d4{Qj2d@#DwPher)vJ*@?sp3pCi^ejUs64I+B0ev-rjr{`yI}l&mV3$KT zmJl8R+2rTEHY4y6$JI&L3>W{$p*TuFP!Lr4B-!O_a>%JDpl)mfDHx(n&0|rLM`k6T z43tVi8_!O2&_Rbkv?-D!$Q=cTmOule9q3araPB~M&k;0MB}4yKx@szGKeTa6%LX&F z!Vx3Cr!31idUTNbRZEUS}5d>sc8Y zm(Bzt?jXG)KR*mPyCgwXU%yi3Ku2498<|gVDwPeB9(AO`Zxa#{ib)wHoG!OveOW#e zKzVCxI2a?=wh1};0%^kfoI3&`N*2P#_$CNQt!l1fvrQX01pI1%3>n(NR>!}^^;7Za z--DJz0R9{tIyr~Ub+gbv>kQ{3^tcS!fuao@3!O71GSH;g@6;}*nVXw0K*R>9&Gn1& zwQQ7-6)nUb&&c-QAaNAmAaDZlp7@3VgQ7HShC>*+3UmZID_+Mw>aP%s6XzfPPbd?5 zIf+PuxD=uaK9Z`O31ps5r96NBT|`9BH8zCVL(eh)XHho-wO8zrPO#L6b`1j+s z{xug&u;DK_4%WP7y7~S4_lGU-`O0^uV=Nbs{v-zTL%SD0KYt%&?at7oC@y)pJrTU# zYU2?)K5hgd8{&9Ot_$KfIvV6M{)Z3W`lJN988~R^BH+7;2r*LZ1!W20TVr9kJM<5su2MC;^7#D2@8temVNf!a=5I0S&1h8ocx_Bgs z1meKOXYSvRJ3`K?+OJ2jKsve3$h~lZ%W2^90py7z1Xy69@|AkSfC~+OXFJQ>+Td?+ z(2$Z2((dKtKrbO2bMtR(O2>&VpfBKnC4ePy{qpkih(>u$6vzs?E>HI%OdTocd)TZ& zDKwlkfjn1850^Qv1%C<1a?-N06b37SRg1^M=a51dAPuW+Sy)&=Cr!ztKbYS7#)Havqzp2)pb*5sm3t9hYAS)T$h$^+F(9yAHq4p|2Yr(JSmWa zBT!WOPE6344{{UhF*sHYX=|B=G*!ohH)8SV3qk z1W@|?Kb>lI`J6W2AJ=Lef)&tE19PK^fy2eFxou+*wKqt=&$uIM@mtj=MHcfrQ3&x^ z0<8;$ErG`~$ez9_qoA>bJzfV*m(#m={L|dPajoUQakkvQjQu}xJl+4|OXxgjVeH;~ zb_!YN{2wG~6%Slh33&9xeApW+zRO3pen>1yOvNI%q}L|b7n3ujGaogb;#vD0YJjuy zd!*8+>C{omZeA%v_C2hrKtmhV?%zP?{Y76-)g$$@xn|{DlzyeouaOVdXTzK&brAI# zv(*Va3m#R$GXF?!*T}m%VGo#lW^*4f%O-I($wyW;e=5pwNxOk811KcA^i!N7-Q;A? zQ+%G_*!mllv({UeFteUI&DQ_v9d)kR6RvjT-XQ4)os(G|v;sh%K)v0Jg2AJNuEBHt z^Wteo8G-({Th&^#aX@%mdDy(gKFAk5etPHJ>y|{bTMT~U)9)feOa0ogK&TWR)DQnc zUvS9%lbkzWSosLfUnG=SEk1*&ADi!lzzQ& zPMQ+yN03zd-pSktE$F~`<^LPAg94}-v7bt*aX5EUxm;CB=8Ius{Kh(6`g<*fHX$uv z)$vdr(}UHs(-Ku_&4<77_-P!sJkF5?d2;vDi4&Uop7Oh3h3vBYQfz0yriu)O@>e^V zB6<$Tm?yTHG*%Z}*W(w~WVphY)m0D7CGG8K(_(t>+NpEA4vIF{>X22JCq*$zY@alc zDtlWyRuXu>=hHjqbBpiqxOiw6bzOn6o6nnGSC3TTSGh8f`TlFgOYs6>&L^L29Z1tl z*uOkEv>b}Xzr=MqV>svI+(ESBL0&Vz=vcZ9GdHnyy7gr)p6*{7$i!yyeX#JEBx$*1 z`cNaa@G`?Tt-RFdk82gQ8Pe(UEml_97RiYvKBXnE11oI?MPiz?x;bQZ?o8enxOB)@ zQH{MuI?uHa7NN;W0qjGG?>i*Lf(wPXty6Y8OSi4dnq_t9CF-cngldtmEesH%gbUBP)3;6nXLi?(zM&7gE zW|l*Pve8$y36uRFd{r@v+YBu-%P{+h3DAA%pe@x;%lNeQ%Cmgr?8^RrYUP64FqqjY zozn-79CKa6#l=y(I|?VpykLXmOUgBOXneA|4~r{QX|yVb|B8L=#UAk?J*S;BFCa7B5%K7Hw+2%z?Wd76+}+n#|8xzPC;3GrTiv?MXLNxtI#c`Z z52DUr=RWREh-FA;<4v>eE^k(hEgW>lf$VoPg=}tGQ00qzc48KCG0KN!iKsos3)MVz?|l1g5#gbBXJ`=LVn(o|IBng`@|$b-y{b(~Z_M?YP0>|%9ZlM& zt(<5j&JJXgn|IPEchC6NGQD)<{@^s@4YSpqmET=-*8B~HRq!v3-b$nVjZT*g=`8SG z8h=NQGKTtQ|1zDBxxOBv0mgBqk0}77?bICq7TI{=Q1oqnOqmj@Rc!Qa1boqg!!WOf zR931{k4l7F{*#d&QBr|0n6UyQmNA|Lo$s!Wo^ljq-x;IxI^=4d&n>-&9$%7UTd;>~ zS)L{eh|ueg8A-25PIDEBvt^P|%(@8&vf6BC)Zgjb6kgIC`mELbVpq40< zhCMHw^RCd}fym)I3(F98vzS8*PyT6sqK@xZ?#d7H(5P2eN)Px&x6h}?YF%KoipzUq zJzvYJ!ha+1SI=*9x3(Fj*5KemvL9~q)l{AaZ~u7ihZ3lYa0XvIr@UcEdh6rE2i)v5 zZwev1GoOb7yinfXa)FNZi)8|5y>f+@ZVQ}A-fWh=YQk;&!_#8IPG?5wr$(=0l3-H^ z`9xwC;s@4>A}D+>+T3+x85@Ujann6*<+j6)ONSgUqYLlG7=>S*EjxY0Kzc<5yHrjA z%$b=^Sl8!s9cwD)nU<-WLHHK`S8s0}lvVq+4Ff75At2HXf~1s$beD>V(k0y`NSD$e zC5-}70wN-H(OoLt-2zH?$G0wj&-;DPAJ5D;^Ul2QHFM86+!vd@&vTt?9c%5ij-$b1 zt}_=dIKPjdd%5<(27W}s2&;14jY^4XyRapFc1uJ#de64(wgQ%_P z({Axi`3K}VF3Jq?yon{hTaGQPH>TuNOPe3uxB2X7$cs{>`!M#jC-I~?a@%Vtf5|8qn)lC_KWWc6IHlF-L`jq&nQ<{1W@r|!gMFoHKa_I&abv<{LV(1 z4dXmG_^lTbJ$_wjB7ATj4xXXEuw=W96$mydec4AT=p*YXZykWBcG0$;umHzwVIuZ= zkKCfrGS^O@0sfV|r|VVrdJgsCxShi@HZ2_s)oXXG_SkED-aXswi~>{2|KMR>>Pi zc9Y_K3`QKnU6HLwmz&oo z8s$~R&rCNHA1|W$n3Mgey)+m#o$SfN{FfJnw zY4j9eZ?p?0kuU=G1Qw4T#YMzX=dj9+1gzn&#p>K%LvOA{hZmM>7bC~L^57mM8mfy& zRa3n;Uxu%B!LyK6*s@D1WJe1(dU_J^qE_e0Fa}@ep{?y*`^jSqHtbJUF1ST{d-@B4 z4<}8YiSX1LSoepBoNhgnQEzxhEy4@S$ta9uE5UjT>;3RIZja#@w?E-V|KUR^8QX6| zUt!rzseHQs_~cJ7gLUOTmg&I`ND_ioMj(1Dvt8`2Rr!}#X!hY?rzFF3n_cY0wmQB- zH~Xfk=+@x{!G|u3s}Q3X`Mjb4d-HW}NJ`A`kN>uf?Y<>%8*34Tkhj!Bymyc@WX>=UVzQ{k{g;0lLgpLd| zpNyHK5JX!DRGoQFL8vMXpJKw|<#g7T`QPiMC@waek(2Q6r8jiVm$DczM#kzTDDEil z#0P}SFLVECyws;>NBY$N%Jvjo{`*LT{?kMT+k;H1XK;Qj3vCxW&529q%CT0L`3H1| ztF>ntHpOYVON6d+u)y+FAMp58Ie643-UL|8=>MO&NhP6-IHIgV&+`U?^_?p@l)mqI z$zjQlz%>}~_f=K~4z0%lkXy$PGw-KR3tcpcH&dx)|4JOuWnR;Qj<1Y;Fl330AIRQG zkBE<`$-i+(TMy-Nl*(j<)w^st#&eLNe`5+gg-yp&drE3>fw=zk$Ve(5wL^?Qp=$wW zVDI_KerS<}{pKf&j$?Jf`@g`dhxU+{D_2np>B@BG2_G0gGOxKiK|#VvVVkP=2vBC` z#LviI zqdTgq_<=>vsA_T}A@4Vizf-|ba3H47~rexW_Hl9CF5PFsbIhqf|CMHJudVUNBsR&fWfSZ4C-|Dle zB?Y!Yfyumed_Xg*i5K1TwYb%fIEF0CmwjO`f6s6=Y%!Z8n~~Uv{Pp22$SYRgl)`IaZ2?%f z10J%Ig5VL&2XZ>z!jnE(adBN-|MH$mg_dR}ZEN*+h+AV70f^IE1K6s`XHpNtXSJpJ zLuy+W9&6K)s<#z^WS){o&C2mS7o(Brdfq2>j#T5*-M`fTmLG+3wl-{87fY@Pe1Z!;WIpT4<7^?%$xvtWMv(h4H8_h zldfjC%c(nIa=)L~I*A$Ir!duoAoBq^S%5~%aWBI5)_N~L#^KX44jS9(i!))>1D}Ji z_yCdz{pz!lCzFrz(q~)08>15{MR2a}FF&CHgu$%KKcM}9KKRK<*;Dt?7D%C!k&qFf|A$dlY{y!c=xPRZBW~@+V4zXc=ka$QMp% zYSYGwUY|^jOxc!TN+Fl4tQ`52h)P<_AM8CZ$BHL;*2jo8sGd;0==t{9NS#lMkxT-P z)vkZeknga}g~pRE?|R5^;NZY9>r-|zVN_JzLe3*IM#O!+gT6i)g?i>fZQH$`-ZS>$ z$mr)fIb=mD0=Y4#MSyPNc?%$W4*5d$>Si=>_939Y)KP_OMycU5z6b19VXin$ zBu_c#!t=3jpOxP?cqV9HLx~JVt4wei)%1A1grB!&CxWQz%Lgp1tpgZoMpPh`U%yP= zX=g@e-tD_)S_F9B@^wm3apkK{HX6vw%td}u zRooYV@@FM)CII1bJWKhat##_CS8I$?q<2OQMJC~HYYy@l`OD~!G9mGI^NWzyKGY3a z4VjP~+*2W`ZA6*8)@eF9fVO)RM*XDa21A43YM#qt?-_hk5Fu8=WuD9pVAvFpXrS~Tbq3-e8PW*4OwAQ&DpBl}J=V!8zFiunfuAHP0%1hCU z{c{#YQ+rFIUztr#JKUu!_oXLt>vS-{$Q4DIOYi#A1>?O0Pk-As=8*Z3__wU8FO2{G z9HjgqO-N7zV8dFevCkfNVeZ4BQd#*(S&V)(!cTqP8Zhcc(@&ssaW9MxHmyg(za5?&uMAeR1nYZ zR?f4d$;|k2D8O*tslTT)jV7zSI=<`uI}T^!_u1VUb@~2(N9#LspVu25@AyBQ`!cQY zbKTpq=t%8r<^RBpjDH=*yzW|J-wc$FTi5N&FEn|9dJS(~ehK+poF68Ia*+_k`GIT* z0=BU5!|0C&rn)C`&$L(K1LWIR5Y;y#?=m((sq}ayY9`x9p8+NPVuKB!qtlAJz(LxV=|ik9H5wiXL^#KPkJnx-o8w;PD9zwiQHk%>H1 zb zDxzQKLENwKPSd0fZ;zG|9}B~4V`7@jX9^*zX*hLi#(Hhl13CTLe>7L{5I^GEr6%)r z|KLUrSKGf}By}$yy`~^4O@MHS%h$Pr=&{YNEB5D3+>{!hVQehn@*Ko~NZq!Ai2RZ3 zW#U#x#Xua<5L&tFDF2ZsV88YS%5sBl6Fjl{Dq&9km%xX;_qA6Z zQl0r4v-~x(_2;nk=8aE0K9uXX7@c=MG2UBgKA8;-9#&z#Y+$>?entwg^l~9lMU&FE zXYgsGHD|MAa8qU0qV4dbxyTQRSG~G_HQA`lPq_V|TlTmkwl}~hXUDk9W(lc-^KXjj-}q4Z}~o6 zDIHA7v_4&gKk@Ugk@!e8x$)NFoT< zH2Vb@dAsN;He>$?Uo_0-?$)giuWf|f4!EZ5wu*1WO-sHwo7nyG@)1!dwSmieyc}J_ z#j4<270i>_WCOfkLl{^ufg|7cLep7JUB-yOZdLy&Ss6vyMlbPvs2BW#%t_rtdBB zVvmdoK$v-jZi2SmHn@jO9!JJ1*d#H-TvI-3D87O&uU|-Qh>s7QNX5Jak({Knry~`&qdJVZky;U(^=Ed_2zxv+THj7{xs3rG zTlI{}=AGd(3mI0n^~X3^39VNbJHgxi7+fzYNcrh!)YVXVXJ@uYsmn2jhTE?$mJ7D0 zVt2IB*(bl&SCOS1cLvc2koyzt+z@qJByu~a8?)5-@k_sd#rIoy`dN_Rp6B;1R0))= zUcVZjYtq3@jH9hIcxaXD@+!~k3_C<^(cXzOU7q)fy*0Q*Q^IJB@b!B+?pSo;e%>9R z=5MQk>g}H1Qh!4}4c|9{G2UU%SJI40*LyE)^m1@|dnvawjY2=Fk-G7IO-qJ+Yx?X2 z)|IFE`HoXhaGa?)lfFA@{dsM;0AX`yrM?J4G(!8xUxCVac6g9P-O4X-d062L{? z*%&*)OF|MM_XxW9htS{LZt`NNK5-av?B!Ymg8dG-e9LGy&m%B@Ch8O){*f5f>Lcf%ISAvR&?Kg_1?LpbD`k_uoh~H7+WSXn8FWh>Bjdb`KY_V(Hz4IKDN_BN*5ucJ6j*q zHOIcf8x}A%hxoa&O#3U*u(74Cub5`0XLm|xO>3BXuKFFX?haI+ z@BAsjC-W`Mw<$8ZRb@*90#&VZ^Zr+op2qTt=^gOElrCrWtw#9a?Z;=yMSUgNg`M>$ z(oTZ=6=$v24A|S*Ghc4ZaRKk~4`!X-CtXqrKDwi( zvvFS?axXI300ExpkNQ^Jpwrwnv|aE46aWQMy~7*u)=I{0oO-Z-gvei7QZQsz3O@kt zt%?MAWy{W)u1DRy#t3CHO$9EW%Z2+LUC|r!(K}ogIo2~RhQ|{E>Xi0RItgy9f?u<8pho{SU*FjGdV}H0hv_XV>8)3KRf5z$ygV9Zs9s!zVrOnGk&^>B(hE*q z7Itq}(!#FJ)`AO3Z~E-eP+Wd)>#316><>Hht>wFX$j%;g{?=_WHmbScYU2Cit#MQz zkG7JRH+9c=^9tWQD)MidL`4-jyDM_=Cy1)Tmu$*S{`^D|MdRX5eF}wdi_xg)!UpFB z;idCvN)fZ>L3beS_3`oT0%7&qp6P}+PsM`d)>LX64)@jnqPR|S z?$tK>C;e&53QfzUv0;ViqHQ=y6Yultdax%AIZB@w=iPXIQD!Z*4|fFYgE&3qYw`(Z z(&`fg2uB=DTW>L_Q@Sb=z0hd8ddk@#MSuJ6d5~@#5W+rK!+I}Zwcf`8p4 z(GR9lqTN}qIE)^_g7;m_B^3B5nGFXhdk0@gjoX!JEU~wn6L> zQUtQ{eHs;cbt})SA?0ZE(mA4oiq9}uCZr&#JWiu1rF@`DmQa$7IJEfe$kn9v=cFVK z>#WYN(pm4i!MxF5E~56NHEDI%ib>fovLjcRlnoYF+*(;Ci`N1S;hi;T0@7^-m$+Yb3u4a`znANP|6EHqVCec|g*NcccbqqT9TWPyhFEQe5wrIHBV ze99SWCmOP4G1m=R<3a_end+5>uo*tR*zKzKbc^UbFK6HP(Am37=n&H;rjLd^uP{Di zz#vf4I&@R|Zgbx(1fW1lsuVujTfe&dQ=w3aqh*}oyrVxOF2hV2U4O2Nc6=J)+3vfP z9dJ9nVJWKkoMC6;R;}HBi9yubB~=++;`FzC`}NLV_uY$LP1RKCcSPw?e#~vMxHuD^ zsWnCA84I#M_zV5-&;rFmTQguffiPz;=!P@ux%1;UAxFq$(c4#xA3q9+cG%5(5 zl3~_A9E}=WajEbd}(`-?#0x{Gxzt-u{6~j{2co{WMTBPVA!)V40 zr=RDYzj4Lv2J!CGClFrwJn@{jR5h(8AfPy%Il>- zHsW|}q2O7~^P>1+DX+=US*8+ek@aA)ljyRJtH;hC=*m(Z^%u$qx2hvP<;S#AP;^SU zv$wLMdbh2)ygLz!(Q|=T5H{l2)2Mr)OC)_h`#(b$KZ}XSe?pkaMr8DK7#wQ!EAe5- z1l_t^SU^{k5BSYF&tgVS@Cs=|N;(g(=&sCXm38Y$@R)XD(xCHT$Bu2L z@9Rn4n}lEdA@{LOxP?URw~sHc&%0d^*^j7P$?k<2Gl{jQmoAP^;`fA%mcG;`dNflA zWJW8l4c9lF8!YXSqY!>h@fqsqKr z=Xi7Jywbe1Xkl}-B&e}CoH#QIwUSDtpO+Ga zNq##~`+5~yw9mYW!C}<|58k`}Mmw);I`uT45Ht`JwZhB5@KLG@q8ZiMN*OZ^Bbjh6 z$GGmmxQE^|99yv`gIBg@d2Dn1FqhPPL~E;k>~9p+9JxuQqxVIy>iJRDBlSIxsQyOV z==mVooh!SA-@DlG6VVNe% z^NHyj7>Gdm%8V%;fiDhL2aM8wbg1P`2^pakxDEk2AsO|*|uK4w`;p{qP){4SZA>)^7X7UYE5lHP1R-WK#o$uci^fi94n>-j_0zKO{m zhe0VcrQUc7vDwlewhy!A)}x;W|95 zvf_+BGG>k|U!msGb@H399WHD5rPRW0g`;Tb5oz_SP&lorP^skro;SxJHS3kcAKZ@G z<sI7AS&Ly+eLNHSm7bi0goHU> z=?-y9q=b&9CZ>RZK=@i^Rn_o^hGla@LpmYnKQG_k|y{$u0jOY!Hy%sb|PP7CfzHLG$hH{_$eBrZhc$vgIH;bCuyq5O6yQ z3Zc~3H@q(Fx^Q zC(VwIk^tvAlRM1(#l**(mOln_v!Wg-8||;L&ro#0LP5jYzr`BxpxdiahCUNRyKAj6 zE6ARcTdero$=})O@3l8#h6!JwAm>5o85sI=pVC~val;S<8$tKA1#BM`1qi(Tf`c(` z6T-hiLRVTr0h5?RI{=z{v0y%@b-pEd2T0^mx!!RRQ&5Bh%_0fRxwjW3JG#1dKqGI8 zwLoY{$dB7w%G;V3OljliG;;<9r~;RG7K=C{yu=%F4O)|hQ6V8XwZf?OoM{~@e#jmkZ0_NLEF&moCq5y?~=h ztgOmB$HRY}lnCcH<#mrE-r89O8JPsd+xQPqFxMv+#05-`MDt#~*b~jGxagt&cb@5a z2K$o2E=)rHeH4gEKiwukeqz|UBpCnm4Xu}cN;3aGC5P*g4ws5|8DYG=X1hG!>#HgToSf^ zKstcpmzb!*I~wrs7W0-^Sy;JD}eCj9yr{rm8@4Xx)uNMf!Vc8T%_y11U@phG?9grosw55O{KO zy&Uxp)(sI+(GNA`2d|u+O<*C1B$RUArzgwIl}q5ZxD1s1IPn@j`dx;Op$I#Oft*)# z(s-jl{J$>Bap6@QZjY^@tBV7!7~~^<9xDIWLrHJnw8G9+FCd_y!7JCEo>KddhpuMu zdi($G*S-J$9jU(7a5lZwhp^Rw!Gh|l0;!>|$Uk0OsN((47^dHVHsCx6(AjTV;qwXW zV-Km=u)Ux`&pYCtNd>oXBqc39KR4GmHB4*eQcIkdF{Yj;hNH4&Tq`Uq!=YwmM1Oj? zfsKKIQD#3&4I)C#e+P57R{0M%CWC=7wHX%c{awS(1PhT4#1sUQ z8q>ob_`~MIU(_%$G5xZ#7$~Wz2q-Dvr3$;w4BKvNS6N-ly z$B#A%D=m29cV=d0qzcu;KYgM_y1E4O-Zaq#7<@g$wR$Y$yro<9N)`nlrtZu-orO~S ztjdi*f<3dkdLqeZb%-US-=g*H4QxA|`tsg!xB>wYk!cBstE+2FQj*2{sPyuE9ji%1 z;W0>Ubq%<4s3~HTfv&HW;G#G`i+^xUPjm#&aFHcTk8;DeKm$fEkJy225;h-f?wJO;R3S z-VX={8CQwiK|>%@0e>s);P8F?l|D9HHW1wFuiv^_%?PPiW^g)bJHb}~J}`WJ0(yad zFxgKAu;e<*SN%Hj$qM@pP(u``1wMoZHNMc0&4+dRQDbA8z^s8XUE^Aj)B*NV?%nIDLa&=A%B|@X2Skfz zVdT`aw?YyRabK^RRzQG6R#tYb)}0q(Q%qW#9iPHd`Sx6u+YUW2mjnTY{Mf_##?VHsaVKo(%mml%4v0EUbeK+p7<>ukRXk|ydo_xG=s{Y-PS z6bN>cF~~=@c7G7y_CDPgoKI1WxuHCZL0*~>bd3PSz>Hz5 zV&}iA1t;*(ZjqD^--4BYg1Gd(xcE&(1TI)^vCTNo*w`3stCnt*ZQ$<^)K%|wm`iFK zF3@n?TYjQj?HsCiFC?!GUy2rP3gi&S>O2L!yuH`DePJ(fsD$oZUS1x9+!qXG1|d%t z)Bv7*^H<7|+M20@pP4-#TsuJW0j#j_vB6IN`lS@!>Bb?F1atvmK(s>*VrA|5Pt(Pa zV%^anK49mlS|V;C_oU_+A%S!-M>TnQ%wG)}s6mgkVQy~jzMyD zhTyHgdg@#R%Ix50(Wr!7WB{*^6d6R-c^)myUR{DpjXpNseQ8? z;^+9j7i$L3{sUmxbr3jFqK9Mly3hY%fy^5J{|_L@@BAM?5}Cv>oQC)QE}eitMOA^3 zGdRZmwNX3-0)dHxW3##X;1{SFg+NJrx^y=X9|@SiyP3Mq045Pb#gS z1Ze46-qqKq@-P1IgoaSxMdF^kpEkC(#Xygs+u&1IRq$$bs`_=o&owx%#4rgTP*EWO zF2a?>dUzLhmzYY(S>o#QVt#oUoq~d*RK)ewdT7X>%YR5Kg`J%p2Qab1YbDL`A1fPGIZ&LP9Xh?54@#mlr#tIv@*t*C{P6O+ZBz0nQevmtTUI3h|M2 z(I^8Q9co%yno7YiEUS!?QkY}a-GA}#_U+rWino`0)9s5tg4Y3-W$N#xrP4Jn8~DV; zK@ezBkaELmZVNZza*aQK-lU_W`|CyI^bRAO|l|pk6q)wG{<|BM?{6Gcq#1 zS5(Nu?II&isnd6}ZgMww_YAcHbyBG50S!9)NU@nOAtB-X+8Q>TaEo$no0;12%5xxO zK{|-J)m1F`@$t!tmWa6D{JC74Xk-1XwXNlu38zp z!=FtOdd+HNY}^kR2!aQa!sNeF2Ea9bJ*mRRD?O>|N1P8H+*#>O?|>0X;CT7@{OaQD z$hhy5Bs{i%Vj_u=k&C+sqZVPt4j$03Wx4`W>(gd5nw^VfzeSmo9SvI;5mnC1~be~ z8Xb7uWnx+Y0N9!%nEjScGd_B7ePsR%K_(sdpYO)dIog zyYH3H;*N;dF&9`tG<AP~8aZ37#Gp`&f|Dn4d22o6kRD z8=j0cK;D}PmyjwNr5IHIs!69^VP|VY11`h}Bo5k__-v7cD(z*kBd8K4W@g%ju@w~+ znze4l<6>Z(<99d2uTG*=nD1oP*6JeJ^zKAPMrKx4ju|B*uK`oV>J^GIG6#!Z18&V>=@(J#!CQa-h=$3ru}=U> z+C3<^cHNjcO)% zN>X4Y5xYD#jy-b4#>UsG#0RhE$O+i{JMyN1Hlp_JAC zDKirdz(;!-V1VY9mKH%8N=h8SOkipshWDT_Q0czMg!H$u#z!zEO%XK-oHs!c6aw^I zT=+0P-UP)0axco&(}QAh_uaejAWy2NZUL?a5XAJfca7RV1+lYcjMDhEZmI{gslVGz z3&mbg^V^W_dx(M)3q!n*q<}sX}|xK4-B&Fmm3g@Jzi#1EJ^x2x<;W}G%%q0j`HDcSb8pFza^{SC66f!E^y2Vc+ zlDFxYfAcqc4&Soou$s0u7Rp$?ca5S7HVQa<6v#E+?5*^|@HdshlP7IJf(02>S}WNNXj=24dN(Ba4qO_ zF6iau)mP9$NX)!Tx0HN}KsfUCZEXEB8vK;sSJOf~N_uf5< z&hXICCh+S0g*pOx!&b4Vshh3v5Ds8ui{}6aGgO%SavqVC*6P)`1Zo$y!~g4w)R}f= zh3+&0GP2MHQ0zr&0gC~BnD96A?oUr&Pd)+>6DV{*8sXltG@7HD55?fe10Dyffsm3V zZMZ_*%TUcnAx#?!4h)=!oT&qfV!^ewBI`4ClUB(xGD8mkwF*(xqT4`|_;S3&l<6;o z)Jl&7)*0U`Z>TAdgG(Q)a=Hh}`_?ZPjjx)h5Fd}v&WxctUFmZn1di`IN=R5(Gm!Ya zgJuQ8o{tY5TwL0LQ0cqlq8!Z5-&0|Y$DQecQa98(qCl;j^v#<$$Dk%0^Wj4{*kMVN zsfnp69R~+4xNeKtdQl)4a5z|1GnUv`SqbK>KSqO`ND}HeX1!^+P_}8O!e;|#gU0u@cy|-U4=}hg2x{X}X-3mk7`k84lbyx7*&?X@ZgwaPpj^f=S-L zfBzVq(mS7vQ#$yv@9ALrOMCk$SaYa^5J@zGRY}k?3{pS-M6B9bGSyv-Cm45Jm zP@SBE@4rb;H}LNS57i2f!Ug;WBB0xm1R8nB8Y%!vlt#d{ju)q|_g9Cp0anUCevC6w zVLzMap*;xZE&?=6$R;lEUGVC{FP=?9yZZ{{3g>`VO$w?+=NA_{P_i%r@B=6P#!EL< zQh3SW=ZAtrEkdf4a~mqOwTm7eZf-B(APYMG!H3$+KS%_D1ny#!D)GYl=FOWRdfEaN z792Q=C_%0|Ad#{IkcI@fJf)z>!VND@Dr;)4p}>Rs7d2dxBXdDGo9adS5fDf}L1hEQ zPpi~SGXF&;Km~`_ulYQElR`pP?}ZvPkRq#_NAV|nE5=Z-axJ&!BOvInYy6*TY-4SS l|B8ztCU2hppDTr4(%4IIP0)oFPols_QC3;zo7Bs<{|`AkL1F*^ diff --git a/api/_images/tutorials_nihcxr_monitor_api_8_0.png b/api/_images/tutorials_nihcxr_monitor_api_8_0.png index a2719c74ca60fc39b400d730b0f7fe89b049ca53..c0eef24d681e8902e16e7dfb224903efae2ce9d3 100644 GIT binary patch literal 61587 zcmcG$1yokw+b#OiT}pQe2vUM{w^9Pq4FVF<@gm&_0wU6-Qc8D7cY^{F(k%_reb&bR z_uV_jJ$HEHw-KOVCwT$5q3@($&M%*#f3)>gs6c;A&@WM(b|j>|*U;&%+_W!S#stm8+|x zix4O0>;L`&hl8^f=aaIk0&o)yM+IFM7!1!8`bGFEo@Wh%?ZckRNWOrlZO?jm6T01W zA53gBrOvU59?`RezaXLrkGN4;?LcH*2tZLo#?on-^XjZHkzN!zP!UxXReOX^Py1|- zYQ$@Hd-v)liBL)kgK3R$1=+34?nqC%w#?>-CXCC4oL_u0rRmjC@PF0St&;-2)emF$mcsK%zH4LoH| z?@;7yl)1gRwiR*T`CT=TCKyM=rd8^)u9D%kE10X4tiGC*oz3XJJEOZ(#y{(Nzog+W zCd?|slS%w)UpoG>r1|EJ<#2}2n46af^~uh(yp9fOs43;~^1t^<5gz63?eEXB=ueom z3v;kN{)R8?cjKL_lHRvHRYAsO0vi^;6=@H{vs&(o>gev)7H%pneUD2e%JFy)CYDW4r_qM^HP{4$eLQcDn?n9hNVqoZSy&3ugm&FkNl-+r0@ zdvNy1?rgpF?Du2Sn1gTlm)jM?k4@W-(!g%k0_ z&ip$%WH`S6q2I0FYih6VO8EHkxw^Xgfs2t5HEeNl@xPY2d*M~6<%LqXvZ`wLj(gnu z_s=c-q@)lj`0T#Mt)ERa-^jYV^O<)?7nR@U7ZiUntaq=poBAMrdlgr|`#my>g1_9P zHBdTZtE`)PIRK6NYuxvL17G=brWF1f-J$WAcsD8pw6BT#@Il?e@7c3HrzlPK z8W1^6*C*5M)x`-EV0mHs)pmj}!*S5jX=!N}YPas)#e8hmIuG6WqT`Pm2V-ImgPu+j zV{D!N@ka)=?^7L`&TEIot%fLVKG*CIv#;^X7d0Aq&gbq@uGF+v3lf1zI8}lji)*QA2ZjHh#64%dy(q1lLSXTd8yI56aBinILj*gMBv0u&B|M`HxnwQY*Khg5@dHCJZS$~;fdc+x8f>|g& zdn}T(HCblPjU7Z`U;FvDPaKnS8y9w0G?l)^E!ezd;=UpvE;~S!6dMZLHy&#}e*8F} z(qk>z%8V2>)D#~dU!p*(sP@m7NS#s>$*Of$@!f^#2G2tnm_P!MgC_3DozDCDMU}Yy z%GV?fZ3UqW1J6SXH7&LIl~3*`cJ@Ri`SEI!tqsS2#+mXdB!tV1MoB58o~KY;e!Jpi zA`eUtm&2S$L_`GZ2@wg&;bIugNcHP!)^7Xh>L?8r!H~gJ{==X0G-Ve3#2^t4wuNAk z@xH=OPEOX0&g3#hygc2rf+Fc}FZ0o#pFwQJwSjN%Giw!?52Xoi&o?*s?JPxd7LQJl zlalu6J2ZB#4W@1#H8{h?s#N|ZeahyL5JxK^%9;I?wdxabGOYEn(UorIOz+3~HTD** zfhg~&Malh9u!w(Dzt;Z^Hq`3m(>SI@5HV}14(OPeh@W0hSA#qk2HxL!SoC!Nw{3|g zB@HE|l9?GjtVqAca-k)_b!$B8V7Z&eW{f2imrBpc?&Zsuon^;4wiCr5E4x6K#rR!i z8D%Q6etVz=#ZE_eG83U^^lrjlD04+Vnoj9Sa*KxUxRbn#*dgh6+87$~3_+K*7gtvx zZh7oyYFWEqT3Y@+o-lS9Rp!@3o^*cu_AMBB%K72CIrV3MubPefDjceiWR zFc5G3pqpkrPF2kG{O_vU$(1wQ=Ivb!9XNF|rG3xa9ZK8`rSpo}o$M^4` zwvvW>^|MA6^B_0myIB`Mb#&wc`>%6;{x-Zj11#S=@+T2cQVqc(p*}cs4no80vMl(W ztMlT8%-&pM%mw9O{C~>y*tgnR0l9ait-^Z^LDnhnNVx+iCnw2cMAa3yesU>S{3g!^ z6KW8@+X({!E|PzEyf>eTL%~ORd`&&1rW>2bbL>myyr$FIFBhBt~Xt9** z1zngxa?980lHZKc`^ z63U-QegD2??3;$?=C{1)O}L=@T~x-(^}cTVYj&33axv<2)xIf{^3El&$ij6Aw=eqO z`U>8##&jlsupwfd$iW+M2H6GznP+HD6s% zPp@FY>vE^&J~_EwLASyVnWf>oY+`2@m$%{Jw9L%wrMGGzF|VAlKdMYXf9j^a8(E`Y zq>6LAYLMMTNJ3KKbLkE;iK@wh8n&J&b`3^zqQrL!vz;HzpKkO`WN}v=Z>w$N^2XA2 zKq4TI4++uY?+q$x%d0E8#+mA4T-w@3O>_1Z)ah9NDqIFC2QRt(s7*l8HwxYJro4)= zDjk{ZhZ;~ph?QGD{g7`Mj%SJZ(0)sRfWSKCE){40R1jD47fk>tGW$U7-!~bm*EEHq z&!I1Q|L05LWmM<=ic(Y9h4l0zymuQ!A**y4C2pj}C3u+w>*qaCqLq{Hw&hvFOA;le zfS3H0rR~RyITF7^AESH_BprXd@F6YQ2yiUL6}DDde$v7y?6{q zuW5BBQBny}uQ1&tI?z>Nesuoxq9P-TN|?Bvt9CJzB7c_OdV~?X-DG>RO!EX}o>Y*x zN6Re~DRI#NfL|WhcX+_Skk#h|Vf0W_6H-(J1cXYPUlEZU-@`$bc;Qw2cNw<{R4qJz z5MrjJs8dr@-N$cSTwLnbGrazc7f}QR1OUMM*!9nI;zv6E)+t18s>zRYew)vGu2a!7 zFce%FXbghyz-njhQSqn;auSX7Rz(B_1uLybL%nwE(EO={-CuZmD=A@v8*((?-gtGI z<9c)AHBghpt-Q9e9z1J?*bma~TI`zcm8^$}#yW~>dkGMUq9$wx$`_oZw z|EFkmk$3|o76NLabKC63g4+A|wI1HZiA>YKRr>=$j{Q1YRu#Ut($KR#57*RQym(Po zQd^sZCw}!FlxZzNcYuM?ockU^2`@(MA{=B~F0T_i2z7pv4C)yeD0IFG#<)M(>?aQD z=_;rbn2WRh~Jzs zBpUk)ddzt;gITB&vx39nRVg03GZ_A}_Uq{$bBhHfO=i0@bwn}ABA$cfYOF1jQx~-eZ>I4^o{>vbYnyf_X234AT8@k)S$^*FfZc`tKapOu`b9=Sj3OM z!UsT3$`_fxxxTb*D1DyD%LElN;AvUXQUY#kt!B)fk7m`30)+8G6W(i@1rWInuvtCj0I7H8D@@d?jw`yBiyLjtPJ( zutz$j{$LtMntU!&yQ+u2=+Zk7ai>mEG^kw+Za}THAXg zIau08o))rLHm^xTohDQ2T{qg6W5kD6dgBB^_oiEIM|QY2xLh;u+rH@dLXeM%DHL>2 z_wL`nL(Ruy8s`97kcoK((jQUMDi4i0a`?^9Ea5$FasW?3YI3moT+uvjP4y6SlKFRUdv6j&qps^1%o3K zeZvct@IMJ&EE7gv>}qOiZoe%{D4Xc* z)k#u@8R%J|w)G3!_EKkLG8j}OF?+s%C7AQ1+^3*ZvK5gB{{;1#o}E4F?CeZhEOF2> zOEHn-7veeq9B*fh+#>#hI;FWaVi32mVDjC4Cj#^jQKxx%c@W^Lv7e2GbNFi;`^1Cz zspu0+?AI)+;$vnG`|;xk>!phLwd>90{H@lN9Vu!_;|cj}y+@vQiIGyK*mdb}dV2bx zG@hu;t5+=7m#5-($`I=yyCwLdDNI&Y7A`{l;ll^gCpKehjcXU#cdUt#_DX>M$O0ZS zG6k0?`4CR=Hj1YRlbl2Z#f>KH)Ji8#21j7X@ezF(2?g}TP%G- z1s4ae0g}{m^|bvmXoMMseqWmN+*P=af(TJZee%Lb0klZF5ut}$EG>a<8D3wCj$it5 zgj#RxyNkGDd`&%!?DKWWzN=hOP z#i8f|=~mBz$=rWs<>lH?djD#ou@QS36=3t`AF#1S#xlrLYd2PzR!r3{MX)6advIKy z>=d~BffUT4J$w7%;iE?{L2>;rj0i#DNBY(8rYfwog{zfQ`2Z>_>w0*-& zyq_Fsd-G9p+uEc6rvQe92e#oVnEjKq1Pw4z4X9H{ z{(y-4S)|W@vODY5GjZC(5c4BfnF1A?v;`_?p!Jz-@ZUr z6&01P30uPz^~EAQi{Bz$w1m#SO!!ruLn@6!zF1_`BMl{KS?xOD>9@hbInV(VEW8 zEC*9GUtg_KI5f0^-+=Z-T2LQA&3f#2b46ayKqEr&xWzn1RLg=sn@&3PMcur8&9ZYH z3s`7CJA!_Ny8PtNpH~SShJ8@YX~z>E03iKsM8p@6fQI&z}gjl+(?A zx4wM#Gd-YbYy)f=I&N`V_4UP8i4|zaiDn~Ww7_h9f)?(VwlURTZjfB40V}i~D^I-$ zJ`vqq&$kWLC1Lm$0_a09KRvy@f=hl{01vMXShR_f?Kewp*<4hzoY{W;wOaGp&b_Uc zu)y}a;nKk7~E4lw@R+SNyv0n{f{vIRb#VA1g~+}WsPAfAXlQH zsW+Kn8eqjLbzc})Af0MKApTT=lo44ab@agu&Qjrwp&ZN9z33kxO=yzSd&kklqAqe5 zm7dL)!@Lw34X9CljcgEhNRaWm{1LphU?smwWpcyA&;F4<-#l_LVk~t{f1)Zy1hX}O zjhjw_s6k(}!|$>fCsLBYKu<3(dABV#|;(O|0zQ(s;GbbN$~;7b*McK#=rp(p`pNf`(Qk&TA2;Hwe; zzKS&(oak&~uS+s}usA-rXpTT!nBzko9TJE1sUx^|qjc*Bn=R--Nd7ekjY;W9dnQk1UyK?Zn$^iis*DY!=v8}#qH>0Uf&b1Yb;=4~cs0?22M{_G@X zK~os`4q-3&4Kfi!s2#K)(9@%--*qQK$0{5RdesJl@urUE$jE$O94O1&;iA-S*pr)q zz1Gk3pS+Zn@s?w_P=Kg1V}5>6maD5du|l2_;E$mfIdB4ErH*t05^U{cv;gUAARKEm!9?XvF3?oba|2)RvfaAPC2bD^W7 ze*y%lf$L9MfcZZCc8RC)*nd6O;0b%ASBc)v)iX3Cwl?wR_WD#iZDM#h2518I^*elj z4-X3{J+6-@%xk94&z56i;L($lI-%HPZHL3+s!yLjty-?Jn`*0dT7EVA{Rz~GfF2#} znh&e}iQ1k!w-*!5`J(P%+y>qUotnPI8=^uWp|D1ugME0`e0wPlNMHU22t7ta0jL8q=Bf+wsMWCGT%jovhvmocn=q)Q!)YG+cG4%bu;i8!vKDHO7uhP`} zv(&x8c0SP=dFIsh%s{sIjo;A!|D0Y6zBY-9z#=jP?*Z=yUwX@Y2H?#QXj52sIYHh5 zGdttCp56fJWteDpv0?q$&E;O*c6mR1yR4g31kUB@=}FYhZrqdx(pb6mD3g)jwcB`+ zem6+E&j6Up7qNPs20D&kb6KFPLHDn$cpwkIScbOcO* zwx{`#;v*2AUX)SgI5ljmE>pW#Z;0@CR?l zBQp*{`Ny5nlU@1VU_r=B8_^Ls`RtyOhEF}S;8u7Y*Rz*igr?GkcAMh5$ zH70IBN;W}k4_q8#L3fZssGf-;0A+uCD=i+OAIep{+BqS`(sKq6;%%i~-?)<8em_F{ z>rP^pFj)Hf4XuYZ0`vi&Z^Pl&A+N%&7@FZUK^GthfHfoIw>OA4f6T)JEot3GZYnFH zT^*=+V3r53&JVd`xM;5dnfrj1HNVTgvpc_`{s6?9&2jCgPqb+&R-MC;ykp+=j*gx_ z5NyXx5H9Oqhekp99|8(d!~|dkSjUSE`$16V141@7HnuAN@D*tNmz?X)jz(2u&OCnn z_}43SulR*<@w8*QTcNeSQwV<*h(O%Jwb1lR!K0nClj{M_+*5xQTnBBY!9g$P+x7RS zRbmVQizRrBKFWOJLuZX$=1MhhH~7xan>0IIV`!_b7-6>p>wbh*f(2B5v!TtD8tGu1 zrd{vIwr8wERy+UC*xSZU&Yb^83vx>k!(L<7i75u;$|12!yOuXT04^1we}NtdB)J&? zeB_@PRf6Upic+F=)_D(Jn>RZT9y|cV?U%kL&Ze_3&um#+0D2sRep>>N>MnQd>o)TX zAU@{Le6zS!rVrnQfeQ`>28O(*yw5+vO7F4>e^&(!kBhN~oS%HEqgitj2hK`dtQdfk z<0#EKpd1{`bn`vu;H_XQX5NNvIiBY`uD}3MMfI0=d)6bE)6|qL#B6%%l7~QnLlDkK`SKm-Ru$|6=-t20Y`fUf^Q&0G*zC) z=Oc~ZRV>(5zw&dxXB*c8c%jZFPSk3+v4E?EhQCwM%~%baVJ0n5&GayR?JAADouv(h4q}z=`6#zn(+~vHb8{Yzd2_4EcNX@m-W+eT(jCT#-@r_!$}J$ts?qC|deqi$tEh&Q+YFgG-SwWR*GXY*6p(6q zdK5tKr|(qQze*1#(C6}`3~UgiHyaOz1eUSiobC=%dCVZ__+>%_-)OFK8jxVU!4%s8 zSr5|B<*7Y`o3B-!Y^_A48CnQLI5iL9*` zunit%$%C-4F_)csDffWs2*Y3Z=Z`PRevyBc{H@Fv*LctBNT~-xc}V1U;wyItmm6V0V91UU{mhSyTAVX z@%w!M5PRr~9tNcLBigB=&6L3O2T|x86|<|Z-*9-Rtp9SBkx3D`3-oV4-!LmZ3qid9 z{k;A9=lg7!epcC{qwJJ=B|+8e zf(moOcAtg0J(w$2kjb|G*AuW-3oVAe=sA$+E+?KG!Yq}4$+PfN=g*G6*?s$GL82T` z|1ffNCkH5mP~~X(51vSTpb^2xnMI7g5-1bEhI7xo*>e`RA44r+mMFwgpBeYkTM_)bEYo*>sUI|qg@x5< z@K#~gStuPAX25^;>d7I|90*lplgxgb0A&|xTX9>e$@@emF}i6~HyN-A#`XmD+9x22;f z%WMX>FSb|;-w+i2yU&a7)0;)kD6WtaYw9eq?wm_kvI5M2qs*bw$ArW7ql#H&ws3JnOBx&fAtwVnamd=zicZI6Hz8z2u&zH zW+DuCNoo7Ba1|v-j=K8j%4BO1nx%dn%-mg?PrQ+s+m#w9M;TYfTiIn@03Woh`R)9* z4*)#DCrlAXMb<($sjmn;Urdq^3$>A_7Jk8P1+%d6loYBsxWI1usTTe^aAe};;qtqA zCt=Yf`-(oF-06;;qy6Qh`KQKlJL!l(Ns}bipFVr`%&@r<^}dS~a+xRtH|{}=?IdlrHX}E) z46mIjL_S4`0)(oSAn_i-L$>|Ab^J`}pjgXyUrz*?ytE6$BR4=^QcGqf9N2Y+GQ~5$ zY2-ZysaLDmpcm4A_ZQorDk~QqKvfEoY(c}JVrI5PH|*7h!CdNhdlNAYENlj=H`Dg@ zQQ*JQKz&N0@jVLwdD#glwBsALwhE!9KTgMYiDrS&`R3DJ(Jc27j+{*PQ#Ni>8=)&L zGn5?RtOY3)oy?IzgyD`rsV9MmXjG+ORAN8?QA*+pa9ZyAnI(@0TqeqZTLvth zdsO%7)=izP@pDl(yC&LRLGS@G2xM5v5Nzc+CVcl@>v=UYE_C2epVA>+BC7((&`x^bICb7C))3Z0W4wXK&vbdjv#VWwmb@qoa%K zX8UNlvTdDoCK~?7x+I}(gBDrdM!f;UfA8ob&cj1@gjG#?VkJQ9jj<`L> zQp@-Pp_-eN1oxr+nE(xSU$BlaHtt_{O`snEPoSNT;O*5RTeYglfeheTC4lkktXur1 z)eWHWf%SAyTmgJ5IuiucBA_KGwTs*axv|)@ZC7Y zC@Cl+XYEV)*c^dL&y@Lfeh~mi-+{me773=Hq|~wD`XN2tuwWf>>4}Im^c9u8a*;!n zHm3F;w156lOG?t2fI9IzG00k$)c2_ef^QR0CiUq}KO)*?ne!|h=m`8o=wzDti0Wks z%9Kn;4X_5f2~a}82Fx;A+lO!w$k`_ug!*ghaAkeH!fi_nU<3pSz@8tRo|gP=08r{B zzzc2{4NYB^{NcOA(Hq?7tF7X?@GS?-a*%mHb_dHpUOYtH3i45BG$26r#Vn2b(C(kO z^f{eo1#TjR`LeFjFg`qdZ$B9y3s@Cj%)ys&09-d5FEJhlZVClSNd!RkA}s(TAk=0O zbqlAf0EpZP41mD0vOQa$2-q*p%5uaR&?Nvb2_B#cf{cC7Llimckn3lMfX0O(0V*cc zLxBZbz1(ZI0#?s=6#UWPy|^70T0(u0$dd+#L*Mr9(r8RpaV78B>qmDNd0xxPkl!B- zX0BKmMdb3Qpf_^2@Y4Fcz9v(24tpf;}tC}fxwd3GdAOLcMsDbBdyz9>I zc(p7!g8TQ|M{*S3Mn)D0tO3Slxebf+B{1AzlRXXwL;{ememHW@L@uemTPw6uZ7rqP zzMA)K%FLx@qaV>pViJkNx$UVz-0ncHE3{q~@0 zOUmA!1Mo?p)8frPC|j+*_TY@nW$!+c2*c8IS{wD@=8ew@4YH_xaH{2 zMQC_=jdtFHZFylVH=CW!zFQTPRj!yKbD?|aQM$F5jfxU?!WDtBB2)yM7=P2vBHh=ZonPL`2WB8(Ri{)tWt-;t(_{oI zymdrVq|wcS!U@*&$R7<@JL*~;?7WLFZjiWuA%0)mt-^ zNf8Rs5wsC4+3oS)(0V_6?SmQeE#;n?OtzS}_NzgWErcQTKr%J_Z?Xp~_-_OjHgrmn zA|n=hA310<(yKQg#j;e5xY)^4n)(J;qUW*{A>ZPQQ+~dg<4}~z?ma6*&&>;>5MamO zeH-}7N3Wj%8#mA^YcW9SOkRv}($pXrQVzb+*u0I`+j?A1h2irB)-$Un@%OJQC%F9x z@0B{TM|J=fDe0?_4>~A1g3tUgLMYmcb`qTz#8Kvow09_iM7>e_yHURII-ncQVdfsd?H~bC*6QpI5sj*zc7Mtdl`VOqqj2qMn+~c2uwWB zt%>+{!1yDE0;B1UzC?a_9X&y8m$fXn($k=O_f>E~L;C(JjIFzc%S4VB8>3S1C@-hI z>mC$2>NSLBtF=dU-`ISZ+)x%y6Z!vM+EO$c#D*&@m**qfKg23!7A%BKt83u&IF(ZD z%TOMZw8!kxw`%JPLjVV{6dKv<|V>lr?-|qY5xvqC$q{DP>w%^=%yHq5y-6J@7y_N2$ z!Ah9)V;135URoGM=bQ8*-*6sDc) zLfX$THk`#33Ag|NE|G}vC*4pspcDpkLK4m8C#8q{cgx)N%(u^Z+^2SM`oY_9_^)Dh zU{rf7@?#v&vQq*NMaNpAUCP7;w6|Iu-f4I3Z8WgHjit8yfth*9B9^YS{wmC@nXN|w z7xx+^5}Az7{`ftd5^^SkqH_@VbCHV)G&}TIO`JzSIHB*BqSM-pG9|^%@T8yRa6oI} z#JlS4it&Kgun@$eR?nkMCAJD#_r-}UQPc!0&Dzl7VM>$Gw)x8U4B{oNDD%6Fx|98y6gu(?3q$h z8me#_luB3rJnVSZ$b%iEK_l{(Be5FgzVCMjqSV{Q{%H#kG6k+RL?)-Tv~#$pGVL(% z76dn_4fts3S9HU{Tcd@36#zK|NEPw|{YqeGanAKZk>V=onhP7LMuV+5QepJtMztl~ z+(sZN#S9fr9&1ZP3`TXU?ZJDKFy5M9JB<=FgY+ZluhJ)lzPOpi07%lSlZj+;yZPmN zu(`({J%GfhrtFiFF!ezbXz4~L#xn^5nesPS7bX;E(I3+YCCobPRUoTA-Rg)Ker$(Y z#w>I1cc0CN$%{_v>TB(-o(P4}_gev}eTa71gPT%?Ft(=R|GV4m6B91MfdyvS5>bE} zLapNLBhNpo#IsF-JH`*erOOHH0Z+e`ekN>t&BZ`Iq~#wk_r;1q*I}XFVf9thxF^K<~HGag5KX1L1+Dn582RJ);l%g3o4TUO|y|y#26}B1MPzWn#s$K8h}ZwLt`E7s;*zKEI-g>mP{@*rAzjZ*lKMnV8I_iNMlh774*OCsZ&I7^z;cwir{9^;`3;&9WLP4` zsih9WI87~kUkbWBf>ugCx^M$Eo*LieR{6LjhuUFSI2`Qhv+Vc5v>*KXO%4MMy}g!8 zwhce5?R=2QPIgHhXXL+SLl!rAMtJpPY}5VW$j7Svps53VyOs;}qy)=rKYW4%;t-t! z-C6mXJlR{)85O+SdeeuOiPq)J1P8b=7}HMj-i6#U$I1S$`GgPUkK4hfR^TyB*_R>q z)-&;OYUaLk3LqBpYOIH~d{nT#j55%94`sIOWN1a#NnWit@S_pTGn0FirIs*1$`R1O z8h@*B4REFqh1d{4uEzw9%C(4vJ--$mHNRF}zaqZU`2)&j_PJVkyj&}1Pt4(5d7#~} z6IJiLcCc31z1R!0lzk~a?-%2JM>US51u!;sQyW5TD6wgy7IK`p%hHdev2;AkTBO(NOK>Rvu@)}$XHY)nAfi$|GsTI3Q#q{J+xC$d8oxrfD!rlYv4q!MPB z17)=otPmaR7ucziI$QXZ1UH0M@%wvgYkQ0?<{Y7fgmG;v4ln5O%M1G4sKp{H*ZL`UT-c=e>I_oQ7<9iJT|85e(opN;6bit*zUAeclI~M zxM$|8?3PUS$=Ygb#nkvo&Sx$`bp)+!zTfBVicSkKt%R0FvT3I3 z4sNVv+;H2I_51vajg-dM3>*?4&`0%%A1?Hke?Gn?L9CI}F=Uj@c2~g;?lv#tOuS_a zwt8X_5Xj)v%7O5Z#CXk7awyiaUCQS}-@qhTMgvo4w73s*}?un!9o8(sc*mKR0 zp)7($?A|Fcbu_H4y0+u4?`VX%|JWS>gj;XRH%#&0|K5?{HtO=f^WO2h)MAX zOpYq}N-;0|iM}cF%eKhUjo+3fla)3=AYVZPWL0IAm)%_30emMnANs^YZ(?TB&*wOv z%6Rv9ggC0A!u@#yP2>n=E&$ybo7)K~t)ztLIV~S~Czp-@P#<{#Vla*{mauOPrJm&( z+u~t?FOx^&#pAc=SI^N$M_X~yh|y2wBr8GmH16{Nu={5X4`j3Vm=Eu=nKD!rpYn-Q zFo+36mGZR`T7BH_)D(}c0Zdr7puPdJM{W>Sf!m*^SK(^l6|^P!;7_RarszhY033#p zes-A#m;p8xzV}$-BI!T0S_yL!_s`?OE%JUqwVC8f4|{Z^&_3!K(ZrIs<6%n#Z@7YR zLk29CZ*nIP@cJ^5=;1w1&?2x4a6mVSdY>Rkn4`;Hett>#QZ^-ysB;`H!tCe_o1wwM z0E>W=pF=Yc9VUS^F0>fUyAN8T9&TtAI2q}}BgKT$-xEs`<`P$I9xFo=N#2uxulB*9 z&9PvwDas`A4cK?to|{V`nYH3x8DPh}3`}q%i8TjjYzL)0-|x7~-ZQ-Y9ew0B1zo&3 zwRtZo4O5os$h8HD`-dKaR!0FUvhFPjf*89$zcWNW@v2~!jo1YK@Q1 zHYp#_%RdE=&H)94$sz&zF#hPeMAsT>4JW93RbXhn#zQ1{*F8s6^!VB7(D z(I^>#2ck~+@O*J7{%U=*^W#dw8-U3KC2}e36#~*ZY_Vr&e{$)7%-Jg-Ou8FUUOnF* z6mu7OkoPW@T*eg>X_V1cgTvV9kY~snKr-X^tJMiVr*;GXl*5E&pexCUP?y^Zck(J0 zrx77Do|qh+RyHcPA%nneqs9T=F@uXVxV%wEQmdoidB#yA|H+2pOQ1&F;aCNqI>CE# z!TuOCaR_X8p1U(l@L=ii9qL|`Jv~W2b01t|qXJsCC3a8hq>rc+igYumJYR}9!stg_ z$xsI(LJ`=m1d7=C5&YsZOzSP&h!cA1Ne+FRZ=L zS+7i(Pa;5RCp3`-fsT|B6;gcj+(hsG_nZxLo$RT@y8mU#0C+v+fR7m+3yVQaEF+S$ zDG3~l(h^)7;2G}VddFG=9XKsEPT^H|63r5D7^1xj+<~W2|2=tS60IQp@Ndfsug=bY zBin3U49L?5i^_!#STm+2AMtJ0x0CD+f>%G(`eNwu2q3^e88`bjT>b5b0fRg+MYV&Y6v<*f7p63+A3t_{e5jH1 z*rLxgMp01_nj=WD0M=NTmZBXnMA_Q)it7FMX<=zN{ERzO-a8fQfD(};`u37t8w;s? z1Kc^aAB-G*OadPDN9>^zNV)Q@vUDI-56+@8zf%n`yFY{;Y_-&qJC8-LECn>#;mQsn zK)V*|wEp-k&2}|6-DM@405aXVAz@-`|e2N>tUiG-lGw)UFJ z_>Ujor>5$!GAU=8@`P^?w66K>S#B^CoNqcPI>y(6PCy}UiFYx&97bW%LZ#;T86+Lp zEakrIqsai8h{ZA`sFRpm;GyFa6{V_~Rt6{i;;(^Q2OLS9=yd_}1OCuK+qb-oXMjFs zJ27_qrRfcva^Ar02n_+8BF^MC@1i_0h!H&@1w1EF4WR1Bo<=QQ0uVP+N<4}5I{VS^ z!WIVLs@-zNf;TqyUAP7Otz-8S@vADs6>?f7#|t}QnS?F+f)Lq5o-rIe8OjCDag7)1 zwu2+f`P-QSPV~U31D$z*PQ`-r-7$a${s??^)PD_lEC;};y}YGruhZQN4r6bH$eXgX z%L|EZ1ilZ67W;!8IkoBF(cSI9JiJl*75ysUo0{X(uV4~hc$l&%MU++>|CeaO`zRBm z4E#*)xC0viF#11zD!7uZT;&A3Plw?2!9GyipyToF)WRk$Fj%$Slyi?cQ0>w2@JgKH z)^b+;1%}c^@$1{WZj49I*Fue*gr69G=_zwe<>EnVVn>8Jk9XK8_2Ai*ZD)?a!CZCy zoass(BB`<$|6hdxszXoZ(G_rfbq&ZgtH9!t1>`e%?*Ty1!(RRT(#b7e!i&d_*2#TT zg)m9UcXIuq>(*W`V&fpWZbXJ01+**^Sij1hwGIWZ-To zLV27Q8N4|R;_iVSumGG~7Qm(gnf!r6lFNQZ09IVLMs7Kfq~_EB{)_`~%meNnGjFta zuF*@k%0@Gucnnx-4_eV^_Q4VGd;e6V-rin9BHhHTYWvwfa6qLaf`|<|VV>!8LI(N4 zq(iY6JMOF6P4Y{S=Zxod@f@w*fYE;u3e!l^+6EmPInG_jM1nGoHZmCN=t+78fKrcI zDcL^!QQDtU%STNQaZc)>(U0+G>Y1S}fHMJWAWk7i3mDfSaH43r?uh~uFOWf(fZ&B- z0!%zlstYrmy2v2oE^HZpRCfscRf96~Zpa)7q>py+XEaz?SU!Q138Zb*jkKe z5SBrTUlGXuZsPj*CHzyQ_`p+tS|8*{Uh*jCbe-7TmNhGed__`48pHM!kLtg(ALsXL zd8guf0+jA&3|AvQYME~{ErcR04=xTDMUcXte1Tb$qg#;yIGrqfHudgpTw!L_-H1i2 z(!=SOO_|>*WArn>(3_x4YCA7ngYw8h*(L8U4c=x`0?iLjH>8(qtBWy{X?i^e4t2_c zDoM?VW814ceAEdfkuyv2$Xr0Uz#3w)9M<)wCxTmp9nqir6U7R-I@5~WGsn?9E5|n) zIsna~`UHRmn@=wniv$k8#c|t}UKjXWId)^RH!}?Wo)+Y)-|k=0G#wY1l<>g>O&BRT zVhz-jIGg$wdu$QJe$Oevqd)%Ij#4DJ+}lLTH+iyZlpyx~Hvl&9&da*^BDyT8qU7)= zixJ^td2HlDLjP&YE=9C=1+~ zpq*3*I`vBSgt-p!SUmyl>W7mqKUZD8juYG`1y~UuD{c}_sBNp`@{;ui^ z65GLo*SAycOP9A2{k)1ACnetS%115H=mFFJEXFd~WPkY=&ISH#PKsNGlBxR4B0QQoOj7jm`qHn8iK z(2q}nR3*PNVV0DDnxoUNGw?1{z~?*gt6VCwWY?Owb2NNJI`AD=+N58)1m@l)q&HDJ z9aEecfrIw%>$Chnh_IV6N45Vo0}@|R^CW+ZUJSP+*eT?1F$f&3bsc?ZkrIfZ9z;+G zyti1J_+(~J^yeh|IGVky^wr@KNNEc@_TmP}?*UU9A*|xd=MeDfy!4^KS7NFFXgTZu z&~iPo!25KD-%Kn1S0iHb*ypj|z}!Ft$%I!uV=Vc#E@Dl#WGsd#)xHF8r4}cgz&dyv zRfGVIS)g#<8psa5cb!N(@Y)`5?+m|wn%QfJpmV&*tZGzpk z5luQHDSCc?*n+P9ZDfNoNr_i^T7hUc0lQOZPK5*)LUi`g5(wLY;~exMXM}?c50{pK zDG4^yNo^p@aTR!EtW7@jPaF{aF@#4Q97JSutDWCxA-63b(Io{6U%|@l#qozZXEcU)*+suV zqb?|iprpH0HoEZSoWq%~%Ovvuyx-U{LHUFzHpEqzCA)qxmFa6Na>>kM=Tk76e;V^y ztMffJKTei*PxJn-v-j}h{upad5fJG71qA^lB|5#qEBBcu-54P;3)@1RLpt(KptAyv zW2QgKlo*mEINtwUMi!+S%#{j_uXxH-5_*j1@SWdVK9;;?n8f9`hF0jbKj{fyO`(UT(lfNE1Uuu-%*cdu&oEhiW0<;kwk3bS=SCUwIsS)Q1Ef#*! zCCh2Yg5SmpR1e#lGdSGhz>ujERIQU=9A^{G=#i4P|Dh-F_Eo0Am25iN2)+;Y_GBny zB_Y?nPUHzulZMS5W1z{Y_w;4Tcu` z(Vs_!WRYtdI?b56Ilu+d&Q-QSQ|9YAFZazu-dc+1QDtX2tQ{~5VN9FUqV-nmini5; zM|@Z}wS>*rd?%X(zLX}rT$~{rbYdKxx-%hz-T49-&!f>qU=iyZ*P4bm7kK)r+yTeD zAtG>=*VYibTd5iw0<#R=%M|HktEvHdFUD_@y-DvSMft}v?Z2F!6U4;gQ)|k*v7Bsa zxX+Kb1Qwq79n*E8NByP1iY}$wcaqbrcP?XQD?Vy;7h4n{@K7VDuU+~TX{R9ZT zCG-gO$)KTNmo9m%vhDbHR|~fExa^RBkL|B-fe-nMCaf~hRpMuxO5uVUVK*k3?~=!c zFr5G5b6*b)uv*(()1RmnztiRK z-{RcgqoMc^%sYxUY8;&OXa+N_#B0VF(l)E(@^XxyfrDa}w|B7YY;6s~Gq`q2Q*<)c zmz-W9_^r0rl4rhRbUG=~sETa@UOkvV4#vx0xR8MZ&BM0*jFhbXh&9x!78zH>@2}uw zj62h|&*Q(9`#9D`ajiNco`*-Q2U9&GD+=auZ!Z@w_vz|$?p_yDSOr`ARTVBawdk%C zu+P0AzV4Ci!QNX zJ*Ya%*e%p97D%Xb#CLxGFfx4c-*#9eaCm5R27mSUUV-J z`7g{j7WZ?q{mI7m zWX`%brq8A{*^>pGWB1TV(fS^(Af1Y>;hH()VB=A=zOyQ84Jjv2NjSM(^bB_UyR!tF z&=8&XUz8XBa4j{qXv<0n4T!5fWthF?ukDX|A_aGO=Epa)&%3}Y;i~tYv_NIla`1Cx z4TQB{?4~I3!|}I8pVnu{9V>>VJuK!Q*)z23x?pSd9)eA>syp0ZrMOo1>l$`#$^5tv`^(ztU0wV1eD&1THQL4PlM7?_ z-67BRm+w3|xi3ZvYIKMD61Tuc(G_9oI`2Zu0NXhXF^o(a?hnpCm+P;FKK)hm{^8Yv z@5lExL)4jA1d?F&h30i+=<~19aVbDsqZit*ePwRk@vU>7Si|oNljgIQS${s@9Q`oVCTAzx)Y{{msERLo={uw&NNWp9nNR*iPJm^ zyLVPz3l2%>hxTJ^x4#*lhc`FsUEFPVoI91$I%Tz*2F9u8H;$D0Mvqgoi8Mb>tJ8yf zY8dl{q7Lg;v17gwAbc${==8Eo_@sU5rx)JZwH1}a5|@Dojmv&%HG%MchoIs`4ZFkV z>8p%%9!j{JAg>2S8CMfmr!jtX; zrLLB<=p7HbLLOcBwOeny*l#5#ELGp2bP|`)Eq@Pm9~s8f^TNUk`o^$**v81e&AIKB zWtcGRx+YqP-tubk%x^}2YRh*~Ol1_iZ0&xX2EUN2(Lyt-2ZM{GYX7aHxy;+zXf@cC z51#a>_$Ui4${QUHfMM% z*XGv}S$ zM?VPJWxp~c>q9oJ&wS|gnGjKaj)DKd2i)02e4L2IP3~IeX;7LLq6dHIcMbTOT)*sE zv{!=vXcP&Atg!36FLkaf{q^8;IYd*lr72wTu*&U+^04IAJc$?!_HkqrFPw;aK`1WvJQt(k>)n%InB~{`O9Ic2TS+;`wcivDGiz08dA z>)XJ_s{o|Z=du<$!$E)43%75VJjBN;_1|hwjb`z;9O+S7BnVHCK>N=d2x|Y@e;Zrv z%fR<^ff#Re#1%!LuDRIM@H&k>zm7^UUahey?{1sk4fR#t^0BfFK1=`RZDu}o)f)}Q zbu@4(!`zL7Sh_D1O{SJ@7BQ{_Ar^2``)@R_{*TmU5)1v2v)#SAJJDaa}%W{Pc zTKd3H@`=zaGby+!OnG7Fj=xGvG&*H@VXosozpD#t)e~r3_B*C^`<-=z5^MpH5?X!; zyK<-~qI+K0zcNA3P1dh|L#i;vCh1p^%mh$izKexc{+S)Cm?*{!36M zk+Y^f+yqUhPdzqAw>B+hE2*~>E`b%9GQrt~&LhhlD$m0oX#826Fv1dodi>K~b4B)6 zhQq&3rqtt6hX^}fJz$5dgq`o^r|s-LU14u4#c5kuunbmJsfPUNZ}5+xVI8f67~j7` zy3<}UxwbHMjfH50ouYu2KPz2Q=)Uc3WI9fqzzyz@do%rRNVVt@YR)gm6n-8&GIDu8 zgoffiSX-Xx8C7KZ48GKUM_UDPl6cYK2sOOD*rwDqT6l8?PlIcM{oW!=xX^9i$G+zl z-l>&q!9xviHeUN`7AtR`q)(%#XMJj$OiYlD3Y;uN`Pqcq=s-1K1!_Y$c9)U*3#`V+ zf}+=5K9v%>vejZ-!b?L=7g<;|+Ho;@-;uZ?6D%~-&lyGT{%&|5xWUTmF6-b9rZT*h z0Xu%9kJyX)`}}(P*LR}AgYorYw!O4{^~{P^;*k7;NmO5@U}sgpj+#|?F}5Sfq^QCO z#{qH!a`#tKUY^H~UG8J#Cf@8)NFFO#`#=(!#2k|Oe^`^L_(CE7s+P@xO2%4R$I@Tf zNLF=L+>ei8dwukS`Ql6C{_RYC-IH{L*2ECa^nAUPbebo6=_sChBYnfzVf6mf3aMFhM7?*~P8E@Jro16>hF zzs&B8O=M<~g`_Q%uu)_J!bi=(jw9C&t18Kvn%oZ%_!YC}PlxZu)kf9K$P}9Q-%xI2 ztA7H0-?n$l-KCT)C%*$+2K{G(t_2rmf}xnX3hir#i+Ox+nR<#D2t*4QM;{Gx;gVWYwFvCR1@8GmwQ zV@;V@7_qcsBf8G-W#PGcA%k=;3fn#cy~V?X@Jm} zP;3bjly#NZqSB$fh)g#c^I;$Sa=row+-d^kq3dy)5!O$U20Y0hk8<@)R_~+Pe1VN{ z8Egm`dWd`Jez;ZjVW#u2wB?I^Bvcj`Micw~Tl(=lO{Z@UAET8cue&F9_&#l@Gu>5?b;guqBuaNC7N~V)+kF3a%m5A)fSsx1L-LBuVkD-NKqlt18=%qN`?#7-q_F zSQ5}@vhm^SPyc-Tr=p?cJZK=cRSi5R{uWs*5Jp2>)d?r6>U?DkAP-Dy=gKI|G)SFk zg#KA&nvp}gVh69Hs-(nmZ9n-jq`F!?jKx@X>By}r{V26Ft0^{A{qyHlSqL%@M3<+! zgD+sOiK=sl7D6@pH4#fFQnzsm|_vN^{(ZI`aMKVNcv>%m9`K~S*nTzt#z!>cru z4&D=kxj}$ae9kVPLM?vP)(}nzTbN?nQsri98+2sR=GGe6>!HPR+``}qTW-0K2Ug`<$ZFsef-7dISlPW={h8Ma0!M-SLB`>!) zZU*E1wYCB_EpyY=6%wn^mVXbKal}K$>M%vtAY0^rR+@^xU`sq-iH>r2J=5F~a;axH&utCoFKJcIU!2lY|3YOqm1|E+KN%CGOPTLl{YAPXSbTAL=*QKPU z{p>MYBb1QpGP#PezRWIu0n)VAQmC8c^9jsscMVq~KA`x>ZBKsR=i7awydI)QW2hMu zxk-ljAcp(CP|W_sghqZe+vp&B?@*H1`ei3bQFRMM_G?OO zH3`fBA@{N0+HbLH@&Yj_h%q#TzbK{%1Z)5MjLu}OKJp*FY@kIRWe-G3zK?$EGXr%- z{N;BfQxm@jY2>)0KR_EI8<~W>E%y|T+uPt0ufkB(vlXB>#J`wD&LBNzQXny`mFh`(_$pQTScb_j7h3*8e*vmyW4l@hMkCS{eWZh;6 z?ULX--ug)ApkkEOW)GAMVM6h(45Ei0zz$hCmLh7oLN!^2cXZskFbvrP$HCn#!DJaJ zHqIiaJ=@#khfUHUG`iS{def znMl6p_X7U;1m9j)8w;oi=Z1!G12$s`fv}iqes!Nfzh1Y-A@>3LC0x08&QoW_ ze5Num&3gN6)b*fChATQcs%Ynvp7f9iTd@uvVG}2c`rLs#@@x{afXiR%zo1m;l~hkW zLFCMym|MWo^U}wG$Ta`7kg3`%+ZD$$*N21p$r^?#0oc9?fAq&N{rO5lDrbv-bA|)E z8Q=PpmH{~~%Q7@+tLC0{+4-~Dz}%n=?4^k$@}B2?S z@fC3we^0uK#JjQ?!(Y*wKW*a1vQ3}!9<@4i0-dap^?@uC%ir@RA>#jb$icP}HJIUG zS`pB&)c*Z3`oJ!aL3bgMtSw&1>OsgI@&OdLa~mfzOvnWNvh-t-aQIk8x@PU}B>GUx zWPM9Eg{ewKJ&(*aTctIgj}QD1X?I%w>B??I>TZa@uhL;Wn;RGdb?(|I!qNP*4x$Ld`Poub;vPHFPbsv$H4X^VbOh#9_J;u0mAzWR6L$*JRb z#kXF;<-_Ew#wc5ctS4lLWmpv0q^}uQQBDE&P$Oaw%+|o)Bhw2AJdM{MQe0ofR8qZ&yQjq$)*{kvBe&mJRp#tH^4m@c*~g*0cGm zz7CgM#NK#6L+eUFpVGuGcV3Hr2sBW^Y$pz_@&Y58VB1*jm87$3|9M(yII~_}W$mhK zY-i;#?pC|{s_?Y>=ZNKIq|!lha;z^;Ij?!Wzmoi7hIuBZO7;+Erw2l=_5_{tnU~L+ z8p#e96N^9$Al#6&_~i=Lh19^f{I@l-T7&4o=rw_L)_eF;Dfra4Juy=A=Ul@~3Z?t3 z%E&3&_Sf;24othJH5mts6;Lkfu#|EFBjQF8|FI-=_>m>jljp5LSS9g{>id9sE>!BO=zxaBqXG8ZCXm>c8>dwNcFEryOvYGoB65O{@`k-5 zecobIn%h=yvc>~aQ*F@4OYJ9{yTrTK0+MU|=Lo)tzjaZxUHFwkIn{FK`|>@ZQ4!;{ zkw{}A>PL}UQP_N@W@jEKOh^4>)lA{48C8KNN**AIgzXY-?tY=l8C3oH)ly~o_tXM_ z(F(UB{%}Hq&w^uOO;uRd9AqKbjRzF*;)V29HM+8At*6#;;!mNko8r$D*an6%B@Xmx z(llk%n3sjORCf>yZ8oQ5Fjur9Nan6NxgtX>c=4jUp;1>dCP?S; zw?Zz3@Zanp^&jTFkFAs`$Fd>qe0Cf{NR!9l$sz$f`SqC7mpaB!&n+cDCAM>HFr09i zEG2WX&d05;6N76{hi0I*loxkrdRrHHdX8W8?G4aHlLAAsQru|JwgzB3DoifkDwr3w z`TtQcSB8bTb%BQM+A(6z+YurDWQg_kO&fhmeo7wjmWXZi1QDZ#awVBWttj!m+17MQQ3 zJKL$OXJX&4V2cy~ia0Kjnp8u6PrTciH?XYgT~8h1Lju-*8DQ;?{3-_{2W_~w2^CVA z!zEYYU%1(U%);R=O#}3P)m}KZ1-+eI1E_DX>&k+63zNDYZt9cP+$y-+jJGFD_hp&0 z@5bIi%`dov%+k`qQQU{;osZYkwqM{!FEv8lSaRVV*3Y~`xL{E(=GRi_ula2cx{cJyYbZDLaIa>5J>p^$F z#%9Cra6yk^k7iT}54{yNaUPrQq1b;5hbc6vnJu*`LSyP|p-Jyx-U2P?n*LH&ML|^u zXD3%Z4D1VL;F1d(@*bQ;@iLkvE1l`vlvSR>;n&r=6-*N>LNEu@RpdOmBsx4@7(z^l zcsH&dq@m~Btfbj-{&IOZ&YFg^krBcS+r*rbBmlDA?SA-413Og+@Th>FE2vV-huX}I z=DS$sCR!&-ECMTIi+S|EU&N%PO4X(gN3p$>h>#5V(*0n;S9XGUv9hA^R2`w2N1Q^j z%>9!wgGpL^-N_qF^}3=!0*t3N7!W-+RNmhL|xT+hkkxnNs_U3#md~hig^1@-Jiv zs=<~4LK{-Var*zq>@Sn+NJdUB2y{_KMn)i)!vt7Wv$M0u)_`M(Ay=1Wqs8;lU6#)W z+upT)E3%aVzEc;S)9)jwHQ74IB4dCyz^}}Mn4{4*xNai&^%uHI`+Av{gP-0%dx4cE ziNxDNW}AsF9|Fk|7Qu&9gFkpk+!ZA5l}T<#u5;-kv)jtE+G{cjN1|DAIs-2n>3epV z4m$efyj$I$&zEn*(q(+5fqcjWXtrQ_bzcCIHyq%4;!+@vzIXpO96%uR7y)wyNR$nL z3s?u76)3Pe>v?SEoE}jbp-+LUKF?0fQdy#N|1r&ytc!$#LR-FBYkb4fR=8%Nl^4o|#NvQs5pQ?al4i?V zQ^R79-O}8Y{r#@}ZkPRvx!V=;#Rp!P9>%k0c!v%-$w&Eno&W!&fv<{&lH=m!_4H_f zG>{R&pGKYpI2Qo$F$0)-TpH1XpO#v#MzPZ`b>q5{Cb+xb{mng()JL$L?2_KH0~6O5 zj21HaZ=mbH*iHz}NFobuPknwiN(af2eq=iqzZEx`2<1^Ktp*=F>ly3dDbP;j`f*iu zE`^a^FK-`KrSRH?%xM?-jX;l1kkC7XFbIgTfWQjyXr6Z=s5L-Cs8jyoWmCE%Fk&M@ z2b}(nd@=^wwda7QOF(U;^y(D{CucswT7Ul4lEk8T+2i>~pg)~D_>DiEk^Ta_=h`7p z_K<(565I0Olp5h!%xKrVp}eMJLWg|PLQ87w!gee0$7~C_R@7W!f&KIDaIR_I0gb%UZ>kfJV?|y$0Pf@=VfO!02zr1Hk^X2Fp)Mo<7y^NDR;I)Y;veDLq|dsiX~3iNW70bD zG!s@!YxlXVre%BjW@#-24G=m4&|J@@i7Y_*i#j>Bj+Vg*ljuJ!9&*=8)YD~f@X{?0 zg^Ugt&u%!$8Q`z3KUJ2jv_yTtQ{;yOj@R>hTN?=!hWx;)9kokHwav7Se)2O*ppmRD zOaA{*3Eawt39(IQg+G3p3fGdJ zw+)5w!k+5VSU>Uo;?LTPmFUiLY>G}?vpi7hR%!t zCIA4q^m6-afI8$7gY(SelLvcb5z5GfeX6##nbEZxO9VyFs((dKlkKTJ|8|tgy1{zy z`>NB6ucB^;v>f;N%{CR|*fem$d_Ax5;Q`ehd(pojfdRk?VUrt&Ziu{yKn%Qs8b^R9 zBKP&Zf7F8@FaZ-k?eX!a7rR|f(H|}rFbxSxV;dy{?bvv`cAY#MU>y#r2Tw7)^sx}U z){8=LsE1vA17y=@ntqsqOXTm9B_|gQ2fc2R-tfDF%0Kpi4w706zHch-MjFAKr<@xa zOQoNbgyA;ZWchEzz4wLH_k0Hn&X`zR6**RwL?FOLQBD_6K%}i8vTFc5?)c_-SmX8U zR)FY4LIhoyj~9?4CL&a2wh|y$KJ5a=RyhC#0<_%bSpMjnbU{FA+AeO00-O|}*Hv+I z69v3-(~)noic*4QVPlbGx5i@Ur~Y1oA33jmRW?$?mBh~XQOhK}N}j=u+dGmEG6CFn z5utYcTJ<~=fOJX(`b-DZTy1CK*Q%|zmv?DyTZaz8JKwAs+Ym$i2F<1qRz)wy9!ek~m}6>ErzAj~d9pW` z3c&rb$fy`d_8@5B3y?koWHD+h0417(J-Ny;?LVdD-=9Md5HKmgLc9RbG_Y|Pf>e>l ztF6MSt!^NWRM;Atf3J=ZydH{5RnpM()Ky>_xn2x~Mp?A~&^dT1P0^Z-RVz+&1LSoe z8wa=&%dESXv8Vy&FHw3N_D)Gm$0Y8>8iam?z8TNA_-7rf2>(w9FB@=B7CB1{e%@gQ zj}9;1P7zI@s&cj(9?rkn&wVd|OL6te7m}H1zltf01Qe9zPy-#mCPtL*e-{DfFB|?= zUkvkbAd^K5)Kl>eda`t|_f{$-Rc7ovGbTLeD-Q2u;0yH6qpB0{knJ0aR)o$~0{?3V z#Makb_mBW>4tQO>e65GX_+UOgc0_2Y&iaC3_{!Z#^mFvjz^)a*=cWQ!CQz&j!K}aN zNJGOqN>^2LE~%ve8V?mK!wLLJEfN2>F9q}*&~a&uXlv{U8c#%>wjU5k>t0@{=Oy0c zn^pbNh^#yI3lsWi6T-6iG4(_7a2C+*1l&IBJp0_aK5>v)p8J4r<1NPI;S#?pxS%Ug z<^L0Qf-AR54!;T#wSoNV|2r z<+3;bb1i=_LB40URMcWvuRM*XvbwWD&D-0Yj9Rj;J@cbuF*l5DehqPxO0dIOEXD;8 zpCx{=KQpA4-^M;@w@gE(&Gu~zB^;hZ28mw;2SKu2W>w%Gwg1~p$iB0=H>F=#sHPdU z`Ql`YGvrZBU+rNKe>$h<#t2XlOk-D2El?1Q&0YT?X|*ip*YF)?va*U*UIFc}w1Vws z=)>Kn9EcM=xzhtrR@f%N%)epVfTX*1wFl z{uaG=82_({@#g^egSurp3GNwWS$!M zFuQYG6V<_62xzOv%?xkB8@2r>o>kGB_gR7pLqhT!cV#`4S?T^1$w%BYcVZJ;DU#L- zCOG?sL+`Ifhq>$Q#8NfHN5no-2hvNTw~VSChfl=|m&GC8cy6IHn~YX*Rc9)DdnnVH z6AxD?e2IKP9D=DICIuO;tDbS2<-QT91?eEsmkMg9wYV-i-@R>CSRr3EN7r#{j4 zcOIdH`$S`!s-T)Zm~|-`-xcMi(Y(h`ozRM^u$iKA*=O0VtGPV8R$Uci<}Wi`WSoud z5Hqu5+^RktDGtt({$6=Y7$(<>Tjxe@}$NZ;Id~ka^Nmuy9i^bWyk(5 zyeJ2jP1#(Iy)*Wz$07?RpoQEtEkN0kRM|h|cC_C^^rQKjXSb?x`R{49>tILPp@D;x z`r3`#PLjEJaeakE7@*9^GRA<683W&+BQzo&~c@l<%Dst;c9x}K%hN&vP z#nABA56RObW*p_;L?6_r_H`4+2WdYtY5Y>O8J~j1GnC#$1$Q8a^BA5uCtU0C_Vx$Q z-@+)P&UgL2Jzoqz*yu?&GsH_QxJoiJ>ad}@xlpwG4*x(rBUsM(zDqzu$(r_!5-jYz zD6=O0{oXyXpRE>~fZKYwB5t`1dE1zfJ#rxG(w%u2(5Vs;0%v-|l#L};b$6KEm5czxF(elrgp2UvB?x7MQsco$dp6?`Vbp!x6gB_q6OrOa& z`Y?kl-`L;f*DsvgcJ$mhF_&+k3Ufua?5B&ZV)CugNS;Khu1~83$^>LBDnAX2uDW~0 zf_$&+Ut&vJ__$wx6C-ulE)H-NIo$UF%`p%SpWv6)6V?EIJxF?l0nzcxFyZo}f1s1y zPphww&Pa}cRaF-m?q|E9Xg}?zG7d3Tu|C<&4EVV1v`^ykS%|GV3Q-T*f2o`P?zb?T zBqy5UPZ{6%*6g<&LRm?ubWvq&#e`ren1Nkh@1YE-d7VkYt_ z-D8CB!9|{qAY;@Yh1eq=eUjzhphGwXmh3nIYT=E@1;ZPu6t8E~nL1t~TZ%|b62ZUs z&*&<}n6tLrwDO2Gd4ro#+ZL8`UKNf$lwe{qxe2(zvLf!3DS^B^giF@%^5sCSwdg(r z|bhUadBWa=mJUMd08525TMSXcY9{G<>nEg@djI0$N;9a?e9;1pe~T?bG$^X~MkjRCH;23;THDPk*uIkvN> z5Xp+$n47KCove#$ zZSIenegwm^@(M#Ij&-QlZy1N64gbkAkA{L=E@OFo1azWK0*C(w7wF}C!-*w`3Fp1K zU(sqQ?Es@zCwP@ofY?W1&_Z7X7OD*p=2RTF47f5~(txz0F*njjVEVl6C8qMdZ=a3S z-_sgZ&~w0giQE2e^~eAbBBs(>$7rt$=q;waH-f{3YeG7yWIM~p{k|-&X2_s|pLX}! z?n-rY9)`kAqZoF(8mC49(vD}z5o|oektAVgHmgyoS zPlwm1D_1JpZ2{&px#um(BQP;>FQ^Z^Xq=8hC5hQ`b;wiK{<`bYB}!E# z+OhMjY+TT%rUG7g_+Vrmqg`uKa70@Gb+m0f?5>Bs zQCN-nKT&9(%|!)kT{b|VqwM+VcQ8^&H%E(^))zfd;wA4up{VYk!WgdHm2Yd+{7DY* zkSuAiH6kt@cKBdE{g(XJzP32as-IbMJ<&pbpCICLduG$!0Er)19}%$u*f=c|3U>O=v9)5`Zn0)ART20^P!743#q1 z-K(DnaQMKO%lY_7BS^tQLY2jqR&W1LQeh|vi?d5&{+ST&$w5K3$8ClzCn za^toC2uv*;T+#g^*-9!J-y3!^uz+(l$#wNVDJfG>p{aF3jLmWiWEQ3ej?CbO9t@2( zSiq7d+mOY>Z#}p&SfG+2zV~7uyxf2P=sC=I4xluo9#97zKRjWmNBn7)HaUQhR)%`4 zd`u7tWgws%DzCPS2r4{Hpd2+en#2V(xs?GP*0pn7@n~zMr`pG< zLv{ zpgl(~U8|7V(fc}3ydNj9gF!oF_pU_^v2qmV2$2Cg69(Gy+Da>@g+CZ&BZCWjyMTf0 z0|=Wyg+od~^NqDUu%3XvXeDEE6AB`Y*1t#a8Ue4PvpXa+FA;n}4a;`g%>!d1G;ruf z$bZXP7dxm`Y0j)pqkX^IQ3?n~%I~K$^BBN0#({e_cf7*#W0|m!xvHcSJ}~#-F#}u} zj@@k}Or;JQNT*eucdnxU;FATLU8~_3o7(s#Qb}4Gje~>3)>S3&ek7#uH*vRK8AoPW z^djLv5qzWpz(<0ki~>>LF4yGYZgU71phadsD5E}j%YE{{L00`U@5Wnp-|wz0_yUHn zN*$WQmE+bx++SZUHS|ei`vIOZ5H?_xkf}2I0YnZq-rrp#suPG1YG-w*aTfTR^&5|u z=5a4_N2sp(g|T^Ys-$lk+g6Sa=89U%91S0bWVRtNNpoU6jT)aphCFl9N=TswG#UqT z-G&(sFLzh@J$+tN2JUl6;12xlo>t0S?1j<=?N3=Y7fVnMNyxMjp#~A?2v#h@`CMAM zKAxuwjCryg)l1@w_(YNWZ5 zlI)X?6>8Ptk8L-pc5dJ5*M0J1D(Cd<)r{wKigv1b+1w%%&~%2reGmMdQ6c2`{$AU>K-Z}~+-5|3hUrnw0W8?`&h5xG zxw6ImbAs0{jn`vY^=!v8dWoO)72}ksM!a9?%2B`VSUz)BE(+4l2fozot6JQz$txKr zZ79m0{d5}{TJHwlEiI>BKZzS*P6?v>ed@s`3no9#slM23EIup72~JRwk<^o|0&!9r zE~ZLDezEIa3jDywp6G{j-w$vq-Rgx(R)0H!05jeo!&bq%JtQlXy$HWp0}?3mz@2GG znHGOd205q0g>szu2gXj8Jg5tr3Jc{?9X zfqx$Oa)uw^*Ufb!L0S_Dz-)gb?3o!*6OmPG43HGWNqe+xPK^9l=qx$A!Y8y46sFqe}Abapu=!TJ+j6^mKeJ}jL>D@-LP)%AwwDr~0=)0XNIR?{jhEi|aQUQ@@NS|0v= zh4pKZsrbV9Cw$k+R;sQ2%|BZ->BPD!PO7lpOF`TVE9pjK*L!LBI)0fZA3>>%W1__6 zQSoWoWK1w?>%d6O)yOxk&;NbO%i*=w8@cmF3ck+PX9n}(78DqsGUA;fW-iMP6hSO# zzmMBogsA6VJDR2iLeeKKfR&#{%pvIL=;(fL?89t< zNi8)$5zP8A@GGfBjnzg&B(XJ4wmL5WlwEu49Mbie@3tSFAGR(me`_M=%kePMAd9fo z#d#WNAaLT5EhVtaEU6n$P>?`)4ca^ogTfPt>}h2-VwwH*jjT>pv)hza1<={Mx#6KV z=y!eJEIi;%XB`u*Dz?GlT>fE4{7=m)^g$*6&aO0zQ}me=AdE6e=e7HJ{xQ_8^W2?0 zU&$&}}evxzyA*NXB3ZID>@7w7Fb=O>-3R4i(O-MsC0FteNPn{H; zqEOHe*=W!u%2%8(yMNL;zq10;TKGoVOIuDEi>*k8)Y-T1Yl)La*EY)$vofmXfk9ND zsSnh(troZU@Vj(*pi-1Zn$9bDv1H%TqrXDcq)l{|0H3ckbZsvnES!)mXa=$^1E;LJ ztwly#e0@Rs8X`KNpyD}EexP(^N1EjM8nv8ZKs4rL<|XpBau?m5?WE4$hq(c}OVd8K#Q7TJ4hv{?O86$B|5OV;P47k6 zu}^NgD!ZZK-ex;!4vPBRh#~<8y9wAQ$2HQ!#$MiY`;i~bCY3z!2a#HOp?7=N;FJH> z?F9+D3@gMoNo4++eN2F8`7V1JaUVRV2})TE#r~SMNoTq908n*~yNawPCH5JR-W1uO zJ;7oss8VHx*=%@EP6CQG2&h7S`sx)nNbRNp(od81fn*^7xt_)b3bnOSxv%Nl&0Z#0 z%He)7;v`UCPS_hPxVHasmA9%cD>&qc&i!3uG^!z z9IoQ(y%8a}e=Vb)>-=r_L^Y@r9d65rqW3h+`{uCcW8LiSCAc=MF17{YQt%@pdj-sf z(k!`ND{Ms#<19ss?e&A~p*Ae63b)E^D)MQDu$BDew5cEG= z!u=yZGgW+R4}KKe{H2b)qjqdEy^4TK-^tw&{LlM!~qVQI`r>Bm;?L z9mYC~XuS9VJv`YM zrx0+z)mW!1jjI@rx_v=J+g;fzlbu1^I`$o+W3+MJa^IBrhbVTT@`fDQp>8Lh^J%wA2ycydu~rx}PtbN~5&3vi>^{=AV2WAE6wCQ);t8LtC6;VDykeM|pq zIw7=T?3tT7hyI>L5z_XvA&E{?Q`5&F%Y^EQ?Ev6EycPQu7uGwhnbgY6j%vN|)Q#!k z_wB=ld!$quEw7QxutdZ78Lr9u;f@RdnNsN7_^Qk=g?)u4hrUM{;mgr-aGMB5^yY5R z+Rc=lI%Doxn_8E)&0VKcSnG#k-#jIc3LGlcwA9po_DrvKKn>9bfxsX?!DQ^`n^}i` z9z+I=aq_%cNBFY>h!)DZS-p&&I?7T$M_6GG@>x>fQQy>UTeJ{mJknF;P^@7x7O)lq zU+M9S(4M_}T1hFbEP8JonRe^aoZJ|DBmeB{jj|KPT!5-;4HN$?r0H2drTc2yB)C!@ z{#K+v1ml_xa&_rKJKoSXoKk|O#eG%T*lm${GO`rPV!pZgHzdzbjr7>|@uDB&#UH%H zVu8i7eF9Y%F>-fRp#6)I$SR}via|2m5QU#y-_w}vex?;wN=NHL8!@(&fEdhSRlKLw zM;%cb?-MI)dHd!~+xlQCB2Od~pO#5lx>?+Xi%HsCiBnmO654>#8V5x6W)FWe;i3kf z4)3g1P;15d{u~))1iX@ zZd;{tw0hLxTrKE;#AVkxXY#|tL&RGMB(@@=q5(dmpir9VkWr!!s?HWqHS%ibY&EIcAd1=8lux_91-v9YjVD_fQ^kC@-)6jb`9L5`wgV-?Y0(W={IWJzyf^N{No*of4amQTJ`{B_0v^3lAEQRr` z#u`(H>*uTY+P&eCI%r)OgrmGDqnq_sU4`%ZDfv6uKxaIZ&ER=Eq+2yW2~jCL0iABKx5%z}^2In`Zf23Ii-sQ6Lc#x|clsOY zPt6+Cibf8eA!#)I%&TwvgE+3k!o9z|-G1B7V=OBY<>AojIB*S9Ha%^=dOS$W z!?dyU0v())Q@rNOm}<}EJ<%sEiN6pk953O``DW?cFUlx#zT!LlZ>#FC4oJPP%k;6^ z?cRBOakw1fxo*WB)EfQZOa1d^J6ap@odQRr9P3)=W4zmJsmvkwl*+?cREETw~}$l)Ac!J>Hj zS{W%=CZW`R)$&!jFm)ria`1`0N(U-+>db}4lyo~^0>AgA!56k~Ix)W{Qxh<aZh3^hVf0!eRUn{XGc?7 zdkZq-W|Za}J>DXL6I|{0w{hpjp1Rfi9@KYIzhKf%&rp7HE##?A~RjnhbZRQ9=?DtsEF zb!SK2i6$kq2et&6u)p*o^$@3=@Hf-I zzll0l04_V+&BnAyJjIp@(bsVgR3xua6U6EcRQ(&Y&gv*AV8%4jg$YZY?5b(d!{siJ zrB3Vzau7p7MAk8=(;fo~+eZ)|b_D*LJ~6V4$R`KcGbpI2AiLBMBu2DM-+_F~EO5-C zVPO0zGgd_8|E_t&{c@Vl1U25~aus#;Kb#Zbv2mSdMV^m?t;a9jK?}8E_k@x{n-sNw z5H2@7M}GZg2Ra(z$C^ zn%I8E;{T1-wFa;6Y1L+bVo{R($YX;^f zF<2sMdU~^*yAvQO^clH+CrqcJ_Nb2w5$HZFea#I*4s!sP4kC4@VgA-XH<0?ZZOPABx;b8&xXT-Sbs7xi0Y5yG zJ>v}5<*d4@`bUY5&b;mg5P56o7cXCC0oYq3_&t$o^>`6?sm^d>_mkg>Y8JkuDo@_L zecRa{jKfuP3d9_|`t|&-d$XhSh}3p~u|mWKCCq^QcR;hl*2q;BE2$?n%Hies*w(2$ z3BhPX{L1#|+9ioiGMUe6igIQRWIs?-Yx#`OTYW`5^TudRF4tgQAGj2?vWdsLpSL9I zV|{wS09y(sAm;km21-i$=$&7eI?%#S3q!uIrH%L5FQ>dVFc<>aDHNbOy(UsIH4wun z|3XDYYS%_xL!+<~6C~mMrJMo5_XwaGKX^Q76sJmgiv0fl8xhL^W(~MCeMF9a-dPi0 zzjzmiEYgb>&Cz-l^jBmF*SCfbC>&S!YL2`93dfUc-kjlqqPf@8^&veny@oG8xc&%S zrkW!d!dPLLBA=l%k20jK`7%`7t)B|p_Ys?@ zbPTfZ)~ksJHf152`(Zy`;4~8LXY?MGc6dYH)oDe(OSoTq$5<_LbGz?r29`ZoTAEYR zAhiVpk4hm=HN6&*4Z9RfezE=j{*{i-l*KtB46nVTgUc7p4n69%h_?;csK6~arjEtm z78q;)E(`@$5^h1>cHnxoOuwvnmf@8+TZi9~qXq@_38|=um|XNzebel&iv{+vBZ4W6 zB`4q4#v=uEE!UB9V(A;nHtrt#nu$q%LBFCnH83DGGBz?Q)#e8Ac3M*z85yc_a_ts& zaWOIW@Ld4t8w9ecOYp1Tr&a-V>Y}}L2(%0PyWT<+}irs zcdcVs6htT+Vln}4+SZ{jTx0M~e;j^8!;U8RL_E%7kH4JS(6I?tHWY~kZk(`G8-Ivg zFe@j$qd_Hunmia7DmrY4KVE&u2)C^I1H@R5hOqDjG-T39l+S>p|U`fO- z#jnVI-kif{hw*FgUfU}p?p$7hh7=UMf#3$eDIlEOtmcwCA;0_JGw#nSsw<2(;=Ok} z7g~&s>F=#vc{WzVFfME2esVhx!(87`Ebs4o!^Ij z?Y)7u*6&_-%sIxGV`5R~8v0BtqnV!@Y<4qU=%6NFlmx*adFvI~2kKaC5n6RH~BmA*&;dldj@x;U4xecwacZc;O`#!y3g{C@BDrMGs7JAa5 zZ5cE(+j(<>i-n~FJsL$Je0UQV*O#xxyHR)HnXQnjUP_?cd`T1I#}A(tIB`Kjc3Td$ z{4;l=oD{?8;hz=axw9vCpQ>XwO>BVGDm}ec)|M3Zq}+(qLWHKAQSc*trq6b_AVRP6 zn5Ezw#8_51th?vTLiwSqm#Hm-p`FutT)4RQ5wsuRv?kxmp*sB1=E2e6k3~j|aek%9 zVK78q&D}+XrCaHsne6_>AZ8s3!a8hMrw@J};pU&6+#OS)5KSl$wP(KSQa*MC6Eq4EH|gaKd~dbi0J#T%YTDr% zk)>nH2-=iM0|&&Y)_70MWR6mjhJy3%6AZD*RQ#`Bw~|nBHeBu*wceFweM4cb%}C|s zT*ZP4aGh%d*HnP$p)mq{665QeUn$y?1_VxXU&e|}nU_hxVEflN5>n2P2kLI^HHVv@ zt%`HKTaLoeJa)Yzk9ntlE@1TpJz*+N5JGAfjtW-loj-&tHi*tHMYldhG(lzR{7fPF zL>9H&^WhqGXVlO$E{!fK#V$R_N&jZ*D|E5#QqL(VN%9gu6aD7e8nN`hgSTg|R>$%K z*Q#0a4LP*>PQzukajE)r3|K~HL~=60W*TnM*U_niX`L6|1@RPnp|d}Sl#2NA-j5Uo zf>*XPvh;H?p_AdQZ@BSI(tx!kX{OXOa2{lK)>v#2Y*)D$DY8!VP#gHk!x1FcWefaw z8ZhokK{as%RwLu_R(O6k0tZE8xpfqKk+VrXoOH~>-Z4LTkT;n7bUuKX%}WO-eY_~< zOV2c zJ@|Tno0hb~m>#2o@iL?I-J*$QTM9aCNnF=r5k?6j*|%BSU1!NQLj1@>cc+(*wO1vI zsBZU?P%$Xz3CmcwcZ$98@Obv)++opsj)XD{-%i_;gY+$_TY1`X_C|G#l)o2gV`=3^ zr%FKm8!W88ZHm(K~~z|zSDmP#7>_KBOLQP(FEI@iOB!Jg05Bh6#6_3&-!|AqICF#BwBwQ1C)#a znaK4Y=$%vB4>QKlKvQ*71wt zFE@O_!YVvTCs(?Zq}_+rgf6R`N!Ty$3*ai+%}b(SejesnHUJ@T_>3VR%MaP7wP@c@1q#e!ghlWgdDXqz5t^Yp4H2{z%e z=_8K2p?MTGefgFNa*PmFycaBeem_)NYVP{7#y`1veox~yo$uFl=&D^zYH*4qLQCqC zZFG2>=rAGHyyD?LNEV<6>!MOVSiBl-9n2khFuRg1jxRaTrmT%O7)A4XLrVEIT#@|eiNb{}%J6MqJye>qP z>Eq$kd?v%3Zy#%KN<&u9ohYBi(Zl)$$9plO0nPmxnpgLpy|hE@J@6GAd2)roKoY%| z7bRO(G6mW`d4DHm=-tfi*6}^N5dKlc^tU-yY5q$WDs@-1*z}MHeGQ(a78FH%DAo=&6riA4aifaWN2e;4V?1@P4=()x^E_Ws;Bo(U#9OH^xET;Lah>E!tjWpv-wV97@LN}*)~$Jr zm=3c1jo#_P;K*Suj93MXVFhJpo-5bR#9qb?V7A{()~&!*N}p(-aKVIc`{(>VCaj%k z;qIpk2L0&=y$i?L6)c)4Uur*N6S6moY9?A$u#SmoZ0AUCJr`(Bpv&^?c6+h@XAh8^ z;TH>O^Pii&@!|Tv#az4}SiHLPN$7T@1B%W?9X_Pj8`H1hkYOB&Bq@f>f4}MV_MD}BvJUdfx7V2P^= zoiP@>4uvDnpz^2SD<@K43(OCdv zqr-cA-r9;0fK9wNjU2)4y=>IK8lihG4UGaQ90ZcP`sZOE0E#gc^@zh{oj_6cK5Jf1 zUd(a#)0rEaLHAHjEj<12VDDK=Lm3k_(4WcLzdO6@s8Mc|IFO0ankr_T+Xx5Dp^dx* z&uuD)yC2ZS<-Dyun4Yv$&fUgiBH31wc+(^X;4_Yw69HJ{I$r{NO?q|z7_W~}J)gB( z7V6fv?H>XM?(@j5Q_a1#ssm;8^mQPv3wyx#OEbhec|KkLoM;guz%w&DxKy!BX2C=c zz<*J3$vh2kuBlvR6UwROPg3Wd&^~1*OsQj?c+Gj%t-QK=2+7IY(6IGPC-2lpJePjC2i+26YvhWI(~*3F+NMxtGv6nm{j@D)PLH$kje!2wFjv|jH zMtY>CJcO=X_jlT$-%=r-WM7hV6XkOV9MH|*Ot^WUEjCk0jn<%er_Z4h|=K_>E^)@FU?l|*}EQNWf|D=32VyY-j6NU6gS@-+#I)(9=&+Du$C)&=s*b? zX;_anr>%tuxeg{YHl)_)NnAP$iugjEc=_(ikJPnPuijE=(8v)peKccY<&Kzsqd?3>s;9XpEAaV z)b@+??Pq7B{Ig%%w*9@dP3tpW1h3{Pp9iez-BgYqy?P)aRo;lNyCjj9GXn{lTu}io zpi4;&OV436$}*eLV|k}XZLtIzGM-u|!nJLXYeSybg(u(OUDoeZbfF!DOyLKq`W3k4 zJrJ@NuQGStZhd>b@!euo|3YB)A-cNg%d`}~2%jzUFCrg3UZQc%xmM9{A{N{@k6ywt zQ~p*m3Y#Vb_(>femnxp(WF|CRScOiJXhoM;R6F2d+4L{EFrdg-8j?we$K1u9vz4Rw z^Q*x#80Y0Fj5H2;sb=F!Dvl()$G6<9#Mfo`VSxlDunYHoWZl4a!W`*&ts_(Jwv$66 zT%!iuoav(g)JUU-B&97(nqY52I-SAA*8_Gw(aQPLp83f~?4693bFG{ae~H_4B>)b4 zf+UoTIGK#osiD0iN7Ao25)}a@?*e@}M!>v}F@Qbn@5g`RR>jf-z20(B@h{Qz1kN+S zLgc^p85;!UM`|W|SWhi1$T(EDx0LZYj@prZ`q00c76%ErGsSCS*9*Nc@2Y0#0LCk( znK*Dg6dTZo_VXv^^EkB{v^NNCcs1l8ekF(r zWYiPHgQzdSPn+g1k*c*G#2K-jzN#GK^v>J+0V`qGy%1CVn>QL)mVagjq9;w437VMr zP{A5S`PK>J9&ryEUD=Xz@nVvs;}(IdlMK3QbU%-VoaU(>K@$E$L2`pTc1vbRG9$fy=?Mh}qtS9}+N4LJTa_bdgf_2ZW zJ1n?J9hhhANY9U{c($C&++?8N!2!iVY#Hl+SpUs1VEr*&s@S&Q z4Jsc#4s%OPlYi#SpJBF;@Nk0+Pp{j@f2octPJ6)NWL>^Fqog5Thvd#gD9 zR8UlTVQ0U@Zi_F@;Z3^xuNnplsQBAC z>l=GP{!{A)@*h&|iL$h@&Gj^-x2^hR8FhqGA)~$vRK&7S88tv?us4dc4B*<$(hZ_5 zD>y~5=Vq`DzKW`8Q#-D^cc5N`@=soj^aiu>^dSj6DqT+3dj(;#?W+>kU6*QTLJNAd%ZRU#?E@ z`Fmq|;pQ~##-6B~RwcDLDX+g_~x>D!Qlu=|Kuo46s&oXcAA<++JJRPE*j@L$pGsrIANbWhRG z;~_h@)YcP`as?hZy5Ckv6VcvKTX_=PHOS*~6&;Rft}UjJr{`ap(Mcd#){@viLu+$t zJmzUTZ1GpLA#rBDhJoq!xqJ70nrbxfVK&)$6ds3;PSi={UH{sB!tE;RLXJ)GR&nf})2SoBCvwe~C5A~9RdDyH7 zqaShPG>~Qt+3MXVd3%?4Jm(hgl;X=G{wv$|uatVmEd1(u-Hms4O=ct(j|Y48V9j0> zmp7kT2UElDbZ?$bCeG_>ZW11KcCfrk<)xqfA zkb!u5i(n8nV4!w={>d>b>aY5mTRr6^>a5GYuv||Y1C^X_5V3ftp@O1DZ_nlCOj*9} zx#qT~7rjQnQ_Dh~?bKYsj+L#I4f>g19XKp)zf)z^JcU5hd22tya7m-)l|cUcx9CKX z?ZTarEu|KVNQ*Cp-%3}W@r*xFD&YLru6nHi5`oeTaW^JfY=fj6R<*9d|ObE3+z9CbNnfG1kFKQhk zBtH&LDe$&ttvflmOMw@B31P$4FVFIWrd9YVX%Q3f` ztg=0RL5<1_0dRAaitDvWh7N$=Q}nF4L`g3dU+@|TcF#;~n5{M^;f8N0iSgL+M4|8{Qbj7jL~q1TH%uuuzf}e3bg7;uE1f29x!+wrj7W zK@3{{;pI?l*UODXR}bnYuIco|!RU)%vW}q&^q_YkB9L%`)HV)!V80$eAHojt8^09sKK4q&n{>!@BuaNQ2tvG9KP-mPI-q+h!t)l~Hv0 z)2Vh7lN{(mYK%x@=Bv-4

      ?ba8OQnNG zlL#;Q^`QkeRzD90{RGnEI-iPZEEYeA8WB}|cvpyAWf7XY#_b*xT_?Ibt;paG6*P}Z z;4EGdY2rd*=FG1*=k8mb-p6&xB4sbM3>#4yq9e@B025J#4u`7vKA|P=2fU|rS2zGj zijHlh2(X@)y)-7dugZ;NzYiS~5s4&0`$@5PkELo0oH)Y-l|yeVT^#iFM5J9ScnF24 z15|VEc2XfJruyg|9E4?F92MR&(0 z7SMDT&u7&@>6L*QB`P6>INMA?HBWObxEO#qkdTb*0f<;B?^vGx+D~`i!3I$S0~c2m zu>K{`V~b^I67+5fa@i~rz}DscWCZ=^(+nBi(h<OghJbrKTg6aCnv7gN65iA8m2 z=0;GS9S?g!8~Je3>7BOU1f<1_ezeHE9Jpp&8Hxz;l5Z#HGTUAq=SX=YD{^&|`&#HP zR)T2hxm$&9L7pIQMa(G3d5wx3R+WXFHhzGmOM6?Jpv8&9>L9o6+=K5C)ScxPqh#EA zmv731=?r~-`QkSor9c=Flfv_JcTfnt_)N=hdi|Rdbc6eu#im&i^&(H1+j6Xe!YxJV z?6oEr-KG6E_djB1OE+f0?BAh8L@YCY=U-_1Q?ldv0C7W8jK4+CpAU8f(iuZVCt?Sr zD(td+Ms0aD57vlQr#k?3N(f8u(L17X_8r##90Tugg=W;a>+X_7_+D4HyZMq@-v$US}3@2EG&b~7ltyihcE zaS_reH`i^8qKg~-VZ;l4$>{j`_r836C@){|lSXH$_kGS6?P5K2DE$Bfj6i4!7QeQ( z#&QC0{v&P?3jBV9xj-q{*7Q$Usi~1Weyiz-be0LhVT4polF=D41?_$YqEet&21RRA z12P7myw%=-;5#!3y%k;O@f8Nq+ixU$9CDi0*j-lY(B!1=CQ8^HHPh5(@i$Qsc|R4p`m#t1QHSwA3l8OcCLfo zi}a$R)jK&hv)>m_o#z|l$hYp2m~;5uB@(@ct%A%=bfBBwO{sFbU|u<#DKC37!isEo zn(sgNEW?2-9alosd1|zT2hgvG>bQMa=QrDMNTic;ciFVS@P?`2)p@eQJ%?m!HWD!Hb+?p2=TXGlFA^sgN~Wra^W9BwK%<6obzD3p*hn{xT~4Yy8Ac`{fsBm= zXL)(~MLCE_5ZS@+(Ob7}r95-<1`#X~5mA%RB}|rs?K&b^Au4>(j&@h1dwZjp3uwgA z=86$xh$f+%J!-fjdKI+}2elM}tml4zr6q;5h_qy_v=l_!K$wbu=fd50KfHGu~LVWKCk&%2lZ%QOpWTG=$p^KFwm=k-8s^Jlq#@yl1xPbtRjqdbo1 z5Yu<_232r$YN|XK-mn}*$H%vVI)P;rhVKsOd7#Z8#~j^5JZrM8AU4&fXy^53(bn>R zn-dl$%wchO4N)7E9xRlag!$$N7k*^6Et>IR2T+12zUdttLh-eOq0JM;fT!qO-F5(J z1}f0z9U4|OEzl*f6V_TK^h&(V!ZH&fvVo!lk|?=kfr64VXm$yzIc(1AEwq#U_1Si& zbc5Z6F1Z9QRB!O=0)s-j!9wkx_xFQT%gxE_PR2J)MoJh!8ijrXTI<0Cv>AHoRBSUV zGx+&sCsL_-w2<6mYNVGdrf@0SxM_%C3R5n`fAzj(x-7jCk=}1vuG7@o!=OW52~DZv zaw=p~siQmaPVKSOY>y1}Y&78R)0M;FaH+)XTc?KpU|_Ua>v6(k zH6cplb!tQ7w#KbqX4>M5jspw!5(-IZfK}buTc=5n`08p=sK}^XE9rDTUe3YB!umMY z1FmCj@Z@Bo&Rj;NiHKv5kln(-hF`q)JkL}vm8udhiH_doF^FpE`Ps_v-)cJV3-Z0$ za#TOZ2d%(-mJR9v>aSG=?aeG-89;}H{sKGR-@+x&W z2`;G!y^W*Y4#7k7A9Vq}(ql;BL3)hRqGot2TWXec&S4VZQZwQf{Mw5HLVS16Fen7b zknABthRb+abLWk?N6RWSR!UyQFJhdU0Noa0t_Q$+OODg-2VSxd&iWPfeh2WbZF-c| zW(EflpFWps=%a5;4p53wlhKT4jtOMAMn$x={8K73(8N5znZLJWc5Ee8d!J#1d=BooN zGT$JJzA@=#W*JiFiUE-=}U6~f$3!UE}I517_d{t!FtyNp)CT4g<>@R@z z-GG~LT%4*7B|PG4?kc#@vyx*}ClPGIp6N6^)oopbc=(W-^s)waPAr8p)XV+;ZjStQ zw=MKR{{1B8+4p#-tdg^`&3f<5_aT493>*se20wj#A9#Shx7ISd$m#fh;U69x&~*Eu zT*!P$WlgbaSBh$Si^_p{z1jv6$~veY5B|kgW>rGq!f z(2=b84+lk*4t8B@MGyeQvCwNV7b~*e*HUaS=bvSBP^1N-^P7g}+NM>ejv--k#d z^e9w9gnI=q+$PSo`tzBzaL0%G+?A((g6zs{6Ws$i6{=M;JZ+FP3^!iV#S>k6@Y=l@ zKcI;pq&_n$eAn_T+(x;=#7V>MZ(+wR!tJXqm$oT(ai&_Jgvji^t`d?<9|l%*M>jjZ zzWfeo+40RY@4S1!19Lp@_7usZos^k~bi5LAU3dFV|LQb89P)c9t}xW6c_?X}4%)TC zml=cZ7a>=<3ard?4az*)(eFMz5jO4~B%roxUdxd%qFe{3J z!0XlINJ)tm&$!@RnN9@cU`Ho`0#!GOT3gCJYNSW*r(p%i17sI`Sd@LA!g@PY zj7v?9>RdQ{{@I;bTMC$v%}m4pQkY)0WOBWL_v3nIk#4`tK=ux2LYS2aoS`~00%Y}5 zH=OzI!AP$J8pSi%ZsUw|!=;W_E_c#Ci6TB?mni6(k{Bwu<)$bO5Tpmq=7UWM`&)vH zy@((x9@@`Esw(3~8vEgpkzMYmr@Lot5(8G`%u*2R}q`J3W9-Q*1SkiR7L(iEHC*|(NU1!m2AO1YL9xeRwXg-`PrO5QR zGJR4I1Sc{&2Hp_)Zc}vIk^%!CldmL~uykNxJmV&#Z+3kK7HxCrZQ%z6>KbSSutYr2 zrbC#62lJrLsfa{{pT6Ag*8Khz&;g*r_d-=L@6emSsj)1c%O1^cfpQB^zF9&Q6N7$d zl`lorwCn$j1_&|G?|BzI1hMKk=5nIQ?(m;R8r=JfZI8|j$S@{r&%{Elv}NH0-0zaO zd>3#O*mi_ij~~;O>Dk?uYxlQ(r-33$j=t@>2OT^0ij#`@aSTW1q%D1`@Asw3OI#qL-)2||iKF;hgUe`qFA+7hU;|~e zeiB%+-~n;7U|Lv2=!}OO+On!5`a!M+Srcu)V_UsGYcxa~zDhWgv!@w)E$Ov^c-Ae- zdFU!-IKFLY#%1Py=SQ6OI#33tyi#OYB^@@TaE{-oZVWQb@R4Wuv%K%xyys%YisWIQN}0Gl-;X)N$}ZzAj3P-c^tW z&Y{h2Unoa#n_d+m+}g>sr0<7IORn0KfGa9ltOemGxvr^z6Y-EQ9(M~-pHrp`D2FmQI2 zSM9u>aMQqlgp3cUGl_`ie5sx4$Cslv{H1V2$+2G|57n(^{|yVM zXq@_pJGD-j>V%w&%yuO^pjR-8*EOSPtT+DFx7|&G%ozOvB39B{sW; zbNCv?-xpjTprb=&>8ykE@!F!++*k1f^fe-JOET!C>WhJL7hKrwfDMGImhmkN49 zu)(OIr8bymH&flNH?rLyMFk-w*q}wLXQZhL8CNPm#T35KjTHm$8srSh{JmFEM;+Mt zZY$>+%tNS1+rs%N`_)-Sy4bIb*KrG^XDAPrh~)uk)DxC+F6Sc5b^7y=dGXdH_JLu& z&y`?7;B{XuxPz@hKh&mm;IJ|aYRXLz1o+<}Xpm49(^C4jqv_mdZi4g6GqilHh)Mb$g1h?aDd@hbKsZL z8RI(F+9CnGnM%xo2P!I|^0D|xB9QQi%UdKc`6+Qg3b%QS{SQ(&_yN>^9mkg5N&g~0 zl4;QaMY(+&g9~totoZz(77~1&+WdteXR&D=f`dJv%$0g>H+NV;ZV3W;HGI0intqrO z^ktvd+iuwsTrYB(kW_;DU^d3z;pRYwW#Y3w;(R}{B?Bj8jMYQ>TauV4^fNA3ig)s$ zcu_aBZIG()WhJbjBH5g;G-*d>TQ9{8Fd7v)~+oBupr-;8H?w;|HL z@+-elC^;O+@!J+#I7LuPPe=$J$ez-Ps00QL3;(jZm9RL1WfSEXkGq%rr+JXVNrd$N zK|*9<`2cp@nORK*zxBdRV^9+|co)eue4*&`U)rBe_%qE(uZ0K`Ud2&vJz>n}3_u|g zy^gIC2niub8~_=u%MtEBK4#RZKUVt&1Pjzt%``zScxbB0GOA^RIh-9Y@D5~gP=Ac{ zPtcMTE4FTBq`Tcu(3Z76KY9un+} zjQVc)h*I~d`fWJw6lT@?Kty#Iw8ZsPsyg;u_#rV6wVl3k3{wPh;r?d#5Z}n^Xg3oZ zV|b3+r@0AZn`{08R~Wev!n9fTbgPA1S*(OOzUfA$iqq^bN)3mPgQ4R%|>D=UTHDsj~x~X ze60QW{Sk3Etk~vNP@kYUd3*3s*0N#XaNS0;L>#!b$$g?xQ-%|y)wIxAX(xQ!al1IJ z=9WvEapLCVh_32F3nwgGvO{yHYpybcWQ0?2ic59BcGW}w%eHd99_I`O2d{tFR^V)E zd4*&7*a(}@S!sTEG%!d2$-T{kDK62`>K9*PJR#Y!%Zg&c!>k3X*8TN8b1`EwE)i0a z>ps{OoK%*;HW6+=Gztv~)n1bPX^6*_g3(Dk-1t7L6>wE&RA4&G6xVg;?`r_!WIdP6 z$L3=M>se=iX!>37A<5aVPp!C@&QowMSO7Hq)-)|Zd5E}lAF`FUG`Dc>1DAgp*q}QH zRtsB0Oc0_vKLKG4)Kmp}&{Ctl+uM^T+mchE*Z3`}kr3SGq7+<^gL_G0>LVtRP><&1mA}o{Euh;C6BZvsRx?x zfW#vdvPv4xrQyMK=BJ(Dw7&2R!rQ>bM7&=gr0VYT@;WOh3S1a+%40A@eXH~SIA`4@ zsu5|h@nb&k+t8(}eLRpweSv}kXF0|i45{X?x0?s=Ta8R_Iv&jT=~~C*q5W}Tq*q!@ zIQ#L(^`lq|dDeB~H!-DmXfL=V8j}NEtN3!!>F|63q@}65iz7y35>#LljDV)OBv*hgTDw4Q*l{uB%cedaKNpc@cz zMZ3~5GhRLE(}M`3w$|xVeD}J1Q*AM9W1m8RzdddxFn84@ut~l7(B;b|&|)M+5GMSf zuw!F3X4JQNkYHfIcG$tx|ddJ0nMO@;$vxG6;R%PJBz7rR0HW^4t$<$`LtM zc+dKGYl=hklWAI0x@;d`L+zwIw)(7Vb227Wdrd*gjy?S*y+b^-dHYhZ_Cu^l;;~cJXh`sb zvl&ty-6ai=;7yu<(t(!v*}>RyHOWCzkAuyd?wn33{g z*r1&e}4dq9r%0N+KV-^;`N(t6S0c+C)NdYD>tDyd|6y5 zF>GDPK6yCs-O^noC08=LuDAN`GwM}iAGyWlo>2bj+FG-_77!KDPc(!0Z!S58Sx{L{ zO-qPr5X=t`n6h8`=RkJ`!RockhWoZ3)B`SE9pMREh=-!%6^&Pfx!QaSnfN6MQ|})f z%wL>|pZ&uy5fKt%n_b5>QoXaQK{8(c_Q%Ugh%G%E=BVo(U;0K4nTgwHYE2@ncP#7q-tU)(DAE46XyeCzmNyx z&;#p{7_6d}%VKD{s=+7P@bH8}L}ni);_HSYA;)C7Ld`}~^LFj*D2*de>-W(K= z+n9VFbNPF)t=ptVX`0 ze&u02gC5UnvI!w!?^-jI+3raE0SB#{j$HB7$lg%Dt$u5znV3ALJ*TdZK#kl*yy;)HAem6Z-DepxC4+wFWZE( zbgJxw4CHIK_#V)Qs0y0m9R*zxd#RKf!vu-MIXVjv2M3H zw>x`eTUSbSby~4*IdysO0VYI(NG=^b1fnS@!kWB(owy$1Rt5zVex}%p*BRpNXGo`U zbTT2&UYl4F@|qs7yT-~nPB9ZVyK5wQ_?>Xn1)i&elU|z|_G|p9Pmvf`e={fiT;m~$ z&_q<3it+PydLpuVWk>xxPT^!brktP-`A66F0n84e2AUmM!n_5%8+_cs@Xp0)D_?`I z75;1wUK2#QYaU0SeaEO9i}h4=p!*_Ogq#-JLZIJ+@l}9?u5u>>6&OLnR4PfxUlrr$ z%5dWw%7+ei3#U7W_abSzs5av8DE~w>aQ4njuRv8-Yld!~<6f@5-ATH>hDn z!aRfdWlagnzi2jIdmu`KG^$=_3gK^c*`C0)G8;HG3gQIUMj&A>#iZ;XT+adM!cL7Bn28;5- z@(XZ2G#M>t_wn&TfO+skd7-5O_7G5meh>V>z+<0|n>!j97Q55KZI%;Yyc!L7UK}Ng zxjBZ5io=_(${uYt@YO?O7S&QJWO92nnRI{Uhn0;GE=6WDqVoF7gon2O-G9lU22A4o zP#=Mu!^nAus~lLNw9W|NS1{d4DL;c|17t$Bw*dY&gq{OoWZb?8QD8R2f$};ubOe4| zQFQw<6y45GUYy@KIoMoW$tx5$)JFVVpu{y!0(h+azE&_nQ&REgzq0V@2;m8Ht|9a1 zq4F6{3Ej32U)={fFlJediFaEP)rA~HhX=Q5%bu|AO-#(ao-{F+`8X96>q<>N%dvzI zBBmWMFHieu!uy=F~(Y^i!S+CqAvXTr8tJij(5n zo7>Nzc(%jkm&MmnYytu%2?^TdE=R2sm?zr~`!}T#@;Yn8(4QZB8kyqPsi&4pOa~x( zBOKy?9rL54!{VuhdBR!E=fb;E&1R{O({?`9eV(76Hy$rB3zwY7e_&vs ze}a*pzwD8lHvsQx#bS3oYu&=jVPdh2LIJS6y*(fJxI9ATw!L*Q zd!qz~Eo^mOM6e=IH`0cpFeJgu#}yLFXjkA;%;obwew_MFX$3)(me<)H%aDAkaM_M6 z6ucIx7mR_?!H*>VP;c*NL6TkYFF9$hpT3)cqv5tR!Xs_3J_fN}1Q^gv5THwa!P>P~ z`!zGXVy`S(5m0h^1$y=^0T^as`KXbz9s$#&R?rJ6RuP}37CkyKv6_y3XhL!A+BK*c z_4oHLHNCL&7IQ!30s`l(%VrSBO+hMrd}?9)->W(D$ugdvp7TAhh`eU|pl))2^KI;X zGgR2Y4f@v2Zg+AXm_H@0pXUQzEvI&bhN7A$I#h0u{n2##JwB+3EPWD}7r|xf1@@a0 zsfL|zUs&2zY66E82DPdw`vM-ve{z9!1jhEo?+YrOx{GtS+Vf+x4;dL=rEk|qzv>Gl zhlGZTtnd9-)hcXvpCGX__p~8^P-7dsnn1MgT$Q;C7A`xpjp_dlA%6%6`Hm2zv+b*a zM2bK!bL)Ta1-{jFZ>8liXN}a;r-V*pHkc?GvXR-q^T3efc(=zg@mf#a)pDLj|6DP1 z1u8dtfM|08{tDH}yXO3O61eL_#8CYRYmj z=_T=X!j&~TIy%jT9-OsSu)w~7fpc#vbaXK0!~<1(tUQoaVkwgU$7Fw2YHTA>i+!C$ z;;CPNJy}26#nnQQFo?QIt1UyQy@6#8fI{)KFJJh;C804z$PTLHQFWlp0ucGz-6EUM z|89iNK%ooSFI_EAFPo`cOq<>5v=>YCw7}vCm@!E{DUDXk@#{6YM1M+^N?dRI+pLI4|2b%Vf<*#y&lxLwc=-K+LAuG!BH3u3G8ViLwtM7 zRwKL9l1?6}H<$OUMXpt~o_;TY+m%CZ4DVC4(OiHC7#(jwpJqZehNhTpobzeS{E6jy z7rr9^J<{YcI9}=RS?L_sZa@!(@K78G%hP=p3chI1{`u?Y*5)_jYepy^zf1g6Amn~@@|?=Bo1#WBzNrPg;EJYx z#{u(%Q4hT0%qIi_rq@!S`}>Taflmvp9l?C;od|`WP~F>wJ_13-+p)xsuT~z4pv44F z8+v8|?*vD}1UdDK7gEimprC`1QTY!Q)ndwMp)a64UPEK-vWGDOmpNVhO$;bN08-O) z61(hd{1|AQPkWv)HVc0b`QV`k|5Z7QP*3NI_$r;AaKDcy`F9F5ukx+X%Ic-7+U_qri%|>A7_tGnXdF`w6 z7*GYw_*K|oLy!jXJy@}@CbBbrh-tEUBdF$iVN{z|L8ub2ns1d}%m1$(4T%>HlEZJr zjv@rzAy9zGL#i8vVuS3X+sQHF^8;f5`zomFXbh+s@Rh~N!@>D!Vf0SjrFzccd+tNb zKRkv1AcyDiV-8qaTI}2mZy#%|__X&lM_c_o1cN(Gg^ZnJi0AXIHBDdD!`Voc6;y*z-m;WAw(Hrt9I zqvs98Iladw_&9}(qyBP==!Xzfvy8?2>#qhlyJNFn2e%0c#*1bZG9trg%tt#BC2)rk zb&6S-T<1McebSF!TPb}=Y@&tb{!T%6Ak9UAJh1=1ibramQj-kziDk;Mu=F_o8A@`{ z@FLEB%eb;!jJ(bEVK=HgoYzSptt6kLamQscwBM1(<$V*MivqhQm6KH+>%LDGzIL6u7X;SS}_3D0PHh0 zPo6xv3sy$$Jw2^PrDvuZb?Tp%^WVhBml}4GWXmTjS9X~T@EWvT1p^&Lx8#9==ZH6k z;V67zwIUr<6ifn|TkP!NNH(EG3$?T$W6aIXMIH!@K>+o6O0I(nZ^U=R+z7Obns#0M zIb(=W4Z@wcy3ut<6c87>ZxCqy9UcIvRq&X)J31Pd?XS_&Y8$$_yNiOoM^24AWCoC7 z9!*Y~5|NUs%)9>I3eAjdB)O(1`Y>Ob#*>P$4{(A@b& zaCk^agI;k|TAG%jo2#oZB&cvBFqHXwBZ$c<_)MN;A%o8{db-*C6hFu>B_)M-;@`ez zIp&Iw9vydakNq>BcC;nZ(_93qO$Cep_sXmS^GR?Tftdf(m*UZN^WmcRCGy}I)7IIk z-}#n3&Z72cff8l~#Qwkb5C0jOxkl#~ifr{TTS1kH3tqDC!0)E|&(Fu#iHU7mshv=` zT>qF*2$;8lu@p*zs0+^}O#C@8Y?*q^`WbOJF`uYTyff)egaVN-c5dNOgI)MBVpS)ETdg7ktoo1b%GNn5(m4i6}KYI%Wz28-hq%S&Vt7CP!~j* zWOpp7TwGlKY)+hu{ISjpQg$Ubp(+6A>;nQZdQ{|xN z@vCRGIjyTo=07732WRz4%D>xrv^G>Z{_~UnukQOGKzpJ>7KrLSZh2tM@XvRtonNHd zv-^C^f2H_W=DT+&-rvJ1-6~*(A)m?Tu!^0X4-3n=$&HB|=I?+HQ3S1o0+@v{#zjNW9s9>Ks`UL(h}HJsMd9R%&sid) zBRtX(?QCo0fju_8*8NRPAxhWOLlW(ai=WmruK$JR)~a~U{`19b%Lj-w2rgf~%%%Sw z7Yz+f^d%DVBIp!S9{u-oh`aYU4u=2upO1H?rq7iN6!bT5Rzfl;27fBMTyw+taUt;$ z3>4ge-+X7Ty&8mwX&m>PXa8tLm1YgSKBYj;{%8sTlinMRjg6u&1A|-t+n?>F1e!wg zyCkqh5_8+X#l{v^Q6VT3M%DoCQh9sg$_45zFH~Mi>*>*h0uCLAB&B>judw!!lF~JR zzQA{?2sE#z1^4HMs^OXJR|c??y8^q6G8EIr*|e%F)Hm;M22>gEuZ;kLm@Sv6RB-ak zOxn~BNVS~z6!bHBh^qE*dseN^Qw%VGtPdZ2J2}3Efvgq|rEiYx#Kgoo=98ty1Rz6& z{R*;X0KOIgj}z0Uru91IMjD}h4Y(LgHn=(TGvRceW5noYphM zYc_)UoHN++_pFL{c6Nd&76&BKxwhKyPefRKN(1xCS~wN4xBBpb9-;=jjy+e-HW=^9 znb)kJPPJ1bv{+}luIqUWTj34$KEWf*<%FFW{OjIp*Li}Q*z^|*fNnr^YNc9gg!gsK z7AIcQ78@=<4edfCHcz_#FQ->r9RXl$l$I4f0EzZ}e0r1mv8bpJ3nFU;fMO{dp32zd<;Hw6it-r3Hha?3u=Kw|f$#*5u;uhvbD`0Bux)ZnR=H zLIeeg48VvU-Rt6H60znp%aenteaG|E8Nz`Un8coCF9A<<29qvwLF*e}>b1E3brK2N zojtU@&K$xgg9fZDet*%09UCO>yMW)JiBe5hJ3&e#@z?05i<9%mU6*IB#dcFZV-5MZyV~5&Le4Ffw9< zw%B%DW`b!8l4;G}TIp^8Yq9`@La-=sOYf_+GuHAvn&&Maf38`(x?Dy-@qn&8;wSQsR&kqh6?V5$4U z@Xd1?{4h(wI3DcUw2t}#s)7a70(fPyDqGH&4Dw*+%yOukn?{e6AW zU_G~j{{0YeCdF5I2lvj1Nk|+!Qc%GwQc6}f-H`*eM!7l9#nsgym*%wR`U1pXfh~GM zhU&Y3B~pU9ro%c36TQ+U@BZ^s2o0dnqpnk5OC1+eohSgz=FeBoBc!A>gR^}25a9LhVc27i zMhe-B^~qp!IpBdDdcer!ZIUieBC=PIbL&aXmxE^}0tjkf9IMoyg{#9261a4I{~jxF z(4}WiH;b=*4Ky=>K}S9V{Ky8us+>PH6Ur%Wcmmy?oZYtzgjixeP|3|*q`xj+{qvHS3bW({45L*Oggy|yo@=+Fa5$gNqWCix60Ir7S zbP6$jo%9re(wUFNXOw{rK%fM_e!Ww5aR(Ay4&>xgx`}xBf)uILxaV_;M}sdq92W#H z=GAzOe%!cq%m3`;pcKk56ys-KAoVKHI<*O`I1$rmxbc?#Lj;Zd`Iz&?syHS9jS%sD za!7~FI~>V>2NHm{K?*pan-4r(*=qz^Yh&&gT`qt zfdKNu@Fob^F+vC(MB^F^U_J%EX|u%ncI31DI;%GxBF_~BO!p&|1kp8 zvf@b`h8+a>oMr=_ZD6L-93?J}hw7Gwi*LfJgf)RAHL#dahT+r$Q^ecc+}!>_K?vGh zZaJ<#zYk|SG}Q8AEv$~2nnE@aD9M?x_ql{i!517Abrl}D6V4p#j*A9Lt7=Ku@UZdm z7l1>!B_VO~h5!82*|;l78p>d>u3Y&5iRCFcW`3#`zjG%ZO1EHHJbv;70f&XxF9<3w zyubvvE&8S`SE5|p#euQwhRSEnhlN@-SXfx^B>gauv`~;LqT>t??hRBDa6;E1rzO86yGbQ z`3u5&Xg4hLf0TA*QBB`jI2;CT4=7Y;rl1VyIK{FIP_TfkqZUiGO*(pzeGm~)7TIJ6 zvu$`TG6J^52`RG!#P|xx|Cy2>MMR)taO_2DL*LP$fa$iJ_3tH529K7;{ z#?(YkWaBIN&SLM%E7Z&v)FcWAZ;PH@D-0VI3$0n5u44)EY1KCxB%ViNTUPd>%3>~wod`mw(wBXVpis& z%BJ)RM5eO_>Y2ss4Bc0sWL%mzTulPRS97I zmwo%xP!lr%(VSv`ArFWydPSOrX3Jj&xu9p<9$33zxWk_!hQ9MTBe;ZomK@mI@}z~} z|M(e%O-6oJd%GfH&m$(rKiRqkl0-A&L;ilA@+zBn4o2BCL}4$_Ed&vK$}q zoKigN6F0Dreb{NxDUMjm@Clf5P} zR)t`nQom|ETg*&@BBp7REgetn*|wl8zvhVQmj|Px=T3*cfy?^>{+Ny(cGn1^n&<0U z645E%7e(|_QI0ef)C{}g-u#NVKFJz}_5`|TOb!c)j74?1zVGhbiKtK%(rw(Q`GB+` zsTrv8rlm#5*)sU4t|URYnirs(PIgU#z{eg)8_vqbqmnE`7Z@o^FneEV6?>)KpF={z zfCoI*rh*6}Tw>*;a)q-iD>{m(CDA z4Ssqvx;YIY&&Lc7*r#$#iJ!8|W9~9Dd%BDk+osiO&8XS@x0RI8&_Xp`?5ucc6_N*^ z;7}B=r2$IAQGSF}%wvKG)TvG%2)AM8+6Cwy>{W@nyN~R$vwPu*O61&Rq(p|HsA#vP zR#VM*VG##sQc`U2bwKVL_8Hv*_Ov0ggnq!Ir?*QB#d0{rZ2*AWvP`6mZG$y0tA8u& zr}aA~n8IRhI1T}YSAGvuw~gkInZ&`lEvkrE8t* zCJh4Ef`0T@FNkXnp6IwhV|2l>)wpjZuEMSrdgq`TEYAGmM1NVE{G9SlUQZwb*wz;| zYTrY+T^!Z4sUF?)+&gzOSu9y;-Siz~e!{XMck)9svr(8icX{ZrVgm`*mc6K35!p>J8`A2_yiXDtbylG$o3Cpx&n2mz*sw zK0XnEffxH!X8>efAt1H(N}GKgPfj5~fbZ*hc^&N*!q0JHkTUi?m}9}`iHq$rsqDvu z+6dXaukuJhz)l8Wzbkh{Q%6UK@iWN5UPO(F6ydvpxo!fHF2Gi<f6B3mAV4HG1j5SQk2-wN@PkFX z4g@}#p`oGNsq*r2s#N}NMX%uCFK?D6Of4MrH&eI3m>4U@%i6d=U~6E2F2HIN7ugnG zxXpGbOvQe6Rc&%ubmBU(h5fjpTjuY=OCC3d`AqK(mG-b)O2oq$9NE9q!;MaG>F!3i zYjr-&&?i5`6_)u64fq4dB#dC59xC;7fM8&Uivq@?Aq&wQ=i0R(G)GH?^(SSl9xUyB zUzupDyK;W1B7VvnT>sSb`&}9{s;uH;rpy9<8=k$k95)<}8YDn?EB7vejbtMk*HIyk zB^#-4fA(@D)Hu%SZ{NESi%aad`0zVus3%by8>pk8O%C^bBRjh_R^-$ILoI>|M&{in zr^I_&0aAV!n;%^g7P5qEm&9VibEct)(j;*dl0a4ee&xz*;0mIoLgiGXr`dP> z#&w4YZ~E+xt0sk+0hP4D3p$ZHnAo=pBd(6&N-EmTcbS`KK!d)Xo$aMp>w_Fb&@EP` zfzyveQ;v(z4*W(#BX4MH%mxS(#3Qg9L@%b|jlQ_`2u{`wTBmVD)5C}4E(s}s`w#$J zTT4Z9<<*YhKujhnd=LnF8q-qR+S=Chs3kQzFt3Id4U1cFO@`z;@){VeW!(64lctWM z1CT<1Dqe#m8|~O}9$B*nNu%#U$?ibf<1*@Vv)tU?Ns&*|DWKx=lpYT0;>K0;+RIO# zxS^2$McBwSs~xyuM3MYop6%R!-~i^SP+sebOCHKztcJHW*x=FhNMyq=42G4>Vf%K2 zLE4-VCk|$(i25f7__$hRL$`w9=2PVZAzc3GTXD+xS$j&yBp?V@zZ2U$_X0J^x`{g3 z+K#gfTHV%fKA;c$6xusptU#W%P-W`ngJB`zDtNMmM_XBzsGAN@sfXq=#NIJP zb+J55NAJjK!eGgzo3yAiq3>@fXqQMYJ=#&DIO3{?|4u}cEae3qder~Wb z?9=e@Nn@Ec!rhV9da9H^Qg^K9reqQz-rnyEAhG*nS276n`ftW`3UwXVU;jg_qtE<* cn(Q+BZgH4lkHc+a240`JGCwKZfBdU|1NvUS>i_@% literal 56432 zcmbTe1yogC6fVl4rI8d61O=3qZbU#px;qsR>F$zL6eN@m1p#TLI}QROp>%UVy1V19 z4fx-C-+1?qHy&d!et*tB`>Z|JH|PB3H|IL9l@+CNu_&;RkdSa?Wh7ORkWg}vkdX5* z(ZOF%Kc{no{|GosX*;XgnLE3gIGQ0Tm^j;8+c{fXn%;3Wb9Az_v*lvrXX9YG^TOHL z-bs+1-R8dw*z6oF*m=H{<$;^ru$R$sLPEkffqr2*V%e5RNMjSSlH%&_$*U7??&@Zf zty>!jvJ7$+;DCMBEqX5{1T69r0ahx zKO(vM7yBoFCc4WXLvfgf~ruCALQ@fJ3CWQB08k(HCX zd+#19oI}_k;_`BtJkvymA3uKFV_+~Xxm}f}4l9H8_VzCJe~rohMR0i|%Yps%3Awh2 z+mVNr$S+ZXf`X6+`M9{b`{4suA6d#KB_-v&-2atV@AhkOML*68E-tRd^?EHcpD85t z)5-o@3bC@(<&s;N@29`Hx`Ebjs;f2Q+t*C+rzk4L(e~c+_VM{Pw#Mj9bM-t?r1Q># zBUMg}wiRQ2U&6Q(HaG2O{{D@uBIx~deWTJlecZB2N^Q0keP7iWt$DkuV+Omp6*@XP z+B-Us@6ghI`g5RqwJJ;Tfq{Y84AZ(WUY$YsXX(45A)wf6{TNoR4-PQ zytW1`T&_UOz<|+U%ic`Ep@a2_U$GC=WaQ;rrtN=! zkt4HhICFJ$a#|@BTFEcrz(Ij?Z0_u2NQC0)JO7bl(JjrHv>GTq+52YPgpBl&&ESm* zIWaLY_iQ+9*8r;#lN-Ny+b}v%*^N6=-Cb zOEPiT62*t6^OGuQ`$#ozmsSaI2Ez5sZ zpR02xkIB~zB|G=ZT2IxdNQIL=G-*afB4yQ;T<<_|KXep~V0 zDklqcd}{d$+X?s0CJc|c4_YtBFwoI&($L^P0#Ls7&=j@KbI-IR_Q6|9z6h0!Cj;fU z`1nOOWBQ)^tFqSCEcl{_cQ)z{3`^=iQe{$K!;@3tz8l}_eTOEsqdoWo?IC%@l6Rhg z#JUBqsrDw=x_CZ2!?mOFDyIZt562W<4-XIT^P`2+X?(vN+-x2I*8~m|WNb3F7U3tb zAp^JDz`sIoFOO;SNcdZYEKzr@j+8(a(ZE z-3+|E`(Z_9B_oS}GNkJ`JoW~(o>h#k=#N!8JgYNl4J9Hcm+46r+1lF^F&~Rj6nyRQ zx7A_F=iuA(pV80Ciyk`8%2=0I`vlC*&EZgR=QJI>D7yCL%qCM))5^_eY>%BTzK04i z*zC3M7Z(@dwl3>-ZEH>mXx^P#BIAsFtGeGbAl@AI0 zyYlcJEsJK*cX&t88>cUL;%`R?K$;r-!f_vq=jez7;$_lO+){v?56-j%44 z?W3auKKGWomR5<~l&I+O;@woQbphM@BlB+2lT|?*Y%Hwy_Vyen)_eDY($mvNclK6> zh;H6g^|B>LN5Q~*KG*RxRAnXqdhL#4s_*d!QLdU zaL7#;QYc^8&=c+C>62U8O|qK%vT}3B{{H>@uIOZ)mz!pRu9TxA=ikW*zoSU2b*R#QG%7?G1si|#`O29W{gqSNXX&CH&OP`XM z!jmV^^UQ)97z40{+6Y;6Q%!oVu<}|DBQ=8ixSwvdt(2y5Ti)DR=qcK%1zT9+zBPkB zpr)=asjW>O92_itCN~`YF;+(|%%TdcvhAiqX;0n+JA{ zl7H^nClqJhbkrxX32pN2nsQ=t_&>&iYfdTr#mAJ4eO($&syKoiip(hyMsupH?zha zp4gRukDG08?=(+umiko=T8eJOg#V{=4u*4G&D5o z9>oL2_leUXcET(4Rftm!GW?5hO+Yt<9}=1na_<`WuUl8q-7S5$0^ z)Nmk>;`Z%#6Sj<8TqWImot^R!`#2uANc9LADY4iAd56Qe(LbYHK~a%GP%zPEto-)A zgP2&us98y5nYXJP<*M6mR|0I+-$;(+-laKvC2N_|1*z~taBitu1Y{(lMJfu+#oiU& z_?n$M^GBM-Y-{ER&TYZn_#()c0TGauk$Dkat*6>G-)TSlei@m;qKO$z`OA;!%g4?9 zu$k+RWe?#DV12$PttU$%sq$z(=>aRN+4k&DB*?Krx)><;+y2SuvG^%8UdWBjpvIN{ z?%lw*Z*iVJeTsDd!GmcKFid{DAz2+Q3kPAqe(MKWOmuWJNE#yB)JpwPycQ89@J<=> zC45_BMMC*be}lFPjBl4&J51Vrf~tS(Z(B@CO4sgE-_Q1Tt-lYPYczvtyVGD?fMpn0LlEbtZ5DrgwU})6)rJA?*uLB?wk*pU+7EK+snr72f$(pa+h;@2lZ4%u(Jd5I);v-qs9;^}S5|2eQB56zx7 zXD*^%UwfmpJM_5enF_&*3ymDK*ist6YF5XqVlp!`1+l%}l)Cxs;W(EaLi$wZfPjJ%&Lc*U4vN zvQ9pMGq|Nik_r#QpxSwQf6R`NkFP?prleaC8_ofEoS2xHpz~s*6q!NGXQ}YzI!%Qd zBN}W{79``P-Y?`K;^N{>H|nN7f2O1M-W2!TTMlk$5Zl_?dP~9c22dZBzBac(9gD4O zv9qs}PE+1H3e9l%N-|C1d?LYuV->l8`o>dTHVf_Jvzy14iIx3Z$>(R0!B!@n7#4fFhfZYnOGc(P#S*d%xPKQP%; z6ux)#=<5yq*=CUu<(xWIh{EeK_65<@2aXj6TF?ZDDSq!x^00pn!k2cjF${2ovLPlW zCU=0wMZkwr%7t84jTe7^%FN2zUa#5sZZpPf=(9I4il)4?y}ewT2Ex_S(h@}O@WoEw zi~1bf4`^sPz;XHd^PWxCdSqs24+*eU%|U}u9)-;hsclT-pl%ci%Fd^gUS{T^M&AvypuA1cc(Zf(OS_ z7w3SD3a0s;3((Wkzr8I~u6U>D$dKAoc&}g0WnE=QM8E7MNp`9yla{^%+R9Lo#h=eo zWj#7oj%F!Ca!N{KtD)!$vVkIFuWj+P-y``k`@4mk$O`1khDv83Vv&@z7$Hx`Ew{qx z^daOu_qGp+8n<@$WZ1opq-Gn;_Ooldmodfp=2(RtbYuB=4wygK;Xi=Ag2b|1S~vGm z&z_&k8~7k9s&<3D>-u;?Qy@lPfgT^UtA>Erj_wBp1eEE?xvmaJ5#D|BJ5P%}OFp5w z(%~;T&r5ZivCYlRXSNa^bkyz$7y!W!z&T{)<@4(%Go6%O433&oCePf1y{8zaTe!{F07eY}9&0OkZ@p2vKG1wXLP(R3)yOR@lwT`!M& zJX3J+BDK%1%K7n7!}frd(N>$-`L}WfP#C5RS>0F`w~_Y7tzEbO^uN2;;qx&rDwe~UuX=Ai(r8u%?!WMcE zaM5y59|d3whlkusVpBF16RjW*SM85lRZWLb#*6w00=^);?DVp}q5BEmPGMo;JRpTg zIb=a1;vzX~zwh`Ra=@s20+oIt;Hugxu#${Vb}I(M+Q1VsU25h(6E%d6;p!~86rD{| z+!yS8-;aMjloMAupJ)}&Yooii*>Cp$kD(7uH~}L5ZZG5(jiRyf9S}uZhK3G`BNt|8 z->0Q16&cn=c(D5e-jpz8A^<;O?kZ(ZIeZylKP4!$ZKfA_-KFoVMeY=yeP8 znf{}SXv2sA~#_M`FQ1;FqL-z{9A{AUA(>nYN%c3>5^jAux@~!CoRaq@jgY! z?K{YW)vjy0MP2PtcfXBT$A0`6ot)g+9E@#MF(<655Gsm?(GUtk4I)Bl9bxBpLKzhm zh3nbVB?~J{5n}#5Dz?{CRh*A($o|T%WBTkPcTYv`4m` zzAQxiy0G?EkmfM!AhxaB(?l}#T>9b}nVp#lB0VTBW_sn=3l0uJiUrB!4g=Uxyy z2el72wb$yy!iICt^Mi(q0qjLkBW42XCMhK~pu>9jg6B-P>wtrvKG!CM=0f*ASrGt5>}SU6@o>{{My8SF>G=G8zc06S22Rnk}!&N zPb1%xYj)G$Y5m2(q*ziK|XFfHc$C4mLtOr$T`{qXoSvh;wDT6LqB__94LP~r1V&%)PLj?4 zXgZ~HFC*~H4Px${4!|U*^j=+niYytfm1rD%F>Enkd?%w<$t+=S0v=Q}{=ADHGGI_i^ciGt^K`aKj@+RO`Dt7gMlLegOxh(MTLIZPh?gOsb4BQ1@ zNb+zf4;@8#tA)sgltl3FTdrkcpsal@EX)E{W7R8H*3fWi8NGY=uFf}8v=WP+`EPC1 z&wxS&!rku%KR-|pS^_jj98cnB=j4O|QP6X!udi?9yBRin-R@1O2;kr--v0))ohabc z19*EjIf)x{pPocgcg_3=k339%_^kDPY-|hQBJM|Xag?XJ3SAsYrt^-JTL1C4w$t$8 zkJfI@bppjZkMNfTV4KRBJoli8D@l?4`SU9f5u#&b`*Y5?SL_8%_OQq~k-bG4q{2$= zuDDz;fsw%H%fvhsq%C&e=p%e?Y18L#MHfUEqq1i08^gGW6~A;TKl+fd&4cL1bQd9= zS$n?_qE}*~$rf89VvquM0B}WmteoCEfv3}O)I){$F6Sl>-pYmIen>62EWjj3@zB&Q zi;*aWZ=&@`Nd)2U*BGlZ)T$$CB>rT9kW9xY1Jj5YO9&{w4^!O1;M;scsGkHAimW9_ zyu5w;!w2b4GlE8@?Y?o`y@`xFtc#}g1wJN)(6qY}b-97MoBTdJa2oDTj__wfj38G& z#OBNsF-W*t9xqmoWAltRpsc44ai|)VKG;hMdTSz&nrT6%lB9SF(?|?5Y0Tts7ov{# z`P3gIw$LOZpuD*4>~gujUW)taPh*zn{oVdfj}okeuKaSWWV!wEgVz=5CERia&p!(i z_+8}5uwYc7*_!EcYjt-~%{>@qtr!P_jC>;Z z*Y3SKuLDjHM***Q;HPq4>J0`FBxQVjTyU*haD@d2-pGM-dU^`zAqts+GhsL>Ywm$A z&zi3fP#}@~L4{^Yjt(-_JKrKMi|+ioqR2>mP`1p07@rQMvnVI*XavO*f8Vhw7D@GT&2jj9a3=Ti( z2x0W7Hvqz^sQXV10{4zjI=3W1E1nxCI9SVpt-f(@9%8vPiKabq*- z&dO~jTbBq;J?`}@@=eGUx3Vq5cy>N}$8<@o1f)d1Vc>+=QDIv~I$J}0iC zr<)STyGw8=3ghyPD;Gt8j1ZNYYPi79oz4?n?{fkPuOMl=gA(uPWa^^Zz->a~#2u(Y zpuRv%dTp2i9wlAZ2Fmlp<-DTG?G9!SP(wpS1Ly*jtpU6I0P4tawF`4m-97~+pY3c$ zr08d@B10F$9rw4lxUwb>7AM@M(C!EcB{}to#I?7}h+dpJ@!E{G)Ozdy?K-oxG`41= zzNULe&~>%_Zltj4g09n+Ww}r|5{%dV9@Z1IM!3iO`By&^I35t&;*@ymLB+)E;jA6= zj9*1zrn}Muq%qM+xxrEIZlCGrbgGY&)?AbXm+qC@O?88EDIQ3uNB|H<b)%sWpNPyK_+zGm`t&2I3rD3Gp3mVT1zER0x2~b z($b~~8>D}IWX&ipeh>KCZ5kTpn+){y4*Me(L*+N{@CwgHZ7YBv*Sk99q>P_i`ko7U zIzy6wf@ZvNoUW1q#Z}$o$|*OLH8g!%GOD)`xiMd9)~1c(d=$1OIXhAMvgP@R*B;D) zKXiROaN}F7f5!uS59sb%UZQU6`V2~``q>JGhSX5e<97(Bc?q|C2QmhrV2vO%JdFG{ z2X`4VkOumRN$4@JW)}ehINR-^9b{x=d%={l1-sfU^dWsGToV%$P%wSuoANFZKUe}< z5)fqye3XE%Ky+ccux34%NYN@NG?Ydw1sCviB^MVS8lT-i4=*T7x%bkahTkY_GI};0 zbJJarMl}zy?0oo)U;j2T?_L&Y3&{xW56Y%dZ+(lfXnlBGMmTGIACY8fg*VpfoDk0z zvq7yZr@q1Q`6L)+bF%6}TB^Rp@MMM0Xgo)-sA`@9u(H;Ng*ny1Ys6s6{;cv10&Z;c=}2H2NJS-yo&AH$SMZc2`G; zjEtt9l^1LQWpS%pXu}>_>M9H2 zANMNC&!26^X3uw86T3K4N-J4LRsMBEgsAmc)?x~mLW$v`7f`#FagNZeFl{7oD0$y@CGpXe zOdRj60Q9xaIZitZLhtba+zOUAkdxV zYw+Xp)+Zw@(tKP~X#0@>-!3!iN#qF^+Nh0TZ#a#n@jVOxM*Yx6pVHgoXd@T>^ZuX|i>-$U-(r~Q~vP**o+3fzLx2Vez z;aKY4?r*^W+wtg~#KLwIsMIZ}n8a!XvakBaR%|RW4&1meOF^&F+C4uR)4X3rMk=i_weavjGCg38qen?RL!h@b zmhN8-REAN38WGQ3B;%d=E)ZJ|<9kHLz3^|`_*(JOL0S3t!v<-ftmuPk9QqXoDhd>U zAod6NGfhdv{AYojnTH{;q2Q*mt>0Z_9rEt?@z=WpkcYmdu|p60@euu(YHM>#h(EIg zZuwC10K4sQz-~JP_wz|;-_dF%`ow`Gh`s39eX<%FBpK3?g$M5H>cl`?p$0Z~Od;`u zadL9H18w(~nD6PsPdS(P zco;C$jL8$g3z|R!pdHltOG8CQYY%P5`GHpE0qkTorm3YB6BQ+{t4jf7ods|iqLZuV zIgl$Mfcx)FIRV+pdZPLRaQT!T(Gw8rTsML6zy(SIw)#p3r(kAg<`thvM@L5_E8k_F zA$_>t`3_CF?L@~%Ry}thk{qs<^iZ66Do9Cq|6o2O-^|A3XC$C*|5lz+#Y)MB`>N({ z{@P1mD#@1K=~8kwLuUpmL7zYVIg?#{2fIU$B_iun6ae7{%|H?^^G@UON{89GIY{rI zkJE1kXjtwHMTLmH(|jjrd=ik5K#3a&A=4(Im=~S{#{P_{?ymqRYS=#o4V0Xn$_d-- z>gvSr-#N>zM;>boY}qkJB_#aJPV?;m&Z@TY5L9JF~DL4Ia+pY;OpXU?}%I6@GBk*%+9xgFeA^{{_(h`;3Ln zxJt9|27GVKk1s;oGEDrZ{-i;oS}z5-@V^es!GW^?ox=PJu`%2(_2symMStxALo*OX z4+%_4Jk=O2nz4aS9;pUdTXK{IO?^u@8>3PBwS7nfkEfX-p?tgl?KUwAiObh@Vc_+b zpLpFxNzI=;eh(YVg>sWLVdX&5<=jPY7GTSHn`6d@cc{??)3MwOk+RIipOj@YU-k;3 zvOfDW6+B61?|c_H25*Gre}yW#zMH>Qji6+&v`U<@(1mH}lED2}nh`1Pi}ToK z48pM(ZVQhBe)SE!2DF|^udDu(Vs;<=Ll}1f*fS(B4?*dJzZS?;p!ywhIx=j;n(1LK z)nFFI;{`ZrXlRg8P(Z)8b!dnzNx|nyZ*@YJEFge@41;7mdNl;Y@mp97b99U0li@zyhvhgG zaWW+){=(yGYzB+wOy$Z4INmFMVL+{;n^ECS!u9j>17jaE8r+zwqp^J`2taz^H1ft* zd!vzBD1W&(5mGRX(PRQjVH)g6$;ZY2b8mRk4WJ8JtUxK1w3h_-2KGPq#`C|ufrEs~ z%Q}cL-`aG08e!3x__UJl_PH9eF7@U8TWY}8CRvc%+uX0E#F+5@G#<3%VQ+yqTO)j3 z3ig9q(KRCv+5lNvV~l#X&|iJiHI7PJ4B$cN=)lCs+S^E&-&=panLB^*&}-bstoUap;FS*!K;no~QWfV`*i~?_ol@!dG>m%n1MXAj2NqO)4Wv>=6V^g%=n2|=dA;`D{Rio9PM_vSmUV1g z+D4aAKML=H4W?H26tLm@s2!)^9a{WW64N)^CZjP#!Y z*hULHQ@I#rDi*4@ZK|#v!_o_k3q&-v`HO|X$N6PSB?2gIdqP5;K6S1wEnn^~R7gjm zFK<||raL=;I@{raegfVKlZaj%ROia*LF=bFwc)snWf&H4pE9$?_$k9F4^3{Ve>8MK z`wf*xB$h#HD8?#u$+wUgI2y=(%TlznsxcLp&g!vcliO+EfDidL{MesTU^ zukDKteLNjV^Fht8_!rl)=NLNM1BD##OwC1lI2lmov=hIW{`4n^cHeFNCu3AtNc`tt+^GOQ%mX82ldnTpB%1KNwP0~y;6rBr@a+KI z;9(7{A_#uUzqp7JY+HF3BWvN&e+Hrgvvg6s>5(+GX-IKs0kG5T&cvkZtmc0P0^vo5 za@wLXEd%j`JnXx87PfC1TF+dd+7*6em_c~!ZB4$36n=Ah6^SFjj~G6%^nQ8w`U#T2mY;J z6j~iyE5>|FGnj%A9!N_WM1Fd~gnk`>W~9LLjl$smc@oAZ!n>QnSVYu6L&r*Jd;a+s z=vUIM$ygWxnX3>V0LTCWkWt)q#Y_lp@7iYD$U4m-h9`LZ=o967d%%)_^76HJLE-mJ zshZCz;taJ?7!wB}W(ESm0Lk_8Mwy}aclP*WWFWqfhm`~CWSKV^Z8v?riq4tA;O&@q zk)hy2gv7AfV_GSAyIk;Eq$_0vYeRlijGOv8pe^H0i+{?1y#jhCD{7qQC11`&1I{ON z``If59F=?qW1ulSn1h~ZU+WtDmMh@dGgDvC9D1>g6T!~W^W6ZpH&q_SU;Cyx03Thb z8M(a+CQDc-b-l7lbHG=FSGQ6d1Ik) zC!lLF3##Mit#5DT8`dQTpkQ!%?!Nf`{X5>6FDSwFLBrP@Or1d^K%gh!0El9V-^KYT zuad|fvERwqlskA4YAa%5VVQ!$Q(gT9TskVGm~u1JKAr|6#XG$n*KMwGm+HQQSGC}! z%QEBi?H1lL0}rzR+Ai~82m`fo%@rE|w5?g=T?ZYOXQEScj^NrRP?EQ|ye0w?0BFsx zSFf&?mF-1a>1rLQf>{Z;eJEQ12Z1IU`J@b0gmkyKp z4Gf6P&(0zotHQ#=^PEK3*djn}iaznT{$w4rRA|7_8NlLF8>A?3cxK>b3muJ1WXG;^I@lFlwytNlcnMrCi!kAL{HcCmxoqqJ1T$9J>wJQJOT)V?|uK)j+QJB#co*to8uj8X5LJA7q z1%jx%LSmSrZ$m%%B9IN4f_^3xH(aMy8LJr$*ubUR`UhCC`7}{C^#X zDeZnHD=Q0)Dpgsis1S;sZo*YI9?-Qhc3>EW2YcOZobtz21cEFnNuV3+k4suM*^!6L z)R^Kn`4j4ei1~>^{W~xfkOid5pD~Omkl+F&Bh9gMAO*~R3Z*s$A}Q3s0o@}|SA(G# z7*MFsceBN|z_{WTxTqNPj2IM?WlT-!;`AL~GfsY%NdnHNfywgr%K4rh+3WGnR$n`x zyAX{M*{0Rswn#=Gn}UH@PPR+G~Hc$y_Kt&j|EqL2C|-8c3y_03A9o zfy)Bf9yE|tb#*&{-1|se9G0EpN)b-RF8awMm(KBdiud%I`=J+YC+n*XX2iC0JT+_q z)#J)JwlobZ@N@ZkMRVxhReZadHP<|evZKO|8FX^D0PQ10xH5fSd^iDNXRNOce^SYx z`Bfv5C^M*+{Bk$1Li&si6m~`gaNO@;8Ab$<3q7wvgs_15n`8<&EtJ(Tpr{poiyDcB zp)m(!go^O#T<76`8DRz&db*zOT{_lrS+8{RLPtGLO@4tM$RFMO4=%+1Tl(l z-j%GBjs{n42}#{(FyQPStXRL<<6cQi?ClS1^qpHzv{&Qrj124+ zRkm&xsoGrlU*d}`h}ttQo+nLSH#peHaS$b(U>eBxpLu$d!Sl5+3*c0W-86h1{LefL zG)!fej8rBm6RgnCCcdHUb{AwGw>OY^X08)vZ$I?*6||B6%wvE%^t^E;7@>MenPifn zN&kY@BXLc;7Yf^y99I#i&-mxS}-kGT2Y=QrqI7(HMK6>3>9*dwQL;xI>^D zymUpe#R;vLNiV@CPO?{G6OKpuaXq;~*9J(9j8wF?2aq0S84+mPZvsP5~^hiWYA2?7a5WVI^FWaSdmHrAI)dD?+wVZ=Xm_|=A9BX4{K@|5b6_3T|IIp==Q|YcHRG|j zHI`yxau{b2wOTZu{6o%cJaqrW_a==WXg7U@cO4#mxdB8f){*yX*Dcja2zr^f?j7rT zWld6nF~T=km2|l0Mg3RicZW)mD05RTt z5+4Q(9yQ;z`ZA@Uc%?I3MrBD|?Q~q~$dK%eJDuoWc_yalwVFr+qY==dm(hn{b%gi= zeC^8$x2N&h5M^|gY$*HxI!`^&0hg_GOrct06#OTT{9#GC`LqoiB!O3Tu%!j`;liC9 zh;0IQF#w(P-k_1A%~0!h*Q>;IS;*1N(BJf#F5s^e!0`^CVai{7QGb8$D(SF7F{LGZ z7$=?r{UR)sO;p*m`K-#`50BVNhyvQ(zt9KND&u3+#vy4z*ik```=V2q3mMMl0{})? z9O&k!%ES|4JGi#Hz`Jxfgz%aAFV#Dn_m{5={e;}=8!(L*{ovCE%9N{Ke&$yQccsVy zyzwNsO47is_BHjqvg&pJGYuxRahkK^ceG=X?w&TGoz`J8m^ZF7UE$Vo=F;#9m$vbX z@PCBDtJS1&Yt!(Wr$=eZL%1N}#HnOKos0~v$IIb1ajh>4Q*|x7b_}Y^4`68`n{R7k zH35#59|RPp9Vq7Xay#;oc~+wW6Np3ZTL5M=SKx@Wt=|I}Pvzr3Vjq}EM3rYmY3BYv zJJ5xnU?5}!Kt4nHX99*zgm7yzM!L|#13rfjf$FOLY81z6Hpb`$8{XeCJa-ux0xj8X zdr-ahLc)mTC;`A*M3BHY0*g@n3J_CWsnv7%G;{;{BlkDA%#74(D{yuid-9h;K8t+u z_8u9^JhzIpz$OMjhXP?QddjSwjWieUZ$ZBzR1k<;A>GT78+5M@%||Kp75TFA)}#Bg zeznXw?{uA6wT~zx5|E`NGe<7>LHrU0kEbUBZz$bp;%~NN zyzG|{4e;fgVG|KXkwWyKw>9N9Dh++(1K{N6hNwhb#%>=#{1v!wBgK1B?f!t?5+ii~ zJaH+csbaT<^G2<;jZjqOE0%^_WDBc zIJMc}%doc%sv9Q1Df@CyQMRf^E{PAY6ceXzl$ahB}cd*)d!-;idZ8s_1?Zuaw^v zMVUV*Cm>h~otS#Eu_e2klq|38ji8OBlsvd0w(7)ww8+Bbm{Q5C;K)l%FtM?@28}^- z%Bz(`MtsT12?HGiP+Hx<#oYtKJe@*rM^FQ4<115plqd|%i`(lPOC6c4BPHB{o0-Nq zHSao*88yBPs0$f53-ge|T~EWQ=d4*84a~mp&#~gveiL$Fl;V*X06q-LAqV5tyiQUHVoUhGSo6zVI$VuJo$hF{!r2Sk28MhpHydSs;XgI@Mn6?u8mZ27 zajcQ&tu0HzZ)GzXB3mNo#ay`=bhjmR(RZ5vm5`~|Djlbp%O=InmodZQ zQK+p)MC2KBIUvdhgdFnHLg~mpY15prRufa>(R-7vZVP*0*qM+}2@HgR;Hk=sk`)9xvF~S5 zzA(uD3ic}bBs2D>l=+s}+;-8gxbMqV3gC923Cn2vf;g(~u?V#yY!#0(st$f%micd< zkl)PI-}+D7CF6Z&uft?eAmFq+$T~E>LX9UdJ-fTz0H&vKH5U&qc#G(!epdJy!n29$ zGwzg;OXsjNP7H?sDT*xCT-@7AHDb1Q4SdfgPR<+HY(VerILAl4&a~yMLr3R`LoqXk zL@~om=jd+5l>fn(OMmc)MBH8)71doyF^XZgLC??l;DQrr(a}~I#dcA#(;u_QkhQ|y z=s}uc$=lwyj#QuO-=+vf1Bj-w$w_8T{JDH|*DHK;{1&`OCkB*;9ny{y4b1{#X0e5C zex&NOjKrPEZ@{5TnUSKqB1yJYbJ0#OGdA;)N3KofyYd#6cS7jvcH}q(7~YY>s!TnfVKYI8f{<+mufhB zQ^sy*20vYk&HNAm1AC%t#*b!?dg9omm)*P6$=@6;Q7o`pnarjX2bwAkpQ-!N!5mFk z`_@qvu`o%1?<5P#f(xw3kZ7;z# z2Kd9bWp+vjQmsJT=r(8L#{PB5J-i)fkFL+(bKcB|e6cpH#O~u3*qas~Ud004m98(J z5}r0NfSR@>>>${~;R@<`OrSmBeh0Y~9mrh*>QePFG-(qu8nQelKbvr>zhTHe6Eb!y zok)1(`>CF|TA|##m{NYl%f8!5;+xQFDw~2NsIT!~qU2y`NY1ugjZv123X1U|om1T~ z=|HAdGgxYF>xuZa#NcN|Skus%UR|5$8>5E#X79k+gVlVj;b6O~lqY_G!9jvf;G&EW z#5xhM^)g8rQsBf9jx!>E1g<<6#k> zF%5n+nW`M3g$7Qlnud2ETOIZcOsS@3`+!>sgRUOPaY02eH>t*zZv=Ls!hGY=xFwFC z#zAXnG&FkG@qFVW&EXU)^8*ETi=9^nNI~>yL?c`{87YOP16#ZNY~Cx}0P(Zgq&q)J z023+dgnYA94oY#opV5!tp*QTO116q|vIILUZH5aLB)+Q|?K<`tJKTIlzp4`*V8XZP zYsuIh?{o9dS@RZdZ!|Fo8 z%sV2qgV-fZe3=cRPl+yJag5=riKGZhU}pPi7?Z)7(lGI-SY_=DYW8NN&3&!VjNdckUCG_ibnLt(W3!S1D? zxhZWwKtvq3>N(i)&dJg75ZRagSiPC0j@qPOOQv1SdfLu^v{sEiD!2rP12~~do)Av3 zQ>7uXzUn9EHKMc-ZgX&|KzVtL6^N%(hObg($&Z3O4 zB!dfT?hicdb|!mMyeRLz#WA|Qx9@fRB_R~RyGq0e7nsWsUi=B2_2~#!MwZ8BPd$op zN5OCUkv@$#VadfzM20N>72yR^v2-?@GQ@9jfV7rsk;pJ5Qu?ugW);@RJ|5>Aqq^wg zqIC+VqAo178LhP^n-Z(V>%*O3U+KIRiN6m4uOLKo%jTD1JZ=)7w$YGxz4FdN7Vc)n z2y_ZG^Ysx0NDZ}w*f(6;o!|u{o7z{?%L`RZ6UL8*c8JJD7Kj0aB&JJm?NLm9a60$o z6yG{`zWw3R);XtA+&#M9d3S?HKHwzv;%FK3`T02xjc76$g{S_u2Btuo!9btlP@%y? zoWO-Nzk0(Ypi7#PKS{{|W1(G#c)I>$Hn*j{I|sh+0YH}ooNtOFpE9%y8mU9=?PEam z2YR0nD1wc@Z46$y$zCro84GFbF9q|;)dmNL#4`*5U)#N!I_p!)i`dF@KkMGhI^xO(4ZpWwY2;N{qyrVlTr%DYAxo4!L zHMG0$ll1cd|3ZFC)QbPBT{?at6Q4sM-9u|#)SqfN@H^k#$c-lI-hA)GI`$UyFJNtQ$-*sfDXnGQU2WugA=NL5gxIz`;t_{N6Hh$Vetl;;+>W3*@?OSzbMOHW zwYFlf6UWIs_-nBTPpA8_hgZ=XJQkdr)gIfEYHW?Pn5~|$^<4(?mxg_Ti7_#O;2=L6 zTVeMeIF-(8H|ZT@aeE9pn*m0`mPSe#!3jcP&<;oj-57A1DF6&4!9^EdGo~UyPsw)I zinm5=65o!>gk);+Y`JJ=#T9;DH`x4CNVUK!1SS5LD7qHmzYStk4){x7B&Dkgq@k@#cujuNeHlX}JE%#xQpx2zq*8=0_oe^M#gT3Nw`XmGz9Pnr zNFn$%ig9cP?m+UdJU?E+KS>6&hYn!OZ!ndNgyhfH7_u{oKKfhKzNEgVlcN|sjM$$| zjXPNFx7&|T(nqa-e+_q`%Kc1*g^k#CqP1ba=Ni;|bLH^mLl!;H;)1k>y=oqbpcvKs zlcSeqGK5?C{6_I)7(3yJfyakmZ-PkzOF|Cb92Z;M+XQQ&ewj4lTQG=bfcn(bZBgQ} z-5lor+^eIzN89@vt4BbRQik+rg>qZYmLNby459WfF1`R`ehCRKp{>u&&3Ttj z|A4P)@!VZ(0(0$PMzyC0ADoD009`T@a*kDXa%awbLzu)9DnIRA{Njk8d^EM1b3rq7 zizE2@Yh`y{z?|SKvHD zv|~KACGL%V^X_OS-g74mpTe~#f4XlXDIPib(Rqau693(pUe2Tib@4(y|J#kMBKkeJ z$n%1q*~=X-y;17swOE0!(`0pCv}Dgu&iNb@`a%=%6(umxPJ~)f;0V|tgI7v)^i60C zy==&E?D@g&{ZN!A$$y*=c3d7k=hnA>?cz_OTVWGYkYs$Im{-ALLlgU)}>#y)Y8| zWl@mLQt}G8w5R?gS`z#TD8e40_(4$fZTcW*yk_=N+`>tE zx?cHOhIC{oWa_(3xIm{1z+~|jbRYtp+N#Oj0Bz7EaMnUecnj5-HNO-bCL1j}*qG`W zEwchczzp<1C^VhG@q4E~Qe=O?*U*6P1A-10fjK~MGGUa0G_J0CXa$!mYd!BRxdWWiXOk~4)X4AGToX+2kt*M?LbHYYiVIi=3~h9hDU5<*haCnhGepFVv`Wy{`kppGBXRY#&ZCEDNk=Bb^Rw^FgU z_3bgVVwW}ZU>y*JkISjd=O5RPjT+gg-XAA7-zzUKHRBrk=F!B4^!YgG;bzFX^Q{m5 zU2SsJu3u!=^gjN$u+@2;*DU4!6qBq|?1TS(cB6&IK*r|2p89*qm6OBIU*yt5yQ9n8 zu~JcYuE}q~a(JX8QnGZCZ#Y!ENy@G#sar(HCmf41rK!Cz;Zrc#KTEp$JGapJ+s2AK z#IQEQ$XxZY* z5WOFbj2HF;Ke;T^(C#-r?KZlg@!pT(@jmPp)7#NifLLDPPlBZ1f(Nk#QKUPvH-uC0 zzc3skR|La19_Qb>p#Z)Gs{F!&CRj*raX%?SJ+2C=_=rMs7juA4W=*E4+w|OP;vm*c z13|Wq00Hjx>Q^5dsm!w%;LAI51#)`3N7e>^PtLAm6eY|9jMM)ZJndi94pZ{qJ=098 zrE>So+H-k?X!_K|BOTg3_}he#5K+;@F^<396YQdRD0iJJ>Tg_VsZ^E(ZP4gQk8V?O z+{u^Yn4Wly3AD>Lqwu*>zG+$7)BQ89L+csNH?DEt50B^G>TzPxh@G9>qjS8!2g(jl z_>E zhj^7vL>Z=Hur#wE@HO9ymBj4>B?u%vzl8cWj)@=h2%adQQ4(R`X@+B@rEOj%{#J=4&yg2?srneKGMu2yiQITH2Kh zfxTYS7(5yQ$Mo(6@qLcr0vhX758%{=sz|07QXGhbi6v*(+Q(u2oC-0~rH)KHDM+X- z$3(<=_zF^)Hhly}mVT!w#*MOrDjC%jt~P;PlqLtR!+yqwc}4iM=6V?agQ&L*i?Z$B zcnRqS>23uHk?sajKtZ}YhHj9qA*7^~21)4@0cimVL6D(i=uYX{*F67s@BP8!`SN(c zjQ4$AYn|&nf2%XAqq~XAWrCJ>M|M}=HHp;ki-kb7Rw3T*f6=v{D3>^O99WEGmB_3a?C@dXkT)4XstCrSfrgUQK3Hd!E?G(>ij9P>x=lDBhIMXw5I!Egt;<9avy zTTv8v>Hk3dbwHHLzFO%YX4kWXNFpXu}IAdCT!3S*PjwkJ!-(2`hcW$At|fr$_22cX^H2uzJ2Aw8Tqv`@GDk z23qV=RS=Qf0V&3KM{SpdAFG{hupe*qQF_$Fh62577XGy|aA4;I0&CsBns?g4J?h{( z(GOt~dOaHAj9<|xXs(4`(ti1Z)NUP#1vkOE^Y3HP4<9CLUW=HurWc-0(w4i3EC2<@ zVlR{V7-xdUn#hj2LHVPy`?06=s3hVZYYMe@g?B+_KEuSP>i7nf#VC{?L@>PegA1KJ zp_uF*HGXCay^!$P7>YRH*-~&p+xL zrv61PRE3nsQi+)N%+dnqSg~onObNGVwdXE!0J^ThBF(HpOHcx-WstEWt-$SV<(*zK z{!DeFyACH|Y?Kn-jE?+)_x2~jFoAUM)qaRyo%lSo|CX_9;^)guVkwrGSh5^7g?N$) zG!beXAZZ``cV>P7Vrg*XrAjgfS0on(cw6Tj&)Tf_pkKdUJMMdJjZyZQ*x=EVC6Q_B zZT0dD%lN9H6;YBp_y&=?vMbd)STa?o&6e^rjs@EhxyU3c?!THCnt6lNnMUB9?B>e8 zg0A4##6Xlpk|*-tKUYTf1lF8TPnxQB0%SJiPJamh8MEjy`j*(hHJ;Cu*X439@2yAk zfnq`$*EpF-Y&oJwcet^nw~-JF4_1a;EiU6DUn=RE9C~#B_+E3@xv64<*7;8vb86+s zcrR>ZX7Hj6&BmWN_i$tz+ayT?E+u~VhN-;(GQwQpXi@g{dzM8cx2gcM_y zWioR1>;zQK)C=$u(tRJ@aa2_i;q4GWTOmfA5g{O#H??V3@u@MV&H++%@Q>bYEAS;d z=rwrpx0zJkI$MvAG>~uWDbmt zWp(vMs{SzZ8B!=Q3I%VYm<0EJxO(Rwsi8ZB4?l!I-80aY5ZL=dt{s#!qK39NhNSKW za(G@KQFu9VHaI-GTOJ8r(vdp(@XwGtBlv!*#N}imVCUanY?RLnw7=jc0NDctG>16{u0D^gHW)VKK@k^~ z?kaY2h>957guAJG-?t;=K1{-(RT<~{AiohjSwcWgqXZw-=yzQI#zgbMsPhmUZaCl` zhWr{kBD1?whf+2p*e;{ue$E=!ZmxPrad(X=no}%N#xyQ!i~m*m{pKOT9lD+pUOJA~ zVK7&RZciv}Ak1*88|4x%wp;uAB_YM5E=Fyhy^`3S-;g-fF}I@euUczjWgL}E470hR zjz0@;n@GB7QMNs`$ZvbpD~3-0AzeNpq8kix<}fu*BGtE1lB-jM4Po)&hB1D-U}G3e zSh=&hgxd9`cb6RH!Jg#gR zSnZvaa9+ko4%hxl8NvT2!y*+Un`MW&gl}mQ5*-_ZAwc-!H$_HYD;hQ$s_ux+_iH0D zY>M@M)O2jDLeARQJi`|6;1#C^?Z!!8fF3anPS=6U=j6eOY9Sx8Boo0*>he-xX^~fN z63ovlJoPuj?v`txD35K5j6a&6bm9vdTy2HI%ufX{0mk0Pk&D65p72hkJJMfdRJS@3}s;tT$}|GB8mro5s)M4FZ8C#0tL47XNPmq?)4kLu{ zE#13fZq+I<_jt&z%UY3ujkkbd;dqcecJ}Y6erxBe+;2u|&Fth&I(nNn=-_yXvTesV zv||Sq*3ovaRf?51DEfw`eM^WZ#s1Tb|K|ViS4g&#)q84L)bntUbLH!Db%-x{f4#)u zdD?ZFw~T7mc+)kOF-^30Jz_*vT{rNnqd(x4RZ{Z3rpA^?J5C@Yegf>BWA_l+QG&S( zG8~b6R>L{6)f-0#WhM{{mOusYI9FP1^9Ns6FZ}s`Bbv1T``+!CQc2&uvvstqXFgkQ z)Be^PXaGeOWtVfq25sYg7(>2AZ2GfG=(gYtn9{eztAfBZrBg{J(8y&)(fy2^$466- zr11-BKaB_c-(eCrx1jhac(8zj%;Z5rWETgNzF9ZjE~2?bj<)g$(?4RGk!1Z&8{0rg z-`(Kipy?cm> zZN6iynu&{9%WLDQxZqM)(!aFSo?*iQ&oE>|augwGSaqO(Q4)9|PMRL;-;5%`7ebG* z#>W3Jt>^)jH}1Y;5=tL90Dj9M1Z$|?8ZR|f+gS-TV*rmNoC`9N7S3Eu``Oi~e&>zx zR05~^v9SzKFt70&$c#8R8sc|2d{%#k^+d?Y?v6rKw~z$SSQ~c zUyf!!E=hfUl8;=ua~K)bpdNQ1Lo4pX>pky^LBg)a0uYa$yD)@2njrw85c7Hlz>um& z<^5nF)EldnVvsMujCX(6E>JDNxq5V}e|MYzs;-e#O#|Cw-+F&(r+j4JAhWUBX}x4q z2$_&#cQkmZWNh_>`x3qJz_>vDRfSmxE27B??-5|kd(9Z9)m$E~Kpqg?I#@X5i-^DmG%3lC0b@8OG8~ru<7Ze?U<35g>cY-3}VeS(PV+Um7MQIClAv3Uc+qL1A%TM4R`Zn zHbdvL=CriVG?NOtsi-HTZS;%~Bf4!)P*LdF4DxYeemLH|)lnq$)?g7_YMP{eyo>7G z+a(nXUzg=9HBQ36Q0jCJ}INnNCTI}EU1o7jhou>ailEOAVRyN&GI7FU_GUST zdm=~g&|*bkCkbDU%5ExkA^4Jtf6*YMpZiH#HGMsi=hN+en-x z(bVN$Y4vnACJm)8(94YCU#kgHze&`^WkBE%2_Pls11=U2geg`1!VpiicID7xnb%PkkfZQ+@R)yNta{4=FI3mG+Hq#55_XU!ee+ zYIAY{@9bM4^G3U~!uv0nhSJS=bn&4RsK9L6pm;SGbGg@YST;~uICaULb$!Hu7;Egy z$L@#i0B|(G6a&B;2sJ>LmzPPtXX^mxD^X0W=_yZQ3)cC5(?%nxlXrHm9htwt*MmYw zLu5GKd&_xzn3Ut}e+LE^RzP;2y_i7)%?vM?=@lBz*BUve*0zJXE#eL%aE%*3^gR>9 z8`?{^ES2#gz0+}Pzqs8Pvlmf2)UYbae?&y1wza{tbigYxV5X(r-82FVef=JP7#y@1 z*~w;uTo`jB8P;g?N;%*{uYmZ9n0_;miz!M2L(2D?cM0SF+#K4`CAbe|AD%u9_ktB@ zA%XIZgZ^I2KD&PofUGD=%fiPo(dJ^yxV_~zKce_^txZ_Ala%O0c2*}! z)SdS#fiDn4N(v$cYeyw8cK^;GG`FM2#Z%wZ1(zNT-;UfjsH_I4p>`8&q9o4?dsUT? z=}WIxVl`hiR?y^hFIK-mRCC#*(co^)U5f2F{?_&HiLekM5Sk(pX~kZ`OF7}o9Rt>W z#x?`Yh}Kt^t{bC;)x+?A{pf%0#(yJjy4mj}vlwUKCD#J{MG}x#ZSmag+nFrSER=T6 z11MY(Gth@ERsfyls@2_WK^>YqMMbD9RKr#z4gHM)#r?*(?wfjh`Im}-&WK^V1OaRoufyph;_uAVt(m9w^2QA#+fSCFyf(r?b%8ZjHI)rhK ztGIxs$*GRaVzz!l|HD&9dLW8BSBGnkHqBZU_qZp>e52#NDGD2{uBbV8J~O{6Q+Ss7 zJ^nvG*gjQnC$-<$z7TDVSVNGCg{2n4;bp<)Gc1ibCwrTwwz)@o`Bh4}VtlHIRTj)D=7nVN!Qoi>Z%=wSh zp10{@?q<1IiO!QFlcV|GO8sa+i8ON=ul#Y8;8Noc^J{u|PYn!@{g=%VmJf!VqwX5WQBoo?K#7?+ZqUVzQ*b1XL?)4i^9MBxk!zHjT7%;+ z?DJc~{NHwV!N5s%oN%(*iZL~AW{JycXZ47E2bG1$P9%kH}^g zA}EiEg=O~<F)t>dr0gEkW=Ie!s3Kv%MC8_RJF7?9f-{caLJkof^pSzk~gwVG~0Oe{c)^v|G zF7V~IAQiL98N`b1h?{x}E+K6JJibl`=)XJ&Xafn9|B zdV=L5T^8FrwdOpPE9>IKMYh$J=mn7-&HuHBOpa<=q*Q`+*UeU~_QC?K%&h z)9ya#APS9mRUze>al4HC!}_{d%bSx&=euWf&~Vu2shtn6%+I=+1l#LLCh#Ofyui;c z9__UZHE(-w1wUWDaf2-VH3W**|D9#_e~W44fKrmHW~c~{C-z6#``~9sL95v3*Yb?W z&MJd74?r?z@a%0U&`kobtmK?`&;I-QL!%KUu&$=c#HM~Kx~$Z@o&Q7g^=aZh4g`}dAdYA4d0tKX^id!4<2<@%VH&+I9!Xu8?_Lun(5 zt1ZPdpNZM~jgQA;W#uL1&KHuLAv0HR%=L$^mWa`(B16gErF|&_^86Ysb?-(H2UmD~ z^ltkF;|%D>lsW&H-{b-OV-lcFE_;YVswpG8!0F^s@D0S-dDguiz5V0LaE}U2`c{AuQaUybVDCx$lNhrzcB;WeBTN-teUFv&>qu%<4Ez8{FO+gNLPrJ<^zw zO`TYV&uov$yJMWq`UQn={EtMAhW0QX!s$Dz=Omxev=mF9Fy;$zA1^bhjTgQqS$rBv zjsx-zw|LDw-TM1F%=PQaKt$?k+n2u}=ojjo4ecW;NaSErn%a}|=V{qu0+UY!P8+1t z5bVSGc|%0XFvoX;62vS2DUu%|!c_8kb)CNwMx88&Zd#FD!Y^HBEy7;X(8ZZtx~iE! zYY z9RjbL`=Tby=H)T5P@$+B9rh7Ze>%`w$NxsVdZn`6q7?U8FNlc8QYbLG zb97ukar{pg=w7kITHkMNy1hSS3w;b$c5L8eiksL9o~<^K0!%n14Gm&M))WA`yTPsr z!0OCiv#i`=V;U#Bd^G!X=xgr=&_80h|7DKHjm67w=>+#62Vm$c;eDf4c~!AGUmI+O zhsXV_CSH9JS`Zqx-^0xC{r$qvPv#{2zfLf(FS~BAjy&l6-(f#+N2HP-`8>vjc{RCF z04ZZN^s40K>M%XIqbN$f>NW#sQ8X?QKLp|O)6Z8VIKBhZUBLNXN1*iQnjCL8ggVT2 zVU++NTI&Lr1yHH1;;KoD|Gdb_|58PIaij8>mR>42u>wPGt(b#{C?{R!LadyTFXiL4 z9vk{D;EW)I&+qk&LhvvvsC6;$|6q4RYujjwH)X4+ahEd)n^|dSjBhO%ax`ncd>Uor z{vuvN{Gg11m>WhNT>p3}|BP-1Ljb@iqoUZd64qD|XQITD(aJR_yHL$ta)3ui#fyNz z^haYYI$O`41&>fOfcCHY^Hc_Y)lSQPRR^h>$OM&jn+?0e0;a@`{;9#-cXOfP;fU(N z%2P{vka~LB|D8LnfuQK~y1(Cu_v1sZ9-@_=)CVzw2j07yC}o_3Fu&4)fq~*Sz;J9p z0=nk<-NNnVo?@1QmTBnPYi`ibUpd}DL6^lNDX-k_^;o(9J}KRftC&a|RMwGeg<(0nxr)kB9oQ$6Ko2* z+!JUW=t=Qjc4SOZ(avpbHd^Z-N<1TAx_0SY{gXIdNbmj1V7bamGvlp{RY>EBx9t=| zuQO!nGTB__zB8NHqv#-UV#Ly#Pe{w0UTZvV*kSAwT(^$FgtV*)T z6-kbrKmI5POG(x#QlXX~}e*o404Sr{(B)nJwcGm8V0|w2yxUmp%2Mpo}%s>=rJ* zHJomsYjPB+p_q^ycwO&jMqov8G%od@Ce&spad`>mq(_iD1DCzB(D!Z(jf0|6BTKVF z0tK|5ZLfMNGLsP#2b8hRSxZInvFedZ9U!*DR$^K90e}i<1nJ-1H$P@%sCasw)#m}!JCY?zYkcqK|2^-U{n-5*_y;FPPN1k_eY%3st9}IES248UG*S7RMlEBg{`%`g z^yXHA1)yhBH;syl@6Vd`TFo5A+`W+Ib8*0t8BcSm$}mrkB{N8m0yYaR8~6ba*XTt; zg++hK4LGme7GL!oVU0m8m^7xa&hi35oFB0_$o~=!1uP-%);&H1WDuN16UC8E2wSp# zIq=JZyE=Y8E&>V6c;W#lGEic8oVLGKx#w_y923JpXBV^lG=Ycxh`S|1Ha8Mb;)uGkU3`~tm#+g zz>*ZO&xqoMH7*I;>*a!2?(S;5;W80KnB1KA<0}^z+$^ZzZ%=jV7XR%&BmY- z-L<=BO+Q`jiBq^=3v>djzqwP`W6p%){|W`FNlmBlx5oZZ@$I2$r}X?Y9B>7b4a^XO zo~}P$lHbxuQkwXn53P1+?J|;Ccj@^oSu_YsZ6O-}d+BVz?$R;#Wrf4xah0``h%he< z^kSgO-JLa_h_~tG0|WDDDUq+LaZYxpDzRomA-BfS# z?%j15FZt4&a zv!6_Be_;Nb{+0)~2gGIujPqx^^M4EthL2zXHGIwn4Yv21bKpKB2QEQw|IID)fh6lDQotDBdL>?%e8N8y1%oSt2(qEqBFVN`{D& z*kA>SC0EKrUkAMFPPR>yjT$hJKr-Zx&6Byn2J;^7=-v`RQ!*{QD{S$%3j(UI^>oxz z{R>chG2?Lz=C{!_IXBKa>f#)>Av2GL&Xv&m2U-;gWL*kVq62(p$#oCFB{yQzjX=OZ!~!{MoUPd6J!k0?b*QdI*<6a3U8GCr1NM=t8;xDAdY`yJ9J+>t&CqV zv-vyJb9FEZQNFX~;iOxV)>C7ZJKU;#sE%%U0s87zhZ#P^rF6bmEBPZKKHeITRmCrt z!yKI`DnMf$^=;s)C^&)Vfhsuhw+zTni7jyNL?z_5|NKX*7W>hxiWPTy!tx z2>ahe4YY&^JVi4ni5Cs@wqX75P^&y$dej||MCf5^*)kN~_*2cHTxVI*?opU5jlN+S zEw5^_R?ti@LMjkGElXCua%3maVP#UypV`bi-m=J()F?g{QG-~p2tpjpz zR{)j?9CmVFVlM!jnQ7%^u^m7dAJ_}|X2xD##l1sey4wm0!0w9P@%l)Xl4QL<)e=xn zsylJ6|Gt^-Kqop_nzMBA*oL!{PO%7Ubgir4ze8>~Ce%OuS6y|wYfnLX6wd&ggm{`r z`dx_TsCcS-Sc=A6*qO5v^J%{!`r_ZPW&Dsw^7cES%8;o&WC4J20iyu0<0xSkQfvo^ z{=!I$K@WF*^Ds_Cy0QcqZDYZ(vb*dBhN(Br7Hgx7 z76F#&1JndboBfF$7hr$sUNmx9Zv^hsS%Zov(CzPutC0tGV$I%vVsU4VUvT$yI%PBl zRqY4{?>zm+S70+|nDTb#YgI)tL*pYPr6_{?w}HZ;nbvS_B0Jxac4ZB)Ipx>j;8&72 zcs5*1|-XuGBAH#HENmFDSW*qK?H_l_bVgzcp-fcwfcH1fY zy0y{;8_b3)GZ_MMJspgl_2 z2g9Jd*2tSCRLMYC%o?!rp6ts(%7(r9&POz{q5z0N*#Nc`EDFfh2%?PS)f$PYr>L-y z^p6irOmUlDpMi=O3!V@}EN7a**8v0l^}gD>YF_np_Ho{OWZq>K@Q!%(}Cw183@W=OZrb-98g-PRyMROT`w4{G zXO~}A)ZQ;l*rRTXu-#(n|soXNr7#?ku$)Eo{v}CG$SwAW>GCXVv z>N3F1k8gxb)q!COg0YJm1{k{&fWV24O97TFp@RGN^_Qh6A;bljRs;O?2oqW^lGu-+ zbor&-7NW=HCQU_mU_m0>`ynUggOQS>&UC$$nWmGZ4;=nJui`PCKZ=H*v@~JGH65%v zV%jI_mGGs_8<+Za3_D3g`R}#Q7jvGnLcP}GTaCwVX4`-`X3;?h>?aI%{8X59w5z!+ z)R>_Hgt+P%F&zS`G4fN-FoL-^z2HYtij7X)ajw{ws{%Q(lDx$<|1Y&!@^q|L=Z+BW z?be#igX;up!Sh}(mYoeTOgya69s6CMRkVT8Ms3`xZ5g9~__s$!cjQ>ObxoboQiS>z ztCgqCK2g!%$lQsmwe+^uI+8osy)768p>ggxQlGgud*35;Bcy~!f13c8T|Ptqr9R~l zy@5LTPl=>>sh7fHO`)lO7}XE)VCC{}=0o`Y8|?#Q`%sgg7iF)Ui}Eb^5|rqz>Fljo z-=)atQC8d$c@@eUbFZ!IA~zLYZt*PIAc^x1VSkTArf;`!OnPzh8e&}O6R~q*-`;$M zQK!B69K<$TjQ+lyV35}ju{QY$Ao20Jt%D;x&ikfkv6*0kV0K9X>}W|YD!7ca4O`HG zsGMKVKHonh2s)Jz^1md;LesO1_{qC@VxUa%{9^%M7!CRSC$tWnkh$)zw=bqUM@L1w znHbcXNnF@L zxXJp`MLayxpi4U=RXv!%Vk1j-c8~_dV%ETTRh;z^eNZbx1!l|pU#O2iqM{KY^~ASv zDIg*IU7dIf+oBwZwACHCNXq|roYV1z%5>rHp{IO@Cy8Gc4BMygp{gs&eIud$Y+!`P zs_;h3$}u@P7b7>w{H#T-?bx(c$hZMz2Yz`qm3^vz>bY4(nC=sbHVA)5Cj4|!N3kp3 z93=7i_72)J=onXuK*|@PyADK`R=FJa?BRhU0q6A*-g*9E$^PYXpTJJ}-FNU8lRrDw%)R$l6KgHI7XzE@-<*G+;DYQ@F~rOh0bHXBU=C zOg`Khs-uL=TrJ&!Z%5>C-R$zw)|6oqOj!b?lo8V$V};gNm{G_5MvfY7B`M&I6OR3= z4CK6xm(l!;6X90~{_{IzM)cPS;qGDLMl+0t+>mJ(h3}1ry97g>T6i`IlG7VAN(`K< z0~bff5!20KocR5Ha!WFa{)Xmz|*fk|H~+7j`nv4W}h(%GBUUntHp7QKEj)B@SA>(L@vL99G7}A z1ZZ(Tc&}oARVl~XC+YlGj z?xL;V4;~#zYvc9Nc_l{f&FwSgCFe>9!xtWxQ$dP9X|izU23c|AR)h|-`hwVl)c+i4 zvc!;yXZPoyPegR6|xY;QW%v|lq4ZXhu3>Ai=reyI=&T=^9s`}Ukc7<^W z_cA!OG?>Y{0&XgQDR){_=dBR+;Ox?Nvy2O#6|?_yHYuzrkEhw3uIC0KEV{T`et}G= z#l?gZJl&uwZGZq(JO{@l-C$E9pmN_<^v18LicH7Iu~OKu{sE%h*A-xL>Q=GuVL0iT z`{G_y*iQIiX)yq*^tLL1=Ha)~$Ay2!jQ@iFjwLba67~+ht)=Tc0KhQLc5JU23z@eG z{a(+Wc%j8BYx+5lC#exDD<95eUnGQ>ve*VEF0gcrdX6YqdwHENjyO#t*7RVQm|O7R}pwMHl^$PFcBUqK3z|Z zeagr(JgcpN>-@tZuA6M_;p{msYBzJ`qw@^v_!RujO+BNy9%l8ce)s`dtZH|L{(Y^G>ML#CB;ocR0di*2v&5|Dh|Esz{ zV?O%!TMALHdKG9uK;_y6l&7*-6{=(wCi~T@dCntqn7Te@MAHj-48B3;K|859RTT4= zAr&+d?~-pDWXUAz<7pq}FoJ_pP;oKsh@(v21hnR<7JAiDx@L5`o|`{t${wD~A09gV(R+Y}XPpBDdUWwavb6%uwc2+Z+(2nMT{7iP5+3Fu#c z^}#K9$lp+fzKSA91qYbHX}4&W7WQNf9{aOf$8gb z>+Sg;L9#dl3@2L;FPb}cuPNoP%6Q;MM-9Bp@SP&|8hMSzApZ2znt{Q%r8J6{6kcQ0 zUu!k$4{_o3xA5aInC;HdI|xSxwX8I%y+H5MlKy?ErqHg*M0l3NbnEHZZS_q>;hE`m z5_hjcL}Ip8CB4%!|DD07J1OB+n&tzOW!##U#~lyWS6h%dCs$#5$WI=1C$<7BOf)-% zM}1{5gI11Cxh?3``#78=el zh98WCe9|VmbpF?Wr}B*Tx$9-4?LR2riZCXwXoUJ3`FI7^cC9>OlcW|zIP14^mxr8X z<{K3^mFKDxD(}RUN^f5k;=fS+^bv!{MkWbM4OJ1^6A^M|E1J<#-0(OCJ1?&@L(=BB zE#^x#@Hg<>CwB9(ckGFz=U};G9gDrwzg?MwrHBbqSLmbL-Q=l4nJ11Apephu`@%}QomvlML;4b=y+A^JXf>C)ma zW$!^`VB7tCKQiUV?Z0+{R_}Q+@NTMgT4GstHw3E@%HlqMu7#sC(XUwjEjRfzpBOw#|b%qs6HB% z3~AZ>acvsQ`)Mspr(b9lb&H7S@iI%;LDD{yMPsRwJM<4_;!Yi`8b7qPyDR_Wl4!Yb zNy@g+Gll>oGC`BD7bZI@6YeDOi+|SZTJTHuBF@U;(z8jvCNBuMoV?cw%qfm$Z(z4o zpmE!$-o3ZULgmueyZKaXKUAcq5$!CX5z3+QZSCOKW-PK4;H&WTrZ@Fu{Mnc-7Ve?V z!B>@UQ_iQ(5yhOqt~g_pJaTx$BJm6Gex)!hMJMza?ebpSnYAC@{WU~+CQIr3_voV^Qx6hZq zFe#S>q~vKcvz9V}?dTbn&Z8Dr;dsqMuSMrS%D;AN&R~chcs?=!EqTG%?`T9Vz=V5G zi7R+FQ<^+)<+LH$9J&-V|H?E=Dy-u`CxD$-l_Vy%f@r#1_LJ0{ih1irQwu>@<9;ho zd;o4w&4y20oRr51q%Czg$5rjD_laA~6PZdyl{X6Z-zt{e^~3{djSfWdYTDmsI3*vY zF?|1uYYEhM zJ~3%{r;xVlp2C2rUXSKomRW~FE^`@+8#Ua0Cy&RsCj)kw>oI*%sR&ix7Nck#?9VSil-pEW5eN?m>NNi zqWwZ+P|#%x2DXH;j#e^PL0C4`L>JsO6GdpWmEaa5KlKeA;!^N`plO`z{@OJA{2A7P zc2#3h-uRA9eC16y6@jWjr$RdYcU8QsLUbRkXy*hvi7nvHMU20Zz}83vVHYe7r}Nv& z?`U%ddvU>jskOJvrR?s*J?~aHHQqliCa=AmS(-k-qeG&B2R3xHqm>v;aOXi=3!$xQUbxj(3Iq~Q3%U0_mUdS4sA*&OU8jji6`yZ~6Q*{rT^G=X=o}=95 z{=$wXKTqIcly5W)k0s+WyY?^im|O4fk9xyk=g=JSk1Qp7jf##Is|+l!u_|aZD>;w3 zo<23ZI$8ffC(+`cIb!_u_W4~{Y>Y|(SJ$h5+t0pO^{&O8Av|gKp%h@9{lq1Rb6P8*iWZ^DRA9Pjhi^#*Q`nMw4-CENhvY+|tHi?)3x* z7x&Xzr<-HW%XOPw8|dkPfA#aAj0XX>MHM%N`^YJlQV?}-Hsl7&i#Qz;;^M5p;y(eu zVG!g6+cOh#$1Gx$N8Hm}YOiLW3_fFPH+YQar!aB563H*tf$SwEAVZv_S&~W8{sCG` z$=gaOIS_%S0IG%zn6x@=nTV?q)Ayr^7oWTqP~5!9kM`Hyzc2SJh6?}=h3#ZdKgJ5R z?kg*m82HsoZ4_!MC)Te>lI^eoJEx|}e4h(^NZD(bsMJ!g9dsQdZ_Atecbu;0lTgLB zCo*SjKz>9#;Oo00A|fnoY<|2$6yOqZ@xO0LA7v8P#hl9HK z<5>*CbW=x@`tFt`IMH+sCgid1j(GLUH(v@0YUcJqgjj1jCoN6U&~X0wfv0^u2#LE0 zf3<7pBoblu8d0(8(u52w>0nCloP_aj(W=T15#p+ zK1ZgV_O|@)8?O~VP{0NH9}|rZs&iSwCm=H-%xFjtPcUemR0<{&`!3P_MsoRy%1X=w z;6HRP)$u{m9UHS;_t-}qXLRJ4ryw+jY&pdUIKM$D5DE@q1WLHNtAXXkj z;|x(%{<{U?TG3kC0Nm`K0OGI>z$4%Qx9JYYTHD-o2a91)c^#&CsrYR>n_X9t%CW}5 zj;f)c#a3^ga_vf{Cr_ftxb)v`gHuqf*@$iT;YMu8WJX#q1P4^dJSv4fsxQOYw=2q` zdH*ggn#J~gu=5~oIU^kjXTO$3bkRWoIU+(QhWdguz$rPU1CnR!Yt*CWXN+*IwZkwM_ zt!bU+`Eibfaja0XelMaBM9r+0+1N02yI4!EWy}QS51hV?O_@pK{V->P=$&;-7y3L6 zicn-|Li;HUtJtn?r7^C;uZQXf#Py}zZ=V(tLHca@GvRcc80`F-PW_F0+_Lux!^oMw zgoai@0UvO<8&#nDUb~_*B2sz_@vY|-pEutqy%Q+W0QDcD>_`JvrQD_jg;m&io;R-J z!wfD`YmcICtZ8;CS(5(KIkbm#GgUd%vA)ra_~Lw>$@*WvbRUinpZWW7HRr=ApJ$!= zdHZ`9ef8$#4owNrMlDJC0i&t@OsO;&1hqBw6U<6!_#AUqfrEE(2zbHzaFlyvtsCxCw9GwXz3xsl2ggooHymCSNo7 z0yZ~mKRw>d1^E$l6Hm(}cKW)ih`Sg6tHs<#cH!gj-ahS%)tz@5C`05j=@VU})qV*9 zAOBYqmgJQ8j?6wdm`!G8x{|imUQw_Z%|@LIH8C`}CYJP&5S3}ae+6&%n0{wpd2tG@ zB_b^DY7#YDDnK1>4tNea_F?jt@xq|C61k6>UHg*nBn>fNZOG^k=KGpFjCGbZtW95Z zxC!I7O;d%aE?`WwhZMhbIY8^DkG1Rmcy*K;o#={GV7`1km;c_mTI8naQ6tq;8B&o( ze5XOP^U@+q$NCM)SbK8C6Rwxwl2n^Ij8e{C=QGm~Y|BOEW|&7;SCCZ?QdeS|WDE!( z!_c-OUSOmFM!qQRYka-Kl(g>q$J4FUprb*(;bg0MXr|I{YC1QnrCkdtdQK z{Q=467P(wrm^*)EYZuO@hR?otNqc`PT47?r3iwQGOHH)Pkwjz7pKVNVz<0(8>gW>f zgB<_%79T-Ddg}cuh}teBV;NU7_7zbXJ?t?EpDMfR?dm-08sK%=xi!pAZ0E)a9RrQn7DiIIZ1YGDl0aLB9MhlOSOOS-^1J}a9K!>EF?I(dy0}aEgeE|9q3?W~t z>g!bh@W02$5A08D@ z$GOPcNS2M=c53h4Zp&Z3WcQ^#neOdBIruNzvhDPz+7ITfM;lg8o5Ftmh^ zan4ayJLvrrT%6isx0Km(mTxI`i2liuOprb-aMU}0CJ#La|CRlV^r04*2UtnCsxTnx zvljr-3;nu6L{vs(rNEu0I^8*yKFkIVATMZK!7wq3d6s-5j;0$26G|2drpZq^A&eB{ zYU>_VyTogu3H})GQyeg!emKwXqI?cI8SACi4`;a!7aqDAnSi|@P@4VzT@bq|fhN$c zO6GG+E>0&E>UAaTUL5cxH&-QrURX#pPB<=@q6G1PA9KLHK0QXgfQI!1Yq9dOpcQYv z7v&S7l*AW9Wy@AOjim~uCX=j&jj ziewW`zi{CE>OrV=Vry8~!E3T2I_g~?@A8i6B|llljchv>kQ>6b6L-%&JlqNZ$`O<; z#S3R6$hv2J*02X1<}$aB2Y#4p5Su%HAC=EN4^2)s3&ydwu=hkFR=`R9gb~SM?DiJD zq2p=vz=W&>Enw?a{^=!Wrj_=(7XYIl{VdmIfWUb=n5$VcVWjM{Q`lHvQNTt)TcS83Ic@?W{Z+jR9b zqSqsaAt-m!h+C>LF*3lS_NL5MPJT_k@=2ZI+l$stB+w}`cXxjC3b;s-dh&~h)uvUe zb^pUj59LN@e_0N$8?lOt=})FDH_=N!9cmZP62BmNT9=~=>{0Sn7?n?Bn18V?#W2NgYk z28ZXz7T}kUn>lvJHZkT+UXq-S+>ZRT=Cao=$TSzuAp#^I#SlRs?pcmwJU&x{r-s=m zxf{9@Y%2Q}r;S8}yO#axH^R-&q0Z1-*~NAgbtvn~b1IoilsNF{b9*}@$L1IhRq2%h z?1bpHizYD_k7KxV9=9twkx1%!x}IvXcDnBF0`1Ye$MR*e4cdeAX*~^aoF}h&`Y7T3 zSM=v>Z4vF>Dhv6<|7kL7whEtF{TGAKi>|CFB+7l=wy}glvAqdz1#sj>7exlEk?DL6Dh(wA&hfZ}K$5`k2 z#71%{LNbA!6Y+`7z)C4-x037FG=`gMvlMDyp>IV?g8fa&;LLLrY*3014T-5X_6k%`p$;B@cvD-GihnB&JNgl zesu@^@rsE2LL2@{<#FM^q^1X9tbEdMm{>d0Tmfd|| zg)`{^L0Hfuy{Rgd{bk$>)E>*Uuy_$XLB(r&D^eYYqzx! z=|pF4t-1UTEaQ{_^w70;@`Y)XG>>xoWgsR`1mR_`n{SXTTg1T^N?`LT43tVCcufHv z(A@jRs5+)Q;vy#?Cov(dv&vaTSb?&EwM9gCc zr#h|ECuiJ#lH+uzV_14i4D_;@k9-A%!6~i18w>Bkoi?zpG$F(M(%oeuN7mTa{&Rb{ z*^$T!jT`)buJ_O%SW&KshqI%I?Iq9v`M#|kt&aH)zqcf{8zMNl`5S-)u0X^;js`}f zYbUv@%W*!ZVEZt%T*FK*+Gh3R*H>FaKhfwfx`;NE&f~?c;|zDU6Xn0A62D9GE3K&c zP{dQUxf?Xh=y)Zwr$+4v75Z`}pc-XQ9=V|IxThe$!%>1q7aN{lfY?DZRKeYGXdU*- z)3Z_b-7YWpeF4u~N4aemcjE2cI&s>M%8hUT_i%n(aG%gU>ZJlrArj$~#7BG~);~4s zxRI(;pJSr_vVZ2L$i@c)lr#Lmqt}mFY;&OctIHcS^Q=xtDCRVP_W53zDQU0_K%3*u zGuR-D3$lxgD7Rl|Jc4StHrxM%^|sflsDWQD-$ksA5|tn_Y$90T|7q?$pt)}U|8Y_z zTVxYLD3m>-qU@2GO=Olmv$sOBH_6J#2oW+9GBZN<&fa_do-fts`&;M#Kj(LT|8xHD zbDz$Ack_B*uj_hV&+&MU2V!L0+t6_IdvOVFimqYpAnugw=&7-LN<~u-?aM@>B$~_F zQ^RbR9baNqHptCJQ~o+BCW8r#B{kU>2qaSxbAL86|GVDrdEdhxeQ9Q)7x=S8^=V=F z?B+FZhm?%GLd7ov&=#=AdnZI-(=_Ayq(fg9qolFvKM9?B3g z6duk~1Ox^uD;w2+y|H(lWcY4+JInrZCS#FK=ko3S?TM&o#}2$GEoF>9o*J5CixMkN zQX%L}Xw-Dn$F=!VS6)Ll*xi9!^nT&PiqI;G$9=C`To=j(W({gbCf4Mzzy6|az&ZVe z$8LE4r9W3ye7i-Lqbt*|vEFl@eU{JlN7HhxayO%TZy!XnC(GRnjQdDT%*;zpZtpfVI=UyOYdDr#R;{Y6_*5VCcpSPtpFg>) z$)UFysohp(j=6HXEKBrq_H96?6~(8sh;LiAneDX6qFv?akPJu&m#8Qqs75__9|UuM zF$?R;uk*3eBnw|0Y90TjT+WG|kBPqhb5m#8(!|Rn(nptC=jBMJ+`ShB_pDLDwMm!S z`k<2jn&TO|X)7m(D|R?KQ}@ZYE56(~JAnGoDYoKV^p(SPx{juLr9oPqqYOX!rLT!w z#FhpafNLe{_~ohBznlm6UgF8ytOmk;O|x+23ufWhMpUA6CS&3m*3!?v z$&#l05)DnM&nUhhgnAesmbf8jjKMqS1lQc4yXLY zWj&^k&#%Ac5Wy3_PDf|2Z7UK>iKhnqaWXeOX_*Ui271C;ib(zMl^qTdCX(L$QAg-r zexRlpljQ5|HubFJ+9Z`ph;9SyqqOrnw%z!6@Q&+jFtcLIx_Zh0`?3)kd zKW%O^*h;8JzHaY)2yVO0=;0R=`v;d9vVd0f)=1LY({qVXh%UaVgNrTemz0tGT83rn z;^tJn`~m(L{Uyhj32}~W`aO|J$hn_`P@vQk=4!4e^4?0K<2#(mPdxEh#x#AOPXv#1 zuH$jKMNS=xusX!lt7LO9^qb{f8*OYF3)nmviC{##%rR2 z$+F6@PmX6&f~9{`dK1snhoab2=qj~%U_K`d{#}jKFyoffP_rj3ufK^v5GAV!+Vvt=T*#J!T5*0ecb3T<#$fUPQz?2opiQ) z1-eRlbjv_&`>xvQckia33gMa$AwBTakF8!49q~WHG#ZR*+f&!>-Qe2tdd55KhLYUo zc^@vO{gJmTra6I3$BJv_Sjn5yk&3{N^|xWA+p&bo1bD3N>;~(_i+ejCKT|$VdKp@i z_VNMA5K&>S;#+NUEQ#7!Q||N zCj$bSouxdfd4Xj;N+|;}DrzJhbdWYiSNcO4k8hjLXQATx zH9YXr`#qf3-wX-9P|>-t6vaT@Kz0)M?trx`2e>zw#OdGD>CD!~%T!ZsU3=taqsGRi?r}Eg>mr_(0I5l0Z|R^;q*6Hvkwu=Hc}?RI@3f}l``k1 z&@Ref%IqT!;XgedEvc@^4p#z-Q>i`RD!c9^OnCoUVKMeeoLSWALbv#8*YvPcxTWMd zy>>y(z3o%g35WR@`abzT`QYqVks0%OE|wIKOOlp+-N!p-7bo@!r*E4a_-It@x-Q^l zHrOmKkP7gR$4LbC@#_>6t~5NqL0yI`BO$~ZZL2fyKhn7}UzmPHfkZcqTrpC;jXh0` z!~VA`f-H|5)}Y~oR<*M!KU?7xzJ5TN!T2c0qCjs{qm}ceBlfYLFwDD^`tAIi`yJ3J z>d+}?uwajMy@hof0_cF>3B}ErFmSJ3cg67gTlJsZWRGXqZ?c(6C|7b&rdC)1Idz+P_3hAu<$&P@@?Ntfj5aHpSq6^325Tm-*2s@6&c8{={p)j_+^{vr z#iG^}UHFKNa-SR{9IjzI+q1w>(Wh+i=6xBxzG@%Gd$c&bOaz02d^_T^+oy2z+70JA zv$^IwCQRjZ}*#!#; zAwV%$@34;izEzQQwtq@_K|S%WXDL0*uWkEimGcmPTHFv1h2c-{9rPowL=~-Nm%4gv zv!~yXMc{`Z0I&8bE*u8Ma+{IW2v@w?vR5ZEjz*@T@E15{{fM(BdlJ)Vtu4+z7_ zlY>34qJ4_4?_*w5$9>P(RZOShKM8tS-75&-Wy7XmBKd%8rIFwP8-Ni0^f(e!>PTtX z$#xms8KJ&}OEf_;DGlcWiuDfFJ7^O4Vs{T;=4HT+yTUo4m?az~>wQW>EvGY9tuC`;FI+RcZ>?T1q2lqmbKQJtgo1;8NOi3wf+-q62z$Pei5D-kemr21yilcq){txB?q{IYFu-2OZWO+hOUFfAy|KM z^LTvIsa&WF0#j{aY)P-u#^l#|?r==Wp>}Uun|szm9qafnRV)~RwhWUZxX8?a*97CZw(`a-}`uAvqTReR%%&*OU!!PG2a_#NuqQ8W9 zC8DMP-_w(n>EsbEcWho3R7h>`o)tY*MzNzGwZ(f_(i)2kqsXE&cFm@=M}pc7?7jcx zXd?Ig@2T^=YjU{Q@_r-nufNfQD?79K&SKw)WDGY>+B*87(#$~QTd6ORpEj zC(mv7*4ZIecUlps#MFNo1LX)1i} z?Qe&v5IucNb(yg96~q4QwI>1(^hhhN+y~R0ZxgrXz;ncefy`k^4leobm0>iq%sSrW z(LryiOA9qB*iKnYMO5?tgRb9;5@=PK zd~%xO1MUohoO1k3S-~rL+I9GaZ}~gp9-qn(kjpEkl-SosI+b&DX`IsGSgcLEVPwY&*vFy9vJ!# zv_j;Vbve9w1h4T$$dfKNRWr;#J2v8NjAKYVHsg&t`YC$QEV(?#gBiTrv{LfJ!pXM7 zrGN=gw{#>z5zEOdqH!h15cT=M-Yh~=4|+&F4D^u5FWl!Hah;BJvj#}DQ;&aV*0r+U z9(_q1rHFJEg@|jb#qif&)^e_BZp6Q(xf+_j0@64$7Jz}<`Z6>)Bei%K@cq>I%bOL)Nt`o{8}JHvhQ zB4_HOmr}@31?BDzA)9WpND!4shTgzcfb^>C9KfHSAemmA#|Lehjti0L-gQ!Fr$j%} zLGMqmZ{icZ}-c70z?!WPr zoD?})%08vf*Pee?EzpF#dDhR9+fLW1RH?}CEzf#p(a~xwKa}S$YrSS}j=Q4B`V{l| zl|V~RbVf6Jh)j~+eB?@6EjaQ6>;RdMHZgk*{mWPo9Jw-pI&^g0bl)&WL;Nc5*O5Hd zz>dkPZF7|uSKS?4LMQlee;sFo)o(QSDUfDS?sN?rl22@(Z1MTZA_qZ{>j=EE(VmPDbt_piM>Qax9JN8EqBD%;1f# z%)gl?`r~Dk%|f}Aai6B765*1`sMb+sLCtIjXa+~x<$Lka-tGEA1>pJ}?u z(ieLOj@dazF6qXL;h#~TuLzs!2!l1|(}sGMM|n`59X-R~T-AA%D`x-G-tVD8qX9(0 zk2mTqpCy09LaD*m{e@!*DXIiWQH2BpnWa;W9z_);&e&|-W?W%5QNE1dVf}db)x}>b z+3r*pa`j~MO;zG*5#VKmjMKjKf>1ZdD<42{ZJ!rrZO(f9L)AlQcc*M8e_Kft{-CP2 zr}BcQ_DV5ls7|GC2V|zrFZ(jl(GIT+mM?sC!`d;}`?a=>fO^taq72!iQax>fY67mp z>3~NV`H|+`{i^4c) zFV#OkE01+zqR`6G&vO9SPwRFD4cwvY?W_jB?6C&!@V58pw^;u%>AQQe77-ySt9pY$ zi_9%I(I~j620W*s)_0Jx4QhRnqba{Z0_qK_C$}Bkp>BteE9+q?>&@#^S(;bEDsG@P zSXg~iqLMrir}@&k%SyJ=~u|OAJ;@t4#!V{gYfE4kbCR`p!GnK!*B*;T!QUD z*>4m-vc{6ie15N@lQT3E_@S0q{17NJyVN~eB>1JLf~>gG2br>#qbAjn0rO3A@rAft#kN2iEpjJG%ob3_HfGbXY#C?uu6&;AdnC|>8<3vv( z{2eO7^?i^c(;kqcI}FYlP?LvI%iASq_2eoK4RQESuBg55%rP;F&B20KHaC~0!Im2W zb{Lx}Y0`5Q{H`;tPQZ^&gSK+X$D`?PA{B1M#HV8@#*Z}Fd#|y7VW04)P$0mbfNTUJ z$U$E7%zWWAY2@4Q)}UO}4@Xt2g*+H5jWVAM;Dn!qHLJ5b(pR{ZOEJMR#d59>V(NZt zcq_`e>K2csmQi~Jd3V<%H>;=$kmqJdVRG6J2)(kEf~21^U|CRCJVp;`u*rULRck9z z9u$Hszc;SZ((#EDq3vpOg2+SVdV^h^1TNbQk7EU2^fC9j_rSEz_;23+46{eKKEVK^ z_DI`a7A!>~VdEeJVcWB$q13MiUu9~D*0yCZZVuiX4>|R1=ktABvLDOl2!7s(U7~V^;G)RZ z=n~F>*ySO9!iFy9JK!aREf^v=W^C*QhP!X|?f38SB3GS?zj8B9z>XS*lkwem<3DW} z6)U*};i-N6Lxq|2nWgV@9=tcF6Fl1V=h}#*HuHKMTgt8x^fO4cWP`vrGwYFZaGe)^ z?UO0|#L7l%UyW)FzdI7Z0JHqjyF=Y7EAy})8!G&}Mk zFS&$Ft%w2&SLO(^eoTgootxsyLY^xj%lto88pg<~28CBCg0EfA+eK1%kZW=&UMWpA z^sQVXUl^loJPbja|B;3Pw6>{-0oIx7q2q4r_dIOSSHu<@(yzg?_=Q*S zRJ|oPkrE)kNf)uHU^|q;gXNn?J7Z&aC{>PU?J*aoTO!D~&4^&?*;8PvxW>eU@FDH2 zj_J;yU|qQ}zK~lm`;EfV5XSvrQwzn``Ct@Vj8t4Ygqa%7>FMc_?7#tJDl3$v(ZD4; z8>-#jtH0TDat99@(6v{DLr_<@(px@b3Pb>l7~SN(5nNeu+vpnZ@Pjk_lq#M%Ljy+k zDrqQu`~EWF@m8-!bj?Rp;`kT-{ZV^6zkm3^SFJho2DeeL=!^sf3xjnhPAa7i)XuJaVJ=B5bFS z94%NRBr^`5qZT~pwP%_3&vR(3OH55>_*Oc?mKs=Vp<UHI-J4*Nc9QT3Y6jbZ9b)zB4D ze&fRI6(@m@zX}>cB)6#gF&mon0E&^R)JM(Oj}QKo>7?TQB1g-8ZlEt3Pp1Yw_U_>`_%Zre$0 z`$GxzqeqVhmK}g_hUJ;Ov@|_%J#`;`ZEU3KKS61a=cZ?2dG$e))gz6c68HZ7`z$v~ zwd+pkj7EwhPe-Z(hes~((No!ZyuEomwj_6d*QDS))c=jfgPHSo`D%}1)1I)`8n7Ut%}frBZQ-_~fKr);RbEshhorHnIn zkv~CdjM`$Y+m2CpmIg&1K15$%U+=qI9@9D;-w?TJ{L$@~aN)g8EDEbpj~Cr1{#W?C zkA)D#B``4YS^#ROSbgpfdI zXMsF{_FO_`Pax}Bhf4%=k!cF`8_~y7a)#zYrzG`nW z2${0mMC}s%v^DzHldl(1VBAUh>B*sbi3tIW-PMC*)Us(|C^7lr?S+Q%Vw(Ram-u@c zpkDDUy_h++*O9m`V@#*%2T>6sKiNiZ0B|_{o&kVE6;~?;-Ng=b1`}i(pt9K58wrJ8 zmH}-H_Kigp`QKaCE6#6!XDyiaBhk?VqBgswfiRU^)muol<3kCkcBErq$Z$Q?`SN1D zg(+oiXUH-F<`PFTEA7oDSeo?bQ=tI85X>aAT5lxj`S?`YqH6tNh24BTRFuDJm{@DJ z&9fk*C}z!zfz%|F6cRm+f-jyzWmx~UaM+&qNQ<)?Ao=PXkU%b9< z%yXN;>cJ(~1dLJcI>TkcUwna}-=#Lc$GVT4bLhyadI`$5AOWL~!g*2Xea3~SH(a0K zXjTu(c8d_s@0+;nbcocx%jyqL(GUv?qUd&bYzyN=ATeTKVuS2a*o&u@2)vRY^__a z=unyjGpBm_QH$ilE#>IuyC3eM?>X^2MowX!GzK%`r94`Y!yjdK$2|3>?&{=_^c++%)k?{s4o5O&S!>htt$xud z**E6=V|lg#a}lf`7b$w97a+q6s_Pq#FCD1+VR*p~_s^_Z+9T&ZpRzyK8}!{y#>v5b z-2SyKB-;B6c^j^$uq!J-&AIKdZRr^#?Aey1Z#r? zWK5+d4fFCbOm);=vH0LG0XB@zMrQ83M$ZpB+q-0IW<0}@=-Gh&mit{pCmijr$g~-& zM?2zsM%_3_E_>&Zl!AFGy4yQest0$3Ui^CNSYmt*@->hEqaVhNcrt!sWkp(;bKXC_ zb_)rF4*^{CEydO!^ut*T=PmCT~HJr%TL7^!jwqw6v(+`J2QqI+7U+d4!*AVY%Q}*JO<1~n8B%}B^5n6Kx zjZQOw1>p%L2%Azht2b9)v(Dcp=KO`*DR!SE3m_A1sK?!eOxbi6(Im-atMlo+q+O+z ze87x#JVq(GvjG&EAbY`*_diy8sTo{VQH_1n22Mcpujqgg)4Ac7Bc@$~-+J`HyF2?r z_{N`zGb`$WAm(XW<&4Dc?AsuLz!2vX#JJ0lX~36HN0Q6<{F`=W{CrN=MKfZP^FZec znYgt1{k67x&75^4q-5x77c~3xzmM5Ql|Me1d=a0R;2GK@=hUjV*y;%z8${X#NKx7iV`Xa)Zf*Fi)uE7U^Xr1&ZdQc8Mwy7TT zjn8BW?K9(W45|U=+q*HUsxRrk_LEC;>uttV#yZatYB7+%I^l%WF!E7kxOuE+BZOVF zaih93pjAmvwg`5g>X&Z6H`24Pb_<$aqo5M&?KSz4tP`Zi75ON~rJ$zKk8hg0-t(El#b#@qWj2Q4}@0D7WQNKbrM-eV!@eZN!i z!13bTyUvcQSHDSuc?$o`4|OTd7utO^F2uteF8E9rEVClvT0<&9udtkx5Mlk|TuF+G zs)oYDj(pcP(d{1-S$=xE*)CIoe}6;FOvantl@z1Q*OLl{`^03_9^IE0pB;fhut1@k zL@?n40uWdGx*HBhiIek%LjU$%8LJZY^pX$WlTeN5NB$lH>f#FJkL4u*NsI)PWqdcH6Iapq$T_7&lwN-UqhPTbb zju@nH$4-JJ$@gi`d13Gl*_3`gS{{s z>P&0n2}#4xiOfR(pTWGHCMy^Lf(GP9xGX#`o)-K zpNt2{D!HNe=qu+G%JmMGi88!0$gVohtvvd>MDFiRo|O#~Nu+_LqW%;or8GLtzJyUn z)Qv{GP!u8s(AAX?-KH|p+3;7S=Qfu6k@DJpL(a~dhI+#;TP`Ibsr8VJfZ5b zR;0e}LCQA6C)@M+bi5+R=C?F!hGYT%tr05mwnXoo0Q+>EH7|)hQ9s^n>BtcV`(MPt zVGtBdc=HBdJ^)ezNIEf&@raj%(dgdaS{s_*^UYO3fZ^wbNe@E1x@RpP(^)VH$Zfhc z{#@11khLqLVKtB(>4u(YX@k=;D z$Q}k87~1>ey!#bEFvwG4geHgyjT4Bdea*FZtdGI8f`E>y-G!fni`XF=iYPk)>0)y% z6E@r0;yAOMA^N1;6a$j~jzNbVCKWtvm?FS8shw3UXCcm<)(DAO$o-!zrQp54Uz7f` z{QAY}KpzKpg=h7gaaMDve7`sB43n+%9`*j>dvPh=C{v279YHPw10Ags)+~^Iqo;S@ z<0J?AB6TY2?VPd^!8n7e$D8`-P#3u!f4&sl8p2+dzbl$d;vs7AAuG&k(>N7}d4#wp zImFv6|FqIV)lb|#I%;aOhG=>?N~wgu^`wxk@4ggP(%trEE71%%pJPVKXGN>u;d z5BqwulQk8gEjw>4=pxUT_W1%gUnWQDuR`f1OLcI%Lr#s0k%d|lRr`i$kFCI6UR>#{ zIUUX=OrVitd_ymm662;@YO`+>ZoS+58*TZlwCtOIFOo!3K_kNL-`%2S|HVe`EjN`c2~vM=Sl50? zD+>iTiT@t%NVl}+fIUosj*Aqx%`mUkAdXHAB*77>3wzPRG5!mG@7k64eJFlUWF}eEtF=uubEP6UB*UVt2qY^SAK9~t^e))=qC4gwN>sC?=M^ot)KSU z1%~&t$*=d3{xw~60e03JIFTLe7?=01l7O~Y&Oma$|HNLdS_ zKFvOWT~13R{L1H{@Eh~`FY{}U(TSjU-z?+ryQM>EN!{GKl{4&LyW>8TeEz)R0+^ZT zU)hi#-X~kLx>j`sA(ghS+csS@x)Pb~)h+qYNwG^d?JWKj#e@pu2;F45QHd>z!-#xA6p#a$o}W;Br&U1 zW5yChYjKYhFG8-y8*H&^69e2X zEVK{X>>J}?U6sMQnxXwWn!YwuA11nqMv051b@{jVj9IE;aM-vN1Q`GQKvuK57hD`W zM^7xLn-msOK9RRUnlLha zx71qSQ^AXP)Sg=03M~IDNxDDRj*tA5o=IU;aQk)N)}6YKbntwtf6wo|3P3I<6vkZr zhC6RjZZA?5iOH~C+(vc=dJlSx_Fss|M~i-8heOnJ-{ce z#k&BKrAh*lrSxBq-{2lkz34=mNznD- zYGLi1rcPM~Q?1~^jBFv|^_RC~iiJD!ZC(F&CX{abu~c>+pQ&3*(e5qW<3p`T$7|Ut z?b%T2d8UXIgT5ZZz-TMmwW3{qp-cPsjh0z<|81vY>j3ue+0*{R*t_vqsz2X#)co5i zvsAnOu~l24L+Ag9Ua3OlmlwO6=>PR2a=5vg1=hhsI9GpKEUW#~y#(2QOa9zZ*px}> z)H*fn!@mkX{Zk!^(n*)~WEn0WXWbqpt=yHlWh>+=MCEyAfdUiDZO@I%c;sqYR7KE#&i+_1~o;D1cJTKbuN1fH9J~QC3G;q(#%Bu8^8e$)yG~y~RZ<(23 zyiTUe?#e8cx=cAR1IswVEoIpCpDaD^#!pYLo(ozRX zoJmgl&UXNsyWMqECMk%C{YEU9Zr=P*zf)4eH90xS@dBnY%B2&K-v21lZ{P6 z|Mdvgbt=dqz$p7H^ZtCh)zKu(%ZzVQQaZQ$b@6HeX*B72iwZLZ(8d8<%+#%MN3caL ztGWxWJA=kIG(QEGjk!~xG;qLJhime8wuyl9V5X-H2*)^}>0JJf?AbmN>|ZXBRw$_2 zkiwiyY- z4SoewYNv5j1n!)P)@=U%{T+~o!S5cI&jRzs*+D6_a>({<+2N0}F);;nbt!x-F7CS~ zdA6_9d@9^o8#(5G+&;1NlYbr(ozA^~THEQuKkGI5&p!$bRQsni{{QlWaE%oxVly%C z%E`SBp#QV8*>1RViUGE{1^~)k`26`Z3NlTBkMPf~{9*;c>+0$<7`2G?h^fB>^EliN zcL*pcgY`+1akIP=6DbKVUj_`H7vwM*S6nPz6`9>39mBS5M@mPX)#G$M+LA4 zjgAQ`4u_@3l(_I~f8Lg#`7byGfe+Lz|M|=R2R%D|4fq33uL=nz!t9sfp4336NMS5R zl@|rgx@Q*GhH$0&&_eiVO;kRBcG4PI*!&kdj|Z4$RGGy}P((8tXPhi)Wd-Hh`0IS| zUO8JjVKwj0m*VyeG81Hf_!dGTUS=_J5f_&c5=Tge&9o=e%q>Q-T%yMA>y-gF9W1-0pI>@LQc*I)cDd^ z&FR3Fw23Lgk8tASGd@?lZU-> z=_7gIW3lPp!5WVm%vjsGjynrHF|AJ-nV1rQrR1}^s;X+W8|WOPXV3EXmx?=2me)hK z9Y6guBojr1goKE`RvD1@FwbE03kXO!J=v`Z{gvP8Jv}=c4?1WT^j@3$@j)C+>vzmJ zghL&bp?|Nlu-c(8zZ410UtmfQFNo3}=Dip|z82wW(QojdaHvEG;*3+=cziJMX1y?| z`BIy1{233kwK`T)Z?L^Omg0v+l00ykfFF}BCa6>RFc{LAFLsukdzTMxG=r(DyFj9) zFyW{|_C@V$!oHILO7`&Edp@LGCSA8IJ%FvI9F*Ew;wF~Mlu+bkkN$MO)58f^{LENn z2*Q*)mK`{4rX^nNuE;{Rgk^+@mexzX*vR@DnXy$ncYh(Ucz|{51gUba4^2o;e%(4l z$HViferI6dF^|RYnO>1PVUGxHFlEn3#Zw=qsEP z81m;VBWfvr2a9mh29QL)pIPUh-OJHG)SB5_~ z$tZ5CzxQxh9c_o-Xoq965=c_1P8nsL41uN&tmD4HY)FA_Y@Zw-avC<{gMTB{;Exkk z^-AIcC*-jpZH!^mnJf!`cWN^R#?j*Q%oR4E+_`k=5;6=)ZlUPUpcZj%EXlLH;Y#}J zn>Ip6M@Qf;T+ptt(+B?pa^;(lqN23*aJ#aQGSeDU>~ZQY;J6YT8j2?@ER3XE)pXs6 zfsjs%O)X=$$K^p)7-6r#(p-wiY^@g>5fM?LaVK?@9CT^x$1~DD3?5%Bs4@DPr_S~K z*B1M(yuAEeqHRYi4BB=DpQtck`?xU&1H$Uw5=S0|Ec65-iBSXv5UhBEA+N;U9ZM41+0%e`e-3J3~r#>KtITlN!L|!UW+!U6aeQi70w$Haz4ndhLO?A0xWN0Vw!-=rnSG! za;zgqB^Mlvw~%N=2`1-$HPH~zQ);eO;keoXRHx0Io$NIyy3@)OcV2M$pyRxQAA`HL z0VzBV;|@x=ey3EW1;SX{YF1WjkNSUOpraF#k*Uv@9=<3DRNJ(p(BF4a?*3MZT;f0i z`tSYPY%zmyE7CNakk;0_8Lcj>U)1JLfFCJB{qbX`-W_6A)!0hM)%-0)Yvga;^2ejm z(XZ*(acO_n`#x-bZq68lXhaLVz!u>olQyFoQ_tqw=wts5Q7-tEe z9@)Zua_TM3{$rF%y$F@rx#4Y*A5Z&)MLwV2-Ok#B-vp~yg7KEPHh zzj8$Y9DCRAuPx&l%Z6>RV39hzF5vL4o~=`^*}h*pK%X?2Mx?ra$Fh1Ky@5lBD9Sj5 zN-(;%_Abx!Utb{)euwI{TAZ+(z-rB@u*lIG8Z$FyaX{^%@S#a)vyGFC z-^Q?%T1hNj_{`igwawdYfI<(Ci<_TU$dQ$lY{49J1d<|zjT6r9GDu9wqds@|8+u{k zWJnPckdOp~hIT$WOl&h}heA3ZB)H<&KR(=LVq<#^Hh{`D1+v^r?``_QZ|zE#jM&(2 zn91lA+Qf#63SU3J^{*zsf8_YidNGq6BP63Rnx2Xg2NdpXZXL zm6eI$x^4k|0EoMCd5u0PB79m-6MpB<10j;VIYceZa6|cFGcmETkrh81`n3FhtWMMN z%Y!FR=ulBnwX7S74ULV}$fqXe1R;Ej=Xw4Lz72eRnYh~-M>}n8GWlP2G~T79t?%wK zF*9d(kKsM8853NsiqNivtn0)5)sx2s$FK$SqhADZ1AO-OoM2uX?RWTuI?l!!+W-yE zZLmo74Gk|tLS~?Th*m@-1vFmr__!W~VRb-q_)^gvUnd!6z!%zkDk!G5Piwv4>8Q>Fyr6F)u z*kz-#A!k^D6VP!EfEtjbG6yBQ1S~v=hZUpq;wAjN&4eEbAvJZ!WMj~Nf6YnbhqBQZ zy;H+LYA_5s1u^WvC}#8H0SW9s>RnaUD~NSZ60m zczAuEnr=G|?{KX@4n-``y1*KlGfmIENl0jg$yRZ^medfj(lIl?gb+7nczF0ylQZa0 zGN|ByQC5=>*H6Wp=TCr(^>pj^4{*V-A+*2sM9lB-*+@kcLeK;^E*WI4*k(q`qULzV z;6xZMP7^{(4Z^>-TsDSS!M!<=Q+4-q<4BZ#e6TH(z!L(JzXk;sgv7-5ZT%}&HYu=H zpjivu|Ft?&8H20_Dz=JVY@3a`Zpx0j?P@2#SjbLuH-<)I8HBW?Gc9vS&dB?Qe+rEDNYEb4YNyY35TWMmk@O>PIl_z56{ zE1XC>DjK@7(-OF@37(%#dl&(nD2C|QC`&HsWM`l8+O=4KCG7m3k5t%mTEaPOY)?-c z+Aa+gH3=cS%(AtJB##Lvo5p9h&fNC#@o9&Ht9GT(6W(a1pIO8rVdFyG1P|!u*v@=b zO1xZFv8x;WcIJo$@9xr|QuXs+C8n9}Mx08DiZVTUdxtkzSZ<@8JJ$vUI?4aC@I%nyMT4)8%7`c^q+zsK zD|jP>;;!0{peAyQmjRf9sTlM5d5t5>g@TUwaMe!hQ14-@4Ssz)K_0_O`{VF8wo51M6)3JSHL znl&d%57!#-T6N11u}8doFsvK3Xn2Ksb>1vBxE@<`{q7(%z@%7wzvVf?Skl^>%kko* zsegRUWva6P)vEV!W)*OtcyJPG>NlzRtgb=;4)vk7E1&1OAvQv0cp|HVL5-pOQh=5= zt^UTn0KP_3w&hqgHYML1plPukvF}$Y2P7*hrjS}yL*qs7Emt=;);tRTNApmWrae=R zRCfJ-7vuzhOlZYTVPK7#tF5hNq1iNq0y>Be>%1>u?SYUXN_4O0^ibpqyN*mxrYxDT zD}8oPgBkxPOh`F<9X6}92MPH#2UBaLxCs; zU(j*I5JD!zl|)WLaHZS_!oP`f>P0c#!y1>G#NXzKV+nfrySC$qeed%Sa_;)hPQ=6^ zz9L*erfLMi+b8T_k z0PTx9)dFh{H_UXTf*U1C&~X+3s5D@0M$o`|8=;qvBqV@v7qcxzq^5pne{&9AG-2vh zKg>+pU1>)s$-hUju5WHmf%#$+8HM#V?$4#jgS3JjCngt23I>rZg6-efhHuj^9yIC8 z>3eke$+QPOprHC$Lt7$80cN$c|JT|w}Yv}r(i$MV_@_E zcordiLbJcWKVkEk<=Nu!XU@g`0+9vhGLs+YL_|bt$+ID%6hV+xuxk2Euc_MNxff$$ zI%8N)50YC}4gw*!g;U#rQeM>ocf=Hr*P_A%dVaQ=Bb!Y5l#W02!r9SHNqp9H5cif? zjKo6>9S1hwqI?1!Wu<%y7p@3ZJ}3(WLxXJ|sIX^EaoZt7Lgu2OWfk|t!_}G;&{o}5 z&bEmE3MQ=yVu3vn%Usvs#vl?-7#s-Qu!Bh0kpO50(;oOQY23C5V7D0HlENcs zJUmXPT<*QDo432|x@U#hOh^}$FXmT*ab*QoIzh8B@E5>R3WNMp!fMFiiAd3A1;@1!U$Ysjx6Gb!GV$rI^2NxGe_Z^4plst zX+5Z|dKEQozlMpcP#B6qBLQ6IEqqllC4YEfVd0b< zIYI@C47vn26j6+b7Y%_S6&#+5@Iw$@(7;#_O$guA{4@>RM-z=Cx`thE@1az|Qw@!b zxQ1F$o_PM(82GtU<%&X z;6&PjB&@>~=q@o;swHQpgh-A`!0s&wJ17caC^L?DT?|#mGD!ka4ARkWpenQGWSbqS zzod4a4vP@pNx1{=G*~Ggu;iDisBj+le*)I4nDzu-TL34zAee%C4UB5%Q1tcnk;pd@ z_>d8ig!{P;8mRlzb4?UP0DvDC3>>Y1z`^^)fCrF>BAZQN#|G3gOkk#{iFyh_%zk#8 z!G9~=gP8|spZ@`wg+WngAEyg2&+GqkM0G;*>K=RflT#lN6!=I!kQ2+lujl>W0G$qP AmjD0& diff --git a/api/searchindex.js b/api/searchindex.js index a4db6dfd9..a1b4199ed 100644 --- a/api/searchindex.js +++ b/api/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["api", "contributing", "index", "intro", "reference/api/_autosummary/cyclops.data.features.medical_image", "reference/api/_autosummary/cyclops.data.features.medical_image.MedicalImage", "reference/api/_autosummary/cyclops.data.slicer", "reference/api/_autosummary/cyclops.data.slicer.SliceSpec", "reference/api/_autosummary/cyclops.data.slicer.compound_filter", "reference/api/_autosummary/cyclops.data.slicer.filter_datetime", "reference/api/_autosummary/cyclops.data.slicer.filter_non_null", "reference/api/_autosummary/cyclops.data.slicer.filter_range", "reference/api/_autosummary/cyclops.data.slicer.filter_string_contains", "reference/api/_autosummary/cyclops.data.slicer.filter_value", "reference/api/_autosummary/cyclops.data.slicer.is_datetime", "reference/api/_autosummary/cyclops.data.slicer.overall", "reference/api/_autosummary/cyclops.evaluate.evaluator", "reference/api/_autosummary/cyclops.evaluate.evaluator.evaluate", "reference/api/_autosummary/cyclops.evaluate.fairness.config", "reference/api/_autosummary/cyclops.evaluate.fairness.config.FairnessConfig", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator.evaluate_fairness", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator.warn_too_many_unique_values", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.Accuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.BinaryAccuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.MulticlassAccuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.MultilabelAccuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.AUROC", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.BinaryAUROC", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.MulticlassAUROC", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.MultilabelAUROC", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.BinaryF1Score", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.BinaryFbetaScore", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.F1Score", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.FbetaScore", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MulticlassF1Score", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MultilabelF1Score", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore", "reference/api/_autosummary/cyclops.evaluate.metrics.factory", "reference/api/_autosummary/cyclops.evaluate.metrics.factory.create_metric", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.accuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.auroc", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.binary_f1_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.binary_fbeta_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.f1_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.fbeta_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multiclass_f1_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multiclass_fbeta_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multilabel_f1_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multilabel_fbeta_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.binary_precision", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.binary_recall", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multiclass_precision", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multiclass_recall", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multilabel_precision", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multilabel_recall", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.precision", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.recall", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.binary_roc_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.multiclass_roc_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.multilabel_roc_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.roc_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.sensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.specificity", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.stat_scores", "reference/api/_autosummary/cyclops.evaluate.metrics.metric", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.Metric", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.MetricCollection", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.OperatorMetric", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.BinaryPrecision", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.BinaryRecall", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MulticlassPrecision", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MulticlassRecall", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MultilabelPrecision", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MultilabelRecall", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.Precision", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.Recall", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.roc", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.BinaryROCCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.MulticlassROCCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.MultilabelROCCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.ROCCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.BinarySensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.Sensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.BinarySpecificity", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.MulticlassSpecificity", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.MultilabelSpecificity", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.Specificity", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.BinaryStatScores", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.MulticlassStatScores", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.MultilabelStatScores", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.StatScores", "reference/api/_autosummary/cyclops.monitor.clinical_applicator", "reference/api/_autosummary/cyclops.monitor.clinical_applicator.ClinicalShiftApplicator", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.binary_noise_shift", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.feature_association_shift", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.feature_swap_shift", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.gaussian_noise_shift", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.knockout_shift", "reference/api/_autosummary/cyclops.query.base", "reference/api/_autosummary/cyclops.query.base.DatasetQuerier", "reference/api/_autosummary/cyclops.query.eicu", "reference/api/_autosummary/cyclops.query.eicu.EICUQuerier", "reference/api/_autosummary/cyclops.query.gemini", "reference/api/_autosummary/cyclops.query.gemini.GEMINIQuerier", "reference/api/_autosummary/cyclops.query.interface", "reference/api/_autosummary/cyclops.query.interface.QueryInterface", "reference/api/_autosummary/cyclops.query.mimiciii", "reference/api/_autosummary/cyclops.query.mimiciii.MIMICIIIQuerier", "reference/api/_autosummary/cyclops.query.mimiciv", "reference/api/_autosummary/cyclops.query.mimiciv.MIMICIVQuerier", "reference/api/_autosummary/cyclops.query.omop", "reference/api/_autosummary/cyclops.query.omop.OMOPQuerier", "reference/api/_autosummary/cyclops.query.ops", "reference/api/_autosummary/cyclops.query.ops.AddColumn", "reference/api/_autosummary/cyclops.query.ops.AddDeltaColumn", "reference/api/_autosummary/cyclops.query.ops.AddDeltaConstant", "reference/api/_autosummary/cyclops.query.ops.AddNumeric", "reference/api/_autosummary/cyclops.query.ops.And", "reference/api/_autosummary/cyclops.query.ops.Apply", "reference/api/_autosummary/cyclops.query.ops.Cast", "reference/api/_autosummary/cyclops.query.ops.ConditionAfterDate", "reference/api/_autosummary/cyclops.query.ops.ConditionBeforeDate", "reference/api/_autosummary/cyclops.query.ops.ConditionEndsWith", "reference/api/_autosummary/cyclops.query.ops.ConditionEquals", "reference/api/_autosummary/cyclops.query.ops.ConditionGreaterThan", "reference/api/_autosummary/cyclops.query.ops.ConditionIn", "reference/api/_autosummary/cyclops.query.ops.ConditionInMonths", "reference/api/_autosummary/cyclops.query.ops.ConditionInYears", "reference/api/_autosummary/cyclops.query.ops.ConditionLessThan", "reference/api/_autosummary/cyclops.query.ops.ConditionLike", "reference/api/_autosummary/cyclops.query.ops.ConditionRegexMatch", "reference/api/_autosummary/cyclops.query.ops.ConditionStartsWith", "reference/api/_autosummary/cyclops.query.ops.ConditionSubstring", "reference/api/_autosummary/cyclops.query.ops.Distinct", "reference/api/_autosummary/cyclops.query.ops.Drop", "reference/api/_autosummary/cyclops.query.ops.DropEmpty", "reference/api/_autosummary/cyclops.query.ops.DropNulls", "reference/api/_autosummary/cyclops.query.ops.ExtractTimestampComponent", "reference/api/_autosummary/cyclops.query.ops.FillNull", "reference/api/_autosummary/cyclops.query.ops.GroupByAggregate", "reference/api/_autosummary/cyclops.query.ops.Join", "reference/api/_autosummary/cyclops.query.ops.Keep", "reference/api/_autosummary/cyclops.query.ops.Limit", "reference/api/_autosummary/cyclops.query.ops.Literal", "reference/api/_autosummary/cyclops.query.ops.Or", "reference/api/_autosummary/cyclops.query.ops.OrderBy", "reference/api/_autosummary/cyclops.query.ops.QueryOp", "reference/api/_autosummary/cyclops.query.ops.RandomizeOrder", "reference/api/_autosummary/cyclops.query.ops.Rename", "reference/api/_autosummary/cyclops.query.ops.Reorder", "reference/api/_autosummary/cyclops.query.ops.ReorderAfter", "reference/api/_autosummary/cyclops.query.ops.Sequential", "reference/api/_autosummary/cyclops.query.ops.Substring", "reference/api/_autosummary/cyclops.query.ops.Trim", "reference/api/_autosummary/cyclops.query.ops.Union", "reference/api/_autosummary/cyclops.report.report", "reference/api/_autosummary/cyclops.report.report.ModelCardReport", "reference/api/_autosummary/cyclops.tasks.cxr_classification", "reference/api/_autosummary/cyclops.tasks.cxr_classification.CXRClassificationTask", "reference/api/_autosummary/cyclops.tasks.mortality_prediction", "reference/api/_autosummary/cyclops.tasks.mortality_prediction.MortalityPredictionTask", "reference/api/cyclops.data", "reference/api/cyclops.evaluate", "reference/api/cyclops.monitor", "reference/api/cyclops.query", "reference/api/cyclops.report", "reference/api/cyclops.tasks", "tutorials", "tutorials/eicu/query_api", "tutorials/gemini/query_api", "tutorials/kaggle/heart_failure_prediction", "tutorials/mimiciii/query_api", "tutorials/mimiciv/query_api", "tutorials/nihcxr/cxr_classification", "tutorials/nihcxr/monitor_api", "tutorials/omop/query_api", "tutorials/synthea/los_prediction", "tutorials_monitor", "tutorials_query", "tutorials_use_cases"], "filenames": ["api.rst", "contributing.rst", "index.rst", "intro.rst", "reference/api/_autosummary/cyclops.data.features.medical_image.rst", "reference/api/_autosummary/cyclops.data.features.medical_image.MedicalImage.rst", "reference/api/_autosummary/cyclops.data.slicer.rst", "reference/api/_autosummary/cyclops.data.slicer.SliceSpec.rst", "reference/api/_autosummary/cyclops.data.slicer.compound_filter.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_datetime.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_non_null.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_range.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_string_contains.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_value.rst", "reference/api/_autosummary/cyclops.data.slicer.is_datetime.rst", "reference/api/_autosummary/cyclops.data.slicer.overall.rst", "reference/api/_autosummary/cyclops.evaluate.evaluator.rst", "reference/api/_autosummary/cyclops.evaluate.evaluator.evaluate.rst", "reference/api/_autosummary/cyclops.evaluate.fairness.config.rst", "reference/api/_autosummary/cyclops.evaluate.fairness.config.FairnessConfig.rst", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator.rst", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator.evaluate_fairness.rst", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator.warn_too_many_unique_values.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.Accuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.BinaryAccuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.AUROC.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.BinaryAUROC.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.MulticlassAUROC.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.MultilabelAUROC.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.BinaryF1Score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.F1Score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.FbetaScore.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MulticlassF1Score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MultilabelF1Score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.factory.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.factory.create_metric.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.accuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.auroc.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.binary_f1_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.binary_fbeta_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.f1_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.fbeta_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multiclass_f1_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multiclass_fbeta_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multilabel_f1_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multilabel_fbeta_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.binary_precision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.binary_recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multiclass_precision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multiclass_recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multilabel_precision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multilabel_recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.precision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.binary_roc_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.multiclass_roc_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.multilabel_roc_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.roc_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.sensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.specificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.stat_scores.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.Metric.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.MetricCollection.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.OperatorMetric.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.BinaryPrecision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.BinaryRecall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MulticlassRecall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MultilabelRecall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.Precision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.Recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.BinaryROCCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.MulticlassROCCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.MultilabelROCCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.ROCCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.BinarySensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.Sensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.BinarySpecificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.MulticlassSpecificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.MultilabelSpecificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.Specificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.BinaryStatScores.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.StatScores.rst", "reference/api/_autosummary/cyclops.monitor.clinical_applicator.rst", "reference/api/_autosummary/cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.binary_noise_shift.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.feature_association_shift.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.feature_swap_shift.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.gaussian_noise_shift.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.knockout_shift.rst", "reference/api/_autosummary/cyclops.query.base.rst", "reference/api/_autosummary/cyclops.query.base.DatasetQuerier.rst", "reference/api/_autosummary/cyclops.query.eicu.rst", "reference/api/_autosummary/cyclops.query.eicu.EICUQuerier.rst", "reference/api/_autosummary/cyclops.query.gemini.rst", "reference/api/_autosummary/cyclops.query.gemini.GEMINIQuerier.rst", "reference/api/_autosummary/cyclops.query.interface.rst", "reference/api/_autosummary/cyclops.query.interface.QueryInterface.rst", "reference/api/_autosummary/cyclops.query.mimiciii.rst", "reference/api/_autosummary/cyclops.query.mimiciii.MIMICIIIQuerier.rst", "reference/api/_autosummary/cyclops.query.mimiciv.rst", "reference/api/_autosummary/cyclops.query.mimiciv.MIMICIVQuerier.rst", "reference/api/_autosummary/cyclops.query.omop.rst", "reference/api/_autosummary/cyclops.query.omop.OMOPQuerier.rst", "reference/api/_autosummary/cyclops.query.ops.rst", "reference/api/_autosummary/cyclops.query.ops.AddColumn.rst", "reference/api/_autosummary/cyclops.query.ops.AddDeltaColumn.rst", "reference/api/_autosummary/cyclops.query.ops.AddDeltaConstant.rst", "reference/api/_autosummary/cyclops.query.ops.AddNumeric.rst", "reference/api/_autosummary/cyclops.query.ops.And.rst", "reference/api/_autosummary/cyclops.query.ops.Apply.rst", "reference/api/_autosummary/cyclops.query.ops.Cast.rst", "reference/api/_autosummary/cyclops.query.ops.ConditionAfterDate.rst", "reference/api/_autosummary/cyclops.query.ops.ConditionBeforeDate.rst", "reference/api/_autosummary/cyclops.query.ops.ConditionEndsWith.rst", "reference/api/_autosummary/cyclops.query.ops.ConditionEquals.rst", "reference/api/_autosummary/cyclops.query.ops.ConditionGreaterThan.rst", "reference/api/_autosummary/cyclops.query.ops.ConditionIn.rst", "reference/api/_autosummary/cyclops.query.ops.ConditionInMonths.rst", "reference/api/_autosummary/cyclops.query.ops.ConditionInYears.rst", "reference/api/_autosummary/cyclops.query.ops.ConditionLessThan.rst", "reference/api/_autosummary/cyclops.query.ops.ConditionLike.rst", "reference/api/_autosummary/cyclops.query.ops.ConditionRegexMatch.rst", "reference/api/_autosummary/cyclops.query.ops.ConditionStartsWith.rst", "reference/api/_autosummary/cyclops.query.ops.ConditionSubstring.rst", "reference/api/_autosummary/cyclops.query.ops.Distinct.rst", "reference/api/_autosummary/cyclops.query.ops.Drop.rst", "reference/api/_autosummary/cyclops.query.ops.DropEmpty.rst", "reference/api/_autosummary/cyclops.query.ops.DropNulls.rst", "reference/api/_autosummary/cyclops.query.ops.ExtractTimestampComponent.rst", "reference/api/_autosummary/cyclops.query.ops.FillNull.rst", "reference/api/_autosummary/cyclops.query.ops.GroupByAggregate.rst", "reference/api/_autosummary/cyclops.query.ops.Join.rst", "reference/api/_autosummary/cyclops.query.ops.Keep.rst", "reference/api/_autosummary/cyclops.query.ops.Limit.rst", "reference/api/_autosummary/cyclops.query.ops.Literal.rst", "reference/api/_autosummary/cyclops.query.ops.Or.rst", "reference/api/_autosummary/cyclops.query.ops.OrderBy.rst", "reference/api/_autosummary/cyclops.query.ops.QueryOp.rst", "reference/api/_autosummary/cyclops.query.ops.RandomizeOrder.rst", "reference/api/_autosummary/cyclops.query.ops.Rename.rst", "reference/api/_autosummary/cyclops.query.ops.Reorder.rst", "reference/api/_autosummary/cyclops.query.ops.ReorderAfter.rst", "reference/api/_autosummary/cyclops.query.ops.Sequential.rst", "reference/api/_autosummary/cyclops.query.ops.Substring.rst", "reference/api/_autosummary/cyclops.query.ops.Trim.rst", "reference/api/_autosummary/cyclops.query.ops.Union.rst", "reference/api/_autosummary/cyclops.report.report.rst", "reference/api/_autosummary/cyclops.report.report.ModelCardReport.rst", "reference/api/_autosummary/cyclops.tasks.cxr_classification.rst", "reference/api/_autosummary/cyclops.tasks.cxr_classification.CXRClassificationTask.rst", "reference/api/_autosummary/cyclops.tasks.mortality_prediction.rst", "reference/api/_autosummary/cyclops.tasks.mortality_prediction.MortalityPredictionTask.rst", "reference/api/cyclops.data.rst", "reference/api/cyclops.evaluate.rst", "reference/api/cyclops.monitor.rst", "reference/api/cyclops.query.rst", "reference/api/cyclops.report.rst", "reference/api/cyclops.tasks.rst", "tutorials.rst", "tutorials/eicu/query_api.ipynb", "tutorials/gemini/query_api.ipynb", "tutorials/kaggle/heart_failure_prediction.ipynb", "tutorials/mimiciii/query_api.ipynb", "tutorials/mimiciv/query_api.ipynb", "tutorials/nihcxr/cxr_classification.ipynb", "tutorials/nihcxr/monitor_api.ipynb", "tutorials/omop/query_api.ipynb", "tutorials/synthea/los_prediction.ipynb", "tutorials_monitor.rst", "tutorials_query.rst", "tutorials_use_cases.rst"], "titles": ["API Reference", "Contributing to cyclops", "Welcome to cyclops\u2019s documentation!", "\ud83d\udc23 Getting Started", "cyclops.data.features.medical_image", "cyclops.data.features.medical_image.MedicalImage", "cyclops.data.slicer", "cyclops.data.slicer.SliceSpec", "cyclops.data.slicer.compound_filter", "cyclops.data.slicer.filter_datetime", "cyclops.data.slicer.filter_non_null", "cyclops.data.slicer.filter_range", "cyclops.data.slicer.filter_string_contains", "cyclops.data.slicer.filter_value", "cyclops.data.slicer.is_datetime", "cyclops.data.slicer.overall", "cyclops.evaluate.evaluator", "cyclops.evaluate.evaluator.evaluate", "cyclops.evaluate.fairness.config", "cyclops.evaluate.fairness.config.FairnessConfig", "cyclops.evaluate.fairness.evaluator", "cyclops.evaluate.fairness.evaluator.evaluate_fairness", "cyclops.evaluate.fairness.evaluator.warn_too_many_unique_values", "cyclops.evaluate.metrics.accuracy", "cyclops.evaluate.metrics.accuracy.Accuracy", "cyclops.evaluate.metrics.accuracy.BinaryAccuracy", "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy", "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy", "cyclops.evaluate.metrics.auroc", "cyclops.evaluate.metrics.auroc.AUROC", "cyclops.evaluate.metrics.auroc.BinaryAUROC", "cyclops.evaluate.metrics.auroc.MulticlassAUROC", "cyclops.evaluate.metrics.auroc.MultilabelAUROC", "cyclops.evaluate.metrics.f_beta", "cyclops.evaluate.metrics.f_beta.BinaryF1Score", "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore", "cyclops.evaluate.metrics.f_beta.F1Score", "cyclops.evaluate.metrics.f_beta.FbetaScore", "cyclops.evaluate.metrics.f_beta.MulticlassF1Score", "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore", "cyclops.evaluate.metrics.f_beta.MultilabelF1Score", "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore", "cyclops.evaluate.metrics.factory", "cyclops.evaluate.metrics.factory.create_metric", "cyclops.evaluate.metrics.functional.accuracy", "cyclops.evaluate.metrics.functional.auroc", "cyclops.evaluate.metrics.functional.f_beta", "cyclops.evaluate.metrics.functional.f_beta.binary_f1_score", "cyclops.evaluate.metrics.functional.f_beta.binary_fbeta_score", "cyclops.evaluate.metrics.functional.f_beta.f1_score", "cyclops.evaluate.metrics.functional.f_beta.fbeta_score", "cyclops.evaluate.metrics.functional.f_beta.multiclass_f1_score", "cyclops.evaluate.metrics.functional.f_beta.multiclass_fbeta_score", "cyclops.evaluate.metrics.functional.f_beta.multilabel_f1_score", "cyclops.evaluate.metrics.functional.f_beta.multilabel_fbeta_score", "cyclops.evaluate.metrics.functional.precision_recall", "cyclops.evaluate.metrics.functional.precision_recall.binary_precision", "cyclops.evaluate.metrics.functional.precision_recall.binary_recall", "cyclops.evaluate.metrics.functional.precision_recall.multiclass_precision", "cyclops.evaluate.metrics.functional.precision_recall.multiclass_recall", "cyclops.evaluate.metrics.functional.precision_recall.multilabel_precision", "cyclops.evaluate.metrics.functional.precision_recall.multilabel_recall", "cyclops.evaluate.metrics.functional.precision_recall.precision", "cyclops.evaluate.metrics.functional.precision_recall.recall", "cyclops.evaluate.metrics.functional.precision_recall_curve", "cyclops.evaluate.metrics.functional.roc", "cyclops.evaluate.metrics.functional.roc.binary_roc_curve", "cyclops.evaluate.metrics.functional.roc.multiclass_roc_curve", "cyclops.evaluate.metrics.functional.roc.multilabel_roc_curve", "cyclops.evaluate.metrics.functional.roc.roc_curve", "cyclops.evaluate.metrics.functional.sensitivity", "cyclops.evaluate.metrics.functional.specificity", "cyclops.evaluate.metrics.functional.stat_scores", "cyclops.evaluate.metrics.metric", "cyclops.evaluate.metrics.metric.Metric", "cyclops.evaluate.metrics.metric.MetricCollection", "cyclops.evaluate.metrics.metric.OperatorMetric", "cyclops.evaluate.metrics.precision_recall", "cyclops.evaluate.metrics.precision_recall.BinaryPrecision", "cyclops.evaluate.metrics.precision_recall.BinaryRecall", "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision", "cyclops.evaluate.metrics.precision_recall.MulticlassRecall", "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision", "cyclops.evaluate.metrics.precision_recall.MultilabelRecall", "cyclops.evaluate.metrics.precision_recall.Precision", "cyclops.evaluate.metrics.precision_recall.Recall", "cyclops.evaluate.metrics.precision_recall_curve", "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve", "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve", "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve", "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve", "cyclops.evaluate.metrics.roc", "cyclops.evaluate.metrics.roc.BinaryROCCurve", "cyclops.evaluate.metrics.roc.MulticlassROCCurve", "cyclops.evaluate.metrics.roc.MultilabelROCCurve", "cyclops.evaluate.metrics.roc.ROCCurve", "cyclops.evaluate.metrics.sensitivity", "cyclops.evaluate.metrics.sensitivity.BinarySensitivity", "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity", "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity", "cyclops.evaluate.metrics.sensitivity.Sensitivity", "cyclops.evaluate.metrics.specificity", "cyclops.evaluate.metrics.specificity.BinarySpecificity", "cyclops.evaluate.metrics.specificity.MulticlassSpecificity", "cyclops.evaluate.metrics.specificity.MultilabelSpecificity", "cyclops.evaluate.metrics.specificity.Specificity", "cyclops.evaluate.metrics.stat_scores", "cyclops.evaluate.metrics.stat_scores.BinaryStatScores", "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores", "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores", "cyclops.evaluate.metrics.stat_scores.StatScores", "cyclops.monitor.clinical_applicator", "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator", "cyclops.monitor.synthetic_applicator", "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator", "cyclops.monitor.synthetic_applicator.binary_noise_shift", "cyclops.monitor.synthetic_applicator.feature_association_shift", "cyclops.monitor.synthetic_applicator.feature_swap_shift", "cyclops.monitor.synthetic_applicator.gaussian_noise_shift", "cyclops.monitor.synthetic_applicator.knockout_shift", "cyclops.query.base", "cyclops.query.base.DatasetQuerier", "cyclops.query.eicu", "cyclops.query.eicu.EICUQuerier", "cyclops.query.gemini", "cyclops.query.gemini.GEMINIQuerier", "cyclops.query.interface", "cyclops.query.interface.QueryInterface", "cyclops.query.mimiciii", "cyclops.query.mimiciii.MIMICIIIQuerier", "cyclops.query.mimiciv", "cyclops.query.mimiciv.MIMICIVQuerier", "cyclops.query.omop", "cyclops.query.omop.OMOPQuerier", "cyclops.query.ops", "cyclops.query.ops.AddColumn", "cyclops.query.ops.AddDeltaColumn", "cyclops.query.ops.AddDeltaConstant", "cyclops.query.ops.AddNumeric", "cyclops.query.ops.And", "cyclops.query.ops.Apply", "cyclops.query.ops.Cast", "cyclops.query.ops.ConditionAfterDate", "cyclops.query.ops.ConditionBeforeDate", "cyclops.query.ops.ConditionEndsWith", "cyclops.query.ops.ConditionEquals", "cyclops.query.ops.ConditionGreaterThan", "cyclops.query.ops.ConditionIn", "cyclops.query.ops.ConditionInMonths", "cyclops.query.ops.ConditionInYears", "cyclops.query.ops.ConditionLessThan", "cyclops.query.ops.ConditionLike", "cyclops.query.ops.ConditionRegexMatch", "cyclops.query.ops.ConditionStartsWith", "cyclops.query.ops.ConditionSubstring", "cyclops.query.ops.Distinct", "cyclops.query.ops.Drop", "cyclops.query.ops.DropEmpty", "cyclops.query.ops.DropNulls", "cyclops.query.ops.ExtractTimestampComponent", "cyclops.query.ops.FillNull", "cyclops.query.ops.GroupByAggregate", "cyclops.query.ops.Join", "cyclops.query.ops.Keep", "cyclops.query.ops.Limit", "cyclops.query.ops.Literal", "cyclops.query.ops.Or", "cyclops.query.ops.OrderBy", "cyclops.query.ops.QueryOp", "cyclops.query.ops.RandomizeOrder", "cyclops.query.ops.Rename", "cyclops.query.ops.Reorder", "cyclops.query.ops.ReorderAfter", "cyclops.query.ops.Sequential", "cyclops.query.ops.Substring", "cyclops.query.ops.Trim", "cyclops.query.ops.Union", "cyclops.report.report", "cyclops.report.report.ModelCardReport", "cyclops.tasks.cxr_classification", "cyclops.tasks.cxr_classification.CXRClassificationTask", "cyclops.tasks.mortality_prediction", "cyclops.tasks.mortality_prediction.MortalityPredictionTask", "cyclops.data", "cyclops.evaluate", "cyclops.monitor", "cyclops.query", "cyclops.report", "cyclops.tasks", "Tutorials", "eICU-CRD query API tutorial", "GEMINI query API tutorial", "Heart Failure Prediction", "MIMIC-III query API tutorial", "MIMIC-IV query API tutorial", "Chest X-Ray Disease Classification", "NIHCXR Clinical Drift Experiments Tutorial", "OMOP query API tutorial", "Prolonged Length of Stay Prediction", "monitor API", "query API", "Example use cases"], "terms": {"cyclop": [0, 189, 190, 191, 192, 193, 195, 196, 197, 198, 200], "queri": [0, 2, 3, 189, 201], "interfac": [0, 125, 129, 131, 133, 178], "queryinterfac": [0, 125, 129, 131, 133], "__init__": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 123, 125, 127, 129, 131, 133, 173, 180, 182], "clear_data": [0, 127], "data": [0, 2, 3, 24, 26, 27, 49, 50, 52, 54, 69, 72, 89, 95, 112, 114, 115, 116, 117, 118, 119, 125, 127, 129, 131, 169, 178, 180, 182, 189, 194, 195, 196, 197, 199], "join": [0, 127, 131, 190, 191, 192, 193, 194, 195, 197, 198], "op": [0, 127, 131, 189, 190, 191, 193, 197, 198, 200], "run": [0, 1, 3, 121, 127, 189, 190, 191, 192, 193, 197, 198, 200], "save": [0, 127, 178, 182, 192, 198], "union": [0, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 127, 133, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 169, 170, 171, 172, 173, 174, 175, 178, 180, 182], "union_al": [0, 127, 176], "addcolumn": [0, 198], "__call__": [0, 5, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176], "adddeltacolumn": [0, 194], "adddeltaconst": 0, "addnumer": 0, "And": [0, 194], "appli": [0, 1, 8, 25, 29, 59, 62, 63, 66, 67, 68, 75, 76, 93, 104, 109, 110, 112, 131, 135, 136, 137, 138, 175, 180, 182, 192, 198], "cast": [0, 5, 121, 123, 125, 127, 129, 131, 133, 191, 192, 194, 198], "conditionafterd": [0, 191, 194, 197], "conditionbefored": [0, 191], "conditionendswith": 0, "conditionequ": [0, 190, 191, 193, 194, 198], "conditiongreaterthan": [0, 198], "conditionin": [0, 139, 166, 198], "conditioninmonth": 0, "conditioninyear": [0, 194], "conditionlessthan": [0, 193, 198], "conditionlik": [0, 139, 166, 194], "conditionregexmatch": [0, 189, 200], "conditionstartswith": 0, "conditionsubstr": [0, 190, 191, 193, 194, 197], "distinct": [0, 191], "drop": [0, 173, 189, 192, 201], "dropempti": [0, 191], "dropnul": 0, "extracttimestampcompon": [0, 198], "fillnul": 0, "groupbyaggreg": [0, 191, 198], "keep": [0, 7, 17, 21, 162, 189, 198, 200], "limit": [0, 21, 127, 169, 189, 192, 193, 194, 195, 197, 198, 200], "liter": [0, 24, 25, 26, 27, 29, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 69, 78, 79, 80, 81, 82, 83, 84, 85, 90, 95, 97, 98, 99, 100, 103, 104, 105, 110, 127, 178], "Or": 0, "orderbi": [0, 191], "queryop": [0, 127, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 169, 170, 171, 172, 173, 174, 175, 176], "randomizeord": 0, "renam": [0, 192, 195, 198], "reorder": [0, 172], "reorderaft": 0, "sequenti": [0, 127, 190, 191, 193, 194, 197, 198], "__add__": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 173], "append": [0, 173, 195, 198], "extend": [0, 173, 198], "insert": [0, 173], "pop": [0, 75, 173, 192, 198], "substr": [0, 12, 154, 189, 200], "trim": 0, "base": [0, 3, 5, 7, 17, 19, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 123, 125, 127, 129, 131, 133, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 180, 182, 189, 192, 200, 201], "datasetqueri": [0, 123, 125, 129, 131, 133, 198], "db": [0, 121, 191, 194], "get_tabl": [0, 121, 123, 125, 129, 131, 133], "list_column": [0, 121, 123, 125, 129, 131, 133, 198], "list_custom_t": [0, 121, 123, 125, 129, 131, 133, 193], "list_schema": [0, 121, 123, 125, 129, 131, 133, 194, 197], "list_tabl": [0, 121, 123, 125, 129, 131, 133, 190, 191, 197], "dataset": [0, 3, 6, 7, 16, 17, 19, 21, 26, 38, 39, 51, 52, 58, 61, 68, 69, 80, 81, 83, 88, 89, 90, 94, 95, 98, 99, 103, 104, 112, 114, 121, 123, 125, 127, 129, 131, 133, 178, 180, 182, 183, 189, 199, 200, 201], "mimiciii": [0, 193, 197], "mimiciiiqueri": [0, 189, 197, 200], "chartev": [0, 129, 131, 193, 194], "diagnos": [0, 125, 129, 131, 189, 200], "labev": [0, 129, 131, 193], "mimiciv": [0, 194], "mimicivqueri": [0, 189, 200], "patient": [0, 125, 131, 189, 192, 195, 196, 198, 200, 201], "eicu": [0, 3, 189, 200], "eicuqueri": [0, 189, 200], "omop": [0, 189, 200], "omopqueri": [0, 189, 200], "map_concept_ids_to_nam": [0, 133, 197], "measur": [0, 133, 189, 200], "observ": [0, 62, 133, 192, 195, 197, 198, 201], "person": [0, 133, 197], "visit_detail": [0, 133, 197], "visit_occurr": [0, 133, 197], "gemini": [0, 121, 123, 129, 131, 133, 189, 200], "geminiqueri": [0, 189, 200], "care_unit": [0, 125], "imag": [0, 4, 5, 17, 21, 118, 125, 178, 180, 183, 189, 195, 196], "ip_admin": [0, 125], "room_transf": [0, 125], "slicer": [0, 192, 195, 196, 198], "compound_filt": 0, "filter_datetim": 0, "filter_non_nul": 0, "filter_rang": 0, "filter_string_contain": 0, "filter_valu": [0, 195], "is_datetim": 0, "overal": [0, 7, 21, 178, 192, 195, 198], "slicespec": [0, 17, 112, 180, 192, 195, 196, 198], "spec_list": [0, 7, 192, 195, 196, 198], "include_overal": [0, 7], "valid": [0, 7, 9, 17, 178, 180, 182, 192], "column_nam": [0, 7, 9, 10, 11, 12, 13, 195], "_registri": [0, 7], "add_slice_spec": [0, 7], "get_slic": [0, 7], "slice": [0, 3, 7, 8, 17, 21, 173, 178, 180, 182, 192, 195, 198], "featur": [0, 7, 9, 10, 11, 12, 13, 15, 17, 112, 116, 117, 178, 180, 182, 189, 195, 201], "medical_imag": 0, "medicalimag": 0, "cast_storag": [0, 5], "decode_exampl": [0, 5], "embed_storag": [0, 5], "encode_exampl": [0, 5], "flatten": [0, 5, 192, 198], "task": [0, 2, 3, 24, 25, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 44, 47, 48, 49, 50, 51, 53, 54, 58, 60, 61, 62, 63, 66, 67, 68, 69, 78, 80, 81, 82, 83, 84, 85, 90, 92, 93, 94, 95, 98, 99, 100, 102, 103, 104, 105, 110, 189, 195, 201], "cxr_classif": 0, "cxrclassificationtask": 0, "add_model": [0, 180, 182], "data_typ": [0, 180, 182], "evalu": [0, 2, 3, 178, 180, 182, 189, 195, 200, 201], "get_model": [0, 180, 182], "list_model": [0, 180, 182, 192, 198], "models_count": [0, 180, 182], "predict": [0, 3, 17, 19, 21, 24, 26, 27, 30, 31, 32, 34, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 67, 80, 81, 82, 84, 85, 87, 88, 89, 92, 93, 94, 98, 100, 102, 103, 104, 105, 107, 108, 109, 110, 180, 181, 182, 189], "task_typ": [0, 180, 182, 192, 195, 198], "mortality_predict": [0, 192, 198], "mortalitypredictiontask": [0, 192, 198], "list_models_param": [0, 182, 192, 198], "load_model": [0, 182], "save_model": [0, 182], "train": [0, 3, 17, 178, 180, 182, 189, 195, 199, 201], "metric": [0, 17, 19, 21, 178, 180, 182, 189, 192, 198, 201], "__mul__": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "add_stat": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "clone": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "comput": [0, 17, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 127, 180, 182, 189, 201], "reset_st": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "update_st": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "metriccollect": [0, 17, 21, 180, 182, 192, 198], "add_metr": [0, 75], "clear": [0, 75, 127], "get": [0, 2, 75, 121, 123, 125, 127, 129, 131, 133, 155, 174, 180, 182, 189, 192, 198, 200, 201], "item": [0, 75, 192, 195, 196, 198], "kei": [0, 7, 17, 21, 75, 161, 170, 173, 178, 192, 195, 196, 198], "popitem": [0, 75], "setdefault": [0, 75], "updat": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 190, 192, 193, 194, 195, 196, 197, 198], "valu": [0, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 138, 145, 146, 147, 150, 157, 158, 160, 161, 162, 165, 178, 189, 195, 196, 198, 201], "operatormetr": 0, "factori": [0, 7, 195], "create_metr": [0, 192, 195, 198], "accuraci": [0, 192, 198], "binaryaccuraci": [0, 192, 198], "multiclassaccuraci": 0, "multilabelaccuraci": 0, "auroc": [0, 189, 192, 198, 201], "binaryauroc": [0, 29, 192, 198], "multiclassauroc": [0, 29], "multilabelauroc": [0, 29, 195], "precision_recal": 0, "binaryprecis": [0, 192, 198], "binaryrecal": [0, 97, 192, 198], "multiclassprecis": 0, "multiclassrecal": [0, 98], "multilabelprecis": 0, "multilabelrecal": [0, 99], "precis": [0, 24, 35, 36, 37, 38, 39, 40, 41, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 60, 64, 66, 77, 78, 80, 82, 85, 86, 87, 88, 89, 90, 92, 100, 105, 192, 198], "recal": [0, 24, 38, 51, 55, 57, 59, 61, 64, 66, 77, 79, 81, 83, 86, 87, 88, 89, 90, 92, 97, 98, 99, 105, 192, 198], "precision_recall_curv": [0, 192, 198], "binaryprecisionrecallcurv": [0, 30, 92, 192, 198], "multiclassprecisionrecallcurv": [0, 31, 93], "multilabelprecisionrecallcurv": [0, 32, 94], "precisionrecallcurv": 0, "roc": [0, 28, 29, 30, 31, 32, 45, 192, 198], "binaryroccurv": [0, 192, 198], "multiclassroccurv": 0, "multilabelroccurv": 0, "roccurv": 0, "sensit": [0, 178, 189, 192, 195, 198, 199], "binarysensit": 0, "multiclasssensit": 0, "multilabelsensit": 0, "specif": [0, 7, 17, 115, 118, 180, 182, 192, 195, 198], "binaryspecif": 0, "multiclassspecif": 0, "multilabelspecif": 0, "f_beta": 0, "binaryf1scor": [0, 192, 198], "binaryfbetascor": [0, 34], "f1score": 0, "fbetascor": [0, 36], "multiclassf1scor": 0, "multiclassfbetascor": [0, 38], "multilabelf1scor": 0, "multilabelfbetascor": [0, 40], "stat_scor": 0, "binarystatscor": [0, 25, 35, 78, 79, 102], "multiclassstatscor": [0, 26, 39, 80, 81, 103], "multilabelstatscor": [0, 27, 41, 82, 83, 104], "statscor": 0, "function": [0, 3, 5, 6, 7, 8, 16, 17, 20, 21, 25, 35, 41, 42, 76, 93, 102, 104, 107, 109, 110, 113, 131, 135, 136, 137, 138, 140, 161, 168, 175, 178, 190, 191, 192, 193, 194, 195, 197, 198, 200], "binary_precis": 0, "binary_recal": 0, "multiclass_precis": 0, "multiclass_recal": 0, "multilabel_precis": 0, "multilabel_recal": 0, "binary_roc_curv": 0, "multiclass_roc_curv": 0, "multilabel_roc_curv": 0, "roc_curv": [0, 192, 198], "binary_f1_scor": 0, "binary_fbeta_scor": 0, "f1_score": [0, 192, 198], "fbeta_scor": 0, "multiclass_f1_scor": 0, "multiclass_fbeta_scor": 0, "multilabel_f1_scor": 0, "multilabel_fbeta_scor": 0, "fair": [0, 17, 178, 180, 182, 192, 195, 198], "evaluate_fair": [0, 195], "warn_too_many_unique_valu": 0, "config": [0, 182, 190, 193, 194, 197], "fairnessconfig": [0, 17, 180, 182, 192, 198], "monitor": [0, 2, 3, 189, 192, 195, 196, 198], "clinical_appl": 0, "clinicalshiftappl": [0, 196], "ag": [0, 112, 189, 196, 201], "apply_shift": [0, 112, 114, 196], "custom": [0, 112, 121, 123, 125, 129, 131, 133, 178, 193, 196], "hospital_typ": [0, 112], "month": [0, 7, 9, 112, 148, 159, 192, 195, 198], "sex": [0, 112, 189, 196, 198, 201], "time": [0, 7, 75, 112, 159, 178, 189, 199, 201], "synthetic_appl": 0, "binary_noise_shift": 0, "feature_association_shift": 0, "feature_swap_shift": 0, "gaussian_noise_shift": 0, "knockout_shift": 0, "syntheticshiftappl": [0, 113], "report": [0, 2, 3, 110, 125, 189, 195, 200, 201], "modelcardreport": [0, 192, 195, 198], "export": [0, 178, 192, 195, 198], "from_json_fil": [0, 178], "log_cit": [0, 178, 195], "log_dataset": [0, 178, 192], "log_descriptor": [0, 178, 192, 195, 198], "log_fairness_assess": [0, 178, 192, 195, 198], "log_from_dict": [0, 178, 192, 195, 198], "log_imag": [0, 178], "log_licens": [0, 178, 192, 198], "log_model_paramet": [0, 178, 192, 198], "log_own": [0, 178, 192, 195, 198], "log_performance_metr": [0, 178, 192, 198], "log_plotly_figur": [0, 178, 192, 195, 198], "log_quantitative_analysi": [0, 178, 192, 195, 198], "log_refer": [0, 178, 192, 198], "log_regul": [0, 178], "log_risk": [0, 178, 192, 195, 198], "log_use_cas": [0, 178, 192, 195, 198], "log_us": [0, 178, 192, 195, 198], "log_vers": [0, 178, 192, 198], "thank": 1, "your": [1, 192], "interest": [1, 192, 198], "To": [1, 3, 5, 192, 198], "submit": 1, "pr": 1, "pleas": [1, 190, 192, 193, 194, 195, 196, 197, 198], "fill": [1, 160], "out": [1, 178, 192, 198], "templat": [1, 178], "along": [1, 112, 192, 195, 198], "If": [1, 5, 7, 9, 10, 11, 12, 13, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 133, 135, 136, 137, 138, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 160, 161, 162, 167, 175, 178, 180, 182, 192, 198], "fix": 1, "an": [1, 3, 5, 7, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 51, 60, 61, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 125, 127, 129, 131, 133, 136, 139, 162, 166, 170, 178, 192, 195, 198], "issu": [1, 21], "don": 1, "t": [1, 5, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 178], "forget": 1, "link": [1, 178, 192, 195, 198], "onc": [1, 75, 192, 195, 198], "python": [1, 3, 198, 200], "virtual": [1, 3], "environ": [1, 3, 192, 198], "i": [1, 3, 5, 7, 9, 10, 11, 12, 13, 14, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 131, 133, 135, 136, 137, 138, 140, 154, 157, 158, 162, 169, 178, 180, 182, 190, 192, 193, 194, 195, 197, 198, 200, 201], "setup": [1, 190, 191, 193, 194, 197, 198], "you": [1, 3, 5, 75, 192, 195, 198, 199, 200], "can": [1, 3, 5, 7, 21, 25, 38, 51, 69, 75, 84, 85, 95, 100, 110, 121, 123, 125, 129, 131, 133, 140, 154, 178, 182, 192, 195, 198, 199], "us": [1, 2, 5, 7, 8, 17, 21, 24, 29, 30, 31, 32, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 60, 61, 62, 63, 66, 67, 68, 69, 75, 76, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 98, 99, 100, 102, 105, 107, 110, 112, 114, 121, 123, 125, 127, 129, 131, 133, 136, 139, 155, 161, 162, 166, 169, 176, 178, 180, 182, 189, 190, 192, 193, 195, 197, 198, 199, 200], "all": [1, 7, 8, 9, 10, 11, 12, 13, 15, 63, 73, 75, 108, 109, 110, 127, 154, 167, 170, 176, 182, 189, 191, 192, 196, 198, 200], "file": [1, 5, 127, 178, 192, 195, 198], "For": [1, 21, 76, 133, 178, 192, 198], "style": [1, 162], "we": [1, 3, 178, 192, 195, 197, 198], "recommend": [1, 76], "googl": 1, "guid": 1, "black": 1, "format": [1, 5, 7, 89, 127, 142, 143, 162, 178, 192, 197, 198], "docstr": 1, "numpi": [1, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 115, 116, 117, 118, 119, 180, 192, 195, 196, 198], "also": [1, 3, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 140, 192, 198, 201], "flake8": 1, "pylint": [1, 140], "further": 1, "static": 1, "analysi": [1, 178, 192, 195, 198], "The": [1, 3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 50, 51, 52, 53, 54, 56, 60, 61, 63, 66, 68, 69, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 127, 131, 136, 140, 163, 178, 180, 182, 186, 190, 192, 193, 194, 195, 197, 198, 199, 200, 201], "show": [1, 190, 192, 193, 194, 195, 197, 198], "error": [1, 189, 201], "which": [1, 9, 10, 11, 12, 13, 21, 90, 121, 127, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 169, 170, 171, 172, 174, 175, 176, 178, 192, 195, 197, 198, 201], "need": [1, 17, 21, 174, 192, 198], "befor": [1, 17, 21, 22, 143, 162, 182, 192, 198], "last": 1, "least": 1, "type": [1, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 115, 116, 117, 118, 119, 121, 123, 125, 127, 129, 131, 133, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 180, 182, 189, 194, 201], "hint": 1, "our": [1, 192, 198], "check": [1, 14, 89, 127, 170], "mypi": 1, "current": [1, 141, 178, 192, 195, 198], "ar": [1, 5, 7, 11, 12, 17, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 75, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 97, 98, 99, 100, 103, 104, 105, 108, 109, 110, 112, 116, 121, 131, 140, 162, 178, 192, 195, 198], "strict": 1, "enforc": 1, "more": [1, 7, 16, 17, 180, 182, 192, 201], "api": [1, 2, 3, 121, 122, 123, 124, 125, 128, 129, 130, 131, 132, 133, 189, 192, 201], "becom": [1, 127, 169], "stabl": [1, 190, 192, 193, 194, 195, 196, 197, 198], "start": [2, 17, 153, 174, 192, 198], "instal": [2, 192], "pip": [2, 192], "develop": [2, 192, 195, 198], "poetri": 2, "conda": 2, "contribut": 2, "notebook": [2, 190, 192, 193, 194, 195, 197, 198], "citat": [2, 178, 192, 195, 198], "pre": [2, 192, 198], "commit": 2, "hook": 2, "code": [2, 190, 192, 193, 194, 197, 198], "guidelin": [2, 3], "tutori": [2, 192, 195, 198, 199, 200, 201], "exampl": [2, 3, 5, 7, 8, 9, 10, 11, 12, 13, 15, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 169, 170, 171, 172, 173, 174, 175, 176, 178, 189, 192, 195, 198, 199, 200], "case": [2, 3, 75, 115, 178, 189, 192, 198, 199], "refer": [2, 3, 178, 192, 195, 198], "toolkit": 3, "facilit": 3, "research": 3, "deploy": 3, "ml": [3, 192, 198], "model": [3, 16, 17, 21, 178, 180, 182, 189, 197, 199, 201], "healthcar": 3, "It": [3, 38, 51, 75, 84, 85, 100, 105, 140, 199, 200], "provid": [3, 7, 9, 12, 17, 21, 69, 110, 121, 123, 125, 129, 131, 133, 140, 154, 160, 161, 167, 178, 186, 192, 197, 198], "few": 3, "high": [3, 192, 198], "level": [3, 21, 192, 198], "name": [3, 7, 8, 9, 10, 11, 12, 13, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 121, 123, 125, 129, 131, 133, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 160, 161, 162, 166, 170, 171, 172, 174, 178, 180, 182, 192, 195, 196, 197, 198], "ehr": [3, 121, 186, 197, 200], "databas": [3, 121, 123, 125, 126, 127, 129, 131, 133, 186, 190, 191, 192, 193, 194, 197, 198, 200], "mimic": [3, 128, 129, 130, 131, 189, 197, 200], "iv": [3, 130, 189, 200], "creat": [3, 6, 7, 21, 42, 43, 75, 84, 85, 100, 115, 118, 119, 121, 127, 135, 136, 137, 138, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 175, 178, 180, 182, 189, 195, 200, 201], "infer": [3, 17, 131], "popular": [3, 192], "effici": 3, "load": [3, 17, 178, 182, 189, 197, 198, 199, 201], "differ": [3, 24, 29, 36, 37, 46, 55, 62, 63, 64, 69, 70, 72, 84, 85, 90, 95, 100, 105, 154, 162, 189, 192, 195, 198, 199], "modal": 3, "common": [3, 192, 197], "implement": [3, 168, 201], "scikit": [3, 192], "learn": [3, 192, 195], "pytorch": 3, "canon": 3, "mortal": [3, 181, 182, 189, 200], "chest": [3, 179, 180, 189], "x": [3, 114, 115, 116, 117, 118, 119, 140, 179, 180, 182, 189, 192, 196, 198], "rai": [3, 179, 180, 189], "classif": [3, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 44, 47, 48, 49, 50, 51, 53, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 78, 79, 80, 81, 82, 83, 84, 85, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 179, 180, 182, 189, 192, 198], "clinic": [3, 111, 112, 189, 199], "detect": [3, 195, 199], "shift": [3, 111, 112, 114, 116, 117, 189, 199], "relev": [3, 178, 192, 198, 199], "card": [3, 178, 189, 192, 198, 201], "librari": [3, 189, 199, 201], "end": [3, 144, 173, 189, 192, 195, 198, 200], "iii": [3, 128, 129, 189, 197, 200], "crd": [3, 122, 189, 200], "python3": [3, 190, 192, 193, 194, 195, 196, 197, 198], "m": [3, 192, 193, 195, 196, 198], "pycyclop": [3, 190, 192, 193, 194, 195, 196, 197, 198], "packag": [3, 183, 184, 185, 187, 190, 192, 193, 194, 195, 196, 197, 198], "support": [3, 7, 24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 72, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 107, 108, 109, 122, 128, 130, 141, 199], "process": [3, 112, 121, 123, 125, 127, 129, 131, 133, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 161, 162, 163, 164, 165, 166, 167, 169, 170, 171, 172, 174, 175, 176, 192, 195, 198], "transform": [3, 17, 66, 67, 68, 93, 180, 182, 192, 195, 196, 198], "downstream": [3, 121, 123, 125, 129, 131, 133, 192, 198], "addit": [3, 75, 127, 131, 178, 180, 182, 192, 198], "from": [3, 5, 7, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 119, 125, 127, 131, 133, 159, 162, 170, 175, 178, 180, 182, 189, 190, 192, 193, 195, 196, 197, 198, 200], "other": [3, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 127, 135, 172, 173, 192], "thei": [3, 69], "extra": [3, 178], "multipl": [3, 8, 17, 21, 75, 125, 139, 140, 161, 166, 178], "could": [3, 192, 198], "combin": [3, 8, 135, 139, 166, 192], "both": [3, 162], "set": [3, 7, 17, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 127, 178, 189, 192, 195, 198, 200], "up": [3, 192, 195, 198], "henc": 3, "make": [3, 154, 192, 198], "sure": [3, 192], "sourc": [3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 19, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 115, 116, 117, 118, 119, 121, 123, 125, 127, 129, 131, 133, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 180, 182, 189, 199], "env": 3, "info": [3, 125, 190, 191, 192, 193, 194, 197, 198], "path": [3, 5, 112, 127, 178, 182, 192, 195, 198], "bin": [3, 21], "activ": [3, 198], "build": [3, 112, 121, 200], "built": 3, "sphinx": 3, "local": 3, "cd": 3, "doc": 3, "html": [3, 178, 190, 192, 193, 194, 195, 196, 197, 198], "sphinxopt": 3, "d": [3, 75, 112, 195], "nbsphinx_allow_error": 3, "true": [3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 24, 26, 27, 31, 32, 35, 36, 37, 38, 39, 40, 41, 48, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 107, 108, 109, 110, 112, 114, 116, 121, 123, 125, 129, 131, 133, 135, 136, 151, 154, 167, 170, 176, 178, 180, 182, 190, 191, 192, 195, 196, 197, 198], "welcom": 3, "see": [3, 7, 178, 190, 192, 193, 194, 195, 196, 197, 198], "jupyt": [3, 190, 192, 193, 194, 195, 196, 197, 198], "insid": 3, "ipython": 3, "kernel": 3, "after": [3, 17, 121, 131, 140, 142, 172, 173, 189, 192, 198, 200], "ipykernel": 3, "user": [3, 178, 190, 191, 192, 193, 194, 197, 198], "name_of_kernel": 3, "now": 3, "navig": 3, "": [3, 7, 10, 14, 17, 21, 75, 127, 133, 140, 160, 178, 180, 182, 190, 191, 192, 193, 194, 195, 196, 197, 198], "tab": [3, 192], "cite": 3, "when": [3, 5, 17, 21, 24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 75, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 103, 104, 105, 121, 154, 162, 169, 180, 182, 192, 198], "project": 3, "paper": 3, "articl": 3, "krishnan2022": 3, "12": [3, 7, 192, 195, 196, 198], "02": [3, 69, 196], "22283021": 3, "author": [3, 192, 195], "krishnan": 3, "amrit": 3, "subasri": 3, "vallijah": 3, "mckeen": 3, "kaden": 3, "kore": 3, "ali": 3, "ogidi": 3, "franklin": 3, "alinoori": 3, "mahshid": 3, "lalani": 3, "nadim": 3, "dhalla": 3, "azra": 3, "verma": 3, "amol": 3, "razak": 3, "fahad": 3, "pandya": 3, "deval": 3, "dolatabadi": 3, "elham": 3, "titl": [3, 189, 192, 195, 198, 200], "cyclic": 3, "toward": 3, "operation": 3, "health": [3, 192, 198], "eloc": 3, "id": [3, 5, 112, 133, 192, 195, 198], "2022": [3, 7, 195, 197], "year": [3, 7, 9, 131, 148, 149, 159, 189, 192, 195, 197, 198, 200], "doi": 3, "10": [3, 164, 189, 192, 195, 196, 198, 200], "1101": 3, "publish": [3, 192], "cold": 3, "spring": 3, "harbor": 3, "laboratori": [3, 198], "press": 3, "url": [3, 195], "http": [3, 178, 190, 192, 193, 194, 195, 196, 197, 198], "www": [3, 192], "medrxiv": 3, "org": [3, 178, 192, 195, 198], "content": [3, 178], "earli": 3, "08": 3, "journal": 3, "medic": [4, 5, 183, 189, 195, 198, 200, 201], "class": [4, 5, 6, 7, 17, 18, 19, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 69, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 116, 117, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 186, 192, 194, 195, 198], "decod": [5, 195], "none": [5, 7, 9, 17, 19, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 121, 123, 125, 127, 129, 131, 133, 135, 136, 137, 138, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 160, 161, 162, 167, 174, 175, 178, 180, 182, 192, 195, 196, 198], "reader": 5, "itkread": 5, "suffix": 5, "jpg": 5, "read": [5, 17], "paramet": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 115, 116, 117, 118, 119, 121, 123, 125, 127, 129, 131, 133, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 169, 170, 171, 172, 173, 174, 175, 176, 178, 180, 182, 190, 192, 193, 194, 195, 197, 198], "bool": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 75, 76, 108, 109, 110, 112, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 136, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 162, 166, 167, 170, 176, 178, 180, 182, 195], "option": [5, 7, 9, 10, 11, 12, 13, 17, 21, 24, 27, 36, 37, 38, 39, 40, 41, 43, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 69, 75, 80, 81, 82, 83, 84, 85, 90, 95, 98, 99, 100, 103, 104, 105, 108, 112, 114, 121, 123, 125, 127, 129, 131, 133, 135, 136, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 161, 162, 176, 178, 180, 182], "default": [5, 7, 9, 10, 11, 12, 13, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 153, 178, 180, 182, 192, 198], "whether": [5, 7, 21, 75, 108, 109, 110, 112, 121, 123, 125, 127, 129, 131, 133, 154, 167, 170, 176, 178, 198, 201], "fals": [5, 7, 9, 10, 11, 12, 13, 14, 19, 21, 29, 30, 40, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 75, 80, 81, 82, 83, 84, 85, 98, 99, 100, 105, 107, 108, 109, 110, 117, 118, 127, 135, 136, 139, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 162, 166, 167, 176, 180, 182, 191, 192, 195, 198], "return": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 115, 116, 117, 118, 119, 121, 123, 125, 127, 129, 131, 133, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 180, 182, 189, 190, 191, 193, 197, 198, 200], "dictionari": [5, 7, 8, 9, 10, 11, 12, 13, 15, 17, 21, 75, 161, 178, 180, 182, 192, 198], "image_path": 5, "byte": 5, "image_byt": 5, "str": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 123, 125, 127, 129, 131, 133, 135, 136, 137, 138, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 165, 167, 170, 171, 172, 173, 174, 175, 178, 180, 182, 192, 194, 198], "imageread": 5, "monai": [5, 195, 196], "method": [5, 7, 19, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 123, 125, 127, 129, 131, 133, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 180, 182, 192, 193, 195, 198], "attribut": [5, 7, 19, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 127, 180, 182, 192, 198], "call": [5, 168, 178], "self": [5, 121], "storag": 5, "arrow": 5, "arrai": [5, 24, 26, 27, 29, 30, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 60, 61, 63, 66, 67, 68, 69, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 98, 99, 100, 103, 104, 105, 107, 108, 109, 110, 116, 117, 119, 180, 195], "convert": [5, 25, 35, 41, 48, 61, 69, 95, 102, 104, 107, 141, 162, 192, 198], "pyarrow": 5, "rtype": 5, "structarrai": 5, "pa": 5, "string": [5, 7, 9, 12, 17, 21, 75, 144, 153, 161, 162, 165, 174, 175, 178, 189, 195, 200], "must": [5, 9, 17, 21, 141, 147, 148, 149, 154, 161, 178], "contain": [5, 7, 8, 9, 10, 11, 12, 13, 15, 17, 21, 27, 103, 104, 127, 178, 189, 192, 195, 198, 200, 201], "binari": [5, 24, 25, 29, 30, 34, 35, 36, 37, 47, 48, 49, 50, 56, 57, 60, 61, 62, 63, 66, 69, 72, 78, 79, 84, 85, 87, 90, 92, 95, 97, 100, 102, 104, 105, 107, 110, 115, 182, 192, 195, 198, 201], "struct": 5, "order": [5, 17, 107, 108, 109, 127, 167, 169, 171, 172], "doesn": 5, "matter": 5, "list": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 66, 67, 68, 69, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 115, 116, 117, 118, 119, 121, 123, 125, 127, 129, 131, 133, 135, 136, 137, 138, 140, 141, 147, 148, 149, 154, 155, 156, 157, 158, 160, 161, 162, 163, 166, 167, 171, 172, 173, 175, 178, 180, 182, 190, 191, 192, 193, 194, 197, 198], "arg": [5, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 168, 169, 173], "stringarrai": 5, "listarrai": 5, "token_per_repo_id": 5, "serial": 5, "version": [5, 178, 192, 195, 198], "dict": [5, 7, 8, 9, 10, 11, 12, 13, 15, 17, 21, 22, 75, 121, 123, 125, 129, 131, 133, 161, 170, 178, 180, 182], "access": 5, "privat": 5, "repositori": [5, 192], "hub": 5, "pass": [5, 17, 43, 75, 112, 178, 182, 190, 192, 193, 194, 197, 198], "repo_id": 5, "token": [5, 192], "deseri": 5, "np": [5, 11, 14, 21, 180, 182, 192, 195, 196, 198], "ndarrai": [5, 14, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 115, 116, 117, 118, 119, 180, 182], "metadata": [5, 192, 195, 198], "emb": 5, "encod": 5, "input": [5, 24, 46, 55, 60, 61, 64, 69, 70, 72, 87, 89, 95, 115, 118, 140, 180, 182], "state": [5, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "itself": 5, "otherwis": [5, 14, 24, 27, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 67, 68, 75, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 108, 109, 110, 135, 136, 137, 138, 175], "tupl": [5, 7, 66, 67, 68, 69, 75, 87, 88, 89, 92, 93, 94, 112, 127, 162, 180, 182], "classlabel": [5, 192, 198], "translat": 5, "translationvariablelanguag": 5, "sequenc": [5, 17, 75, 161, 173, 180, 182, 195], "array2d": 5, "array3d": 5, "array4d": 5, "array5d": 5, "audio": 5, "subset": [6, 189, 200], "hug": [6, 180, 182, 189, 201], "face": [6, 180, 182, 189, 201], "object": [7, 19, 21, 112, 114, 121, 125, 126, 127, 129, 131, 133, 136, 137, 140, 142, 143, 161, 168, 173, 178, 180, 182, 192, 198, 200], "ani": [7, 8, 9, 10, 11, 12, 13, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 123, 125, 127, 129, 131, 133, 136, 144, 145, 146, 147, 150, 153, 154, 160, 165, 178, 180, 182, 192, 195, 198], "A": [7, 8, 9, 10, 11, 12, 13, 15, 17, 21, 22, 25, 75, 76, 104, 109, 126, 137, 142, 143, 162, 178, 192, 195, 198], "each": [7, 8, 17, 21, 24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 67, 68, 69, 75, 76, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 108, 109, 110, 133, 140, 167, 189, 190, 192, 193, 194, 197, 198, 200], "map": [7, 8, 22, 43, 75, 121, 123, 125, 129, 131, 133, 170, 180, 182, 192, 195, 198], "column": [7, 8, 9, 10, 11, 12, 13, 17, 21, 112, 121, 123, 125, 127, 129, 131, 133, 135, 136, 137, 138, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 165, 167, 170, 171, 172, 174, 175, 180, 182, 192, 195, 198], "one": [7, 16, 17, 21, 24, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 67, 68, 69, 76, 80, 81, 82, 83, 84, 85, 95, 98, 99, 100, 105, 154, 180, 182, 189, 200], "follow": [7, 17, 24, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 60, 61, 75, 80, 81, 82, 83, 84, 85, 98, 99, 100, 105, 172, 178, 192, 195, 197, 198], "exact": [7, 13], "select": [7, 112, 116, 121, 123, 125, 127, 129, 131, 133, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 169, 170, 171, 172, 173, 174, 175, 176, 192, 194, 195, 198], "thi": [7, 17, 21, 24, 25, 26, 27, 29, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 103, 104, 105, 121, 138, 154, 161, 162, 178, 182, 190, 192, 193, 194, 195, 197, 198, 201], "singl": [7, 75, 140, 178, 182, 192, 198], "row": [7, 127, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 157, 158, 164, 167, 169, 189, 191, 192, 193, 194, 195, 197, 200], "where": [7, 8, 9, 10, 11, 12, 13, 60, 61, 63, 75, 127, 174, 178, 182, 192, 198, 201], "e": [7, 9, 10, 17, 21, 75, 116, 117, 118, 121, 159, 162, 165, 178, 192, 198], "g": [7, 9, 17, 21, 116, 117, 118, 159, 162, 165, 178, 192, 198], "2021": [7, 189, 192, 197, 200], "01": [7, 29, 31, 32, 142, 143, 191, 192, 194, 195, 197, 198], "00": [7, 192, 195, 196, 198], "min_valu": [7, 11, 192, 195, 196, 198], "minimum": [7, 11], "specifi": [7, 17, 75, 112, 121, 123, 125, 129, 131, 133, 135, 136, 137, 138, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 157, 158, 161, 162, 163, 172, 175, 178, 180, 182, 192, 195, 198], "min_inclus": [7, 11, 192, 198], "indic": [7, 21, 27, 60, 61, 115, 118, 192, 198], "includ": [7, 11, 21, 72, 112, 114, 146, 150, 192, 195, 198, 199], "rang": [7, 11, 29, 30, 66, 67, 68, 93, 192, 195, 198], "work": [7, 27, 103, 104, 135, 178, 192, 195, 198], "numer": [7, 11, 138, 192, 198], "datetim": [7, 9, 11, 14, 121, 123, 125, 129, 131, 133, 137, 142, 143, 178, 192, 195, 198], "inf": [7, 11, 192, 195, 198], "max_valu": [7, 11, 192, 195, 196, 198], "boolean": [7, 8, 9, 10, 11, 12, 13, 15, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154], "greater": [7, 22, 146, 150, 198], "than": [7, 11, 22, 48, 52, 54, 135, 136, 146, 150, 180, 182, 189, 192, 198, 200, 201], "equal": [7, 11, 21, 145, 146, 150], "maximum": [7, 11, 22, 29, 30], "max_inclus": [7, 11, 192, 198], "less": [7, 11, 48, 52, 54, 150, 189, 198, 200], "match": [7, 9, 12, 13, 17, 152, 197], "between": [7, 21, 38, 51, 69, 95, 189, 200], "1": [7, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 116, 117, 118, 119, 137, 138, 140, 142, 143, 145, 146, 147, 148, 150, 160, 165, 178, 189, 192, 195, 198, 199, 200, 201], "dai": [7, 9, 137, 198, 201], "31": [7, 189, 192, 194, 198, 200], "hour": [7, 9], "0": [7, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 114, 115, 116, 117, 118, 119, 130, 160, 174, 178, 190, 191, 192, 193, 194, 195, 196, 197, 198], "23": [7, 192, 198], "negat": [7, 9, 10, 11, 12, 13, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 195], "flag": [7, 162], "doe": [7, 9, 11, 12, 13, 17, 21, 24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 75, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 178], "keep_nul": [7, 9, 11, 12, 13], "null": [7, 9, 10, 11, 12, 13, 158, 160, 198], "conjunct": [7, 195], "its": [7, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 60, 61, 74, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 192, 195, 198], "own": [7, 192, 198], "callabl": [7, 8, 17, 21, 76, 140, 178], "import": [7, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 178, 189, 199, 200, 201], "slice_spec": [7, 17, 180, 182, 192, 195, 198], "feature_1": 7, "feature_2": 7, "feature_3": 7, "value_1": 7, "value_2": 7, "2020": [7, 9, 142, 143, 149, 189, 195, 200], "5": [7, 24, 25, 27, 29, 31, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 114, 115, 118, 119, 189, 190, 191, 192, 193, 195, 197, 198, 199, 200], "60": 7, "6": [7, 24, 26, 35, 36, 38, 39, 49, 56, 59, 62, 63, 78, 79, 80, 81, 83, 84, 85, 87, 88, 90, 92, 93, 95, 97, 98, 99, 100, 104, 107, 108, 110, 189, 191, 192, 193, 195, 196, 197, 198, 200], "7": [7, 29, 30, 31, 36, 39, 40, 69, 80, 81, 82, 84, 85, 87, 88, 89, 93, 98, 100, 105, 108, 109, 110, 189, 191, 192, 195, 197, 198, 200, 201], "8": [7, 24, 26, 27, 29, 30, 31, 34, 35, 36, 37, 38, 40, 41, 47, 49, 50, 53, 54, 56, 59, 60, 62, 66, 68, 69, 78, 79, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 99, 100, 105, 107, 109, 110, 189, 192, 195, 197, 198, 200], "2000": 7, "2010": [7, 189, 200], "slice_nam": [7, 178, 192, 195, 198], "slice_func": 7, "print": [7, 190, 191, 192, 193, 194, 195, 197, 198], "do": [7, 17], "someth": 7, "here": [7, 192, 198], "filter": [7, 9, 10, 11, 12, 13, 17, 21, 139, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 162, 166, 189, 192, 195, 196, 198, 200], "add": [7, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 135, 136, 137, 138, 165, 173, 178, 180, 182, 192, 195, 198], "detail": [7, 127, 192, 195, 198], "registri": [7, 192, 198], "gener": [7, 69, 95, 112, 178, 189, 195, 197, 199, 201], "slice_funct": 8, "result": [8, 17, 38, 51, 127, 173, 180, 182, 190, 192, 193, 194, 195, 196, 197, 198], "bitwis": 8, "AND": 8, "signatur": 8, "should": [8, 21, 69, 76, 95, 117, 127, 178, 180, 182, 192, 195, 198], "kwarg": [8, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 114, 121, 123, 125, 129, 131, 133, 168, 169, 180, 182], "given": [9, 11, 12, 13, 14, 24, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 75, 80, 81, 82, 84, 85, 98, 100, 105, 108, 109, 110, 160, 173, 178, 180, 182], "int": [9, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 116, 117, 118, 119, 127, 138, 141, 148, 149, 162, 164, 173, 174, 178, 180, 182, 192, 198], "compon": [9, 159], "have": [9, 12, 13, 17, 114, 121, 123, 125, 129, 131, 133, 147, 154, 162, 189, 192, 200, 201], "nan": [9, 10, 189, 201], "nat": 9, "rais": [9, 11, 12, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 178, 180, 182], "typeerror": [9, 11, 12, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 178], "float": [11, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 109, 110, 115, 116, 117, 118, 119, 138, 141, 178], "valueerror": [11, 17, 21, 48, 50, 52, 54, 58, 59, 60, 61, 62, 63, 69, 178, 180, 182], "either": [11, 30, 31, 32, 75, 87, 88, 89, 92, 93, 94, 110, 178, 192, 198], "ha": [13, 75, 174, 178, 192, 195, 198], "find": [13, 24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 195], "perform": [13, 26, 27, 31, 32, 127, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 169, 170, 171, 172, 174, 175, 176, 178, 189, 197, 199, 201], "datetime64": 14, "target_column": [17, 19, 21, 192, 195, 198], "feature_column": [17, 195, 196], "prediction_column_prefix": [17, 180, 182, 192, 195, 198], "remove_column": [17, 19, 21, 180, 182, 195], "split": [17, 112, 178, 180, 182, 192, 195, 198], "batch_siz": [17, 19, 21, 112, 180, 182, 192, 198], "1000": [17, 19, 21, 112, 182, 192], "fairness_config": [17, 180, 182, 192, 198], "override_fairness_metr": [17, 180, 182, 192, 198], "load_dataset_kwarg": 17, "datasetdict": [17, 180, 182], "load_dataset": 17, "argument": [17, 21, 43, 75, 131, 136, 144, 145, 146, 147, 150, 153, 154, 180, 182, 192, 198], "target": [17, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 116, 117, 180, 182, 189, 192, 198, 199, 201], "prefix": [17, 75], "ad": [17, 114, 127, 135, 136, 137, 138, 173, 178, 180, 182, 192, 198], "model_nam": [17, 180, 182, 192, 195, 196, 198], "remov": [17, 21, 75, 119, 157, 158, 180, 182, 192, 195, 198], "mai": [17, 21, 189, 192, 195, 198, 200], "expens": [17, 21, 162], "memori": [17, 21], "wrappedmodel": [17, 180, 182], "entir": [17, 192, 198], "being": [17, 135, 136, 137, 138, 142, 143, 145, 148, 149], "note": [17, 121, 131, 178, 190, 192, 195, 197, 198], "chosen": 17, "avail": [17, 178, 192, 198, 201], "first": [17, 21, 25, 76, 104, 176, 190, 192, 193, 194, 197, 198], "test": [17, 178, 180, 182, 189, 192, 198, 199, 200, 201], "eval": 17, "val": 17, "dev": 17, "batch": [17, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 180, 182, 189, 195, 200], "size": [17, 21, 112, 180, 182, 192, 195, 198], "neg": [17, 35, 48, 49, 50, 51, 52, 53, 54, 59, 61, 62, 63, 72, 81, 83, 85, 98, 99, 100, 105, 107, 108, 109, 135, 136, 198], "integ": [17, 21, 165, 178], "configur": [17, 18, 19, 121, 123, 125, 129, 131, 133, 180, 182, 192, 198], "overridden": [17, 180, 182], "prediction_column": [17, 19, 21, 195], "keyword": [17, 21, 43, 75, 144, 145, 146, 147, 150, 153, 154, 176, 182, 189, 200], "onli": [17, 21, 24, 27, 29, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 62, 63, 75, 80, 81, 82, 84, 85, 98, 100, 103, 104, 105, 108, 109, 110, 154, 162, 163, 189, 200], "found": [17, 75, 178, 190, 192, 193, 194, 195, 196, 197, 198], "group": [19, 21, 22, 75, 161, 178, 192, 195, 198], "group_valu": [19, 21], "group_bin": [19, 21, 192, 195, 198], "group_base_valu": [19, 21, 192, 195, 198], "threshold": [19, 21, 24, 25, 27, 29, 30, 31, 32, 34, 35, 36, 37, 40, 41, 47, 48, 49, 50, 53, 54, 56, 57, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 99, 100, 102, 104, 105, 107, 109, 110, 178, 189, 192, 198, 201], "compute_optimal_threshold": [19, 21], "metric_nam": [19, 21, 43, 178, 192, 195, 198], "metric_kwarg": [19, 21], "take": [21, 24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 112, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 189, 192, 200], "allow": [21, 22, 121, 123, 125, 129, 131, 133, 192, 198, 199, 200], "intersect": 21, "treat": 21, "multilabel": [21, 24, 27, 29, 32, 36, 37, 40, 41, 49, 50, 53, 54, 60, 61, 62, 63, 68, 69, 72, 82, 83, 84, 85, 89, 90, 94, 95, 99, 100, 104, 105, 109, 110, 189, 201], "same": [21, 75, 116, 161, 162], "uniqu": [21, 22, 29, 30, 31, 32, 66, 67, 68, 69, 87, 88, 89, 92, 93, 94, 95, 195, 201], "number": [21, 22, 24, 26, 27, 29, 30, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 75, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 98, 99, 100, 103, 104, 105, 108, 110, 112, 116, 117, 127, 164, 172, 178, 180, 182, 189, 194, 198, 199, 200], "continu": [21, 192, 195, 198], "veri": 21, "slow": [21, 169], "larg": [21, 169], "denomin": 21, "pariti": [21, 189, 201], "across": [21, 116, 199], "linspac": 21, "monoton": [21, 69, 95], "control": [21, 115], "usag": [21, 192, 198], "rel": 21, "small": 21, "32": [21, 190, 192, 197, 198], "avoid": 21, "optim": [21, 192], "oper": [21, 65, 76, 127, 131, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176], "necessari": 21, "nest": 21, "second": [21, 76], "third": 21, "omit": 21, "requir": [21, 24, 29, 36, 37, 49, 50, 69, 84, 85, 90, 95, 100, 105, 110, 178, 180, 182, 192, 198], "huggingfac": [21, 112, 180, 182], "runtimeerror": 21, "empti": [21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 157], "encount": [21, 125, 189, 198, 200], "unique_valu": 22, "max_unique_valu": 22, "50": [22, 192, 195, 196, 198], "warn": [22, 24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 102, 103, 104, 105], "score": [24, 25, 26, 27, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 66, 70, 72, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 108, 109, 110], "multiclass": [24, 26, 29, 31, 36, 37, 38, 39, 49, 50, 51, 52, 58, 59, 62, 63, 67, 69, 72, 80, 81, 84, 85, 88, 90, 93, 95, 98, 100, 103, 105, 108, 110], "One": [24, 29, 31, 32, 35, 48, 59, 62, 63, 69, 95, 195, 198], "pos_label": [24, 25, 30, 34, 35, 36, 37, 47, 48, 49, 50, 56, 57, 62, 63, 66, 69, 78, 79, 84, 85, 87, 90, 92, 95, 97, 100, 102, 105, 107, 110], "label": [24, 25, 27, 29, 32, 34, 35, 36, 37, 40, 41, 47, 48, 49, 50, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 68, 69, 78, 79, 81, 82, 83, 84, 85, 87, 89, 90, 92, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 109, 110, 116, 117, 119, 135, 136, 137, 138, 159, 161, 165, 175, 180, 182, 189, 192, 193, 194, 195, 201], "consid": [24, 26, 27, 36, 37, 49, 50, 62, 63, 84, 85, 90, 95, 100, 103, 104, 105, 133], "posit": [24, 25, 29, 30, 34, 35, 36, 37, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 75, 78, 79, 80, 81, 82, 83, 84, 85, 87, 90, 92, 95, 97, 98, 99, 100, 102, 105, 107, 108, 109, 110, 195], "num_class": [24, 26, 29, 31, 36, 37, 38, 39, 49, 50, 51, 52, 58, 59, 61, 62, 63, 67, 69, 80, 81, 84, 85, 88, 90, 93, 95, 98, 100, 103, 105, 108, 110, 192, 198], "decid": [24, 36, 37, 40, 41, 49, 50, 53, 54, 56, 57, 60, 61, 78, 79, 82, 83, 84, 85, 97, 99, 100, 105], "top_k": [24, 26, 27, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 108, 109, 110], "probabl": [24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 80, 81, 82, 84, 85, 93, 98, 100, 102, 103, 104, 105, 107, 108, 109, 110, 182, 192, 198], "logit": [24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 72, 80, 81, 82, 84, 85, 98, 100, 102, 103, 104, 105, 107, 108, 109, 110], "top": [24, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 80, 81, 82, 84, 85, 98, 100, 105, 108, 109, 110], "k": [24, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 75, 80, 81, 82, 84, 85, 98, 100, 105, 108, 109, 110, 196], "num_label": [24, 27, 29, 32, 36, 37, 40, 41, 49, 50, 53, 54, 60, 61, 62, 63, 68, 69, 82, 83, 84, 85, 89, 90, 94, 95, 99, 100, 104, 105, 109, 110, 195], "averag": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 192], "micro": [24, 26, 27, 29, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105], "macro": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105], "weight": [24, 26, 27, 29, 31, 32, 35, 36, 37, 38, 39, 40, 41, 48, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 195, 196, 198], "calcul": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105], "global": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "unweight": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105], "mean": [24, 26, 27, 29, 31, 32, 35, 36, 37, 38, 39, 40, 41, 48, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 192, 195, 196, 198], "imbal": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 119], "account": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 192, 195], "instanc": [24, 26, 27, 31, 32, 36, 37, 38, 39, 40, 41, 43, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 192, 198], "alter": [24, 26, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 105], "zero_divis": [24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 102, 103, 104, 105], "zero": [24, 25, 26, 27, 34, 36, 37, 38, 39, 40, 41, 47, 49, 50, 51, 52, 53, 54, 56, 57, 58, 60, 61, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 103, 104, 105], "divis": [24, 25, 26, 27, 34, 36, 37, 38, 39, 40, 41, 47, 49, 50, 51, 52, 53, 54, 56, 57, 58, 60, 61, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 103, 104, 105], "act": [24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 103, 104, 105], "pred": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 192, 198], "75": [24, 25, 29, 30, 66, 67, 68, 90, 92, 95, 103, 104, 105, 192], "05": [24, 26, 27, 29, 31, 32, 36, 38, 39, 40, 49, 53, 62, 67, 68, 69, 80, 81, 84, 85, 88, 90, 93, 94, 95, 98, 100, 103, 104, 105, 108, 110, 191, 198], "95": [24, 26, 27, 36, 38, 49, 62, 69, 88, 90, 93, 94, 95, 197], "p": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 115, 195], "zip": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "2": [24, 26, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 56, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 75, 78, 79, 80, 81, 82, 83, 84, 85, 88, 89, 90, 92, 93, 95, 97, 98, 99, 100, 103, 104, 105, 107, 108, 109, 110, 116, 117, 130, 138, 140, 147, 148, 174, 178, 189, 191, 192, 195, 198, 199, 200], "3": [24, 26, 27, 29, 31, 34, 35, 36, 37, 38, 39, 40, 47, 49, 50, 51, 52, 53, 56, 58, 59, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 103, 104, 105, 107, 108, 109, 110, 116, 117, 189, 191, 192, 195, 197, 198, 199, 200], "66666667": [24, 26, 36, 38, 49, 51, 61, 63, 81, 85, 87, 88, 90, 93, 94, 95, 98, 100, 104], "initi": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 123, 125, 127, 129, 131, 133, 173, 192, 195, 198], "two": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 162, 173, 176], "scalar": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "togeth": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 189, 200], "multipli": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "variabl": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 201], "attributeerror": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "alreadi": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 192, 198], "exist": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 135, 136, 137, 138, 170, 175, 178, 180, 182, 192, 195, 198], "copi": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 192, 195, 198], "abstract": [24, 29, 36, 37, 73, 74, 84, 85, 90, 95, 100, 105, 110, 168], "final": [24, 29, 36, 37, 74, 84, 85, 90, 95, 100, 105, 110, 173, 195, 198], "reset": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "_update_count": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "_comput": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "sigmoid": [25, 35, 41, 66, 68, 69, 102, 104, 107, 109, 110], "them": [25, 104, 127, 192, 195, 198, 199], "875": 25, "problem": [26, 88, 108, 109, 110, 201], "highest": [26, 27, 62, 63, 103, 104], "determin": [26, 27, 29, 30, 31, 32, 66, 67, 68, 87, 88, 89, 90, 92, 93, 94], "dtype": [26, 27, 31, 32, 38, 39, 40, 41, 66, 67, 68, 69, 80, 81, 82, 83, 87, 88, 89, 92, 93, 94, 98, 99, 103, 104, 115, 116, 117, 118, 119, 192, 195, 197], "float64": [26, 27, 31, 32, 38, 39, 40, 41, 66, 67, 68, 69, 80, 81, 82, 83, 87, 88, 89, 92, 93, 94, 98, 99, 103, 104, 115, 116, 117, 118, 119, 195], "binar": [27, 29, 30, 31, 32, 34, 47, 67, 68, 93, 94, 109, 110], "output": [27, 69, 178, 192, 198], "classifi": [27, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 102, 192, 198], "correct": [27, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 93, 102, 103, 104], "per": [27, 75, 189, 195, 198, 200], "area": [28, 29, 30, 31, 32, 45], "under": [28, 29, 30, 31, 32, 45, 192, 198], "curv": [28, 29, 30, 31, 32, 45, 64, 65, 66, 67, 68, 69, 86, 87, 88, 89, 90, 92, 93, 94, 95, 192, 198], "max_fpr": [29, 30], "rate": [29, 30, 66, 67, 68, 69, 189, 198, 201], "partial": [29, 30, 195], "auc": 29, "automat": [29, 30, 31, 32, 66, 67, 68, 87, 88, 89, 90, 92, 93, 94, 121], "applic": [29, 111, 112, 114], "4": [29, 30, 34, 35, 36, 37, 40, 47, 50, 59, 63, 69, 82, 83, 84, 85, 87, 88, 90, 92, 93, 94, 95, 99, 100, 105, 107, 108, 109, 110, 189, 191, 192, 195, 197, 198, 199, 200], "35": [29, 30, 69, 87, 92, 95, 103, 104, 105, 192, 195, 196, 198], "9": [29, 30, 31, 32, 34, 36, 37, 38, 39, 40, 41, 49, 50, 53, 54, 56, 60, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 89, 90, 93, 94, 95, 97, 98, 99, 100, 103, 104, 105, 107, 109, 110, 189, 190, 192, 195, 196, 197, 198, 200], "6111111111111112": [29, 30], "89": [29, 31, 32, 69], "06": [29, 31, 69, 194], "94": [29, 31, 192, 195, 198], "22222222": [29, 31], "625": [29, 32, 35, 103], "aucroc": 30, "confus": [30, 31, 32, 87, 88, 89, 92, 93, 94], "matrix": [30, 31, 32, 87, 88, 89, 92, 93, 94, 115, 116, 117, 118, 119], "f": [33, 35, 37, 38, 39, 41, 46, 48, 50, 51, 52, 54, 75, 190, 191, 192, 193, 194, 195, 196, 197, 198], "beta": [33, 35, 37, 39, 41, 46, 48, 50, 52, 54], "f1": [34, 36, 38, 40, 46, 47, 49, 51, 53], "form": [34, 47, 192, 198], "6666666666666666": [34, 36, 47, 56, 78, 84], "harmon": [35, 37, 39, 41, 48, 50, 52, 54], "8333333333333334": [35, 37, 50, 59, 62], "85714286": [36, 38], "9090909090909091": 37, "83333333": [37, 41, 50, 54], "55555556": [37, 50, 103], "90909091": [37, 39, 41], "85": [39, 80, 81, 84, 85, 98, 100, 192, 198], "total": [40, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 108, 189, 198, 200], "count": [40, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 161, 191, 192, 195, 198], "predicit": 41, "constructor": 43, "arraylik": [47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 76, 93, 102], "ground": [47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 93, 102], "truth": [47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 93, 102], "npt": [48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63], "7142857142857143": 48, "estim": [49, 50, 66, 67, 68, 69, 93, 102, 182], "shape": [49, 50, 51, 52, 53, 54, 60, 61, 108, 109, 195, 196], "expect": [60, 61, 192, 198], "like": [60, 61, 75, 133, 151, 192], "n": [60, 61, 192, 195], "l": [60, 61], "sampl": [60, 61, 63, 119], "presenc": [60, 61, 195], "absenc": [60, 61], "rest": 61, "ratio": [62, 63, 105, 198], "correctli": 62, "precision_scor": 62, "tp": [63, 107, 108, 109], "fn": [63, 107, 108, 109], "intuit": 63, "abil": [63, 192, 198], "recall_scor": 63, "3333333333333333": 63, "receiv": [65, 131], "characterist": 65, "decis": [66, 67, 68, 69, 93, 178, 192, 198], "fpr": [66, 67, 68, 69, 192, 195, 198], "tpr": [66, 67, 68, 69], "25": [66, 67, 68, 88, 90, 92, 93, 95, 105, 116, 117, 192, 196, 198], "softmax": [67, 69, 93], "1d": [67, 68, 69, 95], "33333333": [67, 85, 88, 90, 93, 94, 95, 100], "non": 69, "evenli": [69, 95], "space": [69, 95], "increas": [69, 95], "assertionerror": [69, 178], "03": [69, 191, 197], "stat": [72, 106, 107, 108, 109, 110], "abc": 74, "other_metr": 75, "postfix": 75, "userdict": 75, "collect": [75, 192, 195, 198], "want": 75, "behav": 75, "themselv": 75, "intern": 75, "similar": 75, "reduc": 75, "els": [75, 192, 195, 196, 198], "keep_bas": 75, "iter": 75, "underli": 75, "moduledict": 75, "hashabl": 75, "v": [75, 195], "correspond": [75, 133, 157, 158, 182], "keyerror": [75, 178], "some": [75, 135, 136, 137, 138, 142, 143, 144, 145, 146, 150, 153, 156, 157, 158, 167, 170, 175, 192, 198], "pair": [75, 161], "present": 75, "lack": 75, "In": [75, 192, 198], "metric_a": 76, "metric_b": 76, "metric1": 76, "metric2": 76, "unari": 76, "appropri": [84, 85, 100, 192, 198], "375": [88, 90], "suniqu": 90, "45": [90, 105, 191, 192, 198], "42857143": 90, "15": [103, 104, 105, 192, 193, 194, 195, 197, 198], "57142857": 103, "sum": [105, 108, 109, 110, 195, 198], "_abstractscor": [107, 108, 109], "fp": [107, 108, 109], "tn": [107, 108, 109], "classwis": [108, 110], "over": [108, 109, 110, 161, 189, 201], "labelwis": [109, 110], "prior": [110, 192, 195, 198], "modul": [111, 131, 177, 178, 192, 198], "shift_typ": [112, 114], "shift_id": [112, 196], "induc": [112, 114], "synthet": [112, 114, 189, 198, 199, 201], "categor": [112, 192, 198], "origin": [112, 127], "util": [112, 127, 190, 191, 192, 193, 194, 195, 197, 198], "load_nih": 112, "mnt": [112, 195, 196], "nihcxr": [112, 189, 195, 199], "hospital_type_1": 112, "hospital_type_2": 112, "hospital_type_3": 112, "hospital_type_4": 112, "hospital_type_5": 112, "ds_sourc": [112, 196], "ds_target": [112, 196], "num_proc": [112, 196], "hospit": [112, 131, 189, 192, 198, 200, 201], "drift_detect": 114, "experiment": 114, "sklearn": [114, 192, 198], "load_diabet": 114, "y": [114, 116, 117, 119, 140, 182, 192, 195, 198], "return_x_i": 114, "x_tr": 114, "x_te": 114, "y_tr": 114, "y_te": 114, "train_test_split": [114, 192, 198], "test_siz": 114, "random_st": [114, 192, 198], "42": [114, 192, 195, 198], "gn_shift": 114, "x_shift": 114, "x_train": [114, 182], "noise_amt": [114, 118], "delta": [114, 115, 118, 119, 137], "ko_shift": 114, "cp_shift": 114, "mfa_shift": 114, "bn_shift": 114, "tolerance_shift": 114, "ds_shift": 114, "nois": [114, 115, 118, 192, 195, 198], "prob": 115, "covari": [115, 116, 117, 118, 119], "proport": 115, "fraction": [115, 118, 119, 198], "affect": [115, 118, 178, 192, 198], "n_shuffl": [116, 117], "keep_rows_const": 116, "repermute_each_column": 116, "multiwai": 116, "associ": [116, 192, 195, 198], "swap": [116, 117], "individu": [116, 192, 198], "within": 116, "cl": [116, 117], "etc": [116, 117, 192, 195, 198], "floatnumpi": 116, "shuffl": [116, 117, 192], "permut": 116, "placehold": 116, "shift_class": [117, 119], "rank": 117, "changepoint": 117, "axi": [117, 195, 196, 198], "x_ref": 117, "y_ref": 117, "normal": [118, 192], "clip": 118, "gaussian": 118, "standard": [118, 121, 123, 125, 129, 131, 133, 192, 198], "deviat": 118, "divid": 118, "255": [118, 195, 196], "placehol": 119, "querier": [120, 123, 125, 129, 131, 133, 190, 191, 193, 194, 197, 198], "config_overrid": [121, 123, 125, 129, 131, 133], "orm": [121, 127, 190, 191, 193, 194, 197, 198, 200], "overrid": [121, 123, 125, 129, 131, 133], "intend": [121, 192, 195, 198], "subclass": [121, 178], "tabl": [121, 123, 125, 127, 129, 131, 133, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 169, 170, 171, 172, 173, 174, 175, 176, 189, 190, 193, 197, 200], "schema": [121, 123, 125, 129, 131, 133, 194, 197], "schema_nam": [121, 123, 125, 129, 131, 133, 197], "table_nam": [121, 123, 125, 129, 131, 133], "instanti": [121, 189, 192, 198, 200], "cast_timestamp_col": [121, 123, 125, 129, 131, 133], "possibli": [121, 123, 125, 129, 131, 133], "recogn": [121, 123, 125, 129, 131, 133], "timestamp": [121, 123, 125, 129, 131, 133, 141, 142, 143, 148, 149, 159, 178, 189, 191, 195, 199], "sqlalchemi": [121, 123, 125, 129, 131, 133, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 161, 162, 163, 164, 165, 166, 167, 169, 170, 171, 172, 174, 175, 176, 200], "sql": [121, 123, 125, 127, 129, 131, 133, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 161, 162, 163, 164, 165, 166, 167, 169, 170, 171, 172, 174, 175, 176, 189, 200], "subqueri": [121, 123, 125, 127, 129, 131, 133, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176], "care": [125, 131], "unit": 125, "fetch": [125, 127], "transfer": 125, "construct": [125, 129, 131, 133, 136, 137], "wrap": [125, 126, 127, 129, 131, 133], "diagnosi": [125, 129, 131, 190], "room": 125, "dataclass": 127, "tabletyp": 127, "chain": [127, 173], "thu": 127, "datafram": [127, 182, 189, 192, 198, 200], "properti": [127, 180, 182], "join_tabl": [127, 162, 190, 193, 194, 197], "on_to_typ": [127, 162], "cond": [127, 162], "table_col": [127, 162], "join_table_col": [127, 162], "isout": [127, 162, 197, 198], "anoth": [127, 162, 170, 173], "dbtabl": [127, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 169, 170, 171, 172, 173, 174, 175, 176], "binaryexpress": [127, 162], "condit": [127, 139, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 162, 166, 192, 197], "outer": [127, 162], "backend": [127, 194], "panda": [127, 192, 197, 198], "index_col": [127, 194], "n_partit": [127, 194], "No": [127, 195, 197], "dask": [127, 189, 200], "framework": 127, "index": [127, 173, 174, 192, 195, 198], "defin": [127, 178, 192, 195, 198], "partit": [127, 189, 200], "server": 127, "document": [127, 192, 195, 198], "file_format": [127, 192], "parquet": 127, "csv": [127, 192, 197, 198], "upstream": 127, "icu": 131, "chart": [131, 189, 200], "event": [131, 189, 200], "lab": [131, 189, 191, 195, 200], "approxim": 131, "anchor_year": 131, "anchor_year_group": 131, "suppli": 131, "dod": 131, "adjust": [131, 195], "src_tabl": 133, "src_col": 133, "dst_col": 133, "concept": [133, 197], "somecol_concept_id": 133, "somecol_concept_nam": 133, "accord": [133, 190, 193, 194, 197], "assign": 133, "add_to": [135, 136, 137, 138], "col": [135, 140, 141, 144, 145, 146, 147, 150, 151, 152, 153, 154, 155, 156, 157, 158, 160, 163, 165, 167, 171, 172, 174, 175], "new_col_label": [135, 136, 137, 138, 174, 175, 198], "subtract": [135, 136], "rather": [135, 136], "new": [135, 136, 137, 138, 140, 160, 161, 165, 171, 174, 175, 178, 192, 198], "col1": [135, 136, 137, 138, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 156, 157, 158, 159, 160, 162, 163, 165, 167, 170, 171, 172, 173, 174, 175], "col2": [135, 136, 137, 138, 140, 141, 156, 157, 158, 160, 162, 163, 167, 171, 172, 173, 175], "col3": [135, 136, 162, 172], "col1_plus_col2": [135, 136], "col1_plus_col3": 135, "col2_plus_col3": 135, "pai": 135, "attent": 135, "wherea": 135, "delta_kwarg": 136, "interv": 136, "timedelta": 137, "col1_plus_1": [137, 138], "col2_plus_1": 138, "cond_op": [139, 166], "lab_nam": [139, 151, 161, 166], "hba1c": [139, 151, 166], "john": [139, 166], "jane": [139, 166], "return_cond": [139, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 166], "instead": [139, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 166, 178], "func": [140, 195, 196], "new_col": 140, "assum": [140, 190, 193, 194, 197], "lambda": [140, 192, 195, 196, 198], "col1_new": [140, 160, 170], "col2_new": [140, 160], "noqa": [140, 192, 195, 198], "e501": [140, 192, 198], "disabl": 140, "line": [140, 192, 195, 198], "too": 140, "long": [140, 178, 189, 200], "type_": 141, "convers": 141, "date": [141, 142, 143, 178, 192, 195, 198], "timestamp_col": [142, 143, 148, 149, 159], "not_": [142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154], "binarize_col": [142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154], "yyyi": [142, 143, 178], "mm": [142, 143, 178], "dd": [142, 143, 178], "col1_bool": [142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154], "cond_kwarg": [144, 145, 146, 147, 150, 153, 154], "2019": [149, 197], "pattern": 151, "lab_name_bool": 151, "regex": 152, "regular": 152, "express": [152, 192, 195, 198], "any_": 154, "just": 154, "b": 154, "person_id": [155, 161, 197], "visit_id": 155, "extract_str": 159, "extract": [159, 174, 190, 191, 192, 193, 194, 197, 198], "inform": [159, 178, 192], "fill_valu": 160, "new_col_nam": [160, 174], "groupby_col": 161, "aggfunc": [161, 198], "aggsep": 161, "aggreg": [161, 189, 200], "prevent": 161, "string_aggfunc": 161, "separ": 161, "string_agg": 161, "visit_count": 161, "lab_name_agg": 161, "repres": [162, 178, 195], "suggest": 162, "oppos": 162, "sai": 162, "left": [162, 178, 198], "table2": [162, 176], "table1": [162, 176], "neither": 162, "nor": 162, "cartesian": 162, "product": 162, "OR": 166, "ascend": [167, 191], "sort": [167, 189, 192, 198, 200], "descend": 167, "random": [169, 192, 195, 198], "so": 169, "certain": [169, 192, 198], "cannot": 169, "seen": 169, "analyz": 169, "quit": 169, "rename_map": 170, "check_exist": 170, "complet": 171, "come": 172, "ordereddict": 173, "execut": [173, 190, 191, 193, 194, 197, 198], "op_": 173, "start_index": 174, "stop_index": 174, "stop": [174, 198], "col1_substr": 174, "whitespac": 175, "col1_trim": 175, "col2_trim": 175, "union_t": 176, "output_dir": [178, 192, 195, 198], "serv": 178, "popul": [178, 189, 192, 198, 201], "modelcard": 178, "directori": [178, 192, 198], "output_filenam": 178, "template_path": 178, "interact": [178, 198], "save_json": 178, "jinja2": 178, "json": [178, 192, 198], "classmethod": 178, "cyclops_report": [178, 192, 198], "section_nam": [178, 192, 195, 198], "model_detail": [178, 192, 198], "section": [178, 192, 195, 198], "bibtex": 178, "entri": 178, "plain": 178, "text": [178, 194, 195], "descript": [178, 192, 195, 198], "license_id": [178, 192], "sensitive_featur": [178, 192], "sensitive_feature_justif": [178, 192], "log": [178, 189, 192, 198, 201], "about": [178, 192, 195, 198], "resourc": [178, 192, 198], "context": 178, "homepag": 178, "spdx": [178, 192], "identifi": [178, 189, 195, 201], "licens": [178, 192, 195, 198], "apach": [178, 192, 198], "unknown": 178, "unlicens": 178, "proprietari": 178, "justif": [178, 192], "field": [178, 189, 192, 198, 201], "descriptor": 178, "pydant": 178, "basemodel": 178, "As": 178, "conflict": 178, "model_card": [178, 192, 195, 198], "cylop": 178, "tradeoff": [178, 195], "trade": 178, "off": 178, "interpret": 178, "consider": [178, 192, 195, 198], "affected_group": [178, 192, 195, 198], "benefit": [178, 192, 195, 198], "harm": [178, 192, 195, 198], "mitigation_strategi": [178, 192, 195, 198], "assess": 178, "mitig": [178, 192, 195, 198], "strategi": [178, 192, 195, 198], "relat": 178, "img_path": 178, "caption": [178, 192, 195, 198], "full": 178, "whole": [178, 192, 198], "blank": 178, "param": [178, 192, 198], "contact": [178, 192, 195, 198], "role": 178, "owner": [178, 192, 195, 198], "quantit": [178, 192, 195, 198], "slash": 178, "fig": [178, 192, 195, 198], "plotli": [178, 192, 195, 198], "figur": [178, 192, 195, 198], "plot": [178, 192, 195, 198], "analysis_typ": 178, "metric_slic": [178, 192, 195, 198], "decision_threshold": 178, "pass_fail_threshold": [178, 192, 195, 198], "pass_fail_threshold_fn": [178, 192, 195, 198], "explain": [178, 192, 195, 198], "fail": 178, "regul": 178, "regulatori": [178, 192, 198], "compli": 178, "risk": [178, 192, 195, 198, 201], "kind": [178, 192, 195, 198], "primari": [178, 192, 195, 198], "scope": [178, 192, 198], "usecas": 178, "version_str": [178, 192, 198], "semant": 178, "v1": [178, 193, 197], "dt_date": 178, "dt_datetim": 178, "unix": 178, "hh": 178, "ss": 178, "ffffff": 178, "z": 178, "summar": 178, "chang": [178, 192, 195, 198], "made": [178, 192, 198], "task_featur": [180, 182, 192, 198], "task_target": [180, 182, 192, 198], "atelectasi": [180, 195], "consolid": [180, 195], "infiltr": [180, 195], "pneumothorax": [180, 195], "edema": [180, 195], "emphysema": [180, 195], "fibrosi": [180, 195], "effus": [180, 195], "pneumonia": [180, 195], "pleural_thicken": [180, 195], "cardiomegali": [180, 195], "nodul": [180, 195], "mass": [180, 195, 198], "hernia": [180, 195], "lung": 180, "lesion": 180, "fractur": 180, "opac": 180, "enlarg": 180, "cardiomediastinum": 180, "basetask": [180, 182], "multi": [180, 195], "ptmodel": [180, 182, 195], "skmodel": [180, 182], "splits_map": [180, 182], "64": [180, 195, 198], "compos": [180, 192, 195, 196, 198], "unnecessari": [180, 182], "pathologi": [180, 189, 192, 201], "represent": [180, 192, 198], "tabular": [182, 189], "fit": [182, 192, 198], "columntransform": [182, 192, 198], "slicingconfig": 182, "default_max_batch_s": 182, "filepath": 182, "pretrain": [182, 195], "proba": [182, 192, 198], "pd": [182, 197], "notfittederror": 182, "destin": 182, "parent": [182, 192, 195, 198], "dirctori": 182, "best_model_param": [182, 192, 198], "y_train": 182, "seri": 182, "nonei": 182, "male": [189, 195, 196, 200], "outcom": [189, 200, 201], "femal": [189, 192, 195, 196, 198, 200], "gastroenter": [189, 200], "icd": [189, 200], "potassium": [189, 200], "aado2": [189, 200], "carevu": [189, 200], "valuenum": [189, 200], "20": [189, 192, 195, 197, 198, 200], "admiss": [189, 193, 200], "later": [189, 200], "approx": [189, 200], "schizophrenia": [189, 200], "2015": [189, 197, 200], "advanc": [189, 200], "chronic": [189, 200], "routin": [189, 200], "vital": [189, 191, 198, 200], "sign": [189, 192, 198, 200], "hemoglobin": [189, 200], "2009": [189, 200], "radiologi": [189, 191, 200], "lymphadenopathi": [189, 200], "infecti": [189, 200], "occur": [189, 200], "lazi": [189, 200], "subject_id": [189, 193, 200], "raw": [189, 200], "discharg": [189, 200], "2014": [189, 197, 200], "100": [189, 192, 193, 194, 195, 196, 197, 198, 200], "diagnosisstr": [189, 200], "teach": [189, 200], "glucos": [189, 200], "search": [189, 192, 198, 200], "visit": [189, 200], "sepsi": [189, 200], "1a": [189, 200], "most": [189, 192, 200], "recent": [189, 192, 195, 198, 200], "patient_id_hash": [189, 200], "discharge_date_tim": [189, 200], "record": [189, 200], "1b": [189, 200], "abov": [189, 200], "who": [189, 200], "were": [189, 200], "april": [189, 200], "march": [189, 200], "2016": [189, 197, 200], "1c": [189, 200], "2a": [189, 200], "how": [189, 190, 192, 193, 194, 197, 198, 200], "mani": [189, 200], "sodium": [189, 200], "place": [189, 192, 200], "apr": [189, 200], "101": [189, 200], "drift": [189, 199], "experi": [189, 199], "dimension": [189, 199], "reduct": [189, 199], "techniqu": [189, 199], "roll": [189, 199], "window": [189, 199], "biweekli": [189, 199], "kaggl": [189, 192], "heart": 189, "failur": 189, "constant": [189, 201], "distribut": [189, 195, 201], "preprocessor": [189, 201], "creation": [189, 201], "synthea": [189, 197, 198], "prolong": 189, "length": [189, 195], "stai": 189, "inspect": [189, 192, 201], "preprocess": [189, 192, 201], "nan_threshold": [189, 192, 201], "gender": [189, 190, 192, 193, 194, 195, 196, 201], "nih": [189, 195, 196], "diseas": [189, 192, 201], "balanc": [189, 192, 201], "w": [189, 201], "quick": [190, 193, 194, 197], "instruct": [190, 193, 194, 197, 198], "host": [190, 191, 193, 194, 197, 198], "postgr": [190, 193, 194, 197, 198], "usernam": [190, 191, 192, 193, 194, 197], "password": [190, 191, 193, 194, 197, 198], "accordingli": [190, 193, 194, 197], "qo": [190, 191, 193, 194, 197, 198], "dbm": [190, 193, 194, 197, 198], "postgresql": [190, 193, 194, 197, 198, 200], "port": [190, 193, 194, 197, 198], "5432": [190, 193, 194, 197, 198], "localhost": [190, 193, 194, 197, 198], "pwd": [190, 193, 194, 197, 198], "eicu_crd": 190, "home": [190, 192, 193, 194, 195, 196, 197, 198], "amritk": [190, 192, 193, 194, 195, 196, 197, 198], "cach": [190, 192, 193, 194, 195, 196, 197, 198], "pypoetri": [190, 192, 193, 194, 195, 196, 197, 198], "virtualenv": [190, 192, 193, 194, 195, 196, 197, 198], "wizuawxh": [190, 192, 193, 194, 195, 196, 197, 198], "py3": [190, 192, 193, 194, 195, 196, 197, 198], "lib": [190, 192, 193, 194, 195, 196, 197, 198], "site": [190, 192, 193, 194, 195, 196, 197, 198], "tqdm": [190, 192, 193, 194, 195, 196, 197, 198], "auto": [190, 192, 193, 194, 195, 196, 197, 198], "py": [190, 192, 193, 194, 195, 196, 197, 198], "21": [190, 191, 192, 193, 194, 195, 196, 197, 198], "tqdmwarn": [190, 192, 193, 194, 195, 196, 197, 198], "iprogress": [190, 192, 193, 194, 195, 196, 197, 198], "ipywidget": [190, 192, 193, 194, 195, 196, 197, 198], "readthedoc": [190, 192, 193, 194, 195, 196, 197, 198], "io": [190, 192, 193, 194, 195, 196, 197, 198], "en": [190, 192, 193, 194, 195, 196, 197, 198], "user_instal": [190, 192, 193, 194, 195, 196, 197, 198], "autonotebook": [190, 192, 193, 194, 195, 196, 197, 198], "notebook_tqdm": [190, 192, 193, 194, 195, 196, 197, 198], "2023": [190, 191, 192, 193, 194, 197, 198], "09": [190, 191, 192, 193, 194, 197, 198], "11": [190, 192, 193, 194, 195, 197, 198, 201], "13": [190, 192, 195, 197, 198], "085": 190, "readi": [190, 191, 193, 194, 197, 198], "39": [190, 191, 192, 193, 194, 195, 197, 198], "admissiondrug": 190, "admissiondx": 190, "allergi": 190, "apacheapsvar": 190, "apachepatientresult": 190, "apachepredvar": 190, "careplancareprovid": 190, "careplaneol": 190, "careplangener": 190, "careplango": 190, "careplaninfectiousdiseas": 190, "customlab": 190, "infusiondrug": 190, "intakeoutput": 190, "microlab": 190, "nurseassess": 190, "nursecar": 190, "nursechart": 190, "pasthistori": 190, "physicalexam": 190, "respiratorycar": 190, "respiratorychart": 190, "treatment": 190, "vitalaperiod": 190, "vitalperiod": 190, "hospitaldischargeyear": 190, "len": [190, 191, 192, 193, 194, 195, 197, 198], "731": 190, "successfulli": [190, 191, 193, 194, 197, 198], "732": 190, "profil": [190, 191, 192, 193, 194, 197, 198], "finish": [190, 191, 193, 194, 197, 198], "run_queri": [190, 191, 193, 194, 197, 198], "042269": 190, "patient_diagnos": 190, "patientunitstayid": 190, "811": [190, 198], "812": [190, 198], "068682": 190, "teachingstatu": 190, "hospitalid": 190, "labnam": 190, "patient_lab": [190, 193], "883": 190, "884": 190, "036568": 190, "drugnam": 190, "patient_med": 190, "33": [190, 192, 194, 198], "061": 190, "062": 190, "158932": 190, "hpc": 191, "ca": 191, "delirium_v4_0_1": 191, "public": [191, 194, 197], "17": [191, 192, 198], "449": 191, "lookup_icd10_ca_descript": 191, "lookup_statcan": 191, "lookup_cci": 191, "lookup_icd10_ca_to_ccsr": 191, "lookup_ip_administr": 191, "lookup_lab_concept": 191, "lookup_vitals_concept": 191, "lookup_pharmacy_concept": 191, "lookup_diagnosi": 191, "locality_vari": 191, "admdad": 191, "derived_vari": 191, "ipscu": 191, "lookup_phy_characterist": 191, "ipintervent": 191, "lookup_ccsr": 191, "lookup_pharmacy_rout": 191, "lookup_transfusion_concept": 191, "lookup_ip_scu": 191, "lookup_er_administr": 191, "lookup_imag": 191, "pharmaci": 191, "lookup_transf": 191, "ipdiagnosi": 191, "lookup_room_transf": 191, "er": 191, "erdiagnosi": 191, "erintervent": 191, "roomtransf": 191, "transfus": 191, "lookup_hospital_num": 191, "51": [191, 192, 195, 198], "902": 191, "903": 191, "093352": 191, "189734": 191, "04": [191, 193], "encounters_queri": 191, "52": [191, 192, 195, 198], "591": 191, "592": 191, "675141": 191, "32567": 191, "hospital_num": 191, "encounters_per_sit": 191, "856": 191, "857": 191, "145693": 191, "lab_op": 191, "collection_date_tim": 191, "test_type_map": 191, "encounters_lab": 191, "genc_id": 191, "sodium_test": 191, "26": [191, 192, 198], "19": [191, 192, 195, 198], "814": [191, 198], "815": 191, "506": [191, 194], "939296": 191, "9305": 191, "showcas": [192, 197, 198, 201], "formul": [192, 198], "o": [192, 195, 198], "shutil": [192, 195, 198], "pathlib": [192, 195, 198], "px": [192, 195, 198], "dateutil": [192, 195, 198], "relativedelta": [192, 195, 198], "kaggle_api_extend": 192, "kaggleapi": 192, "imput": [192, 198], "simpleimput": [192, 198], "pipelin": [192, 198], "minmaxscal": [192, 198], "onehotencod": [192, 198], "e402": [192, 195, 198], "catalog": [192, 198], "create_model": [192, 198], "tabularfeatur": [192, 198], "classificationplott": [192, 195, 198], "flatten_results_dict": [192, 198], "get_metrics_trend": [192, 195, 198], "load_datafram": 192, "offer": [192, 195, 198], "through": [192, 195, 198], "technic": [192, 195, 198], "architectur": [192, 195, 198], "involv": [192, 195, 198], "subpopul": [192, 195, 198], "explaina": [192, 195, 198], "go": [192, 195, 198], "tool": [192, 195, 198], "progress": [192, 195, 198], "subject": [192, 195, 198], "data_dir": [192, 195], "random_se": [192, 198], "train_siz": [192, 198], "com": [192, 195], "Then": 192, "trigger": 192, "download": 192, "credenti": 192, "locat": [192, 197], "machin": [192, 195], "authent": 192, "dataset_download_fil": 192, "fedesoriano": 192, "unzip": 192, "df": 192, "reset_index": [192, 198], "41": [192, 198], "041": 192, "chestpaintyp": 192, "restingbp": 192, "cholesterol": 192, "fastingb": 192, "restingecg": 192, "40": [192, 198], "ata": 192, "140": [192, 194], "289": 192, "49": [192, 198], "nap": 192, "160": 192, "180": 192, "37": [192, 198], "130": 192, "283": 192, "st": 192, "48": [192, 198], "asi": 192, "138": 192, "214": 192, "54": 192, "150": 192, "195": 192, "913": 192, "ta": 192, "110": 192, "264": 192, "914": 192, "68": 192, "144": 192, "193": 192, "915": 192, "57": 192, "131": 192, "916": 192, "236": 192, "lvh": 192, "917": 192, "38": [192, 198], "175": 192, "maxhr": 192, "exerciseangina": 192, "oldpeak": 192, "st_slope": 192, "heartdiseas": 192, "172": 192, "156": 192, "flat": 192, "98": [192, 195], "108": 192, "122": 192, "132": 192, "141": 192, "115": 192, "174": 192, "173": 192, "918": 192, "pie": [192, 195, 198], "update_layout": [192, 195, 198], "histogram": [192, 195, 198], "xaxis_titl": [192, 195, 198], "yaxis_titl": [192, 195, 198], "bargap": [192, 195, 198], "astyp": [192, 198], "update_trac": [192, 195, 198], "textinfo": [192, 198], "percent": [192, 198], "title_text": [192, 198], "hovertempl": [192, 198], "br": [192, 198], "class_count": [192, 198], "value_count": [192, 197, 198], "class_ratio": [192, 198], "8070866141732284": 192, "14": [192, 193, 194, 195, 198, 201], "wa": [192, 195, 198], "li": 192, "et": 192, "al": 192, "features_list": [192, 198], "help": [192, 195, 198], "essenti": [192, 198], "step": [192, 198], "understand": [192, 198], "u": [192, 198], "16": [192, 194, 198], "tab_featur": [192, 198], "ordin": 192, "might": [192, 198], "numeric_transform": [192, 198], "scaler": [192, 198], "binary_transform": [192, 198], "most_frequ": [192, 198], "18": [192, 194, 196, 198], "numeric_featur": [192, 198], "features_by_typ": [192, 198], "numeric_indic": [192, 198], "get_loc": [192, 198], "binary_featur": [192, 198], "ordinal_featur": 192, "binary_indic": [192, 198], "ordinal_indic": 192, "num": [192, 198], "onehot": [192, 198], "handle_unknown": [192, 198], "ignor": [192, 198], "remaind": [192, 198], "passthrough": [192, 198], "let": [192, 198], "done": [192, 198], "independ": 192, "everi": 192, "uci": 192, "archiv": 192, "ic": 192, "edu": 192, "cleandoc": 192, "misc": 192, "cc0": 192, "demograph": [192, 195], "often": 192, "strong": 192, "correl": 192, "older": [192, 198], "higher": 192, "power": [192, 198], "easi": [192, 198], "compat": [192, 198], "22": [192, 198], "from_panda": [192, 198], "cleanup_cache_fil": [192, 198], "num_row": 192, "cast_column": [192, 198], "stratify_by_column": [192, 198], "seed": [192, 198], "lt": [192, 194, 195, 196, 198], "187438": 192, "96": [192, 195, 198], "straightforward": [192, 198], "maintain": [192, 198], "sgd": [192, 198], "logisit": [192, 198], "regress": [192, 198], "sgdclassif": [192, 198], "24": [192, 193, 196, 198], "sgd_classifi": 192, "123": [192, 198], "verbos": [192, 198], "class_weight": 192, "mortalitypredict": [192, 198], "encapsul": [192, 198], "cohes": [192, 198], "structur": [192, 198], "smooth": [192, 198], "manag": [192, 198], "mortality_task": 192, "best": [192, 198], "hyperparamet": [192, 198], "grid": [192, 198], "27": [192, 198], "alpha": 192, "0001": 192, "001": 192, "learning_r": [192, 198], "invscal": 192, "adapt": 192, "eta0": 192, "roc_auc": 192, "423": 192, "wrapper": [192, 195, 198, 200], "sk_model": [192, 198], "424": 192, "425": 192, "sgdclassifi": 192, "x27": [192, 198], "early_stop": 192, "loss": 192, "log_loss": 192, "rerun": [192, 198], "cell": [192, 198], "trust": [192, 198], "On": [192, 195, 198], "github": [192, 195, 198], "unabl": [192, 198], "render": [192, 198], "try": [192, 198], "page": [192, 198], "nbviewer": [192, 198], "sgdclassifiersgdclassifi": 192, "28": [192, 195, 198], "model_param": [192, 198], "epsilon": 192, "fit_intercept": 192, "l1_ratio": 192, "max_it": 192, "n_iter_no_chang": 192, "n_job": [192, 198], "penalti": 192, "l2": 192, "power_t": 192, "tol": 192, "validation_fract": 192, "warm_start": 192, "29": [192, 194, 198], "30": [192, 194, 195, 198, 201], "y_pred": [192, 198], "only_predict": [192, 198], "184": 192, "7778": 192, "74": 192, "variou": [192, 198], "perspect": [192, 198], "metric_collect": [192, 198], "70": 192, "fnr": [192, 195, 198], "ber": [192, 198], "fairness_metric_collect": [192, 198], "34": [192, 196, 198], "dataset_with_pr": [192, 198], "7153": 192, "93": [192, 196], "8233": 192, "78": 192, "48981": 192, "46": [192, 195, 198], "gt": [192, 194, 195, 198], "19480": 192, "81": 192, "15568": 192, "62": [192, 198], "21303": 192, "20113": 192, "21511": 192, "65": [192, 195, 196], "20855": 192, "91": 192, "right": [192, 198], "36": [192, 196, 198], "results_flat": [192, 195, 198], "remove_metr": [192, 198], "796875": 192, "8260869565217391": 192, "6785714285714286": 192, "7450980392156863": 192, "8819444444444444": 192, "8623853211009175": 192, "8676470588235294": 192, "9076923076923077": 192, "8872180451127819": 192, "927972027972028": 192, "842391304347826": 192, "8686868686868687": 192, "8431372549019608": 192, "8557213930348259": 192, "9152319464371114": 192, "plw2901": [192, 195, 198], "plotter": [192, 195, 196, 198], "class_nam": [192, 198], "set_templ": [192, 195, 198], "plotly_whit": [192, 195, 198], "slice_result": [192, 195, 198], "dict_kei": [192, 198], "roc_plot": [192, 198], "roc_curve_comparison": [192, 198], "overall_perform": [192, 198], "metric_valu": [192, 198], "overall_performance_plot": [192, 198], "metrics_valu": [192, 198], "43": [192, 198], "slice_metr": [192, 198], "44": [192, 198], "slice_metrics_plot": [192, 198], "metrics_comparison_bar": [192, 198], "comparison": [192, 198], "reform": [192, 198], "fairness_result": [192, 198], "deepcopi": [192, 198], "fairness_metr": [192, 198], "group_siz": [192, 198], "fairness_plot": [192, 198], "metrics_comparison_scatt": [192, 198], "leverag": [192, 195, 198], "histor": [192, 195, 198], "gather": [192, 195, 198], "merg": [192, 195, 198], "wish": [192, 195, 198], "metrics_trend": [192, 195, 198], "integr": [192, 195, 198], "purpos": [192, 195, 198], "three": [192, 195, 198], "dummi": [192, 195, 198], "demonstr": [192, 195, 198, 201], "trend": [192, 195, 198], "47": [192, 197, 198], "dummy_report_num": [192, 195, 198], "dummy_report_dir": [192, 195, 198], "getcwd": [192, 195, 198], "dummy_report": [192, 195, 198], "simul": [192, 195, 198], "uniform": [192, 195, 198], "dummy_result": [192, 195, 198], "max": [192, 195, 198], "folder": [192, 195, 198], "dummy_report_path": [192, 195, 198], "date_dir": [192, 195, 198], "dummy_d": [192, 195, 198], "todai": [192, 195, 198], "new_dir": [192, 195, 198], "rmtree": [192, 195, 198], "previou": [192, 195, 198], "report_directori": [192, 195, 198], "flat_result": [192, 195, 198], "trends_plot": [192, 195, 198], "audienc": [192, 198], "organ": [192, 198], "store": [192, 198], "regulatory_requir": [192, 198], "releas": [192, 197, 198], "team": [192, 198], "vectorinstitut": [192, 198], "linear_model": 192, "next": [192, 198], "use_cas": [192, 198], "These": [192, 198], "fairness_assess": [192, 198], "well": [192, 195, 198], "taken": [192, 198], "ethical_consider": [192, 198], "clinician": [192, 198], "engin": [192, 198], "improv": [192, 198], "bias": [192, 195, 198], "lead": [192, 198], "wors": [192, 198], "retrain": [192, 198], "below": [192, 198], "By": [192, 198], "report_path": [192, 195, 198], "view": [192, 195, 198, 201], "262": 193, "expire_flag": 193, "656": 193, "657": [193, 197], "037987": 193, "patient_admiss": [193, 194], "long_titl": [193, 194], "patient_admissions_diagnos": [193, 194], "hadm_id": [193, 194], "795": 193, "796": 193, "096709": 193, "865": 193, "866": 193, "032713": 193, "chartevents_op": 193, "dbsourc": 193, "chart_ev": [193, 194], "patient_chart_ev": 193, "022": 193, "023": 193, "72": 193, "113653": 193, "v2": [194, 197], "005": 194, "fhir_etl": 194, "fhir_trm": 194, "information_schema": [194, 197], "mimic_fhir": 194, "mimiciv_deriv": 194, "mimiciv_": 194, "mimiciv_hosp": 194, "mimiciv_icu": 194, "mimiciv_not": 194, "admittim": 194, "dischtim": 194, "anchor_year_differ": 194, "728": 194, "729": 194, "269253": 194, "diagnoses_op": 194, "icd_vers": 194, "581": 194, "582": 194, "819763": 194, "r": 194, "139": 194, "516252": 194, "82": 194, "categori": [194, 198], "patient_admissions_vit": 194, "55": 194, "507": 194, "326835": 194, "patient_admissions_lab": 194, "785": 194, "786": 194, "71": 194, "250068": 194, "radiology_not": 194, "radiology_notes_op": 194, "patient_admissions_radiology_not": 194, "480": 194, "482": 194, "654839": 194, "npartit": 194, "852": 194, "853": 194, "330419": 194, "35639": 194, "core": 194, "647": 194, "648": 194, "009600": 194, "torchxrayvis": [195, 196], "functool": 195, "graph_object": [195, 198], "lambdad": [195, 196], "resiz": [195, 196], "densenet": [195, 196], "loader": [195, 196], "load_nihcxr": [195, 196], "apply_transform": 195, "get_devic": 195, "devic": 195, "clinical_dataset": [195, 196], "nih_d": [195, 196], "4000": 195, "spatial_s": [195, 196], "224": [195, 196], "allow_missing_kei": [195, 196], "1024": [195, 196], "newaxi": [195, 196], "densenet121": [195, 196], "res224": [195, 196], "212857": 195, "2511": 195, "3764": 195, "int64": [195, 197], "originalimag": 195, "width": [195, 198], "height": [195, 198], "originalimagepixelspac": 195, "unnam": 195, "float32": 195, "__index_level_0__": 195, "arang": 195, "nih_eval_results_gend": 195, "scatter": 195, "mode": 195, "marker": 195, "perf_metric_gend": 195, "title_x": 195, "title_font_s": 195, "768": 195, "selector": 195, "59679": 195, "60636": 195, "60682": 195, "nih_eval_results_ag": 195, "perf_metric_ag": 195, "63385": 195, "61383": 195, "61635": 195, "62553": 195, "showlegend": 195, "bar": [195, 198], "balanced_error_r": 195, "nih_fairness_result_ag": 195, "balancederrorr": 195, "fairness_ag": 195, "62305": 195, "57153": 195, "77": 195, "61603": 195, "73": [195, 198], "fairness_age_par": 195, "slice_": 195, "itr": 195, "enumer": 195, "dummy_reports_cxr": 195, "112": [195, 201], "120": [195, 201], "frontal": [195, 201], "805": [195, 201], "fourteen": 195, "mine": 195, "radiolog": 195, "pleural": 195, "thicken": 195, "80": [195, 198], "remain": 195, "arxiv": 195, "ab": 195, "2111": 195, "00595": 195, "inproceed": 195, "cohen2022xrv": 195, "cohen": 195, "joseph": 195, "paul": 195, "viviano": 195, "bertin": 195, "morrison": 195, "torabian": 195, "parsa": 195, "guarrera": 195, "matteo": 195, "lungren": 195, "matthew": 195, "chaudhari": 195, "akshai": 195, "brook": 195, "rupert": 195, "hashir": 195, "mohammad": 195, "bertrand": 195, "hadrien": 195, "booktitl": 195, "deep": 195, "mlmed": 195, "arxivid": 195, "cohen2020limit": 195, "cross": 195, "domain": [195, 197], "autom": [195, 198], "2002": 195, "02497": 195, "medicin": 195, "radiologist": 195, "scientist": 195, "inabl": 195, "addition": 195, "poor": 195, "qualiti": 195, "artifact": 195, "geograph": 195, "region": 195, "ethic": 195, "ensur": 195, "divers": 195, "regularli": 195, "human": 195, "expertis": 195, "address": 195, "rare": 195, "qualit": 195, "detector": 196, "reductor": 196, "tstester": 196, "plot_drift_experi": 196, "plot_drift_timeseri": 196, "shifter": 196, "source_d": 196, "target_d": 196, "25596": 196, "59651": 196, "dr_method": 196, "bbse": 196, "soft": 196, "txrv": 196, "ae": 196, "sensitivity_test": 196, "tester": 196, "tester_method": 196, "source_sample_s": 196, "target_sample_s": 196, "num_run": 196, "detect_shift": 196, "chexpert": 196, "chex": 196, "padchest": 196, "pc": 196, "source_slic": 196, "target_slic": 196, "50082": 196, "92": 196, "49186": 196, "86": 196, "47503": 196, "47554": 196, "47736": 196, "45598": 196, "45676": 196, "58": 196, "47465": 196, "rolling_window_drift": 196, "timestamp_column": 196, "window_s": 196, "4w": 196, "etl": [197, 198], "hous": 197, "synthea_integration_test": 197, "cdm_synthea10": 197, "084": 197, "observation_period": 197, "condition_occurr": 197, "drug_exposur": 197, "procedure_occurr": 197, "device_exposur": 197, "death": 197, "note_nlp": 197, "specimen": 197, "fact_relationship": 197, "care_sit": 197, "payer_plan_period": 197, "cost": 197, "drug_era": 197, "dose_era": 197, "condition_era": 197, "episod": 197, "episode_ev": 197, "cdm_sourc": 197, "vocabulari": 197, "concept_class": 197, "concept_relationship": 197, "relationship": 197, "concept_synonym": 197, "concept_ancestor": 197, "source_to_concept_map": 197, "drug_strength": 197, "cohort": [197, 198], "cohort_definit": 197, "source_to_standard_vocab_map": 197, "source_to_source_vocab_map": 197, "all_visit": 197, "assign_all_visit_id": 197, "final_visit_id": 197, "visit_start_d": 197, "to_datetim": 197, "dt": 197, "sort_index": 197, "762": 197, "764": 197, "073394": 197, "2011": 197, "2012": 197, "2013": 197, "2017": 197, "2018": 197, "visits_measur": 197, "visit_occurrence_id": 197, "876": 197, "877": 197, "060985": 197, "repo": 197, "668": 197, "visits_concept_map": 197, "discharge_to_concept_id": 197, "admitting_concept_id": 197, "visits_concept_mapped_di": 197, "discharge_to_concept_nam": 197, "di": 197, "658": 197, "982651": 197, "5815": 197, "gender_concept_nam": 197, "person_visit": 197, "person_visits_condit": 197, "person_visits_conditions_measur": 197, "condition_concept_id": 197, "condition_concept_nam": 197, "713": 197, "714": 197, "987421": 197, "measurement_concept_nam": 197, "bodi": 197, "temperatur": 197, "longer": 198, "v3": 198, "num_dai": 198, "synthea_demo": 198, "def": 198, "get_encount": 198, "nativ": 198, "patient_id": 198, "birthdat": 198, "race": 198, "ethnic": 198, "patient_encount": 198, "encounter_id": 198, "start_year": 198, "birthdate_year": 198, "lo": 198, "get_observ": 198, "groupby_op": 198, "n_ob": 198, "observations_count": 198, "observations_stat": 198, "pivot_t": 198, "add_prefix": 198, "obs_": 198, "get_med": 198, "n_med": 198, "get_procedur": 198, "procedur": [198, 201], "n_procedur": 198, "cohort_queri": 198, "to_merg": 198, "to_merge_df": 198, "813": 198, "638": 198, "832714": 198, "455": 198, "456": 198, "816797": 198, "032": 198, "034": 198, "385914": 198, "526": 198, "528": 198, "488658": 198, "627": 198, "628": 198, "098377": 198, "payer": 198, "encounterclass": 198, "base_encounter_cost": 198, "total_claim_cost": 198, "payer_coverag": 198, "reasoncod": 198, "reasondescript": 198, "null_count": 198, "isnul": 198, "600": 198, "respect": 198, "larger": 198, "thresh_nan": 198, "dropna": 198, "thresh": 198, "length_of_stai": 198, "length_of_stay_count": 198, "length_of_stay_kei": 198, "5573997233748271": 198, "obs_alanin": 198, "aminotransferas": 198, "enzymat": 198, "volum": 198, "serum": 198, "plasma": 198, "obs_albumin": 198, "obs_alkalin": 198, "phosphatas": 198, "obs_aspart": 198, "obs_bilirubin": 198, "obs_bodi": 198, "obs_calcium": 198, "obs_carbon": 198, "dioxid": 198, "mole": 198, "obs_chlorid": 198, "obs_creatinin": 198, "obs_diastol": 198, "blood": 198, "pressur": 198, "obs_erythrocyt": 198, "obs_ferritin": 198, "obs_glomerular": 198, "filtrat": 198, "sq": 198, "obs_glucos": 198, "obs_hematocrit": 198, "obs_hemoglobin": 198, "obs_leukocyt": 198, "obs_mch": 198, "entit": 198, "obs_mchc": 198, "obs_mcv": 198, "obs_oxygen": 198, "satur": 198, "arteri": 198, "obs_platelet": 198, "obs_potassium": 198, "obs_protein": 198, "obs_sodium": 198, "obs_systol": 198, "obs_troponin": 198, "cardiac": 198, "obs_urea": 198, "nitrogen": 198, "1126": 198, "111602": 198, "sllearn": 198, "xgb_classifi": 198, "los_task": 198, "n_estim": 198, "250": 198, "500": 198, "max_depth": 198, "reg_lambda": 198, "colsample_bytre": 198, "gamma": 198, "810": 198, "xgbclassifi": 198, "base_scor": 198, "booster": 198, "callback": 198, "colsample_bylevel": 198, "colsample_bynod": 198, "early_stopping_round": 198, "enable_categor": 198, "eval_metr": 198, "logloss": 198, "feature_typ": 198, "gpu_id": 198, "grow_polici": 198, "importance_typ": 198, "interaction_constraint": 198, "max_bin": 198, "max_cat_threshold": 198, "max_cat_to_onehot": 198, "max_delta_step": 198, "max_leav": 198, "min_child_weight": 198, "miss": 198, "monotone_constraint": 198, "num_parallel_tre": 198, "predictor": 198, "xgbclassifierxgbclassifi": 198, "logist": 198, "use_label_encod": 198, "reg_alpha": 198, "sampling_method": 198, "scale_pos_weight": 198, "subsampl": 198, "tree_method": 198, "validate_paramet": 198, "226": 198, "4109": 198, "87": 198, "3868": 198, "3802": 198, "53092": 198, "7812": 198, "88": 198, "8117": 198, "7811": 198, "8648": 198, "84": 198, "9174": 198, "53": 198, "amp": 198, "8333": 198, "8439": 198, "7456": 198, "66": 198, "8146": 198, "8015": 198, "7681": 198, "8859649122807017": 198, "8873239436619719": 198, "9264705882352942": 198, "9064748201438849": 198, "9638746803069054": 198, "8909090909090909": 198, "8888888888888888": 198, "9735449735449735": 198, "9126984126984127": 198, "9285714285714286": 198, "9397590361445783": 198, "9341317365269461": 198, "9775847576351919": 198, "9193548387096774": 198, "9685908319185059": 198, "9070796460176991": 198, "9246575342465754": 198, "9310344827586207": 198, "9278350515463918": 198, "9728395061728395": 198, "xgboost": 198, "python_api": 198, "statist": 199, "commun": 200, "around": 200, "goal": 201}, "objects": {"cyclops": [[183, 0, 0, "-", "data"], [184, 0, 0, "-", "evaluate"], [185, 0, 0, "-", "monitor"], [186, 0, 0, "-", "query"], [187, 0, 0, "-", "report"], [188, 0, 0, "-", "tasks"]], "cyclops.data": [[183, 0, 0, "-", "features"], [6, 0, 0, "-", "slicer"]], "cyclops.data.features": [[4, 0, 0, "-", "medical_image"]], "cyclops.data.features.medical_image": [[5, 1, 1, "", "MedicalImage"]], "cyclops.data.features.medical_image.MedicalImage": [[5, 2, 1, "", "__call__"], [5, 2, 1, "", "cast_storage"], [5, 2, 1, "", "decode_example"], [5, 2, 1, "", "embed_storage"], [5, 2, 1, "", "encode_example"], [5, 2, 1, "", "flatten"]], "cyclops.data.slicer": [[7, 1, 1, "", "SliceSpec"], [8, 4, 1, "", "compound_filter"], [9, 4, 1, "", "filter_datetime"], [10, 4, 1, "", "filter_non_null"], [11, 4, 1, "", "filter_range"], [12, 4, 1, "", "filter_string_contains"], [13, 4, 1, "", "filter_value"], [14, 4, 1, "", "is_datetime"], [15, 4, 1, "", "overall"]], "cyclops.data.slicer.SliceSpec": [[7, 3, 1, "", "_registry"], [7, 2, 1, "", "add_slice_spec"], [7, 3, 1, "", "column_names"], [7, 2, 1, "", "get_slices"], [7, 3, 1, "", "include_overall"], [7, 2, 1, "", "slices"], [7, 3, 1, "", "spec_list"], [7, 3, 1, "", "validate"]], "cyclops.evaluate": [[16, 0, 0, "-", "evaluator"], [184, 0, 0, "-", "fairness"], [184, 0, 0, "-", "metrics"]], "cyclops.evaluate.evaluator": [[17, 4, 1, "", "evaluate"]], "cyclops.evaluate.fairness": [[18, 0, 0, "-", "config"], [20, 0, 0, "-", "evaluator"]], "cyclops.evaluate.fairness.config": [[19, 1, 1, "", "FairnessConfig"]], "cyclops.evaluate.fairness.evaluator": [[21, 4, 1, "", "evaluate_fairness"], [22, 4, 1, "", "warn_too_many_unique_values"]], "cyclops.evaluate.metrics": [[23, 0, 0, "-", "accuracy"], [28, 0, 0, "-", "auroc"], [33, 0, 0, "-", "f_beta"], [42, 0, 0, "-", "factory"], [184, 0, 0, "-", "functional"], [73, 0, 0, "-", "metric"], [77, 0, 0, "-", "precision_recall"], [86, 0, 0, "-", "precision_recall_curve"], [91, 0, 0, "-", "roc"], [96, 0, 0, "-", "sensitivity"], [101, 0, 0, "-", "specificity"], [106, 0, 0, "-", "stat_scores"]], "cyclops.evaluate.metrics.accuracy": [[24, 1, 1, "", "Accuracy"], [25, 1, 1, "", "BinaryAccuracy"], [26, 1, 1, "", "MulticlassAccuracy"], [27, 1, 1, "", "MultilabelAccuracy"]], "cyclops.evaluate.metrics.accuracy.Accuracy": [[24, 2, 1, "", "__add__"], [24, 2, 1, "", "__call__"], [24, 2, 1, "", "__init__"], [24, 2, 1, "", "__mul__"], [24, 2, 1, "", "add_state"], [24, 2, 1, "", "clone"], [24, 2, 1, "", "compute"], [24, 2, 1, "", "reset_state"], [24, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.accuracy.BinaryAccuracy": [[25, 2, 1, "", "__add__"], [25, 2, 1, "", "__call__"], [25, 2, 1, "", "__init__"], [25, 2, 1, "", "__mul__"], [25, 2, 1, "", "add_state"], [25, 2, 1, "", "clone"], [25, 2, 1, "", "compute"], [25, 2, 1, "", "reset_state"], [25, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy": [[26, 2, 1, "", "__add__"], [26, 2, 1, "", "__call__"], [26, 2, 1, "", "__init__"], [26, 2, 1, "", "__mul__"], [26, 2, 1, "", "add_state"], [26, 2, 1, "", "clone"], [26, 2, 1, "", "compute"], [26, 2, 1, "", "reset_state"], [26, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy": [[27, 2, 1, "", "__add__"], [27, 2, 1, "", "__call__"], [27, 2, 1, "", "__init__"], [27, 2, 1, "", "__mul__"], [27, 2, 1, "", "add_state"], [27, 2, 1, "", "clone"], [27, 2, 1, "", "compute"], [27, 2, 1, "", "reset_state"], [27, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.auroc": [[29, 1, 1, "", "AUROC"], [30, 1, 1, "", "BinaryAUROC"], [31, 1, 1, "", "MulticlassAUROC"], [32, 1, 1, "", "MultilabelAUROC"]], "cyclops.evaluate.metrics.auroc.AUROC": [[29, 2, 1, "", "__add__"], [29, 2, 1, "", "__call__"], [29, 2, 1, "", "__init__"], [29, 2, 1, "", "__mul__"], [29, 2, 1, "", "add_state"], [29, 2, 1, "", "clone"], [29, 2, 1, "", "compute"], [29, 2, 1, "", "reset_state"], [29, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.auroc.BinaryAUROC": [[30, 2, 1, "", "__add__"], [30, 2, 1, "", "__call__"], [30, 2, 1, "", "__init__"], [30, 2, 1, "", "__mul__"], [30, 2, 1, "", "add_state"], [30, 2, 1, "", "clone"], [30, 2, 1, "", "compute"], [30, 2, 1, "", "reset_state"], [30, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.auroc.MulticlassAUROC": [[31, 2, 1, "", "__add__"], [31, 2, 1, "", "__call__"], [31, 2, 1, "", "__init__"], [31, 2, 1, "", "__mul__"], [31, 2, 1, "", "add_state"], [31, 2, 1, "", "clone"], [31, 2, 1, "", "compute"], [31, 2, 1, "", "reset_state"], [31, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.auroc.MultilabelAUROC": [[32, 2, 1, "", "__add__"], [32, 2, 1, "", "__call__"], [32, 2, 1, "", "__init__"], [32, 2, 1, "", "__mul__"], [32, 2, 1, "", "add_state"], [32, 2, 1, "", "clone"], [32, 2, 1, "", "compute"], [32, 2, 1, "", "reset_state"], [32, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta": [[34, 1, 1, "", "BinaryF1Score"], [35, 1, 1, "", "BinaryFbetaScore"], [36, 1, 1, "", "F1Score"], [37, 1, 1, "", "FbetaScore"], [38, 1, 1, "", "MulticlassF1Score"], [39, 1, 1, "", "MulticlassFbetaScore"], [40, 1, 1, "", "MultilabelF1Score"], [41, 1, 1, "", "MultilabelFbetaScore"]], "cyclops.evaluate.metrics.f_beta.BinaryF1Score": [[34, 2, 1, "", "__add__"], [34, 2, 1, "", "__call__"], [34, 2, 1, "", "__init__"], [34, 2, 1, "", "__mul__"], [34, 2, 1, "", "add_state"], [34, 2, 1, "", "clone"], [34, 2, 1, "", "compute"], [34, 2, 1, "", "reset_state"], [34, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore": [[35, 2, 1, "", "__add__"], [35, 2, 1, "", "__call__"], [35, 2, 1, "", "__init__"], [35, 2, 1, "", "__mul__"], [35, 2, 1, "", "add_state"], [35, 2, 1, "", "clone"], [35, 2, 1, "", "compute"], [35, 2, 1, "", "reset_state"], [35, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.F1Score": [[36, 2, 1, "", "__add__"], [36, 2, 1, "", "__call__"], [36, 2, 1, "", "__init__"], [36, 2, 1, "", "__mul__"], [36, 2, 1, "", "add_state"], [36, 2, 1, "", "clone"], [36, 2, 1, "", "compute"], [36, 2, 1, "", "reset_state"], [36, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.FbetaScore": [[37, 2, 1, "", "__add__"], [37, 2, 1, "", "__call__"], [37, 2, 1, "", "__init__"], [37, 2, 1, "", "__mul__"], [37, 2, 1, "", "add_state"], [37, 2, 1, "", "clone"], [37, 2, 1, "", "compute"], [37, 2, 1, "", "reset_state"], [37, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.MulticlassF1Score": [[38, 2, 1, "", "__add__"], [38, 2, 1, "", "__call__"], [38, 2, 1, "", "__init__"], [38, 2, 1, "", "__mul__"], [38, 2, 1, "", "add_state"], [38, 2, 1, "", "clone"], [38, 2, 1, "", "compute"], [38, 2, 1, "", "reset_state"], [38, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore": [[39, 2, 1, "", "__add__"], [39, 2, 1, "", "__call__"], [39, 2, 1, "", "__init__"], [39, 2, 1, "", "__mul__"], [39, 2, 1, "", "add_state"], [39, 2, 1, "", "clone"], [39, 2, 1, "", "compute"], [39, 2, 1, "", "reset_state"], [39, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.MultilabelF1Score": [[40, 2, 1, "", "__add__"], [40, 2, 1, "", "__call__"], [40, 2, 1, "", "__init__"], [40, 2, 1, "", "__mul__"], [40, 2, 1, "", "add_state"], [40, 2, 1, "", "clone"], [40, 2, 1, "", "compute"], [40, 2, 1, "", "reset_state"], [40, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore": [[41, 2, 1, "", "__add__"], [41, 2, 1, "", "__call__"], [41, 2, 1, "", "__init__"], [41, 2, 1, "", "__mul__"], [41, 2, 1, "", "add_state"], [41, 2, 1, "", "clone"], [41, 2, 1, "", "compute"], [41, 2, 1, "", "reset_state"], [41, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.factory": [[43, 4, 1, "", "create_metric"]], "cyclops.evaluate.metrics.functional": [[44, 0, 0, "-", "accuracy"], [45, 0, 0, "-", "auroc"], [46, 0, 0, "-", "f_beta"], [55, 0, 0, "-", "precision_recall"], [64, 0, 0, "-", "precision_recall_curve"], [65, 0, 0, "-", "roc"], [70, 0, 0, "-", "sensitivity"], [71, 0, 0, "-", "specificity"], [72, 0, 0, "-", "stat_scores"]], "cyclops.evaluate.metrics.functional.f_beta": [[47, 4, 1, "", "binary_f1_score"], [48, 4, 1, "", "binary_fbeta_score"], [49, 4, 1, "", "f1_score"], [50, 4, 1, "", "fbeta_score"], [51, 4, 1, "", "multiclass_f1_score"], [52, 4, 1, "", "multiclass_fbeta_score"], [53, 4, 1, "", "multilabel_f1_score"], [54, 4, 1, "", "multilabel_fbeta_score"]], "cyclops.evaluate.metrics.functional.precision_recall": [[56, 4, 1, "", "binary_precision"], [57, 4, 1, "", "binary_recall"], [58, 4, 1, "", "multiclass_precision"], [59, 4, 1, "", "multiclass_recall"], [60, 4, 1, "", "multilabel_precision"], [61, 4, 1, "", "multilabel_recall"], [62, 4, 1, "", "precision"], [63, 4, 1, "", "recall"]], "cyclops.evaluate.metrics.functional.roc": [[66, 4, 1, "", "binary_roc_curve"], [67, 4, 1, "", "multiclass_roc_curve"], [68, 4, 1, "", "multilabel_roc_curve"], [69, 4, 1, "", "roc_curve"]], "cyclops.evaluate.metrics.metric": [[74, 1, 1, "", "Metric"], [75, 1, 1, "", "MetricCollection"], [76, 1, 1, "", "OperatorMetric"]], "cyclops.evaluate.metrics.metric.Metric": [[74, 2, 1, "", "__add__"], [74, 2, 1, "", "__call__"], [74, 2, 1, "", "__init__"], [74, 2, 1, "", "__mul__"], [74, 2, 1, "", "add_state"], [74, 2, 1, "", "clone"], [74, 2, 1, "", "compute"], [74, 2, 1, "", "reset_state"], [74, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.metric.MetricCollection": [[75, 2, 1, "", "__call__"], [75, 2, 1, "", "__init__"], [75, 2, 1, "", "add_metrics"], [75, 2, 1, "", "clear"], [75, 2, 1, "", "clone"], [75, 2, 1, "", "compute"], [75, 2, 1, "", "get"], [75, 2, 1, "", "items"], [75, 2, 1, "", "keys"], [75, 2, 1, "", "pop"], [75, 2, 1, "", "popitem"], [75, 2, 1, "", "reset_state"], [75, 2, 1, "", "setdefault"], [75, 2, 1, "", "update"], [75, 2, 1, "", "update_state"], [75, 2, 1, "", "values"]], "cyclops.evaluate.metrics.metric.OperatorMetric": [[76, 2, 1, "", "__add__"], [76, 2, 1, "", "__call__"], [76, 2, 1, "", "__init__"], [76, 2, 1, "", "__mul__"], [76, 2, 1, "", "add_state"], [76, 2, 1, "", "clone"], [76, 2, 1, "", "compute"], [76, 2, 1, "", "reset_state"], [76, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall": [[78, 1, 1, "", "BinaryPrecision"], [79, 1, 1, "", "BinaryRecall"], [80, 1, 1, "", "MulticlassPrecision"], [81, 1, 1, "", "MulticlassRecall"], [82, 1, 1, "", "MultilabelPrecision"], [83, 1, 1, "", "MultilabelRecall"], [84, 1, 1, "", "Precision"], [85, 1, 1, "", "Recall"]], "cyclops.evaluate.metrics.precision_recall.BinaryPrecision": [[78, 2, 1, "", "__add__"], [78, 2, 1, "", "__call__"], [78, 2, 1, "", "__init__"], [78, 2, 1, "", "__mul__"], [78, 2, 1, "", "add_state"], [78, 2, 1, "", "clone"], [78, 2, 1, "", "compute"], [78, 2, 1, "", "reset_state"], [78, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.BinaryRecall": [[79, 2, 1, "", "__add__"], [79, 2, 1, "", "__call__"], [79, 2, 1, "", "__init__"], [79, 2, 1, "", "__mul__"], [79, 2, 1, "", "add_state"], [79, 2, 1, "", "clone"], [79, 2, 1, "", "compute"], [79, 2, 1, "", "reset_state"], [79, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision": [[80, 2, 1, "", "__add__"], [80, 2, 1, "", "__call__"], [80, 2, 1, "", "__init__"], [80, 2, 1, "", "__mul__"], [80, 2, 1, "", "add_state"], [80, 2, 1, "", "clone"], [80, 2, 1, "", "compute"], [80, 2, 1, "", "reset_state"], [80, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.MulticlassRecall": [[81, 2, 1, "", "__add__"], [81, 2, 1, "", "__call__"], [81, 2, 1, "", "__init__"], [81, 2, 1, "", "__mul__"], [81, 2, 1, "", "add_state"], [81, 2, 1, "", "clone"], [81, 2, 1, "", "compute"], [81, 2, 1, "", "reset_state"], [81, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision": [[82, 2, 1, "", "__add__"], [82, 2, 1, "", "__call__"], [82, 2, 1, "", "__init__"], [82, 2, 1, "", "__mul__"], [82, 2, 1, "", "add_state"], [82, 2, 1, "", "clone"], [82, 2, 1, "", "compute"], [82, 2, 1, "", "reset_state"], [82, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.MultilabelRecall": [[83, 2, 1, "", "__add__"], [83, 2, 1, "", "__call__"], [83, 2, 1, "", "__init__"], [83, 2, 1, "", "__mul__"], [83, 2, 1, "", "add_state"], [83, 2, 1, "", "clone"], [83, 2, 1, "", "compute"], [83, 2, 1, "", "reset_state"], [83, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.Precision": [[84, 2, 1, "", "__add__"], [84, 2, 1, "", "__call__"], [84, 2, 1, "", "__init__"], [84, 2, 1, "", "__mul__"], [84, 2, 1, "", "add_state"], [84, 2, 1, "", "clone"], [84, 2, 1, "", "compute"], [84, 2, 1, "", "reset_state"], [84, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.Recall": [[85, 2, 1, "", "__add__"], [85, 2, 1, "", "__call__"], [85, 2, 1, "", "__init__"], [85, 2, 1, "", "__mul__"], [85, 2, 1, "", "add_state"], [85, 2, 1, "", "clone"], [85, 2, 1, "", "compute"], [85, 2, 1, "", "reset_state"], [85, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall_curve": [[87, 1, 1, "", "BinaryPrecisionRecallCurve"], [88, 1, 1, "", "MulticlassPrecisionRecallCurve"], [89, 1, 1, "", "MultilabelPrecisionRecallCurve"], [90, 1, 1, "", "PrecisionRecallCurve"]], "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve": [[87, 2, 1, "", "__add__"], [87, 2, 1, "", "__call__"], [87, 2, 1, "", "__init__"], [87, 2, 1, "", "__mul__"], [87, 2, 1, "", "add_state"], [87, 2, 1, "", "clone"], [87, 2, 1, "", "compute"], [87, 2, 1, "", "reset_state"], [87, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve": [[88, 2, 1, "", "__add__"], [88, 2, 1, "", "__call__"], [88, 2, 1, "", "__init__"], [88, 2, 1, "", "__mul__"], [88, 2, 1, "", "add_state"], [88, 2, 1, "", "clone"], [88, 2, 1, "", "compute"], [88, 2, 1, "", "reset_state"], [88, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve": [[89, 2, 1, "", "__add__"], [89, 2, 1, "", "__call__"], [89, 2, 1, "", "__init__"], [89, 2, 1, "", "__mul__"], [89, 2, 1, "", "add_state"], [89, 2, 1, "", "clone"], [89, 2, 1, "", "compute"], [89, 2, 1, "", "reset_state"], [89, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve": [[90, 2, 1, "", "__add__"], [90, 2, 1, "", "__call__"], [90, 2, 1, "", "__init__"], [90, 2, 1, "", "__mul__"], [90, 2, 1, "", "add_state"], [90, 2, 1, "", "clone"], [90, 2, 1, "", "compute"], [90, 2, 1, "", "reset_state"], [90, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.roc": [[92, 1, 1, "", "BinaryROCCurve"], [93, 1, 1, "", "MulticlassROCCurve"], [94, 1, 1, "", "MultilabelROCCurve"], [95, 1, 1, "", "ROCCurve"]], "cyclops.evaluate.metrics.roc.BinaryROCCurve": [[92, 2, 1, "", "__add__"], [92, 2, 1, "", "__call__"], [92, 2, 1, "", "__init__"], [92, 2, 1, "", "__mul__"], [92, 2, 1, "", "add_state"], [92, 2, 1, "", "clone"], [92, 2, 1, "", "compute"], [92, 2, 1, "", "reset_state"], [92, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.roc.MulticlassROCCurve": [[93, 2, 1, "", "__add__"], [93, 2, 1, "", "__call__"], [93, 2, 1, "", "__init__"], [93, 2, 1, "", "__mul__"], [93, 2, 1, "", "add_state"], [93, 2, 1, "", "clone"], [93, 2, 1, "", "compute"], [93, 2, 1, "", "reset_state"], [93, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.roc.MultilabelROCCurve": [[94, 2, 1, "", "__add__"], [94, 2, 1, "", "__call__"], [94, 2, 1, "", "__init__"], [94, 2, 1, "", "__mul__"], [94, 2, 1, "", "add_state"], [94, 2, 1, "", "clone"], [94, 2, 1, "", "compute"], [94, 2, 1, "", "reset_state"], [94, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.roc.ROCCurve": [[95, 2, 1, "", "__add__"], [95, 2, 1, "", "__call__"], [95, 2, 1, "", "__init__"], [95, 2, 1, "", "__mul__"], [95, 2, 1, "", "add_state"], [95, 2, 1, "", "clone"], [95, 2, 1, "", "compute"], [95, 2, 1, "", "reset_state"], [95, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.sensitivity": [[97, 1, 1, "", "BinarySensitivity"], [98, 1, 1, "", "MulticlassSensitivity"], [99, 1, 1, "", "MultilabelSensitivity"], [100, 1, 1, "", "Sensitivity"]], "cyclops.evaluate.metrics.sensitivity.BinarySensitivity": [[97, 2, 1, "", "__add__"], [97, 2, 1, "", "__call__"], [97, 2, 1, "", "__init__"], [97, 2, 1, "", "__mul__"], [97, 2, 1, "", "add_state"], [97, 2, 1, "", "clone"], [97, 2, 1, "", "compute"], [97, 2, 1, "", "reset_state"], [97, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity": [[98, 2, 1, "", "__add__"], [98, 2, 1, "", "__call__"], [98, 2, 1, "", "__init__"], [98, 2, 1, "", "__mul__"], [98, 2, 1, "", "add_state"], [98, 2, 1, "", "clone"], [98, 2, 1, "", "compute"], [98, 2, 1, "", "reset_state"], [98, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity": [[99, 2, 1, "", "__add__"], [99, 2, 1, "", "__call__"], [99, 2, 1, "", "__init__"], [99, 2, 1, "", "__mul__"], [99, 2, 1, "", "add_state"], [99, 2, 1, "", "clone"], [99, 2, 1, "", "compute"], [99, 2, 1, "", "reset_state"], [99, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.sensitivity.Sensitivity": [[100, 2, 1, "", "__add__"], [100, 2, 1, "", "__call__"], [100, 2, 1, "", "__init__"], [100, 2, 1, "", "__mul__"], [100, 2, 1, "", "add_state"], [100, 2, 1, "", "clone"], [100, 2, 1, "", "compute"], [100, 2, 1, "", "reset_state"], [100, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.specificity": [[102, 1, 1, "", "BinarySpecificity"], [103, 1, 1, "", "MulticlassSpecificity"], [104, 1, 1, "", "MultilabelSpecificity"], [105, 1, 1, "", "Specificity"]], "cyclops.evaluate.metrics.specificity.BinarySpecificity": [[102, 2, 1, "", "__add__"], [102, 2, 1, "", "__call__"], [102, 2, 1, "", "__init__"], [102, 2, 1, "", "__mul__"], [102, 2, 1, "", "add_state"], [102, 2, 1, "", "clone"], [102, 2, 1, "", "compute"], [102, 2, 1, "", "reset_state"], [102, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.specificity.MulticlassSpecificity": [[103, 2, 1, "", "__add__"], [103, 2, 1, "", "__call__"], [103, 2, 1, "", "__init__"], [103, 2, 1, "", "__mul__"], [103, 2, 1, "", "add_state"], [103, 2, 1, "", "clone"], [103, 2, 1, "", "compute"], [103, 2, 1, "", "reset_state"], [103, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.specificity.MultilabelSpecificity": [[104, 2, 1, "", "__add__"], [104, 2, 1, "", "__call__"], [104, 2, 1, "", "__init__"], [104, 2, 1, "", "__mul__"], [104, 2, 1, "", "add_state"], [104, 2, 1, "", "clone"], [104, 2, 1, "", "compute"], [104, 2, 1, "", "reset_state"], [104, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.specificity.Specificity": [[105, 2, 1, "", "__add__"], [105, 2, 1, "", "__call__"], [105, 2, 1, "", "__init__"], [105, 2, 1, "", "__mul__"], [105, 2, 1, "", "add_state"], [105, 2, 1, "", "clone"], [105, 2, 1, "", "compute"], [105, 2, 1, "", "reset_state"], [105, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.stat_scores": [[107, 1, 1, "", "BinaryStatScores"], [108, 1, 1, "", "MulticlassStatScores"], [109, 1, 1, "", "MultilabelStatScores"], [110, 1, 1, "", "StatScores"]], "cyclops.evaluate.metrics.stat_scores.BinaryStatScores": [[107, 2, 1, "", "__add__"], [107, 2, 1, "", "__call__"], [107, 2, 1, "", "__init__"], [107, 2, 1, "", "__mul__"], [107, 2, 1, "", "add_state"], [107, 2, 1, "", "clone"], [107, 2, 1, "", "compute"], [107, 2, 1, "", "reset_state"], [107, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores": [[108, 2, 1, "", "__add__"], [108, 2, 1, "", "__call__"], [108, 2, 1, "", "__init__"], [108, 2, 1, "", "__mul__"], [108, 2, 1, "", "add_state"], [108, 2, 1, "", "clone"], [108, 2, 1, "", "compute"], [108, 2, 1, "", "reset_state"], [108, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores": [[109, 2, 1, "", "__add__"], [109, 2, 1, "", "__call__"], [109, 2, 1, "", "__init__"], [109, 2, 1, "", "__mul__"], [109, 2, 1, "", "add_state"], [109, 2, 1, "", "clone"], [109, 2, 1, "", "compute"], [109, 2, 1, "", "reset_state"], [109, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.stat_scores.StatScores": [[110, 2, 1, "", "__add__"], [110, 2, 1, "", "__call__"], [110, 2, 1, "", "__init__"], [110, 2, 1, "", "__mul__"], [110, 2, 1, "", "add_state"], [110, 2, 1, "", "clone"], [110, 2, 1, "", "compute"], [110, 2, 1, "", "reset_state"], [110, 2, 1, "", "update_state"]], "cyclops.monitor": [[111, 0, 0, "-", "clinical_applicator"], [113, 0, 0, "-", "synthetic_applicator"]], "cyclops.monitor.clinical_applicator": [[112, 1, 1, "", "ClinicalShiftApplicator"]], "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator": [[112, 2, 1, "", "age"], [112, 2, 1, "", "apply_shift"], [112, 2, 1, "", "custom"], [112, 2, 1, "", "hospital_type"], [112, 2, 1, "", "month"], [112, 2, 1, "", "sex"], [112, 2, 1, "", "time"]], "cyclops.monitor.synthetic_applicator": [[114, 1, 1, "", "SyntheticShiftApplicator"], [115, 4, 1, "", "binary_noise_shift"], [116, 4, 1, "", "feature_association_shift"], [117, 4, 1, "", "feature_swap_shift"], [118, 4, 1, "", "gaussian_noise_shift"], [119, 4, 1, "", "knockout_shift"]], "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator": [[114, 2, 1, "", "apply_shift"]], "cyclops.query": [[120, 0, 0, "-", "base"], [122, 0, 0, "-", "eicu"], [124, 0, 0, "-", "gemini"], [126, 0, 0, "-", "interface"], [128, 0, 0, "-", "mimiciii"], [130, 0, 0, "-", "mimiciv"], [132, 0, 0, "-", "omop"], [134, 0, 0, "-", "ops"]], "cyclops.query.base": [[121, 1, 1, "", "DatasetQuerier"]], "cyclops.query.base.DatasetQuerier": [[121, 3, 1, "", "db"], [121, 2, 1, "", "get_table"], [121, 2, 1, "", "list_columns"], [121, 2, 1, "", "list_custom_tables"], [121, 2, 1, "", "list_schemas"], [121, 2, 1, "", "list_tables"]], "cyclops.query.eicu": [[123, 1, 1, "", "EICUQuerier"]], "cyclops.query.eicu.EICUQuerier": [[123, 2, 1, "", "__init__"], [123, 2, 1, "", "get_table"], [123, 2, 1, "", "list_columns"], [123, 2, 1, "", "list_custom_tables"], [123, 2, 1, "", "list_schemas"], [123, 2, 1, "", "list_tables"]], "cyclops.query.gemini": [[125, 1, 1, "", "GEMINIQuerier"]], "cyclops.query.gemini.GEMINIQuerier": [[125, 2, 1, "", "__init__"], [125, 2, 1, "", "care_units"], [125, 2, 1, "", "diagnoses"], [125, 2, 1, "", "get_table"], [125, 2, 1, "", "imaging"], [125, 2, 1, "", "ip_admin"], [125, 2, 1, "", "list_columns"], [125, 2, 1, "", "list_custom_tables"], [125, 2, 1, "", "list_schemas"], [125, 2, 1, "", "list_tables"], [125, 2, 1, "", "room_transfer"]], "cyclops.query.interface": [[127, 1, 1, "", "QueryInterface"]], "cyclops.query.interface.QueryInterface": [[127, 2, 1, "", "__init__"], [127, 2, 1, "", "clear_data"], [127, 5, 1, "", "data"], [127, 2, 1, "", "join"], [127, 2, 1, "", "ops"], [127, 2, 1, "", "run"], [127, 2, 1, "", "save"], [127, 2, 1, "", "union"], [127, 2, 1, "", "union_all"]], "cyclops.query.mimiciii": [[129, 1, 1, "", "MIMICIIIQuerier"]], "cyclops.query.mimiciii.MIMICIIIQuerier": [[129, 2, 1, "", "__init__"], [129, 2, 1, "", "chartevents"], [129, 2, 1, "", "diagnoses"], [129, 2, 1, "", "get_table"], [129, 2, 1, "", "labevents"], [129, 2, 1, "", "list_columns"], [129, 2, 1, "", "list_custom_tables"], [129, 2, 1, "", "list_schemas"], [129, 2, 1, "", "list_tables"]], "cyclops.query.mimiciv": [[131, 1, 1, "", "MIMICIVQuerier"]], "cyclops.query.mimiciv.MIMICIVQuerier": [[131, 2, 1, "", "__init__"], [131, 2, 1, "", "chartevents"], [131, 2, 1, "", "diagnoses"], [131, 2, 1, "", "get_table"], [131, 2, 1, "", "labevents"], [131, 2, 1, "", "list_columns"], [131, 2, 1, "", "list_custom_tables"], [131, 2, 1, "", "list_schemas"], [131, 2, 1, "", "list_tables"], [131, 2, 1, "", "patients"]], "cyclops.query.omop": [[133, 1, 1, "", "OMOPQuerier"]], "cyclops.query.omop.OMOPQuerier": [[133, 2, 1, "", "__init__"], [133, 2, 1, "", "get_table"], [133, 2, 1, "", "list_columns"], [133, 2, 1, "", "list_custom_tables"], [133, 2, 1, "", "list_schemas"], [133, 2, 1, "", "list_tables"], [133, 2, 1, "", "map_concept_ids_to_name"], [133, 2, 1, "", "measurement"], [133, 2, 1, "", "observation"], [133, 2, 1, "", "person"], [133, 2, 1, "", "visit_detail"], [133, 2, 1, "", "visit_occurrence"]], "cyclops.query.ops": [[135, 1, 1, "", "AddColumn"], [136, 1, 1, "", "AddDeltaColumn"], [137, 1, 1, "", "AddDeltaConstant"], [138, 1, 1, "", "AddNumeric"], [139, 1, 1, "", "And"], [140, 1, 1, "", "Apply"], [141, 1, 1, "", "Cast"], [142, 1, 1, "", "ConditionAfterDate"], [143, 1, 1, "", "ConditionBeforeDate"], [144, 1, 1, "", "ConditionEndsWith"], [145, 1, 1, "", "ConditionEquals"], [146, 1, 1, "", "ConditionGreaterThan"], [147, 1, 1, "", "ConditionIn"], [148, 1, 1, "", "ConditionInMonths"], [149, 1, 1, "", "ConditionInYears"], [150, 1, 1, "", "ConditionLessThan"], [151, 1, 1, "", "ConditionLike"], [152, 1, 1, "", "ConditionRegexMatch"], [153, 1, 1, "", "ConditionStartsWith"], [154, 1, 1, "", "ConditionSubstring"], [155, 1, 1, "", "Distinct"], [156, 1, 1, "", "Drop"], [157, 1, 1, "", "DropEmpty"], [158, 1, 1, "", "DropNulls"], [159, 1, 1, "", "ExtractTimestampComponent"], [160, 1, 1, "", "FillNull"], [161, 1, 1, "", "GroupByAggregate"], [162, 1, 1, "", "Join"], [163, 1, 1, "", "Keep"], [164, 1, 1, "", "Limit"], [165, 1, 1, "", "Literal"], [166, 1, 1, "", "Or"], [167, 1, 1, "", "OrderBy"], [168, 1, 1, "", "QueryOp"], [169, 1, 1, "", "RandomizeOrder"], [170, 1, 1, "", "Rename"], [171, 1, 1, "", "Reorder"], [172, 1, 1, "", "ReorderAfter"], [173, 1, 1, "", "Sequential"], [174, 1, 1, "", "Substring"], [175, 1, 1, "", "Trim"], [176, 1, 1, "", "Union"]], "cyclops.query.ops.AddColumn": [[135, 2, 1, "", "__call__"]], "cyclops.query.ops.AddDeltaColumn": [[136, 2, 1, "", "__call__"]], "cyclops.query.ops.AddDeltaConstant": [[137, 2, 1, "", "__call__"]], "cyclops.query.ops.AddNumeric": [[138, 2, 1, "", "__call__"]], "cyclops.query.ops.And": [[139, 2, 1, "", "__call__"]], "cyclops.query.ops.Apply": [[140, 2, 1, "", "__call__"]], "cyclops.query.ops.Cast": [[141, 2, 1, "", "__call__"]], "cyclops.query.ops.ConditionAfterDate": [[142, 2, 1, "", "__call__"]], "cyclops.query.ops.ConditionBeforeDate": [[143, 2, 1, "", "__call__"]], "cyclops.query.ops.ConditionEndsWith": [[144, 2, 1, "", "__call__"]], "cyclops.query.ops.ConditionEquals": [[145, 2, 1, "", "__call__"]], "cyclops.query.ops.ConditionGreaterThan": [[146, 2, 1, "", "__call__"]], "cyclops.query.ops.ConditionIn": [[147, 2, 1, "", "__call__"]], "cyclops.query.ops.ConditionInMonths": [[148, 2, 1, "", "__call__"]], "cyclops.query.ops.ConditionInYears": [[149, 2, 1, "", "__call__"]], "cyclops.query.ops.ConditionLessThan": [[150, 2, 1, "", "__call__"]], "cyclops.query.ops.ConditionLike": [[151, 2, 1, "", "__call__"]], "cyclops.query.ops.ConditionRegexMatch": [[152, 2, 1, "", "__call__"]], "cyclops.query.ops.ConditionStartsWith": [[153, 2, 1, "", "__call__"]], "cyclops.query.ops.ConditionSubstring": [[154, 2, 1, "", "__call__"]], "cyclops.query.ops.Distinct": [[155, 2, 1, "", "__call__"]], "cyclops.query.ops.Drop": [[156, 2, 1, "", "__call__"]], "cyclops.query.ops.DropEmpty": [[157, 2, 1, "", "__call__"]], "cyclops.query.ops.DropNulls": [[158, 2, 1, "", "__call__"]], "cyclops.query.ops.ExtractTimestampComponent": [[159, 2, 1, "", "__call__"]], "cyclops.query.ops.FillNull": [[160, 2, 1, "", "__call__"]], "cyclops.query.ops.GroupByAggregate": [[161, 2, 1, "", "__call__"]], "cyclops.query.ops.Join": [[162, 2, 1, "", "__call__"]], "cyclops.query.ops.Keep": [[163, 2, 1, "", "__call__"]], "cyclops.query.ops.Limit": [[164, 2, 1, "", "__call__"]], "cyclops.query.ops.Literal": [[165, 2, 1, "", "__call__"]], "cyclops.query.ops.Or": [[166, 2, 1, "", "__call__"]], "cyclops.query.ops.OrderBy": [[167, 2, 1, "", "__call__"]], "cyclops.query.ops.QueryOp": [[168, 2, 1, "", "__call__"]], "cyclops.query.ops.RandomizeOrder": [[169, 2, 1, "", "__call__"]], "cyclops.query.ops.Rename": [[170, 2, 1, "", "__call__"]], "cyclops.query.ops.Reorder": [[171, 2, 1, "", "__call__"]], "cyclops.query.ops.ReorderAfter": [[172, 2, 1, "", "__call__"]], "cyclops.query.ops.Sequential": [[173, 2, 1, "", "__add__"], [173, 2, 1, "", "__call__"], [173, 2, 1, "", "__init__"], [173, 2, 1, "", "append"], [173, 2, 1, "", "extend"], [173, 2, 1, "", "insert"], [173, 2, 1, "", "pop"]], "cyclops.query.ops.Substring": [[174, 2, 1, "", "__call__"]], "cyclops.query.ops.Trim": [[175, 2, 1, "", "__call__"]], "cyclops.query.ops.Union": [[176, 2, 1, "", "__call__"]], "cyclops.report": [[177, 0, 0, "-", "report"]], "cyclops.report.report": [[178, 1, 1, "", "ModelCardReport"]], "cyclops.report.report.ModelCardReport": [[178, 2, 1, "", "export"], [178, 2, 1, "", "from_json_file"], [178, 2, 1, "", "log_citation"], [178, 2, 1, "", "log_dataset"], [178, 2, 1, "", "log_descriptor"], [178, 2, 1, "", "log_fairness_assessment"], [178, 2, 1, "", "log_from_dict"], [178, 2, 1, "", "log_image"], [178, 2, 1, "", "log_license"], [178, 2, 1, "", "log_model_parameters"], [178, 2, 1, "", "log_owner"], [178, 2, 1, "", "log_performance_metrics"], [178, 2, 1, "", "log_plotly_figure"], [178, 2, 1, "", "log_quantitative_analysis"], [178, 2, 1, "", "log_reference"], [178, 2, 1, "", "log_regulation"], [178, 2, 1, "", "log_risk"], [178, 2, 1, "", "log_use_case"], [178, 2, 1, "", "log_user"], [178, 2, 1, "", "log_version"]], "cyclops.tasks": [[179, 0, 0, "-", "cxr_classification"], [181, 0, 0, "-", "mortality_prediction"]], "cyclops.tasks.cxr_classification": [[180, 1, 1, "", "CXRClassificationTask"]], "cyclops.tasks.cxr_classification.CXRClassificationTask": [[180, 2, 1, "", "__init__"], [180, 2, 1, "", "add_model"], [180, 5, 1, "", "data_type"], [180, 2, 1, "", "evaluate"], [180, 2, 1, "", "get_model"], [180, 2, 1, "", "list_models"], [180, 5, 1, "", "models_count"], [180, 2, 1, "", "predict"], [180, 5, 1, "", "task_type"]], "cyclops.tasks.mortality_prediction": [[182, 1, 1, "", "MortalityPredictionTask"]], "cyclops.tasks.mortality_prediction.MortalityPredictionTask": [[182, 2, 1, "", "__init__"], [182, 2, 1, "", "add_model"], [182, 5, 1, "", "data_type"], [182, 2, 1, "", "evaluate"], [182, 2, 1, "", "get_model"], [182, 2, 1, "", "list_models"], [182, 2, 1, "", "list_models_params"], [182, 2, 1, "", "load_model"], [182, 5, 1, "", "models_count"], [182, 2, 1, "", "predict"], [182, 2, 1, "", "save_model"], [182, 5, 1, "", "task_type"], [182, 2, 1, "", "train"]]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:method", "3": "py:attribute", "4": "py:function", "5": "py:property"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "method", "Python method"], "3": ["py", "attribute", "Python attribute"], "4": ["py", "function", "Python function"], "5": ["py", "property", "Python property"]}, "titleterms": {"api": [0, 186, 190, 191, 193, 194, 197, 199, 200], "refer": 0, "contribut": [1, 3], "cyclop": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 194], "pre": 1, "commit": 1, "hook": 1, "code": 1, "guidelin": 1, "welcom": 2, "": 2, "document": [2, 3], "content": 2, "get": [3, 190, 191, 193, 194, 195, 197], "start": 3, "instal": 3, "us": [3, 194, 196, 201], "pip": 3, "develop": 3, "poetri": 3, "conda": 3, "notebook": 3, "citat": 3, "data": [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 183, 192, 198, 201], "featur": [4, 5, 183, 192, 198], "medical_imag": [4, 5], "medicalimag": 5, "slicer": [6, 7, 8, 9, 10, 11, 12, 13, 14, 15], "slicespec": 7, "compound_filt": 8, "filter_datetim": 9, "filter_non_nul": 10, "filter_rang": 11, "filter_string_contain": 12, "filter_valu": 13, "is_datetim": 14, "overal": 15, "evalu": [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 184, 192, 194, 198], "fair": [18, 19, 20, 21, 22, 184], "config": [18, 19], "fairnessconfig": 19, "evaluate_fair": 21, "warn_too_many_unique_valu": 22, "metric": [23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 184, 195], "accuraci": [23, 24, 25, 26, 27, 44], "binaryaccuraci": 25, "multiclassaccuraci": 26, "multilabelaccuraci": 27, "auroc": [28, 29, 30, 31, 32, 45, 195], "binaryauroc": 30, "multiclassauroc": 31, "multilabelauroc": 32, "f_beta": [33, 34, 35, 36, 37, 38, 39, 40, 41, 46, 47, 48, 49, 50, 51, 52, 53, 54], "binaryf1scor": 34, "binaryfbetascor": 35, "f1score": 36, "fbetascor": 37, "multiclassf1scor": 38, "multiclassfbetascor": 39, "multilabelf1scor": 40, "multilabelfbetascor": 41, "factori": [42, 43], "create_metr": 43, "function": [44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 184], "binary_f1_scor": 47, "binary_fbeta_scor": 48, "f1_score": 49, "fbeta_scor": 50, "multiclass_f1_scor": 51, "multiclass_fbeta_scor": 52, "multilabel_f1_scor": 53, "multilabel_fbeta_scor": 54, "precision_recal": [55, 56, 57, 58, 59, 60, 61, 62, 63, 77, 78, 79, 80, 81, 82, 83, 84, 85], "binary_precis": 56, "binary_recal": 57, "multiclass_precis": 58, "multiclass_recal": 59, "multilabel_precis": 60, "multilabel_recal": 61, "precis": [62, 84], "recal": [63, 85], "precision_recall_curv": [64, 86, 87, 88, 89, 90], "roc": [65, 66, 67, 68, 69, 91, 92, 93, 94, 95], "binary_roc_curv": 66, "multiclass_roc_curv": 67, "multilabel_roc_curv": 68, "roc_curv": 69, "sensit": [70, 96, 97, 98, 99, 100, 196], "specif": [71, 101, 102, 103, 104, 105], "stat_scor": [72, 106, 107, 108, 109, 110], "metriccollect": 75, "operatormetr": 76, "binaryprecis": 78, "binaryrecal": 79, "multiclassprecis": 80, "multiclassrecal": 81, "multilabelprecis": 82, "multilabelrecal": 83, "binaryprecisionrecallcurv": 87, "multiclassprecisionrecallcurv": 88, "multilabelprecisionrecallcurv": 89, "precisionrecallcurv": 90, "binaryroccurv": 92, "multiclassroccurv": 93, "multilabelroccurv": 94, "roccurv": 95, "binarysensit": 97, "multiclasssensit": 98, "multilabelsensit": 99, "binaryspecif": 102, "multiclassspecif": 103, "multilabelspecif": 104, "binarystatscor": 107, "multiclassstatscor": 108, "multilabelstatscor": 109, "statscor": 110, "monitor": [111, 112, 113, 114, 115, 116, 117, 118, 119, 185, 199], "clinical_appl": [111, 112], "clinicalshiftappl": 112, "synthetic_appl": [113, 114, 115, 116, 117, 118, 119], "syntheticshiftappl": 114, "binary_noise_shift": 115, "feature_association_shift": 116, "feature_swap_shift": 117, "gaussian_noise_shift": 118, "knockout_shift": 119, "queri": [120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 186, 190, 191, 193, 194, 197, 198, 200], "base": [120, 121, 194, 198], "datasetqueri": 121, "eicu": [122, 123, 190], "eicuqueri": [123, 190], "gemini": [124, 125, 191], "geminiqueri": [125, 191], "interfac": [126, 127], "queryinterfac": 127, "mimiciii": [128, 129], "mimiciiiqueri": [129, 193], "mimiciv": [130, 131], "mimicivqueri": [131, 194], "omop": [132, 133, 197], "omopqueri": [133, 197], "op": [134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 194], "addcolumn": 135, "adddeltacolumn": 136, "adddeltaconst": 137, "addnumer": 138, "And": 139, "appli": 140, "cast": 141, "conditionafterd": 142, "conditionbefored": 143, "conditionendswith": 144, "conditionequ": 145, "conditiongreaterthan": 146, "conditionin": 147, "conditioninmonth": 148, "conditioninyear": 149, "conditionlessthan": 150, "conditionlik": 151, "conditionregexmatch": [152, 194], "conditionstartswith": 153, "conditionsubstr": 154, "distinct": 155, "drop": [156, 198], "dropempti": 157, "dropnul": 158, "extracttimestampcompon": 159, "fillnul": 160, "groupbyaggreg": 161, "join": 162, "keep": [163, 191], "limit": [164, 190], "liter": 165, "Or": 166, "orderbi": 167, "queryop": 168, "randomizeord": 169, "renam": 170, "reorder": 171, "reorderaft": 172, "sequenti": 173, "substr": [174, 190], "trim": 175, "union": 176, "report": [177, 178, 187, 192, 194, 198], "modelcardreport": 178, "task": [179, 180, 181, 182, 188, 192, 198], "cxr_classif": [179, 180], "cxrclassificationtask": 180, "mortality_predict": [181, 182], "mortalitypredictiontask": 182, "dataset": [186, 191, 192, 195, 196, 198], "tutori": [189, 190, 191, 193, 194, 196, 197], "crd": 190, "import": [190, 191, 192, 193, 194, 195, 196, 197, 198], "instanti": [190, 191, 193, 194, 197], "exampl": [190, 191, 193, 194, 196, 197, 201], "1": [190, 191, 193, 194, 196, 197], "all": [190, 193, 194, 197], "femal": [190, 193, 194, 197], "patient": [190, 191, 193, 194, 197], "discharg": [190, 191], "2014": 190, "100": 190, "row": 190, "2": [190, 193, 194, 196, 197], "encount": [190, 191, 193, 194], "diagnos": [190, 193, 194, 197], "schizophrenia": [190, 194], "diagnosisstr": 190, "year": [190, 194], "2015": [190, 191, 194], "3": [190, 193, 194, 196], "potassium": [190, 193], "lab": [190, 193, 194], "test": [190, 191, 193, 194, 195, 196], "teach": 190, "hospit": [190, 191], "4": [190, 193, 194, 196], "glucos": 190, "medic": 190, "search": 190, "1a": 191, "creat": [191, 192, 198], "tabl": 191, "onli": 191, "one": 191, "per": 191, "most": 191, "recent": 191, "each": 191, "sort": 191, "patient_id_hash": 191, "discharge_date_tim": 191, "record": 191, "1b": 191, "from": [191, 194], "abov": 191, "set": 191, "take": 191, "subset": 191, "who": 191, "were": 191, "between": 191, "april": 191, "march": 191, "31": 191, "2016": 191, "1c": 191, "total": 191, "number": 191, "admiss": [191, 194], "2a": 191, "how": 191, "mani": 191, "sodium": 191, "place": 191, "apr": 191, "mai": 191, "101": 191, "heart": [192, 201], "failur": [192, 201], "predict": [192, 195, 198, 201], "librari": [192, 195, 196, 198], "constant": [192, 198], "load": [192, 195, 196], "sex": [192, 195], "valu": 192, "ag": [192, 195, 198], "distribut": [192, 198], "outcom": [192, 193, 197, 198], "identifi": [192, 198], "type": [192, 198], "preprocessor": [192, 198], "hug": [192, 198], "face": [192, 198], "model": [192, 195, 196, 198], "creation": [192, 198], "train": [192, 196, 198], "perform": [192, 195, 198], "over": [192, 195, 198], "time": [192, 195, 198], "gener": [192, 196, 198], "mimic": [193, 194], "iii": 193, "male": 193, "mortal": [193, 197], "gastroenter": 193, "icd": [193, 194], "9": [193, 194], "long": [193, 194], "titl": [193, 194], "aado2": 193, "carevu": 193, "chart": 193, "event": 193, "have": 193, "valuenum": 193, "less": 193, "than": 193, "20": 193, "iv": 194, "2021": 194, "later": 194, "approx": 194, "10": 194, "advanc": 194, "contain": 194, "chronic": 194, "routin": 194, "vital": 194, "sign": 194, "5": [194, 196], "hemoglobin": 194, "2009": 194, "6": 194, "radiologi": 194, "filter": 194, "keyword": 194, "lymphadenopathi": 194, "infecti": 194, "occur": 194, "togeth": 194, "7": 194, "return": 194, "dask": 194, "datafram": 194, "lazi": 194, "partit": 194, "batch": 194, "aggreg": 194, "subject_id": 194, "8": 194, "run": 194, "raw": 194, "sql": 194, "string": 194, "chest": [195, 201], "x": [195, 201], "rai": [195, 201], "diseas": 195, "classif": [195, 201], "multilabel": 195, "pathologi": 195, "balanc": 195, "error": 195, "rate": 195, "pariti": 195, "log": 195, "w": 195, "threshold": 195, "popul": 195, "card": 195, "field": 195, "nihcxr": 196, "clinic": 196, "drift": 196, "experi": 196, "sourc": 196, "target": 196, "dimension": 196, "reduct": 196, "techniqu": 196, "differ": 196, "shift": 196, "roll": 196, "window": 196, "synthet": 196, "timestamp": 196, "biweekli": 196, "visit": 197, "after": 197, "2010": 197, "measur": 197, "2020": 197, "end": 197, "sepsi": 197, "prolong": [198, 201], "length": [198, 201], "stai": [198, 201], "comput": 198, "label": 198, "inspect": 198, "preprocess": 198, "nan": 198, "nan_threshold": 198, "gender": 198, "case": 201, "tabular": 201, "kaggl": 201, "synthea": 201, "imag": 201, "nih": 201}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.todo": 2, "sphinx.ext.viewcode": 1, "sphinx.ext.intersphinx": 1, "nbsphinx": 4, "sphinx": 60}, "alltitles": {"API Reference": [[0, "api-reference"]], "Contributing to cyclops": [[1, "contributing-to-cyclops"]], "Pre-commit hooks": [[1, "pre-commit-hooks"]], "Coding guidelines": [[1, "coding-guidelines"]], "Welcome to cyclops\u2019s documentation!": [[2, "welcome-to-cyclops-s-documentation"]], "Contents:": [[2, null]], "\ud83d\udc23 Getting Started": [[3, "getting-started"]], "Installing cyclops using pip": [[3, "installing-cyclops-using-pip"]], "\ud83e\uddd1\ud83c\udfff\u200d\ud83d\udcbb Developing": [[3, "developing"]], "Using poetry": [[3, "using-poetry"]], "Using Conda": [[3, "using-conda"]], "Contributing": [[3, "contributing"]], "\ud83d\udcda Documentation": [[3, "documentation"]], "\ud83d\udcd3 Notebooks": [[3, "notebooks"]], "\ud83c\udf93 Citation": [[3, "citation"]], "cyclops.data.features.medical_image": [[4, "module-cyclops.data.features.medical_image"]], "cyclops.data.features.medical_image.MedicalImage": [[5, "cyclops-data-features-medical-image-medicalimage"]], "cyclops.data.slicer": [[6, "module-cyclops.data.slicer"]], "cyclops.data.slicer.SliceSpec": [[7, "cyclops-data-slicer-slicespec"]], "cyclops.data.slicer.compound_filter": [[8, "cyclops-data-slicer-compound-filter"]], "cyclops.data.slicer.filter_datetime": [[9, "cyclops-data-slicer-filter-datetime"]], "cyclops.data.slicer.filter_non_null": [[10, "cyclops-data-slicer-filter-non-null"]], "cyclops.data.slicer.filter_range": [[11, "cyclops-data-slicer-filter-range"]], "cyclops.data.slicer.filter_string_contains": [[12, "cyclops-data-slicer-filter-string-contains"]], "cyclops.data.slicer.filter_value": [[13, "cyclops-data-slicer-filter-value"]], "cyclops.data.slicer.is_datetime": [[14, "cyclops-data-slicer-is-datetime"]], "cyclops.data.slicer.overall": [[15, "cyclops-data-slicer-overall"]], "cyclops.evaluate.evaluator": [[16, "module-cyclops.evaluate.evaluator"]], "cyclops.evaluate.evaluator.evaluate": [[17, "cyclops-evaluate-evaluator-evaluate"]], "cyclops.evaluate.fairness.config": [[18, "module-cyclops.evaluate.fairness.config"]], "cyclops.evaluate.fairness.config.FairnessConfig": [[19, "cyclops-evaluate-fairness-config-fairnessconfig"]], "cyclops.evaluate.fairness.evaluator": [[20, "module-cyclops.evaluate.fairness.evaluator"]], "cyclops.evaluate.fairness.evaluator.evaluate_fairness": [[21, "cyclops-evaluate-fairness-evaluator-evaluate-fairness"]], "cyclops.evaluate.fairness.evaluator.warn_too_many_unique_values": [[22, "cyclops-evaluate-fairness-evaluator-warn-too-many-unique-values"]], "cyclops.evaluate.metrics.accuracy": [[23, "module-cyclops.evaluate.metrics.accuracy"]], "cyclops.evaluate.metrics.accuracy.Accuracy": [[24, "cyclops-evaluate-metrics-accuracy-accuracy"]], "cyclops.evaluate.metrics.accuracy.BinaryAccuracy": [[25, "cyclops-evaluate-metrics-accuracy-binaryaccuracy"]], "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy": [[26, "cyclops-evaluate-metrics-accuracy-multiclassaccuracy"]], "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy": [[27, "cyclops-evaluate-metrics-accuracy-multilabelaccuracy"]], "cyclops.evaluate.metrics.auroc": [[28, "module-cyclops.evaluate.metrics.auroc"]], "cyclops.evaluate.metrics.auroc.AUROC": [[29, "cyclops-evaluate-metrics-auroc-auroc"]], "cyclops.evaluate.metrics.auroc.BinaryAUROC": [[30, "cyclops-evaluate-metrics-auroc-binaryauroc"]], "cyclops.evaluate.metrics.auroc.MulticlassAUROC": [[31, "cyclops-evaluate-metrics-auroc-multiclassauroc"]], "cyclops.evaluate.metrics.auroc.MultilabelAUROC": [[32, "cyclops-evaluate-metrics-auroc-multilabelauroc"]], "cyclops.evaluate.metrics.f_beta": [[33, "module-cyclops.evaluate.metrics.f_beta"]], "cyclops.evaluate.metrics.f_beta.BinaryF1Score": [[34, "cyclops-evaluate-metrics-f-beta-binaryf1score"]], "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore": [[35, "cyclops-evaluate-metrics-f-beta-binaryfbetascore"]], "cyclops.evaluate.metrics.f_beta.F1Score": [[36, "cyclops-evaluate-metrics-f-beta-f1score"]], "cyclops.evaluate.metrics.f_beta.FbetaScore": [[37, "cyclops-evaluate-metrics-f-beta-fbetascore"]], "cyclops.evaluate.metrics.f_beta.MulticlassF1Score": [[38, "cyclops-evaluate-metrics-f-beta-multiclassf1score"]], "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore": [[39, "cyclops-evaluate-metrics-f-beta-multiclassfbetascore"]], "cyclops.evaluate.metrics.f_beta.MultilabelF1Score": [[40, "cyclops-evaluate-metrics-f-beta-multilabelf1score"]], "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore": [[41, "cyclops-evaluate-metrics-f-beta-multilabelfbetascore"]], "cyclops.evaluate.metrics.factory": [[42, "module-cyclops.evaluate.metrics.factory"]], "cyclops.evaluate.metrics.factory.create_metric": [[43, "cyclops-evaluate-metrics-factory-create-metric"]], "cyclops.evaluate.metrics.functional.accuracy": [[44, "module-cyclops.evaluate.metrics.functional.accuracy"]], "cyclops.evaluate.metrics.functional.auroc": [[45, "module-cyclops.evaluate.metrics.functional.auroc"]], "cyclops.evaluate.metrics.functional.f_beta": [[46, "module-cyclops.evaluate.metrics.functional.f_beta"]], "cyclops.evaluate.metrics.functional.f_beta.binary_f1_score": [[47, "cyclops-evaluate-metrics-functional-f-beta-binary-f1-score"]], "cyclops.evaluate.metrics.functional.f_beta.binary_fbeta_score": [[48, "cyclops-evaluate-metrics-functional-f-beta-binary-fbeta-score"]], "cyclops.evaluate.metrics.functional.f_beta.f1_score": [[49, "cyclops-evaluate-metrics-functional-f-beta-f1-score"]], "cyclops.evaluate.metrics.functional.f_beta.fbeta_score": [[50, "cyclops-evaluate-metrics-functional-f-beta-fbeta-score"]], "cyclops.evaluate.metrics.functional.f_beta.multiclass_f1_score": [[51, "cyclops-evaluate-metrics-functional-f-beta-multiclass-f1-score"]], "cyclops.evaluate.metrics.functional.f_beta.multiclass_fbeta_score": [[52, "cyclops-evaluate-metrics-functional-f-beta-multiclass-fbeta-score"]], "cyclops.evaluate.metrics.functional.f_beta.multilabel_f1_score": [[53, "cyclops-evaluate-metrics-functional-f-beta-multilabel-f1-score"]], "cyclops.evaluate.metrics.functional.f_beta.multilabel_fbeta_score": [[54, "cyclops-evaluate-metrics-functional-f-beta-multilabel-fbeta-score"]], "cyclops.evaluate.metrics.functional.precision_recall": [[55, "module-cyclops.evaluate.metrics.functional.precision_recall"]], "cyclops.evaluate.metrics.functional.precision_recall.binary_precision": [[56, "cyclops-evaluate-metrics-functional-precision-recall-binary-precision"]], "cyclops.evaluate.metrics.functional.precision_recall.binary_recall": [[57, "cyclops-evaluate-metrics-functional-precision-recall-binary-recall"]], "cyclops.evaluate.metrics.functional.precision_recall.multiclass_precision": [[58, "cyclops-evaluate-metrics-functional-precision-recall-multiclass-precision"]], "cyclops.evaluate.metrics.functional.precision_recall.multiclass_recall": [[59, "cyclops-evaluate-metrics-functional-precision-recall-multiclass-recall"]], "cyclops.evaluate.metrics.functional.precision_recall.multilabel_precision": [[60, "cyclops-evaluate-metrics-functional-precision-recall-multilabel-precision"]], "cyclops.evaluate.metrics.functional.precision_recall.multilabel_recall": [[61, "cyclops-evaluate-metrics-functional-precision-recall-multilabel-recall"]], "cyclops.evaluate.metrics.functional.precision_recall.precision": [[62, "cyclops-evaluate-metrics-functional-precision-recall-precision"]], "cyclops.evaluate.metrics.functional.precision_recall.recall": [[63, "cyclops-evaluate-metrics-functional-precision-recall-recall"]], "cyclops.evaluate.metrics.functional.precision_recall_curve": [[64, "module-cyclops.evaluate.metrics.functional.precision_recall_curve"]], "cyclops.evaluate.metrics.functional.roc": [[65, "module-cyclops.evaluate.metrics.functional.roc"]], "cyclops.evaluate.metrics.functional.roc.binary_roc_curve": [[66, "cyclops-evaluate-metrics-functional-roc-binary-roc-curve"]], "cyclops.evaluate.metrics.functional.roc.multiclass_roc_curve": [[67, "cyclops-evaluate-metrics-functional-roc-multiclass-roc-curve"]], "cyclops.evaluate.metrics.functional.roc.multilabel_roc_curve": [[68, "cyclops-evaluate-metrics-functional-roc-multilabel-roc-curve"]], "cyclops.evaluate.metrics.functional.roc.roc_curve": [[69, "cyclops-evaluate-metrics-functional-roc-roc-curve"]], "cyclops.evaluate.metrics.functional.sensitivity": [[70, "module-cyclops.evaluate.metrics.functional.sensitivity"]], "cyclops.evaluate.metrics.functional.specificity": [[71, "module-cyclops.evaluate.metrics.functional.specificity"]], "cyclops.evaluate.metrics.functional.stat_scores": [[72, "module-cyclops.evaluate.metrics.functional.stat_scores"]], "cyclops.evaluate.metrics.metric": [[73, "module-cyclops.evaluate.metrics.metric"]], "cyclops.evaluate.metrics.metric.Metric": [[74, "cyclops-evaluate-metrics-metric-metric"]], "cyclops.evaluate.metrics.metric.MetricCollection": [[75, "cyclops-evaluate-metrics-metric-metriccollection"]], "cyclops.evaluate.metrics.metric.OperatorMetric": [[76, "cyclops-evaluate-metrics-metric-operatormetric"]], "cyclops.evaluate.metrics.precision_recall": [[77, "module-cyclops.evaluate.metrics.precision_recall"]], "cyclops.evaluate.metrics.precision_recall.BinaryPrecision": [[78, "cyclops-evaluate-metrics-precision-recall-binaryprecision"]], "cyclops.evaluate.metrics.precision_recall.BinaryRecall": [[79, "cyclops-evaluate-metrics-precision-recall-binaryrecall"]], "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision": [[80, "cyclops-evaluate-metrics-precision-recall-multiclassprecision"]], "cyclops.evaluate.metrics.precision_recall.MulticlassRecall": [[81, "cyclops-evaluate-metrics-precision-recall-multiclassrecall"]], "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision": [[82, "cyclops-evaluate-metrics-precision-recall-multilabelprecision"]], "cyclops.evaluate.metrics.precision_recall.MultilabelRecall": [[83, "cyclops-evaluate-metrics-precision-recall-multilabelrecall"]], "cyclops.evaluate.metrics.precision_recall.Precision": [[84, "cyclops-evaluate-metrics-precision-recall-precision"]], "cyclops.evaluate.metrics.precision_recall.Recall": [[85, "cyclops-evaluate-metrics-precision-recall-recall"]], "cyclops.evaluate.metrics.precision_recall_curve": [[86, "module-cyclops.evaluate.metrics.precision_recall_curve"]], "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve": [[87, "cyclops-evaluate-metrics-precision-recall-curve-binaryprecisionrecallcurve"]], "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve": [[88, "cyclops-evaluate-metrics-precision-recall-curve-multiclassprecisionrecallcurve"]], "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve": [[89, "cyclops-evaluate-metrics-precision-recall-curve-multilabelprecisionrecallcurve"]], "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve": [[90, "cyclops-evaluate-metrics-precision-recall-curve-precisionrecallcurve"]], "cyclops.evaluate.metrics.roc": [[91, "module-cyclops.evaluate.metrics.roc"]], "cyclops.evaluate.metrics.roc.BinaryROCCurve": [[92, "cyclops-evaluate-metrics-roc-binaryroccurve"]], "cyclops.evaluate.metrics.roc.MulticlassROCCurve": [[93, "cyclops-evaluate-metrics-roc-multiclassroccurve"]], "cyclops.evaluate.metrics.roc.MultilabelROCCurve": [[94, "cyclops-evaluate-metrics-roc-multilabelroccurve"]], "cyclops.evaluate.metrics.roc.ROCCurve": [[95, "cyclops-evaluate-metrics-roc-roccurve"]], "cyclops.evaluate.metrics.sensitivity": [[96, "module-cyclops.evaluate.metrics.sensitivity"]], "cyclops.evaluate.metrics.sensitivity.BinarySensitivity": [[97, "cyclops-evaluate-metrics-sensitivity-binarysensitivity"]], "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity": [[98, "cyclops-evaluate-metrics-sensitivity-multiclasssensitivity"]], "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity": [[99, "cyclops-evaluate-metrics-sensitivity-multilabelsensitivity"]], "cyclops.evaluate.metrics.sensitivity.Sensitivity": [[100, "cyclops-evaluate-metrics-sensitivity-sensitivity"]], "cyclops.evaluate.metrics.specificity": [[101, "module-cyclops.evaluate.metrics.specificity"]], "cyclops.evaluate.metrics.specificity.BinarySpecificity": [[102, "cyclops-evaluate-metrics-specificity-binaryspecificity"]], "cyclops.evaluate.metrics.specificity.MulticlassSpecificity": [[103, "cyclops-evaluate-metrics-specificity-multiclassspecificity"]], "cyclops.evaluate.metrics.specificity.MultilabelSpecificity": [[104, "cyclops-evaluate-metrics-specificity-multilabelspecificity"]], "cyclops.evaluate.metrics.specificity.Specificity": [[105, "cyclops-evaluate-metrics-specificity-specificity"]], "cyclops.evaluate.metrics.stat_scores": [[106, "module-cyclops.evaluate.metrics.stat_scores"]], "cyclops.evaluate.metrics.stat_scores.BinaryStatScores": [[107, "cyclops-evaluate-metrics-stat-scores-binarystatscores"]], "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores": [[108, "cyclops-evaluate-metrics-stat-scores-multiclassstatscores"]], "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores": [[109, "cyclops-evaluate-metrics-stat-scores-multilabelstatscores"]], "cyclops.evaluate.metrics.stat_scores.StatScores": [[110, "cyclops-evaluate-metrics-stat-scores-statscores"]], "cyclops.monitor.clinical_applicator": [[111, "module-cyclops.monitor.clinical_applicator"]], "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator": [[112, "cyclops-monitor-clinical-applicator-clinicalshiftapplicator"]], "cyclops.monitor.synthetic_applicator": [[113, "module-cyclops.monitor.synthetic_applicator"]], "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator": [[114, "cyclops-monitor-synthetic-applicator-syntheticshiftapplicator"]], "cyclops.monitor.synthetic_applicator.binary_noise_shift": [[115, "cyclops-monitor-synthetic-applicator-binary-noise-shift"]], "cyclops.monitor.synthetic_applicator.feature_association_shift": [[116, "cyclops-monitor-synthetic-applicator-feature-association-shift"]], "cyclops.monitor.synthetic_applicator.feature_swap_shift": [[117, "cyclops-monitor-synthetic-applicator-feature-swap-shift"]], "cyclops.monitor.synthetic_applicator.gaussian_noise_shift": [[118, "cyclops-monitor-synthetic-applicator-gaussian-noise-shift"]], "cyclops.monitor.synthetic_applicator.knockout_shift": [[119, "cyclops-monitor-synthetic-applicator-knockout-shift"]], "cyclops.query.base": [[120, "module-cyclops.query.base"]], "cyclops.query.base.DatasetQuerier": [[121, "cyclops-query-base-datasetquerier"]], "cyclops.query.eicu": [[122, "module-cyclops.query.eicu"]], "cyclops.query.eicu.EICUQuerier": [[123, "cyclops-query-eicu-eicuquerier"]], "cyclops.query.gemini": [[124, "module-cyclops.query.gemini"]], "cyclops.query.gemini.GEMINIQuerier": [[125, "cyclops-query-gemini-geminiquerier"]], "cyclops.query.interface": [[126, "module-cyclops.query.interface"]], "cyclops.query.interface.QueryInterface": [[127, "cyclops-query-interface-queryinterface"]], "cyclops.query.mimiciii": [[128, "module-cyclops.query.mimiciii"]], "cyclops.query.mimiciii.MIMICIIIQuerier": [[129, "cyclops-query-mimiciii-mimiciiiquerier"]], "cyclops.query.mimiciv": [[130, "module-cyclops.query.mimiciv"]], "cyclops.query.mimiciv.MIMICIVQuerier": [[131, "cyclops-query-mimiciv-mimicivquerier"]], "cyclops.query.omop": [[132, "module-cyclops.query.omop"]], "cyclops.query.omop.OMOPQuerier": [[133, "cyclops-query-omop-omopquerier"]], "cyclops.query.ops": [[134, "module-cyclops.query.ops"]], "cyclops.query.ops.AddColumn": [[135, "cyclops-query-ops-addcolumn"]], "cyclops.query.ops.AddDeltaColumn": [[136, "cyclops-query-ops-adddeltacolumn"]], "cyclops.query.ops.AddDeltaConstant": [[137, "cyclops-query-ops-adddeltaconstant"]], "cyclops.query.ops.AddNumeric": [[138, "cyclops-query-ops-addnumeric"]], "cyclops.query.ops.And": [[139, "cyclops-query-ops-and"]], "cyclops.query.ops.Apply": [[140, "cyclops-query-ops-apply"]], "cyclops.query.ops.Cast": [[141, "cyclops-query-ops-cast"]], "cyclops.query.ops.ConditionAfterDate": [[142, "cyclops-query-ops-conditionafterdate"]], "cyclops.query.ops.ConditionBeforeDate": [[143, "cyclops-query-ops-conditionbeforedate"]], "cyclops.query.ops.ConditionEndsWith": [[144, "cyclops-query-ops-conditionendswith"]], "cyclops.query.ops.ConditionEquals": [[145, "cyclops-query-ops-conditionequals"]], "cyclops.query.ops.ConditionGreaterThan": [[146, "cyclops-query-ops-conditiongreaterthan"]], "cyclops.query.ops.ConditionIn": [[147, "cyclops-query-ops-conditionin"]], "cyclops.query.ops.ConditionInMonths": [[148, "cyclops-query-ops-conditioninmonths"]], "cyclops.query.ops.ConditionInYears": [[149, "cyclops-query-ops-conditioninyears"]], "cyclops.query.ops.ConditionLessThan": [[150, "cyclops-query-ops-conditionlessthan"]], "cyclops.query.ops.ConditionLike": [[151, "cyclops-query-ops-conditionlike"]], "cyclops.query.ops.ConditionRegexMatch": [[152, "cyclops-query-ops-conditionregexmatch"]], "cyclops.query.ops.ConditionStartsWith": [[153, "cyclops-query-ops-conditionstartswith"]], "cyclops.query.ops.ConditionSubstring": [[154, "cyclops-query-ops-conditionsubstring"]], "cyclops.query.ops.Distinct": [[155, "cyclops-query-ops-distinct"]], "cyclops.query.ops.Drop": [[156, "cyclops-query-ops-drop"]], "cyclops.query.ops.DropEmpty": [[157, "cyclops-query-ops-dropempty"]], "cyclops.query.ops.DropNulls": [[158, "cyclops-query-ops-dropnulls"]], "cyclops.query.ops.ExtractTimestampComponent": [[159, "cyclops-query-ops-extracttimestampcomponent"]], "cyclops.query.ops.FillNull": [[160, "cyclops-query-ops-fillnull"]], "cyclops.query.ops.GroupByAggregate": [[161, "cyclops-query-ops-groupbyaggregate"]], "cyclops.query.ops.Join": [[162, "cyclops-query-ops-join"]], "cyclops.query.ops.Keep": [[163, "cyclops-query-ops-keep"]], "cyclops.query.ops.Limit": [[164, "cyclops-query-ops-limit"]], "cyclops.query.ops.Literal": [[165, "cyclops-query-ops-literal"]], "cyclops.query.ops.Or": [[166, "cyclops-query-ops-or"]], "cyclops.query.ops.OrderBy": [[167, "cyclops-query-ops-orderby"]], "cyclops.query.ops.QueryOp": [[168, "cyclops-query-ops-queryop"]], "cyclops.query.ops.RandomizeOrder": [[169, "cyclops-query-ops-randomizeorder"]], "cyclops.query.ops.Rename": [[170, "cyclops-query-ops-rename"]], "cyclops.query.ops.Reorder": [[171, "cyclops-query-ops-reorder"]], "cyclops.query.ops.ReorderAfter": [[172, "cyclops-query-ops-reorderafter"]], "cyclops.query.ops.Sequential": [[173, "cyclops-query-ops-sequential"]], "cyclops.query.ops.Substring": [[174, "cyclops-query-ops-substring"]], "cyclops.query.ops.Trim": [[175, "cyclops-query-ops-trim"]], "cyclops.query.ops.Union": [[176, "cyclops-query-ops-union"]], "cyclops.report.report": [[177, "module-cyclops.report.report"]], "cyclops.report.report.ModelCardReport": [[178, "cyclops-report-report-modelcardreport"]], "cyclops.tasks.cxr_classification": [[179, "module-cyclops.tasks.cxr_classification"]], "cyclops.tasks.cxr_classification.CXRClassificationTask": [[180, "cyclops-tasks-cxr-classification-cxrclassificationtask"]], "cyclops.tasks.mortality_prediction": [[181, "module-cyclops.tasks.mortality_prediction"]], "cyclops.tasks.mortality_prediction.MortalityPredictionTask": [[182, "cyclops-tasks-mortality-prediction-mortalitypredictiontask"]], "cyclops.data": [[183, "module-cyclops.data"]], "cyclops.data.features": [[183, "module-cyclops.data.features"]], "cyclops.evaluate": [[184, "module-cyclops.evaluate"]], "cyclops.evaluate.metrics": [[184, "module-cyclops.evaluate.metrics"]], "cyclops.evaluate.metrics.functional": [[184, "module-cyclops.evaluate.metrics.functional"]], "cyclops.evaluate.fairness": [[184, "module-cyclops.evaluate.fairness"]], "cyclops.monitor": [[185, "module-cyclops.monitor"]], "cyclops.query": [[186, "module-cyclops.query"]], "dataset APIs": [[186, "dataset-apis"]], "cyclops.report": [[187, "module-cyclops.report"]], "cyclops.tasks": [[188, "module-cyclops.tasks"]], "Tutorials": [[189, "tutorials"]], "eICU-CRD query API tutorial": [[190, "eICU-CRD-query-API-tutorial"]], "Imports and instantiate EICUQuerier": [[190, "Imports-and-instantiate-EICUQuerier"]], "Example 1. Get all female patients discharged in 2014 (limit to 100 rows).": [[190, "Example-1.-Get-all-female-patients-discharged-in-2014-(limit-to-100-rows)."]], "Example 2. Get all patient encounters with diagnoses (schizophrenia in diagnosisstring), discharged in the year 2015.": [[190, "Example-2.-Get-all-patient-encounters-with-diagnoses-(schizophrenia-in-diagnosisstring),-discharged-in-the-year-2015."]], "Example 3. Get potassium lab tests for patients discharged in the year 2014, for all teaching hospitals.": [[190, "Example-3.-Get-potassium-lab-tests-for-patients-discharged-in-the-year-2014,-for-all-teaching-hospitals."]], "Example 4. Get glucose medications (substring search) for female patients discharged in 2014.": [[190, "Example-4.-Get-glucose-medications-(substring-search)-for-female-patients-discharged-in-2014."]], "GEMINI query API tutorial": [[191, "GEMINI-query-API-tutorial"]], "Imports and instantiate GEMINIQuerier.": [[191, "Imports-and-instantiate-GEMINIQuerier."]], "Example 1a. Create a table with only one hospitalization per patient, keeping the most recent encounter for each patient. Sort the dataset by patient_id_hashed and discharge_date_time, and then keep the recent record.": [[191, "Example-1a.-Create-a-table-with-only-one-hospitalization-per-patient,-keeping-the-most-recent-encounter-for-each-patient.-Sort-the-dataset-by-patient_id_hashed-and-discharge_date_time,-and-then-keep-the-recent-record."]], "Example 1b. From the above set of encounters, take a subset of patients who were discharged between April 1, 2015 and March 31, 2016.": [[191, "Example-1b.-From-the-above-set-of-encounters,-take-a-subset-of-patients-who-were-discharged-between-April-1,-2015-and-March-31,-2016."]], "Example 1c. From the above set of encounters, get the total number of admissions for each hospital.": [[191, "Example-1c.-From-the-above-set-of-encounters,-get-the-total-number-of-admissions-for-each-hospital."]], "Example 2a. How many sodium tests were placed between Apr 1, 2015 and May 31, 2015 at hospital 101?": [[191, "Example-2a.-How-many-sodium-tests-were-placed-between-Apr-1,-2015-and-May-31,-2015-at-hospital-101?"]], "Heart Failure Prediction": [[192, "Heart-Failure-Prediction"]], "Import Libraries": [[192, "Import-Libraries"], [195, "Import-Libraries"], [198, "Import-Libraries"]], "Constants": [[192, "Constants"], [198, "Constants"]], "Data Loading": [[192, "Data-Loading"]], "Sex values": [[192, "Sex-values"]], "Age distribution": [[192, "Age-distribution"], [198, "Age-distribution"]], "Outcome distribution": [[192, "Outcome-distribution"], [198, "Outcome-distribution"]], "Identifying feature types": [[192, "Identifying-feature-types"], [198, "Identifying-feature-types"]], "Creating data preprocessors": [[192, "Creating-data-preprocessors"], [198, "Creating-data-preprocessors"]], "Creating Hugging Face Dataset": [[192, "Creating-Hugging-Face-Dataset"], [198, "Creating-Hugging-Face-Dataset"]], "Model Creation": [[192, "Model-Creation"], [198, "Model-Creation"]], "Task Creation": [[192, "Task-Creation"], [198, "Task-Creation"]], "Training": [[192, "Training"], [198, "Training"]], "Prediction": [[192, "Prediction"], [198, "Prediction"]], "Evaluation": [[192, "Evaluation"], [198, "Evaluation"]], "Performance over time": [[192, "Performance-over-time"], [195, "Performance-over-time"], [198, "Performance-over-time"]], "Report Generation": [[192, "Report-Generation"], [198, "Report-Generation"]], "MIMIC-III query API tutorial": [[193, "MIMIC-III-query-API-tutorial"]], "Imports and instantiate MIMICIIIQuerier": [[193, "Imports-and-instantiate-MIMICIIIQuerier"]], "Example 1. Get all male patients with a mortality outcome.": [[193, "Example-1.-Get-all-male-patients-with-a-mortality-outcome."]], "Example 2. Get all female patient encounters with diagnoses (gastroenteritis in ICD-9 long title).": [[193, "Example-2.-Get-all-female-patient-encounters-with-diagnoses-(gastroenteritis-in-ICD-9-long-title)."]], "Example 3. Get potassium lab tests for female patients.": [[193, "Example-3.-Get-potassium-lab-tests-for-female-patients."]], "Example 4. Get AaDO2 carevue chart events for male patients that have a valuenum of less than 20.": [[193, "Example-4.-Get-AaDO2-carevue-chart-events-for-male-patients-that-have-a-valuenum-of-less-than-20."]], "MIMIC-IV query API tutorial": [[194, "MIMIC-IV-query-API-tutorial"]], "Imports and instantiate MIMICIVQuerier": [[194, "Imports-and-instantiate-MIMICIVQuerier"]], "Example 1. Get all patient admissions from 2021 or later (approx year of admission)": [[194, "Example-1.-Get-all-patient-admissions-from-2021-or-later-(approx-year-of-admission)"]], "Example 2. Get all patient encounters with diagnoses (schizophrenia in ICD-10 long title), in the year 2015.": [[194, "Example-2.-Get-all-patient-encounters-with-diagnoses-(schizophrenia-in-ICD-10-long-title),-in-the-year-2015."]], "Example 3. Advanced - uses ConditionRegexMatch from cyclops.query.ops. Get all patient encounters with diagnoses (ICD-9 long title contains schizophrenia and chronic ), in the year 2015.": [[194, "Example-3.-Advanced---uses-ConditionRegexMatch-from-cyclops.query.ops.-Get-all-patient-encounters-with-diagnoses-(ICD-9-long-title-contains-schizophrenia-and-chronic-),-in-the-year-2015."]], "Example 4. Get routine vital signs for patients from year 2015.": [[194, "Example-4.-Get-routine-vital-signs-for-patients-from-year-2015."]], "Example 5. Get hemoglobin lab tests for patients from year 2009.": [[194, "Example-5.-Get-hemoglobin-lab-tests-for-patients-from-year-2009."]], "Example 6. Get radiology reports and filter on keywords lymphadenopathy and infectious occurring together from year 2009.": [[194, "Example-6.-Get-radiology-reports-and-filter-on-keywords-lymphadenopathy-and-infectious-occurring-together-from-year-2009."]], "Example 7. Get all female patient encounters from year 2015, and return as dask dataframe (lazy evaluation) with 4 partitions (batches) aggregated based on subject_id.": [[194, "Example-7.-Get-all-female-patient-encounters-from-year-2015,-and-return-as-dask-dataframe-(lazy-evaluation)-with-4-partitions-(batches)-aggregated-based-on-subject_id."]], "Example 8. Running a raw SQL string.": [[194, "Example-8.-Running-a-raw-SQL-string."]], "Chest X-Ray Disease Classification": [[195, "Chest-X-Ray-Disease-Classification"]], "Load Dataset": [[195, "Load-Dataset"]], "Load Model and get Predictions": [[195, "Load-Model-and-get-Predictions"]], "Multilabel AUROC by Pathology and Sex": [[195, "Multilabel-AUROC-by-Pathology-and-Sex"]], "Multilabel AUROC by Pathology and Age": [[195, "Multilabel-AUROC-by-Pathology-and-Age"]], "Balanced Error Rate by Pathology and Age": [[195, "Balanced-Error-Rate-by-Pathology-and-Age"]], "Balanced Error Rate Parity by Pathology and Age": [[195, "Balanced-Error-Rate-Parity-by-Pathology-and-Age"]], "Log Performance Metrics as Tests w/ Thresholds": [[195, "Log-Performance-Metrics-as-Tests-w/-Thresholds"]], "Populate Model Card Fields": [[195, "Populate-Model-Card-Fields"]], "NIHCXR Clinical Drift Experiments Tutorial": [[196, "NIHCXR-Clinical-Drift-Experiments-Tutorial"]], "Import Libraries and Load NIHCXR Dataset": [[196, "Import-Libraries-and-Load-NIHCXR-Dataset"]], "Example 1. Generate Source/Target Dataset for Experiments (1-2)": [[196, "Example-1.-Generate-Source/Target-Dataset-for-Experiments-(1-2)"]], "Example 2. Sensitivity test experiment with 3 dimensionality reduction techniques": [[196, "Example-2.-Sensitivity-test-experiment-with-3-dimensionality-reduction-techniques"]], "Example 3. Sensitivity test experiment with models trained on different datasets": [[196, "Example-3.-Sensitivity-test-experiment-with-models-trained-on-different-datasets"]], "Example 4. Sensitivity test experiment with different clinical shifts": [[196, "Example-4.-Sensitivity-test-experiment-with-different-clinical-shifts"]], "Example 5. Rolling window experiment with synthetic timestamps using biweekly window": [[196, "Example-5.-Rolling-window-experiment-with-synthetic-timestamps-using-biweekly-window"]], "OMOP query API tutorial": [[197, "OMOP-query-API-tutorial"]], "Imports and instantiate OMOPQuerier.": [[197, "Imports-and-instantiate-OMOPQuerier."], [197, "id1"]], "Example 1. Get all patient visits in or after 2010.": [[197, "Example-1.-Get-all-patient-visits-in-or-after-2010."]], "Example 2. Get measurements for all visits in or after 2020.": [[197, "Example-2.-Get-measurements-for-all-visits-in-or-after-2020."]], "Example 1. Get all patient visits that ended in a mortality outcome in or after 2010.": [[197, "Example-1.-Get-all-patient-visits-that-ended-in-a-mortality-outcome-in-or-after-2010."]], "Example 2. Get all measurements for female patient visits with sepsis diagnoses, that ended in a mortality outcome.": [[197, "Example-2.-Get-all-measurements-for-female-patient-visits-with-sepsis-diagnoses,-that-ended-in-a-mortality-outcome."]], "Prolonged Length of Stay Prediction": [[198, "Prolonged-Length-of-Stay-Prediction"]], "Data Querying": [[198, "Data-Querying"]], "Compute length of stay (labels)": [[198, "Compute-length-of-stay-(labels)"]], "Data Inspection and Preprocessing": [[198, "Data-Inspection-and-Preprocessing"]], "Drop NaNs based on the NAN_THRESHOLD": [[198, "Drop-NaNs-based-on-the-NAN_THRESHOLD"]], "Length of stay distribution": [[198, "Length-of-stay-distribution"]], "Gender distribution": [[198, "Gender-distribution"]], "monitor API": [[199, "monitor-api"]], "query API": [[200, "query-api"]], "Example use cases": [[201, "example-use-cases"]], "Tabular data": [[201, "tabular-data"]], "Kaggle Heart Failure Prediction": [[201, "kaggle-heart-failure-prediction"]], "Synthea Prolonged Length of Stay Prediction": [[201, "synthea-prolonged-length-of-stay-prediction"]], "Image data": [[201, "image-data"]], "NIH Chest X-ray classification": [[201, "nih-chest-x-ray-classification"]]}, "indexentries": {"cyclops.data.features.medical_image": [[4, "module-cyclops.data.features.medical_image"]], "module": [[4, "module-cyclops.data.features.medical_image"], [6, "module-cyclops.data.slicer"], [16, "module-cyclops.evaluate.evaluator"], [18, "module-cyclops.evaluate.fairness.config"], [20, "module-cyclops.evaluate.fairness.evaluator"], [23, "module-cyclops.evaluate.metrics.accuracy"], [28, "module-cyclops.evaluate.metrics.auroc"], [33, "module-cyclops.evaluate.metrics.f_beta"], [42, "module-cyclops.evaluate.metrics.factory"], [44, "module-cyclops.evaluate.metrics.functional.accuracy"], [45, "module-cyclops.evaluate.metrics.functional.auroc"], [46, "module-cyclops.evaluate.metrics.functional.f_beta"], [55, "module-cyclops.evaluate.metrics.functional.precision_recall"], [64, "module-cyclops.evaluate.metrics.functional.precision_recall_curve"], [65, "module-cyclops.evaluate.metrics.functional.roc"], [70, "module-cyclops.evaluate.metrics.functional.sensitivity"], [71, "module-cyclops.evaluate.metrics.functional.specificity"], [72, "module-cyclops.evaluate.metrics.functional.stat_scores"], [73, "module-cyclops.evaluate.metrics.metric"], [77, "module-cyclops.evaluate.metrics.precision_recall"], [86, "module-cyclops.evaluate.metrics.precision_recall_curve"], [91, "module-cyclops.evaluate.metrics.roc"], [96, "module-cyclops.evaluate.metrics.sensitivity"], [101, "module-cyclops.evaluate.metrics.specificity"], [106, "module-cyclops.evaluate.metrics.stat_scores"], [111, "module-cyclops.monitor.clinical_applicator"], [113, "module-cyclops.monitor.synthetic_applicator"], [120, "module-cyclops.query.base"], [122, "module-cyclops.query.eicu"], [124, "module-cyclops.query.gemini"], [126, "module-cyclops.query.interface"], [128, "module-cyclops.query.mimiciii"], [130, "module-cyclops.query.mimiciv"], [132, "module-cyclops.query.omop"], [134, "module-cyclops.query.ops"], [177, "module-cyclops.report.report"], [179, "module-cyclops.tasks.cxr_classification"], [181, "module-cyclops.tasks.mortality_prediction"], [183, "module-cyclops.data"], [183, "module-cyclops.data.features"], [184, "module-cyclops.evaluate"], [184, "module-cyclops.evaluate.fairness"], [184, "module-cyclops.evaluate.metrics"], [184, "module-cyclops.evaluate.metrics.functional"], [185, "module-cyclops.monitor"], [186, "module-cyclops.query"], [187, "module-cyclops.report"], [188, "module-cyclops.tasks"]], "medicalimage (class in cyclops.data.features.medical_image)": [[5, "cyclops.data.features.medical_image.MedicalImage"]], "__call__() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.__call__"]], "cast_storage() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.cast_storage"]], "decode_example() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.decode_example"]], "embed_storage() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.embed_storage"]], "encode_example() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.encode_example"]], "flatten() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.flatten"]], "cyclops.data.slicer": [[6, "module-cyclops.data.slicer"]], "slicespec (class in cyclops.data.slicer)": [[7, "cyclops.data.slicer.SliceSpec"]], "_registry (slicespec attribute)": [[7, "cyclops.data.slicer.SliceSpec._registry"]], "add_slice_spec() (slicespec method)": [[7, "cyclops.data.slicer.SliceSpec.add_slice_spec"]], "column_names (slicespec attribute)": [[7, "cyclops.data.slicer.SliceSpec.column_names"]], "get_slices() (slicespec method)": [[7, "cyclops.data.slicer.SliceSpec.get_slices"]], "include_overall (slicespec attribute)": [[7, "cyclops.data.slicer.SliceSpec.include_overall"]], "slices() (slicespec method)": [[7, "cyclops.data.slicer.SliceSpec.slices"]], "spec_list (slicespec attribute)": [[7, "cyclops.data.slicer.SliceSpec.spec_list"]], "validate (slicespec attribute)": [[7, "cyclops.data.slicer.SliceSpec.validate"]], "compound_filter() (in module cyclops.data.slicer)": [[8, "cyclops.data.slicer.compound_filter"]], "filter_datetime() (in module cyclops.data.slicer)": [[9, "cyclops.data.slicer.filter_datetime"]], "filter_non_null() (in module cyclops.data.slicer)": [[10, "cyclops.data.slicer.filter_non_null"]], "filter_range() (in module cyclops.data.slicer)": [[11, "cyclops.data.slicer.filter_range"]], "filter_string_contains() (in module cyclops.data.slicer)": [[12, "cyclops.data.slicer.filter_string_contains"]], "filter_value() (in module cyclops.data.slicer)": [[13, "cyclops.data.slicer.filter_value"]], "is_datetime() (in module cyclops.data.slicer)": [[14, "cyclops.data.slicer.is_datetime"]], "overall() (in module cyclops.data.slicer)": [[15, "cyclops.data.slicer.overall"]], "cyclops.evaluate.evaluator": [[16, "module-cyclops.evaluate.evaluator"]], "evaluate() (in module cyclops.evaluate.evaluator)": [[17, "cyclops.evaluate.evaluator.evaluate"]], "cyclops.evaluate.fairness.config": [[18, "module-cyclops.evaluate.fairness.config"]], "fairnessconfig (class in cyclops.evaluate.fairness.config)": [[19, "cyclops.evaluate.fairness.config.FairnessConfig"]], "cyclops.evaluate.fairness.evaluator": [[20, "module-cyclops.evaluate.fairness.evaluator"]], "evaluate_fairness() (in module cyclops.evaluate.fairness.evaluator)": [[21, "cyclops.evaluate.fairness.evaluator.evaluate_fairness"]], "warn_too_many_unique_values() (in module cyclops.evaluate.fairness.evaluator)": [[22, "cyclops.evaluate.fairness.evaluator.warn_too_many_unique_values"]], "cyclops.evaluate.metrics.accuracy": [[23, "module-cyclops.evaluate.metrics.accuracy"]], "accuracy (class in cyclops.evaluate.metrics.accuracy)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy"]], "__add__() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.__add__"]], "__call__() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.__call__"]], "__init__() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.__init__"]], "__mul__() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.__mul__"]], "add_state() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.add_state"]], "clone() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.clone"]], "compute() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.compute"]], "reset_state() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.reset_state"]], "update_state() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.update_state"]], "binaryaccuracy (class in cyclops.evaluate.metrics.accuracy)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy"]], "__add__() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.__add__"]], "__call__() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.__call__"]], "__init__() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.__init__"]], "__mul__() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.__mul__"]], "add_state() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.add_state"]], "clone() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.clone"]], "compute() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.compute"]], "reset_state() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.reset_state"]], "update_state() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.update_state"]], "multiclassaccuracy (class in cyclops.evaluate.metrics.accuracy)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy"]], "__add__() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.__add__"]], "__call__() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.__call__"]], "__init__() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.__init__"]], "__mul__() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.__mul__"]], "add_state() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.add_state"]], "clone() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.clone"]], "compute() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.compute"]], "reset_state() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.reset_state"]], "update_state() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.update_state"]], "multilabelaccuracy (class in cyclops.evaluate.metrics.accuracy)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy"]], "__add__() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.__add__"]], "__call__() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.__call__"]], "__init__() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.__init__"]], "__mul__() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.__mul__"]], "add_state() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.add_state"]], "clone() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.clone"]], "compute() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.compute"]], "reset_state() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.reset_state"]], "update_state() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.update_state"]], "cyclops.evaluate.metrics.auroc": [[28, "module-cyclops.evaluate.metrics.auroc"]], "auroc (class in cyclops.evaluate.metrics.auroc)": [[29, "cyclops.evaluate.metrics.auroc.AUROC"]], "__add__() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.__add__"]], "__call__() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.__call__"]], "__init__() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.__init__"]], "__mul__() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.__mul__"]], "add_state() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.add_state"]], "clone() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.clone"]], "compute() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.compute"]], "reset_state() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.reset_state"]], "update_state() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.update_state"]], "binaryauroc (class in cyclops.evaluate.metrics.auroc)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC"]], "__add__() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.__add__"]], "__call__() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.__call__"]], "__init__() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.__init__"]], "__mul__() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.__mul__"]], "add_state() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.add_state"]], "clone() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.clone"]], "compute() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.compute"]], "reset_state() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.reset_state"]], "update_state() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.update_state"]], "multiclassauroc (class in cyclops.evaluate.metrics.auroc)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC"]], "__add__() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.__add__"]], "__call__() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.__call__"]], "__init__() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.__init__"]], "__mul__() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.__mul__"]], "add_state() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.add_state"]], "clone() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.clone"]], "compute() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.compute"]], "reset_state() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.reset_state"]], "update_state() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.update_state"]], "multilabelauroc (class in cyclops.evaluate.metrics.auroc)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC"]], "__add__() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.__add__"]], "__call__() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.__call__"]], "__init__() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.__init__"]], "__mul__() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.__mul__"]], "add_state() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.add_state"]], "clone() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.clone"]], "compute() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.compute"]], "reset_state() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.reset_state"]], "update_state() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.update_state"]], "cyclops.evaluate.metrics.f_beta": [[33, "module-cyclops.evaluate.metrics.f_beta"]], "binaryf1score (class in cyclops.evaluate.metrics.f_beta)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score"]], "__add__() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.__add__"]], "__call__() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.__call__"]], "__init__() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.__init__"]], "__mul__() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.__mul__"]], "add_state() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.add_state"]], "clone() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.clone"]], "compute() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.compute"]], "reset_state() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.reset_state"]], "update_state() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.update_state"]], "binaryfbetascore (class in cyclops.evaluate.metrics.f_beta)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore"]], "__add__() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.__add__"]], "__call__() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.__call__"]], "__init__() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.__init__"]], "__mul__() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.__mul__"]], "add_state() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.add_state"]], "clone() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.clone"]], "compute() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.compute"]], "reset_state() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.reset_state"]], "update_state() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.update_state"]], "f1score (class in cyclops.evaluate.metrics.f_beta)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score"]], "__add__() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.__add__"]], "__call__() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.__call__"]], "__init__() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.__init__"]], "__mul__() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.__mul__"]], "add_state() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.add_state"]], "clone() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.clone"]], "compute() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.compute"]], "reset_state() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.reset_state"]], "update_state() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.update_state"]], "fbetascore (class in cyclops.evaluate.metrics.f_beta)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore"]], "__add__() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.__add__"]], "__call__() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.__call__"]], "__init__() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.__init__"]], "__mul__() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.__mul__"]], "add_state() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.add_state"]], "clone() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.clone"]], "compute() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.compute"]], "reset_state() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.reset_state"]], "update_state() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.update_state"]], "multiclassf1score (class in cyclops.evaluate.metrics.f_beta)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score"]], "__add__() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.__add__"]], "__call__() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.__call__"]], "__init__() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.__init__"]], "__mul__() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.__mul__"]], "add_state() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.add_state"]], "clone() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.clone"]], "compute() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.compute"]], "reset_state() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.reset_state"]], "update_state() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.update_state"]], "multiclassfbetascore (class in cyclops.evaluate.metrics.f_beta)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore"]], "__add__() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.__add__"]], "__call__() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.__call__"]], "__init__() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.__init__"]], "__mul__() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.__mul__"]], "add_state() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.add_state"]], "clone() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.clone"]], "compute() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.compute"]], "reset_state() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.reset_state"]], "update_state() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.update_state"]], "multilabelf1score (class in cyclops.evaluate.metrics.f_beta)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score"]], "__add__() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.__add__"]], "__call__() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.__call__"]], "__init__() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.__init__"]], "__mul__() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.__mul__"]], "add_state() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.add_state"]], "clone() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.clone"]], "compute() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.compute"]], "reset_state() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.reset_state"]], "update_state() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.update_state"]], "multilabelfbetascore (class in cyclops.evaluate.metrics.f_beta)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore"]], "__add__() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.__add__"]], "__call__() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.__call__"]], "__init__() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.__init__"]], "__mul__() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.__mul__"]], "add_state() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.add_state"]], "clone() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.clone"]], "compute() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.compute"]], "reset_state() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.reset_state"]], "update_state() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.update_state"]], "cyclops.evaluate.metrics.factory": [[42, "module-cyclops.evaluate.metrics.factory"]], "create_metric() (in module cyclops.evaluate.metrics.factory)": [[43, "cyclops.evaluate.metrics.factory.create_metric"]], "cyclops.evaluate.metrics.functional.accuracy": [[44, "module-cyclops.evaluate.metrics.functional.accuracy"]], "cyclops.evaluate.metrics.functional.auroc": [[45, "module-cyclops.evaluate.metrics.functional.auroc"]], "cyclops.evaluate.metrics.functional.f_beta": [[46, "module-cyclops.evaluate.metrics.functional.f_beta"]], "binary_f1_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[47, "cyclops.evaluate.metrics.functional.f_beta.binary_f1_score"]], "binary_fbeta_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[48, "cyclops.evaluate.metrics.functional.f_beta.binary_fbeta_score"]], "f1_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[49, "cyclops.evaluate.metrics.functional.f_beta.f1_score"]], "fbeta_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[50, "cyclops.evaluate.metrics.functional.f_beta.fbeta_score"]], "multiclass_f1_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[51, "cyclops.evaluate.metrics.functional.f_beta.multiclass_f1_score"]], "multiclass_fbeta_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[52, "cyclops.evaluate.metrics.functional.f_beta.multiclass_fbeta_score"]], "multilabel_f1_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[53, "cyclops.evaluate.metrics.functional.f_beta.multilabel_f1_score"]], "multilabel_fbeta_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[54, "cyclops.evaluate.metrics.functional.f_beta.multilabel_fbeta_score"]], "cyclops.evaluate.metrics.functional.precision_recall": [[55, "module-cyclops.evaluate.metrics.functional.precision_recall"]], "binary_precision() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[56, "cyclops.evaluate.metrics.functional.precision_recall.binary_precision"]], "binary_recall() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[57, "cyclops.evaluate.metrics.functional.precision_recall.binary_recall"]], "multiclass_precision() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[58, "cyclops.evaluate.metrics.functional.precision_recall.multiclass_precision"]], "multiclass_recall() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[59, "cyclops.evaluate.metrics.functional.precision_recall.multiclass_recall"]], "multilabel_precision() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[60, "cyclops.evaluate.metrics.functional.precision_recall.multilabel_precision"]], "multilabel_recall() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[61, "cyclops.evaluate.metrics.functional.precision_recall.multilabel_recall"]], "precision() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[62, "cyclops.evaluate.metrics.functional.precision_recall.precision"]], "recall() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[63, "cyclops.evaluate.metrics.functional.precision_recall.recall"]], "cyclops.evaluate.metrics.functional.precision_recall_curve": [[64, "module-cyclops.evaluate.metrics.functional.precision_recall_curve"]], "cyclops.evaluate.metrics.functional.roc": [[65, "module-cyclops.evaluate.metrics.functional.roc"]], "binary_roc_curve() (in module cyclops.evaluate.metrics.functional.roc)": [[66, "cyclops.evaluate.metrics.functional.roc.binary_roc_curve"]], "multiclass_roc_curve() (in module cyclops.evaluate.metrics.functional.roc)": [[67, "cyclops.evaluate.metrics.functional.roc.multiclass_roc_curve"]], "multilabel_roc_curve() (in module cyclops.evaluate.metrics.functional.roc)": [[68, "cyclops.evaluate.metrics.functional.roc.multilabel_roc_curve"]], "roc_curve() (in module cyclops.evaluate.metrics.functional.roc)": [[69, "cyclops.evaluate.metrics.functional.roc.roc_curve"]], "cyclops.evaluate.metrics.functional.sensitivity": [[70, "module-cyclops.evaluate.metrics.functional.sensitivity"]], "cyclops.evaluate.metrics.functional.specificity": [[71, "module-cyclops.evaluate.metrics.functional.specificity"]], "cyclops.evaluate.metrics.functional.stat_scores": [[72, "module-cyclops.evaluate.metrics.functional.stat_scores"]], "cyclops.evaluate.metrics.metric": [[73, "module-cyclops.evaluate.metrics.metric"]], "metric (class in cyclops.evaluate.metrics.metric)": [[74, "cyclops.evaluate.metrics.metric.Metric"]], "__add__() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.__add__"]], "__call__() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.__call__"]], "__init__() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.__init__"]], "__mul__() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.__mul__"]], "add_state() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.add_state"]], "clone() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.clone"]], "compute() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.compute"]], "reset_state() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.reset_state"]], "update_state() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.update_state"]], "metriccollection (class in cyclops.evaluate.metrics.metric)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection"]], "__call__() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.__call__"]], "__init__() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.__init__"]], "add_metrics() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.add_metrics"]], "clear() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.clear"]], "clone() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.clone"]], "compute() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.compute"]], "get() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.get"]], "items() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.items"]], "keys() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.keys"]], "pop() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.pop"]], "popitem() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.popitem"]], "reset_state() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.reset_state"]], "setdefault() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.setdefault"]], "update() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.update"]], "update_state() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.update_state"]], "values() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.values"]], "operatormetric (class in cyclops.evaluate.metrics.metric)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric"]], "__add__() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.__add__"]], "__call__() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.__call__"]], "__init__() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.__init__"]], "__mul__() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.__mul__"]], "add_state() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.add_state"]], "clone() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.clone"]], "compute() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.compute"]], "reset_state() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.reset_state"]], "update_state() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.update_state"]], "cyclops.evaluate.metrics.precision_recall": [[77, "module-cyclops.evaluate.metrics.precision_recall"]], "binaryprecision (class in cyclops.evaluate.metrics.precision_recall)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision"]], "__add__() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.__add__"]], "__call__() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.__call__"]], "__init__() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.__init__"]], "__mul__() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.__mul__"]], "add_state() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.add_state"]], "clone() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.clone"]], "compute() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.compute"]], "reset_state() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.reset_state"]], "update_state() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.update_state"]], "binaryrecall (class in cyclops.evaluate.metrics.precision_recall)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall"]], "__add__() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.__add__"]], "__call__() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.__call__"]], "__init__() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.__init__"]], "__mul__() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.__mul__"]], "add_state() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.add_state"]], "clone() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.clone"]], "compute() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.compute"]], "reset_state() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.reset_state"]], "update_state() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.update_state"]], "multiclassprecision (class in cyclops.evaluate.metrics.precision_recall)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision"]], "__add__() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.__add__"]], "__call__() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.__call__"]], "__init__() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.__init__"]], "__mul__() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.__mul__"]], "add_state() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.add_state"]], "clone() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.clone"]], "compute() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.compute"]], "reset_state() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.reset_state"]], "update_state() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.update_state"]], "multiclassrecall (class in cyclops.evaluate.metrics.precision_recall)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall"]], "__add__() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.__add__"]], "__call__() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.__call__"]], "__init__() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.__init__"]], "__mul__() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.__mul__"]], "add_state() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.add_state"]], "clone() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.clone"]], "compute() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.compute"]], "reset_state() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.reset_state"]], "update_state() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.update_state"]], "multilabelprecision (class in cyclops.evaluate.metrics.precision_recall)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision"]], "__add__() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.__add__"]], "__call__() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.__call__"]], "__init__() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.__init__"]], "__mul__() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.__mul__"]], "add_state() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.add_state"]], "clone() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.clone"]], "compute() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.compute"]], "reset_state() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.reset_state"]], "update_state() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.update_state"]], "multilabelrecall (class in cyclops.evaluate.metrics.precision_recall)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall"]], "__add__() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.__add__"]], "__call__() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.__call__"]], "__init__() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.__init__"]], "__mul__() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.__mul__"]], "add_state() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.add_state"]], "clone() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.clone"]], "compute() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.compute"]], "reset_state() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.reset_state"]], "update_state() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.update_state"]], "precision (class in cyclops.evaluate.metrics.precision_recall)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision"]], "__add__() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.__add__"]], "__call__() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.__call__"]], "__init__() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.__init__"]], "__mul__() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.__mul__"]], "add_state() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.add_state"]], "clone() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.clone"]], "compute() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.compute"]], "reset_state() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.reset_state"]], "update_state() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.update_state"]], "recall (class in cyclops.evaluate.metrics.precision_recall)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall"]], "__add__() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.__add__"]], "__call__() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.__call__"]], "__init__() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.__init__"]], "__mul__() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.__mul__"]], "add_state() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.add_state"]], "clone() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.clone"]], "compute() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.compute"]], "reset_state() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.reset_state"]], "update_state() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.update_state"]], "cyclops.evaluate.metrics.precision_recall_curve": [[86, "module-cyclops.evaluate.metrics.precision_recall_curve"]], "binaryprecisionrecallcurve (class in cyclops.evaluate.metrics.precision_recall_curve)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve"]], "__add__() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.__add__"]], "__call__() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.__call__"]], "__init__() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.__init__"]], "__mul__() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.__mul__"]], "add_state() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.add_state"]], "clone() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.clone"]], "compute() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.compute"]], "reset_state() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.reset_state"]], "update_state() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.update_state"]], "multiclassprecisionrecallcurve (class in cyclops.evaluate.metrics.precision_recall_curve)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve"]], "__add__() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.__add__"]], "__call__() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.__call__"]], "__init__() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.__init__"]], "__mul__() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.__mul__"]], "add_state() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.add_state"]], "clone() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.clone"]], "compute() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.compute"]], "reset_state() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.reset_state"]], "update_state() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.update_state"]], "multilabelprecisionrecallcurve (class in cyclops.evaluate.metrics.precision_recall_curve)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve"]], "__add__() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.__add__"]], "__call__() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.__call__"]], "__init__() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.__init__"]], "__mul__() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.__mul__"]], "add_state() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.add_state"]], "clone() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.clone"]], "compute() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.compute"]], "reset_state() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.reset_state"]], "update_state() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.update_state"]], "precisionrecallcurve (class in cyclops.evaluate.metrics.precision_recall_curve)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve"]], "__add__() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.__add__"]], "__call__() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.__call__"]], "__init__() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.__init__"]], "__mul__() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.__mul__"]], "add_state() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.add_state"]], "clone() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.clone"]], "compute() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.compute"]], "reset_state() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.reset_state"]], "update_state() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.update_state"]], "cyclops.evaluate.metrics.roc": [[91, "module-cyclops.evaluate.metrics.roc"]], "binaryroccurve (class in cyclops.evaluate.metrics.roc)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve"]], "__add__() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.__add__"]], "__call__() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.__call__"]], "__init__() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.__init__"]], "__mul__() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.__mul__"]], "add_state() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.add_state"]], "clone() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.clone"]], "compute() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.compute"]], "reset_state() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.reset_state"]], "update_state() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.update_state"]], "multiclassroccurve (class in cyclops.evaluate.metrics.roc)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve"]], "__add__() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.__add__"]], "__call__() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.__call__"]], "__init__() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.__init__"]], "__mul__() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.__mul__"]], "add_state() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.add_state"]], "clone() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.clone"]], "compute() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.compute"]], "reset_state() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.reset_state"]], "update_state() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.update_state"]], "multilabelroccurve (class in cyclops.evaluate.metrics.roc)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve"]], "__add__() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.__add__"]], "__call__() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.__call__"]], "__init__() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.__init__"]], "__mul__() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.__mul__"]], "add_state() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.add_state"]], "clone() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.clone"]], "compute() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.compute"]], "reset_state() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.reset_state"]], "update_state() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.update_state"]], "roccurve (class in cyclops.evaluate.metrics.roc)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve"]], "__add__() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.__add__"]], "__call__() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.__call__"]], "__init__() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.__init__"]], "__mul__() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.__mul__"]], "add_state() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.add_state"]], "clone() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.clone"]], "compute() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.compute"]], "reset_state() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.reset_state"]], "update_state() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.update_state"]], "cyclops.evaluate.metrics.sensitivity": [[96, "module-cyclops.evaluate.metrics.sensitivity"]], "binarysensitivity (class in cyclops.evaluate.metrics.sensitivity)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity"]], "__add__() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.__add__"]], "__call__() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.__call__"]], "__init__() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.__init__"]], "__mul__() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.__mul__"]], "add_state() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.add_state"]], "clone() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.clone"]], "compute() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.compute"]], "reset_state() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.reset_state"]], "update_state() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.update_state"]], "multiclasssensitivity (class in cyclops.evaluate.metrics.sensitivity)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity"]], "__add__() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.__add__"]], "__call__() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.__call__"]], "__init__() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.__init__"]], "__mul__() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.__mul__"]], "add_state() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.add_state"]], "clone() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.clone"]], "compute() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.compute"]], "reset_state() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.reset_state"]], "update_state() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.update_state"]], "multilabelsensitivity (class in cyclops.evaluate.metrics.sensitivity)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity"]], "__add__() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.__add__"]], "__call__() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.__call__"]], "__init__() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.__init__"]], "__mul__() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.__mul__"]], "add_state() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.add_state"]], "clone() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.clone"]], "compute() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.compute"]], "reset_state() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.reset_state"]], "update_state() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.update_state"]], "sensitivity (class in cyclops.evaluate.metrics.sensitivity)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity"]], "__add__() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.__add__"]], "__call__() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.__call__"]], "__init__() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.__init__"]], "__mul__() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.__mul__"]], "add_state() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.add_state"]], "clone() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.clone"]], "compute() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.compute"]], "reset_state() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.reset_state"]], "update_state() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.update_state"]], "cyclops.evaluate.metrics.specificity": [[101, "module-cyclops.evaluate.metrics.specificity"]], "binaryspecificity (class in cyclops.evaluate.metrics.specificity)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity"]], "__add__() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.__add__"]], "__call__() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.__call__"]], "__init__() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.__init__"]], "__mul__() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.__mul__"]], "add_state() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.add_state"]], "clone() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.clone"]], "compute() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.compute"]], "reset_state() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.reset_state"]], "update_state() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.update_state"]], "multiclassspecificity (class in cyclops.evaluate.metrics.specificity)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity"]], "__add__() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.__add__"]], "__call__() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.__call__"]], "__init__() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.__init__"]], "__mul__() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.__mul__"]], "add_state() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.add_state"]], "clone() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.clone"]], "compute() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.compute"]], "reset_state() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.reset_state"]], "update_state() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.update_state"]], "multilabelspecificity (class in cyclops.evaluate.metrics.specificity)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity"]], "__add__() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.__add__"]], "__call__() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.__call__"]], "__init__() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.__init__"]], "__mul__() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.__mul__"]], "add_state() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.add_state"]], "clone() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.clone"]], "compute() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.compute"]], "reset_state() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.reset_state"]], "update_state() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.update_state"]], "specificity (class in cyclops.evaluate.metrics.specificity)": [[105, "cyclops.evaluate.metrics.specificity.Specificity"]], "__add__() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.__add__"]], "__call__() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.__call__"]], "__init__() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.__init__"]], "__mul__() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.__mul__"]], "add_state() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.add_state"]], "clone() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.clone"]], "compute() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.compute"]], "reset_state() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.reset_state"]], "update_state() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.update_state"]], "cyclops.evaluate.metrics.stat_scores": [[106, "module-cyclops.evaluate.metrics.stat_scores"]], "binarystatscores (class in cyclops.evaluate.metrics.stat_scores)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores"]], "__add__() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.__add__"]], "__call__() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.__call__"]], "__init__() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.__init__"]], "__mul__() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.__mul__"]], "add_state() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.add_state"]], "clone() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.clone"]], "compute() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.compute"]], "reset_state() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.reset_state"]], "update_state() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.update_state"]], "multiclassstatscores (class in cyclops.evaluate.metrics.stat_scores)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores"]], "__add__() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.__add__"]], "__call__() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.__call__"]], "__init__() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.__init__"]], "__mul__() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.__mul__"]], "add_state() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.add_state"]], "clone() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.clone"]], "compute() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.compute"]], "reset_state() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.reset_state"]], "update_state() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.update_state"]], "multilabelstatscores (class in cyclops.evaluate.metrics.stat_scores)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores"]], "__add__() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.__add__"]], "__call__() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.__call__"]], "__init__() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.__init__"]], "__mul__() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.__mul__"]], "add_state() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.add_state"]], "clone() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.clone"]], "compute() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.compute"]], "reset_state() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.reset_state"]], "update_state() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.update_state"]], "statscores (class in cyclops.evaluate.metrics.stat_scores)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores"]], "__add__() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.__add__"]], "__call__() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.__call__"]], "__init__() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.__init__"]], "__mul__() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.__mul__"]], "add_state() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.add_state"]], "clone() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.clone"]], "compute() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.compute"]], "reset_state() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.reset_state"]], "update_state() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.update_state"]], "cyclops.monitor.clinical_applicator": [[111, "module-cyclops.monitor.clinical_applicator"]], "clinicalshiftapplicator (class in cyclops.monitor.clinical_applicator)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator"]], "age() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.age"]], "apply_shift() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.apply_shift"]], "custom() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.custom"]], "hospital_type() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.hospital_type"]], "month() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.month"]], "sex() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.sex"]], "time() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.time"]], "cyclops.monitor.synthetic_applicator": [[113, "module-cyclops.monitor.synthetic_applicator"]], "syntheticshiftapplicator (class in cyclops.monitor.synthetic_applicator)": [[114, "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator"]], "apply_shift() (syntheticshiftapplicator method)": [[114, "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator.apply_shift"]], "binary_noise_shift() (in module cyclops.monitor.synthetic_applicator)": [[115, "cyclops.monitor.synthetic_applicator.binary_noise_shift"]], "feature_association_shift() (in module cyclops.monitor.synthetic_applicator)": [[116, "cyclops.monitor.synthetic_applicator.feature_association_shift"]], "feature_swap_shift() (in module cyclops.monitor.synthetic_applicator)": [[117, "cyclops.monitor.synthetic_applicator.feature_swap_shift"]], "gaussian_noise_shift() (in module cyclops.monitor.synthetic_applicator)": [[118, "cyclops.monitor.synthetic_applicator.gaussian_noise_shift"]], "knockout_shift() (in module cyclops.monitor.synthetic_applicator)": [[119, "cyclops.monitor.synthetic_applicator.knockout_shift"]], "cyclops.query.base": [[120, "module-cyclops.query.base"]], "datasetquerier (class in cyclops.query.base)": [[121, "cyclops.query.base.DatasetQuerier"]], "db (datasetquerier attribute)": [[121, "cyclops.query.base.DatasetQuerier.db"]], "get_table() (datasetquerier method)": [[121, "cyclops.query.base.DatasetQuerier.get_table"]], "list_columns() (datasetquerier method)": [[121, "cyclops.query.base.DatasetQuerier.list_columns"]], "list_custom_tables() (datasetquerier method)": [[121, "cyclops.query.base.DatasetQuerier.list_custom_tables"]], "list_schemas() (datasetquerier method)": [[121, "cyclops.query.base.DatasetQuerier.list_schemas"]], "list_tables() (datasetquerier method)": [[121, "cyclops.query.base.DatasetQuerier.list_tables"]], "cyclops.query.eicu": [[122, "module-cyclops.query.eicu"]], "eicuquerier (class in cyclops.query.eicu)": [[123, "cyclops.query.eicu.EICUQuerier"]], "__init__() (eicuquerier method)": [[123, "cyclops.query.eicu.EICUQuerier.__init__"]], "get_table() (eicuquerier method)": [[123, "cyclops.query.eicu.EICUQuerier.get_table"]], "list_columns() (eicuquerier method)": [[123, "cyclops.query.eicu.EICUQuerier.list_columns"]], "list_custom_tables() (eicuquerier method)": [[123, "cyclops.query.eicu.EICUQuerier.list_custom_tables"]], "list_schemas() (eicuquerier method)": [[123, "cyclops.query.eicu.EICUQuerier.list_schemas"]], "list_tables() (eicuquerier method)": [[123, "cyclops.query.eicu.EICUQuerier.list_tables"]], "cyclops.query.gemini": [[124, "module-cyclops.query.gemini"]], "geminiquerier (class in cyclops.query.gemini)": [[125, "cyclops.query.gemini.GEMINIQuerier"]], "__init__() (geminiquerier method)": [[125, "cyclops.query.gemini.GEMINIQuerier.__init__"]], "care_units() (geminiquerier method)": [[125, "cyclops.query.gemini.GEMINIQuerier.care_units"]], "diagnoses() (geminiquerier method)": [[125, "cyclops.query.gemini.GEMINIQuerier.diagnoses"]], "get_table() (geminiquerier method)": [[125, "cyclops.query.gemini.GEMINIQuerier.get_table"]], "imaging() (geminiquerier method)": [[125, "cyclops.query.gemini.GEMINIQuerier.imaging"]], "ip_admin() (geminiquerier method)": [[125, "cyclops.query.gemini.GEMINIQuerier.ip_admin"]], "list_columns() (geminiquerier method)": [[125, "cyclops.query.gemini.GEMINIQuerier.list_columns"]], "list_custom_tables() (geminiquerier method)": [[125, "cyclops.query.gemini.GEMINIQuerier.list_custom_tables"]], "list_schemas() (geminiquerier method)": [[125, "cyclops.query.gemini.GEMINIQuerier.list_schemas"]], "list_tables() (geminiquerier method)": [[125, "cyclops.query.gemini.GEMINIQuerier.list_tables"]], "room_transfer() (geminiquerier method)": [[125, "cyclops.query.gemini.GEMINIQuerier.room_transfer"]], "cyclops.query.interface": [[126, "module-cyclops.query.interface"]], "queryinterface (class in cyclops.query.interface)": [[127, "cyclops.query.interface.QueryInterface"]], "__init__() (queryinterface method)": [[127, "cyclops.query.interface.QueryInterface.__init__"]], "clear_data() (queryinterface method)": [[127, "cyclops.query.interface.QueryInterface.clear_data"]], "data (queryinterface property)": [[127, "cyclops.query.interface.QueryInterface.data"]], "join() (queryinterface method)": [[127, "cyclops.query.interface.QueryInterface.join"]], "ops() (queryinterface method)": [[127, "cyclops.query.interface.QueryInterface.ops"]], "run() (queryinterface method)": [[127, "cyclops.query.interface.QueryInterface.run"]], "save() (queryinterface method)": [[127, "cyclops.query.interface.QueryInterface.save"]], "union() (queryinterface method)": [[127, "cyclops.query.interface.QueryInterface.union"]], "union_all() (queryinterface method)": [[127, "cyclops.query.interface.QueryInterface.union_all"]], "cyclops.query.mimiciii": [[128, "module-cyclops.query.mimiciii"]], "mimiciiiquerier (class in cyclops.query.mimiciii)": [[129, "cyclops.query.mimiciii.MIMICIIIQuerier"]], "__init__() (mimiciiiquerier method)": [[129, "cyclops.query.mimiciii.MIMICIIIQuerier.__init__"]], "chartevents() (mimiciiiquerier method)": [[129, "cyclops.query.mimiciii.MIMICIIIQuerier.chartevents"]], "diagnoses() (mimiciiiquerier method)": [[129, "cyclops.query.mimiciii.MIMICIIIQuerier.diagnoses"]], "get_table() (mimiciiiquerier method)": [[129, "cyclops.query.mimiciii.MIMICIIIQuerier.get_table"]], "labevents() (mimiciiiquerier method)": [[129, "cyclops.query.mimiciii.MIMICIIIQuerier.labevents"]], "list_columns() (mimiciiiquerier method)": [[129, "cyclops.query.mimiciii.MIMICIIIQuerier.list_columns"]], "list_custom_tables() (mimiciiiquerier method)": [[129, "cyclops.query.mimiciii.MIMICIIIQuerier.list_custom_tables"]], "list_schemas() (mimiciiiquerier method)": [[129, "cyclops.query.mimiciii.MIMICIIIQuerier.list_schemas"]], "list_tables() (mimiciiiquerier method)": [[129, "cyclops.query.mimiciii.MIMICIIIQuerier.list_tables"]], "cyclops.query.mimiciv": [[130, "module-cyclops.query.mimiciv"]], "mimicivquerier (class in cyclops.query.mimiciv)": [[131, "cyclops.query.mimiciv.MIMICIVQuerier"]], "__init__() (mimicivquerier method)": [[131, "cyclops.query.mimiciv.MIMICIVQuerier.__init__"]], "chartevents() (mimicivquerier method)": [[131, "cyclops.query.mimiciv.MIMICIVQuerier.chartevents"]], "diagnoses() (mimicivquerier method)": [[131, "cyclops.query.mimiciv.MIMICIVQuerier.diagnoses"]], "get_table() (mimicivquerier method)": [[131, "cyclops.query.mimiciv.MIMICIVQuerier.get_table"]], "labevents() (mimicivquerier method)": [[131, "cyclops.query.mimiciv.MIMICIVQuerier.labevents"]], "list_columns() (mimicivquerier method)": [[131, "cyclops.query.mimiciv.MIMICIVQuerier.list_columns"]], "list_custom_tables() (mimicivquerier method)": [[131, "cyclops.query.mimiciv.MIMICIVQuerier.list_custom_tables"]], "list_schemas() (mimicivquerier method)": [[131, "cyclops.query.mimiciv.MIMICIVQuerier.list_schemas"]], "list_tables() (mimicivquerier method)": [[131, "cyclops.query.mimiciv.MIMICIVQuerier.list_tables"]], "patients() (mimicivquerier method)": [[131, "cyclops.query.mimiciv.MIMICIVQuerier.patients"]], "cyclops.query.omop": [[132, "module-cyclops.query.omop"]], "omopquerier (class in cyclops.query.omop)": [[133, "cyclops.query.omop.OMOPQuerier"]], "__init__() (omopquerier method)": [[133, "cyclops.query.omop.OMOPQuerier.__init__"]], "get_table() (omopquerier method)": [[133, "cyclops.query.omop.OMOPQuerier.get_table"]], "list_columns() (omopquerier method)": [[133, "cyclops.query.omop.OMOPQuerier.list_columns"]], "list_custom_tables() (omopquerier method)": [[133, "cyclops.query.omop.OMOPQuerier.list_custom_tables"]], "list_schemas() (omopquerier method)": [[133, "cyclops.query.omop.OMOPQuerier.list_schemas"]], "list_tables() (omopquerier method)": [[133, "cyclops.query.omop.OMOPQuerier.list_tables"]], "map_concept_ids_to_name() (omopquerier method)": [[133, "cyclops.query.omop.OMOPQuerier.map_concept_ids_to_name"]], "measurement() (omopquerier method)": [[133, "cyclops.query.omop.OMOPQuerier.measurement"]], "observation() (omopquerier method)": [[133, "cyclops.query.omop.OMOPQuerier.observation"]], "person() (omopquerier method)": [[133, "cyclops.query.omop.OMOPQuerier.person"]], "visit_detail() (omopquerier method)": [[133, "cyclops.query.omop.OMOPQuerier.visit_detail"]], "visit_occurrence() (omopquerier method)": [[133, "cyclops.query.omop.OMOPQuerier.visit_occurrence"]], "cyclops.query.ops": [[134, "module-cyclops.query.ops"]], "addcolumn (class in cyclops.query.ops)": [[135, "cyclops.query.ops.AddColumn"]], "__call__() (addcolumn method)": [[135, "cyclops.query.ops.AddColumn.__call__"]], "adddeltacolumn (class in cyclops.query.ops)": [[136, "cyclops.query.ops.AddDeltaColumn"]], "__call__() (adddeltacolumn method)": [[136, "cyclops.query.ops.AddDeltaColumn.__call__"]], "adddeltaconstant (class in cyclops.query.ops)": [[137, "cyclops.query.ops.AddDeltaConstant"]], "__call__() (adddeltaconstant method)": [[137, "cyclops.query.ops.AddDeltaConstant.__call__"]], "addnumeric (class in cyclops.query.ops)": [[138, "cyclops.query.ops.AddNumeric"]], "__call__() (addnumeric method)": [[138, "cyclops.query.ops.AddNumeric.__call__"]], "and (class in cyclops.query.ops)": [[139, "cyclops.query.ops.And"]], "__call__() (and method)": [[139, "cyclops.query.ops.And.__call__"]], "apply (class in cyclops.query.ops)": [[140, "cyclops.query.ops.Apply"]], "__call__() (apply method)": [[140, "cyclops.query.ops.Apply.__call__"]], "cast (class in cyclops.query.ops)": [[141, "cyclops.query.ops.Cast"]], "__call__() (cast method)": [[141, "cyclops.query.ops.Cast.__call__"]], "conditionafterdate (class in cyclops.query.ops)": [[142, "cyclops.query.ops.ConditionAfterDate"]], "__call__() (conditionafterdate method)": [[142, "cyclops.query.ops.ConditionAfterDate.__call__"]], "conditionbeforedate (class in cyclops.query.ops)": [[143, "cyclops.query.ops.ConditionBeforeDate"]], "__call__() (conditionbeforedate method)": [[143, "cyclops.query.ops.ConditionBeforeDate.__call__"]], "conditionendswith (class in cyclops.query.ops)": [[144, "cyclops.query.ops.ConditionEndsWith"]], "__call__() (conditionendswith method)": [[144, "cyclops.query.ops.ConditionEndsWith.__call__"]], "conditionequals (class in cyclops.query.ops)": [[145, "cyclops.query.ops.ConditionEquals"]], "__call__() (conditionequals method)": [[145, "cyclops.query.ops.ConditionEquals.__call__"]], "conditiongreaterthan (class in cyclops.query.ops)": [[146, "cyclops.query.ops.ConditionGreaterThan"]], "__call__() (conditiongreaterthan method)": [[146, "cyclops.query.ops.ConditionGreaterThan.__call__"]], "conditionin (class in cyclops.query.ops)": [[147, "cyclops.query.ops.ConditionIn"]], "__call__() (conditionin method)": [[147, "cyclops.query.ops.ConditionIn.__call__"]], "conditioninmonths (class in cyclops.query.ops)": [[148, "cyclops.query.ops.ConditionInMonths"]], "__call__() (conditioninmonths method)": [[148, "cyclops.query.ops.ConditionInMonths.__call__"]], "conditioninyears (class in cyclops.query.ops)": [[149, "cyclops.query.ops.ConditionInYears"]], "__call__() (conditioninyears method)": [[149, "cyclops.query.ops.ConditionInYears.__call__"]], "conditionlessthan (class in cyclops.query.ops)": [[150, "cyclops.query.ops.ConditionLessThan"]], "__call__() (conditionlessthan method)": [[150, "cyclops.query.ops.ConditionLessThan.__call__"]], "conditionlike (class in cyclops.query.ops)": [[151, "cyclops.query.ops.ConditionLike"]], "__call__() (conditionlike method)": [[151, "cyclops.query.ops.ConditionLike.__call__"]], "conditionregexmatch (class in cyclops.query.ops)": [[152, "cyclops.query.ops.ConditionRegexMatch"]], "__call__() (conditionregexmatch method)": [[152, "cyclops.query.ops.ConditionRegexMatch.__call__"]], "conditionstartswith (class in cyclops.query.ops)": [[153, "cyclops.query.ops.ConditionStartsWith"]], "__call__() (conditionstartswith method)": [[153, "cyclops.query.ops.ConditionStartsWith.__call__"]], "conditionsubstring (class in cyclops.query.ops)": [[154, "cyclops.query.ops.ConditionSubstring"]], "__call__() (conditionsubstring method)": [[154, "cyclops.query.ops.ConditionSubstring.__call__"]], "distinct (class in cyclops.query.ops)": [[155, "cyclops.query.ops.Distinct"]], "__call__() (distinct method)": [[155, "cyclops.query.ops.Distinct.__call__"]], "drop (class in cyclops.query.ops)": [[156, "cyclops.query.ops.Drop"]], "__call__() (drop method)": [[156, "cyclops.query.ops.Drop.__call__"]], "dropempty (class in cyclops.query.ops)": [[157, "cyclops.query.ops.DropEmpty"]], "__call__() (dropempty method)": [[157, "cyclops.query.ops.DropEmpty.__call__"]], "dropnulls (class in cyclops.query.ops)": [[158, "cyclops.query.ops.DropNulls"]], "__call__() (dropnulls method)": [[158, "cyclops.query.ops.DropNulls.__call__"]], "extracttimestampcomponent (class in cyclops.query.ops)": [[159, "cyclops.query.ops.ExtractTimestampComponent"]], "__call__() (extracttimestampcomponent method)": [[159, "cyclops.query.ops.ExtractTimestampComponent.__call__"]], "fillnull (class in cyclops.query.ops)": [[160, "cyclops.query.ops.FillNull"]], "__call__() (fillnull method)": [[160, "cyclops.query.ops.FillNull.__call__"]], "groupbyaggregate (class in cyclops.query.ops)": [[161, "cyclops.query.ops.GroupByAggregate"]], "__call__() (groupbyaggregate method)": [[161, "cyclops.query.ops.GroupByAggregate.__call__"]], "join (class in cyclops.query.ops)": [[162, "cyclops.query.ops.Join"]], "__call__() (join method)": [[162, "cyclops.query.ops.Join.__call__"]], "keep (class in cyclops.query.ops)": [[163, "cyclops.query.ops.Keep"]], "__call__() (keep method)": [[163, "cyclops.query.ops.Keep.__call__"]], "limit (class in cyclops.query.ops)": [[164, "cyclops.query.ops.Limit"]], "__call__() (limit method)": [[164, "cyclops.query.ops.Limit.__call__"]], "literal (class in cyclops.query.ops)": [[165, "cyclops.query.ops.Literal"]], "__call__() (literal method)": [[165, "cyclops.query.ops.Literal.__call__"]], "or (class in cyclops.query.ops)": [[166, "cyclops.query.ops.Or"]], "__call__() (or method)": [[166, "cyclops.query.ops.Or.__call__"]], "orderby (class in cyclops.query.ops)": [[167, "cyclops.query.ops.OrderBy"]], "__call__() (orderby method)": [[167, "cyclops.query.ops.OrderBy.__call__"]], "queryop (class in cyclops.query.ops)": [[168, "cyclops.query.ops.QueryOp"]], "__call__() (queryop method)": [[168, "cyclops.query.ops.QueryOp.__call__"]], "randomizeorder (class in cyclops.query.ops)": [[169, "cyclops.query.ops.RandomizeOrder"]], "__call__() (randomizeorder method)": [[169, "cyclops.query.ops.RandomizeOrder.__call__"]], "rename (class in cyclops.query.ops)": [[170, "cyclops.query.ops.Rename"]], "__call__() (rename method)": [[170, "cyclops.query.ops.Rename.__call__"]], "reorder (class in cyclops.query.ops)": [[171, "cyclops.query.ops.Reorder"]], "__call__() (reorder method)": [[171, "cyclops.query.ops.Reorder.__call__"]], "reorderafter (class in cyclops.query.ops)": [[172, "cyclops.query.ops.ReorderAfter"]], "__call__() (reorderafter method)": [[172, "cyclops.query.ops.ReorderAfter.__call__"]], "sequential (class in cyclops.query.ops)": [[173, "cyclops.query.ops.Sequential"]], "__add__() (sequential method)": [[173, "cyclops.query.ops.Sequential.__add__"]], "__call__() (sequential method)": [[173, "cyclops.query.ops.Sequential.__call__"]], "__init__() (sequential method)": [[173, "cyclops.query.ops.Sequential.__init__"]], "append() (sequential method)": [[173, "cyclops.query.ops.Sequential.append"]], "extend() (sequential method)": [[173, "cyclops.query.ops.Sequential.extend"]], "insert() (sequential method)": [[173, "cyclops.query.ops.Sequential.insert"]], "pop() (sequential method)": [[173, "cyclops.query.ops.Sequential.pop"]], "substring (class in cyclops.query.ops)": [[174, "cyclops.query.ops.Substring"]], "__call__() (substring method)": [[174, "cyclops.query.ops.Substring.__call__"]], "trim (class in cyclops.query.ops)": [[175, "cyclops.query.ops.Trim"]], "__call__() (trim method)": [[175, "cyclops.query.ops.Trim.__call__"]], "union (class in cyclops.query.ops)": [[176, "cyclops.query.ops.Union"]], "__call__() (union method)": [[176, "cyclops.query.ops.Union.__call__"]], "cyclops.report.report": [[177, "module-cyclops.report.report"]], "modelcardreport (class in cyclops.report.report)": [[178, "cyclops.report.report.ModelCardReport"]], "export() (modelcardreport method)": [[178, "cyclops.report.report.ModelCardReport.export"]], "from_json_file() (modelcardreport class method)": [[178, "cyclops.report.report.ModelCardReport.from_json_file"]], "log_citation() (modelcardreport method)": [[178, "cyclops.report.report.ModelCardReport.log_citation"]], "log_dataset() (modelcardreport method)": [[178, "cyclops.report.report.ModelCardReport.log_dataset"]], "log_descriptor() (modelcardreport method)": [[178, "cyclops.report.report.ModelCardReport.log_descriptor"]], "log_fairness_assessment() (modelcardreport method)": [[178, "cyclops.report.report.ModelCardReport.log_fairness_assessment"]], "log_from_dict() (modelcardreport method)": [[178, "cyclops.report.report.ModelCardReport.log_from_dict"]], "log_image() (modelcardreport method)": [[178, "cyclops.report.report.ModelCardReport.log_image"]], "log_license() (modelcardreport method)": [[178, "cyclops.report.report.ModelCardReport.log_license"]], "log_model_parameters() (modelcardreport method)": [[178, "cyclops.report.report.ModelCardReport.log_model_parameters"]], "log_owner() (modelcardreport method)": [[178, "cyclops.report.report.ModelCardReport.log_owner"]], "log_performance_metrics() (modelcardreport method)": [[178, "cyclops.report.report.ModelCardReport.log_performance_metrics"]], "log_plotly_figure() (modelcardreport method)": [[178, "cyclops.report.report.ModelCardReport.log_plotly_figure"]], "log_quantitative_analysis() (modelcardreport method)": [[178, "cyclops.report.report.ModelCardReport.log_quantitative_analysis"]], "log_reference() (modelcardreport method)": [[178, "cyclops.report.report.ModelCardReport.log_reference"]], "log_regulation() (modelcardreport method)": [[178, "cyclops.report.report.ModelCardReport.log_regulation"]], "log_risk() (modelcardreport method)": [[178, "cyclops.report.report.ModelCardReport.log_risk"]], "log_use_case() (modelcardreport method)": [[178, "cyclops.report.report.ModelCardReport.log_use_case"]], "log_user() (modelcardreport method)": [[178, "cyclops.report.report.ModelCardReport.log_user"]], "log_version() (modelcardreport method)": [[178, "cyclops.report.report.ModelCardReport.log_version"]], "cyclops.tasks.cxr_classification": [[179, "module-cyclops.tasks.cxr_classification"]], "cxrclassificationtask (class in cyclops.tasks.cxr_classification)": [[180, "cyclops.tasks.cxr_classification.CXRClassificationTask"]], "__init__() (cxrclassificationtask method)": [[180, "cyclops.tasks.cxr_classification.CXRClassificationTask.__init__"]], "add_model() (cxrclassificationtask method)": [[180, "cyclops.tasks.cxr_classification.CXRClassificationTask.add_model"]], "data_type (cxrclassificationtask property)": [[180, "cyclops.tasks.cxr_classification.CXRClassificationTask.data_type"]], "evaluate() (cxrclassificationtask method)": [[180, "cyclops.tasks.cxr_classification.CXRClassificationTask.evaluate"]], "get_model() (cxrclassificationtask method)": [[180, "cyclops.tasks.cxr_classification.CXRClassificationTask.get_model"]], "list_models() (cxrclassificationtask method)": [[180, "cyclops.tasks.cxr_classification.CXRClassificationTask.list_models"]], "models_count (cxrclassificationtask property)": [[180, "cyclops.tasks.cxr_classification.CXRClassificationTask.models_count"]], "predict() (cxrclassificationtask method)": [[180, "cyclops.tasks.cxr_classification.CXRClassificationTask.predict"]], "task_type (cxrclassificationtask property)": [[180, "cyclops.tasks.cxr_classification.CXRClassificationTask.task_type"]], "cyclops.tasks.mortality_prediction": [[181, "module-cyclops.tasks.mortality_prediction"]], "mortalitypredictiontask (class in cyclops.tasks.mortality_prediction)": [[182, "cyclops.tasks.mortality_prediction.MortalityPredictionTask"]], "__init__() (mortalitypredictiontask method)": [[182, "cyclops.tasks.mortality_prediction.MortalityPredictionTask.__init__"]], "add_model() (mortalitypredictiontask method)": [[182, "cyclops.tasks.mortality_prediction.MortalityPredictionTask.add_model"]], "data_type (mortalitypredictiontask property)": [[182, "cyclops.tasks.mortality_prediction.MortalityPredictionTask.data_type"]], "evaluate() (mortalitypredictiontask method)": [[182, "cyclops.tasks.mortality_prediction.MortalityPredictionTask.evaluate"]], "get_model() (mortalitypredictiontask method)": [[182, "cyclops.tasks.mortality_prediction.MortalityPredictionTask.get_model"]], "list_models() (mortalitypredictiontask method)": [[182, "cyclops.tasks.mortality_prediction.MortalityPredictionTask.list_models"]], "list_models_params() (mortalitypredictiontask method)": [[182, "cyclops.tasks.mortality_prediction.MortalityPredictionTask.list_models_params"]], "load_model() (mortalitypredictiontask method)": [[182, "cyclops.tasks.mortality_prediction.MortalityPredictionTask.load_model"]], "models_count (mortalitypredictiontask property)": [[182, "cyclops.tasks.mortality_prediction.MortalityPredictionTask.models_count"]], "predict() (mortalitypredictiontask method)": [[182, "cyclops.tasks.mortality_prediction.MortalityPredictionTask.predict"]], "save_model() (mortalitypredictiontask method)": [[182, "cyclops.tasks.mortality_prediction.MortalityPredictionTask.save_model"]], "task_type (mortalitypredictiontask property)": [[182, "cyclops.tasks.mortality_prediction.MortalityPredictionTask.task_type"]], "train() (mortalitypredictiontask method)": [[182, "cyclops.tasks.mortality_prediction.MortalityPredictionTask.train"]], "cyclops.data": [[183, "module-cyclops.data"]], "cyclops.data.features": [[183, "module-cyclops.data.features"]], "cyclops.evaluate": [[184, "module-cyclops.evaluate"]], "cyclops.evaluate.fairness": [[184, "module-cyclops.evaluate.fairness"]], "cyclops.evaluate.metrics": [[184, "module-cyclops.evaluate.metrics"]], "cyclops.evaluate.metrics.functional": [[184, "module-cyclops.evaluate.metrics.functional"]], "cyclops.monitor": [[185, "module-cyclops.monitor"]], "cyclops.query": [[186, "module-cyclops.query"]], "cyclops.report": [[187, "module-cyclops.report"]], "cyclops.tasks": [[188, "module-cyclops.tasks"]]}}) \ No newline at end of file +Search.setIndex({"docnames": ["api", "contributing", "index", "intro", "reference/api/_autosummary/cyclops.data.features.medical_image", "reference/api/_autosummary/cyclops.data.features.medical_image.MedicalImage", "reference/api/_autosummary/cyclops.data.slicer", "reference/api/_autosummary/cyclops.data.slicer.SliceSpec", "reference/api/_autosummary/cyclops.data.slicer.compound_filter", "reference/api/_autosummary/cyclops.data.slicer.filter_datetime", "reference/api/_autosummary/cyclops.data.slicer.filter_non_null", "reference/api/_autosummary/cyclops.data.slicer.filter_range", "reference/api/_autosummary/cyclops.data.slicer.filter_string_contains", "reference/api/_autosummary/cyclops.data.slicer.filter_value", "reference/api/_autosummary/cyclops.data.slicer.is_datetime", "reference/api/_autosummary/cyclops.data.slicer.overall", "reference/api/_autosummary/cyclops.evaluate.evaluator", "reference/api/_autosummary/cyclops.evaluate.evaluator.evaluate", "reference/api/_autosummary/cyclops.evaluate.fairness.config", "reference/api/_autosummary/cyclops.evaluate.fairness.config.FairnessConfig", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator.evaluate_fairness", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator.warn_too_many_unique_values", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.Accuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.BinaryAccuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.MulticlassAccuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.MultilabelAccuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.AUROC", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.BinaryAUROC", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.MulticlassAUROC", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.MultilabelAUROC", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.BinaryF1Score", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.BinaryFbetaScore", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.F1Score", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.FbetaScore", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MulticlassF1Score", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MultilabelF1Score", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore", "reference/api/_autosummary/cyclops.evaluate.metrics.factory", "reference/api/_autosummary/cyclops.evaluate.metrics.factory.create_metric", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.accuracy", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.auroc", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.binary_f1_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.binary_fbeta_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.f1_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.fbeta_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multiclass_f1_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multiclass_fbeta_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multilabel_f1_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multilabel_fbeta_score", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.binary_precision", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.binary_recall", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multiclass_precision", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multiclass_recall", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multilabel_precision", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multilabel_recall", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.precision", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.recall", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.binary_roc_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.multiclass_roc_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.multilabel_roc_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.roc_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.sensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.specificity", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.stat_scores", "reference/api/_autosummary/cyclops.evaluate.metrics.metric", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.Metric", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.MetricCollection", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.OperatorMetric", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.BinaryPrecision", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.BinaryRecall", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MulticlassPrecision", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MulticlassRecall", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MultilabelPrecision", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MultilabelRecall", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.Precision", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.Recall", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.roc", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.BinaryROCCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.MulticlassROCCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.MultilabelROCCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.ROCCurve", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.BinarySensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.Sensitivity", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.BinarySpecificity", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.MulticlassSpecificity", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.MultilabelSpecificity", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.Specificity", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.BinaryStatScores", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.MulticlassStatScores", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.MultilabelStatScores", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.StatScores", "reference/api/_autosummary/cyclops.monitor.clinical_applicator", "reference/api/_autosummary/cyclops.monitor.clinical_applicator.ClinicalShiftApplicator", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.binary_noise_shift", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.feature_association_shift", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.feature_swap_shift", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.gaussian_noise_shift", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.knockout_shift", "reference/api/_autosummary/cyclops.query.base", "reference/api/_autosummary/cyclops.query.base.DatasetQuerier", "reference/api/_autosummary/cyclops.query.eicu", "reference/api/_autosummary/cyclops.query.eicu.EICUQuerier", "reference/api/_autosummary/cyclops.query.gemini", "reference/api/_autosummary/cyclops.query.gemini.GEMINIQuerier", "reference/api/_autosummary/cyclops.query.interface", "reference/api/_autosummary/cyclops.query.interface.QueryInterface", "reference/api/_autosummary/cyclops.query.mimiciii", "reference/api/_autosummary/cyclops.query.mimiciii.MIMICIIIQuerier", "reference/api/_autosummary/cyclops.query.mimiciv", "reference/api/_autosummary/cyclops.query.mimiciv.MIMICIVQuerier", "reference/api/_autosummary/cyclops.query.omop", "reference/api/_autosummary/cyclops.query.omop.OMOPQuerier", "reference/api/_autosummary/cyclops.query.ops", "reference/api/_autosummary/cyclops.query.ops.AddColumn", "reference/api/_autosummary/cyclops.query.ops.AddDeltaColumn", "reference/api/_autosummary/cyclops.query.ops.AddDeltaConstant", "reference/api/_autosummary/cyclops.query.ops.AddNumeric", "reference/api/_autosummary/cyclops.query.ops.And", "reference/api/_autosummary/cyclops.query.ops.Apply", "reference/api/_autosummary/cyclops.query.ops.Cast", "reference/api/_autosummary/cyclops.query.ops.ConditionAfterDate", "reference/api/_autosummary/cyclops.query.ops.ConditionBeforeDate", "reference/api/_autosummary/cyclops.query.ops.ConditionEndsWith", "reference/api/_autosummary/cyclops.query.ops.ConditionEquals", "reference/api/_autosummary/cyclops.query.ops.ConditionGreaterThan", "reference/api/_autosummary/cyclops.query.ops.ConditionIn", "reference/api/_autosummary/cyclops.query.ops.ConditionInMonths", "reference/api/_autosummary/cyclops.query.ops.ConditionInYears", "reference/api/_autosummary/cyclops.query.ops.ConditionLessThan", "reference/api/_autosummary/cyclops.query.ops.ConditionLike", "reference/api/_autosummary/cyclops.query.ops.ConditionRegexMatch", "reference/api/_autosummary/cyclops.query.ops.ConditionStartsWith", "reference/api/_autosummary/cyclops.query.ops.ConditionSubstring", "reference/api/_autosummary/cyclops.query.ops.Distinct", "reference/api/_autosummary/cyclops.query.ops.Drop", "reference/api/_autosummary/cyclops.query.ops.DropEmpty", "reference/api/_autosummary/cyclops.query.ops.DropNulls", "reference/api/_autosummary/cyclops.query.ops.ExtractTimestampComponent", "reference/api/_autosummary/cyclops.query.ops.FillNull", "reference/api/_autosummary/cyclops.query.ops.GroupByAggregate", "reference/api/_autosummary/cyclops.query.ops.Join", "reference/api/_autosummary/cyclops.query.ops.Keep", "reference/api/_autosummary/cyclops.query.ops.Limit", "reference/api/_autosummary/cyclops.query.ops.Literal", "reference/api/_autosummary/cyclops.query.ops.Or", "reference/api/_autosummary/cyclops.query.ops.OrderBy", "reference/api/_autosummary/cyclops.query.ops.QueryOp", "reference/api/_autosummary/cyclops.query.ops.RandomizeOrder", "reference/api/_autosummary/cyclops.query.ops.Rename", "reference/api/_autosummary/cyclops.query.ops.Reorder", "reference/api/_autosummary/cyclops.query.ops.ReorderAfter", "reference/api/_autosummary/cyclops.query.ops.Sequential", "reference/api/_autosummary/cyclops.query.ops.Substring", "reference/api/_autosummary/cyclops.query.ops.Trim", "reference/api/_autosummary/cyclops.query.ops.Union", "reference/api/_autosummary/cyclops.report.report", "reference/api/_autosummary/cyclops.report.report.ModelCardReport", "reference/api/_autosummary/cyclops.tasks.cxr_classification", "reference/api/_autosummary/cyclops.tasks.cxr_classification.CXRClassificationTask", "reference/api/_autosummary/cyclops.tasks.mortality_prediction", "reference/api/_autosummary/cyclops.tasks.mortality_prediction.MortalityPredictionTask", "reference/api/cyclops.data", "reference/api/cyclops.evaluate", "reference/api/cyclops.monitor", "reference/api/cyclops.query", "reference/api/cyclops.report", "reference/api/cyclops.tasks", "tutorials", "tutorials/eicu/query_api", "tutorials/gemini/query_api", "tutorials/kaggle/heart_failure_prediction", "tutorials/mimiciii/query_api", "tutorials/mimiciv/query_api", "tutorials/nihcxr/cxr_classification", "tutorials/nihcxr/monitor_api", "tutorials/omop/query_api", "tutorials/synthea/los_prediction", "tutorials_monitor", "tutorials_query", "tutorials_use_cases"], "filenames": ["api.rst", "contributing.rst", "index.rst", "intro.rst", "reference/api/_autosummary/cyclops.data.features.medical_image.rst", "reference/api/_autosummary/cyclops.data.features.medical_image.MedicalImage.rst", "reference/api/_autosummary/cyclops.data.slicer.rst", "reference/api/_autosummary/cyclops.data.slicer.SliceSpec.rst", "reference/api/_autosummary/cyclops.data.slicer.compound_filter.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_datetime.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_non_null.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_range.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_string_contains.rst", "reference/api/_autosummary/cyclops.data.slicer.filter_value.rst", "reference/api/_autosummary/cyclops.data.slicer.is_datetime.rst", "reference/api/_autosummary/cyclops.data.slicer.overall.rst", "reference/api/_autosummary/cyclops.evaluate.evaluator.rst", "reference/api/_autosummary/cyclops.evaluate.evaluator.evaluate.rst", "reference/api/_autosummary/cyclops.evaluate.fairness.config.rst", "reference/api/_autosummary/cyclops.evaluate.fairness.config.FairnessConfig.rst", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator.rst", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator.evaluate_fairness.rst", "reference/api/_autosummary/cyclops.evaluate.fairness.evaluator.warn_too_many_unique_values.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.Accuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.BinaryAccuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.AUROC.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.BinaryAUROC.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.MulticlassAUROC.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.auroc.MultilabelAUROC.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.BinaryF1Score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.F1Score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.FbetaScore.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MulticlassF1Score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MultilabelF1Score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.factory.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.factory.create_metric.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.accuracy.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.auroc.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.binary_f1_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.binary_fbeta_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.f1_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.fbeta_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multiclass_f1_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multiclass_fbeta_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multilabel_f1_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.f_beta.multilabel_fbeta_score.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.binary_precision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.binary_recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multiclass_precision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multiclass_recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multilabel_precision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.multilabel_recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.precision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall.recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.precision_recall_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.binary_roc_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.multiclass_roc_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.multilabel_roc_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.roc.roc_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.sensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.specificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.functional.stat_scores.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.Metric.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.MetricCollection.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.metric.OperatorMetric.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.BinaryPrecision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.BinaryRecall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MulticlassRecall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.MultilabelRecall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.Precision.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall.Recall.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.BinaryROCCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.MulticlassROCCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.MultilabelROCCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.roc.ROCCurve.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.BinarySensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.sensitivity.Sensitivity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.BinarySpecificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.MulticlassSpecificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.MultilabelSpecificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.specificity.Specificity.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.BinaryStatScores.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.rst", "reference/api/_autosummary/cyclops.evaluate.metrics.stat_scores.StatScores.rst", "reference/api/_autosummary/cyclops.monitor.clinical_applicator.rst", "reference/api/_autosummary/cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.binary_noise_shift.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.feature_association_shift.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.feature_swap_shift.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.gaussian_noise_shift.rst", "reference/api/_autosummary/cyclops.monitor.synthetic_applicator.knockout_shift.rst", "reference/api/_autosummary/cyclops.query.base.rst", "reference/api/_autosummary/cyclops.query.base.DatasetQuerier.rst", "reference/api/_autosummary/cyclops.query.eicu.rst", "reference/api/_autosummary/cyclops.query.eicu.EICUQuerier.rst", "reference/api/_autosummary/cyclops.query.gemini.rst", "reference/api/_autosummary/cyclops.query.gemini.GEMINIQuerier.rst", "reference/api/_autosummary/cyclops.query.interface.rst", "reference/api/_autosummary/cyclops.query.interface.QueryInterface.rst", "reference/api/_autosummary/cyclops.query.mimiciii.rst", "reference/api/_autosummary/cyclops.query.mimiciii.MIMICIIIQuerier.rst", "reference/api/_autosummary/cyclops.query.mimiciv.rst", "reference/api/_autosummary/cyclops.query.mimiciv.MIMICIVQuerier.rst", "reference/api/_autosummary/cyclops.query.omop.rst", "reference/api/_autosummary/cyclops.query.omop.OMOPQuerier.rst", "reference/api/_autosummary/cyclops.query.ops.rst", "reference/api/_autosummary/cyclops.query.ops.AddColumn.rst", "reference/api/_autosummary/cyclops.query.ops.AddDeltaColumn.rst", "reference/api/_autosummary/cyclops.query.ops.AddDeltaConstant.rst", "reference/api/_autosummary/cyclops.query.ops.AddNumeric.rst", "reference/api/_autosummary/cyclops.query.ops.And.rst", "reference/api/_autosummary/cyclops.query.ops.Apply.rst", "reference/api/_autosummary/cyclops.query.ops.Cast.rst", "reference/api/_autosummary/cyclops.query.ops.ConditionAfterDate.rst", "reference/api/_autosummary/cyclops.query.ops.ConditionBeforeDate.rst", "reference/api/_autosummary/cyclops.query.ops.ConditionEndsWith.rst", "reference/api/_autosummary/cyclops.query.ops.ConditionEquals.rst", "reference/api/_autosummary/cyclops.query.ops.ConditionGreaterThan.rst", "reference/api/_autosummary/cyclops.query.ops.ConditionIn.rst", "reference/api/_autosummary/cyclops.query.ops.ConditionInMonths.rst", "reference/api/_autosummary/cyclops.query.ops.ConditionInYears.rst", "reference/api/_autosummary/cyclops.query.ops.ConditionLessThan.rst", "reference/api/_autosummary/cyclops.query.ops.ConditionLike.rst", "reference/api/_autosummary/cyclops.query.ops.ConditionRegexMatch.rst", "reference/api/_autosummary/cyclops.query.ops.ConditionStartsWith.rst", "reference/api/_autosummary/cyclops.query.ops.ConditionSubstring.rst", "reference/api/_autosummary/cyclops.query.ops.Distinct.rst", "reference/api/_autosummary/cyclops.query.ops.Drop.rst", "reference/api/_autosummary/cyclops.query.ops.DropEmpty.rst", "reference/api/_autosummary/cyclops.query.ops.DropNulls.rst", "reference/api/_autosummary/cyclops.query.ops.ExtractTimestampComponent.rst", "reference/api/_autosummary/cyclops.query.ops.FillNull.rst", "reference/api/_autosummary/cyclops.query.ops.GroupByAggregate.rst", "reference/api/_autosummary/cyclops.query.ops.Join.rst", "reference/api/_autosummary/cyclops.query.ops.Keep.rst", "reference/api/_autosummary/cyclops.query.ops.Limit.rst", "reference/api/_autosummary/cyclops.query.ops.Literal.rst", "reference/api/_autosummary/cyclops.query.ops.Or.rst", "reference/api/_autosummary/cyclops.query.ops.OrderBy.rst", "reference/api/_autosummary/cyclops.query.ops.QueryOp.rst", "reference/api/_autosummary/cyclops.query.ops.RandomizeOrder.rst", "reference/api/_autosummary/cyclops.query.ops.Rename.rst", "reference/api/_autosummary/cyclops.query.ops.Reorder.rst", "reference/api/_autosummary/cyclops.query.ops.ReorderAfter.rst", "reference/api/_autosummary/cyclops.query.ops.Sequential.rst", "reference/api/_autosummary/cyclops.query.ops.Substring.rst", "reference/api/_autosummary/cyclops.query.ops.Trim.rst", "reference/api/_autosummary/cyclops.query.ops.Union.rst", "reference/api/_autosummary/cyclops.report.report.rst", "reference/api/_autosummary/cyclops.report.report.ModelCardReport.rst", "reference/api/_autosummary/cyclops.tasks.cxr_classification.rst", "reference/api/_autosummary/cyclops.tasks.cxr_classification.CXRClassificationTask.rst", "reference/api/_autosummary/cyclops.tasks.mortality_prediction.rst", "reference/api/_autosummary/cyclops.tasks.mortality_prediction.MortalityPredictionTask.rst", "reference/api/cyclops.data.rst", "reference/api/cyclops.evaluate.rst", "reference/api/cyclops.monitor.rst", "reference/api/cyclops.query.rst", "reference/api/cyclops.report.rst", "reference/api/cyclops.tasks.rst", "tutorials.rst", "tutorials/eicu/query_api.ipynb", "tutorials/gemini/query_api.ipynb", "tutorials/kaggle/heart_failure_prediction.ipynb", "tutorials/mimiciii/query_api.ipynb", "tutorials/mimiciv/query_api.ipynb", "tutorials/nihcxr/cxr_classification.ipynb", "tutorials/nihcxr/monitor_api.ipynb", "tutorials/omop/query_api.ipynb", "tutorials/synthea/los_prediction.ipynb", "tutorials_monitor.rst", "tutorials_query.rst", "tutorials_use_cases.rst"], "titles": ["API Reference", "Contributing to cyclops", "Welcome to cyclops\u2019s documentation!", "\ud83d\udc23 Getting Started", "cyclops.data.features.medical_image", "cyclops.data.features.medical_image.MedicalImage", "cyclops.data.slicer", "cyclops.data.slicer.SliceSpec", "cyclops.data.slicer.compound_filter", "cyclops.data.slicer.filter_datetime", "cyclops.data.slicer.filter_non_null", "cyclops.data.slicer.filter_range", "cyclops.data.slicer.filter_string_contains", "cyclops.data.slicer.filter_value", "cyclops.data.slicer.is_datetime", "cyclops.data.slicer.overall", "cyclops.evaluate.evaluator", "cyclops.evaluate.evaluator.evaluate", "cyclops.evaluate.fairness.config", "cyclops.evaluate.fairness.config.FairnessConfig", "cyclops.evaluate.fairness.evaluator", "cyclops.evaluate.fairness.evaluator.evaluate_fairness", "cyclops.evaluate.fairness.evaluator.warn_too_many_unique_values", "cyclops.evaluate.metrics.accuracy", "cyclops.evaluate.metrics.accuracy.Accuracy", "cyclops.evaluate.metrics.accuracy.BinaryAccuracy", "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy", "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy", "cyclops.evaluate.metrics.auroc", "cyclops.evaluate.metrics.auroc.AUROC", "cyclops.evaluate.metrics.auroc.BinaryAUROC", "cyclops.evaluate.metrics.auroc.MulticlassAUROC", "cyclops.evaluate.metrics.auroc.MultilabelAUROC", "cyclops.evaluate.metrics.f_beta", "cyclops.evaluate.metrics.f_beta.BinaryF1Score", "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore", "cyclops.evaluate.metrics.f_beta.F1Score", "cyclops.evaluate.metrics.f_beta.FbetaScore", "cyclops.evaluate.metrics.f_beta.MulticlassF1Score", "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore", "cyclops.evaluate.metrics.f_beta.MultilabelF1Score", "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore", "cyclops.evaluate.metrics.factory", "cyclops.evaluate.metrics.factory.create_metric", "cyclops.evaluate.metrics.functional.accuracy", "cyclops.evaluate.metrics.functional.auroc", "cyclops.evaluate.metrics.functional.f_beta", "cyclops.evaluate.metrics.functional.f_beta.binary_f1_score", "cyclops.evaluate.metrics.functional.f_beta.binary_fbeta_score", "cyclops.evaluate.metrics.functional.f_beta.f1_score", "cyclops.evaluate.metrics.functional.f_beta.fbeta_score", "cyclops.evaluate.metrics.functional.f_beta.multiclass_f1_score", "cyclops.evaluate.metrics.functional.f_beta.multiclass_fbeta_score", "cyclops.evaluate.metrics.functional.f_beta.multilabel_f1_score", "cyclops.evaluate.metrics.functional.f_beta.multilabel_fbeta_score", "cyclops.evaluate.metrics.functional.precision_recall", "cyclops.evaluate.metrics.functional.precision_recall.binary_precision", "cyclops.evaluate.metrics.functional.precision_recall.binary_recall", "cyclops.evaluate.metrics.functional.precision_recall.multiclass_precision", "cyclops.evaluate.metrics.functional.precision_recall.multiclass_recall", "cyclops.evaluate.metrics.functional.precision_recall.multilabel_precision", "cyclops.evaluate.metrics.functional.precision_recall.multilabel_recall", "cyclops.evaluate.metrics.functional.precision_recall.precision", "cyclops.evaluate.metrics.functional.precision_recall.recall", "cyclops.evaluate.metrics.functional.precision_recall_curve", "cyclops.evaluate.metrics.functional.roc", "cyclops.evaluate.metrics.functional.roc.binary_roc_curve", "cyclops.evaluate.metrics.functional.roc.multiclass_roc_curve", "cyclops.evaluate.metrics.functional.roc.multilabel_roc_curve", "cyclops.evaluate.metrics.functional.roc.roc_curve", "cyclops.evaluate.metrics.functional.sensitivity", "cyclops.evaluate.metrics.functional.specificity", "cyclops.evaluate.metrics.functional.stat_scores", "cyclops.evaluate.metrics.metric", "cyclops.evaluate.metrics.metric.Metric", "cyclops.evaluate.metrics.metric.MetricCollection", "cyclops.evaluate.metrics.metric.OperatorMetric", "cyclops.evaluate.metrics.precision_recall", "cyclops.evaluate.metrics.precision_recall.BinaryPrecision", "cyclops.evaluate.metrics.precision_recall.BinaryRecall", "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision", "cyclops.evaluate.metrics.precision_recall.MulticlassRecall", "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision", "cyclops.evaluate.metrics.precision_recall.MultilabelRecall", "cyclops.evaluate.metrics.precision_recall.Precision", "cyclops.evaluate.metrics.precision_recall.Recall", "cyclops.evaluate.metrics.precision_recall_curve", "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve", "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve", "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve", "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve", "cyclops.evaluate.metrics.roc", "cyclops.evaluate.metrics.roc.BinaryROCCurve", "cyclops.evaluate.metrics.roc.MulticlassROCCurve", "cyclops.evaluate.metrics.roc.MultilabelROCCurve", "cyclops.evaluate.metrics.roc.ROCCurve", "cyclops.evaluate.metrics.sensitivity", "cyclops.evaluate.metrics.sensitivity.BinarySensitivity", "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity", "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity", "cyclops.evaluate.metrics.sensitivity.Sensitivity", "cyclops.evaluate.metrics.specificity", "cyclops.evaluate.metrics.specificity.BinarySpecificity", "cyclops.evaluate.metrics.specificity.MulticlassSpecificity", "cyclops.evaluate.metrics.specificity.MultilabelSpecificity", "cyclops.evaluate.metrics.specificity.Specificity", "cyclops.evaluate.metrics.stat_scores", "cyclops.evaluate.metrics.stat_scores.BinaryStatScores", "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores", "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores", "cyclops.evaluate.metrics.stat_scores.StatScores", "cyclops.monitor.clinical_applicator", "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator", "cyclops.monitor.synthetic_applicator", "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator", "cyclops.monitor.synthetic_applicator.binary_noise_shift", "cyclops.monitor.synthetic_applicator.feature_association_shift", "cyclops.monitor.synthetic_applicator.feature_swap_shift", "cyclops.monitor.synthetic_applicator.gaussian_noise_shift", "cyclops.monitor.synthetic_applicator.knockout_shift", "cyclops.query.base", "cyclops.query.base.DatasetQuerier", "cyclops.query.eicu", "cyclops.query.eicu.EICUQuerier", "cyclops.query.gemini", "cyclops.query.gemini.GEMINIQuerier", "cyclops.query.interface", "cyclops.query.interface.QueryInterface", "cyclops.query.mimiciii", "cyclops.query.mimiciii.MIMICIIIQuerier", "cyclops.query.mimiciv", "cyclops.query.mimiciv.MIMICIVQuerier", "cyclops.query.omop", "cyclops.query.omop.OMOPQuerier", "cyclops.query.ops", "cyclops.query.ops.AddColumn", "cyclops.query.ops.AddDeltaColumn", "cyclops.query.ops.AddDeltaConstant", "cyclops.query.ops.AddNumeric", "cyclops.query.ops.And", "cyclops.query.ops.Apply", "cyclops.query.ops.Cast", "cyclops.query.ops.ConditionAfterDate", "cyclops.query.ops.ConditionBeforeDate", "cyclops.query.ops.ConditionEndsWith", "cyclops.query.ops.ConditionEquals", "cyclops.query.ops.ConditionGreaterThan", "cyclops.query.ops.ConditionIn", "cyclops.query.ops.ConditionInMonths", "cyclops.query.ops.ConditionInYears", "cyclops.query.ops.ConditionLessThan", "cyclops.query.ops.ConditionLike", "cyclops.query.ops.ConditionRegexMatch", "cyclops.query.ops.ConditionStartsWith", "cyclops.query.ops.ConditionSubstring", "cyclops.query.ops.Distinct", "cyclops.query.ops.Drop", "cyclops.query.ops.DropEmpty", "cyclops.query.ops.DropNulls", "cyclops.query.ops.ExtractTimestampComponent", "cyclops.query.ops.FillNull", "cyclops.query.ops.GroupByAggregate", "cyclops.query.ops.Join", "cyclops.query.ops.Keep", "cyclops.query.ops.Limit", "cyclops.query.ops.Literal", "cyclops.query.ops.Or", "cyclops.query.ops.OrderBy", "cyclops.query.ops.QueryOp", "cyclops.query.ops.RandomizeOrder", "cyclops.query.ops.Rename", "cyclops.query.ops.Reorder", "cyclops.query.ops.ReorderAfter", "cyclops.query.ops.Sequential", "cyclops.query.ops.Substring", "cyclops.query.ops.Trim", "cyclops.query.ops.Union", "cyclops.report.report", "cyclops.report.report.ModelCardReport", "cyclops.tasks.cxr_classification", "cyclops.tasks.cxr_classification.CXRClassificationTask", "cyclops.tasks.mortality_prediction", "cyclops.tasks.mortality_prediction.MortalityPredictionTask", "cyclops.data", "cyclops.evaluate", "cyclops.monitor", "cyclops.query", "cyclops.report", "cyclops.tasks", "Tutorials", "eICU-CRD query API tutorial", "GEMINI query API tutorial", "Heart Failure Prediction", "MIMIC-III query API tutorial", "MIMIC-IV query API tutorial", "Chest X-Ray Disease Classification", "NIHCXR Clinical Drift Experiments Tutorial", "OMOP query API tutorial", "Prolonged Length of Stay Prediction", "monitor API", "query API", "Example use cases"], "terms": {"cyclop": [0, 189, 190, 191, 192, 193, 195, 196, 197, 198, 200], "queri": [0, 2, 3, 189, 201], "interfac": [0, 125, 129, 131, 133, 178], "queryinterfac": [0, 125, 129, 131, 133], "__init__": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 123, 125, 127, 129, 131, 133, 173, 180, 182], "clear_data": [0, 127], "data": [0, 2, 3, 24, 26, 27, 49, 50, 52, 54, 69, 72, 89, 95, 112, 114, 115, 116, 117, 118, 119, 125, 127, 129, 131, 169, 178, 180, 182, 189, 194, 195, 196, 197, 199], "join": [0, 127, 131, 190, 191, 192, 193, 194, 195, 197, 198], "op": [0, 127, 131, 189, 190, 191, 193, 197, 198, 200], "run": [0, 1, 3, 121, 127, 189, 190, 191, 192, 193, 197, 198, 200], "save": [0, 127, 178, 182, 192, 198], "union": [0, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 127, 133, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 169, 170, 171, 172, 173, 174, 175, 178, 180, 182], "union_al": [0, 127, 176], "addcolumn": [0, 198], "__call__": [0, 5, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176], "adddeltacolumn": [0, 194], "adddeltaconst": 0, "addnumer": 0, "And": [0, 194], "appli": [0, 1, 8, 25, 29, 59, 62, 63, 66, 67, 68, 75, 76, 93, 104, 109, 110, 112, 131, 135, 136, 137, 138, 175, 180, 182, 192, 198], "cast": [0, 5, 121, 123, 125, 127, 129, 131, 133, 191, 192, 194, 198], "conditionafterd": [0, 191, 194, 197], "conditionbefored": [0, 191], "conditionendswith": 0, "conditionequ": [0, 190, 191, 193, 194, 198], "conditiongreaterthan": [0, 198], "conditionin": [0, 139, 166, 198], "conditioninmonth": 0, "conditioninyear": [0, 194], "conditionlessthan": [0, 193, 198], "conditionlik": [0, 139, 166, 194], "conditionregexmatch": [0, 189, 200], "conditionstartswith": 0, "conditionsubstr": [0, 190, 191, 193, 194, 197], "distinct": [0, 191], "drop": [0, 173, 189, 192, 201], "dropempti": [0, 191], "dropnul": 0, "extracttimestampcompon": [0, 198], "fillnul": 0, "groupbyaggreg": [0, 191, 198], "keep": [0, 7, 17, 21, 162, 189, 198, 200], "limit": [0, 21, 127, 169, 189, 192, 193, 194, 195, 197, 198, 200], "liter": [0, 24, 25, 26, 27, 29, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 69, 78, 79, 80, 81, 82, 83, 84, 85, 90, 95, 97, 98, 99, 100, 103, 104, 105, 110, 127, 178], "Or": 0, "orderbi": [0, 191], "queryop": [0, 127, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 169, 170, 171, 172, 173, 174, 175, 176], "randomizeord": 0, "renam": [0, 192, 195, 198], "reorder": [0, 172], "reorderaft": 0, "sequenti": [0, 127, 190, 191, 193, 194, 197, 198], "__add__": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 173], "append": [0, 173, 195, 198], "extend": [0, 173, 198], "insert": [0, 173], "pop": [0, 75, 173, 192, 198], "substr": [0, 12, 154, 189, 200], "trim": 0, "base": [0, 3, 5, 7, 17, 19, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 123, 125, 127, 129, 131, 133, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 180, 182, 189, 192, 200, 201], "datasetqueri": [0, 123, 125, 129, 131, 133, 198], "db": [0, 121, 191, 194], "get_tabl": [0, 121, 123, 125, 129, 131, 133], "list_column": [0, 121, 123, 125, 129, 131, 133, 198], "list_custom_t": [0, 121, 123, 125, 129, 131, 133, 193], "list_schema": [0, 121, 123, 125, 129, 131, 133, 194, 197], "list_tabl": [0, 121, 123, 125, 129, 131, 133, 190, 191, 197], "dataset": [0, 3, 6, 7, 16, 17, 19, 21, 26, 38, 39, 51, 52, 58, 61, 68, 69, 80, 81, 83, 88, 89, 90, 94, 95, 98, 99, 103, 104, 112, 114, 121, 123, 125, 127, 129, 131, 133, 178, 180, 182, 183, 189, 199, 200, 201], "mimiciii": [0, 193, 197], "mimiciiiqueri": [0, 189, 197, 200], "chartev": [0, 129, 131, 193, 194], "diagnos": [0, 125, 129, 131, 189, 200], "labev": [0, 129, 131, 193], "mimiciv": [0, 194], "mimicivqueri": [0, 189, 200], "patient": [0, 125, 131, 189, 192, 195, 196, 198, 200, 201], "eicu": [0, 3, 189, 200], "eicuqueri": [0, 189, 200], "omop": [0, 189, 200], "omopqueri": [0, 189, 200], "map_concept_ids_to_nam": [0, 133, 197], "measur": [0, 133, 189, 200], "observ": [0, 62, 133, 192, 195, 197, 198, 201], "person": [0, 133, 197], "visit_detail": [0, 133, 197], "visit_occurr": [0, 133, 197], "gemini": [0, 121, 123, 129, 131, 133, 189, 200], "geminiqueri": [0, 189, 200], "care_unit": [0, 125], "imag": [0, 4, 5, 17, 21, 118, 125, 178, 180, 183, 189, 195, 196], "ip_admin": [0, 125], "room_transf": [0, 125], "slicer": [0, 192, 195, 196, 198], "compound_filt": 0, "filter_datetim": 0, "filter_non_nul": 0, "filter_rang": 0, "filter_string_contain": 0, "filter_valu": [0, 195], "is_datetim": 0, "overal": [0, 7, 21, 178, 192, 195, 198], "slicespec": [0, 17, 112, 180, 192, 195, 196, 198], "spec_list": [0, 7, 192, 195, 196, 198], "include_overal": [0, 7], "valid": [0, 7, 9, 17, 178, 180, 182, 192], "column_nam": [0, 7, 9, 10, 11, 12, 13, 195], "_registri": [0, 7], "add_slice_spec": [0, 7], "get_slic": [0, 7], "slice": [0, 3, 7, 8, 17, 21, 173, 178, 180, 182, 192, 195, 198], "featur": [0, 7, 9, 10, 11, 12, 13, 15, 17, 112, 116, 117, 178, 180, 182, 189, 195, 201], "medical_imag": 0, "medicalimag": 0, "cast_storag": [0, 5], "decode_exampl": [0, 5], "embed_storag": [0, 5], "encode_exampl": [0, 5], "flatten": [0, 5, 192, 198], "task": [0, 2, 3, 24, 25, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 44, 47, 48, 49, 50, 51, 53, 54, 58, 60, 61, 62, 63, 66, 67, 68, 69, 78, 80, 81, 82, 83, 84, 85, 90, 92, 93, 94, 95, 98, 99, 100, 102, 103, 104, 105, 110, 189, 195, 201], "cxr_classif": 0, "cxrclassificationtask": 0, "add_model": [0, 180, 182], "data_typ": [0, 180, 182], "evalu": [0, 2, 3, 178, 180, 182, 189, 195, 200, 201], "get_model": [0, 180, 182], "list_model": [0, 180, 182, 192, 198], "models_count": [0, 180, 182], "predict": [0, 3, 17, 19, 21, 24, 26, 27, 30, 31, 32, 34, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 67, 80, 81, 82, 84, 85, 87, 88, 89, 92, 93, 94, 98, 100, 102, 103, 104, 105, 107, 108, 109, 110, 180, 181, 182, 189], "task_typ": [0, 180, 182, 192, 195, 198], "mortality_predict": [0, 192, 198], "mortalitypredictiontask": [0, 192, 198], "list_models_param": [0, 182, 192, 198], "load_model": [0, 182], "save_model": [0, 182], "train": [0, 3, 17, 178, 180, 182, 189, 195, 199, 201], "metric": [0, 17, 19, 21, 178, 180, 182, 189, 192, 198, 201], "__mul__": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "add_stat": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "clone": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "comput": [0, 17, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 127, 180, 182, 189, 201], "reset_st": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "update_st": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "metriccollect": [0, 17, 21, 180, 182, 192, 198], "add_metr": [0, 75], "clear": [0, 75, 127], "get": [0, 2, 75, 121, 123, 125, 127, 129, 131, 133, 155, 174, 180, 182, 189, 192, 198, 200, 201], "item": [0, 75, 192, 195, 196, 198], "kei": [0, 7, 17, 21, 75, 161, 170, 173, 178, 192, 195, 196, 198], "popitem": [0, 75], "setdefault": [0, 75], "updat": [0, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 190, 192, 193, 194, 195, 196, 197, 198], "valu": [0, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 138, 145, 146, 147, 150, 157, 158, 160, 161, 162, 165, 178, 189, 195, 196, 198, 201], "operatormetr": 0, "factori": [0, 7, 195], "create_metr": [0, 192, 195, 198], "accuraci": [0, 192, 198], "binaryaccuraci": [0, 192, 198], "multiclassaccuraci": 0, "multilabelaccuraci": 0, "auroc": [0, 189, 192, 198, 201], "binaryauroc": [0, 29, 192, 198], "multiclassauroc": [0, 29], "multilabelauroc": [0, 29, 195], "precision_recal": 0, "binaryprecis": [0, 192, 198], "binaryrecal": [0, 97, 192, 198], "multiclassprecis": 0, "multiclassrecal": [0, 98], "multilabelprecis": 0, "multilabelrecal": [0, 99], "precis": [0, 24, 35, 36, 37, 38, 39, 40, 41, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 60, 64, 66, 77, 78, 80, 82, 85, 86, 87, 88, 89, 90, 92, 100, 105, 192, 198], "recal": [0, 24, 38, 51, 55, 57, 59, 61, 64, 66, 77, 79, 81, 83, 86, 87, 88, 89, 90, 92, 97, 98, 99, 105, 192, 198], "precision_recall_curv": [0, 192, 198], "binaryprecisionrecallcurv": [0, 30, 92, 192, 198], "multiclassprecisionrecallcurv": [0, 31, 93], "multilabelprecisionrecallcurv": [0, 32, 94], "precisionrecallcurv": 0, "roc": [0, 28, 29, 30, 31, 32, 45, 192, 198], "binaryroccurv": [0, 192, 198], "multiclassroccurv": 0, "multilabelroccurv": 0, "roccurv": 0, "sensit": [0, 178, 189, 192, 195, 198, 199], "binarysensit": 0, "multiclasssensit": 0, "multilabelsensit": 0, "specif": [0, 7, 17, 115, 118, 180, 182, 192, 195, 198], "binaryspecif": 0, "multiclassspecif": 0, "multilabelspecif": 0, "f_beta": 0, "binaryf1scor": [0, 192, 198], "binaryfbetascor": [0, 34], "f1score": 0, "fbetascor": [0, 36], "multiclassf1scor": 0, "multiclassfbetascor": [0, 38], "multilabelf1scor": 0, "multilabelfbetascor": [0, 40], "stat_scor": 0, "binarystatscor": [0, 25, 35, 78, 79, 102], "multiclassstatscor": [0, 26, 39, 80, 81, 103], "multilabelstatscor": [0, 27, 41, 82, 83, 104], "statscor": 0, "function": [0, 3, 5, 6, 7, 8, 16, 17, 20, 21, 25, 35, 41, 42, 76, 93, 102, 104, 107, 109, 110, 113, 131, 135, 136, 137, 138, 140, 161, 168, 175, 178, 190, 191, 192, 193, 194, 195, 197, 198, 200], "binary_precis": 0, "binary_recal": 0, "multiclass_precis": 0, "multiclass_recal": 0, "multilabel_precis": 0, "multilabel_recal": 0, "binary_roc_curv": 0, "multiclass_roc_curv": 0, "multilabel_roc_curv": 0, "roc_curv": [0, 192, 198], "binary_f1_scor": 0, "binary_fbeta_scor": 0, "f1_score": [0, 192, 198], "fbeta_scor": 0, "multiclass_f1_scor": 0, "multiclass_fbeta_scor": 0, "multilabel_f1_scor": 0, "multilabel_fbeta_scor": 0, "fair": [0, 17, 178, 180, 182, 192, 195, 198], "evaluate_fair": [0, 195], "warn_too_many_unique_valu": 0, "config": [0, 182, 190, 193, 194, 197], "fairnessconfig": [0, 17, 180, 182, 192, 198], "monitor": [0, 2, 3, 189, 192, 195, 196, 198], "clinical_appl": 0, "clinicalshiftappl": [0, 196], "ag": [0, 112, 189, 196, 201], "apply_shift": [0, 112, 114, 196], "custom": [0, 112, 121, 123, 125, 129, 131, 133, 178, 193, 196], "hospital_typ": [0, 112], "month": [0, 7, 9, 112, 148, 159, 192, 195, 198], "sex": [0, 112, 189, 196, 198, 201], "time": [0, 7, 75, 112, 159, 178, 189, 199, 201], "synthetic_appl": 0, "binary_noise_shift": 0, "feature_association_shift": 0, "feature_swap_shift": 0, "gaussian_noise_shift": 0, "knockout_shift": 0, "syntheticshiftappl": [0, 113], "report": [0, 2, 3, 110, 125, 189, 195, 200, 201], "modelcardreport": [0, 192, 195, 198], "export": [0, 178, 192, 195, 198], "from_json_fil": [0, 178], "log_cit": [0, 178, 195], "log_dataset": [0, 178, 192], "log_descriptor": [0, 178, 192, 195, 198], "log_fairness_assess": [0, 178, 192, 195, 198], "log_from_dict": [0, 178, 192, 195, 198], "log_imag": [0, 178], "log_licens": [0, 178, 192, 198], "log_model_paramet": [0, 178, 192, 198], "log_own": [0, 178, 192, 195, 198], "log_performance_metr": [0, 178, 192, 198], "log_plotly_figur": [0, 178, 192, 195, 198], "log_quantitative_analysi": [0, 178, 192, 195, 198], "log_refer": [0, 178, 192, 198], "log_regul": [0, 178], "log_risk": [0, 178, 192, 195, 198], "log_use_cas": [0, 178, 192, 195, 198], "log_us": [0, 178, 192, 195, 198], "log_vers": [0, 178, 192, 198], "thank": 1, "your": [1, 192], "interest": [1, 192, 198], "To": [1, 3, 5, 192, 198], "submit": 1, "pr": 1, "pleas": [1, 190, 192, 193, 194, 195, 196, 197, 198], "fill": [1, 160], "out": [1, 178, 192, 198], "templat": [1, 178], "along": [1, 112, 192, 195, 198], "If": [1, 5, 7, 9, 10, 11, 12, 13, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 133, 135, 136, 137, 138, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 160, 161, 162, 167, 175, 178, 180, 182, 192, 198], "fix": 1, "an": [1, 3, 5, 7, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 51, 60, 61, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 125, 127, 129, 131, 133, 136, 139, 162, 166, 170, 178, 192, 195, 198], "issu": [1, 21], "don": 1, "t": [1, 5, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 178], "forget": 1, "link": [1, 178, 192, 195, 198], "onc": [1, 75, 192, 195, 198], "python": [1, 3, 198, 200], "virtual": [1, 3], "environ": [1, 3, 192, 198], "i": [1, 3, 5, 7, 9, 10, 11, 12, 13, 14, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 131, 133, 135, 136, 137, 138, 140, 154, 157, 158, 162, 169, 178, 180, 182, 190, 192, 193, 194, 195, 197, 198, 200, 201], "setup": [1, 190, 191, 193, 194, 197, 198], "you": [1, 3, 5, 75, 192, 195, 198, 199, 200], "can": [1, 3, 5, 7, 21, 25, 38, 51, 69, 75, 84, 85, 95, 100, 110, 121, 123, 125, 129, 131, 133, 140, 154, 178, 182, 192, 195, 198, 199], "us": [1, 2, 5, 7, 8, 17, 21, 24, 29, 30, 31, 32, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 60, 61, 62, 63, 66, 67, 68, 69, 75, 76, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 98, 99, 100, 102, 105, 107, 110, 112, 114, 121, 123, 125, 127, 129, 131, 133, 136, 139, 155, 161, 162, 166, 169, 176, 178, 180, 182, 189, 190, 192, 193, 195, 197, 198, 199, 200], "all": [1, 7, 8, 9, 10, 11, 12, 13, 15, 63, 73, 75, 108, 109, 110, 127, 154, 167, 170, 176, 182, 189, 191, 192, 196, 198, 200], "file": [1, 5, 127, 178, 192, 195, 198], "For": [1, 21, 76, 133, 178, 192, 198], "style": [1, 162], "we": [1, 3, 178, 192, 195, 197, 198], "recommend": [1, 76], "googl": 1, "guid": 1, "black": 1, "format": [1, 5, 7, 89, 127, 142, 143, 162, 178, 192, 197, 198], "docstr": 1, "numpi": [1, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 115, 116, 117, 118, 119, 180, 192, 195, 196, 198], "also": [1, 3, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 140, 192, 198, 201], "flake8": 1, "pylint": [1, 140], "further": 1, "static": 1, "analysi": [1, 178, 192, 195, 198], "The": [1, 3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 50, 51, 52, 53, 54, 56, 60, 61, 63, 66, 68, 69, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 127, 131, 136, 140, 163, 178, 180, 182, 186, 190, 192, 193, 194, 195, 197, 198, 199, 200, 201], "show": [1, 190, 192, 193, 194, 195, 197, 198], "error": [1, 189, 201], "which": [1, 9, 10, 11, 12, 13, 21, 90, 121, 127, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 169, 170, 171, 172, 174, 175, 176, 178, 192, 195, 197, 198, 201], "need": [1, 17, 21, 174, 192, 198], "befor": [1, 17, 21, 22, 143, 162, 182, 192, 198], "last": 1, "least": 1, "type": [1, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 115, 116, 117, 118, 119, 121, 123, 125, 127, 129, 131, 133, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 180, 182, 189, 194, 201], "hint": 1, "our": [1, 192, 198], "check": [1, 14, 89, 127, 170], "mypi": 1, "current": [1, 141, 178, 192, 195, 198], "ar": [1, 5, 7, 11, 12, 17, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 75, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 97, 98, 99, 100, 103, 104, 105, 108, 109, 110, 112, 116, 121, 131, 140, 162, 178, 192, 195, 198], "strict": 1, "enforc": 1, "more": [1, 7, 16, 17, 180, 182, 192, 201], "api": [1, 2, 3, 121, 122, 123, 124, 125, 128, 129, 130, 131, 132, 133, 189, 192, 201], "becom": [1, 127, 169], "stabl": [1, 190, 192, 193, 194, 195, 196, 197, 198], "start": [2, 17, 153, 174, 192, 198], "instal": [2, 192], "pip": [2, 192], "develop": [2, 192, 195, 198], "poetri": 2, "conda": 2, "contribut": 2, "notebook": [2, 190, 192, 193, 194, 195, 197, 198], "citat": [2, 178, 192, 195, 198], "pre": [2, 192, 198], "commit": 2, "hook": 2, "code": [2, 190, 192, 193, 194, 197, 198], "guidelin": [2, 3], "tutori": [2, 192, 195, 198, 199, 200, 201], "exampl": [2, 3, 5, 7, 8, 9, 10, 11, 12, 13, 15, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 169, 170, 171, 172, 173, 174, 175, 176, 178, 189, 192, 195, 198, 199, 200], "case": [2, 3, 75, 115, 178, 189, 192, 198, 199], "refer": [2, 3, 178, 192, 195, 198], "toolkit": 3, "facilit": 3, "research": 3, "deploy": 3, "ml": [3, 192, 198], "model": [3, 16, 17, 21, 178, 180, 182, 189, 197, 199, 201], "healthcar": 3, "It": [3, 38, 51, 75, 84, 85, 100, 105, 140, 199, 200], "provid": [3, 7, 9, 12, 17, 21, 69, 110, 121, 123, 125, 129, 131, 133, 140, 154, 160, 161, 167, 178, 186, 192, 197, 198], "few": 3, "high": [3, 192, 198], "level": [3, 21, 192, 198], "name": [3, 7, 8, 9, 10, 11, 12, 13, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 121, 123, 125, 129, 131, 133, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 160, 161, 162, 166, 170, 171, 172, 174, 178, 180, 182, 192, 195, 196, 197, 198], "ehr": [3, 121, 186, 197, 200], "databas": [3, 121, 123, 125, 126, 127, 129, 131, 133, 186, 190, 191, 192, 193, 194, 197, 198, 200], "mimic": [3, 128, 129, 130, 131, 189, 197, 200], "iv": [3, 130, 189, 200], "creat": [3, 6, 7, 21, 42, 43, 75, 84, 85, 100, 115, 118, 119, 121, 127, 135, 136, 137, 138, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 175, 178, 180, 182, 189, 195, 200, 201], "infer": [3, 17, 131], "popular": [3, 192], "effici": 3, "load": [3, 17, 178, 182, 189, 197, 198, 199, 201], "differ": [3, 24, 29, 36, 37, 46, 55, 62, 63, 64, 69, 70, 72, 84, 85, 90, 95, 100, 105, 154, 162, 189, 192, 195, 198, 199], "modal": 3, "common": [3, 192, 197], "implement": [3, 168, 201], "scikit": [3, 192], "learn": [3, 192, 195], "pytorch": 3, "canon": 3, "mortal": [3, 181, 182, 189, 200], "chest": [3, 179, 180, 189], "x": [3, 114, 115, 116, 117, 118, 119, 140, 179, 180, 182, 189, 192, 196, 198], "rai": [3, 179, 180, 189], "classif": [3, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 44, 47, 48, 49, 50, 51, 53, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 78, 79, 80, 81, 82, 83, 84, 85, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 179, 180, 182, 189, 192, 198], "clinic": [3, 111, 112, 189, 199], "detect": [3, 195, 199], "shift": [3, 111, 112, 114, 116, 117, 189, 199], "relev": [3, 178, 192, 198, 199], "card": [3, 178, 189, 192, 198, 201], "librari": [3, 189, 199, 201], "end": [3, 144, 173, 189, 192, 195, 198, 200], "iii": [3, 128, 129, 189, 197, 200], "crd": [3, 122, 189, 200], "python3": [3, 190, 192, 193, 194, 195, 196, 197, 198], "m": [3, 192, 193, 195, 196, 198], "pycyclop": [3, 190, 192, 193, 194, 195, 196, 197, 198], "packag": [3, 183, 184, 185, 187, 190, 192, 193, 194, 195, 196, 197, 198], "support": [3, 7, 24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 72, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 107, 108, 109, 122, 128, 130, 141, 199], "process": [3, 112, 121, 123, 125, 127, 129, 131, 133, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 161, 162, 163, 164, 165, 166, 167, 169, 170, 171, 172, 174, 175, 176, 192, 195, 198], "transform": [3, 17, 66, 67, 68, 93, 180, 182, 192, 195, 196, 198], "downstream": [3, 121, 123, 125, 129, 131, 133, 192, 198], "addit": [3, 75, 127, 131, 178, 180, 182, 192, 198], "from": [3, 5, 7, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 119, 125, 127, 131, 133, 159, 162, 170, 175, 178, 180, 182, 189, 190, 192, 193, 195, 196, 197, 198, 200], "other": [3, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 127, 135, 172, 173, 192], "thei": [3, 69], "extra": [3, 178], "multipl": [3, 8, 17, 21, 75, 125, 139, 140, 161, 166, 178], "could": [3, 192, 198], "combin": [3, 8, 135, 139, 166, 192], "both": [3, 162], "set": [3, 7, 17, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 127, 178, 189, 192, 195, 198, 200], "up": [3, 192, 195, 198], "henc": 3, "make": [3, 154, 192, 198], "sure": [3, 192], "sourc": [3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 19, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 115, 116, 117, 118, 119, 121, 123, 125, 127, 129, 131, 133, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 180, 182, 189, 199], "env": 3, "info": [3, 125, 190, 191, 192, 193, 194, 197, 198], "path": [3, 5, 112, 127, 178, 182, 192, 195, 198], "bin": [3, 21], "activ": [3, 198], "build": [3, 112, 121, 200], "built": 3, "sphinx": 3, "local": 3, "cd": 3, "doc": 3, "html": [3, 178, 190, 192, 193, 194, 195, 196, 197, 198], "sphinxopt": 3, "d": [3, 75, 112, 195], "nbsphinx_allow_error": 3, "true": [3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 24, 26, 27, 31, 32, 35, 36, 37, 38, 39, 40, 41, 48, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 107, 108, 109, 110, 112, 114, 116, 121, 123, 125, 129, 131, 133, 135, 136, 151, 154, 167, 170, 176, 178, 180, 182, 190, 191, 192, 195, 196, 197, 198], "welcom": 3, "see": [3, 7, 178, 190, 192, 193, 194, 195, 196, 197, 198], "jupyt": [3, 190, 192, 193, 194, 195, 196, 197, 198], "insid": 3, "ipython": 3, "kernel": 3, "after": [3, 17, 121, 131, 140, 142, 172, 173, 189, 192, 198, 200], "ipykernel": 3, "user": [3, 178, 190, 191, 192, 193, 194, 197, 198], "name_of_kernel": 3, "now": 3, "navig": 3, "": [3, 7, 10, 14, 17, 21, 75, 127, 133, 140, 160, 178, 180, 182, 190, 191, 192, 193, 194, 195, 196, 197, 198], "tab": [3, 192], "cite": 3, "when": [3, 5, 17, 21, 24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 75, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 103, 104, 105, 121, 154, 162, 169, 180, 182, 192, 198], "project": 3, "paper": 3, "articl": 3, "krishnan2022": 3, "12": [3, 7, 192, 193, 194, 195, 198], "02": [3, 69], "22283021": 3, "author": [3, 192, 195], "krishnan": 3, "amrit": 3, "subasri": 3, "vallijah": 3, "mckeen": 3, "kaden": 3, "kore": 3, "ali": 3, "ogidi": 3, "franklin": 3, "alinoori": 3, "mahshid": 3, "lalani": 3, "nadim": 3, "dhalla": 3, "azra": 3, "verma": 3, "amol": 3, "razak": 3, "fahad": 3, "pandya": 3, "deval": 3, "dolatabadi": 3, "elham": 3, "titl": [3, 189, 192, 195, 198, 200], "cyclic": 3, "toward": 3, "operation": 3, "health": [3, 192, 198], "eloc": 3, "id": [3, 5, 112, 133, 192, 195, 198], "2022": [3, 7, 195, 197], "year": [3, 7, 9, 131, 148, 149, 159, 189, 192, 195, 197, 198, 200], "doi": 3, "10": [3, 164, 189, 192, 195, 196, 198, 200], "1101": 3, "publish": [3, 192], "cold": 3, "spring": 3, "harbor": 3, "laboratori": [3, 198], "press": 3, "url": [3, 195], "http": [3, 178, 190, 192, 193, 194, 195, 196, 197, 198], "www": [3, 192], "medrxiv": 3, "org": [3, 178, 192, 195, 198], "content": [3, 178], "earli": 3, "08": 3, "journal": 3, "medic": [4, 5, 183, 189, 195, 198, 200, 201], "class": [4, 5, 6, 7, 17, 18, 19, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 69, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 116, 117, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 186, 192, 194, 195, 198], "decod": [5, 195], "none": [5, 7, 9, 17, 19, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 121, 123, 125, 127, 129, 131, 133, 135, 136, 137, 138, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 160, 161, 162, 167, 174, 175, 178, 180, 182, 192, 195, 196, 198], "reader": 5, "itkread": 5, "suffix": 5, "jpg": 5, "read": [5, 17], "paramet": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 115, 116, 117, 118, 119, 121, 123, 125, 127, 129, 131, 133, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 169, 170, 171, 172, 173, 174, 175, 176, 178, 180, 182, 190, 192, 193, 194, 195, 197, 198], "bool": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 75, 76, 108, 109, 110, 112, 116, 117, 121, 123, 125, 127, 129, 131, 133, 135, 136, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 162, 166, 167, 170, 176, 178, 180, 182, 195], "option": [5, 7, 9, 10, 11, 12, 13, 17, 21, 24, 27, 36, 37, 38, 39, 40, 41, 43, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 69, 75, 80, 81, 82, 83, 84, 85, 90, 95, 98, 99, 100, 103, 104, 105, 108, 112, 114, 121, 123, 125, 127, 129, 131, 133, 135, 136, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 161, 162, 176, 178, 180, 182], "default": [5, 7, 9, 10, 11, 12, 13, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 153, 178, 180, 182, 192, 198], "whether": [5, 7, 21, 75, 108, 109, 110, 112, 121, 123, 125, 127, 129, 131, 133, 154, 167, 170, 176, 178, 198, 201], "fals": [5, 7, 9, 10, 11, 12, 13, 14, 19, 21, 29, 30, 40, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 75, 80, 81, 82, 83, 84, 85, 98, 99, 100, 105, 107, 108, 109, 110, 117, 118, 127, 135, 136, 139, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 162, 166, 167, 176, 180, 182, 191, 192, 195, 198], "return": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 115, 116, 117, 118, 119, 121, 123, 125, 127, 129, 131, 133, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 180, 182, 189, 190, 191, 193, 197, 198, 200], "dictionari": [5, 7, 8, 9, 10, 11, 12, 13, 15, 17, 21, 75, 161, 178, 180, 182, 192, 198], "image_path": 5, "byte": 5, "image_byt": 5, "str": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 123, 125, 127, 129, 131, 133, 135, 136, 137, 138, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 165, 167, 170, 171, 172, 173, 174, 175, 178, 180, 182, 192, 194, 198], "imageread": 5, "monai": [5, 195, 196], "method": [5, 7, 19, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 121, 123, 125, 127, 129, 131, 133, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 180, 182, 192, 193, 195, 198], "attribut": [5, 7, 19, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 127, 180, 182, 192, 198], "call": [5, 168, 178], "self": [5, 121], "storag": 5, "arrow": 5, "arrai": [5, 24, 26, 27, 29, 30, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 60, 61, 63, 66, 67, 68, 69, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 98, 99, 100, 103, 104, 105, 107, 108, 109, 110, 116, 117, 119, 180, 195], "convert": [5, 25, 35, 41, 48, 61, 69, 95, 102, 104, 107, 141, 162, 192, 198], "pyarrow": 5, "rtype": 5, "structarrai": 5, "pa": 5, "string": [5, 7, 9, 12, 17, 21, 75, 144, 153, 161, 162, 165, 174, 175, 178, 189, 195, 200], "must": [5, 9, 17, 21, 141, 147, 148, 149, 154, 161, 178], "contain": [5, 7, 8, 9, 10, 11, 12, 13, 15, 17, 21, 27, 103, 104, 127, 178, 189, 192, 195, 198, 200, 201], "binari": [5, 24, 25, 29, 30, 34, 35, 36, 37, 47, 48, 49, 50, 56, 57, 60, 61, 62, 63, 66, 69, 72, 78, 79, 84, 85, 87, 90, 92, 95, 97, 100, 102, 104, 105, 107, 110, 115, 182, 192, 195, 198, 201], "struct": 5, "order": [5, 17, 107, 108, 109, 127, 167, 169, 171, 172], "doesn": 5, "matter": 5, "list": [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 66, 67, 68, 69, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 115, 116, 117, 118, 119, 121, 123, 125, 127, 129, 131, 133, 135, 136, 137, 138, 140, 141, 147, 148, 149, 154, 155, 156, 157, 158, 160, 161, 162, 163, 166, 167, 171, 172, 173, 175, 178, 180, 182, 190, 191, 192, 193, 194, 197, 198], "arg": [5, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 168, 169, 173], "stringarrai": 5, "listarrai": 5, "token_per_repo_id": 5, "serial": 5, "version": [5, 178, 192, 195, 198], "dict": [5, 7, 8, 9, 10, 11, 12, 13, 15, 17, 21, 22, 75, 121, 123, 125, 129, 131, 133, 161, 170, 178, 180, 182], "access": 5, "privat": 5, "repositori": [5, 192], "hub": 5, "pass": [5, 17, 43, 75, 112, 178, 182, 190, 192, 193, 194, 197, 198], "repo_id": 5, "token": [5, 192], "deseri": 5, "np": [5, 11, 14, 21, 180, 182, 192, 195, 196, 198], "ndarrai": [5, 14, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 115, 116, 117, 118, 119, 180, 182], "metadata": [5, 192, 195, 198], "emb": 5, "encod": 5, "input": [5, 24, 46, 55, 60, 61, 64, 69, 70, 72, 87, 89, 95, 115, 118, 140, 180, 182], "state": [5, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "itself": 5, "otherwis": [5, 14, 24, 27, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 67, 68, 75, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 108, 109, 110, 135, 136, 137, 138, 175], "tupl": [5, 7, 66, 67, 68, 69, 75, 87, 88, 89, 92, 93, 94, 112, 127, 162, 180, 182], "classlabel": [5, 192, 198], "translat": 5, "translationvariablelanguag": 5, "sequenc": [5, 17, 75, 161, 173, 180, 182, 195], "array2d": 5, "array3d": 5, "array4d": 5, "array5d": 5, "audio": 5, "subset": [6, 189, 200], "hug": [6, 180, 182, 189, 201], "face": [6, 180, 182, 189, 201], "object": [7, 19, 21, 112, 114, 121, 125, 126, 127, 129, 131, 133, 136, 137, 140, 142, 143, 161, 168, 173, 178, 180, 182, 192, 198, 200], "ani": [7, 8, 9, 10, 11, 12, 13, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 66, 67, 68, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 121, 123, 125, 127, 129, 131, 133, 136, 144, 145, 146, 147, 150, 153, 154, 160, 165, 178, 180, 182, 192, 195, 198], "A": [7, 8, 9, 10, 11, 12, 13, 15, 17, 21, 22, 25, 75, 76, 104, 109, 126, 137, 142, 143, 162, 178, 192, 195, 198], "each": [7, 8, 17, 21, 24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 67, 68, 69, 75, 76, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 108, 109, 110, 133, 140, 167, 189, 190, 192, 193, 194, 197, 198, 200], "map": [7, 8, 22, 43, 75, 121, 123, 125, 129, 131, 133, 170, 180, 182, 192, 195, 198], "column": [7, 8, 9, 10, 11, 12, 13, 17, 21, 112, 121, 123, 125, 127, 129, 131, 133, 135, 136, 137, 138, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 165, 167, 170, 171, 172, 174, 175, 180, 182, 192, 195, 198], "one": [7, 16, 17, 21, 24, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 67, 68, 69, 76, 80, 81, 82, 83, 84, 85, 95, 98, 99, 100, 105, 154, 180, 182, 189, 200], "follow": [7, 17, 24, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 60, 61, 75, 80, 81, 82, 83, 84, 85, 98, 99, 100, 105, 172, 178, 192, 195, 197, 198], "exact": [7, 13], "select": [7, 112, 116, 121, 123, 125, 127, 129, 131, 133, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 169, 170, 171, 172, 173, 174, 175, 176, 192, 194, 195, 198], "thi": [7, 17, 21, 24, 25, 26, 27, 29, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 103, 104, 105, 121, 138, 154, 161, 162, 178, 182, 190, 192, 193, 194, 195, 197, 198, 201], "singl": [7, 75, 140, 178, 182, 192, 198], "row": [7, 127, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 157, 158, 164, 167, 169, 189, 191, 192, 193, 194, 195, 197, 200], "where": [7, 8, 9, 10, 11, 12, 13, 60, 61, 63, 75, 127, 174, 178, 182, 192, 198, 201], "e": [7, 9, 10, 17, 21, 75, 116, 117, 118, 121, 159, 162, 165, 178, 192, 198], "g": [7, 9, 17, 21, 116, 117, 118, 159, 162, 165, 178, 192, 198], "2021": [7, 189, 192, 197, 200], "01": [7, 29, 31, 32, 142, 143, 191, 192, 194, 195, 197, 198], "00": [7, 192, 195, 196, 197, 198], "min_valu": [7, 11, 192, 195, 196, 198], "minimum": [7, 11], "specifi": [7, 17, 75, 112, 121, 123, 125, 129, 131, 133, 135, 136, 137, 138, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 157, 158, 161, 162, 163, 172, 175, 178, 180, 182, 192, 195, 198], "min_inclus": [7, 11, 192, 198], "indic": [7, 21, 27, 60, 61, 115, 118, 192, 198], "includ": [7, 11, 21, 72, 112, 114, 146, 150, 192, 195, 198, 199], "rang": [7, 11, 29, 30, 66, 67, 68, 93, 192, 195, 198], "work": [7, 27, 103, 104, 135, 178, 192, 195, 198], "numer": [7, 11, 138, 192, 198], "datetim": [7, 9, 11, 14, 121, 123, 125, 129, 131, 133, 137, 142, 143, 178, 192, 195, 198], "inf": [7, 11, 192, 195, 198], "max_valu": [7, 11, 192, 195, 196, 198], "boolean": [7, 8, 9, 10, 11, 12, 13, 15, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154], "greater": [7, 22, 146, 150, 198], "than": [7, 11, 22, 48, 52, 54, 135, 136, 146, 150, 180, 182, 189, 192, 198, 200, 201], "equal": [7, 11, 21, 145, 146, 150], "maximum": [7, 11, 22, 29, 30], "max_inclus": [7, 11, 192, 198], "less": [7, 11, 48, 52, 54, 150, 189, 198, 200], "match": [7, 9, 12, 13, 17, 152, 197], "between": [7, 21, 38, 51, 69, 95, 189, 200], "1": [7, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 116, 117, 118, 119, 137, 138, 140, 142, 143, 145, 146, 147, 148, 150, 160, 165, 178, 189, 192, 195, 198, 199, 200, 201], "dai": [7, 9, 137, 198, 201], "31": [7, 189, 192, 198, 200], "hour": [7, 9], "0": [7, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 74, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 114, 115, 116, 117, 118, 119, 130, 160, 174, 178, 190, 191, 192, 193, 194, 195, 196, 197, 198], "23": [7, 192, 198], "negat": [7, 9, 10, 11, 12, 13, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 195], "flag": [7, 162], "doe": [7, 9, 11, 12, 13, 17, 21, 24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 75, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 178], "keep_nul": [7, 9, 11, 12, 13], "null": [7, 9, 10, 11, 12, 13, 158, 160, 198], "conjunct": [7, 195], "its": [7, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 60, 61, 74, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 192, 195, 198], "own": [7, 192, 198], "callabl": [7, 8, 17, 21, 76, 140, 178], "import": [7, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 114, 178, 189, 199, 200, 201], "slice_spec": [7, 17, 180, 182, 192, 195, 198], "feature_1": 7, "feature_2": 7, "feature_3": 7, "value_1": 7, "value_2": 7, "2020": [7, 9, 142, 143, 149, 189, 195, 200], "5": [7, 24, 25, 27, 29, 31, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 114, 115, 118, 119, 189, 190, 191, 192, 193, 195, 197, 198, 199, 200], "60": [7, 195], "6": [7, 24, 26, 35, 36, 38, 39, 49, 56, 59, 62, 63, 78, 79, 80, 81, 83, 84, 85, 87, 88, 90, 92, 93, 95, 97, 98, 99, 100, 104, 107, 108, 110, 189, 191, 192, 193, 195, 196, 197, 198, 200], "7": [7, 29, 30, 31, 36, 39, 40, 69, 80, 81, 82, 84, 85, 87, 88, 89, 93, 98, 100, 105, 108, 109, 110, 189, 191, 192, 195, 197, 198, 200, 201], "8": [7, 24, 26, 27, 29, 30, 31, 34, 35, 36, 37, 38, 40, 41, 47, 49, 50, 53, 54, 56, 59, 60, 62, 66, 68, 69, 78, 79, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 99, 100, 105, 107, 109, 110, 189, 192, 195, 197, 198, 200], "2000": 7, "2010": [7, 189, 200], "slice_nam": [7, 178, 192, 195, 198], "slice_func": 7, "print": [7, 190, 191, 192, 193, 194, 195, 197, 198], "do": [7, 17], "someth": 7, "here": [7, 192, 198], "filter": [7, 9, 10, 11, 12, 13, 17, 21, 139, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 162, 166, 189, 192, 195, 196, 198, 200], "add": [7, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 135, 136, 137, 138, 165, 173, 178, 180, 182, 192, 195, 198], "detail": [7, 127, 192, 195, 198], "registri": [7, 192, 198], "gener": [7, 69, 95, 112, 178, 189, 195, 197, 199, 201], "slice_funct": 8, "result": [8, 17, 38, 51, 127, 173, 180, 182, 190, 192, 193, 194, 195, 196, 197, 198], "bitwis": 8, "AND": 8, "signatur": 8, "should": [8, 21, 69, 76, 95, 117, 127, 178, 180, 182, 192, 195, 198], "kwarg": [8, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 114, 121, 123, 125, 129, 131, 133, 168, 169, 180, 182], "given": [9, 11, 12, 13, 14, 24, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 75, 80, 81, 82, 84, 85, 98, 100, 105, 108, 109, 110, 160, 173, 178, 180, 182], "int": [9, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 116, 117, 118, 119, 127, 138, 141, 148, 149, 162, 164, 173, 174, 178, 180, 182, 192, 198], "compon": [9, 159], "have": [9, 12, 13, 17, 114, 121, 123, 125, 129, 131, 133, 147, 154, 162, 189, 192, 200, 201], "nan": [9, 10, 189, 201], "nat": 9, "rais": [9, 11, 12, 17, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 69, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 178, 180, 182], "typeerror": [9, 11, 12, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 178], "float": [11, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 109, 110, 115, 116, 117, 118, 119, 138, 141, 178], "valueerror": [11, 17, 21, 48, 50, 52, 54, 58, 59, 60, 61, 62, 63, 69, 178, 180, 182], "either": [11, 30, 31, 32, 75, 87, 88, 89, 92, 93, 94, 110, 178, 192, 198], "ha": [13, 75, 174, 178, 192, 195, 198], "find": [13, 24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 195], "perform": [13, 26, 27, 31, 32, 127, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 169, 170, 171, 172, 174, 175, 176, 178, 189, 197, 199, 201], "datetime64": 14, "target_column": [17, 19, 21, 192, 195, 198], "feature_column": [17, 195, 196], "prediction_column_prefix": [17, 180, 182, 192, 195, 198], "remove_column": [17, 19, 21, 180, 182, 195], "split": [17, 112, 178, 180, 182, 192, 195, 198], "batch_siz": [17, 19, 21, 112, 180, 182, 192, 198], "1000": [17, 19, 21, 112, 182, 192], "fairness_config": [17, 180, 182, 192, 198], "override_fairness_metr": [17, 180, 182, 192, 198], "load_dataset_kwarg": 17, "datasetdict": [17, 180, 182], "load_dataset": 17, "argument": [17, 21, 43, 75, 131, 136, 144, 145, 146, 147, 150, 153, 154, 180, 182, 192, 198], "target": [17, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 116, 117, 180, 182, 189, 192, 198, 199, 201], "prefix": [17, 75], "ad": [17, 114, 127, 135, 136, 137, 138, 173, 178, 180, 182, 192, 198], "model_nam": [17, 180, 182, 192, 195, 196, 198], "remov": [17, 21, 75, 119, 157, 158, 180, 182, 192, 195, 198], "mai": [17, 21, 189, 192, 195, 198, 200], "expens": [17, 21, 162], "memori": [17, 21], "wrappedmodel": [17, 180, 182], "entir": [17, 192, 198], "being": [17, 135, 136, 137, 138, 142, 143, 145, 148, 149], "note": [17, 121, 131, 178, 190, 192, 195, 197, 198], "chosen": 17, "avail": [17, 178, 192, 198, 201], "first": [17, 21, 25, 76, 104, 176, 190, 192, 193, 194, 197, 198], "test": [17, 178, 180, 182, 189, 192, 198, 199, 200, 201], "eval": 17, "val": 17, "dev": 17, "batch": [17, 21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 112, 180, 182, 189, 195, 200], "size": [17, 21, 112, 180, 182, 192, 195, 198], "neg": [17, 35, 48, 49, 50, 51, 52, 53, 54, 59, 61, 62, 63, 72, 81, 83, 85, 98, 99, 100, 105, 107, 108, 109, 135, 136, 198], "integ": [17, 21, 165, 178], "configur": [17, 18, 19, 121, 123, 125, 129, 131, 133, 180, 182, 192, 198], "overridden": [17, 180, 182], "prediction_column": [17, 19, 21, 195], "keyword": [17, 21, 43, 75, 144, 145, 146, 147, 150, 153, 154, 176, 182, 189, 200], "onli": [17, 21, 24, 27, 29, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 62, 63, 75, 80, 81, 82, 84, 85, 98, 100, 103, 104, 105, 108, 109, 110, 154, 162, 163, 189, 200], "found": [17, 75, 178, 190, 192, 193, 194, 195, 196, 197, 198], "group": [19, 21, 22, 75, 161, 178, 192, 195, 198], "group_valu": [19, 21], "group_bin": [19, 21, 192, 195, 198], "group_base_valu": [19, 21, 192, 195, 198], "threshold": [19, 21, 24, 25, 27, 29, 30, 31, 32, 34, 35, 36, 37, 40, 41, 47, 48, 49, 50, 53, 54, 56, 57, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 99, 100, 102, 104, 105, 107, 109, 110, 178, 189, 192, 198, 201], "compute_optimal_threshold": [19, 21], "metric_nam": [19, 21, 43, 178, 192, 195, 198], "metric_kwarg": [19, 21], "take": [21, 24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 112, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 189, 192, 200], "allow": [21, 22, 121, 123, 125, 129, 131, 133, 192, 198, 199, 200], "intersect": 21, "treat": 21, "multilabel": [21, 24, 27, 29, 32, 36, 37, 40, 41, 49, 50, 53, 54, 60, 61, 62, 63, 68, 69, 72, 82, 83, 84, 85, 89, 90, 94, 95, 99, 100, 104, 105, 109, 110, 189, 201], "same": [21, 75, 116, 161, 162], "uniqu": [21, 22, 29, 30, 31, 32, 66, 67, 68, 69, 87, 88, 89, 92, 93, 94, 95, 195, 201], "number": [21, 22, 24, 26, 27, 29, 30, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 75, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 98, 99, 100, 103, 104, 105, 108, 110, 112, 116, 117, 127, 164, 172, 178, 180, 182, 189, 194, 198, 199, 200], "continu": [21, 192, 195, 198], "veri": 21, "slow": [21, 169], "larg": [21, 169], "denomin": 21, "pariti": [21, 189, 201], "across": [21, 116, 199], "linspac": 21, "monoton": [21, 69, 95], "control": [21, 115], "usag": [21, 192, 198], "rel": 21, "small": 21, "32": [21, 192, 198], "avoid": 21, "optim": [21, 192], "oper": [21, 65, 76, 127, 131, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176], "necessari": 21, "nest": 21, "second": [21, 76], "third": 21, "omit": 21, "requir": [21, 24, 29, 36, 37, 49, 50, 69, 84, 85, 90, 95, 100, 105, 110, 178, 180, 182, 192, 198], "huggingfac": [21, 112, 180, 182], "runtimeerror": 21, "empti": [21, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 157], "encount": [21, 125, 189, 198, 200], "unique_valu": 22, "max_unique_valu": 22, "50": [22, 192, 195, 196, 198], "warn": [22, 24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 102, 103, 104, 105], "score": [24, 25, 26, 27, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 66, 70, 72, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 108, 109, 110], "multiclass": [24, 26, 29, 31, 36, 37, 38, 39, 49, 50, 51, 52, 58, 59, 62, 63, 67, 69, 72, 80, 81, 84, 85, 88, 90, 93, 95, 98, 100, 103, 105, 108, 110], "One": [24, 29, 31, 32, 35, 48, 59, 62, 63, 69, 95, 195, 198], "pos_label": [24, 25, 30, 34, 35, 36, 37, 47, 48, 49, 50, 56, 57, 62, 63, 66, 69, 78, 79, 84, 85, 87, 90, 92, 95, 97, 100, 102, 105, 107, 110], "label": [24, 25, 27, 29, 32, 34, 35, 36, 37, 40, 41, 47, 48, 49, 50, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 68, 69, 78, 79, 81, 82, 83, 84, 85, 87, 89, 90, 92, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 109, 110, 116, 117, 119, 135, 136, 137, 138, 159, 161, 165, 175, 180, 182, 189, 192, 193, 194, 195, 201], "consid": [24, 26, 27, 36, 37, 49, 50, 62, 63, 84, 85, 90, 95, 100, 103, 104, 105, 133], "posit": [24, 25, 29, 30, 34, 35, 36, 37, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 75, 78, 79, 80, 81, 82, 83, 84, 85, 87, 90, 92, 95, 97, 98, 99, 100, 102, 105, 107, 108, 109, 110, 195], "num_class": [24, 26, 29, 31, 36, 37, 38, 39, 49, 50, 51, 52, 58, 59, 61, 62, 63, 67, 69, 80, 81, 84, 85, 88, 90, 93, 95, 98, 100, 103, 105, 108, 110, 192, 198], "decid": [24, 36, 37, 40, 41, 49, 50, 53, 54, 56, 57, 60, 61, 78, 79, 82, 83, 84, 85, 97, 99, 100, 105], "top_k": [24, 26, 27, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 108, 109, 110], "probabl": [24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 72, 80, 81, 82, 84, 85, 93, 98, 100, 102, 103, 104, 105, 107, 108, 109, 110, 182, 192, 198], "logit": [24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 72, 80, 81, 82, 84, 85, 98, 100, 102, 103, 104, 105, 107, 108, 109, 110], "top": [24, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 80, 81, 82, 84, 85, 98, 100, 105, 108, 109, 110], "k": [24, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 75, 80, 81, 82, 84, 85, 98, 100, 105, 108, 109, 110, 196], "num_label": [24, 27, 29, 32, 36, 37, 40, 41, 49, 50, 53, 54, 60, 61, 62, 63, 68, 69, 82, 83, 84, 85, 89, 90, 94, 95, 99, 100, 104, 105, 109, 110, 195], "averag": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 192], "micro": [24, 26, 27, 29, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105], "macro": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105], "weight": [24, 26, 27, 29, 31, 32, 35, 36, 37, 38, 39, 40, 41, 48, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 195, 196, 198], "calcul": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105], "global": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "unweight": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105], "mean": [24, 26, 27, 29, 31, 32, 35, 36, 37, 38, 39, 40, 41, 48, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 192, 195, 196, 198], "imbal": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 119], "account": [24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 192, 195], "instanc": [24, 26, 27, 31, 32, 36, 37, 38, 39, 40, 41, 43, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 103, 104, 105, 192, 198], "alter": [24, 26, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 105], "zero_divis": [24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 102, 103, 104, 105], "zero": [24, 25, 26, 27, 34, 36, 37, 38, 39, 40, 41, 47, 49, 50, 51, 52, 53, 54, 56, 57, 58, 60, 61, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 103, 104, 105], "divis": [24, 25, 26, 27, 34, 36, 37, 38, 39, 40, 41, 47, 49, 50, 51, 52, 53, 54, 56, 57, 58, 60, 61, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 103, 104, 105], "act": [24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 78, 79, 80, 81, 82, 83, 84, 85, 97, 98, 99, 100, 103, 104, 105], "pred": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 192, 198], "75": [24, 25, 29, 30, 66, 67, 68, 90, 92, 95, 103, 104, 105, 192], "05": [24, 26, 27, 29, 31, 32, 36, 38, 39, 40, 49, 53, 62, 67, 68, 69, 80, 81, 84, 85, 88, 90, 93, 94, 95, 98, 100, 103, 104, 105, 108, 110, 191, 198], "95": [24, 26, 27, 36, 38, 49, 62, 69, 88, 90, 93, 94, 95, 197], "p": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 115, 195], "zip": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "2": [24, 26, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 56, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 75, 78, 79, 80, 81, 82, 83, 84, 85, 88, 89, 90, 92, 93, 95, 97, 98, 99, 100, 103, 104, 105, 107, 108, 109, 110, 116, 117, 130, 138, 140, 147, 148, 174, 178, 189, 191, 192, 195, 198, 199, 200], "3": [24, 26, 27, 29, 31, 34, 35, 36, 37, 38, 39, 40, 47, 49, 50, 51, 52, 53, 56, 58, 59, 61, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 103, 104, 105, 107, 108, 109, 110, 116, 117, 189, 191, 192, 195, 197, 198, 199, 200], "66666667": [24, 26, 36, 38, 49, 51, 61, 63, 81, 85, 87, 88, 90, 93, 94, 95, 98, 100, 104], "initi": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 123, 125, 127, 129, 131, 133, 173, 192, 195, 198], "two": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 162, 173, 176], "scalar": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "togeth": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 189, 200], "multipli": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "variabl": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 201], "attributeerror": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "alreadi": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 192, 198], "exist": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 135, 136, 137, 138, 170, 175, 178, 180, 182, 192, 195, 198], "copi": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110, 192, 195, 198], "abstract": [24, 29, 36, 37, 73, 74, 84, 85, 90, 95, 100, 105, 110, 168], "final": [24, 29, 36, 37, 74, 84, 85, 90, 95, 100, 105, 110, 173, 195, 198], "reset": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "_update_count": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "_comput": [24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 74, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 110], "sigmoid": [25, 35, 41, 66, 68, 69, 102, 104, 107, 109, 110], "them": [25, 104, 127, 192, 195, 198, 199], "875": 25, "problem": [26, 88, 108, 109, 110, 201], "highest": [26, 27, 62, 63, 103, 104], "determin": [26, 27, 29, 30, 31, 32, 66, 67, 68, 87, 88, 89, 90, 92, 93, 94], "dtype": [26, 27, 31, 32, 38, 39, 40, 41, 66, 67, 68, 69, 80, 81, 82, 83, 87, 88, 89, 92, 93, 94, 98, 99, 103, 104, 115, 116, 117, 118, 119, 192, 195, 197], "float64": [26, 27, 31, 32, 38, 39, 40, 41, 66, 67, 68, 69, 80, 81, 82, 83, 87, 88, 89, 92, 93, 94, 98, 99, 103, 104, 115, 116, 117, 118, 119, 195], "binar": [27, 29, 30, 31, 32, 34, 47, 67, 68, 93, 94, 109, 110], "output": [27, 69, 178, 192, 198], "classifi": [27, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 102, 192, 198], "correct": [27, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 93, 102, 103, 104], "per": [27, 75, 189, 195, 198, 200], "area": [28, 29, 30, 31, 32, 45], "under": [28, 29, 30, 31, 32, 45, 192, 198], "curv": [28, 29, 30, 31, 32, 45, 64, 65, 66, 67, 68, 69, 86, 87, 88, 89, 90, 92, 93, 94, 95, 192, 198], "max_fpr": [29, 30], "rate": [29, 30, 66, 67, 68, 69, 189, 198, 201], "partial": [29, 30, 195], "auc": 29, "automat": [29, 30, 31, 32, 66, 67, 68, 87, 88, 89, 90, 92, 93, 94, 121], "applic": [29, 111, 112, 114], "4": [29, 30, 34, 35, 36, 37, 40, 47, 50, 59, 63, 69, 82, 83, 84, 85, 87, 88, 90, 92, 93, 94, 95, 99, 100, 105, 107, 108, 109, 110, 189, 191, 192, 195, 197, 198, 199, 200], "35": [29, 30, 69, 87, 92, 95, 103, 104, 105, 192, 195, 196, 198], "9": [29, 30, 31, 32, 34, 36, 37, 38, 39, 40, 41, 49, 50, 53, 54, 56, 60, 62, 63, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 84, 85, 89, 90, 93, 94, 95, 97, 98, 99, 100, 103, 104, 105, 107, 109, 110, 189, 190, 192, 195, 196, 197, 198, 200], "6111111111111112": [29, 30], "89": [29, 31, 32, 69, 192, 195], "06": [29, 31, 69, 195, 198], "94": [29, 31], "22222222": [29, 31], "625": [29, 32, 35, 103], "aucroc": 30, "confus": [30, 31, 32, 87, 88, 89, 92, 93, 94], "matrix": [30, 31, 32, 87, 88, 89, 92, 93, 94, 115, 116, 117, 118, 119], "f": [33, 35, 37, 38, 39, 41, 46, 48, 50, 51, 52, 54, 75, 190, 191, 192, 193, 194, 195, 196, 197, 198], "beta": [33, 35, 37, 39, 41, 46, 48, 50, 52, 54], "f1": [34, 36, 38, 40, 46, 47, 49, 51, 53], "form": [34, 47, 192, 198], "6666666666666666": [34, 36, 47, 56, 78, 84], "harmon": [35, 37, 39, 41, 48, 50, 52, 54], "8333333333333334": [35, 37, 50, 59, 62], "85714286": [36, 38], "9090909090909091": 37, "83333333": [37, 41, 50, 54], "55555556": [37, 50, 103], "90909091": [37, 39, 41], "85": [39, 80, 81, 84, 85, 98, 100, 192, 196, 198], "total": [40, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 108, 189, 198, 200], "count": [40, 49, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 98, 99, 100, 161, 191, 192, 195, 198], "predicit": 41, "constructor": 43, "arraylik": [47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 76, 93, 102], "ground": [47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 93, 102], "truth": [47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 93, 102], "npt": [48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63], "7142857142857143": 48, "estim": [49, 50, 66, 67, 68, 69, 93, 102, 182], "shape": [49, 50, 51, 52, 53, 54, 60, 61, 108, 109, 195, 196], "expect": [60, 61, 192, 198], "like": [60, 61, 75, 133, 151, 192], "n": [60, 61, 192, 195], "l": [60, 61], "sampl": [60, 61, 63, 119], "presenc": [60, 61, 195], "absenc": [60, 61], "rest": 61, "ratio": [62, 63, 105, 198], "correctli": 62, "precision_scor": 62, "tp": [63, 107, 108, 109], "fn": [63, 107, 108, 109], "intuit": 63, "abil": [63, 192, 198], "recall_scor": 63, "3333333333333333": 63, "receiv": [65, 131], "characterist": 65, "decis": [66, 67, 68, 69, 93, 178, 192, 198], "fpr": [66, 67, 68, 69, 192, 195, 198], "tpr": [66, 67, 68, 69], "25": [66, 67, 68, 88, 90, 92, 93, 95, 105, 116, 117, 192, 196, 198], "softmax": [67, 69, 93], "1d": [67, 68, 69, 95], "33333333": [67, 85, 88, 90, 93, 94, 95, 100], "non": 69, "evenli": [69, 95], "space": [69, 95], "increas": [69, 95], "assertionerror": [69, 178], "03": [69, 191], "stat": [72, 106, 107, 108, 109, 110], "abc": 74, "other_metr": 75, "postfix": 75, "userdict": 75, "collect": [75, 192, 195, 198], "want": 75, "behav": 75, "themselv": 75, "intern": 75, "similar": 75, "reduc": 75, "els": [75, 192, 195, 196, 198], "keep_bas": 75, "iter": 75, "underli": 75, "moduledict": 75, "hashabl": 75, "v": [75, 195], "correspond": [75, 133, 157, 158, 182], "keyerror": [75, 178], "some": [75, 135, 136, 137, 138, 142, 143, 144, 145, 146, 150, 153, 156, 157, 158, 167, 170, 175, 192, 198], "pair": [75, 161], "present": 75, "lack": 75, "In": [75, 192, 198], "metric_a": 76, "metric_b": 76, "metric1": 76, "metric2": 76, "unari": 76, "appropri": [84, 85, 100, 192, 198], "375": [88, 90], "suniqu": 90, "45": [90, 105, 191, 192, 197, 198], "42857143": 90, "15": [103, 104, 105, 192, 195, 197, 198], "57142857": 103, "sum": [105, 108, 109, 110, 195, 198], "_abstractscor": [107, 108, 109], "fp": [107, 108, 109], "tn": [107, 108, 109], "classwis": [108, 110], "over": [108, 109, 110, 161, 189, 201], "labelwis": [109, 110], "prior": [110, 192, 195, 198], "modul": [111, 131, 177, 178, 192, 198], "shift_typ": [112, 114], "shift_id": [112, 196], "induc": [112, 114], "synthet": [112, 114, 189, 198, 199, 201], "categor": [112, 192, 198], "origin": [112, 127], "util": [112, 127, 190, 191, 192, 193, 194, 195, 197, 198], "load_nih": 112, "mnt": [112, 195, 196], "nihcxr": [112, 189, 195, 199], "hospital_type_1": 112, "hospital_type_2": 112, "hospital_type_3": 112, "hospital_type_4": 112, "hospital_type_5": 112, "ds_sourc": [112, 196], "ds_target": [112, 196], "num_proc": [112, 196], "hospit": [112, 131, 189, 192, 198, 200, 201], "drift_detect": 114, "experiment": 114, "sklearn": [114, 192, 198], "load_diabet": 114, "y": [114, 116, 117, 119, 140, 182, 192, 195, 198], "return_x_i": 114, "x_tr": 114, "x_te": 114, "y_tr": 114, "y_te": 114, "train_test_split": [114, 192, 198], "test_siz": 114, "random_st": [114, 192, 198], "42": [114, 192, 198], "gn_shift": 114, "x_shift": 114, "x_train": [114, 182], "noise_amt": [114, 118], "delta": [114, 115, 118, 119, 137], "ko_shift": 114, "cp_shift": 114, "mfa_shift": 114, "bn_shift": 114, "tolerance_shift": 114, "ds_shift": 114, "nois": [114, 115, 118, 192, 195, 198], "prob": 115, "covari": [115, 116, 117, 118, 119], "proport": 115, "fraction": [115, 118, 119, 198], "affect": [115, 118, 178, 192, 198], "n_shuffl": [116, 117], "keep_rows_const": 116, "repermute_each_column": 116, "multiwai": 116, "associ": [116, 192, 195, 198], "swap": [116, 117], "individu": [116, 192, 198], "within": 116, "cl": [116, 117], "etc": [116, 117, 192, 195, 198], "floatnumpi": 116, "shuffl": [116, 117, 192], "permut": 116, "placehold": 116, "shift_class": [117, 119], "rank": 117, "changepoint": 117, "axi": [117, 195, 196, 198], "x_ref": 117, "y_ref": 117, "normal": [118, 192], "clip": 118, "gaussian": 118, "standard": [118, 121, 123, 125, 129, 131, 133, 192, 198], "deviat": 118, "divid": 118, "255": [118, 195, 196], "placehol": 119, "querier": [120, 123, 125, 129, 131, 133, 190, 191, 193, 194, 197, 198], "config_overrid": [121, 123, 125, 129, 131, 133], "orm": [121, 127, 190, 191, 193, 194, 197, 198, 200], "overrid": [121, 123, 125, 129, 131, 133], "intend": [121, 192, 195, 198], "subclass": [121, 178], "tabl": [121, 123, 125, 127, 129, 131, 133, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 169, 170, 171, 172, 173, 174, 175, 176, 189, 190, 193, 197, 200], "schema": [121, 123, 125, 129, 131, 133, 194, 197], "schema_nam": [121, 123, 125, 129, 131, 133, 197], "table_nam": [121, 123, 125, 129, 131, 133], "instanti": [121, 189, 192, 198, 200], "cast_timestamp_col": [121, 123, 125, 129, 131, 133], "possibli": [121, 123, 125, 129, 131, 133], "recogn": [121, 123, 125, 129, 131, 133], "timestamp": [121, 123, 125, 129, 131, 133, 141, 142, 143, 148, 149, 159, 178, 189, 191, 195, 199], "sqlalchemi": [121, 123, 125, 129, 131, 133, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 161, 162, 163, 164, 165, 166, 167, 169, 170, 171, 172, 174, 175, 176, 200], "sql": [121, 123, 125, 127, 129, 131, 133, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 161, 162, 163, 164, 165, 166, 167, 169, 170, 171, 172, 174, 175, 176, 189, 200], "subqueri": [121, 123, 125, 127, 129, 131, 133, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176], "care": [125, 131], "unit": 125, "fetch": [125, 127], "transfer": 125, "construct": [125, 129, 131, 133, 136, 137], "wrap": [125, 126, 127, 129, 131, 133], "diagnosi": [125, 129, 131, 190], "room": 125, "dataclass": 127, "tabletyp": 127, "chain": [127, 173], "thu": 127, "datafram": [127, 182, 189, 192, 198, 200], "properti": [127, 180, 182], "join_tabl": [127, 162, 190, 193, 194, 197], "on_to_typ": [127, 162], "cond": [127, 162], "table_col": [127, 162], "join_table_col": [127, 162], "isout": [127, 162, 197, 198], "anoth": [127, 162, 170, 173], "dbtabl": [127, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 169, 170, 171, 172, 173, 174, 175, 176], "binaryexpress": [127, 162], "condit": [127, 139, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 162, 166, 192, 197], "outer": [127, 162], "backend": [127, 194], "panda": [127, 192, 197, 198], "index_col": [127, 194], "n_partit": [127, 194], "No": [127, 195, 197], "dask": [127, 189, 200], "framework": 127, "index": [127, 173, 174, 192, 195, 198], "defin": [127, 178, 192, 195, 198], "partit": [127, 189, 200], "server": 127, "document": [127, 192, 195, 198], "file_format": [127, 192], "parquet": 127, "csv": [127, 192, 197, 198], "upstream": 127, "icu": 131, "chart": [131, 189, 200], "event": [131, 189, 200], "lab": [131, 189, 191, 195, 200], "approxim": 131, "anchor_year": 131, "anchor_year_group": 131, "suppli": 131, "dod": 131, "adjust": [131, 195], "src_tabl": 133, "src_col": 133, "dst_col": 133, "concept": [133, 197], "somecol_concept_id": 133, "somecol_concept_nam": 133, "accord": [133, 190, 193, 194, 197], "assign": 133, "add_to": [135, 136, 137, 138], "col": [135, 140, 141, 144, 145, 146, 147, 150, 151, 152, 153, 154, 155, 156, 157, 158, 160, 163, 165, 167, 171, 172, 174, 175], "new_col_label": [135, 136, 137, 138, 174, 175, 198], "subtract": [135, 136], "rather": [135, 136], "new": [135, 136, 137, 138, 140, 160, 161, 165, 171, 174, 175, 178, 192, 198], "col1": [135, 136, 137, 138, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 156, 157, 158, 159, 160, 162, 163, 165, 167, 170, 171, 172, 173, 174, 175], "col2": [135, 136, 137, 138, 140, 141, 156, 157, 158, 160, 162, 163, 167, 171, 172, 173, 175], "col3": [135, 136, 162, 172], "col1_plus_col2": [135, 136], "col1_plus_col3": 135, "col2_plus_col3": 135, "pai": 135, "attent": 135, "wherea": 135, "delta_kwarg": 136, "interv": 136, "timedelta": 137, "col1_plus_1": [137, 138], "col2_plus_1": 138, "cond_op": [139, 166], "lab_nam": [139, 151, 161, 166], "hba1c": [139, 151, 166], "john": [139, 166], "jane": [139, 166], "return_cond": [139, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 166], "instead": [139, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 166, 178], "func": [140, 195, 196], "new_col": 140, "assum": [140, 190, 193, 194, 197], "lambda": [140, 192, 195, 196, 198], "col1_new": [140, 160, 170], "col2_new": [140, 160], "noqa": [140, 192, 195, 198], "e501": [140, 192, 198], "disabl": 140, "line": [140, 192, 195, 198], "too": 140, "long": [140, 178, 189, 200], "type_": 141, "convers": 141, "date": [141, 142, 143, 178, 192, 195, 198], "timestamp_col": [142, 143, 148, 149, 159], "not_": [142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154], "binarize_col": [142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154], "yyyi": [142, 143, 178], "mm": [142, 143, 178], "dd": [142, 143, 178], "col1_bool": [142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154], "cond_kwarg": [144, 145, 146, 147, 150, 153, 154], "2019": [149, 197], "pattern": 151, "lab_name_bool": 151, "regex": 152, "regular": 152, "express": [152, 192, 195, 198], "any_": 154, "just": 154, "b": 154, "person_id": [155, 161, 197], "visit_id": 155, "extract_str": 159, "extract": [159, 174, 190, 191, 192, 193, 194, 197, 198], "inform": [159, 178, 192], "fill_valu": 160, "new_col_nam": [160, 174], "groupby_col": 161, "aggfunc": [161, 198], "aggsep": 161, "aggreg": [161, 189, 200], "prevent": 161, "string_aggfunc": 161, "separ": 161, "string_agg": 161, "visit_count": 161, "lab_name_agg": 161, "repres": [162, 178, 195], "suggest": 162, "oppos": 162, "sai": 162, "left": [162, 178, 198], "table2": [162, 176], "table1": [162, 176], "neither": 162, "nor": 162, "cartesian": 162, "product": 162, "OR": 166, "ascend": [167, 191], "sort": [167, 189, 192, 198, 200], "descend": 167, "random": [169, 192, 195, 198], "so": 169, "certain": [169, 192, 198], "cannot": 169, "seen": 169, "analyz": 169, "quit": 169, "rename_map": 170, "check_exist": 170, "complet": 171, "come": 172, "ordereddict": 173, "execut": [173, 190, 191, 193, 194, 197, 198], "op_": 173, "start_index": 174, "stop_index": 174, "stop": [174, 198], "col1_substr": 174, "whitespac": 175, "col1_trim": 175, "col2_trim": 175, "union_t": 176, "output_dir": [178, 192, 195, 198], "serv": 178, "popul": [178, 189, 192, 198, 201], "modelcard": 178, "directori": [178, 192, 198], "output_filenam": 178, "template_path": 178, "interact": [178, 198], "save_json": 178, "jinja2": 178, "json": [178, 192, 198], "classmethod": 178, "cyclops_report": [178, 192, 198], "section_nam": [178, 192, 195, 198], "model_detail": [178, 192, 198], "section": [178, 192, 195, 198], "bibtex": 178, "entri": 178, "plain": 178, "text": [178, 194, 195], "descript": [178, 192, 195, 198], "license_id": [178, 192], "sensitive_featur": [178, 192], "sensitive_feature_justif": [178, 192], "log": [178, 189, 192, 198, 201], "about": [178, 192, 195, 198], "resourc": [178, 192, 198], "context": 178, "homepag": 178, "spdx": [178, 192], "identifi": [178, 189, 195, 201], "licens": [178, 192, 195, 198], "apach": [178, 192, 198], "unknown": 178, "unlicens": 178, "proprietari": 178, "justif": [178, 192], "field": [178, 189, 192, 198, 201], "descriptor": 178, "pydant": 178, "basemodel": 178, "As": 178, "conflict": 178, "model_card": [178, 192, 195, 198], "cylop": 178, "tradeoff": [178, 195], "trade": 178, "off": 178, "interpret": 178, "consider": [178, 192, 195, 198], "affected_group": [178, 192, 195, 198], "benefit": [178, 192, 195, 198], "harm": [178, 192, 195, 198], "mitigation_strategi": [178, 192, 195, 198], "assess": 178, "mitig": [178, 192, 195, 198], "strategi": [178, 192, 195, 198], "relat": 178, "img_path": 178, "caption": [178, 192, 195, 198], "full": 178, "whole": [178, 192, 198], "blank": 178, "param": [178, 192, 198], "contact": [178, 192, 195, 198], "role": 178, "owner": [178, 192, 195, 198], "quantit": [178, 192, 195, 198], "slash": 178, "fig": [178, 192, 195, 198], "plotli": [178, 192, 195, 198], "figur": [178, 192, 195, 198], "plot": [178, 192, 195, 198], "analysis_typ": 178, "metric_slic": [178, 192, 195, 198], "decision_threshold": 178, "pass_fail_threshold": [178, 192, 195, 198], "pass_fail_threshold_fn": [178, 192, 195, 198], "explain": [178, 192, 195, 198], "fail": 178, "regul": 178, "regulatori": [178, 192, 198], "compli": 178, "risk": [178, 192, 195, 198, 201], "kind": [178, 192, 195, 198], "primari": [178, 192, 195, 198], "scope": [178, 192, 198], "usecas": 178, "version_str": [178, 192, 198], "semant": 178, "v1": [178, 193, 197], "dt_date": 178, "dt_datetim": 178, "unix": 178, "hh": 178, "ss": 178, "ffffff": 178, "z": 178, "summar": 178, "chang": [178, 192, 195, 198], "made": [178, 192, 198], "task_featur": [180, 182, 192, 198], "task_target": [180, 182, 192, 198], "atelectasi": [180, 195], "consolid": [180, 195], "infiltr": [180, 195], "pneumothorax": [180, 195], "edema": [180, 195], "emphysema": [180, 195], "fibrosi": [180, 195], "effus": [180, 195], "pneumonia": [180, 195], "pleural_thicken": [180, 195], "cardiomegali": [180, 195], "nodul": [180, 195], "mass": [180, 195, 198], "hernia": [180, 195], "lung": 180, "lesion": 180, "fractur": 180, "opac": 180, "enlarg": 180, "cardiomediastinum": 180, "basetask": [180, 182], "multi": [180, 195], "ptmodel": [180, 182, 195], "skmodel": [180, 182], "splits_map": [180, 182], "64": [180, 198], "compos": [180, 192, 195, 196, 198], "unnecessari": [180, 182], "pathologi": [180, 189, 192, 201], "represent": [180, 192, 198], "tabular": [182, 189], "fit": [182, 192, 198], "columntransform": [182, 192, 198], "slicingconfig": 182, "default_max_batch_s": 182, "filepath": 182, "pretrain": [182, 195], "proba": [182, 192, 198], "pd": [182, 197], "notfittederror": 182, "destin": 182, "parent": [182, 192, 195, 198], "dirctori": 182, "best_model_param": [182, 192, 198], "y_train": 182, "seri": 182, "nonei": 182, "male": [189, 195, 196, 200], "outcom": [189, 200, 201], "femal": [189, 192, 195, 196, 198, 200], "gastroenter": [189, 200], "icd": [189, 200], "potassium": [189, 200], "aado2": [189, 200], "carevu": [189, 200], "valuenum": [189, 200], "20": [189, 192, 195, 198, 200], "admiss": [189, 193, 200], "later": [189, 200], "approx": [189, 200], "schizophrenia": [189, 200], "2015": [189, 197, 200], "advanc": [189, 200], "chronic": [189, 200], "routin": [189, 200], "vital": [189, 191, 198, 200], "sign": [189, 192, 198, 200], "hemoglobin": [189, 200], "2009": [189, 200], "radiologi": [189, 191, 200], "lymphadenopathi": [189, 200], "infecti": [189, 200], "occur": [189, 200], "lazi": [189, 200], "subject_id": [189, 193, 200], "raw": [189, 200], "discharg": [189, 200], "2014": [189, 197, 200], "100": [189, 192, 193, 194, 195, 196, 197, 198, 200], "diagnosisstr": [189, 200], "teach": [189, 200], "glucos": [189, 200], "search": [189, 192, 198, 200], "visit": [189, 200], "sepsi": [189, 200], "1a": [189, 200], "most": [189, 192, 200], "recent": [189, 192, 195, 198, 200], "patient_id_hash": [189, 200], "discharge_date_tim": [189, 200], "record": [189, 200], "1b": [189, 200], "abov": [189, 200], "who": [189, 200], "were": [189, 200], "april": [189, 200], "march": [189, 200], "2016": [189, 197, 200], "1c": [189, 200], "2a": [189, 200], "how": [189, 190, 192, 193, 194, 197, 198, 200], "mani": [189, 200], "sodium": [189, 200], "place": [189, 192, 200], "apr": [189, 200], "101": [189, 197, 200], "drift": [189, 199], "experi": [189, 199], "dimension": [189, 199], "reduct": [189, 199], "techniqu": [189, 199], "roll": [189, 199], "window": [189, 199], "biweekli": [189, 199], "kaggl": [189, 192], "heart": 189, "failur": 189, "constant": [189, 201], "distribut": [189, 195, 201], "preprocessor": [189, 201], "creation": [189, 201], "synthea": [189, 197, 198], "prolong": 189, "length": [189, 195], "stai": 189, "inspect": [189, 192, 201], "preprocess": [189, 192, 201], "nan_threshold": [189, 192, 201], "gender": [189, 190, 192, 193, 194, 195, 196, 201], "nih": [189, 195, 196], "diseas": [189, 192, 201], "balanc": [189, 192, 201], "w": [189, 201], "quick": [190, 193, 194, 197], "instruct": [190, 193, 194, 197, 198], "host": [190, 191, 193, 194, 197, 198], "postgr": [190, 193, 194, 197, 198], "usernam": [190, 191, 192, 193, 194, 197], "password": [190, 191, 193, 194, 197, 198], "accordingli": [190, 193, 194, 197], "qo": [190, 191, 193, 194, 197, 198], "dbm": [190, 193, 194, 197, 198], "postgresql": [190, 193, 194, 197, 198, 200], "port": [190, 193, 194, 197, 198], "5432": [190, 193, 194, 197, 198], "localhost": [190, 193, 194, 197, 198], "pwd": [190, 193, 194, 197, 198], "eicu_crd": 190, "home": [190, 192, 193, 194, 195, 196, 197, 198], "amritk": [190, 192, 193, 194, 195, 196, 197, 198], "cach": [190, 192, 193, 194, 195, 196, 197, 198], "pypoetri": [190, 192, 193, 194, 195, 196, 197, 198], "virtualenv": [190, 192, 193, 194, 195, 196, 197, 198], "mhx6ujw0": [190, 192, 193, 194, 195, 196, 197, 198], "py3": [190, 192, 193, 194, 195, 196, 197, 198], "lib": [190, 192, 193, 194, 195, 196, 197, 198], "site": [190, 192, 193, 194, 195, 196, 197, 198], "tqdm": [190, 192, 193, 194, 195, 196, 197, 198], "auto": [190, 192, 193, 194, 195, 196, 197, 198], "py": [190, 192, 193, 194, 195, 196, 197, 198], "21": [190, 191, 192, 193, 194, 195, 196, 197, 198], "tqdmwarn": [190, 192, 193, 194, 195, 196, 197, 198], "iprogress": [190, 192, 193, 194, 195, 196, 197, 198], "ipywidget": [190, 192, 193, 194, 195, 196, 197, 198], "readthedoc": [190, 192, 193, 194, 195, 196, 197, 198], "io": [190, 192, 193, 194, 195, 196, 197, 198], "en": [190, 192, 193, 194, 195, 196, 197, 198], "user_instal": [190, 192, 193, 194, 195, 196, 197, 198], "autonotebook": [190, 192, 193, 194, 195, 196, 197, 198], "notebook_tqdm": [190, 192, 193, 194, 195, 196, 197, 198], "2023": [190, 191, 192, 193, 194, 197, 198], "09": [190, 191, 192, 193, 194, 197, 198], "13": [190, 192, 193, 194, 195, 197, 198], "53": [190, 192, 198], "43": [190, 192, 198], "487": 190, "readi": [190, 191, 193, 194, 197, 198], "39": [190, 191, 192, 193, 194, 195, 197, 198], "admissiondrug": 190, "admissiondx": 190, "allergi": 190, "apacheapsvar": 190, "apachepatientresult": 190, "apachepredvar": 190, "careplancareprovid": 190, "careplaneol": 190, "careplangener": 190, "careplango": 190, "careplaninfectiousdiseas": 190, "customlab": 190, "infusiondrug": 190, "intakeoutput": 190, "microlab": 190, "nurseassess": 190, "nursecar": 190, "nursechart": 190, "pasthistori": 190, "physicalexam": 190, "respiratorycar": 190, "respiratorychart": 190, "treatment": 190, "vitalaperiod": 190, "vitalperiod": 190, "hospitaldischargeyear": 190, "len": [190, 191, 192, 193, 194, 195, 197, 198], "44": [190, 192, 198], "237": 190, "successfulli": [190, 191, 193, 194, 197, 198], "238": 190, "profil": [190, 191, 192, 193, 194, 197, 198], "finish": [190, 191, 193, 194, 197, 198], "run_queri": [190, 191, 193, 194, 197, 198], "050105": 190, "patient_diagnos": 190, "patientunitstayid": 190, "324": 190, "325": 190, "069920": 190, "teachingstatu": 190, "hospitalid": 190, "labnam": 190, "patient_lab": [190, 193], "396": 190, "397": 190, "039890": 190, "drugnam": 190, "patient_med": 190, "580": 190, "581": 190, "161098": 190, "hpc": 191, "ca": 191, "delirium_v4_0_1": 191, "public": [191, 194, 197], "17": [191, 192, 193, 198], "449": 191, "lookup_icd10_ca_descript": 191, "lookup_statcan": 191, "lookup_cci": 191, "lookup_icd10_ca_to_ccsr": 191, "lookup_ip_administr": 191, "lookup_lab_concept": 191, "lookup_vitals_concept": 191, "lookup_pharmacy_concept": 191, "lookup_diagnosi": 191, "locality_vari": 191, "admdad": 191, "derived_vari": 191, "ipscu": 191, "lookup_phy_characterist": 191, "ipintervent": 191, "lookup_ccsr": 191, "lookup_pharmacy_rout": 191, "lookup_transfusion_concept": 191, "lookup_ip_scu": 191, "lookup_er_administr": 191, "lookup_imag": 191, "pharmaci": 191, "lookup_transf": 191, "ipdiagnosi": 191, "lookup_room_transf": 191, "er": 191, "erdiagnosi": 191, "erintervent": 191, "roomtransf": 191, "transfus": 191, "lookup_hospital_num": 191, "51": [191, 192, 198], "902": [191, 197], "903": 191, "093352": 191, "189734": 191, "04": [191, 194, 196, 198], "encounters_queri": 191, "52": [191, 192, 196, 198], "591": 191, "592": 191, "675141": 191, "32567": 191, "hospital_num": 191, "encounters_per_sit": 191, "856": 191, "857": 191, "145693": 191, "lab_op": 191, "collection_date_tim": 191, "test_type_map": 191, "encounters_lab": 191, "genc_id": 191, "sodium_test": 191, "26": [191, 192, 198], "19": [191, 192, 195, 198], "814": 191, "815": [191, 194], "506": 191, "939296": 191, "9305": 191, "showcas": [192, 197, 198, 201], "formul": [192, 198], "o": [192, 195, 198], "shutil": [192, 195, 198], "pathlib": [192, 195, 198], "px": [192, 195, 198], "dateutil": [192, 195, 198], "relativedelta": [192, 195, 198], "kaggle_api_extend": 192, "kaggleapi": 192, "imput": [192, 198], "simpleimput": [192, 198], "pipelin": [192, 198], "minmaxscal": [192, 198], "onehotencod": [192, 198], "e402": [192, 195, 198], "catalog": [192, 198], "create_model": [192, 198], "tabularfeatur": [192, 198], "classificationplott": [192, 195, 198], "flatten_results_dict": [192, 198], "get_metrics_trend": [192, 195, 198], "load_datafram": 192, "offer": [192, 195, 198], "through": [192, 195, 198], "technic": [192, 195, 198], "architectur": [192, 195, 198], "involv": [192, 195, 198], "subpopul": [192, 195, 198], "explaina": [192, 195, 198], "go": [192, 195, 198], "tool": [192, 195, 198], "progress": [192, 195, 198], "subject": [192, 195, 198], "data_dir": [192, 195], "random_se": [192, 198], "train_siz": [192, 198], "com": [192, 195], "Then": 192, "trigger": 192, "download": 192, "credenti": 192, "locat": [192, 197], "machin": [192, 195], "authent": 192, "dataset_download_fil": 192, "fedesoriano": 192, "unzip": 192, "df": 192, "reset_index": [192, 198], "715": 192, "chestpaintyp": 192, "restingbp": 192, "cholesterol": 192, "fastingb": 192, "restingecg": 192, "40": [192, 198], "ata": 192, "140": 192, "289": 192, "49": [192, 198], "nap": 192, "160": 192, "180": 192, "37": [192, 194, 197, 198], "130": 192, "283": 192, "st": 192, "48": [192, 198], "asi": 192, "138": 192, "214": 192, "54": [192, 193], "150": 192, "195": 192, "913": 192, "ta": 192, "110": 192, "264": 192, "914": 192, "68": [192, 198], "144": 192, "193": 192, "915": 192, "57": [192, 194], "131": 192, "916": 192, "236": 192, "lvh": 192, "917": 192, "38": [192, 198], "175": 192, "maxhr": 192, "exerciseangina": 192, "oldpeak": 192, "st_slope": 192, "heartdiseas": 192, "172": 192, "156": 192, "flat": 192, "98": [192, 195], "108": 192, "122": 192, "132": 192, "141": 192, "115": 192, "174": 192, "173": 192, "918": 192, "pie": [192, 195, 198], "update_layout": [192, 195, 198], "histogram": [192, 195, 198], "xaxis_titl": [192, 195, 198], "yaxis_titl": [192, 195, 198], "bargap": [192, 195, 198], "astyp": [192, 198], "11": [192, 195, 198, 201], "update_trac": [192, 195, 198], "textinfo": [192, 198], "percent": [192, 198], "title_text": [192, 198], "hovertempl": [192, 198], "br": [192, 198], "class_count": [192, 198], "value_count": [192, 197, 198], "class_ratio": [192, 198], "8070866141732284": 192, "14": [192, 194, 195, 197, 198, 201], "wa": [192, 195, 198], "li": 192, "et": 192, "al": 192, "features_list": [192, 198], "help": [192, 195, 198], "essenti": [192, 198], "step": [192, 198], "understand": [192, 198], "u": [192, 198], "16": [192, 197, 198], "tab_featur": [192, 198], "ordin": 192, "might": [192, 198], "numeric_transform": [192, 198], "scaler": [192, 198], "binary_transform": [192, 198], "most_frequ": [192, 198], "18": [192, 193, 196, 198], "numeric_featur": [192, 198], "features_by_typ": [192, 198], "numeric_indic": [192, 198], "get_loc": [192, 198], "binary_featur": [192, 198], "ordinal_featur": 192, "binary_indic": [192, 198], "ordinal_indic": 192, "num": [192, 198], "onehot": [192, 198], "handle_unknown": [192, 198], "ignor": [192, 198], "remaind": [192, 198], "passthrough": [192, 198], "let": [192, 198], "done": [192, 198], "independ": 192, "everi": 192, "uci": 192, "archiv": 192, "ic": 192, "edu": 192, "cleandoc": 192, "misc": 192, "cc0": 192, "demograph": [192, 195], "often": 192, "strong": 192, "correl": 192, "older": [192, 198], "higher": 192, "power": [192, 198], "easi": [192, 198], "compat": [192, 198], "22": [192, 198], "from_panda": [192, 198], "cleanup_cache_fil": [192, 198], "num_row": 192, "cast_column": [192, 198], "stratify_by_column": [192, 198], "seed": [192, 198], "lt": [192, 194, 195, 196, 198], "189514": 192, "74": [192, 196], "straightforward": [192, 198], "maintain": [192, 198], "sgd": [192, 198], "logisit": [192, 198], "regress": [192, 198], "sgdclassif": [192, 198], "24": [192, 198], "sgd_classifi": 192, "123": [192, 198], "verbos": [192, 198], "class_weight": 192, "mortalitypredict": [192, 198], "encapsul": [192, 198], "cohes": [192, 198], "structur": [192, 198], "smooth": [192, 198], "manag": [192, 198], "mortality_task": 192, "best": [192, 198], "hyperparamet": [192, 198], "grid": [192, 198], "27": [192, 198], "alpha": 192, "0001": 192, "001": 192, "learning_r": [192, 198], "invscal": 192, "adapt": 192, "eta0": 192, "roc_auc": 192, "59": 192, "629": 192, "wrapper": [192, 195, 198, 200], "sk_model": [192, 198], "630": 192, "631": 192, "sgdclassifi": 192, "x27": [192, 198], "early_stop": 192, "loss": 192, "log_loss": 192, "rerun": [192, 198], "cell": [192, 198], "trust": [192, 198], "On": [192, 195, 198], "github": [192, 195, 198], "unabl": [192, 198], "render": [192, 198], "try": [192, 198], "page": [192, 198], "nbviewer": [192, 198], "sgdclassifiersgdclassifi": 192, "28": [192, 193, 198], "model_param": [192, 198], "epsilon": 192, "fit_intercept": 192, "l1_ratio": 192, "max_it": 192, "n_iter_no_chang": 192, "n_job": [192, 198], "penalti": 192, "l2": 192, "power_t": 192, "tol": 192, "validation_fract": 192, "warm_start": 192, "29": [192, 197, 198], "30": [192, 195, 197, 198, 201], "y_pred": [192, 198], "only_predict": [192, 198], "184": 192, "8212": 192, "variou": [192, 198], "perspect": [192, 198], "metric_collect": [192, 198], "70": [192, 195], "33": [192, 194, 198], "fnr": [192, 195, 198], "ber": [192, 198], "fairness_metric_collect": [192, 198], "34": [192, 198], "dataset_with_pr": [192, 198], "7406": 192, "7557": 192, "51687": 192, "gt": [192, 194, 195, 198], "21716": 192, "21801": 192, "23761": 192, "22031": 192, "22130": 192, "99": 192, "22182": 192, "right": [192, 198], "36": [192, 194, 198], "results_flat": [192, 195, 198], "remove_metr": [192, 198], "796875": 192, "8260869565217391": 192, "6785714285714286": 192, "7450980392156863": 192, "8819444444444444": 192, "8623853211009175": 192, "8676470588235294": 192, "9076923076923077": 192, "8872180451127819": 192, "927972027972028": 192, "842391304347826": 192, "8686868686868687": 192, "8431372549019608": 192, "8557213930348259": 192, "9152319464371114": 192, "plw2901": [192, 195, 198], "plotter": [192, 195, 196, 198], "class_nam": [192, 198], "set_templ": [192, 195, 198], "plotly_whit": [192, 195, 198], "slice_result": [192, 195, 198], "dict_kei": [192, 198], "roc_plot": [192, 198], "roc_curve_comparison": [192, 198], "41": [192, 198], "overall_perform": [192, 198], "metric_valu": [192, 198], "overall_performance_plot": [192, 198], "metrics_valu": [192, 198], "slice_metr": [192, 198], "slice_metrics_plot": [192, 198], "metrics_comparison_bar": [192, 198], "comparison": [192, 198], "reform": [192, 198], "fairness_result": [192, 198], "deepcopi": [192, 198], "fairness_metr": [192, 198], "group_siz": [192, 198], "46": [192, 198], "fairness_plot": [192, 198], "metrics_comparison_scatt": [192, 198], "leverag": [192, 195, 198], "histor": [192, 195, 198], "gather": [192, 195, 198], "merg": [192, 195, 198], "wish": [192, 195, 198], "metrics_trend": [192, 195, 198], "integr": [192, 195, 198], "purpos": [192, 195, 198], "three": [192, 195, 198], "dummi": [192, 195, 198], "demonstr": [192, 195, 198, 201], "trend": [192, 195, 198], "47": [192, 198], "dummy_report_num": [192, 195, 198], "dummy_report_dir": [192, 195, 198], "getcwd": [192, 195, 198], "dummy_report": [192, 195, 198], "simul": [192, 195, 198], "uniform": [192, 195, 198], "dummy_result": [192, 195, 198], "max": [192, 195, 198], "folder": [192, 195, 198], "dummy_report_path": [192, 195, 198], "date_dir": [192, 195, 198], "dummy_d": [192, 195, 198], "todai": [192, 195, 198], "new_dir": [192, 195, 198], "rmtree": [192, 195, 198], "previou": [192, 195, 198], "report_directori": [192, 195, 198], "flat_result": [192, 195, 198], "trends_plot": [192, 195, 198], "audienc": [192, 198], "organ": [192, 198], "store": [192, 198], "regulatory_requir": [192, 198], "releas": [192, 197, 198], "team": [192, 198], "vectorinstitut": [192, 198], "linear_model": 192, "next": [192, 198], "use_cas": [192, 198], "These": [192, 198], "fairness_assess": [192, 198], "well": [192, 195, 198], "taken": [192, 198], "ethical_consider": [192, 198], "clinician": [192, 198], "engin": [192, 198], "improv": [192, 198], "bias": [192, 195, 198], "lead": [192, 198], "wors": [192, 198], "retrain": [192, 198], "below": [192, 198], "By": [192, 198], "report_path": [192, 195, 198], "view": [192, 195, 198, 201], "092": 193, "expire_flag": 193, "932": 193, "934": 193, "032659": 193, "patient_admiss": [193, 194], "long_titl": [193, 194], "patient_admissions_diagnos": [193, 194], "hadm_id": [193, 194], "079": 193, "080": 193, "106374": 193, "154": 193, "155": 193, "035972": 193, "chartevents_op": 193, "dbsourc": 193, "chart_ev": [193, 194], "patient_chart_ev": 193, "55": [193, 194, 195], "127": 193, "128": 193, "69": [193, 196], "928861": 193, "v2": [194, 197], "975": 194, "fhir_etl": 194, "fhir_trm": 194, "information_schema": [194, 197], "mimic_fhir": 194, "mimiciv_deriv": 194, "mimiciv_": 194, "mimiciv_hosp": 194, "mimiciv_icu": 194, "mimiciv_not": 194, "admittim": 194, "dischtim": 194, "anchor_year_differ": 194, "941": 194, "942": 194, "191435": 194, "diagnoses_op": 194, "icd_vers": 194, "813": 194, "825588": 194, "r": 194, "349": 194, "350": 194, "488212": 194, "82": [194, 195], "categori": [194, 198], "patient_admissions_vit": 194, "574": 194, "576": 194, "185425": 194, "patient_admissions_lab": 194, "58": [194, 196, 198], "841": 194, "842": 194, "63": [194, 195, 196], "230410": 194, "radiology_not": 194, "radiology_notes_op": 194, "patient_admissions_radiology_not": 194, "804": 194, "805": [194, 195, 201], "924855": 194, "npartit": 194, "268": 194, "434427": 194, "35639": 194, "core": 194, "056": 194, "057": 194, "009834": 194, "torchxrayvis": [195, 196], "functool": 195, "graph_object": [195, 198], "lambdad": [195, 196], "resiz": [195, 196], "densenet": [195, 196], "loader": [195, 196], "load_nihcxr": [195, 196], "apply_transform": 195, "get_devic": 195, "devic": 195, "clinical_dataset": [195, 196], "nih_d": [195, 196], "4000": 195, "spatial_s": [195, 196], "224": [195, 196], "allow_missing_kei": [195, 196], "1024": [195, 196], "newaxi": [195, 196], "densenet121": [195, 196], "res224": [195, 196], "231652": 195, "71": 195, "2511": 195, "3710": 195, "int64": [195, 197], "originalimag": 195, "width": [195, 198], "height": [195, 198], "originalimagepixelspac": 195, "unnam": 195, "float32": 195, "__index_level_0__": 195, "arang": 195, "nih_eval_results_gend": 195, "scatter": 195, "mode": 195, "marker": 195, "perf_metric_gend": 195, "title_x": 195, "title_font_s": 195, "768": 195, "selector": 195, "58764": 195, "86": 195, "62441": 195, "96": [195, 196], "63952": 195, "65": [195, 196], "nih_eval_results_ag": 195, "perf_metric_ag": 195, "62132": 195, "62755": 195, "62632": 195, "63971": 195, "showlegend": 195, "bar": [195, 198], "balanced_error_r": 195, "nih_fairness_result_ag": 195, "balancederrorr": 195, "fairness_ag": 195, "63042": 195, "54849": 195, "62289": 195, "fairness_age_par": 195, "slice_": 195, "itr": 195, "enumer": 195, "dummy_reports_cxr": 195, "112": [195, 201], "120": [195, 201], "frontal": [195, 201], "fourteen": 195, "mine": 195, "radiolog": 195, "pleural": 195, "thicken": 195, "80": [195, 198], "remain": 195, "arxiv": 195, "ab": 195, "2111": 195, "00595": 195, "inproceed": 195, "cohen2022xrv": 195, "cohen": 195, "joseph": 195, "paul": 195, "viviano": 195, "bertin": 195, "morrison": 195, "torabian": 195, "parsa": 195, "guarrera": 195, "matteo": 195, "lungren": 195, "matthew": 195, "chaudhari": 195, "akshai": 195, "brook": 195, "rupert": 195, "hashir": 195, "mohammad": 195, "bertrand": 195, "hadrien": 195, "booktitl": 195, "deep": 195, "mlmed": 195, "arxivid": 195, "cohen2020limit": 195, "cross": 195, "domain": [195, 197], "autom": [195, 198], "2002": 195, "02497": 195, "medicin": 195, "radiologist": 195, "scientist": 195, "inabl": 195, "addition": 195, "poor": 195, "qualiti": 195, "artifact": 195, "geograph": 195, "region": 195, "ethic": 195, "ensur": 195, "divers": 195, "regularli": 195, "human": 195, "expertis": 195, "address": 195, "rare": 195, "qualit": 195, "detector": 196, "reductor": 196, "tstester": 196, "plot_drift_experi": 196, "plot_drift_timeseri": 196, "shifter": 196, "source_d": 196, "target_d": 196, "25596": 196, "67311": 196, "dr_method": 196, "bbse": 196, "soft": 196, "txrv": 196, "ae": 196, "sensitivity_test": 196, "tester": 196, "tester_method": 196, "source_sample_s": 196, "target_sample_s": 196, "num_run": 196, "detect_shift": 196, "chexpert": 196, "chex": 196, "padchest": 196, "pc": 196, "source_slic": 196, "target_slic": 196, "50791": 196, "49247": 196, "44759": 196, "50134": 196, "46152": 196, "47213": 196, "46946": 196, "46966": 196, "92": 196, "rolling_window_drift": 196, "timestamp_column": 196, "window_s": 196, "4w": 196, "etl": [197, 198], "hous": 197, "synthea_integration_test": 197, "cdm_synthea10": 197, "observation_period": 197, "condition_occurr": 197, "drug_exposur": 197, "procedure_occurr": 197, "device_exposur": 197, "death": 197, "note_nlp": 197, "specimen": 197, "fact_relationship": 197, "care_sit": 197, "payer_plan_period": 197, "cost": 197, "drug_era": 197, "dose_era": 197, "condition_era": 197, "episod": 197, "episode_ev": 197, "cdm_sourc": 197, "vocabulari": 197, "concept_class": 197, "concept_relationship": 197, "relationship": 197, "concept_synonym": 197, "concept_ancestor": 197, "source_to_concept_map": 197, "drug_strength": 197, "cohort": [197, 198], "cohort_definit": 197, "source_to_standard_vocab_map": 197, "source_to_source_vocab_map": 197, "all_visit": 197, "assign_all_visit_id": 197, "final_visit_id": 197, "visit_start_d": 197, "to_datetim": 197, "dt": 197, "sort_index": 197, "605": 197, "607": 197, "077730": 197, "2011": 197, "2012": 197, "2013": 197, "2017": 197, "2018": 197, "visits_measur": 197, "visit_occurrence_id": 197, "733": 197, "734": 197, "066410": 197, "repo": 197, "437": 197, "visits_concept_map": 197, "discharge_to_concept_id": 197, "admitting_concept_id": 197, "visits_concept_mapped_di": 197, "discharge_to_concept_nam": 197, "di": 197, "407": 197, "408": 197, "023836": 197, "5815": 197, "gender_concept_nam": 197, "person_visit": 197, "person_visits_condit": 197, "person_visits_conditions_measur": 197, "condition_concept_id": 197, "condition_concept_nam": 197, "904": 197, "425851": 197, "measurement_concept_nam": 197, "bodi": 197, "temperatur": 197, "longer": 198, "v3": 198, "num_dai": 198, "synthea_demo": 198, "def": 198, "get_encount": 198, "nativ": 198, "patient_id": 198, "birthdat": 198, "race": 198, "ethnic": 198, "patient_encount": 198, "encounter_id": 198, "start_year": 198, "birthdate_year": 198, "lo": 198, "get_observ": 198, "groupby_op": 198, "n_ob": 198, "observations_count": 198, "observations_stat": 198, "pivot_t": 198, "add_prefix": 198, "obs_": 198, "get_med": 198, "n_med": 198, "get_procedur": 198, "procedur": [198, 201], "n_procedur": 198, "cohort_queri": 198, "to_merg": 198, "to_merge_df": 198, "509": 198, "563": 198, "564": 198, "709101": 198, "366": 198, "367": 198, "802094": 198, "935": 198, "936": 198, "389443": 198, "432": 198, "434": 198, "492748": 198, "537": 198, "538": 198, "102891": 198, "payer": 198, "encounterclass": 198, "base_encounter_cost": 198, "total_claim_cost": 198, "payer_coverag": 198, "reasoncod": 198, "reasondescript": 198, "null_count": 198, "isnul": 198, "600": 198, "respect": 198, "larger": 198, "thresh_nan": 198, "dropna": 198, "thresh": 198, "length_of_stai": 198, "length_of_stay_count": 198, "length_of_stay_kei": 198, "5573997233748271": 198, "obs_alanin": 198, "aminotransferas": 198, "enzymat": 198, "volum": 198, "serum": 198, "plasma": 198, "obs_albumin": 198, "obs_alkalin": 198, "phosphatas": 198, "obs_aspart": 198, "obs_bilirubin": 198, "obs_bodi": 198, "obs_calcium": 198, "obs_carbon": 198, "dioxid": 198, "mole": 198, "obs_chlorid": 198, "obs_creatinin": 198, "obs_diastol": 198, "blood": 198, "pressur": 198, "obs_erythrocyt": 198, "obs_ferritin": 198, "obs_glomerular": 198, "filtrat": 198, "73": 198, "sq": 198, "obs_glucos": 198, "obs_hematocrit": 198, "obs_hemoglobin": 198, "obs_leukocyt": 198, "obs_mch": 198, "entit": 198, "obs_mchc": 198, "obs_mcv": 198, "obs_oxygen": 198, "satur": 198, "arteri": 198, "obs_platelet": 198, "obs_potassium": 198, "obs_protein": 198, "obs_sodium": 198, "obs_systol": 198, "obs_troponin": 198, "cardiac": 198, "obs_urea": 198, "nitrogen": 198, "1126": 198, "160628": 198, "sllearn": 198, "xgb_classifi": 198, "los_task": 198, "n_estim": 198, "250": 198, "500": 198, "max_depth": 198, "reg_lambda": 198, "colsample_bytre": 198, "gamma": 198, "203": 198, "204": 198, "205": 198, "xgbclassifi": 198, "base_scor": 198, "booster": 198, "callback": 198, "colsample_bylevel": 198, "colsample_bynod": 198, "early_stopping_round": 198, "enable_categor": 198, "eval_metr": 198, "logloss": 198, "feature_typ": 198, "gpu_id": 198, "grow_polici": 198, "importance_typ": 198, "interaction_constraint": 198, "max_bin": 198, "max_cat_threshold": 198, "max_cat_to_onehot": 198, "max_delta_step": 198, "max_leav": 198, "min_child_weight": 198, "miss": 198, "monotone_constraint": 198, "num_parallel_tre": 198, "predictor": 198, "xgbclassifierxgbclassifi": 198, "logist": 198, "use_label_encod": 198, "reg_alpha": 198, "sampling_method": 198, "scale_pos_weight": 198, "subsampl": 198, "tree_method": 198, "validate_paramet": 198, "226": 198, "4383": 198, "07": 198, "4137": 198, "3842": 198, "95526": 198, "83": 198, "8741": 198, "9604": 198, "9680": 198, "9627": 198, "9968": 198, "amp": 198, "9141": 198, "79": 198, "9374": 198, "9294": 198, "81": 198, "9357": 198, "76": 198, "9201": 198, "9033": 198, "8648648648648649": 198, "9354838709677419": 198, "8405797101449275": 198, "8854961832061069": 198, "9565217391304348": 198, "7222222222222222": 198, "7037037037037037": 198, "7307692307692307": 198, "7169811320754716": 198, "8784340659340659": 198, "8547008547008547": 198, "9285714285714286": 198, "8441558441558441": 198, "8843537414965986": 198, "949512987012987": 198, "8532110091743119": 198, "8823529411764706": 198, "947274031563845": 198, "8539823008849557": 198, "9057971014492754": 198, "8620689655172413": 198, "8833922261484098": 198, "9478501489995743": 198, "xgboost": 198, "python_api": 198, "statist": 199, "commun": 200, "around": 200, "goal": 201}, "objects": {"cyclops": [[183, 0, 0, "-", "data"], [184, 0, 0, "-", "evaluate"], [185, 0, 0, "-", "monitor"], [186, 0, 0, "-", "query"], [187, 0, 0, "-", "report"], [188, 0, 0, "-", "tasks"]], "cyclops.data": [[183, 0, 0, "-", "features"], [6, 0, 0, "-", "slicer"]], "cyclops.data.features": [[4, 0, 0, "-", "medical_image"]], "cyclops.data.features.medical_image": [[5, 1, 1, "", "MedicalImage"]], "cyclops.data.features.medical_image.MedicalImage": [[5, 2, 1, "", "__call__"], [5, 2, 1, "", "cast_storage"], [5, 2, 1, "", "decode_example"], [5, 2, 1, "", "embed_storage"], [5, 2, 1, "", "encode_example"], [5, 2, 1, "", "flatten"]], "cyclops.data.slicer": [[7, 1, 1, "", "SliceSpec"], [8, 4, 1, "", "compound_filter"], [9, 4, 1, "", "filter_datetime"], [10, 4, 1, "", "filter_non_null"], [11, 4, 1, "", "filter_range"], [12, 4, 1, "", "filter_string_contains"], [13, 4, 1, "", "filter_value"], [14, 4, 1, "", "is_datetime"], [15, 4, 1, "", "overall"]], "cyclops.data.slicer.SliceSpec": [[7, 3, 1, "", "_registry"], [7, 2, 1, "", "add_slice_spec"], [7, 3, 1, "", "column_names"], [7, 2, 1, "", "get_slices"], [7, 3, 1, "", "include_overall"], [7, 2, 1, "", "slices"], [7, 3, 1, "", "spec_list"], [7, 3, 1, "", "validate"]], "cyclops.evaluate": [[16, 0, 0, "-", "evaluator"], [184, 0, 0, "-", "fairness"], [184, 0, 0, "-", "metrics"]], "cyclops.evaluate.evaluator": [[17, 4, 1, "", "evaluate"]], "cyclops.evaluate.fairness": [[18, 0, 0, "-", "config"], [20, 0, 0, "-", "evaluator"]], "cyclops.evaluate.fairness.config": [[19, 1, 1, "", "FairnessConfig"]], "cyclops.evaluate.fairness.evaluator": [[21, 4, 1, "", "evaluate_fairness"], [22, 4, 1, "", "warn_too_many_unique_values"]], "cyclops.evaluate.metrics": [[23, 0, 0, "-", "accuracy"], [28, 0, 0, "-", "auroc"], [33, 0, 0, "-", "f_beta"], [42, 0, 0, "-", "factory"], [184, 0, 0, "-", "functional"], [73, 0, 0, "-", "metric"], [77, 0, 0, "-", "precision_recall"], [86, 0, 0, "-", "precision_recall_curve"], [91, 0, 0, "-", "roc"], [96, 0, 0, "-", "sensitivity"], [101, 0, 0, "-", "specificity"], [106, 0, 0, "-", "stat_scores"]], "cyclops.evaluate.metrics.accuracy": [[24, 1, 1, "", "Accuracy"], [25, 1, 1, "", "BinaryAccuracy"], [26, 1, 1, "", "MulticlassAccuracy"], [27, 1, 1, "", "MultilabelAccuracy"]], "cyclops.evaluate.metrics.accuracy.Accuracy": [[24, 2, 1, "", "__add__"], [24, 2, 1, "", "__call__"], [24, 2, 1, "", "__init__"], [24, 2, 1, "", "__mul__"], [24, 2, 1, "", "add_state"], [24, 2, 1, "", "clone"], [24, 2, 1, "", "compute"], [24, 2, 1, "", "reset_state"], [24, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.accuracy.BinaryAccuracy": [[25, 2, 1, "", "__add__"], [25, 2, 1, "", "__call__"], [25, 2, 1, "", "__init__"], [25, 2, 1, "", "__mul__"], [25, 2, 1, "", "add_state"], [25, 2, 1, "", "clone"], [25, 2, 1, "", "compute"], [25, 2, 1, "", "reset_state"], [25, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy": [[26, 2, 1, "", "__add__"], [26, 2, 1, "", "__call__"], [26, 2, 1, "", "__init__"], [26, 2, 1, "", "__mul__"], [26, 2, 1, "", "add_state"], [26, 2, 1, "", "clone"], [26, 2, 1, "", "compute"], [26, 2, 1, "", "reset_state"], [26, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy": [[27, 2, 1, "", "__add__"], [27, 2, 1, "", "__call__"], [27, 2, 1, "", "__init__"], [27, 2, 1, "", "__mul__"], [27, 2, 1, "", "add_state"], [27, 2, 1, "", "clone"], [27, 2, 1, "", "compute"], [27, 2, 1, "", "reset_state"], [27, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.auroc": [[29, 1, 1, "", "AUROC"], [30, 1, 1, "", "BinaryAUROC"], [31, 1, 1, "", "MulticlassAUROC"], [32, 1, 1, "", "MultilabelAUROC"]], "cyclops.evaluate.metrics.auroc.AUROC": [[29, 2, 1, "", "__add__"], [29, 2, 1, "", "__call__"], [29, 2, 1, "", "__init__"], [29, 2, 1, "", "__mul__"], [29, 2, 1, "", "add_state"], [29, 2, 1, "", "clone"], [29, 2, 1, "", "compute"], [29, 2, 1, "", "reset_state"], [29, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.auroc.BinaryAUROC": [[30, 2, 1, "", "__add__"], [30, 2, 1, "", "__call__"], [30, 2, 1, "", "__init__"], [30, 2, 1, "", "__mul__"], [30, 2, 1, "", "add_state"], [30, 2, 1, "", "clone"], [30, 2, 1, "", "compute"], [30, 2, 1, "", "reset_state"], [30, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.auroc.MulticlassAUROC": [[31, 2, 1, "", "__add__"], [31, 2, 1, "", "__call__"], [31, 2, 1, "", "__init__"], [31, 2, 1, "", "__mul__"], [31, 2, 1, "", "add_state"], [31, 2, 1, "", "clone"], [31, 2, 1, "", "compute"], [31, 2, 1, "", "reset_state"], [31, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.auroc.MultilabelAUROC": [[32, 2, 1, "", "__add__"], [32, 2, 1, "", "__call__"], [32, 2, 1, "", "__init__"], [32, 2, 1, "", "__mul__"], [32, 2, 1, "", "add_state"], [32, 2, 1, "", "clone"], [32, 2, 1, "", "compute"], [32, 2, 1, "", "reset_state"], [32, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta": [[34, 1, 1, "", "BinaryF1Score"], [35, 1, 1, "", "BinaryFbetaScore"], [36, 1, 1, "", "F1Score"], [37, 1, 1, "", "FbetaScore"], [38, 1, 1, "", "MulticlassF1Score"], [39, 1, 1, "", "MulticlassFbetaScore"], [40, 1, 1, "", "MultilabelF1Score"], [41, 1, 1, "", "MultilabelFbetaScore"]], "cyclops.evaluate.metrics.f_beta.BinaryF1Score": [[34, 2, 1, "", "__add__"], [34, 2, 1, "", "__call__"], [34, 2, 1, "", "__init__"], [34, 2, 1, "", "__mul__"], [34, 2, 1, "", "add_state"], [34, 2, 1, "", "clone"], [34, 2, 1, "", "compute"], [34, 2, 1, "", "reset_state"], [34, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore": [[35, 2, 1, "", "__add__"], [35, 2, 1, "", "__call__"], [35, 2, 1, "", "__init__"], [35, 2, 1, "", "__mul__"], [35, 2, 1, "", "add_state"], [35, 2, 1, "", "clone"], [35, 2, 1, "", "compute"], [35, 2, 1, "", "reset_state"], [35, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.F1Score": [[36, 2, 1, "", "__add__"], [36, 2, 1, "", "__call__"], [36, 2, 1, "", "__init__"], [36, 2, 1, "", "__mul__"], [36, 2, 1, "", "add_state"], [36, 2, 1, "", "clone"], [36, 2, 1, "", "compute"], [36, 2, 1, "", "reset_state"], [36, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.FbetaScore": [[37, 2, 1, "", "__add__"], [37, 2, 1, "", "__call__"], [37, 2, 1, "", "__init__"], [37, 2, 1, "", "__mul__"], [37, 2, 1, "", "add_state"], [37, 2, 1, "", "clone"], [37, 2, 1, "", "compute"], [37, 2, 1, "", "reset_state"], [37, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.MulticlassF1Score": [[38, 2, 1, "", "__add__"], [38, 2, 1, "", "__call__"], [38, 2, 1, "", "__init__"], [38, 2, 1, "", "__mul__"], [38, 2, 1, "", "add_state"], [38, 2, 1, "", "clone"], [38, 2, 1, "", "compute"], [38, 2, 1, "", "reset_state"], [38, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore": [[39, 2, 1, "", "__add__"], [39, 2, 1, "", "__call__"], [39, 2, 1, "", "__init__"], [39, 2, 1, "", "__mul__"], [39, 2, 1, "", "add_state"], [39, 2, 1, "", "clone"], [39, 2, 1, "", "compute"], [39, 2, 1, "", "reset_state"], [39, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.MultilabelF1Score": [[40, 2, 1, "", "__add__"], [40, 2, 1, "", "__call__"], [40, 2, 1, "", "__init__"], [40, 2, 1, "", "__mul__"], [40, 2, 1, "", "add_state"], [40, 2, 1, "", "clone"], [40, 2, 1, "", "compute"], [40, 2, 1, "", "reset_state"], [40, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore": [[41, 2, 1, "", "__add__"], [41, 2, 1, "", "__call__"], [41, 2, 1, "", "__init__"], [41, 2, 1, "", "__mul__"], [41, 2, 1, "", "add_state"], [41, 2, 1, "", "clone"], [41, 2, 1, "", "compute"], [41, 2, 1, "", "reset_state"], [41, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.factory": [[43, 4, 1, "", "create_metric"]], "cyclops.evaluate.metrics.functional": [[44, 0, 0, "-", "accuracy"], [45, 0, 0, "-", "auroc"], [46, 0, 0, "-", "f_beta"], [55, 0, 0, "-", "precision_recall"], [64, 0, 0, "-", "precision_recall_curve"], [65, 0, 0, "-", "roc"], [70, 0, 0, "-", "sensitivity"], [71, 0, 0, "-", "specificity"], [72, 0, 0, "-", "stat_scores"]], "cyclops.evaluate.metrics.functional.f_beta": [[47, 4, 1, "", "binary_f1_score"], [48, 4, 1, "", "binary_fbeta_score"], [49, 4, 1, "", "f1_score"], [50, 4, 1, "", "fbeta_score"], [51, 4, 1, "", "multiclass_f1_score"], [52, 4, 1, "", "multiclass_fbeta_score"], [53, 4, 1, "", "multilabel_f1_score"], [54, 4, 1, "", "multilabel_fbeta_score"]], "cyclops.evaluate.metrics.functional.precision_recall": [[56, 4, 1, "", "binary_precision"], [57, 4, 1, "", "binary_recall"], [58, 4, 1, "", "multiclass_precision"], [59, 4, 1, "", "multiclass_recall"], [60, 4, 1, "", "multilabel_precision"], [61, 4, 1, "", "multilabel_recall"], [62, 4, 1, "", "precision"], [63, 4, 1, "", "recall"]], "cyclops.evaluate.metrics.functional.roc": [[66, 4, 1, "", "binary_roc_curve"], [67, 4, 1, "", "multiclass_roc_curve"], [68, 4, 1, "", "multilabel_roc_curve"], [69, 4, 1, "", "roc_curve"]], "cyclops.evaluate.metrics.metric": [[74, 1, 1, "", "Metric"], [75, 1, 1, "", "MetricCollection"], [76, 1, 1, "", "OperatorMetric"]], "cyclops.evaluate.metrics.metric.Metric": [[74, 2, 1, "", "__add__"], [74, 2, 1, "", "__call__"], [74, 2, 1, "", "__init__"], [74, 2, 1, "", "__mul__"], [74, 2, 1, "", "add_state"], [74, 2, 1, "", "clone"], [74, 2, 1, "", "compute"], [74, 2, 1, "", "reset_state"], [74, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.metric.MetricCollection": [[75, 2, 1, "", "__call__"], [75, 2, 1, "", "__init__"], [75, 2, 1, "", "add_metrics"], [75, 2, 1, "", "clear"], [75, 2, 1, "", "clone"], [75, 2, 1, "", "compute"], [75, 2, 1, "", "get"], [75, 2, 1, "", "items"], [75, 2, 1, "", "keys"], [75, 2, 1, "", "pop"], [75, 2, 1, "", "popitem"], [75, 2, 1, "", "reset_state"], [75, 2, 1, "", "setdefault"], [75, 2, 1, "", "update"], [75, 2, 1, "", "update_state"], [75, 2, 1, "", "values"]], "cyclops.evaluate.metrics.metric.OperatorMetric": [[76, 2, 1, "", "__add__"], [76, 2, 1, "", "__call__"], [76, 2, 1, "", "__init__"], [76, 2, 1, "", "__mul__"], [76, 2, 1, "", "add_state"], [76, 2, 1, "", "clone"], [76, 2, 1, "", "compute"], [76, 2, 1, "", "reset_state"], [76, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall": [[78, 1, 1, "", "BinaryPrecision"], [79, 1, 1, "", "BinaryRecall"], [80, 1, 1, "", "MulticlassPrecision"], [81, 1, 1, "", "MulticlassRecall"], [82, 1, 1, "", "MultilabelPrecision"], [83, 1, 1, "", "MultilabelRecall"], [84, 1, 1, "", "Precision"], [85, 1, 1, "", "Recall"]], "cyclops.evaluate.metrics.precision_recall.BinaryPrecision": [[78, 2, 1, "", "__add__"], [78, 2, 1, "", "__call__"], [78, 2, 1, "", "__init__"], [78, 2, 1, "", "__mul__"], [78, 2, 1, "", "add_state"], [78, 2, 1, "", "clone"], [78, 2, 1, "", "compute"], [78, 2, 1, "", "reset_state"], [78, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.BinaryRecall": [[79, 2, 1, "", "__add__"], [79, 2, 1, "", "__call__"], [79, 2, 1, "", "__init__"], [79, 2, 1, "", "__mul__"], [79, 2, 1, "", "add_state"], [79, 2, 1, "", "clone"], [79, 2, 1, "", "compute"], [79, 2, 1, "", "reset_state"], [79, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision": [[80, 2, 1, "", "__add__"], [80, 2, 1, "", "__call__"], [80, 2, 1, "", "__init__"], [80, 2, 1, "", "__mul__"], [80, 2, 1, "", "add_state"], [80, 2, 1, "", "clone"], [80, 2, 1, "", "compute"], [80, 2, 1, "", "reset_state"], [80, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.MulticlassRecall": [[81, 2, 1, "", "__add__"], [81, 2, 1, "", "__call__"], [81, 2, 1, "", "__init__"], [81, 2, 1, "", "__mul__"], [81, 2, 1, "", "add_state"], [81, 2, 1, "", "clone"], [81, 2, 1, "", "compute"], [81, 2, 1, "", "reset_state"], [81, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision": [[82, 2, 1, "", "__add__"], [82, 2, 1, "", "__call__"], [82, 2, 1, "", "__init__"], [82, 2, 1, "", "__mul__"], [82, 2, 1, "", "add_state"], [82, 2, 1, "", "clone"], [82, 2, 1, "", "compute"], [82, 2, 1, "", "reset_state"], [82, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.MultilabelRecall": [[83, 2, 1, "", "__add__"], [83, 2, 1, "", "__call__"], [83, 2, 1, "", "__init__"], [83, 2, 1, "", "__mul__"], [83, 2, 1, "", "add_state"], [83, 2, 1, "", "clone"], [83, 2, 1, "", "compute"], [83, 2, 1, "", "reset_state"], [83, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.Precision": [[84, 2, 1, "", "__add__"], [84, 2, 1, "", "__call__"], [84, 2, 1, "", "__init__"], [84, 2, 1, "", "__mul__"], [84, 2, 1, "", "add_state"], [84, 2, 1, "", "clone"], [84, 2, 1, "", "compute"], [84, 2, 1, "", "reset_state"], [84, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall.Recall": [[85, 2, 1, "", "__add__"], [85, 2, 1, "", "__call__"], [85, 2, 1, "", "__init__"], [85, 2, 1, "", "__mul__"], [85, 2, 1, "", "add_state"], [85, 2, 1, "", "clone"], [85, 2, 1, "", "compute"], [85, 2, 1, "", "reset_state"], [85, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall_curve": [[87, 1, 1, "", "BinaryPrecisionRecallCurve"], [88, 1, 1, "", "MulticlassPrecisionRecallCurve"], [89, 1, 1, "", "MultilabelPrecisionRecallCurve"], [90, 1, 1, "", "PrecisionRecallCurve"]], "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve": [[87, 2, 1, "", "__add__"], [87, 2, 1, "", "__call__"], [87, 2, 1, "", "__init__"], [87, 2, 1, "", "__mul__"], [87, 2, 1, "", "add_state"], [87, 2, 1, "", "clone"], [87, 2, 1, "", "compute"], [87, 2, 1, "", "reset_state"], [87, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve": [[88, 2, 1, "", "__add__"], [88, 2, 1, "", "__call__"], [88, 2, 1, "", "__init__"], [88, 2, 1, "", "__mul__"], [88, 2, 1, "", "add_state"], [88, 2, 1, "", "clone"], [88, 2, 1, "", "compute"], [88, 2, 1, "", "reset_state"], [88, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve": [[89, 2, 1, "", "__add__"], [89, 2, 1, "", "__call__"], [89, 2, 1, "", "__init__"], [89, 2, 1, "", "__mul__"], [89, 2, 1, "", "add_state"], [89, 2, 1, "", "clone"], [89, 2, 1, "", "compute"], [89, 2, 1, "", "reset_state"], [89, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve": [[90, 2, 1, "", "__add__"], [90, 2, 1, "", "__call__"], [90, 2, 1, "", "__init__"], [90, 2, 1, "", "__mul__"], [90, 2, 1, "", "add_state"], [90, 2, 1, "", "clone"], [90, 2, 1, "", "compute"], [90, 2, 1, "", "reset_state"], [90, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.roc": [[92, 1, 1, "", "BinaryROCCurve"], [93, 1, 1, "", "MulticlassROCCurve"], [94, 1, 1, "", "MultilabelROCCurve"], [95, 1, 1, "", "ROCCurve"]], "cyclops.evaluate.metrics.roc.BinaryROCCurve": [[92, 2, 1, "", "__add__"], [92, 2, 1, "", "__call__"], [92, 2, 1, "", "__init__"], [92, 2, 1, "", "__mul__"], [92, 2, 1, "", "add_state"], [92, 2, 1, "", "clone"], [92, 2, 1, "", "compute"], [92, 2, 1, "", "reset_state"], [92, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.roc.MulticlassROCCurve": [[93, 2, 1, "", "__add__"], [93, 2, 1, "", "__call__"], [93, 2, 1, "", "__init__"], [93, 2, 1, "", "__mul__"], [93, 2, 1, "", "add_state"], [93, 2, 1, "", "clone"], [93, 2, 1, "", "compute"], [93, 2, 1, "", "reset_state"], [93, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.roc.MultilabelROCCurve": [[94, 2, 1, "", "__add__"], [94, 2, 1, "", "__call__"], [94, 2, 1, "", "__init__"], [94, 2, 1, "", "__mul__"], [94, 2, 1, "", "add_state"], [94, 2, 1, "", "clone"], [94, 2, 1, "", "compute"], [94, 2, 1, "", "reset_state"], [94, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.roc.ROCCurve": [[95, 2, 1, "", "__add__"], [95, 2, 1, "", "__call__"], [95, 2, 1, "", "__init__"], [95, 2, 1, "", "__mul__"], [95, 2, 1, "", "add_state"], [95, 2, 1, "", "clone"], [95, 2, 1, "", "compute"], [95, 2, 1, "", "reset_state"], [95, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.sensitivity": [[97, 1, 1, "", "BinarySensitivity"], [98, 1, 1, "", "MulticlassSensitivity"], [99, 1, 1, "", "MultilabelSensitivity"], [100, 1, 1, "", "Sensitivity"]], "cyclops.evaluate.metrics.sensitivity.BinarySensitivity": [[97, 2, 1, "", "__add__"], [97, 2, 1, "", "__call__"], [97, 2, 1, "", "__init__"], [97, 2, 1, "", "__mul__"], [97, 2, 1, "", "add_state"], [97, 2, 1, "", "clone"], [97, 2, 1, "", "compute"], [97, 2, 1, "", "reset_state"], [97, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity": [[98, 2, 1, "", "__add__"], [98, 2, 1, "", "__call__"], [98, 2, 1, "", "__init__"], [98, 2, 1, "", "__mul__"], [98, 2, 1, "", "add_state"], [98, 2, 1, "", "clone"], [98, 2, 1, "", "compute"], [98, 2, 1, "", "reset_state"], [98, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity": [[99, 2, 1, "", "__add__"], [99, 2, 1, "", "__call__"], [99, 2, 1, "", "__init__"], [99, 2, 1, "", "__mul__"], [99, 2, 1, "", "add_state"], [99, 2, 1, "", "clone"], [99, 2, 1, "", "compute"], [99, 2, 1, "", "reset_state"], [99, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.sensitivity.Sensitivity": [[100, 2, 1, "", "__add__"], [100, 2, 1, "", "__call__"], [100, 2, 1, "", "__init__"], [100, 2, 1, "", "__mul__"], [100, 2, 1, "", "add_state"], [100, 2, 1, "", "clone"], [100, 2, 1, "", "compute"], [100, 2, 1, "", "reset_state"], [100, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.specificity": [[102, 1, 1, "", "BinarySpecificity"], [103, 1, 1, "", "MulticlassSpecificity"], [104, 1, 1, "", "MultilabelSpecificity"], [105, 1, 1, "", "Specificity"]], "cyclops.evaluate.metrics.specificity.BinarySpecificity": [[102, 2, 1, "", "__add__"], [102, 2, 1, "", "__call__"], [102, 2, 1, "", "__init__"], [102, 2, 1, "", "__mul__"], [102, 2, 1, "", "add_state"], [102, 2, 1, "", "clone"], [102, 2, 1, "", "compute"], [102, 2, 1, "", "reset_state"], [102, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.specificity.MulticlassSpecificity": [[103, 2, 1, "", "__add__"], [103, 2, 1, "", "__call__"], [103, 2, 1, "", "__init__"], [103, 2, 1, "", "__mul__"], [103, 2, 1, "", "add_state"], [103, 2, 1, "", "clone"], [103, 2, 1, "", "compute"], [103, 2, 1, "", "reset_state"], [103, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.specificity.MultilabelSpecificity": [[104, 2, 1, "", "__add__"], [104, 2, 1, "", "__call__"], [104, 2, 1, "", "__init__"], [104, 2, 1, "", "__mul__"], [104, 2, 1, "", "add_state"], [104, 2, 1, "", "clone"], [104, 2, 1, "", "compute"], [104, 2, 1, "", "reset_state"], [104, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.specificity.Specificity": [[105, 2, 1, "", "__add__"], [105, 2, 1, "", "__call__"], [105, 2, 1, "", "__init__"], [105, 2, 1, "", "__mul__"], [105, 2, 1, "", "add_state"], [105, 2, 1, "", "clone"], [105, 2, 1, "", "compute"], [105, 2, 1, "", "reset_state"], [105, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.stat_scores": [[107, 1, 1, "", "BinaryStatScores"], [108, 1, 1, "", "MulticlassStatScores"], [109, 1, 1, "", "MultilabelStatScores"], [110, 1, 1, "", "StatScores"]], "cyclops.evaluate.metrics.stat_scores.BinaryStatScores": [[107, 2, 1, "", "__add__"], [107, 2, 1, "", "__call__"], [107, 2, 1, "", "__init__"], [107, 2, 1, "", "__mul__"], [107, 2, 1, "", "add_state"], [107, 2, 1, "", "clone"], [107, 2, 1, "", "compute"], [107, 2, 1, "", "reset_state"], [107, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores": [[108, 2, 1, "", "__add__"], [108, 2, 1, "", "__call__"], [108, 2, 1, "", "__init__"], [108, 2, 1, "", "__mul__"], [108, 2, 1, "", "add_state"], [108, 2, 1, "", "clone"], [108, 2, 1, "", "compute"], [108, 2, 1, "", "reset_state"], [108, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores": [[109, 2, 1, "", "__add__"], [109, 2, 1, "", "__call__"], [109, 2, 1, "", "__init__"], [109, 2, 1, "", "__mul__"], [109, 2, 1, "", "add_state"], [109, 2, 1, "", "clone"], [109, 2, 1, "", "compute"], [109, 2, 1, "", "reset_state"], [109, 2, 1, "", "update_state"]], "cyclops.evaluate.metrics.stat_scores.StatScores": [[110, 2, 1, "", "__add__"], [110, 2, 1, "", "__call__"], [110, 2, 1, "", "__init__"], [110, 2, 1, "", "__mul__"], [110, 2, 1, "", "add_state"], [110, 2, 1, "", "clone"], [110, 2, 1, "", "compute"], [110, 2, 1, "", "reset_state"], [110, 2, 1, "", "update_state"]], "cyclops.monitor": [[111, 0, 0, "-", "clinical_applicator"], [113, 0, 0, "-", "synthetic_applicator"]], "cyclops.monitor.clinical_applicator": [[112, 1, 1, "", "ClinicalShiftApplicator"]], "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator": [[112, 2, 1, "", "age"], [112, 2, 1, "", "apply_shift"], [112, 2, 1, "", "custom"], [112, 2, 1, "", "hospital_type"], [112, 2, 1, "", "month"], [112, 2, 1, "", "sex"], [112, 2, 1, "", "time"]], "cyclops.monitor.synthetic_applicator": [[114, 1, 1, "", "SyntheticShiftApplicator"], [115, 4, 1, "", "binary_noise_shift"], [116, 4, 1, "", "feature_association_shift"], [117, 4, 1, "", "feature_swap_shift"], [118, 4, 1, "", "gaussian_noise_shift"], [119, 4, 1, "", "knockout_shift"]], "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator": [[114, 2, 1, "", "apply_shift"]], "cyclops.query": [[120, 0, 0, "-", "base"], [122, 0, 0, "-", "eicu"], [124, 0, 0, "-", "gemini"], [126, 0, 0, "-", "interface"], [128, 0, 0, "-", "mimiciii"], [130, 0, 0, "-", "mimiciv"], [132, 0, 0, "-", "omop"], [134, 0, 0, "-", "ops"]], "cyclops.query.base": [[121, 1, 1, "", "DatasetQuerier"]], "cyclops.query.base.DatasetQuerier": [[121, 3, 1, "", "db"], [121, 2, 1, "", "get_table"], [121, 2, 1, "", "list_columns"], [121, 2, 1, "", "list_custom_tables"], [121, 2, 1, "", "list_schemas"], [121, 2, 1, "", "list_tables"]], "cyclops.query.eicu": [[123, 1, 1, "", "EICUQuerier"]], "cyclops.query.eicu.EICUQuerier": [[123, 2, 1, "", "__init__"], [123, 2, 1, "", "get_table"], [123, 2, 1, "", "list_columns"], [123, 2, 1, "", "list_custom_tables"], [123, 2, 1, "", "list_schemas"], [123, 2, 1, "", "list_tables"]], "cyclops.query.gemini": [[125, 1, 1, "", "GEMINIQuerier"]], "cyclops.query.gemini.GEMINIQuerier": [[125, 2, 1, "", "__init__"], [125, 2, 1, "", "care_units"], [125, 2, 1, "", "diagnoses"], [125, 2, 1, "", "get_table"], [125, 2, 1, "", "imaging"], [125, 2, 1, "", "ip_admin"], [125, 2, 1, "", "list_columns"], [125, 2, 1, "", "list_custom_tables"], [125, 2, 1, "", "list_schemas"], [125, 2, 1, "", "list_tables"], [125, 2, 1, "", "room_transfer"]], "cyclops.query.interface": [[127, 1, 1, "", "QueryInterface"]], "cyclops.query.interface.QueryInterface": [[127, 2, 1, "", "__init__"], [127, 2, 1, "", "clear_data"], [127, 5, 1, "", "data"], [127, 2, 1, "", "join"], [127, 2, 1, "", "ops"], [127, 2, 1, "", "run"], [127, 2, 1, "", "save"], [127, 2, 1, "", "union"], [127, 2, 1, "", "union_all"]], "cyclops.query.mimiciii": [[129, 1, 1, "", "MIMICIIIQuerier"]], "cyclops.query.mimiciii.MIMICIIIQuerier": [[129, 2, 1, "", "__init__"], [129, 2, 1, "", "chartevents"], [129, 2, 1, "", "diagnoses"], [129, 2, 1, "", "get_table"], [129, 2, 1, "", "labevents"], [129, 2, 1, "", "list_columns"], [129, 2, 1, "", "list_custom_tables"], [129, 2, 1, "", "list_schemas"], [129, 2, 1, "", "list_tables"]], "cyclops.query.mimiciv": [[131, 1, 1, "", "MIMICIVQuerier"]], "cyclops.query.mimiciv.MIMICIVQuerier": [[131, 2, 1, "", "__init__"], [131, 2, 1, "", "chartevents"], [131, 2, 1, "", "diagnoses"], [131, 2, 1, "", "get_table"], [131, 2, 1, "", "labevents"], [131, 2, 1, "", "list_columns"], [131, 2, 1, "", "list_custom_tables"], [131, 2, 1, "", "list_schemas"], [131, 2, 1, "", "list_tables"], [131, 2, 1, "", "patients"]], "cyclops.query.omop": [[133, 1, 1, "", "OMOPQuerier"]], "cyclops.query.omop.OMOPQuerier": [[133, 2, 1, "", "__init__"], [133, 2, 1, "", "get_table"], [133, 2, 1, "", "list_columns"], [133, 2, 1, "", "list_custom_tables"], [133, 2, 1, "", "list_schemas"], [133, 2, 1, "", "list_tables"], [133, 2, 1, "", "map_concept_ids_to_name"], [133, 2, 1, "", "measurement"], [133, 2, 1, "", "observation"], [133, 2, 1, "", "person"], [133, 2, 1, "", "visit_detail"], [133, 2, 1, "", "visit_occurrence"]], "cyclops.query.ops": [[135, 1, 1, "", "AddColumn"], [136, 1, 1, "", "AddDeltaColumn"], [137, 1, 1, "", "AddDeltaConstant"], [138, 1, 1, "", "AddNumeric"], [139, 1, 1, "", "And"], [140, 1, 1, "", "Apply"], [141, 1, 1, "", "Cast"], [142, 1, 1, "", "ConditionAfterDate"], [143, 1, 1, "", "ConditionBeforeDate"], [144, 1, 1, "", "ConditionEndsWith"], [145, 1, 1, "", "ConditionEquals"], [146, 1, 1, "", "ConditionGreaterThan"], [147, 1, 1, "", "ConditionIn"], [148, 1, 1, "", "ConditionInMonths"], [149, 1, 1, "", "ConditionInYears"], [150, 1, 1, "", "ConditionLessThan"], [151, 1, 1, "", "ConditionLike"], [152, 1, 1, "", "ConditionRegexMatch"], [153, 1, 1, "", "ConditionStartsWith"], [154, 1, 1, "", "ConditionSubstring"], [155, 1, 1, "", "Distinct"], [156, 1, 1, "", "Drop"], [157, 1, 1, "", "DropEmpty"], [158, 1, 1, "", "DropNulls"], [159, 1, 1, "", "ExtractTimestampComponent"], [160, 1, 1, "", "FillNull"], [161, 1, 1, "", "GroupByAggregate"], [162, 1, 1, "", "Join"], [163, 1, 1, "", "Keep"], [164, 1, 1, "", "Limit"], [165, 1, 1, "", "Literal"], [166, 1, 1, "", "Or"], [167, 1, 1, "", "OrderBy"], [168, 1, 1, "", "QueryOp"], [169, 1, 1, "", "RandomizeOrder"], [170, 1, 1, "", "Rename"], [171, 1, 1, "", "Reorder"], [172, 1, 1, "", "ReorderAfter"], [173, 1, 1, "", "Sequential"], [174, 1, 1, "", "Substring"], [175, 1, 1, "", "Trim"], [176, 1, 1, "", "Union"]], "cyclops.query.ops.AddColumn": [[135, 2, 1, "", "__call__"]], "cyclops.query.ops.AddDeltaColumn": [[136, 2, 1, "", "__call__"]], "cyclops.query.ops.AddDeltaConstant": [[137, 2, 1, "", "__call__"]], "cyclops.query.ops.AddNumeric": [[138, 2, 1, "", "__call__"]], "cyclops.query.ops.And": [[139, 2, 1, "", "__call__"]], "cyclops.query.ops.Apply": [[140, 2, 1, "", "__call__"]], "cyclops.query.ops.Cast": [[141, 2, 1, "", "__call__"]], "cyclops.query.ops.ConditionAfterDate": [[142, 2, 1, "", "__call__"]], "cyclops.query.ops.ConditionBeforeDate": [[143, 2, 1, "", "__call__"]], "cyclops.query.ops.ConditionEndsWith": [[144, 2, 1, "", "__call__"]], "cyclops.query.ops.ConditionEquals": [[145, 2, 1, "", "__call__"]], "cyclops.query.ops.ConditionGreaterThan": [[146, 2, 1, "", "__call__"]], "cyclops.query.ops.ConditionIn": [[147, 2, 1, "", "__call__"]], "cyclops.query.ops.ConditionInMonths": [[148, 2, 1, "", "__call__"]], "cyclops.query.ops.ConditionInYears": [[149, 2, 1, "", "__call__"]], "cyclops.query.ops.ConditionLessThan": [[150, 2, 1, "", "__call__"]], "cyclops.query.ops.ConditionLike": [[151, 2, 1, "", "__call__"]], "cyclops.query.ops.ConditionRegexMatch": [[152, 2, 1, "", "__call__"]], "cyclops.query.ops.ConditionStartsWith": [[153, 2, 1, "", "__call__"]], "cyclops.query.ops.ConditionSubstring": [[154, 2, 1, "", "__call__"]], "cyclops.query.ops.Distinct": [[155, 2, 1, "", "__call__"]], "cyclops.query.ops.Drop": [[156, 2, 1, "", "__call__"]], "cyclops.query.ops.DropEmpty": [[157, 2, 1, "", "__call__"]], "cyclops.query.ops.DropNulls": [[158, 2, 1, "", "__call__"]], "cyclops.query.ops.ExtractTimestampComponent": [[159, 2, 1, "", "__call__"]], "cyclops.query.ops.FillNull": [[160, 2, 1, "", "__call__"]], "cyclops.query.ops.GroupByAggregate": [[161, 2, 1, "", "__call__"]], "cyclops.query.ops.Join": [[162, 2, 1, "", "__call__"]], "cyclops.query.ops.Keep": [[163, 2, 1, "", "__call__"]], "cyclops.query.ops.Limit": [[164, 2, 1, "", "__call__"]], "cyclops.query.ops.Literal": [[165, 2, 1, "", "__call__"]], "cyclops.query.ops.Or": [[166, 2, 1, "", "__call__"]], "cyclops.query.ops.OrderBy": [[167, 2, 1, "", "__call__"]], "cyclops.query.ops.QueryOp": [[168, 2, 1, "", "__call__"]], "cyclops.query.ops.RandomizeOrder": [[169, 2, 1, "", "__call__"]], "cyclops.query.ops.Rename": [[170, 2, 1, "", "__call__"]], "cyclops.query.ops.Reorder": [[171, 2, 1, "", "__call__"]], "cyclops.query.ops.ReorderAfter": [[172, 2, 1, "", "__call__"]], "cyclops.query.ops.Sequential": [[173, 2, 1, "", "__add__"], [173, 2, 1, "", "__call__"], [173, 2, 1, "", "__init__"], [173, 2, 1, "", "append"], [173, 2, 1, "", "extend"], [173, 2, 1, "", "insert"], [173, 2, 1, "", "pop"]], "cyclops.query.ops.Substring": [[174, 2, 1, "", "__call__"]], "cyclops.query.ops.Trim": [[175, 2, 1, "", "__call__"]], "cyclops.query.ops.Union": [[176, 2, 1, "", "__call__"]], "cyclops.report": [[177, 0, 0, "-", "report"]], "cyclops.report.report": [[178, 1, 1, "", "ModelCardReport"]], "cyclops.report.report.ModelCardReport": [[178, 2, 1, "", "export"], [178, 2, 1, "", "from_json_file"], [178, 2, 1, "", "log_citation"], [178, 2, 1, "", "log_dataset"], [178, 2, 1, "", "log_descriptor"], [178, 2, 1, "", "log_fairness_assessment"], [178, 2, 1, "", "log_from_dict"], [178, 2, 1, "", "log_image"], [178, 2, 1, "", "log_license"], [178, 2, 1, "", "log_model_parameters"], [178, 2, 1, "", "log_owner"], [178, 2, 1, "", "log_performance_metrics"], [178, 2, 1, "", "log_plotly_figure"], [178, 2, 1, "", "log_quantitative_analysis"], [178, 2, 1, "", "log_reference"], [178, 2, 1, "", "log_regulation"], [178, 2, 1, "", "log_risk"], [178, 2, 1, "", "log_use_case"], [178, 2, 1, "", "log_user"], [178, 2, 1, "", "log_version"]], "cyclops.tasks": [[179, 0, 0, "-", "cxr_classification"], [181, 0, 0, "-", "mortality_prediction"]], "cyclops.tasks.cxr_classification": [[180, 1, 1, "", "CXRClassificationTask"]], "cyclops.tasks.cxr_classification.CXRClassificationTask": [[180, 2, 1, "", "__init__"], [180, 2, 1, "", "add_model"], [180, 5, 1, "", "data_type"], [180, 2, 1, "", "evaluate"], [180, 2, 1, "", "get_model"], [180, 2, 1, "", "list_models"], [180, 5, 1, "", "models_count"], [180, 2, 1, "", "predict"], [180, 5, 1, "", "task_type"]], "cyclops.tasks.mortality_prediction": [[182, 1, 1, "", "MortalityPredictionTask"]], "cyclops.tasks.mortality_prediction.MortalityPredictionTask": [[182, 2, 1, "", "__init__"], [182, 2, 1, "", "add_model"], [182, 5, 1, "", "data_type"], [182, 2, 1, "", "evaluate"], [182, 2, 1, "", "get_model"], [182, 2, 1, "", "list_models"], [182, 2, 1, "", "list_models_params"], [182, 2, 1, "", "load_model"], [182, 5, 1, "", "models_count"], [182, 2, 1, "", "predict"], [182, 2, 1, "", "save_model"], [182, 5, 1, "", "task_type"], [182, 2, 1, "", "train"]]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:method", "3": "py:attribute", "4": "py:function", "5": "py:property"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "method", "Python method"], "3": ["py", "attribute", "Python attribute"], "4": ["py", "function", "Python function"], "5": ["py", "property", "Python property"]}, "titleterms": {"api": [0, 186, 190, 191, 193, 194, 197, 199, 200], "refer": 0, "contribut": [1, 3], "cyclop": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 194], "pre": 1, "commit": 1, "hook": 1, "code": 1, "guidelin": 1, "welcom": 2, "": 2, "document": [2, 3], "content": 2, "get": [3, 190, 191, 193, 194, 195, 197], "start": 3, "instal": 3, "us": [3, 194, 196, 201], "pip": 3, "develop": 3, "poetri": 3, "conda": 3, "notebook": 3, "citat": 3, "data": [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 183, 192, 198, 201], "featur": [4, 5, 183, 192, 198], "medical_imag": [4, 5], "medicalimag": 5, "slicer": [6, 7, 8, 9, 10, 11, 12, 13, 14, 15], "slicespec": 7, "compound_filt": 8, "filter_datetim": 9, "filter_non_nul": 10, "filter_rang": 11, "filter_string_contain": 12, "filter_valu": 13, "is_datetim": 14, "overal": 15, "evalu": [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 184, 192, 194, 198], "fair": [18, 19, 20, 21, 22, 184], "config": [18, 19], "fairnessconfig": 19, "evaluate_fair": 21, "warn_too_many_unique_valu": 22, "metric": [23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 184, 195], "accuraci": [23, 24, 25, 26, 27, 44], "binaryaccuraci": 25, "multiclassaccuraci": 26, "multilabelaccuraci": 27, "auroc": [28, 29, 30, 31, 32, 45, 195], "binaryauroc": 30, "multiclassauroc": 31, "multilabelauroc": 32, "f_beta": [33, 34, 35, 36, 37, 38, 39, 40, 41, 46, 47, 48, 49, 50, 51, 52, 53, 54], "binaryf1scor": 34, "binaryfbetascor": 35, "f1score": 36, "fbetascor": 37, "multiclassf1scor": 38, "multiclassfbetascor": 39, "multilabelf1scor": 40, "multilabelfbetascor": 41, "factori": [42, 43], "create_metr": 43, "function": [44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 184], "binary_f1_scor": 47, "binary_fbeta_scor": 48, "f1_score": 49, "fbeta_scor": 50, "multiclass_f1_scor": 51, "multiclass_fbeta_scor": 52, "multilabel_f1_scor": 53, "multilabel_fbeta_scor": 54, "precision_recal": [55, 56, 57, 58, 59, 60, 61, 62, 63, 77, 78, 79, 80, 81, 82, 83, 84, 85], "binary_precis": 56, "binary_recal": 57, "multiclass_precis": 58, "multiclass_recal": 59, "multilabel_precis": 60, "multilabel_recal": 61, "precis": [62, 84], "recal": [63, 85], "precision_recall_curv": [64, 86, 87, 88, 89, 90], "roc": [65, 66, 67, 68, 69, 91, 92, 93, 94, 95], "binary_roc_curv": 66, "multiclass_roc_curv": 67, "multilabel_roc_curv": 68, "roc_curv": 69, "sensit": [70, 96, 97, 98, 99, 100, 196], "specif": [71, 101, 102, 103, 104, 105], "stat_scor": [72, 106, 107, 108, 109, 110], "metriccollect": 75, "operatormetr": 76, "binaryprecis": 78, "binaryrecal": 79, "multiclassprecis": 80, "multiclassrecal": 81, "multilabelprecis": 82, "multilabelrecal": 83, "binaryprecisionrecallcurv": 87, "multiclassprecisionrecallcurv": 88, "multilabelprecisionrecallcurv": 89, "precisionrecallcurv": 90, "binaryroccurv": 92, "multiclassroccurv": 93, "multilabelroccurv": 94, "roccurv": 95, "binarysensit": 97, "multiclasssensit": 98, "multilabelsensit": 99, "binaryspecif": 102, "multiclassspecif": 103, "multilabelspecif": 104, "binarystatscor": 107, "multiclassstatscor": 108, "multilabelstatscor": 109, "statscor": 110, "monitor": [111, 112, 113, 114, 115, 116, 117, 118, 119, 185, 199], "clinical_appl": [111, 112], "clinicalshiftappl": 112, "synthetic_appl": [113, 114, 115, 116, 117, 118, 119], "syntheticshiftappl": 114, "binary_noise_shift": 115, "feature_association_shift": 116, "feature_swap_shift": 117, "gaussian_noise_shift": 118, "knockout_shift": 119, "queri": [120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 186, 190, 191, 193, 194, 197, 198, 200], "base": [120, 121, 194, 198], "datasetqueri": 121, "eicu": [122, 123, 190], "eicuqueri": [123, 190], "gemini": [124, 125, 191], "geminiqueri": [125, 191], "interfac": [126, 127], "queryinterfac": 127, "mimiciii": [128, 129], "mimiciiiqueri": [129, 193], "mimiciv": [130, 131], "mimicivqueri": [131, 194], "omop": [132, 133, 197], "omopqueri": [133, 197], "op": [134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 194], "addcolumn": 135, "adddeltacolumn": 136, "adddeltaconst": 137, "addnumer": 138, "And": 139, "appli": 140, "cast": 141, "conditionafterd": 142, "conditionbefored": 143, "conditionendswith": 144, "conditionequ": 145, "conditiongreaterthan": 146, "conditionin": 147, "conditioninmonth": 148, "conditioninyear": 149, "conditionlessthan": 150, "conditionlik": 151, "conditionregexmatch": [152, 194], "conditionstartswith": 153, "conditionsubstr": 154, "distinct": 155, "drop": [156, 198], "dropempti": 157, "dropnul": 158, "extracttimestampcompon": 159, "fillnul": 160, "groupbyaggreg": 161, "join": 162, "keep": [163, 191], "limit": [164, 190], "liter": 165, "Or": 166, "orderbi": 167, "queryop": 168, "randomizeord": 169, "renam": 170, "reorder": 171, "reorderaft": 172, "sequenti": 173, "substr": [174, 190], "trim": 175, "union": 176, "report": [177, 178, 187, 192, 194, 198], "modelcardreport": 178, "task": [179, 180, 181, 182, 188, 192, 198], "cxr_classif": [179, 180], "cxrclassificationtask": 180, "mortality_predict": [181, 182], "mortalitypredictiontask": 182, "dataset": [186, 191, 192, 195, 196, 198], "tutori": [189, 190, 191, 193, 194, 196, 197], "crd": 190, "import": [190, 191, 192, 193, 194, 195, 196, 197, 198], "instanti": [190, 191, 193, 194, 197], "exampl": [190, 191, 193, 194, 196, 197, 201], "1": [190, 191, 193, 194, 196, 197], "all": [190, 193, 194, 197], "femal": [190, 193, 194, 197], "patient": [190, 191, 193, 194, 197], "discharg": [190, 191], "2014": 190, "100": 190, "row": 190, "2": [190, 193, 194, 196, 197], "encount": [190, 191, 193, 194], "diagnos": [190, 193, 194, 197], "schizophrenia": [190, 194], "diagnosisstr": 190, "year": [190, 194], "2015": [190, 191, 194], "3": [190, 193, 194, 196], "potassium": [190, 193], "lab": [190, 193, 194], "test": [190, 191, 193, 194, 195, 196], "teach": 190, "hospit": [190, 191], "4": [190, 193, 194, 196], "glucos": 190, "medic": 190, "search": 190, "1a": 191, "creat": [191, 192, 198], "tabl": 191, "onli": 191, "one": 191, "per": 191, "most": 191, "recent": 191, "each": 191, "sort": 191, "patient_id_hash": 191, "discharge_date_tim": 191, "record": 191, "1b": 191, "from": [191, 194], "abov": 191, "set": 191, "take": 191, "subset": 191, "who": 191, "were": 191, "between": 191, "april": 191, "march": 191, "31": 191, "2016": 191, "1c": 191, "total": 191, "number": 191, "admiss": [191, 194], "2a": 191, "how": 191, "mani": 191, "sodium": 191, "place": 191, "apr": 191, "mai": 191, "101": 191, "heart": [192, 201], "failur": [192, 201], "predict": [192, 195, 198, 201], "librari": [192, 195, 196, 198], "constant": [192, 198], "load": [192, 195, 196], "sex": [192, 195], "valu": 192, "ag": [192, 195, 198], "distribut": [192, 198], "outcom": [192, 193, 197, 198], "identifi": [192, 198], "type": [192, 198], "preprocessor": [192, 198], "hug": [192, 198], "face": [192, 198], "model": [192, 195, 196, 198], "creation": [192, 198], "train": [192, 196, 198], "perform": [192, 195, 198], "over": [192, 195, 198], "time": [192, 195, 198], "gener": [192, 196, 198], "mimic": [193, 194], "iii": 193, "male": 193, "mortal": [193, 197], "gastroenter": 193, "icd": [193, 194], "9": [193, 194], "long": [193, 194], "titl": [193, 194], "aado2": 193, "carevu": 193, "chart": 193, "event": 193, "have": 193, "valuenum": 193, "less": 193, "than": 193, "20": 193, "iv": 194, "2021": 194, "later": 194, "approx": 194, "10": 194, "advanc": 194, "contain": 194, "chronic": 194, "routin": 194, "vital": 194, "sign": 194, "5": [194, 196], "hemoglobin": 194, "2009": 194, "6": 194, "radiologi": 194, "filter": 194, "keyword": 194, "lymphadenopathi": 194, "infecti": 194, "occur": 194, "togeth": 194, "7": 194, "return": 194, "dask": 194, "datafram": 194, "lazi": 194, "partit": 194, "batch": 194, "aggreg": 194, "subject_id": 194, "8": 194, "run": 194, "raw": 194, "sql": 194, "string": 194, "chest": [195, 201], "x": [195, 201], "rai": [195, 201], "diseas": 195, "classif": [195, 201], "multilabel": 195, "pathologi": 195, "balanc": 195, "error": 195, "rate": 195, "pariti": 195, "log": 195, "w": 195, "threshold": 195, "popul": 195, "card": 195, "field": 195, "nihcxr": 196, "clinic": 196, "drift": 196, "experi": 196, "sourc": 196, "target": 196, "dimension": 196, "reduct": 196, "techniqu": 196, "differ": 196, "shift": 196, "roll": 196, "window": 196, "synthet": 196, "timestamp": 196, "biweekli": 196, "visit": 197, "after": 197, "2010": 197, "measur": 197, "2020": 197, "end": 197, "sepsi": 197, "prolong": [198, 201], "length": [198, 201], "stai": [198, 201], "comput": 198, "label": 198, "inspect": 198, "preprocess": 198, "nan": 198, "nan_threshold": 198, "gender": 198, "case": 201, "tabular": 201, "kaggl": 201, "synthea": 201, "imag": 201, "nih": 201}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.todo": 2, "sphinx.ext.viewcode": 1, "sphinx.ext.intersphinx": 1, "nbsphinx": 4, "sphinx": 60}, "alltitles": {"API Reference": [[0, "api-reference"]], "Contributing to cyclops": [[1, "contributing-to-cyclops"]], "Pre-commit hooks": [[1, "pre-commit-hooks"]], "Coding guidelines": [[1, "coding-guidelines"]], "Welcome to cyclops\u2019s documentation!": [[2, "welcome-to-cyclops-s-documentation"]], "Contents:": [[2, null]], "\ud83d\udc23 Getting Started": [[3, "getting-started"]], "Installing cyclops using pip": [[3, "installing-cyclops-using-pip"]], "\ud83e\uddd1\ud83c\udfff\u200d\ud83d\udcbb Developing": [[3, "developing"]], "Using poetry": [[3, "using-poetry"]], "Using Conda": [[3, "using-conda"]], "Contributing": [[3, "contributing"]], "\ud83d\udcda Documentation": [[3, "documentation"]], "\ud83d\udcd3 Notebooks": [[3, "notebooks"]], "\ud83c\udf93 Citation": [[3, "citation"]], "cyclops.data.features.medical_image": [[4, "module-cyclops.data.features.medical_image"]], "cyclops.data.features.medical_image.MedicalImage": [[5, "cyclops-data-features-medical-image-medicalimage"]], "cyclops.data.slicer": [[6, "module-cyclops.data.slicer"]], "cyclops.data.slicer.SliceSpec": [[7, "cyclops-data-slicer-slicespec"]], "cyclops.data.slicer.compound_filter": [[8, "cyclops-data-slicer-compound-filter"]], "cyclops.data.slicer.filter_datetime": [[9, "cyclops-data-slicer-filter-datetime"]], "cyclops.data.slicer.filter_non_null": [[10, "cyclops-data-slicer-filter-non-null"]], "cyclops.data.slicer.filter_range": [[11, "cyclops-data-slicer-filter-range"]], "cyclops.data.slicer.filter_string_contains": [[12, "cyclops-data-slicer-filter-string-contains"]], "cyclops.data.slicer.filter_value": [[13, "cyclops-data-slicer-filter-value"]], "cyclops.data.slicer.is_datetime": [[14, "cyclops-data-slicer-is-datetime"]], "cyclops.data.slicer.overall": [[15, "cyclops-data-slicer-overall"]], "cyclops.evaluate.evaluator": [[16, "module-cyclops.evaluate.evaluator"]], "cyclops.evaluate.evaluator.evaluate": [[17, "cyclops-evaluate-evaluator-evaluate"]], "cyclops.evaluate.fairness.config": [[18, "module-cyclops.evaluate.fairness.config"]], "cyclops.evaluate.fairness.config.FairnessConfig": [[19, "cyclops-evaluate-fairness-config-fairnessconfig"]], "cyclops.evaluate.fairness.evaluator": [[20, "module-cyclops.evaluate.fairness.evaluator"]], "cyclops.evaluate.fairness.evaluator.evaluate_fairness": [[21, "cyclops-evaluate-fairness-evaluator-evaluate-fairness"]], "cyclops.evaluate.fairness.evaluator.warn_too_many_unique_values": [[22, "cyclops-evaluate-fairness-evaluator-warn-too-many-unique-values"]], "cyclops.evaluate.metrics.accuracy": [[23, "module-cyclops.evaluate.metrics.accuracy"]], "cyclops.evaluate.metrics.accuracy.Accuracy": [[24, "cyclops-evaluate-metrics-accuracy-accuracy"]], "cyclops.evaluate.metrics.accuracy.BinaryAccuracy": [[25, "cyclops-evaluate-metrics-accuracy-binaryaccuracy"]], "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy": [[26, "cyclops-evaluate-metrics-accuracy-multiclassaccuracy"]], "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy": [[27, "cyclops-evaluate-metrics-accuracy-multilabelaccuracy"]], "cyclops.evaluate.metrics.auroc": [[28, "module-cyclops.evaluate.metrics.auroc"]], "cyclops.evaluate.metrics.auroc.AUROC": [[29, "cyclops-evaluate-metrics-auroc-auroc"]], "cyclops.evaluate.metrics.auroc.BinaryAUROC": [[30, "cyclops-evaluate-metrics-auroc-binaryauroc"]], "cyclops.evaluate.metrics.auroc.MulticlassAUROC": [[31, "cyclops-evaluate-metrics-auroc-multiclassauroc"]], "cyclops.evaluate.metrics.auroc.MultilabelAUROC": [[32, "cyclops-evaluate-metrics-auroc-multilabelauroc"]], "cyclops.evaluate.metrics.f_beta": [[33, "module-cyclops.evaluate.metrics.f_beta"]], "cyclops.evaluate.metrics.f_beta.BinaryF1Score": [[34, "cyclops-evaluate-metrics-f-beta-binaryf1score"]], "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore": [[35, "cyclops-evaluate-metrics-f-beta-binaryfbetascore"]], "cyclops.evaluate.metrics.f_beta.F1Score": [[36, "cyclops-evaluate-metrics-f-beta-f1score"]], "cyclops.evaluate.metrics.f_beta.FbetaScore": [[37, "cyclops-evaluate-metrics-f-beta-fbetascore"]], "cyclops.evaluate.metrics.f_beta.MulticlassF1Score": [[38, "cyclops-evaluate-metrics-f-beta-multiclassf1score"]], "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore": [[39, "cyclops-evaluate-metrics-f-beta-multiclassfbetascore"]], "cyclops.evaluate.metrics.f_beta.MultilabelF1Score": [[40, "cyclops-evaluate-metrics-f-beta-multilabelf1score"]], "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore": [[41, "cyclops-evaluate-metrics-f-beta-multilabelfbetascore"]], "cyclops.evaluate.metrics.factory": [[42, "module-cyclops.evaluate.metrics.factory"]], "cyclops.evaluate.metrics.factory.create_metric": [[43, "cyclops-evaluate-metrics-factory-create-metric"]], "cyclops.evaluate.metrics.functional.accuracy": [[44, "module-cyclops.evaluate.metrics.functional.accuracy"]], "cyclops.evaluate.metrics.functional.auroc": [[45, "module-cyclops.evaluate.metrics.functional.auroc"]], "cyclops.evaluate.metrics.functional.f_beta": [[46, "module-cyclops.evaluate.metrics.functional.f_beta"]], "cyclops.evaluate.metrics.functional.f_beta.binary_f1_score": [[47, "cyclops-evaluate-metrics-functional-f-beta-binary-f1-score"]], "cyclops.evaluate.metrics.functional.f_beta.binary_fbeta_score": [[48, "cyclops-evaluate-metrics-functional-f-beta-binary-fbeta-score"]], "cyclops.evaluate.metrics.functional.f_beta.f1_score": [[49, "cyclops-evaluate-metrics-functional-f-beta-f1-score"]], "cyclops.evaluate.metrics.functional.f_beta.fbeta_score": [[50, "cyclops-evaluate-metrics-functional-f-beta-fbeta-score"]], "cyclops.evaluate.metrics.functional.f_beta.multiclass_f1_score": [[51, "cyclops-evaluate-metrics-functional-f-beta-multiclass-f1-score"]], "cyclops.evaluate.metrics.functional.f_beta.multiclass_fbeta_score": [[52, "cyclops-evaluate-metrics-functional-f-beta-multiclass-fbeta-score"]], "cyclops.evaluate.metrics.functional.f_beta.multilabel_f1_score": [[53, "cyclops-evaluate-metrics-functional-f-beta-multilabel-f1-score"]], "cyclops.evaluate.metrics.functional.f_beta.multilabel_fbeta_score": [[54, "cyclops-evaluate-metrics-functional-f-beta-multilabel-fbeta-score"]], "cyclops.evaluate.metrics.functional.precision_recall": [[55, "module-cyclops.evaluate.metrics.functional.precision_recall"]], "cyclops.evaluate.metrics.functional.precision_recall.binary_precision": [[56, "cyclops-evaluate-metrics-functional-precision-recall-binary-precision"]], "cyclops.evaluate.metrics.functional.precision_recall.binary_recall": [[57, "cyclops-evaluate-metrics-functional-precision-recall-binary-recall"]], "cyclops.evaluate.metrics.functional.precision_recall.multiclass_precision": [[58, "cyclops-evaluate-metrics-functional-precision-recall-multiclass-precision"]], "cyclops.evaluate.metrics.functional.precision_recall.multiclass_recall": [[59, "cyclops-evaluate-metrics-functional-precision-recall-multiclass-recall"]], "cyclops.evaluate.metrics.functional.precision_recall.multilabel_precision": [[60, "cyclops-evaluate-metrics-functional-precision-recall-multilabel-precision"]], "cyclops.evaluate.metrics.functional.precision_recall.multilabel_recall": [[61, "cyclops-evaluate-metrics-functional-precision-recall-multilabel-recall"]], "cyclops.evaluate.metrics.functional.precision_recall.precision": [[62, "cyclops-evaluate-metrics-functional-precision-recall-precision"]], "cyclops.evaluate.metrics.functional.precision_recall.recall": [[63, "cyclops-evaluate-metrics-functional-precision-recall-recall"]], "cyclops.evaluate.metrics.functional.precision_recall_curve": [[64, "module-cyclops.evaluate.metrics.functional.precision_recall_curve"]], "cyclops.evaluate.metrics.functional.roc": [[65, "module-cyclops.evaluate.metrics.functional.roc"]], "cyclops.evaluate.metrics.functional.roc.binary_roc_curve": [[66, "cyclops-evaluate-metrics-functional-roc-binary-roc-curve"]], "cyclops.evaluate.metrics.functional.roc.multiclass_roc_curve": [[67, "cyclops-evaluate-metrics-functional-roc-multiclass-roc-curve"]], "cyclops.evaluate.metrics.functional.roc.multilabel_roc_curve": [[68, "cyclops-evaluate-metrics-functional-roc-multilabel-roc-curve"]], "cyclops.evaluate.metrics.functional.roc.roc_curve": [[69, "cyclops-evaluate-metrics-functional-roc-roc-curve"]], "cyclops.evaluate.metrics.functional.sensitivity": [[70, "module-cyclops.evaluate.metrics.functional.sensitivity"]], "cyclops.evaluate.metrics.functional.specificity": [[71, "module-cyclops.evaluate.metrics.functional.specificity"]], "cyclops.evaluate.metrics.functional.stat_scores": [[72, "module-cyclops.evaluate.metrics.functional.stat_scores"]], "cyclops.evaluate.metrics.metric": [[73, "module-cyclops.evaluate.metrics.metric"]], "cyclops.evaluate.metrics.metric.Metric": [[74, "cyclops-evaluate-metrics-metric-metric"]], "cyclops.evaluate.metrics.metric.MetricCollection": [[75, "cyclops-evaluate-metrics-metric-metriccollection"]], "cyclops.evaluate.metrics.metric.OperatorMetric": [[76, "cyclops-evaluate-metrics-metric-operatormetric"]], "cyclops.evaluate.metrics.precision_recall": [[77, "module-cyclops.evaluate.metrics.precision_recall"]], "cyclops.evaluate.metrics.precision_recall.BinaryPrecision": [[78, "cyclops-evaluate-metrics-precision-recall-binaryprecision"]], "cyclops.evaluate.metrics.precision_recall.BinaryRecall": [[79, "cyclops-evaluate-metrics-precision-recall-binaryrecall"]], "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision": [[80, "cyclops-evaluate-metrics-precision-recall-multiclassprecision"]], "cyclops.evaluate.metrics.precision_recall.MulticlassRecall": [[81, "cyclops-evaluate-metrics-precision-recall-multiclassrecall"]], "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision": [[82, "cyclops-evaluate-metrics-precision-recall-multilabelprecision"]], "cyclops.evaluate.metrics.precision_recall.MultilabelRecall": [[83, "cyclops-evaluate-metrics-precision-recall-multilabelrecall"]], "cyclops.evaluate.metrics.precision_recall.Precision": [[84, "cyclops-evaluate-metrics-precision-recall-precision"]], "cyclops.evaluate.metrics.precision_recall.Recall": [[85, "cyclops-evaluate-metrics-precision-recall-recall"]], "cyclops.evaluate.metrics.precision_recall_curve": [[86, "module-cyclops.evaluate.metrics.precision_recall_curve"]], "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve": [[87, "cyclops-evaluate-metrics-precision-recall-curve-binaryprecisionrecallcurve"]], "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve": [[88, "cyclops-evaluate-metrics-precision-recall-curve-multiclassprecisionrecallcurve"]], "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve": [[89, "cyclops-evaluate-metrics-precision-recall-curve-multilabelprecisionrecallcurve"]], "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve": [[90, "cyclops-evaluate-metrics-precision-recall-curve-precisionrecallcurve"]], "cyclops.evaluate.metrics.roc": [[91, "module-cyclops.evaluate.metrics.roc"]], "cyclops.evaluate.metrics.roc.BinaryROCCurve": [[92, "cyclops-evaluate-metrics-roc-binaryroccurve"]], "cyclops.evaluate.metrics.roc.MulticlassROCCurve": [[93, "cyclops-evaluate-metrics-roc-multiclassroccurve"]], "cyclops.evaluate.metrics.roc.MultilabelROCCurve": [[94, "cyclops-evaluate-metrics-roc-multilabelroccurve"]], "cyclops.evaluate.metrics.roc.ROCCurve": [[95, "cyclops-evaluate-metrics-roc-roccurve"]], "cyclops.evaluate.metrics.sensitivity": [[96, "module-cyclops.evaluate.metrics.sensitivity"]], "cyclops.evaluate.metrics.sensitivity.BinarySensitivity": [[97, "cyclops-evaluate-metrics-sensitivity-binarysensitivity"]], "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity": [[98, "cyclops-evaluate-metrics-sensitivity-multiclasssensitivity"]], "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity": [[99, "cyclops-evaluate-metrics-sensitivity-multilabelsensitivity"]], "cyclops.evaluate.metrics.sensitivity.Sensitivity": [[100, "cyclops-evaluate-metrics-sensitivity-sensitivity"]], "cyclops.evaluate.metrics.specificity": [[101, "module-cyclops.evaluate.metrics.specificity"]], "cyclops.evaluate.metrics.specificity.BinarySpecificity": [[102, "cyclops-evaluate-metrics-specificity-binaryspecificity"]], "cyclops.evaluate.metrics.specificity.MulticlassSpecificity": [[103, "cyclops-evaluate-metrics-specificity-multiclassspecificity"]], "cyclops.evaluate.metrics.specificity.MultilabelSpecificity": [[104, "cyclops-evaluate-metrics-specificity-multilabelspecificity"]], "cyclops.evaluate.metrics.specificity.Specificity": [[105, "cyclops-evaluate-metrics-specificity-specificity"]], "cyclops.evaluate.metrics.stat_scores": [[106, "module-cyclops.evaluate.metrics.stat_scores"]], "cyclops.evaluate.metrics.stat_scores.BinaryStatScores": [[107, "cyclops-evaluate-metrics-stat-scores-binarystatscores"]], "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores": [[108, "cyclops-evaluate-metrics-stat-scores-multiclassstatscores"]], "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores": [[109, "cyclops-evaluate-metrics-stat-scores-multilabelstatscores"]], "cyclops.evaluate.metrics.stat_scores.StatScores": [[110, "cyclops-evaluate-metrics-stat-scores-statscores"]], "cyclops.monitor.clinical_applicator": [[111, "module-cyclops.monitor.clinical_applicator"]], "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator": [[112, "cyclops-monitor-clinical-applicator-clinicalshiftapplicator"]], "cyclops.monitor.synthetic_applicator": [[113, "module-cyclops.monitor.synthetic_applicator"]], "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator": [[114, "cyclops-monitor-synthetic-applicator-syntheticshiftapplicator"]], "cyclops.monitor.synthetic_applicator.binary_noise_shift": [[115, "cyclops-monitor-synthetic-applicator-binary-noise-shift"]], "cyclops.monitor.synthetic_applicator.feature_association_shift": [[116, "cyclops-monitor-synthetic-applicator-feature-association-shift"]], "cyclops.monitor.synthetic_applicator.feature_swap_shift": [[117, "cyclops-monitor-synthetic-applicator-feature-swap-shift"]], "cyclops.monitor.synthetic_applicator.gaussian_noise_shift": [[118, "cyclops-monitor-synthetic-applicator-gaussian-noise-shift"]], "cyclops.monitor.synthetic_applicator.knockout_shift": [[119, "cyclops-monitor-synthetic-applicator-knockout-shift"]], "cyclops.query.base": [[120, "module-cyclops.query.base"]], "cyclops.query.base.DatasetQuerier": [[121, "cyclops-query-base-datasetquerier"]], "cyclops.query.eicu": [[122, "module-cyclops.query.eicu"]], "cyclops.query.eicu.EICUQuerier": [[123, "cyclops-query-eicu-eicuquerier"]], "cyclops.query.gemini": [[124, "module-cyclops.query.gemini"]], "cyclops.query.gemini.GEMINIQuerier": [[125, "cyclops-query-gemini-geminiquerier"]], "cyclops.query.interface": [[126, "module-cyclops.query.interface"]], "cyclops.query.interface.QueryInterface": [[127, "cyclops-query-interface-queryinterface"]], "cyclops.query.mimiciii": [[128, "module-cyclops.query.mimiciii"]], "cyclops.query.mimiciii.MIMICIIIQuerier": [[129, "cyclops-query-mimiciii-mimiciiiquerier"]], "cyclops.query.mimiciv": [[130, "module-cyclops.query.mimiciv"]], "cyclops.query.mimiciv.MIMICIVQuerier": [[131, "cyclops-query-mimiciv-mimicivquerier"]], "cyclops.query.omop": [[132, "module-cyclops.query.omop"]], "cyclops.query.omop.OMOPQuerier": [[133, "cyclops-query-omop-omopquerier"]], "cyclops.query.ops": [[134, "module-cyclops.query.ops"]], "cyclops.query.ops.AddColumn": [[135, "cyclops-query-ops-addcolumn"]], "cyclops.query.ops.AddDeltaColumn": [[136, "cyclops-query-ops-adddeltacolumn"]], "cyclops.query.ops.AddDeltaConstant": [[137, "cyclops-query-ops-adddeltaconstant"]], "cyclops.query.ops.AddNumeric": [[138, "cyclops-query-ops-addnumeric"]], "cyclops.query.ops.And": [[139, "cyclops-query-ops-and"]], "cyclops.query.ops.Apply": [[140, "cyclops-query-ops-apply"]], "cyclops.query.ops.Cast": [[141, "cyclops-query-ops-cast"]], "cyclops.query.ops.ConditionAfterDate": [[142, "cyclops-query-ops-conditionafterdate"]], "cyclops.query.ops.ConditionBeforeDate": [[143, "cyclops-query-ops-conditionbeforedate"]], "cyclops.query.ops.ConditionEndsWith": [[144, "cyclops-query-ops-conditionendswith"]], "cyclops.query.ops.ConditionEquals": [[145, "cyclops-query-ops-conditionequals"]], "cyclops.query.ops.ConditionGreaterThan": [[146, "cyclops-query-ops-conditiongreaterthan"]], "cyclops.query.ops.ConditionIn": [[147, "cyclops-query-ops-conditionin"]], "cyclops.query.ops.ConditionInMonths": [[148, "cyclops-query-ops-conditioninmonths"]], "cyclops.query.ops.ConditionInYears": [[149, "cyclops-query-ops-conditioninyears"]], "cyclops.query.ops.ConditionLessThan": [[150, "cyclops-query-ops-conditionlessthan"]], "cyclops.query.ops.ConditionLike": [[151, "cyclops-query-ops-conditionlike"]], "cyclops.query.ops.ConditionRegexMatch": [[152, "cyclops-query-ops-conditionregexmatch"]], "cyclops.query.ops.ConditionStartsWith": [[153, "cyclops-query-ops-conditionstartswith"]], "cyclops.query.ops.ConditionSubstring": [[154, "cyclops-query-ops-conditionsubstring"]], "cyclops.query.ops.Distinct": [[155, "cyclops-query-ops-distinct"]], "cyclops.query.ops.Drop": [[156, "cyclops-query-ops-drop"]], "cyclops.query.ops.DropEmpty": [[157, "cyclops-query-ops-dropempty"]], "cyclops.query.ops.DropNulls": [[158, "cyclops-query-ops-dropnulls"]], "cyclops.query.ops.ExtractTimestampComponent": [[159, "cyclops-query-ops-extracttimestampcomponent"]], "cyclops.query.ops.FillNull": [[160, "cyclops-query-ops-fillnull"]], "cyclops.query.ops.GroupByAggregate": [[161, "cyclops-query-ops-groupbyaggregate"]], "cyclops.query.ops.Join": [[162, "cyclops-query-ops-join"]], "cyclops.query.ops.Keep": [[163, "cyclops-query-ops-keep"]], "cyclops.query.ops.Limit": [[164, "cyclops-query-ops-limit"]], "cyclops.query.ops.Literal": [[165, "cyclops-query-ops-literal"]], "cyclops.query.ops.Or": [[166, "cyclops-query-ops-or"]], "cyclops.query.ops.OrderBy": [[167, "cyclops-query-ops-orderby"]], "cyclops.query.ops.QueryOp": [[168, "cyclops-query-ops-queryop"]], "cyclops.query.ops.RandomizeOrder": [[169, "cyclops-query-ops-randomizeorder"]], "cyclops.query.ops.Rename": [[170, "cyclops-query-ops-rename"]], "cyclops.query.ops.Reorder": [[171, "cyclops-query-ops-reorder"]], "cyclops.query.ops.ReorderAfter": [[172, "cyclops-query-ops-reorderafter"]], "cyclops.query.ops.Sequential": [[173, "cyclops-query-ops-sequential"]], "cyclops.query.ops.Substring": [[174, "cyclops-query-ops-substring"]], "cyclops.query.ops.Trim": [[175, "cyclops-query-ops-trim"]], "cyclops.query.ops.Union": [[176, "cyclops-query-ops-union"]], "cyclops.report.report": [[177, "module-cyclops.report.report"]], "cyclops.report.report.ModelCardReport": [[178, "cyclops-report-report-modelcardreport"]], "cyclops.tasks.cxr_classification": [[179, "module-cyclops.tasks.cxr_classification"]], "cyclops.tasks.cxr_classification.CXRClassificationTask": [[180, "cyclops-tasks-cxr-classification-cxrclassificationtask"]], "cyclops.tasks.mortality_prediction": [[181, "module-cyclops.tasks.mortality_prediction"]], "cyclops.tasks.mortality_prediction.MortalityPredictionTask": [[182, "cyclops-tasks-mortality-prediction-mortalitypredictiontask"]], "cyclops.data": [[183, "module-cyclops.data"]], "cyclops.data.features": [[183, "module-cyclops.data.features"]], "cyclops.evaluate": [[184, "module-cyclops.evaluate"]], "cyclops.evaluate.metrics": [[184, "module-cyclops.evaluate.metrics"]], "cyclops.evaluate.metrics.functional": [[184, "module-cyclops.evaluate.metrics.functional"]], "cyclops.evaluate.fairness": [[184, "module-cyclops.evaluate.fairness"]], "cyclops.monitor": [[185, "module-cyclops.monitor"]], "cyclops.query": [[186, "module-cyclops.query"]], "dataset APIs": [[186, "dataset-apis"]], "cyclops.report": [[187, "module-cyclops.report"]], "cyclops.tasks": [[188, "module-cyclops.tasks"]], "Tutorials": [[189, "tutorials"]], "eICU-CRD query API tutorial": [[190, "eICU-CRD-query-API-tutorial"]], "Imports and instantiate EICUQuerier": [[190, "Imports-and-instantiate-EICUQuerier"]], "Example 1. Get all female patients discharged in 2014 (limit to 100 rows).": [[190, "Example-1.-Get-all-female-patients-discharged-in-2014-(limit-to-100-rows)."]], "Example 2. Get all patient encounters with diagnoses (schizophrenia in diagnosisstring), discharged in the year 2015.": [[190, "Example-2.-Get-all-patient-encounters-with-diagnoses-(schizophrenia-in-diagnosisstring),-discharged-in-the-year-2015."]], "Example 3. Get potassium lab tests for patients discharged in the year 2014, for all teaching hospitals.": [[190, "Example-3.-Get-potassium-lab-tests-for-patients-discharged-in-the-year-2014,-for-all-teaching-hospitals."]], "Example 4. Get glucose medications (substring search) for female patients discharged in 2014.": [[190, "Example-4.-Get-glucose-medications-(substring-search)-for-female-patients-discharged-in-2014."]], "GEMINI query API tutorial": [[191, "GEMINI-query-API-tutorial"]], "Imports and instantiate GEMINIQuerier.": [[191, "Imports-and-instantiate-GEMINIQuerier."]], "Example 1a. Create a table with only one hospitalization per patient, keeping the most recent encounter for each patient. Sort the dataset by patient_id_hashed and discharge_date_time, and then keep the recent record.": [[191, "Example-1a.-Create-a-table-with-only-one-hospitalization-per-patient,-keeping-the-most-recent-encounter-for-each-patient.-Sort-the-dataset-by-patient_id_hashed-and-discharge_date_time,-and-then-keep-the-recent-record."]], "Example 1b. From the above set of encounters, take a subset of patients who were discharged between April 1, 2015 and March 31, 2016.": [[191, "Example-1b.-From-the-above-set-of-encounters,-take-a-subset-of-patients-who-were-discharged-between-April-1,-2015-and-March-31,-2016."]], "Example 1c. From the above set of encounters, get the total number of admissions for each hospital.": [[191, "Example-1c.-From-the-above-set-of-encounters,-get-the-total-number-of-admissions-for-each-hospital."]], "Example 2a. How many sodium tests were placed between Apr 1, 2015 and May 31, 2015 at hospital 101?": [[191, "Example-2a.-How-many-sodium-tests-were-placed-between-Apr-1,-2015-and-May-31,-2015-at-hospital-101?"]], "Heart Failure Prediction": [[192, "Heart-Failure-Prediction"]], "Import Libraries": [[192, "Import-Libraries"], [195, "Import-Libraries"], [198, "Import-Libraries"]], "Constants": [[192, "Constants"], [198, "Constants"]], "Data Loading": [[192, "Data-Loading"]], "Sex values": [[192, "Sex-values"]], "Age distribution": [[192, "Age-distribution"], [198, "Age-distribution"]], "Outcome distribution": [[192, "Outcome-distribution"], [198, "Outcome-distribution"]], "Identifying feature types": [[192, "Identifying-feature-types"], [198, "Identifying-feature-types"]], "Creating data preprocessors": [[192, "Creating-data-preprocessors"], [198, "Creating-data-preprocessors"]], "Creating Hugging Face Dataset": [[192, "Creating-Hugging-Face-Dataset"], [198, "Creating-Hugging-Face-Dataset"]], "Model Creation": [[192, "Model-Creation"], [198, "Model-Creation"]], "Task Creation": [[192, "Task-Creation"], [198, "Task-Creation"]], "Training": [[192, "Training"], [198, "Training"]], "Prediction": [[192, "Prediction"], [198, "Prediction"]], "Evaluation": [[192, "Evaluation"], [198, "Evaluation"]], "Performance over time": [[192, "Performance-over-time"], [195, "Performance-over-time"], [198, "Performance-over-time"]], "Report Generation": [[192, "Report-Generation"], [198, "Report-Generation"]], "MIMIC-III query API tutorial": [[193, "MIMIC-III-query-API-tutorial"]], "Imports and instantiate MIMICIIIQuerier": [[193, "Imports-and-instantiate-MIMICIIIQuerier"]], "Example 1. Get all male patients with a mortality outcome.": [[193, "Example-1.-Get-all-male-patients-with-a-mortality-outcome."]], "Example 2. Get all female patient encounters with diagnoses (gastroenteritis in ICD-9 long title).": [[193, "Example-2.-Get-all-female-patient-encounters-with-diagnoses-(gastroenteritis-in-ICD-9-long-title)."]], "Example 3. Get potassium lab tests for female patients.": [[193, "Example-3.-Get-potassium-lab-tests-for-female-patients."]], "Example 4. Get AaDO2 carevue chart events for male patients that have a valuenum of less than 20.": [[193, "Example-4.-Get-AaDO2-carevue-chart-events-for-male-patients-that-have-a-valuenum-of-less-than-20."]], "MIMIC-IV query API tutorial": [[194, "MIMIC-IV-query-API-tutorial"]], "Imports and instantiate MIMICIVQuerier": [[194, "Imports-and-instantiate-MIMICIVQuerier"]], "Example 1. Get all patient admissions from 2021 or later (approx year of admission)": [[194, "Example-1.-Get-all-patient-admissions-from-2021-or-later-(approx-year-of-admission)"]], "Example 2. Get all patient encounters with diagnoses (schizophrenia in ICD-10 long title), in the year 2015.": [[194, "Example-2.-Get-all-patient-encounters-with-diagnoses-(schizophrenia-in-ICD-10-long-title),-in-the-year-2015."]], "Example 3. Advanced - uses ConditionRegexMatch from cyclops.query.ops. Get all patient encounters with diagnoses (ICD-9 long title contains schizophrenia and chronic ), in the year 2015.": [[194, "Example-3.-Advanced---uses-ConditionRegexMatch-from-cyclops.query.ops.-Get-all-patient-encounters-with-diagnoses-(ICD-9-long-title-contains-schizophrenia-and-chronic-),-in-the-year-2015."]], "Example 4. Get routine vital signs for patients from year 2015.": [[194, "Example-4.-Get-routine-vital-signs-for-patients-from-year-2015."]], "Example 5. Get hemoglobin lab tests for patients from year 2009.": [[194, "Example-5.-Get-hemoglobin-lab-tests-for-patients-from-year-2009."]], "Example 6. Get radiology reports and filter on keywords lymphadenopathy and infectious occurring together from year 2009.": [[194, "Example-6.-Get-radiology-reports-and-filter-on-keywords-lymphadenopathy-and-infectious-occurring-together-from-year-2009."]], "Example 7. Get all female patient encounters from year 2015, and return as dask dataframe (lazy evaluation) with 4 partitions (batches) aggregated based on subject_id.": [[194, "Example-7.-Get-all-female-patient-encounters-from-year-2015,-and-return-as-dask-dataframe-(lazy-evaluation)-with-4-partitions-(batches)-aggregated-based-on-subject_id."]], "Example 8. Running a raw SQL string.": [[194, "Example-8.-Running-a-raw-SQL-string."]], "Chest X-Ray Disease Classification": [[195, "Chest-X-Ray-Disease-Classification"]], "Load Dataset": [[195, "Load-Dataset"]], "Load Model and get Predictions": [[195, "Load-Model-and-get-Predictions"]], "Multilabel AUROC by Pathology and Sex": [[195, "Multilabel-AUROC-by-Pathology-and-Sex"]], "Multilabel AUROC by Pathology and Age": [[195, "Multilabel-AUROC-by-Pathology-and-Age"]], "Balanced Error Rate by Pathology and Age": [[195, "Balanced-Error-Rate-by-Pathology-and-Age"]], "Balanced Error Rate Parity by Pathology and Age": [[195, "Balanced-Error-Rate-Parity-by-Pathology-and-Age"]], "Log Performance Metrics as Tests w/ Thresholds": [[195, "Log-Performance-Metrics-as-Tests-w/-Thresholds"]], "Populate Model Card Fields": [[195, "Populate-Model-Card-Fields"]], "NIHCXR Clinical Drift Experiments Tutorial": [[196, "NIHCXR-Clinical-Drift-Experiments-Tutorial"]], "Import Libraries and Load NIHCXR Dataset": [[196, "Import-Libraries-and-Load-NIHCXR-Dataset"]], "Example 1. Generate Source/Target Dataset for Experiments (1-2)": [[196, "Example-1.-Generate-Source/Target-Dataset-for-Experiments-(1-2)"]], "Example 2. Sensitivity test experiment with 3 dimensionality reduction techniques": [[196, "Example-2.-Sensitivity-test-experiment-with-3-dimensionality-reduction-techniques"]], "Example 3. Sensitivity test experiment with models trained on different datasets": [[196, "Example-3.-Sensitivity-test-experiment-with-models-trained-on-different-datasets"]], "Example 4. Sensitivity test experiment with different clinical shifts": [[196, "Example-4.-Sensitivity-test-experiment-with-different-clinical-shifts"]], "Example 5. Rolling window experiment with synthetic timestamps using biweekly window": [[196, "Example-5.-Rolling-window-experiment-with-synthetic-timestamps-using-biweekly-window"]], "OMOP query API tutorial": [[197, "OMOP-query-API-tutorial"]], "Imports and instantiate OMOPQuerier.": [[197, "Imports-and-instantiate-OMOPQuerier."], [197, "id1"]], "Example 1. Get all patient visits in or after 2010.": [[197, "Example-1.-Get-all-patient-visits-in-or-after-2010."]], "Example 2. Get measurements for all visits in or after 2020.": [[197, "Example-2.-Get-measurements-for-all-visits-in-or-after-2020."]], "Example 1. Get all patient visits that ended in a mortality outcome in or after 2010.": [[197, "Example-1.-Get-all-patient-visits-that-ended-in-a-mortality-outcome-in-or-after-2010."]], "Example 2. Get all measurements for female patient visits with sepsis diagnoses, that ended in a mortality outcome.": [[197, "Example-2.-Get-all-measurements-for-female-patient-visits-with-sepsis-diagnoses,-that-ended-in-a-mortality-outcome."]], "Prolonged Length of Stay Prediction": [[198, "Prolonged-Length-of-Stay-Prediction"]], "Data Querying": [[198, "Data-Querying"]], "Compute length of stay (labels)": [[198, "Compute-length-of-stay-(labels)"]], "Data Inspection and Preprocessing": [[198, "Data-Inspection-and-Preprocessing"]], "Drop NaNs based on the NAN_THRESHOLD": [[198, "Drop-NaNs-based-on-the-NAN_THRESHOLD"]], "Length of stay distribution": [[198, "Length-of-stay-distribution"]], "Gender distribution": [[198, "Gender-distribution"]], "monitor API": [[199, "monitor-api"]], "query API": [[200, "query-api"]], "Example use cases": [[201, "example-use-cases"]], "Tabular data": [[201, "tabular-data"]], "Kaggle Heart Failure Prediction": [[201, "kaggle-heart-failure-prediction"]], "Synthea Prolonged Length of Stay Prediction": [[201, "synthea-prolonged-length-of-stay-prediction"]], "Image data": [[201, "image-data"]], "NIH Chest X-ray classification": [[201, "nih-chest-x-ray-classification"]]}, "indexentries": {"cyclops.data.features.medical_image": [[4, "module-cyclops.data.features.medical_image"]], "module": [[4, "module-cyclops.data.features.medical_image"], [6, "module-cyclops.data.slicer"], [16, "module-cyclops.evaluate.evaluator"], [18, "module-cyclops.evaluate.fairness.config"], [20, "module-cyclops.evaluate.fairness.evaluator"], [23, "module-cyclops.evaluate.metrics.accuracy"], [28, "module-cyclops.evaluate.metrics.auroc"], [33, "module-cyclops.evaluate.metrics.f_beta"], [42, "module-cyclops.evaluate.metrics.factory"], [44, "module-cyclops.evaluate.metrics.functional.accuracy"], [45, "module-cyclops.evaluate.metrics.functional.auroc"], [46, "module-cyclops.evaluate.metrics.functional.f_beta"], [55, "module-cyclops.evaluate.metrics.functional.precision_recall"], [64, "module-cyclops.evaluate.metrics.functional.precision_recall_curve"], [65, "module-cyclops.evaluate.metrics.functional.roc"], [70, "module-cyclops.evaluate.metrics.functional.sensitivity"], [71, "module-cyclops.evaluate.metrics.functional.specificity"], [72, "module-cyclops.evaluate.metrics.functional.stat_scores"], [73, "module-cyclops.evaluate.metrics.metric"], [77, "module-cyclops.evaluate.metrics.precision_recall"], [86, "module-cyclops.evaluate.metrics.precision_recall_curve"], [91, "module-cyclops.evaluate.metrics.roc"], [96, "module-cyclops.evaluate.metrics.sensitivity"], [101, "module-cyclops.evaluate.metrics.specificity"], [106, "module-cyclops.evaluate.metrics.stat_scores"], [111, "module-cyclops.monitor.clinical_applicator"], [113, "module-cyclops.monitor.synthetic_applicator"], [120, "module-cyclops.query.base"], [122, "module-cyclops.query.eicu"], [124, "module-cyclops.query.gemini"], [126, "module-cyclops.query.interface"], [128, "module-cyclops.query.mimiciii"], [130, "module-cyclops.query.mimiciv"], [132, "module-cyclops.query.omop"], [134, "module-cyclops.query.ops"], [177, "module-cyclops.report.report"], [179, "module-cyclops.tasks.cxr_classification"], [181, "module-cyclops.tasks.mortality_prediction"], [183, "module-cyclops.data"], [183, "module-cyclops.data.features"], [184, "module-cyclops.evaluate"], [184, "module-cyclops.evaluate.fairness"], [184, "module-cyclops.evaluate.metrics"], [184, "module-cyclops.evaluate.metrics.functional"], [185, "module-cyclops.monitor"], [186, "module-cyclops.query"], [187, "module-cyclops.report"], [188, "module-cyclops.tasks"]], "medicalimage (class in cyclops.data.features.medical_image)": [[5, "cyclops.data.features.medical_image.MedicalImage"]], "__call__() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.__call__"]], "cast_storage() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.cast_storage"]], "decode_example() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.decode_example"]], "embed_storage() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.embed_storage"]], "encode_example() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.encode_example"]], "flatten() (medicalimage method)": [[5, "cyclops.data.features.medical_image.MedicalImage.flatten"]], "cyclops.data.slicer": [[6, "module-cyclops.data.slicer"]], "slicespec (class in cyclops.data.slicer)": [[7, "cyclops.data.slicer.SliceSpec"]], "_registry (slicespec attribute)": [[7, "cyclops.data.slicer.SliceSpec._registry"]], "add_slice_spec() (slicespec method)": [[7, "cyclops.data.slicer.SliceSpec.add_slice_spec"]], "column_names (slicespec attribute)": [[7, "cyclops.data.slicer.SliceSpec.column_names"]], "get_slices() (slicespec method)": [[7, "cyclops.data.slicer.SliceSpec.get_slices"]], "include_overall (slicespec attribute)": [[7, "cyclops.data.slicer.SliceSpec.include_overall"]], "slices() (slicespec method)": [[7, "cyclops.data.slicer.SliceSpec.slices"]], "spec_list (slicespec attribute)": [[7, "cyclops.data.slicer.SliceSpec.spec_list"]], "validate (slicespec attribute)": [[7, "cyclops.data.slicer.SliceSpec.validate"]], "compound_filter() (in module cyclops.data.slicer)": [[8, "cyclops.data.slicer.compound_filter"]], "filter_datetime() (in module cyclops.data.slicer)": [[9, "cyclops.data.slicer.filter_datetime"]], "filter_non_null() (in module cyclops.data.slicer)": [[10, "cyclops.data.slicer.filter_non_null"]], "filter_range() (in module cyclops.data.slicer)": [[11, "cyclops.data.slicer.filter_range"]], "filter_string_contains() (in module cyclops.data.slicer)": [[12, "cyclops.data.slicer.filter_string_contains"]], "filter_value() (in module cyclops.data.slicer)": [[13, "cyclops.data.slicer.filter_value"]], "is_datetime() (in module cyclops.data.slicer)": [[14, "cyclops.data.slicer.is_datetime"]], "overall() (in module cyclops.data.slicer)": [[15, "cyclops.data.slicer.overall"]], "cyclops.evaluate.evaluator": [[16, "module-cyclops.evaluate.evaluator"]], "evaluate() (in module cyclops.evaluate.evaluator)": [[17, "cyclops.evaluate.evaluator.evaluate"]], "cyclops.evaluate.fairness.config": [[18, "module-cyclops.evaluate.fairness.config"]], "fairnessconfig (class in cyclops.evaluate.fairness.config)": [[19, "cyclops.evaluate.fairness.config.FairnessConfig"]], "cyclops.evaluate.fairness.evaluator": [[20, "module-cyclops.evaluate.fairness.evaluator"]], "evaluate_fairness() (in module cyclops.evaluate.fairness.evaluator)": [[21, "cyclops.evaluate.fairness.evaluator.evaluate_fairness"]], "warn_too_many_unique_values() (in module cyclops.evaluate.fairness.evaluator)": [[22, "cyclops.evaluate.fairness.evaluator.warn_too_many_unique_values"]], "cyclops.evaluate.metrics.accuracy": [[23, "module-cyclops.evaluate.metrics.accuracy"]], "accuracy (class in cyclops.evaluate.metrics.accuracy)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy"]], "__add__() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.__add__"]], "__call__() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.__call__"]], "__init__() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.__init__"]], "__mul__() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.__mul__"]], "add_state() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.add_state"]], "clone() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.clone"]], "compute() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.compute"]], "reset_state() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.reset_state"]], "update_state() (accuracy method)": [[24, "cyclops.evaluate.metrics.accuracy.Accuracy.update_state"]], "binaryaccuracy (class in cyclops.evaluate.metrics.accuracy)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy"]], "__add__() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.__add__"]], "__call__() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.__call__"]], "__init__() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.__init__"]], "__mul__() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.__mul__"]], "add_state() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.add_state"]], "clone() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.clone"]], "compute() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.compute"]], "reset_state() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.reset_state"]], "update_state() (binaryaccuracy method)": [[25, "cyclops.evaluate.metrics.accuracy.BinaryAccuracy.update_state"]], "multiclassaccuracy (class in cyclops.evaluate.metrics.accuracy)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy"]], "__add__() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.__add__"]], "__call__() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.__call__"]], "__init__() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.__init__"]], "__mul__() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.__mul__"]], "add_state() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.add_state"]], "clone() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.clone"]], "compute() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.compute"]], "reset_state() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.reset_state"]], "update_state() (multiclassaccuracy method)": [[26, "cyclops.evaluate.metrics.accuracy.MulticlassAccuracy.update_state"]], "multilabelaccuracy (class in cyclops.evaluate.metrics.accuracy)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy"]], "__add__() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.__add__"]], "__call__() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.__call__"]], "__init__() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.__init__"]], "__mul__() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.__mul__"]], "add_state() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.add_state"]], "clone() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.clone"]], "compute() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.compute"]], "reset_state() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.reset_state"]], "update_state() (multilabelaccuracy method)": [[27, "cyclops.evaluate.metrics.accuracy.MultilabelAccuracy.update_state"]], "cyclops.evaluate.metrics.auroc": [[28, "module-cyclops.evaluate.metrics.auroc"]], "auroc (class in cyclops.evaluate.metrics.auroc)": [[29, "cyclops.evaluate.metrics.auroc.AUROC"]], "__add__() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.__add__"]], "__call__() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.__call__"]], "__init__() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.__init__"]], "__mul__() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.__mul__"]], "add_state() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.add_state"]], "clone() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.clone"]], "compute() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.compute"]], "reset_state() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.reset_state"]], "update_state() (auroc method)": [[29, "cyclops.evaluate.metrics.auroc.AUROC.update_state"]], "binaryauroc (class in cyclops.evaluate.metrics.auroc)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC"]], "__add__() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.__add__"]], "__call__() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.__call__"]], "__init__() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.__init__"]], "__mul__() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.__mul__"]], "add_state() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.add_state"]], "clone() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.clone"]], "compute() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.compute"]], "reset_state() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.reset_state"]], "update_state() (binaryauroc method)": [[30, "cyclops.evaluate.metrics.auroc.BinaryAUROC.update_state"]], "multiclassauroc (class in cyclops.evaluate.metrics.auroc)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC"]], "__add__() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.__add__"]], "__call__() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.__call__"]], "__init__() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.__init__"]], "__mul__() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.__mul__"]], "add_state() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.add_state"]], "clone() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.clone"]], "compute() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.compute"]], "reset_state() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.reset_state"]], "update_state() (multiclassauroc method)": [[31, "cyclops.evaluate.metrics.auroc.MulticlassAUROC.update_state"]], "multilabelauroc (class in cyclops.evaluate.metrics.auroc)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC"]], "__add__() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.__add__"]], "__call__() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.__call__"]], "__init__() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.__init__"]], "__mul__() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.__mul__"]], "add_state() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.add_state"]], "clone() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.clone"]], "compute() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.compute"]], "reset_state() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.reset_state"]], "update_state() (multilabelauroc method)": [[32, "cyclops.evaluate.metrics.auroc.MultilabelAUROC.update_state"]], "cyclops.evaluate.metrics.f_beta": [[33, "module-cyclops.evaluate.metrics.f_beta"]], "binaryf1score (class in cyclops.evaluate.metrics.f_beta)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score"]], "__add__() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.__add__"]], "__call__() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.__call__"]], "__init__() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.__init__"]], "__mul__() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.__mul__"]], "add_state() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.add_state"]], "clone() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.clone"]], "compute() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.compute"]], "reset_state() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.reset_state"]], "update_state() (binaryf1score method)": [[34, "cyclops.evaluate.metrics.f_beta.BinaryF1Score.update_state"]], "binaryfbetascore (class in cyclops.evaluate.metrics.f_beta)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore"]], "__add__() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.__add__"]], "__call__() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.__call__"]], "__init__() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.__init__"]], "__mul__() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.__mul__"]], "add_state() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.add_state"]], "clone() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.clone"]], "compute() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.compute"]], "reset_state() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.reset_state"]], "update_state() (binaryfbetascore method)": [[35, "cyclops.evaluate.metrics.f_beta.BinaryFbetaScore.update_state"]], "f1score (class in cyclops.evaluate.metrics.f_beta)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score"]], "__add__() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.__add__"]], "__call__() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.__call__"]], "__init__() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.__init__"]], "__mul__() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.__mul__"]], "add_state() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.add_state"]], "clone() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.clone"]], "compute() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.compute"]], "reset_state() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.reset_state"]], "update_state() (f1score method)": [[36, "cyclops.evaluate.metrics.f_beta.F1Score.update_state"]], "fbetascore (class in cyclops.evaluate.metrics.f_beta)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore"]], "__add__() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.__add__"]], "__call__() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.__call__"]], "__init__() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.__init__"]], "__mul__() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.__mul__"]], "add_state() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.add_state"]], "clone() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.clone"]], "compute() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.compute"]], "reset_state() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.reset_state"]], "update_state() (fbetascore method)": [[37, "cyclops.evaluate.metrics.f_beta.FbetaScore.update_state"]], "multiclassf1score (class in cyclops.evaluate.metrics.f_beta)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score"]], "__add__() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.__add__"]], "__call__() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.__call__"]], "__init__() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.__init__"]], "__mul__() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.__mul__"]], "add_state() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.add_state"]], "clone() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.clone"]], "compute() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.compute"]], "reset_state() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.reset_state"]], "update_state() (multiclassf1score method)": [[38, "cyclops.evaluate.metrics.f_beta.MulticlassF1Score.update_state"]], "multiclassfbetascore (class in cyclops.evaluate.metrics.f_beta)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore"]], "__add__() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.__add__"]], "__call__() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.__call__"]], "__init__() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.__init__"]], "__mul__() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.__mul__"]], "add_state() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.add_state"]], "clone() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.clone"]], "compute() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.compute"]], "reset_state() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.reset_state"]], "update_state() (multiclassfbetascore method)": [[39, "cyclops.evaluate.metrics.f_beta.MulticlassFbetaScore.update_state"]], "multilabelf1score (class in cyclops.evaluate.metrics.f_beta)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score"]], "__add__() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.__add__"]], "__call__() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.__call__"]], "__init__() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.__init__"]], "__mul__() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.__mul__"]], "add_state() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.add_state"]], "clone() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.clone"]], "compute() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.compute"]], "reset_state() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.reset_state"]], "update_state() (multilabelf1score method)": [[40, "cyclops.evaluate.metrics.f_beta.MultilabelF1Score.update_state"]], "multilabelfbetascore (class in cyclops.evaluate.metrics.f_beta)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore"]], "__add__() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.__add__"]], "__call__() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.__call__"]], "__init__() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.__init__"]], "__mul__() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.__mul__"]], "add_state() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.add_state"]], "clone() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.clone"]], "compute() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.compute"]], "reset_state() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.reset_state"]], "update_state() (multilabelfbetascore method)": [[41, "cyclops.evaluate.metrics.f_beta.MultilabelFbetaScore.update_state"]], "cyclops.evaluate.metrics.factory": [[42, "module-cyclops.evaluate.metrics.factory"]], "create_metric() (in module cyclops.evaluate.metrics.factory)": [[43, "cyclops.evaluate.metrics.factory.create_metric"]], "cyclops.evaluate.metrics.functional.accuracy": [[44, "module-cyclops.evaluate.metrics.functional.accuracy"]], "cyclops.evaluate.metrics.functional.auroc": [[45, "module-cyclops.evaluate.metrics.functional.auroc"]], "cyclops.evaluate.metrics.functional.f_beta": [[46, "module-cyclops.evaluate.metrics.functional.f_beta"]], "binary_f1_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[47, "cyclops.evaluate.metrics.functional.f_beta.binary_f1_score"]], "binary_fbeta_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[48, "cyclops.evaluate.metrics.functional.f_beta.binary_fbeta_score"]], "f1_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[49, "cyclops.evaluate.metrics.functional.f_beta.f1_score"]], "fbeta_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[50, "cyclops.evaluate.metrics.functional.f_beta.fbeta_score"]], "multiclass_f1_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[51, "cyclops.evaluate.metrics.functional.f_beta.multiclass_f1_score"]], "multiclass_fbeta_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[52, "cyclops.evaluate.metrics.functional.f_beta.multiclass_fbeta_score"]], "multilabel_f1_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[53, "cyclops.evaluate.metrics.functional.f_beta.multilabel_f1_score"]], "multilabel_fbeta_score() (in module cyclops.evaluate.metrics.functional.f_beta)": [[54, "cyclops.evaluate.metrics.functional.f_beta.multilabel_fbeta_score"]], "cyclops.evaluate.metrics.functional.precision_recall": [[55, "module-cyclops.evaluate.metrics.functional.precision_recall"]], "binary_precision() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[56, "cyclops.evaluate.metrics.functional.precision_recall.binary_precision"]], "binary_recall() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[57, "cyclops.evaluate.metrics.functional.precision_recall.binary_recall"]], "multiclass_precision() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[58, "cyclops.evaluate.metrics.functional.precision_recall.multiclass_precision"]], "multiclass_recall() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[59, "cyclops.evaluate.metrics.functional.precision_recall.multiclass_recall"]], "multilabel_precision() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[60, "cyclops.evaluate.metrics.functional.precision_recall.multilabel_precision"]], "multilabel_recall() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[61, "cyclops.evaluate.metrics.functional.precision_recall.multilabel_recall"]], "precision() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[62, "cyclops.evaluate.metrics.functional.precision_recall.precision"]], "recall() (in module cyclops.evaluate.metrics.functional.precision_recall)": [[63, "cyclops.evaluate.metrics.functional.precision_recall.recall"]], "cyclops.evaluate.metrics.functional.precision_recall_curve": [[64, "module-cyclops.evaluate.metrics.functional.precision_recall_curve"]], "cyclops.evaluate.metrics.functional.roc": [[65, "module-cyclops.evaluate.metrics.functional.roc"]], "binary_roc_curve() (in module cyclops.evaluate.metrics.functional.roc)": [[66, "cyclops.evaluate.metrics.functional.roc.binary_roc_curve"]], "multiclass_roc_curve() (in module cyclops.evaluate.metrics.functional.roc)": [[67, "cyclops.evaluate.metrics.functional.roc.multiclass_roc_curve"]], "multilabel_roc_curve() (in module cyclops.evaluate.metrics.functional.roc)": [[68, "cyclops.evaluate.metrics.functional.roc.multilabel_roc_curve"]], "roc_curve() (in module cyclops.evaluate.metrics.functional.roc)": [[69, "cyclops.evaluate.metrics.functional.roc.roc_curve"]], "cyclops.evaluate.metrics.functional.sensitivity": [[70, "module-cyclops.evaluate.metrics.functional.sensitivity"]], "cyclops.evaluate.metrics.functional.specificity": [[71, "module-cyclops.evaluate.metrics.functional.specificity"]], "cyclops.evaluate.metrics.functional.stat_scores": [[72, "module-cyclops.evaluate.metrics.functional.stat_scores"]], "cyclops.evaluate.metrics.metric": [[73, "module-cyclops.evaluate.metrics.metric"]], "metric (class in cyclops.evaluate.metrics.metric)": [[74, "cyclops.evaluate.metrics.metric.Metric"]], "__add__() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.__add__"]], "__call__() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.__call__"]], "__init__() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.__init__"]], "__mul__() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.__mul__"]], "add_state() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.add_state"]], "clone() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.clone"]], "compute() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.compute"]], "reset_state() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.reset_state"]], "update_state() (metric method)": [[74, "cyclops.evaluate.metrics.metric.Metric.update_state"]], "metriccollection (class in cyclops.evaluate.metrics.metric)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection"]], "__call__() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.__call__"]], "__init__() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.__init__"]], "add_metrics() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.add_metrics"]], "clear() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.clear"]], "clone() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.clone"]], "compute() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.compute"]], "get() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.get"]], "items() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.items"]], "keys() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.keys"]], "pop() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.pop"]], "popitem() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.popitem"]], "reset_state() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.reset_state"]], "setdefault() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.setdefault"]], "update() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.update"]], "update_state() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.update_state"]], "values() (metriccollection method)": [[75, "cyclops.evaluate.metrics.metric.MetricCollection.values"]], "operatormetric (class in cyclops.evaluate.metrics.metric)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric"]], "__add__() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.__add__"]], "__call__() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.__call__"]], "__init__() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.__init__"]], "__mul__() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.__mul__"]], "add_state() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.add_state"]], "clone() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.clone"]], "compute() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.compute"]], "reset_state() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.reset_state"]], "update_state() (operatormetric method)": [[76, "cyclops.evaluate.metrics.metric.OperatorMetric.update_state"]], "cyclops.evaluate.metrics.precision_recall": [[77, "module-cyclops.evaluate.metrics.precision_recall"]], "binaryprecision (class in cyclops.evaluate.metrics.precision_recall)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision"]], "__add__() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.__add__"]], "__call__() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.__call__"]], "__init__() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.__init__"]], "__mul__() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.__mul__"]], "add_state() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.add_state"]], "clone() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.clone"]], "compute() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.compute"]], "reset_state() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.reset_state"]], "update_state() (binaryprecision method)": [[78, "cyclops.evaluate.metrics.precision_recall.BinaryPrecision.update_state"]], "binaryrecall (class in cyclops.evaluate.metrics.precision_recall)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall"]], "__add__() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.__add__"]], "__call__() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.__call__"]], "__init__() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.__init__"]], "__mul__() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.__mul__"]], "add_state() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.add_state"]], "clone() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.clone"]], "compute() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.compute"]], "reset_state() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.reset_state"]], "update_state() (binaryrecall method)": [[79, "cyclops.evaluate.metrics.precision_recall.BinaryRecall.update_state"]], "multiclassprecision (class in cyclops.evaluate.metrics.precision_recall)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision"]], "__add__() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.__add__"]], "__call__() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.__call__"]], "__init__() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.__init__"]], "__mul__() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.__mul__"]], "add_state() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.add_state"]], "clone() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.clone"]], "compute() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.compute"]], "reset_state() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.reset_state"]], "update_state() (multiclassprecision method)": [[80, "cyclops.evaluate.metrics.precision_recall.MulticlassPrecision.update_state"]], "multiclassrecall (class in cyclops.evaluate.metrics.precision_recall)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall"]], "__add__() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.__add__"]], "__call__() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.__call__"]], "__init__() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.__init__"]], "__mul__() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.__mul__"]], "add_state() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.add_state"]], "clone() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.clone"]], "compute() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.compute"]], "reset_state() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.reset_state"]], "update_state() (multiclassrecall method)": [[81, "cyclops.evaluate.metrics.precision_recall.MulticlassRecall.update_state"]], "multilabelprecision (class in cyclops.evaluate.metrics.precision_recall)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision"]], "__add__() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.__add__"]], "__call__() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.__call__"]], "__init__() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.__init__"]], "__mul__() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.__mul__"]], "add_state() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.add_state"]], "clone() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.clone"]], "compute() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.compute"]], "reset_state() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.reset_state"]], "update_state() (multilabelprecision method)": [[82, "cyclops.evaluate.metrics.precision_recall.MultilabelPrecision.update_state"]], "multilabelrecall (class in cyclops.evaluate.metrics.precision_recall)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall"]], "__add__() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.__add__"]], "__call__() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.__call__"]], "__init__() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.__init__"]], "__mul__() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.__mul__"]], "add_state() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.add_state"]], "clone() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.clone"]], "compute() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.compute"]], "reset_state() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.reset_state"]], "update_state() (multilabelrecall method)": [[83, "cyclops.evaluate.metrics.precision_recall.MultilabelRecall.update_state"]], "precision (class in cyclops.evaluate.metrics.precision_recall)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision"]], "__add__() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.__add__"]], "__call__() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.__call__"]], "__init__() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.__init__"]], "__mul__() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.__mul__"]], "add_state() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.add_state"]], "clone() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.clone"]], "compute() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.compute"]], "reset_state() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.reset_state"]], "update_state() (precision method)": [[84, "cyclops.evaluate.metrics.precision_recall.Precision.update_state"]], "recall (class in cyclops.evaluate.metrics.precision_recall)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall"]], "__add__() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.__add__"]], "__call__() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.__call__"]], "__init__() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.__init__"]], "__mul__() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.__mul__"]], "add_state() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.add_state"]], "clone() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.clone"]], "compute() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.compute"]], "reset_state() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.reset_state"]], "update_state() (recall method)": [[85, "cyclops.evaluate.metrics.precision_recall.Recall.update_state"]], "cyclops.evaluate.metrics.precision_recall_curve": [[86, "module-cyclops.evaluate.metrics.precision_recall_curve"]], "binaryprecisionrecallcurve (class in cyclops.evaluate.metrics.precision_recall_curve)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve"]], "__add__() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.__add__"]], "__call__() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.__call__"]], "__init__() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.__init__"]], "__mul__() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.__mul__"]], "add_state() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.add_state"]], "clone() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.clone"]], "compute() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.compute"]], "reset_state() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.reset_state"]], "update_state() (binaryprecisionrecallcurve method)": [[87, "cyclops.evaluate.metrics.precision_recall_curve.BinaryPrecisionRecallCurve.update_state"]], "multiclassprecisionrecallcurve (class in cyclops.evaluate.metrics.precision_recall_curve)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve"]], "__add__() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.__add__"]], "__call__() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.__call__"]], "__init__() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.__init__"]], "__mul__() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.__mul__"]], "add_state() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.add_state"]], "clone() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.clone"]], "compute() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.compute"]], "reset_state() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.reset_state"]], "update_state() (multiclassprecisionrecallcurve method)": [[88, "cyclops.evaluate.metrics.precision_recall_curve.MulticlassPrecisionRecallCurve.update_state"]], "multilabelprecisionrecallcurve (class in cyclops.evaluate.metrics.precision_recall_curve)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve"]], "__add__() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.__add__"]], "__call__() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.__call__"]], "__init__() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.__init__"]], "__mul__() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.__mul__"]], "add_state() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.add_state"]], "clone() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.clone"]], "compute() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.compute"]], "reset_state() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.reset_state"]], "update_state() (multilabelprecisionrecallcurve method)": [[89, "cyclops.evaluate.metrics.precision_recall_curve.MultilabelPrecisionRecallCurve.update_state"]], "precisionrecallcurve (class in cyclops.evaluate.metrics.precision_recall_curve)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve"]], "__add__() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.__add__"]], "__call__() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.__call__"]], "__init__() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.__init__"]], "__mul__() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.__mul__"]], "add_state() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.add_state"]], "clone() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.clone"]], "compute() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.compute"]], "reset_state() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.reset_state"]], "update_state() (precisionrecallcurve method)": [[90, "cyclops.evaluate.metrics.precision_recall_curve.PrecisionRecallCurve.update_state"]], "cyclops.evaluate.metrics.roc": [[91, "module-cyclops.evaluate.metrics.roc"]], "binaryroccurve (class in cyclops.evaluate.metrics.roc)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve"]], "__add__() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.__add__"]], "__call__() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.__call__"]], "__init__() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.__init__"]], "__mul__() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.__mul__"]], "add_state() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.add_state"]], "clone() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.clone"]], "compute() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.compute"]], "reset_state() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.reset_state"]], "update_state() (binaryroccurve method)": [[92, "cyclops.evaluate.metrics.roc.BinaryROCCurve.update_state"]], "multiclassroccurve (class in cyclops.evaluate.metrics.roc)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve"]], "__add__() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.__add__"]], "__call__() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.__call__"]], "__init__() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.__init__"]], "__mul__() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.__mul__"]], "add_state() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.add_state"]], "clone() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.clone"]], "compute() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.compute"]], "reset_state() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.reset_state"]], "update_state() (multiclassroccurve method)": [[93, "cyclops.evaluate.metrics.roc.MulticlassROCCurve.update_state"]], "multilabelroccurve (class in cyclops.evaluate.metrics.roc)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve"]], "__add__() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.__add__"]], "__call__() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.__call__"]], "__init__() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.__init__"]], "__mul__() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.__mul__"]], "add_state() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.add_state"]], "clone() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.clone"]], "compute() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.compute"]], "reset_state() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.reset_state"]], "update_state() (multilabelroccurve method)": [[94, "cyclops.evaluate.metrics.roc.MultilabelROCCurve.update_state"]], "roccurve (class in cyclops.evaluate.metrics.roc)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve"]], "__add__() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.__add__"]], "__call__() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.__call__"]], "__init__() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.__init__"]], "__mul__() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.__mul__"]], "add_state() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.add_state"]], "clone() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.clone"]], "compute() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.compute"]], "reset_state() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.reset_state"]], "update_state() (roccurve method)": [[95, "cyclops.evaluate.metrics.roc.ROCCurve.update_state"]], "cyclops.evaluate.metrics.sensitivity": [[96, "module-cyclops.evaluate.metrics.sensitivity"]], "binarysensitivity (class in cyclops.evaluate.metrics.sensitivity)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity"]], "__add__() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.__add__"]], "__call__() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.__call__"]], "__init__() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.__init__"]], "__mul__() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.__mul__"]], "add_state() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.add_state"]], "clone() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.clone"]], "compute() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.compute"]], "reset_state() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.reset_state"]], "update_state() (binarysensitivity method)": [[97, "cyclops.evaluate.metrics.sensitivity.BinarySensitivity.update_state"]], "multiclasssensitivity (class in cyclops.evaluate.metrics.sensitivity)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity"]], "__add__() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.__add__"]], "__call__() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.__call__"]], "__init__() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.__init__"]], "__mul__() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.__mul__"]], "add_state() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.add_state"]], "clone() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.clone"]], "compute() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.compute"]], "reset_state() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.reset_state"]], "update_state() (multiclasssensitivity method)": [[98, "cyclops.evaluate.metrics.sensitivity.MulticlassSensitivity.update_state"]], "multilabelsensitivity (class in cyclops.evaluate.metrics.sensitivity)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity"]], "__add__() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.__add__"]], "__call__() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.__call__"]], "__init__() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.__init__"]], "__mul__() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.__mul__"]], "add_state() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.add_state"]], "clone() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.clone"]], "compute() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.compute"]], "reset_state() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.reset_state"]], "update_state() (multilabelsensitivity method)": [[99, "cyclops.evaluate.metrics.sensitivity.MultilabelSensitivity.update_state"]], "sensitivity (class in cyclops.evaluate.metrics.sensitivity)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity"]], "__add__() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.__add__"]], "__call__() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.__call__"]], "__init__() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.__init__"]], "__mul__() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.__mul__"]], "add_state() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.add_state"]], "clone() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.clone"]], "compute() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.compute"]], "reset_state() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.reset_state"]], "update_state() (sensitivity method)": [[100, "cyclops.evaluate.metrics.sensitivity.Sensitivity.update_state"]], "cyclops.evaluate.metrics.specificity": [[101, "module-cyclops.evaluate.metrics.specificity"]], "binaryspecificity (class in cyclops.evaluate.metrics.specificity)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity"]], "__add__() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.__add__"]], "__call__() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.__call__"]], "__init__() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.__init__"]], "__mul__() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.__mul__"]], "add_state() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.add_state"]], "clone() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.clone"]], "compute() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.compute"]], "reset_state() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.reset_state"]], "update_state() (binaryspecificity method)": [[102, "cyclops.evaluate.metrics.specificity.BinarySpecificity.update_state"]], "multiclassspecificity (class in cyclops.evaluate.metrics.specificity)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity"]], "__add__() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.__add__"]], "__call__() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.__call__"]], "__init__() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.__init__"]], "__mul__() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.__mul__"]], "add_state() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.add_state"]], "clone() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.clone"]], "compute() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.compute"]], "reset_state() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.reset_state"]], "update_state() (multiclassspecificity method)": [[103, "cyclops.evaluate.metrics.specificity.MulticlassSpecificity.update_state"]], "multilabelspecificity (class in cyclops.evaluate.metrics.specificity)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity"]], "__add__() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.__add__"]], "__call__() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.__call__"]], "__init__() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.__init__"]], "__mul__() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.__mul__"]], "add_state() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.add_state"]], "clone() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.clone"]], "compute() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.compute"]], "reset_state() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.reset_state"]], "update_state() (multilabelspecificity method)": [[104, "cyclops.evaluate.metrics.specificity.MultilabelSpecificity.update_state"]], "specificity (class in cyclops.evaluate.metrics.specificity)": [[105, "cyclops.evaluate.metrics.specificity.Specificity"]], "__add__() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.__add__"]], "__call__() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.__call__"]], "__init__() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.__init__"]], "__mul__() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.__mul__"]], "add_state() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.add_state"]], "clone() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.clone"]], "compute() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.compute"]], "reset_state() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.reset_state"]], "update_state() (specificity method)": [[105, "cyclops.evaluate.metrics.specificity.Specificity.update_state"]], "cyclops.evaluate.metrics.stat_scores": [[106, "module-cyclops.evaluate.metrics.stat_scores"]], "binarystatscores (class in cyclops.evaluate.metrics.stat_scores)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores"]], "__add__() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.__add__"]], "__call__() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.__call__"]], "__init__() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.__init__"]], "__mul__() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.__mul__"]], "add_state() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.add_state"]], "clone() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.clone"]], "compute() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.compute"]], "reset_state() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.reset_state"]], "update_state() (binarystatscores method)": [[107, "cyclops.evaluate.metrics.stat_scores.BinaryStatScores.update_state"]], "multiclassstatscores (class in cyclops.evaluate.metrics.stat_scores)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores"]], "__add__() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.__add__"]], "__call__() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.__call__"]], "__init__() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.__init__"]], "__mul__() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.__mul__"]], "add_state() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.add_state"]], "clone() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.clone"]], "compute() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.compute"]], "reset_state() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.reset_state"]], "update_state() (multiclassstatscores method)": [[108, "cyclops.evaluate.metrics.stat_scores.MulticlassStatScores.update_state"]], "multilabelstatscores (class in cyclops.evaluate.metrics.stat_scores)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores"]], "__add__() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.__add__"]], "__call__() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.__call__"]], "__init__() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.__init__"]], "__mul__() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.__mul__"]], "add_state() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.add_state"]], "clone() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.clone"]], "compute() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.compute"]], "reset_state() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.reset_state"]], "update_state() (multilabelstatscores method)": [[109, "cyclops.evaluate.metrics.stat_scores.MultilabelStatScores.update_state"]], "statscores (class in cyclops.evaluate.metrics.stat_scores)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores"]], "__add__() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.__add__"]], "__call__() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.__call__"]], "__init__() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.__init__"]], "__mul__() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.__mul__"]], "add_state() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.add_state"]], "clone() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.clone"]], "compute() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.compute"]], "reset_state() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.reset_state"]], "update_state() (statscores method)": [[110, "cyclops.evaluate.metrics.stat_scores.StatScores.update_state"]], "cyclops.monitor.clinical_applicator": [[111, "module-cyclops.monitor.clinical_applicator"]], "clinicalshiftapplicator (class in cyclops.monitor.clinical_applicator)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator"]], "age() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.age"]], "apply_shift() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.apply_shift"]], "custom() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.custom"]], "hospital_type() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.hospital_type"]], "month() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.month"]], "sex() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.sex"]], "time() (clinicalshiftapplicator method)": [[112, "cyclops.monitor.clinical_applicator.ClinicalShiftApplicator.time"]], "cyclops.monitor.synthetic_applicator": [[113, "module-cyclops.monitor.synthetic_applicator"]], "syntheticshiftapplicator (class in cyclops.monitor.synthetic_applicator)": [[114, "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator"]], "apply_shift() (syntheticshiftapplicator method)": [[114, "cyclops.monitor.synthetic_applicator.SyntheticShiftApplicator.apply_shift"]], "binary_noise_shift() (in module cyclops.monitor.synthetic_applicator)": [[115, "cyclops.monitor.synthetic_applicator.binary_noise_shift"]], "feature_association_shift() (in module cyclops.monitor.synthetic_applicator)": [[116, "cyclops.monitor.synthetic_applicator.feature_association_shift"]], "feature_swap_shift() (in module cyclops.monitor.synthetic_applicator)": [[117, "cyclops.monitor.synthetic_applicator.feature_swap_shift"]], "gaussian_noise_shift() (in module cyclops.monitor.synthetic_applicator)": [[118, "cyclops.monitor.synthetic_applicator.gaussian_noise_shift"]], "knockout_shift() (in module cyclops.monitor.synthetic_applicator)": [[119, "cyclops.monitor.synthetic_applicator.knockout_shift"]], "cyclops.query.base": [[120, "module-cyclops.query.base"]], "datasetquerier (class in cyclops.query.base)": [[121, "cyclops.query.base.DatasetQuerier"]], "db (datasetquerier attribute)": [[121, "cyclops.query.base.DatasetQuerier.db"]], "get_table() (datasetquerier method)": [[121, "cyclops.query.base.DatasetQuerier.get_table"]], "list_columns() (datasetquerier method)": [[121, "cyclops.query.base.DatasetQuerier.list_columns"]], "list_custom_tables() (datasetquerier method)": [[121, "cyclops.query.base.DatasetQuerier.list_custom_tables"]], "list_schemas() (datasetquerier method)": [[121, "cyclops.query.base.DatasetQuerier.list_schemas"]], "list_tables() (datasetquerier method)": [[121, "cyclops.query.base.DatasetQuerier.list_tables"]], "cyclops.query.eicu": [[122, "module-cyclops.query.eicu"]], "eicuquerier (class in cyclops.query.eicu)": [[123, "cyclops.query.eicu.EICUQuerier"]], "__init__() (eicuquerier method)": [[123, "cyclops.query.eicu.EICUQuerier.__init__"]], "get_table() (eicuquerier method)": [[123, "cyclops.query.eicu.EICUQuerier.get_table"]], "list_columns() (eicuquerier method)": [[123, "cyclops.query.eicu.EICUQuerier.list_columns"]], "list_custom_tables() (eicuquerier method)": [[123, "cyclops.query.eicu.EICUQuerier.list_custom_tables"]], "list_schemas() (eicuquerier method)": [[123, "cyclops.query.eicu.EICUQuerier.list_schemas"]], "list_tables() (eicuquerier method)": [[123, "cyclops.query.eicu.EICUQuerier.list_tables"]], "cyclops.query.gemini": [[124, "module-cyclops.query.gemini"]], "geminiquerier (class in cyclops.query.gemini)": [[125, "cyclops.query.gemini.GEMINIQuerier"]], "__init__() (geminiquerier method)": [[125, "cyclops.query.gemini.GEMINIQuerier.__init__"]], "care_units() (geminiquerier method)": [[125, "cyclops.query.gemini.GEMINIQuerier.care_units"]], "diagnoses() (geminiquerier method)": [[125, "cyclops.query.gemini.GEMINIQuerier.diagnoses"]], "get_table() (geminiquerier method)": [[125, "cyclops.query.gemini.GEMINIQuerier.get_table"]], "imaging() (geminiquerier method)": [[125, "cyclops.query.gemini.GEMINIQuerier.imaging"]], "ip_admin() (geminiquerier method)": [[125, "cyclops.query.gemini.GEMINIQuerier.ip_admin"]], "list_columns() (geminiquerier method)": [[125, "cyclops.query.gemini.GEMINIQuerier.list_columns"]], "list_custom_tables() (geminiquerier method)": [[125, "cyclops.query.gemini.GEMINIQuerier.list_custom_tables"]], "list_schemas() (geminiquerier method)": [[125, "cyclops.query.gemini.GEMINIQuerier.list_schemas"]], "list_tables() (geminiquerier method)": [[125, "cyclops.query.gemini.GEMINIQuerier.list_tables"]], "room_transfer() (geminiquerier method)": [[125, "cyclops.query.gemini.GEMINIQuerier.room_transfer"]], "cyclops.query.interface": [[126, "module-cyclops.query.interface"]], "queryinterface (class in cyclops.query.interface)": [[127, "cyclops.query.interface.QueryInterface"]], "__init__() (queryinterface method)": [[127, "cyclops.query.interface.QueryInterface.__init__"]], "clear_data() (queryinterface method)": [[127, "cyclops.query.interface.QueryInterface.clear_data"]], "data (queryinterface property)": [[127, "cyclops.query.interface.QueryInterface.data"]], "join() (queryinterface method)": [[127, "cyclops.query.interface.QueryInterface.join"]], "ops() (queryinterface method)": [[127, "cyclops.query.interface.QueryInterface.ops"]], "run() (queryinterface method)": [[127, "cyclops.query.interface.QueryInterface.run"]], "save() (queryinterface method)": [[127, "cyclops.query.interface.QueryInterface.save"]], "union() (queryinterface method)": [[127, "cyclops.query.interface.QueryInterface.union"]], "union_all() (queryinterface method)": [[127, "cyclops.query.interface.QueryInterface.union_all"]], "cyclops.query.mimiciii": [[128, "module-cyclops.query.mimiciii"]], "mimiciiiquerier (class in cyclops.query.mimiciii)": [[129, "cyclops.query.mimiciii.MIMICIIIQuerier"]], "__init__() (mimiciiiquerier method)": [[129, "cyclops.query.mimiciii.MIMICIIIQuerier.__init__"]], "chartevents() (mimiciiiquerier method)": [[129, "cyclops.query.mimiciii.MIMICIIIQuerier.chartevents"]], "diagnoses() (mimiciiiquerier method)": [[129, "cyclops.query.mimiciii.MIMICIIIQuerier.diagnoses"]], "get_table() (mimiciiiquerier method)": [[129, "cyclops.query.mimiciii.MIMICIIIQuerier.get_table"]], "labevents() (mimiciiiquerier method)": [[129, "cyclops.query.mimiciii.MIMICIIIQuerier.labevents"]], "list_columns() (mimiciiiquerier method)": [[129, "cyclops.query.mimiciii.MIMICIIIQuerier.list_columns"]], "list_custom_tables() (mimiciiiquerier method)": [[129, "cyclops.query.mimiciii.MIMICIIIQuerier.list_custom_tables"]], "list_schemas() (mimiciiiquerier method)": [[129, "cyclops.query.mimiciii.MIMICIIIQuerier.list_schemas"]], "list_tables() (mimiciiiquerier method)": [[129, "cyclops.query.mimiciii.MIMICIIIQuerier.list_tables"]], "cyclops.query.mimiciv": [[130, "module-cyclops.query.mimiciv"]], "mimicivquerier (class in cyclops.query.mimiciv)": [[131, "cyclops.query.mimiciv.MIMICIVQuerier"]], "__init__() (mimicivquerier method)": [[131, "cyclops.query.mimiciv.MIMICIVQuerier.__init__"]], "chartevents() (mimicivquerier method)": [[131, "cyclops.query.mimiciv.MIMICIVQuerier.chartevents"]], "diagnoses() (mimicivquerier method)": [[131, "cyclops.query.mimiciv.MIMICIVQuerier.diagnoses"]], "get_table() (mimicivquerier method)": [[131, "cyclops.query.mimiciv.MIMICIVQuerier.get_table"]], "labevents() (mimicivquerier method)": [[131, "cyclops.query.mimiciv.MIMICIVQuerier.labevents"]], "list_columns() (mimicivquerier method)": [[131, "cyclops.query.mimiciv.MIMICIVQuerier.list_columns"]], "list_custom_tables() (mimicivquerier method)": [[131, "cyclops.query.mimiciv.MIMICIVQuerier.list_custom_tables"]], "list_schemas() (mimicivquerier method)": [[131, "cyclops.query.mimiciv.MIMICIVQuerier.list_schemas"]], "list_tables() (mimicivquerier method)": [[131, "cyclops.query.mimiciv.MIMICIVQuerier.list_tables"]], "patients() (mimicivquerier method)": [[131, "cyclops.query.mimiciv.MIMICIVQuerier.patients"]], "cyclops.query.omop": [[132, "module-cyclops.query.omop"]], "omopquerier (class in cyclops.query.omop)": [[133, "cyclops.query.omop.OMOPQuerier"]], "__init__() (omopquerier method)": [[133, "cyclops.query.omop.OMOPQuerier.__init__"]], "get_table() (omopquerier method)": [[133, "cyclops.query.omop.OMOPQuerier.get_table"]], "list_columns() (omopquerier method)": [[133, "cyclops.query.omop.OMOPQuerier.list_columns"]], "list_custom_tables() (omopquerier method)": [[133, "cyclops.query.omop.OMOPQuerier.list_custom_tables"]], "list_schemas() (omopquerier method)": [[133, "cyclops.query.omop.OMOPQuerier.list_schemas"]], "list_tables() (omopquerier method)": [[133, "cyclops.query.omop.OMOPQuerier.list_tables"]], "map_concept_ids_to_name() (omopquerier method)": [[133, "cyclops.query.omop.OMOPQuerier.map_concept_ids_to_name"]], "measurement() (omopquerier method)": [[133, "cyclops.query.omop.OMOPQuerier.measurement"]], "observation() (omopquerier method)": [[133, "cyclops.query.omop.OMOPQuerier.observation"]], "person() (omopquerier method)": [[133, "cyclops.query.omop.OMOPQuerier.person"]], "visit_detail() (omopquerier method)": [[133, "cyclops.query.omop.OMOPQuerier.visit_detail"]], "visit_occurrence() (omopquerier method)": [[133, "cyclops.query.omop.OMOPQuerier.visit_occurrence"]], "cyclops.query.ops": [[134, "module-cyclops.query.ops"]], "addcolumn (class in cyclops.query.ops)": [[135, "cyclops.query.ops.AddColumn"]], "__call__() (addcolumn method)": [[135, "cyclops.query.ops.AddColumn.__call__"]], "adddeltacolumn (class in cyclops.query.ops)": [[136, "cyclops.query.ops.AddDeltaColumn"]], "__call__() (adddeltacolumn method)": [[136, "cyclops.query.ops.AddDeltaColumn.__call__"]], "adddeltaconstant (class in cyclops.query.ops)": [[137, "cyclops.query.ops.AddDeltaConstant"]], "__call__() (adddeltaconstant method)": [[137, "cyclops.query.ops.AddDeltaConstant.__call__"]], "addnumeric (class in cyclops.query.ops)": [[138, "cyclops.query.ops.AddNumeric"]], "__call__() (addnumeric method)": [[138, "cyclops.query.ops.AddNumeric.__call__"]], "and (class in cyclops.query.ops)": [[139, "cyclops.query.ops.And"]], "__call__() (and method)": [[139, "cyclops.query.ops.And.__call__"]], "apply (class in cyclops.query.ops)": [[140, "cyclops.query.ops.Apply"]], "__call__() (apply method)": [[140, "cyclops.query.ops.Apply.__call__"]], "cast (class in cyclops.query.ops)": [[141, "cyclops.query.ops.Cast"]], "__call__() (cast method)": [[141, "cyclops.query.ops.Cast.__call__"]], "conditionafterdate (class in cyclops.query.ops)": [[142, "cyclops.query.ops.ConditionAfterDate"]], "__call__() (conditionafterdate method)": [[142, "cyclops.query.ops.ConditionAfterDate.__call__"]], "conditionbeforedate (class in cyclops.query.ops)": [[143, "cyclops.query.ops.ConditionBeforeDate"]], "__call__() (conditionbeforedate method)": [[143, "cyclops.query.ops.ConditionBeforeDate.__call__"]], "conditionendswith (class in cyclops.query.ops)": [[144, "cyclops.query.ops.ConditionEndsWith"]], "__call__() (conditionendswith method)": [[144, "cyclops.query.ops.ConditionEndsWith.__call__"]], "conditionequals (class in cyclops.query.ops)": [[145, "cyclops.query.ops.ConditionEquals"]], "__call__() (conditionequals method)": [[145, "cyclops.query.ops.ConditionEquals.__call__"]], "conditiongreaterthan (class in cyclops.query.ops)": [[146, "cyclops.query.ops.ConditionGreaterThan"]], "__call__() (conditiongreaterthan method)": [[146, "cyclops.query.ops.ConditionGreaterThan.__call__"]], "conditionin (class in cyclops.query.ops)": [[147, "cyclops.query.ops.ConditionIn"]], "__call__() (conditionin method)": [[147, "cyclops.query.ops.ConditionIn.__call__"]], "conditioninmonths (class in cyclops.query.ops)": [[148, "cyclops.query.ops.ConditionInMonths"]], "__call__() (conditioninmonths method)": [[148, "cyclops.query.ops.ConditionInMonths.__call__"]], "conditioninyears (class in cyclops.query.ops)": [[149, "cyclops.query.ops.ConditionInYears"]], "__call__() (conditioninyears method)": [[149, "cyclops.query.ops.ConditionInYears.__call__"]], "conditionlessthan (class in cyclops.query.ops)": [[150, "cyclops.query.ops.ConditionLessThan"]], "__call__() (conditionlessthan method)": [[150, "cyclops.query.ops.ConditionLessThan.__call__"]], "conditionlike (class in cyclops.query.ops)": [[151, "cyclops.query.ops.ConditionLike"]], "__call__() (conditionlike method)": [[151, "cyclops.query.ops.ConditionLike.__call__"]], "conditionregexmatch (class in cyclops.query.ops)": [[152, "cyclops.query.ops.ConditionRegexMatch"]], "__call__() (conditionregexmatch method)": [[152, "cyclops.query.ops.ConditionRegexMatch.__call__"]], "conditionstartswith (class in cyclops.query.ops)": [[153, "cyclops.query.ops.ConditionStartsWith"]], "__call__() (conditionstartswith method)": [[153, "cyclops.query.ops.ConditionStartsWith.__call__"]], "conditionsubstring (class in cyclops.query.ops)": [[154, "cyclops.query.ops.ConditionSubstring"]], "__call__() (conditionsubstring method)": [[154, "cyclops.query.ops.ConditionSubstring.__call__"]], "distinct (class in cyclops.query.ops)": [[155, "cyclops.query.ops.Distinct"]], "__call__() (distinct method)": [[155, "cyclops.query.ops.Distinct.__call__"]], "drop (class in cyclops.query.ops)": [[156, "cyclops.query.ops.Drop"]], "__call__() (drop method)": [[156, "cyclops.query.ops.Drop.__call__"]], "dropempty (class in cyclops.query.ops)": [[157, "cyclops.query.ops.DropEmpty"]], "__call__() (dropempty method)": [[157, "cyclops.query.ops.DropEmpty.__call__"]], "dropnulls (class in cyclops.query.ops)": [[158, "cyclops.query.ops.DropNulls"]], "__call__() (dropnulls method)": [[158, "cyclops.query.ops.DropNulls.__call__"]], "extracttimestampcomponent (class in cyclops.query.ops)": [[159, "cyclops.query.ops.ExtractTimestampComponent"]], "__call__() (extracttimestampcomponent method)": [[159, "cyclops.query.ops.ExtractTimestampComponent.__call__"]], "fillnull (class in cyclops.query.ops)": [[160, "cyclops.query.ops.FillNull"]], "__call__() (fillnull method)": [[160, "cyclops.query.ops.FillNull.__call__"]], "groupbyaggregate (class in cyclops.query.ops)": [[161, "cyclops.query.ops.GroupByAggregate"]], "__call__() (groupbyaggregate method)": [[161, "cyclops.query.ops.GroupByAggregate.__call__"]], "join (class in cyclops.query.ops)": [[162, "cyclops.query.ops.Join"]], "__call__() (join method)": [[162, "cyclops.query.ops.Join.__call__"]], "keep (class in cyclops.query.ops)": [[163, "cyclops.query.ops.Keep"]], "__call__() (keep method)": [[163, "cyclops.query.ops.Keep.__call__"]], "limit (class in cyclops.query.ops)": [[164, "cyclops.query.ops.Limit"]], "__call__() (limit method)": [[164, "cyclops.query.ops.Limit.__call__"]], "literal (class in cyclops.query.ops)": [[165, "cyclops.query.ops.Literal"]], "__call__() (literal method)": [[165, "cyclops.query.ops.Literal.__call__"]], "or (class in cyclops.query.ops)": [[166, "cyclops.query.ops.Or"]], "__call__() (or method)": [[166, "cyclops.query.ops.Or.__call__"]], "orderby (class in cyclops.query.ops)": [[167, "cyclops.query.ops.OrderBy"]], "__call__() (orderby method)": [[167, "cyclops.query.ops.OrderBy.__call__"]], "queryop (class in cyclops.query.ops)": [[168, "cyclops.query.ops.QueryOp"]], "__call__() (queryop method)": [[168, "cyclops.query.ops.QueryOp.__call__"]], "randomizeorder (class in cyclops.query.ops)": [[169, "cyclops.query.ops.RandomizeOrder"]], "__call__() (randomizeorder method)": [[169, "cyclops.query.ops.RandomizeOrder.__call__"]], "rename (class in cyclops.query.ops)": [[170, "cyclops.query.ops.Rename"]], "__call__() (rename method)": [[170, "cyclops.query.ops.Rename.__call__"]], "reorder (class in cyclops.query.ops)": [[171, "cyclops.query.ops.Reorder"]], "__call__() (reorder method)": [[171, "cyclops.query.ops.Reorder.__call__"]], "reorderafter (class in cyclops.query.ops)": [[172, "cyclops.query.ops.ReorderAfter"]], "__call__() (reorderafter method)": [[172, "cyclops.query.ops.ReorderAfter.__call__"]], "sequential (class in cyclops.query.ops)": [[173, "cyclops.query.ops.Sequential"]], "__add__() (sequential method)": [[173, "cyclops.query.ops.Sequential.__add__"]], "__call__() (sequential method)": [[173, "cyclops.query.ops.Sequential.__call__"]], "__init__() (sequential method)": [[173, "cyclops.query.ops.Sequential.__init__"]], "append() (sequential method)": [[173, "cyclops.query.ops.Sequential.append"]], "extend() (sequential method)": [[173, "cyclops.query.ops.Sequential.extend"]], "insert() (sequential method)": [[173, "cyclops.query.ops.Sequential.insert"]], "pop() (sequential method)": [[173, "cyclops.query.ops.Sequential.pop"]], "substring (class in cyclops.query.ops)": [[174, "cyclops.query.ops.Substring"]], "__call__() (substring method)": [[174, "cyclops.query.ops.Substring.__call__"]], "trim (class in cyclops.query.ops)": [[175, "cyclops.query.ops.Trim"]], "__call__() (trim method)": [[175, "cyclops.query.ops.Trim.__call__"]], "union (class in cyclops.query.ops)": [[176, "cyclops.query.ops.Union"]], "__call__() (union method)": [[176, "cyclops.query.ops.Union.__call__"]], "cyclops.report.report": [[177, "module-cyclops.report.report"]], "modelcardreport (class in cyclops.report.report)": [[178, "cyclops.report.report.ModelCardReport"]], "export() (modelcardreport method)": [[178, "cyclops.report.report.ModelCardReport.export"]], "from_json_file() (modelcardreport class method)": [[178, "cyclops.report.report.ModelCardReport.from_json_file"]], "log_citation() (modelcardreport method)": [[178, "cyclops.report.report.ModelCardReport.log_citation"]], "log_dataset() (modelcardreport method)": [[178, "cyclops.report.report.ModelCardReport.log_dataset"]], "log_descriptor() (modelcardreport method)": [[178, "cyclops.report.report.ModelCardReport.log_descriptor"]], "log_fairness_assessment() (modelcardreport method)": [[178, "cyclops.report.report.ModelCardReport.log_fairness_assessment"]], "log_from_dict() (modelcardreport method)": [[178, "cyclops.report.report.ModelCardReport.log_from_dict"]], "log_image() (modelcardreport method)": [[178, "cyclops.report.report.ModelCardReport.log_image"]], "log_license() (modelcardreport method)": [[178, "cyclops.report.report.ModelCardReport.log_license"]], "log_model_parameters() (modelcardreport method)": [[178, "cyclops.report.report.ModelCardReport.log_model_parameters"]], "log_owner() (modelcardreport method)": [[178, "cyclops.report.report.ModelCardReport.log_owner"]], "log_performance_metrics() (modelcardreport method)": [[178, "cyclops.report.report.ModelCardReport.log_performance_metrics"]], "log_plotly_figure() (modelcardreport method)": [[178, "cyclops.report.report.ModelCardReport.log_plotly_figure"]], "log_quantitative_analysis() (modelcardreport method)": [[178, "cyclops.report.report.ModelCardReport.log_quantitative_analysis"]], "log_reference() (modelcardreport method)": [[178, "cyclops.report.report.ModelCardReport.log_reference"]], "log_regulation() (modelcardreport method)": [[178, "cyclops.report.report.ModelCardReport.log_regulation"]], "log_risk() (modelcardreport method)": [[178, "cyclops.report.report.ModelCardReport.log_risk"]], "log_use_case() (modelcardreport method)": [[178, "cyclops.report.report.ModelCardReport.log_use_case"]], "log_user() (modelcardreport method)": [[178, "cyclops.report.report.ModelCardReport.log_user"]], "log_version() (modelcardreport method)": [[178, "cyclops.report.report.ModelCardReport.log_version"]], "cyclops.tasks.cxr_classification": [[179, "module-cyclops.tasks.cxr_classification"]], "cxrclassificationtask (class in cyclops.tasks.cxr_classification)": [[180, "cyclops.tasks.cxr_classification.CXRClassificationTask"]], "__init__() (cxrclassificationtask method)": [[180, "cyclops.tasks.cxr_classification.CXRClassificationTask.__init__"]], "add_model() (cxrclassificationtask method)": [[180, "cyclops.tasks.cxr_classification.CXRClassificationTask.add_model"]], "data_type (cxrclassificationtask property)": [[180, "cyclops.tasks.cxr_classification.CXRClassificationTask.data_type"]], "evaluate() (cxrclassificationtask method)": [[180, "cyclops.tasks.cxr_classification.CXRClassificationTask.evaluate"]], "get_model() (cxrclassificationtask method)": [[180, "cyclops.tasks.cxr_classification.CXRClassificationTask.get_model"]], "list_models() (cxrclassificationtask method)": [[180, "cyclops.tasks.cxr_classification.CXRClassificationTask.list_models"]], "models_count (cxrclassificationtask property)": [[180, "cyclops.tasks.cxr_classification.CXRClassificationTask.models_count"]], "predict() (cxrclassificationtask method)": [[180, "cyclops.tasks.cxr_classification.CXRClassificationTask.predict"]], "task_type (cxrclassificationtask property)": [[180, "cyclops.tasks.cxr_classification.CXRClassificationTask.task_type"]], "cyclops.tasks.mortality_prediction": [[181, "module-cyclops.tasks.mortality_prediction"]], "mortalitypredictiontask (class in cyclops.tasks.mortality_prediction)": [[182, "cyclops.tasks.mortality_prediction.MortalityPredictionTask"]], "__init__() (mortalitypredictiontask method)": [[182, "cyclops.tasks.mortality_prediction.MortalityPredictionTask.__init__"]], "add_model() (mortalitypredictiontask method)": [[182, "cyclops.tasks.mortality_prediction.MortalityPredictionTask.add_model"]], "data_type (mortalitypredictiontask property)": [[182, "cyclops.tasks.mortality_prediction.MortalityPredictionTask.data_type"]], "evaluate() (mortalitypredictiontask method)": [[182, "cyclops.tasks.mortality_prediction.MortalityPredictionTask.evaluate"]], "get_model() (mortalitypredictiontask method)": [[182, "cyclops.tasks.mortality_prediction.MortalityPredictionTask.get_model"]], "list_models() (mortalitypredictiontask method)": [[182, "cyclops.tasks.mortality_prediction.MortalityPredictionTask.list_models"]], "list_models_params() (mortalitypredictiontask method)": [[182, "cyclops.tasks.mortality_prediction.MortalityPredictionTask.list_models_params"]], "load_model() (mortalitypredictiontask method)": [[182, "cyclops.tasks.mortality_prediction.MortalityPredictionTask.load_model"]], "models_count (mortalitypredictiontask property)": [[182, "cyclops.tasks.mortality_prediction.MortalityPredictionTask.models_count"]], "predict() (mortalitypredictiontask method)": [[182, "cyclops.tasks.mortality_prediction.MortalityPredictionTask.predict"]], "save_model() (mortalitypredictiontask method)": [[182, "cyclops.tasks.mortality_prediction.MortalityPredictionTask.save_model"]], "task_type (mortalitypredictiontask property)": [[182, "cyclops.tasks.mortality_prediction.MortalityPredictionTask.task_type"]], "train() (mortalitypredictiontask method)": [[182, "cyclops.tasks.mortality_prediction.MortalityPredictionTask.train"]], "cyclops.data": [[183, "module-cyclops.data"]], "cyclops.data.features": [[183, "module-cyclops.data.features"]], "cyclops.evaluate": [[184, "module-cyclops.evaluate"]], "cyclops.evaluate.fairness": [[184, "module-cyclops.evaluate.fairness"]], "cyclops.evaluate.metrics": [[184, "module-cyclops.evaluate.metrics"]], "cyclops.evaluate.metrics.functional": [[184, "module-cyclops.evaluate.metrics.functional"]], "cyclops.monitor": [[185, "module-cyclops.monitor"]], "cyclops.query": [[186, "module-cyclops.query"]], "cyclops.report": [[187, "module-cyclops.report"]], "cyclops.tasks": [[188, "module-cyclops.tasks"]]}}) \ No newline at end of file diff --git a/api/tutorials/eicu/query_api.html b/api/tutorials/eicu/query_api.html index 4cfc92667..9af3330a6 100644 --- a/api/tutorials/eicu/query_api.html +++ b/api/tutorials/eicu/query_api.html @@ -483,9 +483,9 @@

      Imports and instantiate
      -/home/amritk/.cache/pypoetry/virtualenvs/pycyclops-wIzUAwxh-py3.9/lib/python3.9/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html
      +/home/amritk/.cache/pypoetry/virtualenvs/pycyclops-mhx6UJW0-py3.9/lib/python3.9/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html
         from .autonotebook import tqdm as notebook_tqdm
      -2023-09-21 11:13:32,085 INFO cyclops.query.orm - Database setup, ready to run queries!
      +2023-09-21 13:53:43,487 INFO cyclops.query.orm - Database setup, ready to run queries!
       
      @@ -585,8 +585,8 @@

      Example 2. Get all patient encounters with diagnoses (
      -2023-09-21 11:13:32,811 INFO cyclops.query.orm - Query returned successfully!
      -2023-09-21 11:13:32,812 INFO cyclops.utils.profile - Finished executing function run_query in 0.068682 s
      +2023-09-21 13:53:44,324 INFO cyclops.query.orm - Query returned successfully!
      +2023-09-21 13:53:44,325 INFO cyclops.utils.profile - Finished executing function run_query in 0.069920 s
       

      @@ -627,8 +627,8 @@

      Example 3. Get potassium lab tests for patients discharged in the year 2014,

      -2023-09-21 11:13:32,883 INFO cyclops.query.orm - Query returned successfully!
      -2023-09-21 11:13:32,884 INFO cyclops.utils.profile - Finished executing function run_query in 0.036568 s
      +2023-09-21 13:53:44,396 INFO cyclops.query.orm - Query returned successfully!
      +2023-09-21 13:53:44,397 INFO cyclops.utils.profile - Finished executing function run_query in 0.039890 s
       
      @@ -667,8 +667,8 @@

      Example 4. Get glucose medications (substring search) for female patients di

      -2023-09-21 11:13:33,061 INFO cyclops.query.orm - Query returned successfully!
      -2023-09-21 11:13:33,062 INFO cyclops.utils.profile - Finished executing function run_query in 0.158932 s
      +2023-09-21 13:53:44,580 INFO cyclops.query.orm - Query returned successfully!
      +2023-09-21 13:53:44,581 INFO cyclops.utils.profile - Finished executing function run_query in 0.161098 s
       
      diff --git a/api/tutorials/eicu/query_api.ipynb b/api/tutorials/eicu/query_api.ipynb index 10855de68..36a12c32f 100644 --- a/api/tutorials/eicu/query_api.ipynb +++ b/api/tutorials/eicu/query_api.ipynb @@ -35,10 +35,10 @@ "id": "75a140e0-fb27-4319-862f-be54397abe5c", "metadata": { "execution": { - "iopub.execute_input": "2023-09-21T15:13:29.994261Z", - "iopub.status.busy": "2023-09-21T15:13:29.993598Z", - "iopub.status.idle": "2023-09-21T15:13:32.675511Z", - "shell.execute_reply": "2023-09-21T15:13:32.674003Z" + "iopub.execute_input": "2023-09-21T17:53:41.653977Z", + "iopub.status.busy": "2023-09-21T17:53:41.653024Z", + "iopub.status.idle": "2023-09-21T17:53:44.171001Z", + "shell.execute_reply": "2023-09-21T17:53:44.169632Z" }, "tags": [] }, @@ -47,7 +47,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/home/amritk/.cache/pypoetry/virtualenvs/pycyclops-wIzUAwxh-py3.9/lib/python3.9/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", + "/home/amritk/.cache/pypoetry/virtualenvs/pycyclops-mhx6UJW0-py3.9/lib/python3.9/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", " from .autonotebook import tqdm as notebook_tqdm\n" ] }, @@ -55,7 +55,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "2023-09-21 11:13:32,085 \u001b[1;37mINFO\u001b[0m cyclops.query.orm - Database setup, ready to run queries!\n" + "2023-09-21 13:53:43,487 \u001b[1;37mINFO\u001b[0m cyclops.query.orm - Database setup, ready to run queries!\n" ] }, { @@ -132,10 +132,10 @@ "id": "c1efa964-8978-4a0e-9892-5ea4ce9953a3", "metadata": { "execution": { - "iopub.execute_input": "2023-09-21T15:13:32.680552Z", - "iopub.status.busy": "2023-09-21T15:13:32.679674Z", - "iopub.status.idle": "2023-09-21T15:13:32.735778Z", - "shell.execute_reply": "2023-09-21T15:13:32.735178Z" + "iopub.execute_input": "2023-09-21T17:53:44.177867Z", + "iopub.status.busy": "2023-09-21T17:53:44.177091Z", + "iopub.status.idle": "2023-09-21T17:53:44.243526Z", + "shell.execute_reply": "2023-09-21T17:53:44.242691Z" }, "tags": [] }, @@ -144,14 +144,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "2023-09-21 11:13:32,731 \u001b[1;37mINFO\u001b[0m cyclops.query.orm - Query returned successfully!\n" + "2023-09-21 13:53:44,237 \u001b[1;37mINFO\u001b[0m cyclops.query.orm - Query returned successfully!\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2023-09-21 11:13:32,732 \u001b[1;37mINFO\u001b[0m cyclops.utils.profile - Finished executing function run_query in 0.042269 s\n" + "2023-09-21 13:53:44,238 \u001b[1;37mINFO\u001b[0m cyclops.utils.profile - Finished executing function run_query in 0.050105 s\n" ] }, { @@ -188,10 +188,10 @@ "id": "a7ab5fa3-e26b-47a7-818f-1bf367a55760", "metadata": { "execution": { - "iopub.execute_input": "2023-09-21T15:13:32.739071Z", - "iopub.status.busy": "2023-09-21T15:13:32.738807Z", - "iopub.status.idle": "2023-09-21T15:13:32.815828Z", - "shell.execute_reply": "2023-09-21T15:13:32.814793Z" + "iopub.execute_input": "2023-09-21T17:53:44.250067Z", + "iopub.status.busy": "2023-09-21T17:53:44.249664Z", + "iopub.status.idle": "2023-09-21T17:53:44.329873Z", + "shell.execute_reply": "2023-09-21T17:53:44.328812Z" }, "tags": [] }, @@ -200,14 +200,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "2023-09-21 11:13:32,811 \u001b[1;37mINFO\u001b[0m cyclops.query.orm - Query returned successfully!\n" + "2023-09-21 13:53:44,324 \u001b[1;37mINFO\u001b[0m cyclops.query.orm - Query returned successfully!\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2023-09-21 11:13:32,812 \u001b[1;37mINFO\u001b[0m cyclops.utils.profile - Finished executing function run_query in 0.068682 s\n" + "2023-09-21 13:53:44,325 \u001b[1;37mINFO\u001b[0m cyclops.utils.profile - Finished executing function run_query in 0.069920 s\n" ] }, { @@ -244,10 +244,10 @@ "id": "24043abc-1878-4e00-8229-36d4a0368b98", "metadata": { "execution": { - "iopub.execute_input": "2023-09-21T15:13:32.820582Z", - "iopub.status.busy": "2023-09-21T15:13:32.819523Z", - "iopub.status.idle": "2023-09-21T15:13:32.888583Z", - "shell.execute_reply": "2023-09-21T15:13:32.887723Z" + "iopub.execute_input": "2023-09-21T17:53:44.337315Z", + "iopub.status.busy": "2023-09-21T17:53:44.336859Z", + "iopub.status.idle": "2023-09-21T17:53:44.400785Z", + "shell.execute_reply": "2023-09-21T17:53:44.399999Z" }, "tags": [] }, @@ -256,14 +256,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "2023-09-21 11:13:32,883 \u001b[1;37mINFO\u001b[0m cyclops.query.orm - Query returned successfully!\n" + "2023-09-21 13:53:44,396 \u001b[1;37mINFO\u001b[0m cyclops.query.orm - Query returned successfully!\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2023-09-21 11:13:32,884 \u001b[1;37mINFO\u001b[0m cyclops.utils.profile - Finished executing function run_query in 0.036568 s\n" + "2023-09-21 13:53:44,397 \u001b[1;37mINFO\u001b[0m cyclops.utils.profile - Finished executing function run_query in 0.039890 s\n" ] }, { @@ -306,10 +306,10 @@ "id": "f6142f27-e8d1-453c-bfe2-2265d9ff1914", "metadata": { "execution": { - "iopub.execute_input": "2023-09-21T15:13:32.892256Z", - "iopub.status.busy": "2023-09-21T15:13:32.891751Z", - "iopub.status.idle": "2023-09-21T15:13:33.070327Z", - "shell.execute_reply": "2023-09-21T15:13:33.068395Z" + "iopub.execute_input": "2023-09-21T17:53:44.408346Z", + "iopub.status.busy": "2023-09-21T17:53:44.408045Z", + "iopub.status.idle": "2023-09-21T17:53:44.587272Z", + "shell.execute_reply": "2023-09-21T17:53:44.585830Z" }, "tags": [] }, @@ -318,14 +318,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "2023-09-21 11:13:33,061 \u001b[1;37mINFO\u001b[0m cyclops.query.orm - Query returned successfully!\n" + "2023-09-21 13:53:44,580 \u001b[1;37mINFO\u001b[0m cyclops.query.orm - Query returned successfully!\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2023-09-21 11:13:33,062 \u001b[1;37mINFO\u001b[0m cyclops.utils.profile - Finished executing function run_query in 0.158932 s\n" + "2023-09-21 13:53:44,581 \u001b[1;37mINFO\u001b[0m cyclops.utils.profile - Finished executing function run_query in 0.161098 s\n" ] }, { diff --git a/api/tutorials/kaggle/heart_failure_prediction.html b/api/tutorials/kaggle/heart_failure_prediction.html index 14fe54e78..754ba64da 100644 --- a/api/tutorials/kaggle/heart_failure_prediction.html +++ b/api/tutorials/kaggle/heart_failure_prediction.html @@ -486,7 +486,7 @@

      Import Libraries
      -/home/amritk/.cache/pypoetry/virtualenvs/pycyclops-wIzUAwxh-py3.9/lib/python3.9/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html
      +/home/amritk/.cache/pypoetry/virtualenvs/pycyclops-mhx6UJW0-py3.9/lib/python3.9/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html
         from .autonotebook import tqdm as notebook_tqdm
       

      @@ -550,7 +550,7 @@

      Data Loading
      -2023-09-21 11:13:41,041 INFO cyclops.utils.file - Loading DataFrame from ./data/heart.csv
      +2023-09-21 13:53:52,715 INFO cyclops.utils.file - Loading DataFrame from ./data/heart.csv
       
      -
      +
      @@ -575,7 +575,7 @@

      Performance Over Time

      -
      +
      @@ -827,8 +827,8 @@

      Average

      -

      Class_weight

      - balanced +

      Epsilon

      + 0.1
      @@ -836,8 +836,8 @@

      Class_weight

      -

      Learning_rate

      - adaptive +

      Loss

      + log_loss
      @@ -845,8 +845,8 @@

      Learning_rate

      -

      Fit_intercept

      - True +

      Power_t

      + 0.5
      @@ -854,8 +854,8 @@

      Fit_intercept

      -

      Warm_start

      - False +

      Fit_intercept

      + True
      @@ -863,8 +863,8 @@

      Warm_start

      -

      Shuffle

      - True +

      N_iter_no_change

      + 5
      @@ -872,8 +872,8 @@

      Shuffle

      -

      Power_t

      - 0.5 +

      Eta0

      + 0.01
      @@ -881,31 +881,40 @@

      Power_t

      -

      Alpha

      - 0.001 +

      Penalty

      + l2
      + + + + +
      -

      Epsilon

      - 0.1 +

      Learning_rate

      + adaptive
      +
      +

      Tol

      + 0.001 +
      -

      Eta0

      - 0.01 +

      Validation_fraction

      + 0.1
      @@ -922,8 +931,8 @@

      L1_ratio

      -

      Penalty

      - l2 +

      Class_weight

      + balanced
      @@ -940,8 +949,8 @@

      Random_state

      -

      Validation_fraction

      - 0.1 +

      Early_stopping

      + True
      @@ -958,17 +967,8 @@

      Verbose

      -

      Max_iter

      - 1000 -
      - - - - - -
      -

      Loss

      - log_loss +

      Warm_start

      + False
      @@ -976,8 +976,8 @@

      Loss

      -

      N_iter_no_change

      - 5 +

      Shuffle

      + True
      @@ -985,7 +985,7 @@

      N_iter_no_change

      -

      Tol

      +

      Alpha

      0.001
      @@ -994,8 +994,8 @@

      Tol

      -

      Early_stopping

      - True +

      Max_iter

      + 1000
      @@ -1300,29 +1300,23 @@

      Sensitive Data

      -

      License

      +

      Citation

      @@ -560,8 +560,8 @@

      Example 2. Get all female patient encounters with diagnoses (
      -2023-09-21 11:14:11,795 INFO cyclops.query.orm - Query returned successfully!
      -2023-09-21 11:14:11,796 INFO cyclops.utils.profile - Finished executing function run_query in 0.096709 s
      +2023-09-21 13:54:18,079 INFO cyclops.query.orm - Query returned successfully!
      +2023-09-21 13:54:18,080 INFO cyclops.utils.profile - Finished executing function run_query in 0.106374 s
       

      @@ -631,8 +631,8 @@

      Example 4. Get AaDO2 carevue chart events for male patients that have a
      -2023-09-21 11:15:24,022 INFO cyclops.query.orm - Query returned successfully!
      -2023-09-21 11:15:24,023 INFO cyclops.utils.profile - Finished executing function run_query in 72.113653 s
      +2023-09-21 13:55:28,127 INFO cyclops.query.orm - Query returned successfully!
      +2023-09-21 13:55:28,128 INFO cyclops.utils.profile - Finished executing function run_query in 69.928861 s
       

      diff --git a/api/tutorials/mimiciii/query_api.ipynb b/api/tutorials/mimiciii/query_api.ipynb index f2d2ac74b..66c7e0364 100644 --- a/api/tutorials/mimiciii/query_api.ipynb +++ b/api/tutorials/mimiciii/query_api.ipynb @@ -35,10 +35,10 @@ "id": "75a140e0-fb27-4319-862f-be54397abe5c", "metadata": { "execution": { - "iopub.execute_input": "2023-09-21T15:13:56.082278Z", - "iopub.status.busy": "2023-09-21T15:13:56.081599Z", - "iopub.status.idle": "2023-09-21T15:14:11.604495Z", - "shell.execute_reply": "2023-09-21T15:14:11.602826Z" + "iopub.execute_input": "2023-09-21T17:54:07.506462Z", + "iopub.status.busy": "2023-09-21T17:54:07.505758Z", + "iopub.status.idle": "2023-09-21T17:54:17.886435Z", + "shell.execute_reply": "2023-09-21T17:54:17.884508Z" }, "tags": [] }, @@ -47,7 +47,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/home/amritk/.cache/pypoetry/virtualenvs/pycyclops-wIzUAwxh-py3.9/lib/python3.9/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", + "/home/amritk/.cache/pypoetry/virtualenvs/pycyclops-mhx6UJW0-py3.9/lib/python3.9/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", " from .autonotebook import tqdm as notebook_tqdm\n" ] }, @@ -55,7 +55,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "2023-09-21 11:14:04,262 \u001b[1;37mINFO\u001b[0m cyclops.query.orm - Database setup, ready to run queries!\n" + "2023-09-21 13:54:12,092 \u001b[1;37mINFO\u001b[0m cyclops.query.orm - Database setup, ready to run queries!\n" ] }, { @@ -102,10 +102,10 @@ "id": "c1efa964-8978-4a0e-9892-5ea4ce9953a3", "metadata": { "execution": { - "iopub.execute_input": "2023-09-21T15:14:11.611824Z", - "iopub.status.busy": "2023-09-21T15:14:11.611095Z", - "iopub.status.idle": "2023-09-21T15:14:11.663843Z", - "shell.execute_reply": "2023-09-21T15:14:11.662029Z" + "iopub.execute_input": "2023-09-21T17:54:17.893917Z", + "iopub.status.busy": "2023-09-21T17:54:17.893025Z", + "iopub.status.idle": "2023-09-21T17:54:17.942042Z", + "shell.execute_reply": "2023-09-21T17:54:17.940193Z" }, "tags": [] }, @@ -114,14 +114,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "2023-09-21 11:14:11,656 \u001b[1;37mINFO\u001b[0m cyclops.query.orm - Query returned successfully!\n" + "2023-09-21 13:54:17,932 \u001b[1;37mINFO\u001b[0m cyclops.query.orm - Query returned successfully!\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2023-09-21 11:14:11,657 \u001b[1;37mINFO\u001b[0m cyclops.utils.profile - Finished executing function run_query in 0.037987 s\n" + "2023-09-21 13:54:17,934 \u001b[1;37mINFO\u001b[0m cyclops.utils.profile - Finished executing function run_query in 0.032659 s\n" ] }, { @@ -158,10 +158,10 @@ "id": "a7ab5fa3-e26b-47a7-818f-1bf367a55760", "metadata": { "execution": { - "iopub.execute_input": "2023-09-21T15:14:11.670802Z", - "iopub.status.busy": "2023-09-21T15:14:11.670277Z", - "iopub.status.idle": "2023-09-21T15:14:11.803055Z", - "shell.execute_reply": "2023-09-21T15:14:11.801537Z" + "iopub.execute_input": "2023-09-21T17:54:17.949573Z", + "iopub.status.busy": "2023-09-21T17:54:17.949105Z", + "iopub.status.idle": "2023-09-21T17:54:18.088890Z", + "shell.execute_reply": "2023-09-21T17:54:18.087015Z" }, "tags": [] }, @@ -170,14 +170,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "2023-09-21 11:14:11,795 \u001b[1;37mINFO\u001b[0m cyclops.query.orm - Query returned successfully!\n" + "2023-09-21 13:54:18,079 \u001b[1;37mINFO\u001b[0m cyclops.query.orm - Query returned successfully!\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2023-09-21 11:14:11,796 \u001b[1;37mINFO\u001b[0m cyclops.utils.profile - Finished executing function run_query in 0.096709 s\n" + "2023-09-21 13:54:18,080 \u001b[1;37mINFO\u001b[0m cyclops.utils.profile - Finished executing function run_query in 0.106374 s\n" ] }, { @@ -219,10 +219,10 @@ "id": "24043abc-1878-4e00-8229-36d4a0368b98", "metadata": { "execution": { - "iopub.execute_input": "2023-09-21T15:14:11.809563Z", - "iopub.status.busy": "2023-09-21T15:14:11.808863Z", - "iopub.status.idle": "2023-09-21T15:14:11.871782Z", - "shell.execute_reply": "2023-09-21T15:14:11.870700Z" + "iopub.execute_input": "2023-09-21T17:54:18.095706Z", + "iopub.status.busy": "2023-09-21T17:54:18.095141Z", + "iopub.status.idle": "2023-09-21T17:54:18.162760Z", + "shell.execute_reply": "2023-09-21T17:54:18.161116Z" }, "tags": [] }, @@ -231,14 +231,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "2023-09-21 11:14:11,865 \u001b[1;37mINFO\u001b[0m cyclops.query.orm - Query returned successfully!\n" + "2023-09-21 13:54:18,154 \u001b[1;37mINFO\u001b[0m cyclops.query.orm - Query returned successfully!\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2023-09-21 11:14:11,866 \u001b[1;37mINFO\u001b[0m cyclops.utils.profile - Finished executing function run_query in 0.032713 s\n" + "2023-09-21 13:54:18,155 \u001b[1;37mINFO\u001b[0m cyclops.utils.profile - Finished executing function run_query in 0.035972 s\n" ] }, { @@ -272,10 +272,10 @@ "id": "f6142f27-e8d1-453c-bfe2-2265d9ff1914", "metadata": { "execution": { - "iopub.execute_input": "2023-09-21T15:14:11.879018Z", - "iopub.status.busy": "2023-09-21T15:14:11.878318Z", - "iopub.status.idle": "2023-09-21T15:15:24.026868Z", - "shell.execute_reply": "2023-09-21T15:15:24.026125Z" + "iopub.execute_input": "2023-09-21T17:54:18.170610Z", + "iopub.status.busy": "2023-09-21T17:54:18.170000Z", + "iopub.status.idle": "2023-09-21T17:55:28.132906Z", + "shell.execute_reply": "2023-09-21T17:55:28.131801Z" }, "tags": [] }, @@ -284,14 +284,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "2023-09-21 11:15:24,022 \u001b[1;37mINFO\u001b[0m cyclops.query.orm - Query returned successfully!\n" + "2023-09-21 13:55:28,127 \u001b[1;37mINFO\u001b[0m cyclops.query.orm - Query returned successfully!\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2023-09-21 11:15:24,023 \u001b[1;37mINFO\u001b[0m cyclops.utils.profile - Finished executing function run_query in 72.113653 s\n" + "2023-09-21 13:55:28,128 \u001b[1;37mINFO\u001b[0m cyclops.utils.profile - Finished executing function run_query in 69.928861 s\n" ] }, { diff --git a/api/tutorials/mimiciv/query_api.html b/api/tutorials/mimiciv/query_api.html index 5d505e229..932425822 100644 --- a/api/tutorials/mimiciv/query_api.html +++ b/api/tutorials/mimiciv/query_api.html @@ -487,9 +487,9 @@

      Imports and instantiate
      -/home/amritk/.cache/pypoetry/virtualenvs/pycyclops-wIzUAwxh-py3.9/lib/python3.9/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html
      +/home/amritk/.cache/pypoetry/virtualenvs/pycyclops-mhx6UJW0-py3.9/lib/python3.9/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html
         from .autonotebook import tqdm as notebook_tqdm
      -2023-09-21 11:15:29,005 INFO cyclops.query.orm - Database setup, ready to run queries!
      +2023-09-21 13:55:33,975 INFO cyclops.query.orm - Database setup, ready to run queries!
       

      @@ -534,8 +534,8 @@

      Example 1. Get all patient admissions from 2021 or later (approx year of adm

      -2023-09-21 11:15:30,728 INFO cyclops.query.orm - Query returned successfully!
      -2023-09-21 11:15:30,729 INFO cyclops.utils.profile - Finished executing function run_query in 0.269253 s
      +2023-09-21 13:55:36,941 INFO cyclops.query.orm - Query returned successfully!
      +2023-09-21 13:55:36,942 INFO cyclops.utils.profile - Finished executing function run_query in 0.191435 s
       
      @@ -580,8 +580,8 @@

      Example 2. Get all patient encounters with diagnoses (
      -2023-09-21 11:15:31,581 INFO cyclops.query.orm - Query returned successfully!
      -2023-09-21 11:15:31,582 INFO cyclops.utils.profile - Finished executing function run_query in 0.819763 s
      +2023-09-21 13:55:37,813 INFO cyclops.query.orm - Query returned successfully!
      +2023-09-21 13:55:37,815 INFO cyclops.utils.profile - Finished executing function run_query in 0.825588 s
       

      @@ -626,8 +626,8 @@

      Example 3. Advanced - uses
      -2023-09-21 11:15:33,139 INFO cyclops.query.orm - Query returned successfully!
      -2023-09-21 11:15:33,140 INFO cyclops.utils.profile - Finished executing function run_query in 1.516252 s
      +2023-09-21 13:55:39,349 INFO cyclops.query.orm - Query returned successfully!
      +2023-09-21 13:55:39,350 INFO cyclops.utils.profile - Finished executing function run_query in 1.488212 s
       

      @@ -758,8 +758,8 @@

      Example 6. Get radiology reports and filter on keywords
      -2023-09-21 11:18:14,480 INFO cyclops.query.orm - Query returned successfully!
      -2023-09-21 11:18:14,482 INFO cyclops.utils.profile - Finished executing function run_query in 7.654839 s
      +2023-09-21 13:58:12,804 INFO cyclops.query.orm - Query returned successfully!
      +2023-09-21 13:58:12,805 INFO cyclops.utils.profile - Finished executing function run_query in 7.924855 s
       

      @@ -803,8 +803,8 @@

      Example 7. Get all female patient encounters from year 2015, and return as d

      -2023-09-21 11:18:14,852 INFO cyclops.query.orm - Query returned successfully!
      -2023-09-21 11:18:14,853 INFO cyclops.utils.profile - Finished executing function run_query in 0.330419 s
      +2023-09-21 13:58:13,268 INFO cyclops.query.orm - Query returned successfully!
      +2023-09-21 13:58:13,268 INFO cyclops.utils.profile - Finished executing function run_query in 0.434427 s
       
      diff --git a/api/tutorials/mimiciv/query_api.ipynb b/api/tutorials/mimiciv/query_api.ipynb index 3690e92e8..e49efd6c8 100644 --- a/api/tutorials/mimiciv/query_api.ipynb +++ b/api/tutorials/mimiciv/query_api.ipynb @@ -35,10 +35,10 @@ "id": "53009e6b", "metadata": { "execution": { - "iopub.execute_input": "2023-09-21T15:15:26.614909Z", - "iopub.status.busy": "2023-09-21T15:15:26.614291Z", - "iopub.status.idle": "2023-09-21T15:15:30.431295Z", - "shell.execute_reply": "2023-09-21T15:15:30.429985Z" + "iopub.execute_input": "2023-09-21T17:55:30.700107Z", + "iopub.status.busy": "2023-09-21T17:55:30.699586Z", + "iopub.status.idle": "2023-09-21T17:55:36.717628Z", + "shell.execute_reply": "2023-09-21T17:55:36.715848Z" }, "tags": [] }, @@ -47,7 +47,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/home/amritk/.cache/pypoetry/virtualenvs/pycyclops-wIzUAwxh-py3.9/lib/python3.9/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", + "/home/amritk/.cache/pypoetry/virtualenvs/pycyclops-mhx6UJW0-py3.9/lib/python3.9/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", " from .autonotebook import tqdm as notebook_tqdm\n" ] }, @@ -55,7 +55,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "2023-09-21 11:15:29,005 \u001b[1;37mINFO\u001b[0m cyclops.query.orm - Database setup, ready to run queries!\n" + "2023-09-21 13:55:33,975 \u001b[1;37mINFO\u001b[0m cyclops.query.orm - Database setup, ready to run queries!\n" ] }, { @@ -113,10 +113,10 @@ "id": "cdfadaa4-6fd6-4fd7-85cf-e012aa0799e1", "metadata": { "execution": { - "iopub.execute_input": "2023-09-21T15:15:30.437531Z", - "iopub.status.busy": "2023-09-21T15:15:30.436712Z", - "iopub.status.idle": "2023-09-21T15:15:30.731938Z", - "shell.execute_reply": "2023-09-21T15:15:30.731372Z" + "iopub.execute_input": "2023-09-21T17:55:36.725087Z", + "iopub.status.busy": "2023-09-21T17:55:36.724202Z", + "iopub.status.idle": "2023-09-21T17:55:36.948064Z", + "shell.execute_reply": "2023-09-21T17:55:36.946618Z" } }, "outputs": [ @@ -124,14 +124,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "2023-09-21 11:15:30,728 \u001b[1;37mINFO\u001b[0m cyclops.query.orm - Query returned successfully!\n" + "2023-09-21 13:55:36,941 \u001b[1;37mINFO\u001b[0m cyclops.query.orm - Query returned successfully!\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2023-09-21 11:15:30,729 \u001b[1;37mINFO\u001b[0m cyclops.utils.profile - Finished executing function run_query in 0.269253 s\n" + "2023-09-21 13:55:36,942 \u001b[1;37mINFO\u001b[0m cyclops.utils.profile - Finished executing function run_query in 0.191435 s\n" ] }, { @@ -168,10 +168,10 @@ "id": "a89a9cf0", "metadata": { "execution": { - "iopub.execute_input": "2023-09-21T15:15:30.737267Z", - "iopub.status.busy": "2023-09-21T15:15:30.736904Z", - "iopub.status.idle": "2023-09-21T15:15:31.588167Z", - "shell.execute_reply": "2023-09-21T15:15:31.586916Z" + "iopub.execute_input": "2023-09-21T17:55:36.954017Z", + "iopub.status.busy": "2023-09-21T17:55:36.953494Z", + "iopub.status.idle": "2023-09-21T17:55:37.820478Z", + "shell.execute_reply": "2023-09-21T17:55:37.819196Z" } }, "outputs": [ @@ -179,14 +179,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "2023-09-21 11:15:31,581 \u001b[1;37mINFO\u001b[0m cyclops.query.orm - Query returned successfully!\n" + "2023-09-21 13:55:37,813 \u001b[1;37mINFO\u001b[0m cyclops.query.orm - Query returned successfully!\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2023-09-21 11:15:31,582 \u001b[1;37mINFO\u001b[0m cyclops.utils.profile - Finished executing function run_query in 0.819763 s\n" + "2023-09-21 13:55:37,815 \u001b[1;37mINFO\u001b[0m cyclops.utils.profile - Finished executing function run_query in 0.825588 s\n" ] }, { @@ -233,10 +233,10 @@ "id": "03936cee", "metadata": { "execution": { - "iopub.execute_input": "2023-09-21T15:15:31.592844Z", - "iopub.status.busy": "2023-09-21T15:15:31.592045Z", - "iopub.status.idle": "2023-09-21T15:15:33.143620Z", - "shell.execute_reply": "2023-09-21T15:15:33.142769Z" + "iopub.execute_input": "2023-09-21T17:55:37.827247Z", + "iopub.status.busy": "2023-09-21T17:55:37.826747Z", + "iopub.status.idle": "2023-09-21T17:55:39.355980Z", + "shell.execute_reply": "2023-09-21T17:55:39.354706Z" } }, "outputs": [ @@ -244,14 +244,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "2023-09-21 11:15:33,139 \u001b[1;37mINFO\u001b[0m cyclops.query.orm - Query returned successfully!\n" + "2023-09-21 13:55:39,349 \u001b[1;37mINFO\u001b[0m cyclops.query.orm - Query returned successfully!\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2023-09-21 11:15:33,140 \u001b[1;37mINFO\u001b[0m cyclops.utils.profile - Finished executing function run_query in 1.516252 s\n" + "2023-09-21 13:55:39,350 \u001b[1;37mINFO\u001b[0m cyclops.utils.profile - Finished executing function run_query in 1.488212 s\n" ] }, { @@ -298,10 +298,10 @@ "id": "56a72377", "metadata": { "execution": { - "iopub.execute_input": "2023-09-21T15:15:33.151407Z", - "iopub.status.busy": "2023-09-21T15:15:33.150642Z", - "iopub.status.idle": "2023-09-21T15:16:55.511076Z", - "shell.execute_reply": "2023-09-21T15:16:55.510453Z" + "iopub.execute_input": "2023-09-21T17:55:39.360124Z", + "iopub.status.busy": "2023-09-21T17:55:39.359622Z", + "iopub.status.idle": "2023-09-21T17:57:01.580197Z", + "shell.execute_reply": "2023-09-21T17:57:01.579390Z" } }, "outputs": [ @@ -309,14 +309,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "2023-09-21 11:16:55,506 \u001b[1;37mINFO\u001b[0m cyclops.query.orm - Query returned successfully!\n" + "2023-09-21 13:57:01,574 \u001b[1;37mINFO\u001b[0m cyclops.query.orm - Query returned successfully!\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2023-09-21 11:16:55,507 \u001b[1;37mINFO\u001b[0m cyclops.utils.profile - Finished executing function run_query in 82.326835 s\n" + "2023-09-21 13:57:01,576 \u001b[1;37mINFO\u001b[0m cyclops.utils.profile - Finished executing function run_query in 82.185425 s\n" ] }, { @@ -359,10 +359,10 @@ "id": "bce11f81", "metadata": { "execution": { - "iopub.execute_input": "2023-09-21T15:16:55.518731Z", - "iopub.status.busy": "2023-09-21T15:16:55.518490Z", - "iopub.status.idle": "2023-09-21T15:18:06.790720Z", - "shell.execute_reply": "2023-09-21T15:18:06.789736Z" + "iopub.execute_input": "2023-09-21T17:57:01.587773Z", + "iopub.status.busy": "2023-09-21T17:57:01.587431Z", + "iopub.status.idle": "2023-09-21T17:58:04.848576Z", + "shell.execute_reply": "2023-09-21T17:58:04.847334Z" } }, "outputs": [ @@ -370,14 +370,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "2023-09-21 11:18:06,785 \u001b[1;37mINFO\u001b[0m cyclops.query.orm - Query returned successfully!\n" + "2023-09-21 13:58:04,841 \u001b[1;37mINFO\u001b[0m cyclops.query.orm - Query returned successfully!\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2023-09-21 11:18:06,786 \u001b[1;37mINFO\u001b[0m cyclops.utils.profile - Finished executing function run_query in 71.250068 s\n" + "2023-09-21 13:58:04,842 \u001b[1;37mINFO\u001b[0m cyclops.utils.profile - Finished executing function run_query in 63.230410 s\n" ] }, { @@ -420,10 +420,10 @@ "id": "f00d270c-d78f-4dc0-8dae-ff4d52958c8b", "metadata": { "execution": { - "iopub.execute_input": "2023-09-21T15:18:06.795571Z", - "iopub.status.busy": "2023-09-21T15:18:06.795175Z", - "iopub.status.idle": "2023-09-21T15:18:14.487593Z", - "shell.execute_reply": "2023-09-21T15:18:14.486250Z" + "iopub.execute_input": "2023-09-21T17:58:04.855102Z", + "iopub.status.busy": "2023-09-21T17:58:04.854778Z", + "iopub.status.idle": "2023-09-21T17:58:12.808817Z", + "shell.execute_reply": "2023-09-21T17:58:12.808181Z" }, "tags": [] }, @@ -432,14 +432,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "2023-09-21 11:18:14,480 \u001b[1;37mINFO\u001b[0m cyclops.query.orm - Query returned successfully!\n" + "2023-09-21 13:58:12,804 \u001b[1;37mINFO\u001b[0m cyclops.query.orm - Query returned successfully!\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2023-09-21 11:18:14,482 \u001b[1;37mINFO\u001b[0m cyclops.utils.profile - Finished executing function run_query in 7.654839 s\n" + "2023-09-21 13:58:12,805 \u001b[1;37mINFO\u001b[0m cyclops.utils.profile - Finished executing function run_query in 7.924855 s\n" ] }, { @@ -488,10 +488,10 @@ "id": "28683d70-376e-4d9b-883d-1a7de634e455", "metadata": { "execution": { - "iopub.execute_input": "2023-09-21T15:18:14.493378Z", - "iopub.status.busy": "2023-09-21T15:18:14.492864Z", - "iopub.status.idle": "2023-09-21T15:18:15.630195Z", - "shell.execute_reply": "2023-09-21T15:18:15.628606Z" + "iopub.execute_input": "2023-09-21T17:58:12.816134Z", + "iopub.status.busy": "2023-09-21T17:58:12.815762Z", + "iopub.status.idle": "2023-09-21T17:58:14.039698Z", + "shell.execute_reply": "2023-09-21T17:58:14.038224Z" } }, "outputs": [ @@ -499,14 +499,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "2023-09-21 11:18:14,852 \u001b[1;37mINFO\u001b[0m cyclops.query.orm - Query returned successfully!\n" + "2023-09-21 13:58:13,268 \u001b[1;37mINFO\u001b[0m cyclops.query.orm - Query returned successfully!\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2023-09-21 11:18:14,853 \u001b[1;37mINFO\u001b[0m cyclops.utils.profile - Finished executing function run_query in 0.330419 s\n" + "2023-09-21 13:58:13,268 \u001b[1;37mINFO\u001b[0m cyclops.utils.profile - Finished executing function run_query in 0.434427 s\n" ] }, { @@ -554,10 +554,10 @@ "id": "a853deec", "metadata": { "execution": { - "iopub.execute_input": "2023-09-21T15:18:15.636606Z", - "iopub.status.busy": "2023-09-21T15:18:15.636072Z", - "iopub.status.idle": "2023-09-21T15:18:15.653563Z", - "shell.execute_reply": "2023-09-21T15:18:15.652154Z" + "iopub.execute_input": "2023-09-21T17:58:14.045813Z", + "iopub.status.busy": "2023-09-21T17:58:14.045298Z", + "iopub.status.idle": "2023-09-21T17:58:14.062291Z", + "shell.execute_reply": "2023-09-21T17:58:14.061326Z" }, "tags": [] }, @@ -566,14 +566,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "2023-09-21 11:18:15,647 \u001b[1;37mINFO\u001b[0m cyclops.query.orm - Query returned successfully!\n" + "2023-09-21 13:58:14,056 \u001b[1;37mINFO\u001b[0m cyclops.query.orm - Query returned successfully!\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2023-09-21 11:18:15,648 \u001b[1;37mINFO\u001b[0m cyclops.utils.profile - Finished executing function run_query in 0.009600 s\n" + "2023-09-21 13:58:14,057 \u001b[1;37mINFO\u001b[0m cyclops.utils.profile - Finished executing function run_query in 0.009834 s\n" ] }, { diff --git a/api/tutorials/nihcxr/cxr_classification.html b/api/tutorials/nihcxr/cxr_classification.html index f095df7b1..3164e826c 100644 --- a/api/tutorials/nihcxr/cxr_classification.html +++ b/api/tutorials/nihcxr/cxr_classification.html @@ -488,7 +488,7 @@

      Import Libraries
      -/home/amritk/.cache/pypoetry/virtualenvs/pycyclops-wIzUAwxh-py3.9/lib/python3.9/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html
      +/home/amritk/.cache/pypoetry/virtualenvs/pycyclops-mhx6UJW0-py3.9/lib/python3.9/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html
         from .autonotebook import tqdm as notebook_tqdm
       

      @@ -574,8 +574,8 @@

      Load Model and get Predictions
      -Filter: 100%|██████████| 4000/4000 [00:00<00:00, 212857.51 examples/s]
      -Map: 100%|██████████| 2511/2511 [00:00<00:00, 3764.42 examples/s]
      +Filter: 100%|██████████| 4000/4000 [00:00<00:00, 231652.71 examples/s]
      +Map: 100%|██████████| 2511/2511 [00:00<00:00, 3710.70 examples/s]
       
      -
      +
      @@ -1858,7 +1858,7 @@

      Performance Over Time

      -
      +
      @@ -2075,7 +2075,7 @@

      Graphics

      -
      +
      @@ -2083,7 +2083,7 @@

      Graphics

      -
      +
      @@ -2091,7 +2091,7 @@

      Graphics

      -
      +
      @@ -3439,7 +3439,7 @@

      Graphics

      -
      +
      @@ -3447,7 +3447,7 @@

      Graphics

      -
      +
      @@ -3455,7 +3455,7 @@

      Graphics

      -
      +
      @@ -3506,7 +3506,7 @@

      Graphics

      -
      +
      @@ -3514,7 +3514,7 @@

      Graphics

      -
      +
      diff --git a/api/tutorials/nihcxr/monitor_api.html b/api/tutorials/nihcxr/monitor_api.html index 13790a09b..54d1747eb 100644 --- a/api/tutorials/nihcxr/monitor_api.html +++ b/api/tutorials/nihcxr/monitor_api.html @@ -472,7 +472,7 @@

      Import Libraries and Load NIHCXR Dataset
      -/home/amritk/.cache/pypoetry/virtualenvs/pycyclops-wIzUAwxh-py3.9/lib/python3.9/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html
      +/home/amritk/.cache/pypoetry/virtualenvs/pycyclops-mhx6UJW0-py3.9/lib/python3.9/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html
         from .autonotebook import tqdm as notebook_tqdm
       
      @@ -517,7 +517,7 @@

      Example 1. Generate Source/Target Dataset for Experiments (1-2)
      -Filter (num_proc=6): 100%|██████████| 25596/25596 [00:00<00:00, 59651.02 examples/s]
      +Filter (num_proc=6): 100%|██████████| 25596/25596 [00:00<00:00, 67311.63 examples/s]
       
      @@ -663,14 +663,14 @@

      Example 4. Sensitivity test experiment with different clinical shifts
      -Filter (num_proc=6): 100%|██████████| 25596/25596 [00:00<00:00, 50082.92 examples/s]
      -Filter (num_proc=6): 100%|██████████| 25596/25596 [00:00<00:00, 49186.86 examples/s]
      -Filter (num_proc=6): 100%|██████████| 25596/25596 [00:00<00:00, 47503.36 examples/s]
      -Filter (num_proc=6): 100%|██████████| 25596/25596 [00:00<00:00, 47554.34 examples/s]
      -Filter (num_proc=6): 100%|██████████| 25596/25596 [00:00<00:00, 47736.93 examples/s]
      -Filter (num_proc=6): 100%|██████████| 25596/25596 [00:00<00:00, 45598.12 examples/s]
      -Filter (num_proc=6): 100%|██████████| 25596/25596 [00:00<00:00, 45676.58 examples/s]
      -Filter (num_proc=6): 100%|██████████| 25596/25596 [00:00<00:00, 47465.24 examples/s]
      +Filter (num_proc=6): 100%|██████████| 25596/25596 [00:00<00:00, 50791.85 examples/s]
      +Filter (num_proc=6): 100%|██████████| 25596/25596 [00:00<00:00, 49247.74 examples/s]
      +Filter (num_proc=6): 100%|██████████| 25596/25596 [00:00<00:00, 44759.52 examples/s]
      +Filter (num_proc=6): 100%|██████████| 25596/25596 [00:00<00:00, 50134.96 examples/s]
      +Filter (num_proc=6): 100%|██████████| 25596/25596 [00:00<00:00, 46152.58 examples/s]
      +Filter (num_proc=6): 100%|██████████| 25596/25596 [00:00<00:00, 47213.04 examples/s]
      +Filter (num_proc=6): 100%|██████████| 25596/25596 [00:00<00:00, 46946.69 examples/s]
      +Filter (num_proc=6): 100%|██████████| 25596/25596 [00:00<00:00, 46966.92 examples/s]
       
      diff --git a/api/tutorials/nihcxr/monitor_api.ipynb b/api/tutorials/nihcxr/monitor_api.ipynb index 3d915f820..3d6839766 100644 --- a/api/tutorials/nihcxr/monitor_api.ipynb +++ b/api/tutorials/nihcxr/monitor_api.ipynb @@ -22,10 +22,10 @@ "id": "8aa3302d", "metadata": { "execution": { - "iopub.execute_input": "2023-09-21T15:19:40.741494Z", - "iopub.status.busy": "2023-09-21T15:19:40.740965Z", - "iopub.status.idle": "2023-09-21T15:19:47.826976Z", - "shell.execute_reply": "2023-09-21T15:19:47.826290Z" + "iopub.execute_input": "2023-09-21T17:59:36.599139Z", + "iopub.status.busy": "2023-09-21T17:59:36.598645Z", + "iopub.status.idle": "2023-09-21T17:59:43.819186Z", + "shell.execute_reply": "2023-09-21T17:59:43.817995Z" } }, "outputs": [ @@ -33,7 +33,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/home/amritk/.cache/pypoetry/virtualenvs/pycyclops-wIzUAwxh-py3.9/lib/python3.9/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", + "/home/amritk/.cache/pypoetry/virtualenvs/pycyclops-mhx6UJW0-py3.9/lib/python3.9/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", " from .autonotebook import tqdm as notebook_tqdm\n" ] } @@ -69,10 +69,10 @@ "id": "e11920db", "metadata": { "execution": { - "iopub.execute_input": "2023-09-21T15:19:47.831059Z", - "iopub.status.busy": "2023-09-21T15:19:47.830850Z", - "iopub.status.idle": "2023-09-21T15:19:48.421859Z", - "shell.execute_reply": "2023-09-21T15:19:48.420755Z" + "iopub.execute_input": "2023-09-21T17:59:43.824258Z", + "iopub.status.busy": "2023-09-21T17:59:43.824053Z", + "iopub.status.idle": "2023-09-21T17:59:44.364867Z", + "shell.execute_reply": "2023-09-21T17:59:44.364173Z" } }, "outputs": [ @@ -89,7 +89,7 @@ "output_type": "stream", "text": [ "\r", - "Filter (num_proc=6): 17%|█▋ | 4266/25596 [00:00<00:00, 33676.51 examples/s]" + "Filter (num_proc=6): 17%|█▋ | 4266/25596 [00:00<00:00, 33866.90 examples/s]" ] }, { @@ -97,7 +97,7 @@ "output_type": "stream", "text": [ "\r", - "Filter (num_proc=6): 67%|██████▋ | 17064/25596 [00:00<00:00, 74589.12 examples/s]" + "Filter (num_proc=6): 83%|████████▎ | 21330/25596 [00:00<00:00, 88514.67 examples/s]" ] }, { @@ -105,7 +105,7 @@ "output_type": "stream", "text": [ "\r", - "Filter (num_proc=6): 100%|██████████| 25596/25596 [00:00<00:00, 59651.02 examples/s]" + "Filter (num_proc=6): 100%|██████████| 25596/25596 [00:00<00:00, 67311.63 examples/s]" ] }, { @@ -159,16 +159,16 @@ "id": "54a3523a", "metadata": { "execution": { - "iopub.execute_input": "2023-09-21T15:19:48.427311Z", - "iopub.status.busy": "2023-09-21T15:19:48.427053Z", - "iopub.status.idle": "2023-09-21T15:20:00.190060Z", - "shell.execute_reply": "2023-09-21T15:20:00.189377Z" + "iopub.execute_input": "2023-09-21T17:59:44.368683Z", + "iopub.status.busy": "2023-09-21T17:59:44.368369Z", + "iopub.status.idle": "2023-09-21T17:59:56.311955Z", + "shell.execute_reply": "2023-09-21T17:59:56.311339Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6gAAAKwCAYAAACVs1JqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACRNUlEQVR4nOzdeXzU1b3/8dd3Jvu+QQKIgoKgouKKWi3WpWDdd23dkNrW/mptUVu1ble9tWq92lZb64beWqv1qlSpSy3WuuGKoGjdBWQJSSD7npn5/TEwEAh7IBPyej4e8whz5sx3Pt8kJHnP+Z5zglgsFkOSJEmSpB4W6ukCJEmSJEkCA6okSZIkKUkYUCVJkiRJScGAKkmSJElKCgZUSZIkSVJSMKBKkiRJkpKCAVWSJEmSlBQMqJIkSZKkpGBAlSRJkiQlBQOqJEmSJCkpJGVAveOOOxgyZAgZGRmMGTOGN998c639H330UUaOHElGRga77rorTz/9dKfHzznnHIIg6HQbP3785jwFSZIkSdIGSrqA+sgjjzBp0iSuvvpqZsyYwe677864ceOoqKjosv9rr73G6aefzsSJE3n33Xc57rjjOO6445g9e3anfuPHj2fRokWJ21/+8pctcTqSJEmSpPUUxGKxWE8XsbIxY8awzz77cPvttwMQjUYZPHgwF1xwAZdeeulq/U899VQaGxuZOnVqom2//fZj9OjR3HnnnUB8BLWmpoYpU6ZsVE3RaJSFCxeSm5tLEAQbdQxJkiRJ6qtisRj19fUMHDiQUGjN46QpW7CmdWpra+Odd97hsssuS7SFQiEOO+wwpk+f3uVzpk+fzqRJkzq1jRs3brUw+uKLL9K/f38KCws55JBDuP766ykuLu7ymK2trbS2tibuL1iwgJ133nkjz0qSJEmSBPDVV1+xzTbbrPHxpAqoVVVVRCIRSktLO7WXlpby0Ucfdfmc8vLyLvuXl5cn7o8fP54TTjiBoUOH8vnnn3P55ZdzxBFHMH36dMLh8GrHvOGGG/iv//qv1dq/+uor8vLyNubUJEmSJKnPqqurY/DgweTm5q61X1IF1M3ltNNOS/x71113ZbfddmOHHXbgxRdf5NBDD12t/2WXXdZpVHb5JzMvL8+AKkmSJEkbaV1TJpNqkaSSkhLC4TCLFy/u1L548WLKysq6fE5ZWdkG9QfYfvvtKSkp4bPPPuvy8fT09EQYNZRKkiRJ0paRVAE1LS2Nvfbai2nTpiXaotEo06ZNY//99+/yOfvvv3+n/gDPP//8GvsDzJ8/nyVLljBgwIDuKVySJEmStMmSKqACTJo0ibvvvpsHHniA//znP5x//vk0NjYyYcIEAM4666xOiyhdeOGFPPvss9xyyy189NFHXHPNNbz99tv86Ec/AqChoYFLLrmE119/nTlz5jBt2jSOPfZYhg0bxrhx43rkHCVJkiRJq0u6OainnnoqlZWVXHXVVZSXlzN69GieffbZxEJI8+bN67Qs8QEHHMBDDz3EFVdcweWXX87w4cOZMmUKo0aNAiAcDvPee+/xwAMPUFNTw8CBA/nmN7/JddddR3p6eo+coyRJktRdIpEI7e3tPV2G+rjU1NQuF6DdUEm3D2oyqqurIz8/n9raWuejSpIkKSnEYjHKy8upqanp6VIkAAoKCigrK+tyIaT1zVRJN4IqSZIkad2Wh9P+/fuTlZW1ztVRpc0lFovR1NRERUUFwCat9WNAlSRJknqZSCSSCKfFxcU9XY5EZmYmABUVFfTv33+jL/dNukWSJEmSJK3d8jmnWVlZPVyJtMLy78dNmRNtQJUkSZJ6KS/rVTLpju9HA6okSZIkKSkYUCVJkiRJScGAKkmSJPVhkRi83QLPNsY/RjbzJpTnnHMOQRAkbsXFxYwfP5733nsv0Wflx1NSUth2222ZNGkSra2tiT6VlZWcf/75bLvttqSnp1NWVsa4ceN49dVXE32GDBnS6VjLb7/61a8270lqo7mKryRJktRHTWuCm6uhIrKirX8YLimEQzfj+kvjx49n8uTJQHy7nCuuuIKjjjqKefPmJfpMnjyZ8ePH097ezqxZs5gwYQLZ2dlcd911AJx44om0tbXxwAMPsP3227N48WKmTZvGkiVLOr3Wtddey3nnndepLTc3d/OdnDaJAVWSJEnqg6Y1wc+qYNUB08pIvP2mks0XUpePeAKUlZVx6aWXctBBB1FZWUm/fv0AKCgoSPQZPHgwxx57LDNmzACgpqaGl19+mRdffJGxY8cCsN1227Hvvvuu9lq5ubmJ4yj5eYmvJEmStBWIxaA5un63hgjcVL16OIV4W4z4yGpDZP2OF9uEy4IbGhp48MEHGTZs2Br3dP3kk0944YUXGDNmDAA5OTnk5OQwZcqUTpf9qvcLYrFN+XbqG+rq6sjPz6e2tpa8vLyeLkeSJEl9XEtLC19++SVDhw4lIyMDiAfFr83vmXpe3QYy13Po65xzzuHBBx9M1N3Y2MiAAQOYOnUqe+65JxCfg5qRkUE4HKajo4PW1laOOuooHn/8cVJTUwF47LHHOO+882hubmbPPfdk7NixnHbaaey2226J1xoyZAiLFi1KPGe5Z555hoMOOqgbzlwr6+r7crn1zVSOoEqSJEnaor7xjW8wc+ZMZs6cyZtvvsm4ceM44ogjmDt3bqLPrbfeysyZM5k1axZTp07lk08+4cwzz0w8fuKJJ7Jw4UKefPJJxo8fz4svvsiee+7J/fff3+m1LrnkksRrLb/tvffeW+pUtYGcgypJkiRtBTKC+Ejm+pjRAhdUrbvf70pgz4x198sI1u91l8vOzmbYsGGJ+/fccw/5+fncfffdXH/99UB8buryPiNGjKC+vp7TTz+d66+/PtGekZHB4YcfzuGHH86VV17Jd7/7Xa6++mrOOeecxLFLSko6vZaSmyOokiRJ0lYgCOKX2a7Pbb/M+Gq9a8qVAVAajvdbn+MFGxhQV689IBQK0dzcvMY+4XAYYK19dt55ZxobGzetGPUoR1AlSZKkPiYcxLeS+VlVPIyuvCjN8qx5cWG83+bQ2tpKeXk5ANXV1dx+++00NDRw9NFHJ/rU1NRQXl5ONBrl008/5dprr2XHHXdkp512YsmSJZx88smce+657LbbbuTm5vL2229z0003ceyxx3Z6rfr6+sRrLZeVleXaMknKgCpJkpJOJAbvtkJVBErCsEf65vtDWeqrDs2KbyXT1T6oF2/mfVCfffZZBgwYAMS3gRk5ciSPPvooBx98cKLPhAkTgPjoallZGV//+tf55S9/SUpKCjk5OYwZM4Zbb72Vzz//nPb2dgYPHsx5553H5Zdf3um1rrrqKq666qpObd///ve58847N98JaqO5iu96cBVfSZK2nGlNXf/BfMlm/oNZ6k3WtlrqhvINIXWX7ljF1xFUSZKUNKY1xS85XPXd88pIvP2mEkOq1N3CAey9aRlX6jYukiRJkpJCJBYfOe3q0q7lbb+ujveTJG2dHEGVJEmbTUcMGqPQEIOGaPxWv+zj8rbl9+d1dL6sd1UxYHEkfimioz2StHUyoEqSpC51FS4bolC/lrDZsMr95s0w2lm1lhArSerdDKiSJG2FIrGug2P9GoJkp8C5GcJlGvG9ErMCyApB5rKPWUH8lhmCugg8v+btDROyXLxFkrZaBlRJkpJMJAaNXYxSritcrny/aXOHy6Bz28r3cwPIC0N+CPIDKAhDRghSgdRgzauDRmIwa2F8QaS1lX/lEvhhB5yYCymGVUnaqhhQJUnqRmsKlxsykrmlw+XKbXmrhMv8cLx9XeGyO4SD+FYyP6uCgK5DamEIqqNwYw38pSHe/4AMCAyqkrRVMKBKkrTM+obLtYXN7gyXqaz5cti1hcu8lUYut1S47C6HZsW3kll1H9TSMFxcCF/PhD/Vwf118UWVLqiEfdLjjw1P67m6JUndw4AqSdoqRGLxcFi/SpDsdH8tYbN+C4TLzGDNgXNrCJfd5dAsODgzvlpvVQRKwrBH+orPwbn5cFIO3FYDTzXCW61wWjkcmw3/rwCKwz1ZvSRpUxhQJUk9Lrps5HLVcLlqkFxT2OypcLn837nLLoU1XHafcLD2rWTywnBVMZyVB79aCm+2wpRGeK4JJubBd/Ig3c+7JPU6BlRJ0iZZ33C5pmC5OcJl5ioBsquVY1cOl3mheMBcPucyy3DZawxJhTtL4fXm+GXBX3bA7bXw1wb4aQF8M8v5qdJ6aWuDd16HvfaDtM17vfw555zDAw88kLhfVFTEPvvsw0033cRuu+2WaA9W+s8bDocZOHAgJ510EjfccAPp6ekAVFZWctVVV/H3v/+dxYsXU1hYyO67785VV13F1772NQCGDBnC3LlzV6vjhhtu4NJLL+3Wc5szZw5Dhw5da5/JkyfT3NzMZZddxvvvv8/gwYMTj11wwQU899xzzJw5k6ysLA4++GD+/e9/A5Cens62227LhAkTuPTSS2lvb2fgwIFcfPHFXZ7Hddddx+233878+fNJTU3tspb58+ez/fbbs+OOOzJ79uzVHg/W8AP0L3/5C6eddtpaz3NjGVAlqQ+LrjLnctXwuK5wuXzOZXflyzWFy5XbskOGS61uv0x4NAMea4A/1sbnr162JD5f9WdFsFt6T1coJalYDN58Fe67A5ZUQkl/mPBD2Pdrm/XdnfHjxzN58mQAysvLueKKKzjqqKOYN29ep36TJ09m/PjxtLe3M2vWLCZMmEB2djbXXXcdACeeeCJtbW088MADbL/99ixevJhp06axZMmSTse59tprOe+88zq15ebmrne9Q4YM4f777+fggw9ea7/BgwezaNGixP1f//rXPPvss/zzn/9MtOXn55ORkcETTzzBxIkT+cc//gHAtGnT+MMf/sBLL71EVlZWov95553HtddeS2trKy+88ALf+973KCgo4Pzzz+eMM85g8uTJqwXUWCzG/fffz1lnnbXGcApw//33c8opp/DSSy/xxhtvMGbMmNX6LP8arKygoGCtn4dNYUCVpF5qbeFyXWFzc4TLFFYfnVw1XK7clhssWynWcKluEgrg5Fw4Khv+UAuPNsCH7XDOYjgsE35SCAP9y0daYc4XcN/t8OF7K8Lokkq4+RrYZTc490ew3fab5aXT09MpKysDoKysjEsvvZSDDjqIyspK+vXrl+hXUFCQ6Dd48GCOPfZYZsyYAUBNTQ0vv/wyL774ImPHjgVgu+22Y999913t9XJzcxPH2ZzC4XCn18nJySElJaXL17733nsZNWoUd955J9/+9rc599xzmTRpEgcccECnfllZWYnnT5gwgdtvv53nn3+e888/n4kTJ/Kb3/yGV155hQMPPDDxnH//+9988cUXTJw4cY21xmIxJk+ezO9//3u22WYb7r333i4D6spfgy3BH9OS1AOia1jQZ01hs34LhcuVV4TNXke4zAst244kgELDpZJIZggmFcJ3cuGmanixGf7ZDP9ujredmw85oZ6uUtqMWprXr99vfgkLlo1YxmKdP/5nNtz2S7j1nnUfNyNz4+pcpqGhgQcffJBhw4ZRXFy8xn6ffPIJL7zwAueccw4QD385OTlMmTKF/fbbL3HZb28xePBgbrvtNn784x/z9NNPk5OTkxgZ7kosFuOVV17ho48+Yvjw4QDsuuuu7LPPPtx3332dAurkyZM54IADGDly5BqP969//YumpiYOO+wwBg0axAEHHMCtt95KdnZ2953kRjCgStIGWh4u1xgk1xIul98aN3O47LQVyTrCZUE4ftlsCvFwmWK41FaiNAVu6QezW+FX1fBhG9xfD080wo8K4qv++v2urdIZR2/6MaJRqFjUue2HZ0Bd7ep9/++fq7etw9SpU8nJyQGgsbGRAQMGMHXqVEKhzu8enX766YTDYTo6OmhtbeWoo47isssuAyAlJYX777+f8847jzvvvJM999yTsWPHctppp3Waywrw85//nCuuuKJT2zPPPMNBBx20wbV3pwkTJnDXXXfx1FNP8cYbb3QZsn//+99zzz330NbWRnt7OxkZGfz4xz9OPD5x4kQuvvhifvvb35KTk0N9fT3/93//x29/+9u1vva9997LaaedRjgcZtSoUWy//fY8+uijiTcAllv+NVjZhx9+yLbbbrvxJ74WBlRJfcrawmVXK8Vu7nAZZqU5lWsIlyvveZmz7LJYw6W0/kalw59K4yv8/rYGyiPw30vhz3Xws8L4/FVJW9Y3vvEN/vCHPwBQXV3N73//e4444gjefPNNtttuu0S/W2+9lcMOO4xIJMJnn33GpEmTOPPMM3n44YeB+BzUI488kpdffpnXX3+dZ555hptuuol77rmnU9C65JJLVgtegwYNWmN9P/jBD3jwwQcT95uamjjiiCM6BbWGhoZN+RQAMGvWLGbMmEFWVhYvv/xyl5cnf+c73+EXv/gF1dXVXH311RxwwAGdLgM+/fTT+elPf8pf//pXzj33XB555BFCoRCnnnoqALvssktikaiDDjqIZ555hpqaGh5//HFeeeWVxHHOOOMM7r333tU+T8u/BisbOHDgJp/7mhhQJfUasZXCZVfBcV3bkGyOcLlqgFxXuFxt5DKIB0vDpbR5BQGMz47vsXp/LfxvPczpgB9Wwn4ZcHEhbL/mdUSk3uXBp9av36X/D+bPW/Pj/VaZd/j7B7vutxGys7MZNmxY4v4999xDfn4+d999N9dff32ivaysLNFvxIgR1NfXc/rpp3P99dcn2jMyMjj88MM5/PDDufLKK/nud7/L1Vdf3SlolZSUdHq9dbn22mu5+OKLE/cPPvhgbrzxxi7naG6strY2zjrrLL7zne8wduxYfvCDH3DUUUcxYsSITv3y8/MTtf/1r39l2LBh7LfffonQmJeXx0knncTkyZM599xzmTx5MqecckpihPrpp5+mvb0dgMzM+DtyDz30EC0tLZ3OJxaLEY1G+eSTT9hxxx0T7St/DbYEA6qkLSK2rsti1xIuVx65jHZTPV2Fy1VHMbMMl9JWJzWA8wrg5Bz4n1p4phFeb4FTFsHxOfDD/PicaqlXW985oeEUCIXil/OuKhSCVS7r3NS5pmsTBAGhUIjm5rXPn10+grm2fjvvvDNTpkzZpHr69+9P//79E/dTUlIYNGhQtwa1a6+9lqVLl3LrrbeSn5/PY489xoQJE3jllVdWu9R5uZycHC688EIuvvhi3n333cQ2MBMnTuTggw9m6tSpvPbaa9x8882J56w8Ir3cvffey0UXXbTaaOkPf/hD7rvvPn71q19123luKAOqpHVan3C5cpBc02WxWzpcZgZruSzWcCn1aQUpcG0xnJ0bn5/6Tmt8i5pnGuG8PDg9D9L82aCt3Y8vhXtXWsU3FlvxcadR8VV8N5PW1lbKy8uB+CW+t99+Ow0NDRx9dOf5szU1NZSXlxONRvn000+59tpr2XHHHdlpp51YsmQJJ598Mueeey677bYbubm5vP3229x0000ce+yxnY5TX1+feL3lsrKyyMvL22znuDZvvfUWN954I3//+9/Jz88H4I9//COjRo3i1ltv5aKLLlrjc7///e9z3XXX8dhjj3HSSScB8PWvf51hw4Zx1llnMXLkyNVWAl7ZzJkzmTFjBn/+859XW0Tp9NNP59prr+X6668nJSUeFZd/DVaWm5u72RZTMqBKW7lYDJpjdHkJ7Jouk101bHZ3uMxcJUB2dTnsyuEyN7RsO5IQFITiq28aLiV1hx3S4O5SeLUJfl0DczvgN7XwSEN8JeBDMzfrVpBSz9pue/ivW+Ct1+L7oFZVQHE/OPf/wT4HbNZv/meffZYBAwYA8bAzcuRIHn300dX2GZ0wYQIQH2EtKyvj61//Or/85S9JSUkhJyeHMWPGcOutt/L555/T3t7O4MGDOe+887j88ss7Heeqq67iqquu6tT2/e9/nzvvvHOzneOatLa2cvbZZzNhwgS++c1vJtoHDBjA7373OyZOnNjlpb7LFRUVcdZZZ3HNNddwwgknEAqFCIKAc889l8svvzyxiNSa3Hvvvey8885drvB7/PHH86Mf/Yinn36aY445BljxNVjZDTfcsNreq90liMVi3TUda6tVV1dHfn4+tbW1PfYui/qmtYXL9bkktiEGjVGIdFM9awqXK7dlryVc5i8Ll2nLgmWqf/RJSiKRGPy1Hu6ug5pl78rtmhZfSGmX3rV7hfqAlpYWvvzyS4YOHUpGRsamH7CtDWa8DnvtB6lpm3489Ulr+75c30zlCKq0mawrXDasEi7rkyBcrtyWGzJcSupbwkH80t5jc+COmvglv++3wZmLYXwW/LgAyvzLSVurtDTY7+s9XYVkQJW6EotBS2xFcFxXuFztsthuDpchVtmCZJWRyjWFy7wA8sPxcJlruJSk9ZIVgkuK4Du5cFM1vNQCzzbBC01wZh5MyIv3kSR1PwOqtjqrhsv13YZkS4bL1bYjMVxKUtIZmAq39YeZrXDjUvi4He6tg8cb4IICODo7PuoqSeo+BtReLBKDd1uhKgIlYdgjvff/olxXuFzb/pY9FS5X3vMyJ7RsKxLDpSRtNUanw0Nl8HQT/K4GKiJw7VL4cz1cUgj7dsP0P0lSnAG1l5rWBDdXx39JLtc/HP9FeWhWz9SUCJddBMd1rRS78shmd4XLgNW3IFlXuFx55LLAcClJWiYI4MhsODwL7q2Nh9PP2+EHFXBgRnzF3yGpPV2lJPV+BtReaFoT/KwKVl1+uTISb7+pZMND6qrhco37XfZguOxqC5L1DZcpuE2AJGnTpQVwfgGcmgO31MBzTfBKC0xfBCfmwA/y43stS5I2jgG1l4nE4iOnXe0NtLzthqWQATSx5sV86ns6XK7UtuplsYZLSVKyK0qB/y6Bc9rgV9XxKTd/bYCnG+H7+XBKrlfeSNLGMKD2Mu+2dr6stytLo3BB1cYdP6Dz5bCdRirXEC5XXdAn33ApSeojhqfBvaXw7ya4tQbmdcRHVv9SDxcVwsGZ/h6UpA1hQO1lqtZzmLM4FF84aeWQmRlA9jrCZV4AaaH4u76GS0mS1s/YLDgwMx5M762DhRG4qCq+wNIlhbBTWk9XKEm9gwG1lylZz3ktvyyGfTI3by2SJGmFcABn5MHxOfDbGpjSEN+i5oxy+FYW/LgA+vmXlyStldtM9zJ7pMdX613TwGYAlIZhT5e8lySpR2SH4LIieHwAfC0jvkbE35vgmEXwxxpojvZ0hVLXlnxUu9lfIwiCtd6uueYann76adLS0pgxY0an595yyy2UlJRQXl4OwDnnnJN4XmpqKkOHDuVnP/sZLS0tAOy666784Ac/6LKOP/3pT6Snp1NVteZ5cc3NzRQVFVFSUkJra+tqjw8ZMqTLc/jVr361sZ8eYUDtdcJB/FIhWD2kLr9/cWHv3w9VkqTeblAq/K4/3N0PhqdCawz+WAfHLISpDRDtasVDqQe0N3Xw0qUzmHLci7x02Qw6mjs222stWrQocbvtttvIy8vr1HbxxRfzrW99i7POOouzzjorEQw//PBDrrjiCu644w7KysoSxxs/fjyLFi3iiy++4NZbb+WPf/wjV199NQATJ07k4Ycfprm5ebU6Jk+ezDHHHENJSckaa33sscfYZZddGDlyJFOmTOmyz7XXXtup/kWLFnHBBRdswmdIBtRe6NCs+FYy/Va53Ld/eOO2mJEkSZvPXpnwcBlcVRj/3b0kClcthdPL4Z2Wnq5OfV31Z3VMOeFFPnvyKwA++9tXTDnh31R/VrdZXq+srCxxy8/PJwiCTm05OTkA3HrrrTQ0NHD11VfT0dHB2WefzdFHH82pp57a6Xjp6emUlZUxePBgjjvuOA477DCef/55AM444wyam5t57LHHOj3nyy+/5MUXX2TixIlrrfXee+/ljDPO4IwzzuDee+/tsk9ubm6n+svKysjOzt7YT49wDmqvdWhWfGXAd1vjCyeVhOOX/zpyKklS8gkCOC4XjsiBu2rgLw3waTucVwFjM+GnBbBtak9Xqa1Fe9OaR0CDcEBKenyU49Mn5vHK1bOIRWLEll16HotC3bxGppzwbw64cjdGnLzdOo+bmtX9kSI3N5f77ruPcePG8eWXX/LVV1/x7LPPrvU5s2fP5rXXXmO77eI1l5SUcOyxx3LfffdxxhlnJPrdf//9bLPNNnzzm99c47E+//xzpk+fzuOPP04sFuOnP/0pc+fOTRxbm48BtRcLB7C3c00lSeo10gO4oBBOz4Vf18DzTfDvZnilGU7Nge8VxPcGlzbF/+759zU+ts3YUsb9cT+qZtfw0mXvdtknFokRi8R45cqZFO+UT8moAgD+eujztFS3rdZ/4kfHdkvdqzrkkEM46aSTePjhh3nkkUcoLi5erc/UqVPJycmho6OD1tZWQqEQt99++4raJk7kiCOO4Msvv2To0KHEYjEeeOABzj77bEKhNf9nu++++zjiiCMoLIzPrRs3bhyTJ0/mmmuu6dTv5z//OVdccUWntmeeeYaDDjpoE868b/NHoCRJ0hZWkgK/KoGHymDXNIgADzXA0Qvg4Tpod36qNrPiXVYEzzVJyQ5TvEv+limoCwsWLODZZ58lKyuLl19+ucs+3/jGN5g5cyZvvPEGZ599NhMmTODEE09MPH744YezzTbbMHnyZACmTZvGvHnzmDBhAgBHHHEEOTk55OTksMsuuwAQiUR44IEHOo26nnHGGdx///1Eo51XObvkkkuYOXNmp9vee+/drZ+HvsYRVEmSpB4yIg0eKIMXmuDWGljQATfVxMPqxYVwUIZ7kmvDnTXjyDU+FiybDxYEAXtduBPPnTd9jX0PvnlvgpW+AU+Zdnj3FbkezjvvPPbaay9+8YtfcPjhh3PSSScxduzYTn2ys7MZNmwYEB/13H333bn33nsT80tDoRDnnHMODzzwANdccw2TJ0/mG9/4Bttvvz0A99xzT2IRpdTU+HX2zz33HAsWLFhtvmskEmHatGkcfviKz0NJSUni9dU9HEGVJEnqYYdkwRMD4nul5oVgfgf8pBK+XwGfrH5FpbRWqVkpa7wtn38KMOjAfpSMKiBYJREEISjZtYBtv1G6XsfdHO655x5eeeUV7r33Xr7xjW9w/vnnc+6559LY2LjG54RCIS6//HKuuOKKTiv3Tpgwga+++orHH3+cJ554otPiSIMGDWLYsGEMGzYsMb/03nvv5bTTTlttZPS0005b42JJ6j4GVEmSpCSQEsA5efDkADg+O36Z29ut8dV+r1kSXxRR6k7LR1Fjq+zNG4vCXhfu1Gn0dEuaO3cukyZN4te//nUiNN54440EQcCll1661ueefPLJhMNh7rjjjkTb0KFDOeSQQ/je975Heno6J5xwwhqfX1lZyVNPPcXZZ5/NqFGjOt3OOusspkyZwtKlSxP96+vrKS8v73Srq9s8KyD3FQZUSZKkJJIXhiuL4dEBsF8GxIAnG+P7p95TCy3RdR5CWm+DDuzHsY+P5djHVro9PpZBX+vXI/XEYjEmTpzI/vvvz/e+971Ee1ZWFvfffz9/+MMf+Pe//73G56ekpPCjH/2Im266qdNo68SJE6murubb3/42GRlrXmX0f//3f8nOzubQQw9d7bFDDz2UzMxMHnzwwUTbVVddxYABAzrdfvazn23oaWslQSwWcxr+OtTV1ZGfn09tbS15eXk9XY4kSepD3myGm2vg8/b4/X5h+EkBjMuCkPNT+6yWlpbEyrRrC1zSlrS278v1zVSOoEqSJCWxfTPhkTL4RSEUh6AyAr9YAmeUw8zWnq5OkrqXAVWSJCnJhQI4MReeGghn5UJGAB+1w7mL4eLK+Oq/krQ1MKBKkiT1Ehkh+EkhTBkAh2RCALzQDMcvhFurod75qZJ6OQOqJElSL9M/BX7dD/63FHZJgw7gT/XxhZQerYcOVxiR1EsZUCVJknqpXdLjIfVXxTAgDLVRuKEaTl4Erzav+/nq/VzvVMmkO74fDaiSJEm9WBDAN7NhykD4YT7kBDC3Ay6ohPMXw+dtPV2hNofU1FQAmpqaergSaYXl34/Lvz83Rkp3FSNJkqSekxrAd/Ph5By4tQb+3ghvtMIp5XB8NvywAIrCPV2luks4HKagoICKigogvk9oELjvkHpGLBajqamJiooKCgoKCIc3/oeN+6CuB/dBlSRJvc2XbfCranhr2VY0mQFMzIPv5EG6OWarEIvFKC8vp6ampqdLkQAoKCigrKysyzdL1jdTGVDXgwFVkiT1VtOb4dfV8OWyrWhKw/DTAjg8K355sHq/SCRCe3t7T5ehPi41NXWtI6cG1G5kQJUkSb1ZNAaPNsBdtVC9bCuaUWlwSSHsmt6ztUnqG9Y3U7lIkiRJ0lYuFMCpuTB1IHwnN36J7+w2OHsxXFoJizp6ukJJijOgSpIk9RGZIbioEKYMgLGZEAD/aIbjFsLvqqEx2tMVSurrDKiSJEl9TGkK3NoPJpfCyFRoBybXw9EL4YkGiDgBTFIPMaBKkiT1Ubulw5/L4L+L44sn1UThuqVwyiJ4o6Wnq5PUFxlQJUmS+rAggCOy4cmB8P08yAriK/6eXwE/qoAvXRxW0hZkQJUkSRKpAXy/AJ4aAEdmQRh4rQVOXgQ3LIXqSE9XKKkvMKBKkiQpoTAFriuBv5TBnukQJb5FzdEL4X9roc35qZI2IwOqJEmSVjMsDe4phd+UwLYp0BSD22rh+IUwrQliBlVJm4EBVZIkSWt0UBY8NgAuLoD8ECyKwCVVcO5i+LCtp6uTtLUxoEqSJGmtwgF8Ow/+PhBOzYFUYFYbnFEOv6iCxR09XaGkrYUBVZIkSeslKwQ/L4LHB8CBGfG2Z5rg2IXw+xpojvZoeZK2AgZUSZIkbZBBqfDb/nBvf9gxFdqAe+riCyk92QBR56dK2kgGVEmSJG2UPTLiq/1eUwT9wrA0CtcshdPK4e2Wnq5OUm9kQJUkSdJGCwI4JgeeGggT8yAzgM/a4XsV8JMKmNfe0xVK6k0MqJIkSdpkaQH8vwJ4agCMy4r/kflSC5y4CG5aCrWRnq5QUm9gQJUkSVK3KUqBG0rgz2WwezpEgIcb4vNT/1wH7c5PlbQWBlRJkiR1uxFpMLkUbimBbVKgIQa31MCJC+HfTRAzqErqggFVkiRJm803suLb0vykAPJCMD8CP62C71bAx209XZ2kZGNAlSRJ0maVEsBZeTB1IJyUDanAu63w7XK4eglUOj9V0jIGVEmSJG0ROSG4vBj+bwDsnwEx4KlGOGYh3FUDzdGerlBSTzOgSpIkaYsanAp39Ic/9oNhqdAagzvr4NiF8PdGiDo/VeqzDKiSJEnqEftkwiNlcGUhFIegKgpXLoHvlMOMlp6uTlJPMKBKkiSpxwQBHJ8LTw2Es3MhI4CP2+OLKE2qhPkdPV2hpC3JgCpJkqQelxGCCwvhbwPg8CwIgBeb4YSF8D/VUO/8VKlPMKBKkiQpafRLgRtL4MFSGJUGHcCD9XD0QnikDjqcnypt1QyokiRJSjo7pcMDpXBTMQwMQ10UbqyBkxbBK80QM6hKWyUDqiRJkpJSEMBh2TBlIPwoH3IDmNcBP66E71fAp209XaGk7mZAlSRJUlJLCeDc/PhCSsdlQwrwdiucVg7XLoElkZ6uUFJ3MaBKkiSpV8gLw1XF8NcBsG86xIApjfH5qffWxvdTldS7GVAlSZLUqwxJhTtL4ff9YGgKtMTgjlo4diE81+j8VKk3M6BKkiSpV9ovEx4dAJcVQlEIKiJw2RI4sxxmtfZ0dZI2hgFVkiRJvVYogJNz4/NTz8iF9AA+bIcJi+GSSljY0dMVStoQBlRJkiT1epkhmFQIfxsAh2RCAExrhuMXwm+qoSHa0xVKWh8GVEmSJG01+qfAr/vF91DdOQ3agQfq4wspPdYAHc5PlZKaAVWSJElbnVHp8KdS+GUxlIWhNgr/vRROWQTTm3u6OklrYkCVJEnSVikIYHw2/G0gnJ8H2QHM6YD/Vwk/rIAv2nu6QkmrMqBKkiRpq5YawHkF8NQAODobwsDrLfHR1P9eCtWRnq5Q0nJJGVDvuOMOhgwZQkZGBmPGjOHNN99ca/9HH32UkSNHkpGRwa677srTTz+9xr4/+MEPCIKA2267rZurliRJUjIrSIH/KoaHy2CvdIgSn5d69EJ4oBbanJ8q9bikC6iPPPIIkyZN4uqrr2bGjBnsvvvujBs3joqKii77v/baa5x++ulMnDiRd999l+OOO47jjjuO2bNnr9b3iSee4PXXX2fgwIGb+zQkSZKUpHZIg7tL4XclsF0KNMXgN7Vw3EL4ZxPEDKpSjwliseT6LzhmzBj22Wcfbr/9dgCi0SiDBw/mggsu4NJLL12t/6mnnkpjYyNTp05NtO23336MHj2aO++8M9G2YMECxowZw3PPPceRRx7JT37yE37yk5+sV011dXXk5+dTW1tLXl7epp2gJEmSkkY0Bo/Uw911ULNsK5pRafCzwvhCS5K6x/pmqqQaQW1ra+Odd97hsMMOS7SFQiEOO+wwpk+f3uVzpk+f3qk/wLhx4zr1j0ajnHnmmVxyySXssssu66yjtbWVurq6TjdJkiRtfUIBnJ4Hfx8Ip+dAGjC7Dc5aDJdVQXlHT1co9S1JFVCrqqqIRCKUlpZ2ai8tLaW8vLzL55SXl6+z/4033khKSgo//vGP16uOG264gfz8/MRt8ODBG3gmkiRJ6k0yQ3BJETw+AL6eEW97rgmOXQi310BTtEfLk/qMpAqom8M777zDb37zG+6//36CIFiv51x22WXU1tYmbl999dVmrlKSJEnJYGAq3NYfJpfCyFRoB+6riy+kNKUBIkk1OU7a+iRVQC0pKSEcDrN48eJO7YsXL6asrKzL55SVla21/8svv0xFRQXbbrstKSkppKSkMHfuXC666CKGDBnS5THT09PJy8vrdJMkSVLfsXs6/LkMriuG/mGojsK1S+G0cnizpaerk7ZeSRVQ09LS2GuvvZg2bVqiLRqNMm3aNPbff/8un7P//vt36g/w/PPPJ/qfeeaZvPfee8ycOTNxGzhwIJdccgnPPffc5jsZSZIk9WpBAEdmw5MD4bw8yArg83b4QQVcUAFz2nu6Qmnrk9LTBaxq0qRJnH322ey9997su+++3HbbbTQ2NjJhwgQAzjrrLAYNGsQNN9wAwIUXXsjYsWO55ZZbOPLII3n44Yd5++23ueuuuwAoLi6muLi402ukpqZSVlbGiBEjtuzJSZIkqddJC+D8Ajg1B/6nBp5tgldb4PVFcGIO/CAfCsI9XaW0dUi6gHrqqadSWVnJVVddRXl5OaNHj+bZZ59NLIQ0b948QqEVA78HHHAADz30EFdccQWXX345w4cPZ8qUKYwaNaqnTkGSJElboaIUuL4Ezm6DX1XDu63w1wZ4uhG+nw+n5ELq+i15ImkNkm4f1GTkPqiSJEla1b+b4NYamLdsK5qBYbioEA7OjF8eLGmFXrkPqiRJktRbjM2CxwbARQWQH4KFEbioCiZWwH/aero6qXcyoEqSJEkbKRzAd/Jg6kA4JQdSgZmtcEY5XFkFFR09XaHUuxhQJUmSpE2UHYJLi+DxAXBgBsSAvzfBsYvgzhpojvZ0hVLvYECVJEmSusmgVPhtf7i7HwxPhdYY3FUHxyyEqQ0QdfUXaa0MqJIkSVI32ysTHi6Da4qgXxiWROGqpXB6ObzT0tPVScnLgCpJkiRtBkEAx+TAkwNhQi5kBvBpO5xXAT+pgHntPV2hlHwMqJIkSdJmlB7ABYXwtwEwLgsC4KUWOHER/Hop1Dk/VUowoEqSJElbQEkK3FACD5XBbmkQAR5qgKMWwF/qoN35qZIBVZIkSdqSRqTB/WXw6xLYJgUaYnBzTXxE9aVmiBlU1YcZUCVJkqQecEhWfFuaCwsgLwTzO+AnlfC9Cvikraerk3qGAVWSJEnqISkBnJ0HTw6AE7IhBXinNb7a7zVLoCrS0xVKW5YBVZIkSepheWG4ohgeHQD7ZUAMeLIRjl4Id9dCiwspqY8woEqSJElJYrtU+H1/uLMf7JAKrTH4Qy0cuwieaYSo81O1lTOgSpIkSUlm30x4pAx+UQjFIaiMwC+WwBnlMLO1p6uTNh8DqiRJkpSEQgGcmAtPDYSzciEjgI/a4dzFcHElLOjo6Qql7mdAlSRJkpJYRgh+UghTBsChmRAALzTD8Qvh1mqod36qtiIGVEmSJKkX6J8CN/eD/y2FXdKgA/hTPRyzEB6thw7np2orYECVJEmSepFd0uMh9cZiGBCG2ijcUA0nL4JXm3u6OmnTGFAlSZKkXiYI4PBsmDIQfpgPOQHM7YALKuEHi+Gztp6uUNo4BlRJkiSpl0oN4Lv58YWUjs2GMPBmK5xaDtcvgaWRnq5Q2jAGVEmSJKmXyw/D1cXw6ADYJx1iwOONcPRCuK82vp+q1BsYUCVJkqStxJBU+GMp3NEPhqZAcwxur4XjFsI/GiFmUFWSM6BKkiRJW5n9M+OjqZcWQmEIFkfg0iVw1mJ4v7Wnq5PWzIAqSZIkbYVCAZySC1MHwndyIT2AD9rg7MVwaSUs6ujpCqXVGVAlSZKkrVhmCC4qhCkD4OBMCIB/NMcv+/1dNTRGe7pCaQUDqiRJktQHlKbA//SD+0thpzRoBybXxxdSeqIBIs5PVRIwoEqSJEl9yK7p8GAp/HcxlIahJgrXLYVTFsEbLT1dnfo6A6okSZLUxwQBHJENTw6EH+RBdgBfdsD5FfCjCviivacrVF9lQJUkSZL6qNQAvlcATw2AI7MgDLzWEh9NvWEpVEd6ukL1NQZUSZIkqY8rSIHrSuDhMtgzHaLAow3x+an/Wwttzk/VFmJAlSRJkgTADmlwTyn8tgS2S4GmGNxWC8cvhGlNEDOoajMzoEqSJEnq5MAs+L8BcEkB5IdgUQQuqYIJi+HD1p6uTlszA6okSZKk1YQDOD0P/j4QTs2BNOC9NjhjMfyiChZ39HSF2hoZUCVJkiStUVYIfl4Ejw2AgzLibc80wbEL4fc10BTt0fK0lTGgSpIkSVqnQanwm/5wXynsmAptwD11cMxC+FsDRJ2fqm5gQJUkSZK03kanw1/K4L+KoH8Ylkbhv5bCaeXwVktPV6fezoAqSZIkaYMEARydA08OhIl5kBnAZ+3w/Qq4sALmtvd0heqtDKiSJEmSNkpaAP+vAJ4aAOOz4uHi5RY4aRHctBRqIz1doXobA6okSZKkTVKUAr8sgYfKYPd0iAAPN8DRC+HPddDu/FStJwOqJEmSpG6xYxpMLoX/KYFtUqAhBrfUwIkL4d9NEDOoah0MqJIkSZK61cFZ8PgA+GkB5IVgfgR+WgXfrYCP23q6OiUzA6okSZKkbpcSwJl5MHUgnJQNqcC7rfDtcrh6CVQ6P1VdMKBKkiRJ2mxyQnB5MTw2APbPgBjwVGN8/9S7aqA52tMVKpkYUCVJkiRtdtukwh394Y/9YFgqtMbgzrp4UJ3aCFHnpwoDqiRJkqQtaJ9MeKQMriyEkhAsicJVS+A75TCjpaerU08zoEqSJEnaooIAjs+FpwbBObmQEcDH7fFFlCZVwlftPV2heooBVZIkSVKPSA/gx4XwtwFweBYEwIvNcOIi+J9qqHd+ap9jQJUkSZLUo/qlwI0l8OdS2DUNOoAH6+GoBfBIHXQ4P7XPMKBKkiRJSgoj0+H+UripGAaGoT4GN9bASYvglWaIGVS3egZUSZIkSUkjCOCwbJgyEC7Ih9wA5nXAjyvh+xXwaVtPV6jNyYAqSZIkKemkBDAhH54aCMdlQwrwdiucVg7XLoElkZ6uUJuDAVWSJElS0soLw1XF8OgA2DcdYsCURjh6IdxbCy0upLRVMaBKkiRJSnrbpcKdpfD7frB9KrTE4I5aOHYRPNvo/NSthQFVkiRJUq+xXyb8tQwuL4SiEFRG4PIlcGY5zGrt6eq0qQyokiRJknqVUAAn5cbnp56RG99P9cN2mLAYLqmEhR09XaE2lgFVkiRJUq+UGYJJhfC3AXBIJgTAtGY4fiH8phoanJ/a6xhQJUmSJPVq/VPg1/3gf0th5zRoBx6ojy+k9H/10OH81F7DgCpJkiRpq7BLOvypFH5ZDGVhqI3CL6vhlEUwvbmnq9P6MKBKkiRJ2moEAYzPhr8NhB/mQ04Aczrg/1XCDyvgi/aerlBrY0CVJEmStNVJDeC7+fGFlI7OhjDwekt8NPW/l0B1pKcrVFcMqJIkSZK2Wvlh+K9ieKQM9k6HKPBYY3x+6gO10Ob81KRiQJUkSZK01ds+De4qhd+VwHYp0BSD39TCcQvhn00QM6gmBQOqJEmSpD7ja1nw2AD4WQEUhqA8Aj+rgrMXw+zWnq5OBlRJkiRJfUoogNPyYOpAOD0H0oDZbXDWYrisCso7errCvsuAKkmSJKlPygzBJUUwZQCMzYi3PdcExy6E22ugKdqj5fVJBlRJkiRJfVpZKtzaHyaXwshUaAfuq4svpDSlASLOT91iDKiSJEmSBOyeDn8ug+uKoX8YqqNw7VI4rRzebOnp6voGA6okSZIkLRMEcGR2fP/U8/IgK4DP2+EHFXBBBcxp7+kKt24GVEmSJElaRWoA5xfAkwPgW1nx4PRqC5y8CH61FGoiPV3h1smAKkmSJElrUJQC15fAX8pgj3SIAH9tiM9PfbAO2p2f2q0MqJIkSZK0DsPT4N5SuLUEtk2Bxhj8Tw0cvxD+1QQxg2q3MKBKkiRJ0noamwWPDYCLCiA/BAsjcFEVTFwM/2nr6ep6PwOqJEmSJG2AcADfyYOpA+GUHEgFZrbBGeVwRRVUdPR0hb2XAVWSJEmSNkJ2CC4tgscHwIEZEAOeboJjF8GdNdAc7ekKex8DqiRJkiRtgkGp8Nv+cE9/2DEVWmNwV118IaWnGiDq/NT1ZkCVJEmSpG6wZ0Z8td9riqBfGJZG4eqlcHo5vNPS09X1DgZUSZIkSeomQQDH5MCTA+HcXMgM4NN2OK8CflIB89p7usLkZkCVJEmSpG6WHsCPCuHJATAuCwLgpRY4cRHcvBTqnJ/aJQOqJEmSJG0mxSlwQwk8VAa7p0EE+EsDHLUA/lIH7c5P7cSAKkmSJEmb2Yg0mFwGvy6BbVKgIQY318RHVF9qhphBFTCgSpIkSdIWc0hWfFuaCwsgLwTzO+AnlfC9Cvikraer63kGVEmSJEnaglICODsPnhoAJ2RDCvBOa3y136uXQFWkpyvsOQZUSZIkSeoBuWG4ohj+bwDsnwEx4KnG+P6pd9dCSx9cSMmAKkmSJEk9aNtUuKM//LEf7JAKrTH4Qy0cuwieboRoH5qfakCVJEmSpCSwTyb8tQyuKITiEFRG4IolcEY5zGzt6eq2DAOqJEmSJCWJIIATcuGpgXB2LmQE8FE7nLsYLq6EBR09XeHmZUCVJEmSpCSTEYILC2HKADg0EwLghWY4fiHcWg31q8xPjcTg7RZ4tjH+MdJLLwtO6ekCJEmSJEld658CN/eDD1rhxmqY3QZ/qoe/NcIP8+GEHPh3M9xcDRUrrf7bPwyXFMKhWT1X+8YIYjG3hF2Xuro68vPzqa2tJS8vr6fLkSRJktQHxWLwzyb4TQ0sXBZG+4WgsovVfoNlH28qSY6Qur6Zykt8JUmSJKkXCAI4PBueGAj/Lx+y6TqcQnzLGoBfV/euy30NqJIkSZLUi6QGMDEfri9Ze78YsDgC7/aiFYANqJIkSZLUCzWv58hoVWTdfZKFAVWSJEmSeqGScPf2SwYGVEmSJEnqhfZIj6/WG6zh8QAoDcf79RYGVEmSJEnqhcJBfCsZWD2kLr9/cWG8X29hQJUkSZKkXurQrPhWMv1WuYy3fzh5tpjZECk9XYAkSZIkaeMdmgUHZ8ZX662KxOec7pHeu0ZOlzOgSpIkSVIvFw5g74yermLTeYmvJEmSJCkpGFAlSZIkSUnBgCpJkiRJSgoGVEmSJElSUjCgSpIkSZKSggFVkiRJkpQUDKiSJEmSpKRgQJUkSZIkJQUDqiRJkiQpKSRlQL3jjjsYMmQIGRkZjBkzhjfffHOt/R999FFGjhxJRkYGu+66K08//XSnx6+55hpGjhxJdnY2hYWFHHbYYbzxxhub8xQkSZIkSRso6QLqI488wqRJk7j66quZMWMGu+++O+PGjaOioqLL/q+99hqnn346EydO5N133+W4447juOOOY/bs2Yk+O+64I7fffjvvv/8+r7zyCkOGDOGb3/wmlZWVW+q0JEmSJEnrEMRisVhPF7GyMWPGsM8++3D77bcDEI1GGTx4MBdccAGXXnrpav1PPfVUGhsbmTp1aqJtv/32Y/To0dx5551dvkZdXR35+fn885//5NBDD11nTcv719bWkpeXt5FnJkmSJEl90/pmqqQaQW1ra+Odd97hsMMOS7SFQiEOO+wwpk+f3uVzpk+f3qk/wLhx49bYv62tjbvuuov8/Hx23333Lvu0trZSV1fX6SZJkiRJ2rySKqBWVVURiUQoLS3t1F5aWkp5eXmXzykvL1+v/lOnTiUnJ4eMjAxuvfVWnn/+eUpKSro85g033EB+fn7iNnjw4E04K0mSJEnS+kiqgLo5feMb32DmzJm89tprjB8/nlNOOWWN81ovu+wyamtrE7evvvpqC1crSZIkSX1PUgXUkpISwuEwixcv7tS+ePFiysrKunxOWVnZevXPzs5m2LBh7Lffftx7772kpKRw7733dnnM9PR08vLyOt0kSZIkSZtXUgXUtLQ09tprL6ZNm5Zoi0ajTJs2jf3337/L5+y///6d+gM8//zza+y/8nFbW1s3vWhJkiRJUrdI6ekCVjVp0iTOPvts9t57b/bdd19uu+02GhsbmTBhAgBnnXUWgwYN4oYbbgDgwgsvZOzYsdxyyy0ceeSRPPzww7z99tvcddddADQ2NvLf//3fHHPMMQwYMICqqiruuOMOFixYwMknn9xj5ylJkiRJ6izpAuqpp55KZWUlV111FeXl5YwePZpnn302sRDSvHnzCIVWDPwecMABPPTQQ1xxxRVcfvnlDB8+nClTpjBq1CgAwuEwH330EQ888ABVVVUUFxezzz778PLLL7PLLrv0yDlKkiRJklaXdPugJiP3QZUkSZKkjdcr90GVJEmSJPVdBlRJkiRJUlIwoEqSJEmSkoIBVZIkSZKUFAyokiRJkqSkYECVJEmSJCUFA6okSZIkKSkYUCVJkiRJScGAKkmSJElKCgZUSZIkSVJSMKBKkiRJkpKCAVWSJEmSlBQMqJIkSZKkpGBAlSRJkiQlBQOqJEmSJCkpGFAlSZIkSUnBgCpJkiRJSgoGVEmSJElSUjCgSpIkSZKSggFVkiRJkpQUDKiSJEmSpKRgQJUkSZIkJQUDqiRJkiQpKRhQJUmSJElJwYAqSZIkSUoKBlRJkiRJUlIwoEqSJEmSkoIBVZIkSZKUFAyokiRJkqSkYECVJEmSJCUFA6okSZIkKSkYUCVJkiRJScGAKkmSJElKCgZUSZIkSVJSMKBKkiRJkpKCAVWSJEmSlBQMqJIkSZKkpGBAlSRJkiQlBQOqJEmSJCkpGFAlSZIkSUnBgCpJkiRJSgqbFFBffvllzjjjDPbff38WLFgAwJ/+9CdeeeWVbilOkiRJktR3bHRAfeyxxxg3bhyZmZm8++67tLa2AlBbW8svf/nLbitQkiRJktQ3bHRAvf7667nzzju5++67SU1NTbR/7WtfY8aMGd1SnCRJkiSp79jogPrxxx/z9a9/fbX2/Px8ampqNqUmSZIkSVIftNEBtaysjM8++2y19ldeeYXtt99+k4qSJEmSJPU9Gx1QzzvvPC688ELeeOMNgiBg4cKF/PnPf+biiy/m/PPP784aJUmSJEl9QMrGPvHSSy8lGo1y6KGH0tTUxNe//nXS09O5+OKLueCCC7qzRkmSJElSHxDEYrHYphygra2Nzz77jIaGBnbeeWdycnK6q7akUVdXR35+PrW1teTl5fV0OZIkSZLUq6xvptroEdTl0tLS2HnnnTf1MJIkSZKkPm6jA+q111671sevuuqqjT20JEmSJKkP2uiA+sQTT3S6397ezpdffklKSgo77LCDAVWSJEmStEE2OqC+++67q7XV1dVxzjnncPzxx29SUZIkSZKkvmejt5npSl5eHv/1X//FlVde2Z2HlSRJkiT1Ad0aUAFqa2upra3t7sNKkiRJkrZyG32J729/+9tO92OxGIsWLeJPf/oTRxxxxCYXJkmSJEnqWzY6oN56662d7odCIfr168fZZ5/NZZddtsmFSZIkSZL6lo0OqF9++WV31iFJkiRJ6uO6fQ6qJEmSJEkbY4NGUCdNmrTeff/nf/5ng4uRJEmSJPVdGxRQu9r7tCtBEGxUMZIkSZKkvmuDAuq//vWvzVWHJEmSJKmP2+hFkpb78MMPmTdvHm1tbYm2IAg4+uijN/XQkiRJkqQ+ZKMD6hdffMHxxx/P+++/TxAExGIxYMXlvZFIpHsqlCRJkiT1CRu9iu+FF17I0KFDqaioICsriw8++ICXXnqJvffemxdffLEbS5QkSZIk9QUbPYI6ffp0XnjhBUpKSgiFQoRCIQ488EBuuOEGfvzjH6/3gkqSJEmSJMEmjKBGIhFyc3MBKCkpYeHChQBst912fPzxx91TnSRJkiSpz9joEdRRo0Yxa9Yshg4dypgxY7jppptIS0vjrrvuYvvtt+/OGiVJkiRJfcBGB9QrrriCxsZGAK699lqOOuooDjroIIqLi3nkkUe6rUBJkiRJUt8QxJYvv9sNli5dSmFhYWIl361FXV0d+fn51NbWkpeX19PlSJIkSVKvsr6ZapP3QV1ZUVFRdx5OkiRJktSHbPQiSd/97nfdTkaSJEmS1G02OqBWVlYyfvx4Bg8ezCWXXMKsWbO6sy5JkiRJUh+z0QH1b3/7G4sWLeLKK6/krbfeYs8992SXXXbhl7/8JXPmzOnGEiVJkiRJfUG3LZI0f/58/vKXv3Dffffx6aef0tHR0R2HTQoukiRJkiRJG299M9VGj6CurL29nbfffps33niDOXPmUFpa2h2HlSRJkiT1IZsUUP/1r39x3nnnUVpayjnnnENeXh5Tp05l/vz53VWfJEmSJKmP2OhtZgYNGsTSpUsZP348d911F0cffTTp6endWZskSZIkqQ/Z6IB6zTXXcPLJJ1NQUNCN5UiSJEmS+qqNvsT3vPPOS4TTV199ldbW1u6qSZIkSZLUB3XLIklHHHEECxYs6I5DSZIkSZL6qG4JqN20U40kSZIkqQ/rloAqSZIkSdKm2uSAumDBAn7/+9/Tr1+/7qhHkiRJktRHbXRAffXVVxk6dCjbbrst55xzDsOGDePnP/85dXV13VmfJEmSJKmP2OiA+v3vf5+ddtqJt956i48//pibb76Zf/7zn+y5554umCRJkiRJ2mBBbCNXOMrMzGTWrFnsuOOOibZYLMYpp5wCwKOPPto9FSaBuro68vPzqa2tJS8vr6fLkSRJkqReZX0z1UaPoO60005UVFR0aguCgGuvvZZnn312Yw8rSZIkSeqjNjqgnnPOOVxwwQV89dVXndodZZQkSZIkbYyUjX3iT37yEwCGDx/OCSecwOjRo4lEIjz44IPcdNNN3VWfJEmSJKmP2Og5qIsXL2bmzJnMmjWLmTNnMnPmTD799FOCIGCnnXZi1113ZbfddmO33XZj/Pjx3V33FuUcVEmSJEnaeOubqTY6oHalpaWF999/v1NwnT17NjU1Nd31Ej3CgCpJkiRJG299M9VGX+LblYyMDPbZZx/22Wef7jysJEmSJKkP2OhFkiRJkiRJ6k4GVEmSJElSUjCgSpIkSZKSggFVkiRJkpQUDKiSJEmSpKRgQJUkSZIkJQUDqiRJkiQpKRhQJUmSJElJwYAqSZIkSUoKBlRJkiRJUlIwoEqSJEmSkoIBVZIkSZKUFAyokiRJkqSkkJQB9Y477mDIkCFkZGQwZswY3nzzzbX2f/TRRxk5ciQZGRnsuuuuPP3004nH2tvb+fnPf86uu+5KdnY2AwcO5KyzzmLhwoWb+zQkSZIkSRsg6QLqI488wqRJk7j66quZMWMGu+++O+PGjaOioqLL/q+99hqnn346EydO5N133+W4447juOOOY/bs2QA0NTUxY8YMrrzySmbMmMHjjz/Oxx9/zDHHHLMlT0uSJEmStA5BLBaL9XQRKxszZgz77LMPt99+OwDRaJTBgwdzwQUXcOmll67W/9RTT6WxsZGpU6cm2vbbbz9Gjx7NnXfe2eVrvPXWW+y7777MnTuXbbfddp011dXVkZ+fT21tLXl5eRt5ZpIkSZLUN61vpkqqEdS2tjbeeecdDjvssERbKBTisMMOY/r06V0+Z/r06Z36A4wbN26N/QFqa2sJgoCCgoIuH29tbaWurq7TTZIkSZK0eSVVQK2qqiISiVBaWtqpvbS0lPLy8i6fU15evkH9W1pa+PnPf87pp5++xuR+ww03kJ+fn7gNHjx4I85GkiRJkrQhkiqgbm7t7e2ccsopxGIx/vCHP6yx32WXXUZtbW3i9tVXX23BKiVJkiSpb0rp6QJWVlJSQjgcZvHixZ3aFy9eTFlZWZfPKSsrW6/+y8Pp3LlzeeGFF9Z63XN6ejrp6ekbeRaSJEmSpI2RVCOoaWlp7LXXXkybNi3RFo1GmTZtGvvvv3+Xz9l///079Qd4/vnnO/VfHk4//fRT/vnPf1JcXLx5TkCSJEmStNGSagQVYNKkSZx99tnsvffe7Lvvvtx22200NjYyYcIEAM466ywGDRrEDTfcAMCFF17I2LFjueWWWzjyyCN5+OGHefvtt7nrrruAeDg96aSTmDFjBlOnTiUSiSTmpxYVFZGWltYzJypJkiRJ6iTpAuqpp55KZWUlV111FeXl5YwePZpnn302sRDSvHnzCIVWDPwecMABPPTQQ1xxxRVcfvnlDB8+nClTpjBq1CgAFixYwJNPPgnA6NGjO73Wv/71Lw4++OAtcl6SJEmSpLVLun1Qk5H7oEqSJEnSxuuV+6BKkiRJkvouA6okSZIkKSkYUCVJkiRJScGAKkmSJElKCgZUSZIkSVJSMKBKkiRJkpKCAVWSJEmSlBQMqJIkSZKkpGBAlSRJkiQlBQOqJEmSJCkpGFAlSZIkSUnBgCpJkiRJSgoGVEmSJElSUjCgSpIkSZKSggFVkiRJkpQUDKiSJEmSpKRgQJUkSZIkJQUDqiRJkiQpKRhQJUmSJElJwYAqSZIkSUoKBlRJkiRJUlIwoEqSJEmSkoIBVZIkSZKUFAyokiRJkqSkYECVJEmSJCUFA6okSZIkKSkYUCVJkiRJScGAKkmSJElKCgZUSZIkSVJSMKBKkiRJkpKCAVWSJEmSlBQMqJIkSZKkpGBAlSRJkiQlBQOqJEmSJCkpGFAlSZIkSUnBgCpJkiRJSgoGVEmSJElSUjCgSpIkSZKSggFVkiRJkpQUDKiSJEmSpKRgQJUkSZIkJQUDqiRJkiQpKRhQJUmSJElJwYAqSZIkSUoKBlRJkiRJUlIwoEqSJEmSkoIBVZIkSZKUFAyokiRJkqSkYECVJEmSJCUFA6okSZIkKSkYUCVJkiRJScGAKkmSJElKCgZUSZIkSVJSMKBKkiRJkpKCAVWSJEmSlBQMqJIkSZKkpGBAlSRJkiQlBQOqJEmSJCkpGFAlSZIkSUnBgCpJkiRJSgoGVEmSJElSUjCgSpIkSZKSggFVkiRJkpQUDKiSJEmSpKRgQJUkSZIkJQUDqiRJkiQpKRhQJUmSJElJwYAqSZIkSUoKBlRJkiRJUlIwoEqSJEmSkoIBVZIkSZKUFAyokiRJkqSkYECVJEmSJCUFA6okSZIkKSkYUCVJkiRJScGAKkmSJElKCgZUSZIkSVJSMKBKkiRJkpKCAVWSJEmSlBQMqJIkSZKkpGBAlSRJkiQlBQOqJEmSJCkpGFAlSZIkSUnBgCpJkiRJSgoGVEmSJElSUjCgSpIkSZKSggFVkiRJkpQUDKiSJEmSpKRgQJUkSZIkJQUDqiRJkiQpKRhQJUmSJElJwYAqSZIkSUoKBlRJkiRJUlIwoEqSJEmSkoIBVZIkSZKUFAyokiRJkqSkYECVJEmSJCUFA6okSZIkKSkYUCVJkiRJScGAKkmSJElKCgZUSZIkSVJSMKBKkiRJkpKCAVWSJEmSlBQMqJIkSZKkpGBAlSRJkiQlBQOqJEmSJCkpGFAlSZIkSUkh6QLqHXfcwZAhQ8jIyGDMmDG8+eaba+3/6KOPMnLkSDIyMth11115+umnOz3++OOP881vfpPi4mKCIGDmzJmbsXpJkiRJ0sZKqoD6yCOPMGnSJK6++mpmzJjB7rvvzrhx46ioqOiy/2uvvcbpp5/OxIkTeffddznuuOM47rjjmD17dqJPY2MjBx54IDfeeOOWOg1JkiRJ0kYIYrFYrKeLWG7MmDHss88+3H777QBEo1EGDx7MBRdcwKWXXrpa/1NPPZXGxkamTp2aaNtvv/0YPXo0d955Z6e+c+bMYejQobz77ruMHj16g+qqq6sjPz+f2tpa8vLyNvzEJEmSJKkPW99MlTQjqG1tbbzzzjscdthhibZQKMRhhx3G9OnTu3zO9OnTO/UHGDdu3Br7r6/W1lbq6uo63SRJkiRJm1fSBNSqqioikQilpaWd2ktLSykvL+/yOeXl5RvUf33dcMMN5OfnJ26DBw/epONJkiRJktYtaQJqMrnsssuora1N3L766queLkmSJEmStnopPV3AciUlJYTDYRYvXtypffHixZSVlXX5nLKysg3qv77S09NJT0/fpGNIkiRJkjZM0oygpqWlsddeezFt2rREWzQaZdq0aey///5dPmf//ffv1B/g+eefX2N/SZIkSVLySpoRVIBJkyZx9tlns/fee7Pvvvty22230djYyIQJEwA466yzGDRoEDfccAMAF154IWPHjuWWW27hyCOP5OGHH+btt9/mrrvuShxz6dKlzJs3j4ULFwLw8ccfA/HR100daZUkSZIkdZ+kCqinnnoqlZWVXHXVVZSXlzN69GieffbZxEJI8+bNIxRaMeh7wAEH8NBDD3HFFVdw+eWXM3z4cKZMmcKoUaMSfZ588slEwAU47bTTALj66qu55pprtsyJSZIkSZLWKan2QU1W7oMqSZIkSRuv1+2DKkmSJEnq2wyokiRJkqSkYECVJEmSJCUFA6okSZIkKSkYUCVJkiRJScGAKkmSJElKCgZUSZIkSVJSMKBKkiRJkpKCAVWSJEmSlBQMqJIkSZKkpGBAlSRJkiQlBQOqJEmSJCkpGFAlSZIkSUnBgCpJkiRJSgoGVEmSJElSUjCgSpIkSZKSggFVkiRJkpQUDKiSJEmSpKRgQJUkSZIkJQUDqiRJkiQpKRhQJUmSJElJwYAqSZIkSUoKBlRJkiRJUlIwoEqSJEmSkoIBVZIkSZKUFAyoW4ElH9X2dAmSJEmStMkMqL1Ye1MHL106gynHvchLl82go7mjp0uSJEmSpI1mQO2lqj+rY8oJL/LZk18B8NnfvmLKCf+m+rO6Hq5MkiRJkjaOAbUX+vSJefzthH9T/1UTsWi8LRaFunmN/O2Ef/PplHk9W6AkSZIkbQQDai9TNbuGly57l0hblFgk1umxWCRGpC3KS5e+y6K3qnqoQkmSJEnaOAbUXqZ4l3xKRhUQrOMr9/SZr/LXw5/n86fmJ9qikRixaGwtz5IkSZKknpPS0wVowwRBwF4X7sRz501fY5/U3BTa6zuo/6qJhkXNVM2uAeKr/b7+y/cp3DGP4hH5FI3Mo2hEHoU75pGWk7qFzkCSJEmSumZA7YUGHdiPklEFLPmwJjEHFSAIQfEuBRz9yEE0LGymcmY1GUXpiceXflxHR1OEypnVVM6s7nTMnEGZHHT9Hgzcvx8AkbYIoZQQQSjYIuckSZIkSQbUXmhNo6ixKOx14U6EQiHytskmb5vsTo8X7JDD0HEDqZy1lOrP6qmb20jtnAZalrbRsKCZpsqWxGjrnGmL+OD+zykcnpcYaS0amU/Rjnmk5TraKkmSJKn7BbFYzEmJ61BXV0d+fj61tbXk5eX1dDkAxGIxlvynFlb+6gVQvFM+QbBho5718xupmFlNzjZZhFPik1tn/fET5jy/qMv+2QMyGXf3fhQOi38u2hs7CGeECYUdbZUkSZK0uvXNVI6g9lJBEFCyc0G3HCt3m2xyVxltHXvznuzyQS2V71VT/Wk9dXMaqJvXSHNVK42LmmlZ0kZVSw0AHzz4BV8+u5DC4bmJUdaikXkU7ZhHen5at9QoSZIkaetnQFWXUjJSKNurmLK9iju1NyxsonJ2Dam5KbBs/mvdnAYiLRGq3q+h6v2aTv2zyzI54alvJC4LbqluIy0v1dFWSZIkSasxoGqD5AzMImdgVqe2Ix74Gks+rKHyvRqqP6lLzG1trmqlo7mDurmNib5v3DibylnVK0ZbR+RRNCL+Mb3A0VZJkiSpLzOgapOlpIcp3aOY0j06j7Y2Lm6m+tO6+G67y0ZbGxY0EWmLUvVBLVUf1Hbqnz80hxOfPiQxh7ZxcTOZxemEUtyuV5IkSeoLDKjabLJLM8kuzezUduIzh7L041oqZ1azdNloa93cRpoqWgilhliyUmid9pO3aKpooXCHXIp2Wj7aGh9xzSh0tFWSJEna2hhQtUWlpIfpv1sR/Xcr6tTeuLiZ+vlNBOGAWCRGtD1Ky9JWom1RlvynNr5i8UoGjCnhiPsPSIy21s1rJGdAJqFUR1slSZKk3sqAqqTQ1WjrGW98i6Uf1VI5q5qlH9dRO7chPtq6uIWUjHBitDUaifH3M14BYhTskEvxyHwKR+QlPmYWpffAGUmSJEnaUAZUJa1waoh+uxbSb9fCTu3NVS00lLcQpATEOmK0LGklCAdEWqIs/aiOpR/Vdeq/w9HbMPamPQmCgFgsRvUn9eQPzSGc5mirJEmSlEwMqOp1MksyyCzJ6NR25lvfYunHdVTOqqb6k1pq58TntjaWN5OalZIYbW2qaOH5H75BKCUgf4dcikfmUbRjfnzf1hF5qx1XkiRJ0pZjQNVWIZwaot+oAvqNKujU3rykhZalbUQjMWIdMZqrWkjJCtPRFKH64zqqP64D5if67/a94ez9050IgoD2pg7q5jVSsH2uo62SJEnSFmBA1VYtsziDzOIVo6IlowoYfuK2VH9cR8WsapZ+VEfd3AZq5zXSuKjzaGvFe9VMv/Y9gnBAwfY58X1bVxpxzSxJTyzSJEmSJGnTGVDV54TCIYp3LqB454JO7c3VrbTVtxNpjhBtj9FW175itPXTeqo/refzp1b03/+q3djp9CEEQUDzklaaKloo2CGHcFp4y56QJEmStJUwoErLZBamk1m4YsXfklEF7HbeMGo+radi1lKWfLRs39Y5DTSUN5OatWIl4S+fW8h7d39KEA7IH5qz0krCeRTumEdW/wxHWyVJkqR1MKBKaxEKh5Zd2pvfqb2lpo32xnbaGyJE26NE2iKk5qTQ3tBBzWf11HxWD1NX9D/8zv0YPLY/QRBQN6+RtoZ2CnbIJSXd0VZJkiRpOQOqtBEyCtLIKEhL3C8ZVcC+P9uFms/rqZxZHR9tnbNsbuvCJlIyQonR1tkPfM7nT82Pj7YOyY4H4BF5FI2If8wqdbRVkiRJfZMBVeomoXAovoDSjp1HW1vr2uhojtBa0060PUoQYsVo6+cN1HzewBd/X5Dof/yTB1M4LI8gFFD1YQ1EoWBYLikZjrZKkiRp62ZAlTaz9Lw00vMguzQTgLE37kU0EqX2y0YqZi5lyX9q43Nb5zbQVtdOpDXKkg/jo61v3Dib8reWEIQgb0h8JeHiEXkULhtxzS5ztFWSJElbDwOq1ANC4RCFw3IpHJbbqb29KT6vtaWmjWhblNSsFNLyUmmra6f2iwZqv2jgy6fjo63h9BCn/uubZBSkEYQCFr5eSWp2CoXDcknJ9L+2JEmSeh//ipWSSGpWKqlZqWT1j+/d+s0/7kc0GqV2TiOVM5ey5MP4aGvt3EZSs8I0LmymcWEzAK9cOZP6r5oIQpC7bTbFq+zbmjMwqydPTZIkSVonA6qU5EKhEIXb51K4fS6csKK9o6WDtroOWmvb6GiJkFmcTmttO2117dTNaaRuTiNfPrsQgLztsjnmka+TlpdKEAqY8/xCskszKRiWS2qWPwYkSZKUHPzLVOqlUjJSSMlISYy2Hv3w14lGo9TPbWLxzKUs/bCW2rkN1M1tJH/7HOrnNwEQi8R48aJ3iLRFIYC8wdkU7bRsJeGReRTvVEDOgMyePDVJkiT1UQZUaSsSCoXIH5pD/tAcOH5Fe0drhLa6dlpr2miuaqVoZD518xporWmnbl4jdfMamfNcfLR14AH9+MYte5OenwoBfPLYvPh82eF5pGb7I0OSJEmbj39tSn1ASnqYlH5hsvplUDgcjtm/H7FYjLq5jVTMWsqSD2qpndNI3bwG8rbLpmFBEw0LoHlJK69cMTN+kAByt8mieGR+fBXhkfn027UgsTqxJEmStKkMqFIfFQQB+UNyyB+Sw/BjV7RH2qK01rYl5rb2H11I7dxGWqvbqP+qifqvmpjz/CIAdjxxW/a5eBfS8lLpaOrg87/Pp2jHfAp3zCUtJ7WHzkySJEm9lQFVUifhtBBZ/TLio63D8hg6biCxWIz6+Y1UvFtN1Qc1y/ZtbSRv2/hoKwuganYNr13zXuI4OdtkUTwyvl9r0Yg8+u9RRFa/jB48M0mSJCU7A6qkdQqCgLzBOeQNzmHYMYMT7dH25aOt7QQpAf33KKJubgMtS9tomN9Ew/wm5v6zHIA9fjSCnb8zlLS8NBoWNjH/5Yr4wkwj8hxtlSRJEmBAlbQJQqkhMksyyCzJoGCHXEactF18tHVBE5Uzl422zmmkdm4DuYOyaFjQDAuamfP8Imb98ZPEcXIGZq5YSXjHfAaMKSGjMK0Hz0ySJEk9wYAqqVsFQUDeNtnkbZPNDkdtk2iPtkdpXbaScEZhKqV7FlE7t5GWJa00LGymYWEz86bFR1sP+uVoBh9cRnpeKlUf1FD1fg1FI/Mp3DGP9DxHWyVJkrZWBlRJW0QoNURmcTqZxekU7JDLqHOGAVC/oJGKlUZb6+Y2kl2aSePCZhoXNvOfv8zhsylfJY6TXZZJ8U7xlYSLR+Yx6MD+XiIsSZK0lQhisVisp4tIdnV1deTn51NbW0teXl5PlyNt9aIdUVpr22mtbePLZxay4LUK6uY20lzVulrfI+4/IDGyOv+lCurnN1I0Mn65cHq+lwlLkiQlg/XNVI6gSko6oZQVo617/L8R7PH/RgDQsKiZiplL46OtXzbQuLiF1OyUxGjr7Ac+Z9EbVYnjZJVmULwsrBaNzGe7wwYQTgv11GlJkiRpHQyoknqNnAGZ5AwYxPZHDEq0RTtWzG0t2aWAWCRG7dwGmitbaVrcQtPiFr7692JCqQHHPjaWzOIM0vNT+fSJr2hv7qBox/hWOC7KJEmS1PMMqJJ6tVBKiMyidDKL0tn3Z7sk2hsXLxttnV1L7ZwGou1Rom0xGhc107iomffu+ZS6uY2J/ln9Myhatm9r8c75nUKwJEmStgwDqqStUnZpJkPHDWLouJVGWyMx2uraaKluY+AB/cgqzaBuTiNNFS2J2/yXKsgZlEXRjnmk56eSnp/GrHs+JTUzZdmlwnlkFKb34JlJkiRtvQyokvqMUDggozCdjMJ0vnb17on2xopmKmZWs+SDGmq/bCA9P42O5ggdzREaFjYz64+fEGmJJvpnlqQn9m0t3bOI7Q4Z0BOnI0mStNUxoErq87L7ZzL0m5kM/ebARNvy0damxS0MO2ZwfAuceQ00lrfQXNXKgpcrWPByBRV7FZG3bTYZBWmk5aXy+i9nk7dtduJy4cxiR1slSZLWlwFVkrqw8mjrgdeOTrQ3V7VQMauaytk11H7RQMHQHCItURrLW1jyn1o+enhOp+NkFKctW0k4n0EH9mPQAf237IlIkiT1IgZUSdoAmSUZbHfoALY7dMVlvfHR1nYiHVFGnrodtXMbqZvbSGN5My1L2ljwaiULXq2kcXEzWf0ySC9IIwgFvHnTbIp2zF822ppHZklGD56ZJElSzzOgStImio+2ppFRWETp6KJEe/PSVipnLk2MtvbfvZBIa5SmxS0s+bCGz/42H5if6J9RlEbRsn1bh3xzIKV7FHXxapIkSVsvA6okbSaZRelse8gAtl1pEaVYND7a2tbQzsjThlA3t5HauQ00LmqmZWkbC1+rZOFrlYTCAWk5KaTnp9G8pJX37/ssPtK6bMQ1sySdIAh68OwkSZK6nwFVkragIBSQXpDGwP36MXC/fon2luo2KmYtper9amq+aKRoZH58tLWihbkvlPP5U/P5/KkVx0kvTKNoRB7FI/MZfsK2FO2Y1wNnI0mS1L0MqJKUBDIK09j24DK2Pbgs0bZ8tLX/7gXsdPry0dZGGhY10VrdxqLXq1j0ehW522TFj1GQRtWHNXwxdQGFI/IoHplH4Y55ZPXPcLRVkiT1CgZUSUpSy0dbB48tY/DYFcG1pbZt2dzWWmo/ryd/aA7Rtvho65x/LOLzqfNh6orjpBekJRZiGnX2DuQMzOqBs5EkSVo3A6ok9TIZ+auH1lg0Rlt9O9t+o5SUzDB1cxqom9tIw8ImWmtWjLYO2LeEtvoO0gtSmftCOYvfWkLRiLzE4kxZpY62SpKknmNAlaStQBAKSM9PY8jhAxly+MBEe2t9GxUzq6maXUPdlw1k9csg2h6lubKVuf9YxMLplXzx9IJE/7S81GWjrfns9eORpOWm9sTpSJKkPiqIxWKxni4i2dXV1ZGfn09tbS15eS5EIql3i8VitNV3MP/lxVTMWLps39YGGhY0EYvG+wQpAUc9eCApmSmkF6Ty4YNfUj+/kaIR8ZHWohF5ZA/IdLRVkiStl/XNVI6gSlIfEwQB6Xmp7HDkNuxw5DaJ9raGNipm1lD5fjUtS9sIpYRWjLZOW0TtFw18+czCRP+03BSKRuRTvHM+Yy4bZViVJEmbzIAqSQIgLSeNbQ7szzYH9k+0LR9t3f37O1L1fvWKlYQXNNFW30H520uon9/EsGMGE0qNL+r05k0fEIvEKFw20lo0Ip+cgY62SpKkdTOgSpLWaPlo6/BjBzP82MGJ9raGdirfq6by/Rqi7fHrgqPtMZoqWpj3r3I6miJ8+eyK0dbUnBSKRuQxcEw/9vzxyC1+HpIkqXcwoEqSNlhaTiqDDujPoAM6j7a21rZzwFW7seSDWmrnxlcSrl/QRHtDB4vfWUosCtseUkaQEpBRkMYLP3mLrP4Z8bmty7bCyRmU5WirJEl9lAFVktQtgiAeOocfty3Dj1vR3tbYQeV71VTNriYlPQxArCNGzef1VMysBmDOPxYl+qdkhSkakc/QIwYy6qwdtuQpSJKkHmZAlSRtVmnZKQzavx+D9u+XaIvFYrQsbWXsjXtQ9WEtdXMa46Ot8xvpaIpQ8e5SsssyqdqzhiAlIJQa4vkfvJ7Yr3X53NbcbbIIQo62SpK0tTCgSpK2uCAIyCzOYNix2zLs2BXtHU0dVM6upmJWNVklGUB8tLXyg6XUf9VE/VdNzH2+82hr4Y557HT60E5zZCVJUu9kQJUkJY2UrBQG7NuPAft2Hm3N7J/O2Jv3YsnsGmrnNVA3p5H6r+KjrZUzqyndo4iqHXIJwgFNVa28ds1MikbmUzwin8IReRSPzCN3cLajrZIkJTkDqiQpqQVBQHb/TIYdvQ3Djl6xb2tHUwdVH9RQ+V41udvmABCLxKictZSGBc00LGhm3rTyRP+UzPho654/GsE2B5XG+8diLsgkSVISMaBKknqllKwUyvYpoWyfkk7tGSVp5A/JoeqDmvi+rXMa4qOtzREqZ1VT+2UDGYXpBOGAillLmfXHTyneKT8xr7VoRB6522YTChtcJUna0gyokqStSk5ZFjlHZbHDUSuNtjZ3UPVhLZXvVVM4PA+Ij7Yu+aCWxkXNNC5qZt4LK0ZbwxlhCofn8rWrd6dkVEG8v6OtkiRtdgZUSdJWLyUzhbK9iinbq7hT+x4lIxiwf0l839Y5y/ZtnddIpCVC1fs1NCxqincMwRdPL+CLqQsS+7UuX1E4b7scR1slSeomBlRJUp+VXZbJDt/ahh2+tdJoa2uEJR/WUDmrmuz+mfHGKCz9qI7G8mYay5v56sXFif7htBCFw3M57I4xZJfF+0c7ooRSQlv0XCRJ2hoYUCVJWklKepjSPYop3aPzaOtB14+mYuZSKmfXLNu3tYG6eY1EWqMs+U8tDYuaaa5qhQDeu+dTFs9Yumwl4bxlKwnnk7ddtsFVkqS1MKBKkrQesssyGTp+EEPHD0q0dbRGWPJRLdUf1xFOXRY8Y1D9aT1Ni1toWtzC/H+vGG0NpYUoGp7L0Q9/ndCy/pG2COG08BY9F0mSkpUBVZKkjZSSHqZ09yJKdy/q1D7+3v2pmLmUqg9qqfuygdrlo60tUZqqWln6cV28YwCvXfsejYuaO81rLRqRR/6QnESIlSSprzCgSpLUzbJLMxk6bhBDx60YbY20R1n6nxrq5zcn2mLRGLVf1NNW30FTRQvzX65IPBZKDSjbp4Qj7jsg0dbe2EFqtr+6JUlbL3/LSZK0BYRTQ/TbrYh+u3VuP+mZQ1n8bjVVH1RT+0V8JeHaufGVhNsbOqiaXZPo+48fvA5A0U4rRlqLdsynYHtHWyVJWwcDqiRJPSizJIMhhw9gyOEDEm2R9ihLP66juaol0dbe2EHzklaIwYKXK1iw8mhrSsDQbw3i4Jv2SrS11rSRXpC2ZU5CkqRuYkCVJCnJhFND9BtVsFr7t18ZR8XMaipn1ywbbY3Pbe1oihBpjSZGWztaIvz9zFfILEqP79u68tzWobmE0xxtlaSt1ZKPaikemd/TZWw0A2pv19YG77wOe+0Hab5TLklbs8ziDLY7dADbHbpitDUaiY+2ttW3J9oaF8XnuTYvaWXBq5UseLUy8VgoJWDUhGHsc9HOy54fo7W6lcySjC10FpKkzaG9qYPp177Hp1O+Yvjxgzngqt1Iyex9ca/3Vay4WAzefBXuuwOWVEJJf5jwQ9j3axAEPV2dJGkLCYVDlOxc0KmtZFQBAw/sR+XMaipnL5vbOqeR2rkNdDRFiLatGG2tm9fIvya9TUZRWueVhEfG57a6BY4kJb/qz+r454/epH5eIwCf/e0rKmZWc+jv9qFwWF4PV7dhglgsFuvpIpJdXV0d+fn51NbWkpeXBF/gOV/AfbfDh+/Fw2gstuLjLrvBuT+C7bbv6SolSUkmGolS82k9kdYIQTh+me+iN6t48+YPoIu/BoJwwJhLd2GXM3cA4u/Otzd0kNkvncA3QyUpKXz6xDxevXoW0UiMWGTFD/MgHBAKB3zt2t0Zfty2PVhh3PpmKgPqeki6gHrR9+CrORCNrv5YKASDh8Atd23pqiRJvVRLdRsVs5ZS9X4NNcvnts5tpL2xgzGX7kLZ3iXAsjB70wekF6TF57aOyKd4ZB6FI/Io2CGXlHRHWyX1frFYjFgUghCJN+PamzqItEaIRWKJILj8YywSI39oDkEo3rduXiPNVS2dHl/5Odsc1D/x87LyvWqqP60jFo2/ibjqcUecMoT0vFQA5r9cwaI3q1bqE6WpqoU5zy5a5zkd+39jKelibYMtaX0zlZf49kbRaNfhdPlj8+fC+d+Jh9VQKP6/KxQs+xiKj7b+4pdQWBx/ztNPwGsvwkGHwbij423VS+COm5f/z1zpWCsdZ/kxgwDC4fjHk8+EfqXxY8x6Jz4/dsed4cBvxNva2+Cvf1qlnmXHWv7vVV8vFIrPsV1+3IXz4eMP4pc177rHinN/45X4x+XPCYI1nP9K9wcMgrxlk8ibGqFyMWRkQOnAFcetXBwfnV7T57Kr1wqF458TSeoFMgrT2PbgMrY9uCzRFo1Eqfm8HmIQbY+/l91c1Qqh+ArBi16vYtHrVYn+QTjgkN/szZDD4j8/W6pbibRFyeqfsfGjrW1tLHniFYqPP9B1FqRuFO2IdgpBK4eiIByQWZye6FvzRT2RtnhwikVjRDviH2ORGCkZYfrtVpjoO/+VCtob2rsMZqnZKexw1DaJvp88NpemytaV+kUTx0/NTmHPH41M9J1558fUftkY7xeNEetY0TclM8wht+6T6Dv9v9+n8r3q1evtiBKEA0546hBiMSAa49+XzWD+SxXLHl927JVGIb/96jiCUAiI8fIVM5k3rXyNn9Pj/3YwKVkpEIO3bvmQOc8tXGPfcffuT0ZhGkTh/cmf8+UzC9bYN2+7HHIGZALwxdPz+fSJr9bYtytBCIp3KaB4l96zaFJSBtQ77riDm2++mfLycnbffXd+97vfse+++66x/6OPPsqVV17JnDlzGD58ODfeeCPf+ta3Eo/HYjGuvvpq7r77bmpqavja177GH/7wB4YPH74lTmfLi0TioWptvvgMCpbE//3xh/DRBzBgGxg2It5WVQEz397w1x61B9TVxv/95qvw3JPxWgYs26y+uRme+MuGHzcagxHxBT144xV4/CHYaVfIyl7R53+ui5/7hjjze7DvAUAA78+Au34DQ4fBJdfEHw8CuOxHUFO9Ycc9bQKMPyb+/M8+gl/+AkoHwI1/gGDZca/9efzNhFWDbVcBfXmfw74FR54Qf40llXDzf0FmJlx984rX/tPd8OWny54bXo/AHsAuu8OhR8Sf39oK/3tn/PFzzoeUZT8mXnkBvvy8izcTwsuO10X9pQNh7/1W1DbtmfjHrx0MGfEftnzxKSyav/rnYNU3QlY+h6wcGLLSZexzv4i/OTNwMKQv+6VaXwcN9Z3fSEnUuoY3XsJh/wiWlgmFQxTt2PkPmpJRBez2veFUzlpK5exaaj+vp25uA7VzG2lv6CDWEUvMbf3sb1/xwZ++ID0/tdMqwkUj8ikYvo7R1liM9pdfYfqVb/Pp4u0Z/oc7OODavUk56EDXWdAaLR/1ii0bWYpGYoRSQ4nvtUhbdI2jWrFIjMySdLLL4r+bOpo7WDxjaZcjZbFIjLwh2fTbNR7M2ps6+PSJeSv6rRx2OmIU75yfWNiso7mDt275cJXgtKJv/z2K2OXM+O+3aEeUf/zgjVX6rAhmZfsUs99luybO/9Fx/yTSuvzx6LIQGX+zqWyvYg65bR9isRjE4OGD/0F7Y0eXn8eSUQUcdvu+xGIQi8b4+5mv0LKkrcu++UNzOPS3+8QDXyzGK1fOTCzStqrsskzyh+Qk7s+6+1Pq5jR22Td92Ztmy335zEKWflzXZd+UrHCn/aIrZ1VT+V7Xf7cFIVjyYW3iflNFC2117V32Baib10R42R7T0dYVg0NBOIjfQhCEAoJQQEt1G2nL3sxLzU4huywz/ng4SPRJPAdg2eHyBmdRumfRij4rPycckJKx4mdl0Yh8tj8yutKx4pfwNi5uZv5LK7YeW1ksCntduFOvmpaRdAH1kUceYdKkSdx5552MGTOG2267jXHjxvHxxx/Tv3//1fq/9tprnH766dxwww0cddRRPPTQQxx33HHMmDGDUaNGAXDTTTfx29/+lgceeIChQ4dy5ZVXMm7cOD788EMyMrbCVQtL+sPZ34+Humg0/p0ZicRHAaOx+P2CwnjwiAFjDoQddoSSfivmsubkwqlnL3tONP6x07+jy4617N/LP+at9MfMkO3hkPEwaKVr3sNh+No3VhxvTcdZ9fVyV7oMIL8QRuzS+bgQn3e7fHR51eOseh7L7wcBNDXFn9/eET/v9PR4uEnUnAKpqasfY20a62Hxssstqirjn/+2Nli40rtedTXQ2LC+X9W4OZ/D55/E/125OB5+MzJXtAF8MBM++3jDjtvSDEPic8xoboLnnor/++uHrRgJfvEfG/6mxc67QWHRivt/vDX+OSwshvyCeNuTj8Kr/9qw4w7ZAX56xbJgCVz7M6itgUuvg8HbAQE8+yQ89eiGHbd/Gdx4R/z5QQBX/RS+mht/w2LXPeLtL/0T/nTXmq8oWPXNhSAE2dnwqztWvM7dv4FPP4bTz4E9lr359p/34S+Tu7haYdXQvsobBBf8fMXX6J9Pw+cfw/5jYbc9422LF8EzU7q+8mFtV0YcflT8zQ+Aj2bDvDnxN2+GL3tHu6kR3p6+ljcT1nBlxA4jVhx3SRVUV8X/Ty+/QiIS6fyGRZdXKyx/I2Slx9MzVnwelv8/Xd5f3SqjII3BY8sYPHb10dZwajjxR29rXTtBCFpr21n0RhWL3ug82nr0IwfRb1T8D/yGhU0QBGSXZRDM/ZLqW+/jn/8aRn3bEAA+Kx9CxY8+59BDnqPwp+f2yXUWls/IWv5HZkdrhEhzpIsAFQ9mOQMyE6t3Nle1UD+/aY3BrN9uBYlVnOvmNrB4xtJOAWrlILXtIWXkD42HjKUf1/LF0wvWGLZ2PHFb+o+O/w6ofL+a9+7+dI3HHTVhh0SIq5i1lFevmrXSuUUTQSsWibH793dkxMnbQQwq31vKs999vdOo18p2PW8Yu569A7EYLP2kjucmTl/j53jEKdux64RhxGIxGhY08dx5r6+x79AjBrHbxGFA/GqB6de9v8a+2x5SRnZp/Odee1MHHz745Rr7tta0UbpH/HMWi8RY8ErXoQMgJbNzMGtY2JS42mFVLdVt1H650t8ca/jRGITiwbi5qjXRlpabGh9Z7RSy4h8z+6UTWSm4FeyQS0ZhWpdhK6MovdNrDdi3hMIdclc7ZhAiPhK5kiHjBjJg35LOIW95QFsWIJef14hTt2P7IwcRSln2eEqwbC5miCAckJqdQhACgoC9LtyJSGuUICXeLxRe3j9EKByQvvxcAvj6jXvGf+WkhBKfv+WPsfwj8doOvG70sl+P6/4dtCGX3a6pb+zLz3ny/c9YUp1DjBWfj4AoxUUNDNqmHlg9RyWrpJuDOmbMGPbZZx9uv/12AKLRKIMHD+aCCy7g0ksvXa3/qaeeSmNjI1OnTk207bfffowePZo777yTWCzGwIEDueiii7j44osBqK2tpbS0lPvvv5/TTjttnTUtv1561qxZ5ObmdtOZbryMX/2C0KKFBF1c5hsLhYgOGEjLpf/dA5X1Msu/9Vf+GH8LcMViIYn7y9tiq4fcRChe9jEShdQwpKTF+3S0EzQ2AAGx5d8/sRhB9RJob1/2RkKMILbsGMuD9cpvMCw7diy3gFhRUfzx1lbCc76AUEBk++GJmkNzPydobCCIxoBVQnmn8E+iLdavlMiQ+C9aOtpJffPV+AjGAWPjv62A8IfvEa5YtErwX+V4y14vWPamQ6R0AB37fC3xKU+f8jDEIrQecTxkZAGQ8u7rpHz6n1XeAGCV40Ow0uPR0gG0HnVS4rgZ/3snQWMDLaecRaw4/gM49c1XSH3jpZXemFlxC9bwYy9aWEzzxAsS9zPv/wOhqsU0n3wm0e3iAT5l1lukP//3DfhGg1hGOk0/umxFvX+9n/C8ObQceSKRneLvfoc//Q8Zf3tkg44L0HjRlRDEg1n61P8j5aPZtB4yno494yPXoQVzyfzL5A0+btMPLiKWE/9+TXvhaVJnvEnbmINoP+hQAIKlVWTdd/sGH7f5uz8iWjYICEh9+QXS/v0P2vfcl7blX8/mZrJvvnrDj3vuj4gOHwkBpLz+CulTHqZj591oPfsHiZCadeWFKxaVCzqH31j8r5XVQnzbid8msms87Ic++ZC0x/9MdJshtJ1xXuK10++6jaCpkcQbG8tCeSzEKgF9xet2jPk6kV12i38uKxaT+o8nieUX0H70yYnjpj4/laC2ZkWNoc7HX/ZX0Uo1B0SGDie6/EqYpkZS3poOaal07D82cdzwf94nqK+Nn3Onz0UXxw9CxEIBscIiYsunPkSjhOZ+DkGI6HbbJz6/QfWS+Jtdy48XhGhvjrL0s2bqvmilYWEHjYsiNJW309ESY9/rBhHKSCWWlsGXj5RT8WoNKdlhMqI1NDZnL/uR1vkPrSCIssv2/yH/Z99OXL4XDybxkZ5YLEbxbive0Kz5qIGWyjaILgtkMTo9b/D4/gTheP0Vb9ZQ/0XzimMmPsafs+PZ2xDOiNezYFoVS96tI7bs53c00vm4u120A2kF8T+w5z65mIX/WtJFvfGa975+R7LK0iEGX/x1EV8+9v/bu/e4qMr8D+CfM0MzIAKK4CAXAZMMLwzeSLxBShim5Za6a62StlkJIl43ysSoDWw1b3mr3Kw2L60bbt5YCRVXREQRK2+7mnhJQO2n3ASEmef3x8TANDMIqHHQz/v1Oi84z3nOc55zznMGvuc855mC2rx16gs90GfBI3DqZA8hgLzkAvy4wfp7Z9o4Xzg9ag+hB35KvYYf11vvmthlihfadLUHBHAl8wbO1ZO380QPtOtp+Gz4OacYZ9ZZ78bY6Y8d4BpkuHF9/YdS/PejS1bzeo/RwG2Q4YZF8f9u4uTyC1bzej3tCvcww2tKpefLcXzReat5PSLawTPCFQBQnl+JHxbmAQpDoF8TQOGXn+0HtoVHuKHcWzeqcGr1JUOAIQG1wZahibcNcIRbiKG+1RU6nFuf/0tbkgx56pTt4GsHlz6GdqmvFvgp5ZohuPolsEGdp3B27VWGcwHDn8Jr2cWGS0ppqIfiIYUxMFM5KtDa285w00ICSs+VGz4SlBIkmzpP4WwkKGyVsG1jeI9RUihQXVENSZLqBHEKwEaCQiEBQm+8EWLcf+mX+tbUWaq9WWJUM//rv7HW0huq7nbqlmFSbhPKluoEtqLmf2qp5ZQrYPwMt016E1fOKJBxcaTZagO9tsK1s14WsUFJSQm0Wu3tx/URMlJZWSmUSqVITk42SZ8wYYJ4+umnLa7j5eUlFi9ebJI2b948ERAQIIQQ4uzZswKAOHr0qEmewYMHi5iYGItlVlRUiKKiIuN08eLFmpbEiRMnTpw4ceLEiRMnTpyaOBUVFdUbE9YJxZvftWvXoNPpoNFoTNI1Gg0KCizfzSsoKKg3f83PxpSZmJgIJycn4+Tl5dWk/SEiIiIiIqKGk907qHIQFxeHGTNmGOeLi4vh5eUlmy6+JqqqoDyeC133nrWD2RAREd1rt3tNom43tl+/JqEXtb9LUu065eUofu8LZJwYZHWz/f33wTG2tot/Tc+5uu96CaXSdBC90hJIQkC0amUYVwAAKish3ap9z65Bu6yQAPs6/wfcLAP0OsNYADaG7pO4dQu4VdGocgGFYQyEGuU3AV01oLYzjIEAGF4JqbQ8+Ey97B1quxaWlwO6KkClNkwAUF1t6JrdWK3sDd3BAaCiAqiuAh5S1Q5Up9MZ9qOx7FrVvk9eWWkY/d/mIcMI+4DhVY9yywPr1EttV/t/0q1bQFWloS3UDNgHGMaPaCyVbe05qq4CKisAhU3tu/bAL+NNiMaV+5C6dtA+XbXhGCsUhuNTo/ym9W91sMbmIdNzVNMtv+71UlFuWNaYd/htbAxjAQC/nKNfzn0r+9pyKioM10tjKJS15x4wXHOA4bzVtL/KSsMxagxJYXqOasqtO57BrUrD9dGocqVfnaNyQOgNx7zms6fqluF6vpNya46lSgXYPAS7Ze9BUWi9a76+gwfK33ivcdu8B2q6+N6OrCIaFxcXKJVKFBaajkBbWFgINzc3i+u4ubnVm7/mZ2FhITp06GCSJzAw0GKZarUaarXaLN3Hx0ce34P6a4880tw1ICIiuitEp7XIO1+En8tdYTbYh91VaB+ugvT4481YQyIimWnTBii5YfmGhUIBODoAvr6/da3MFBdbHon512TVxVelUqF3795IS0szpun1eqSlpSE4ONjiOsHBwSb5ASA1NdWY39fXF25ubiZ5iouLkZWVZbVMIiIiah7StNfRu2+hSXAKAAIK9A4qhDTNfMBEIqIHWszrwKOGby8xPrGu+enf3bC8BZHVE1QAmDFjBiIjI9GnTx8EBQVhyZIlKCsrw8SJEwEAEyZMgIeHBxITEwEA06ZNQ0hICBYtWoSnnnoKGzduxOHDh/HRRx8BMIwwFhsbi3fffRd+fn7Gr5lxd3fHqFGjmms3iYiIyBLvTvBY/Sae2fwf4F9fATf+D2jjDDwzFu1Gv1nbrY+IiAy8OwFvLwKyDwB/WwFcuwK0cwUmRQF9+7e4r1yTXYD6+9//HlevXsW8efNQUFCAwMBApKSkGAc5unDhAhR1/jj1798f69evx9y5c/HGG2/Az88PW7ZsMX4HKgDMmTMHZWVlmDx5Mm7cuIGBAwciJSXl/vwOVCIiohZOUijgMjYEGBUM5BwEevczvN9IRESWSRIQNAAI7NviPzdl9z2oclTzPai3/c4eIiIiIiIiMtPQmIr9ZIiIiIiIiEgWGKASERERERGRLDBAJSIiIiIiIllggEpERERERESywACViIiIiIiIZIEBKhEREREREckCA1QiIiIiIiKSBQaoREREREREJAsMUImIiIiIiEgWGKASERERERGRLDBAJSIiIiIiIllggEpERERERESywACViIiIiIiIZIEBKhEREREREckCA1QiIiIiIiKSBQaoREREREREJAsMUImIiIiIiEgWGKASERERERGRLDBAJSIiIiIiIllggEpERERERESyYNPcFWgJhBAAgOLi4mauCRERERERUctTE0vVxFbWMEBtgJKSEgCAl5dXM9eEiIiIiIio5SopKYGTk5PV5ZK4XQhL0Ov1uHz5MhwcHCBJUnNXx0RxcTG8vLxw8eJFODo6Nnd1iIhahL59+yI7O7u5q0HU7HgtUEOwnbQscj1fQgiUlJTA3d0dCoX1N035BLUBFAoFPD09m7sa9XJ0dGSASkTUQEqlkp+ZROC1QA3DdtKyyPl81ffktAYHSSIiogdOVFRUc1eBSBZ4LVBDsJ20LC39fLGLbwtXXFwMJycnFBUVyfZOCRERERERUUPwCWoLp1arER8fD7Va3dxVISIiIiIiuiN8gkpERERERESywCeoREREREREJAsMUImIiIiIiEgWGKASERERERGRLDBAJSIiugO/+93v0LZtW4wePbq5q0LUrHgtUEOxrVB9GKASERHdgWnTpuHzzz9v7moQNTteC9RQbCtUHwao9zHenSIiuvdCQ0Ph4ODQ3NUgana8Fqih2FaoPgxQ72O8O0VELVViYiL69u0LBwcHtG/fHqNGjcLp06fv6jb27duHkSNHwt3dHZIkYcuWLRbzrVixAj4+PrC1tcVjjz2GQ4cO3dV6ENVn1apVCAgIgKOjIxwdHREcHIydO3fe1W3wWrj/JCUlQZIkxMbG3tVy2Vbot8AA9T7Gu1NE1FKlp6cjKioKBw8eRGpqKqqqqhAeHo6ysjKL+TMyMlBVVWWWfuLECRQWFlpcp6ysDFqtFitWrLBaj02bNmHGjBmIj49HTk4OtFothg0bhitXrjRtx4gaydPTE0lJSThy5AgOHz6MIUOG4JlnnsHx48ct5ue1QNnZ2VizZg0CAgLqzce2QrIlSJbS09PFiBEjRIcOHQQAkZycbJbnww8/FN7e3kKtVougoCCRlZVllmfPnj3iueee+w1qTER071y5ckUAEOnp6WbLdDqd0Gq1YvTo0aK6utqYfurUKaHRaMSCBQtuW761z9mgoCARFRVlsi13d3eRmJhoko+ftfRbatu2rfjkk0/M0nktUElJifDz8xOpqakiJCRETJs2zWI+thWSMz5Blanb3aHi3SkiepAUFRUBAJydnc2WKRQK7NixA0ePHsWECROg1+tx9uxZDBkyBKNGjcKcOXOatM1bt27hyJEjCAsLM9lWWFgYMjMzm7YjRHdAp9Nh48aNKCsrQ3BwsNlyXgsUFRWFp556yuRcWcK2QnJm09wVIMsiIiIQERFhdfkHH3yAl19+GRMnTgQArF69Gtu3b8ff/vY3vP76679VNYmI7jm9Xo/Y2FgMGDAA3bt3t5jH3d0du3fvxqBBg/D8888jMzMTYWFhWLVqVZO3e+3aNeh0Omg0GpN0jUaDU6dOGefDwsJw7NgxlJWVwdPTE//4xz8sBg9ETfX9998jODgYFRUVaN26NZKTk9G1a1eLeXktPLg2btyInJwcZGdnNyg/2wrJFQPUFqjm7lRcXJwxjXeniOh+FRUVhR9++AH79++vN1/Hjh3xxRdfICQkBJ06dcLatWshSdI9r9+33357z7dBD7YuXbogNzcXRUVF2Lx5MyIjI5Genm41SOW18OC5ePEipk2bhtTUVNja2jZ4PbYVkiN28W2B6rs7VVBQYJwPCwvDmDFjsGPHDnh6ejJ4JaIWJzo6Gtu2bcOePXvg6elZb97CwkJMnjwZI0eOxM2bNzF9+vQ72raLiwuUSqXZYCGFhYVwc3O7o7KJGkOlUqFz587o3bs3EhMTodVqsXTpUqv5eS08eI4cOYIrV66gV69esLGxgY2NDdLT07Fs2TLY2NhAp9NZXI9theSIAep97Ntvv8XVq1dx8+ZNXLp0iV0niKjFEEIgOjoaycnJ2L17N3x9fevNf+3aNQwdOhT+/v74+uuvkZaWhk2bNmHWrFlNroNKpULv3r2RlpZmTNPr9UhLS+PnKTUrvV6PyspKi8t4LTyYhg4diu+//x65ubnGqU+fPnjhhReQm5sLpVJptg7bCskVu/i2QLw7RUT3u6ioKKxfvx7/+te/4ODgYOwd4uTkBDs7O5O8er0eERER8Pb2xqZNm2BjY4OuXbsiNTUVQ4YMgYeHh8WnAqWlpThz5oxx/ty5c8jNzYWzszM6duwIAJgxYwYiIyPRp08fBAUFYcmSJSgrKzO+/090r8XFxSEiIgIdO3ZESUkJ1q9fj7179+Lf//63WV5eCw8uBwcHs3f07e3t0a5dO4vv7rOtkKw19zDCdHuwMIx3UFCQiI6ONs7rdDrh4eFhNoQ3EVFLBMDi9Omnn1rMv2vXLlFeXm6WnpOTIy5evGhxnT179ljcRmRkpEm+5cuXi44dOwqVSiWCgoLEwYMH73T3iBps0qRJwtvbW6hUKuHq6iqGDh0qdu3aZTU/rwWqUd/XzAjBtkLyJQkhxG8ZEFPD1L1D1bNnT3zwwQd4/PHHjXeoNm3ahMjISKxZs8Z4d+qrr77CqVOnzN5NJSIiIiIiagkYoMrU3r178fjjj5ulR0ZGYt26dQCADz/8EH/9619RUFCAwMBALFu2DI899thvXFMiIiIiIqK7gwEqERERERERyQJH8SUiIiIiIiJZYIBKREREREREssAAlYiIiIiIiGSBASoRERERERHJAgNUIiIiIiIikgUGqERERERERCQLDFCJiIiIiIhIFhigEhERERERkSwwQCUiohYpLy8PkiQhNze3uatidOrUKfTr1w+2trYIDAxs7uo0yosvvohRo0bds/KFEJg8eTKcnZ1ld96IiEg+GKASEVGTvPjii5AkCUlJSSbpW7ZsgSRJzVSr5hUfHw97e3ucPn0aaWlpzV0dWUlJScG6deuwbds25Ofno3v37s1dJfj4+GDJkiV3tczQ0FDExsbe1TKJiB4kDFCJiKjJbG1tsWDBAly/fr25q3LX3Lp1q8nrnj17FgMHDoS3tzfatWt3F2vV8p09exYdOnRA//794ebmBhsbG7M8d3LsiYjo/sAAlYiImiwsLAxubm5ITEy0mmf+/Plm3V2XLFkCHx8f43xN99L33nsPGo0Gbdq0QUJCAqqrqzF79mw4OzvD09MTn376qVn5p06dQv/+/WFra4vu3bsjPT3dZPkPP/yAiIgItG7dGhqNBuPHj8e1a9eMy0NDQxEdHY3Y2Fi4uLhg2LBhFvdDr9cjISEBnp6eUKvVCAwMREpKinG5JEk4cuQIEhISIEkS5s+fb7GczZs3o0ePHrCzs0O7du0QFhaGsrIyAEB2djaeeOIJuLi4wMnJCSEhIcjJyTFZX5IkrFmzBiNGjECrVq3g7++PzMxMnDlzBqGhobC3t0f//v1x9uxZs3OwZs0aeHl5oVWrVhg7diyKioos1rFmfxMTE+Hr6ws7OztotVps3rzZuPz69et44YUX4OrqCjs7O/j5+Vk8P4Dh/E6dOhUXLlyAJEnGc2/t2KenpyMoKAhqtRodOnTA66+/jurqamN5oaGhmDp1KmJjY9G2bVtoNBp8/PHHKCsrw8SJE+Hg4IDOnTtj586dVvcvNDQU58+fx/Tp0yFJkslT//3792PQoEGws7ODl5cXYmJijOcIAFauXAk/Pz/Y2tpCo9Fg9OjRxv1MT0/H0qVLjWXm5eVZrQMREZljgEpERE2mVCrx3nvvYfny5bh06dIdlbV7925cvnwZ+/btwwcffID4+HiMGDECbdu2RVZWFl599VW88sorZtuZPXs2Zs6ciaNHjyI4OBgjR47Ezz//DAC4ceMGhgwZgp49e+Lw4cNISUlBYWEhxo4da1LGZ599BpVKhYyMDKxevdpi/ZYuXYpFixZh4cKF+O677zBs2DA8/fTT+N///gcAyM/PR7du3TBz5kzk5+dj1qxZZmXk5+dj3LhxmDRpEk6ePIm9e/fi2WefhRACAFBSUoLIyEjs378fBw8ehJ+fH4YPH46SkhKTct555x1MmDABubm5ePTRR/H888/jlVdeQVxcHA4fPgwhBKKjo03WOXPmDL766its3boVKSkpOHr0KKZMmWL1fCQmJuLzzz/H6tWrcfz4cUyfPh1//OMfjTcA3nrrLZw4cQI7d+7EyZMnsWrVKri4uFg9djXBfX5+PrKzs60e+59++gnDhw9H3759cezYMaxatQpr167Fu+++a3bOXFxccOjQIUydOhWvvfYaxowZg/79+yMnJwfh4eEYP348bt68abFOX3/9NTw9PZGQkID8/Hzk5+cDMDzpffLJJ/Hcc8/hu+++w6ZNm7B//37j8Tx8+DBiYmKQkJCA06dPIyUlBYMHDzbuZ3BwMF5++WVjmV5eXlaPMRERWSCIiIiaIDIyUjzzzDNCCCH69esnJk2aJIQQIjk5WdT98xIfHy+0Wq3JuosXLxbe3t4mZXl7ewudTmdM69Klixg0aJBxvrq6Wtjb24sNGzYIIYQ4d+6cACCSkpKMeaqqqoSnp6dYsGCBEEKId955R4SHh5ts++LFiwKAOH36tBBCiJCQENGzZ8/b7q+7u7v4y1/+YpLWt29fMWXKFOO8VqsV8fHxVss4cuSIACDy8vJuuz0hhNDpdMLBwUFs3brVmAZAzJ071zifmZkpAIi1a9ca0zZs2CBsbW2N8/Hx8UKpVIpLly4Z03bu3CkUCoXIz88XQpiez4qKCtGqVStx4MABk/q89NJLYty4cUIIIUaOHCkmTpzYoP0QwvycC2H52L/xxhuiS5cuQq/XG9NWrFghWrdubWwfISEhYuDAgcblNW1j/PjxxrT8/HwBQGRmZlqtk7e3t1i8eLHZPk6ePNkk7T//+Y9QKBSivLxc/POf/xSOjo6iuLjYYpkhISFi2rRpVrdJRET14xNUIiK6YwsWLMBnn32GkydPNrmMbt26QaGo/bOk0WjQo0cP47xSqUS7du1w5coVk/WCg4ONv9vY2KBPnz7Gehw7dgx79uxB69atjdOjjz4KACZdYHv37l1v3YqLi3H58mUMGDDAJH3AgAGN2metVouhQ4eiR48eGDNmDD7++GOT93cLCwvx8ssvw8/PD05OTnB0dERpaSkuXLhgUk5AQIDxd41GAwAmx0qj0aCiogLFxcXGtI4dO8LDw8M4HxwcDL1ej9OnT5vV88yZM7h58yaeeOIJk2P3+eefG4/ba6+9ho0bNyIwMBBz5szBgQMHGnwc6vr1sT958iSCg4NNutwOGDAApaWlJk/P6x6Dmrbx62MAwKy93M6xY8ewbt06k/0eNmwY9Ho9zp07hyeeeALe3t7o1KkTxo8fjy+//NLqU1oiImo88xEKiIiIGmnw4MEYNmwY4uLi8OKLL5osUygUxi6sNaqqqszKeOihh0zmJUmymKbX6xtcr9LSUowcORILFiwwW9ahQwfj7/b29g0u804olUqkpqbiwIED2LVrF5YvX44333wTWVlZ8PX1RWRkJH7++WcsXboU3t7eUKvVCA4ONhs8qO5xqQnkLKU15ljVVVpaCgDYvn27SVALAGq1GgAQERGB8+fPY8eOHUhNTcXQoUMRFRWFhQsXNmpbTT32t2svTT0GpaWleOWVVxATE2O2rGPHjlCpVMjJycHevXuxa9cuzJs3D/Pnz0d2djbatGnT+B0hIiITfIJKRER3RVJSErZu3YrMzEyTdFdXVxQUFJgEqXfzOzAPHjxo/L26uhpHjhyBv78/AKBXr144fvw4fHx80LlzZ5OpMYGRo6Mj3N3dkZGRYZKekZGBrl27Nqq+kiRhwIABePvtt3H06FGoVCokJycby4uJicHw4cPRrVs3qNVqkwGd7sSFCxdw+fJl4/zBgwehUCjQpUsXs7xdu3aFWq3GhQsXzI5b3XcqXV1dERkZib///e9YsmQJPvroozuuZ82gT3XbS0ZGBhwcHODp6XnH5delUqmg0+lM0nr16oUTJ06Y7Xfnzp2hUqkAGJ7Uh4WF4f3338d3332HvLw87N6922qZRETUcHyCSkREd0WPHj3wwgsvYNmyZSbpoaGhuHr1Kt5//32MHj0aKSkp2LlzJxwdHe/KdlesWAE/Pz/4+/tj8eLFuH79OiZNmgQAiIqKwscff4xx48Zhzpw5cHZ2xpkzZ7Bx40Z88sknUCqVDd7O7NmzER8fj4cffhiBgYH49NNPkZubiy+//LLBZWRlZSEtLQ3h4eFo3749srKycPXqVWNA7efnhy+++AJ9+vRBcXExZs+eDTs7u8YdECtsbW0RGRmJhQsXori4GDExMRg7dizc3NzM8jo4OGDWrFmYPn069Ho9Bg4ciKKiImRkZMDR0RGRkZGYN28eevfujW7duqGyshLbtm0z7sedmDJlCpYsWYKpU6ciOjoap0+fRnx8PGbMmGHSBfxu8PHxwb59+/CHP/wBarUaLi4u+POf/4x+/fohOjoaf/rTn2Bvb48TJ04gNTUVH374IbZt24Yff/wRgwcPRtu2bbFjxw7o9XpjoO/j44OsrCzk5eWhdevWcHZ2vuv1JiK6n/ETk4iI7pqEhASzLpX+/v5YuXIlVqxYAa1Wi0OHDlkc4bapkpKSkJSUBK1Wi/379+Obb74xjiZb89RTp9MhPDwcPXr0QGxsLNq0adPooCEmJgYzZszAzJkz0aNHD6SkpOCbb76Bn59fg8twdHTEvn37MHz4cDzyyCOYO3cuFi1ahIiICADA2rVrcf36dfTq1Qvjx49HTEwM2rdv36h6WtO5c2c8++yzGD58OMLDwxEQEICVK1dazf/OO+/grbfeQmJiIvz9/fHkk09i+/bt8PX1BWB4UhgXF4eAgAAMHjwYSqUSGzduvON6enh4YMeOHTh06BC0Wi1effVVvPTSS5g7d+4dl/1rCQkJyMvLw8MPPwxXV1cAhndb09PT8d///heDBg1Cz549MW/ePLi7uwMA2rRpg6+//hpDhgyBv78/Vq9ejQ0bNqBbt24AgFmzZkGpVKJr165wdXU1e3+YiIjqJ4lfvxhERERE95X58+djy5Ytd7VrNRER0b3AJ6hEREREREQkCwxQiYiIiIiISBbYxZeIiIiIiIhkgU9QiYiIiIiISBYYoBIREREREZEsMEAlIiIiIiIiWWCASkRERERERLLAAJWIiIiIiIhkgQEqERERERERyQIDVCIiIiIiIpIFBqhEREREREQkCwxQiYiIiIiISBb+H29AMNohibHbAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6gAAAKrCAYAAAD8oqAyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACM8UlEQVR4nOzde3yU5Z3//9dMzhASEkISUBTwrHioItS2VqtYcGtXrX6rbi2CiC22VstqBQ9g0Ypaq9TzigpWt1vX1VrXX0trqXRtSz2AqFXrEUWBnAgkEHKe+f1xkyGBBCEk3JPk9Xw87kfu3HPNNZ/Jcd5z3fd1ReLxeBxJkiRJkkIWDbsASZIkSZLAgCpJkiRJShIGVEmSJElSUjCgSpIkSZKSggFVkiRJkpQUDKiSJEmSpKRgQJUkSZIkJYXUsAvoCWKxGGvWrGHAgAFEIpGwy5EkSZKkHiUej7Nx40aGDh1KNNrxOKkBdSesWbOGYcOGhV2GJEmSJPVon3zyCXvvvXeHtxtQd8KAAQOA4IuZk5MTcjWSJEmS1LNUV1czbNiwRLbqiAF1J7Sc1puTk2NAlSRJkqRO+qxLJp0kSZIkSZKUFAyokiRJkqSkYECVJEmSJCUFr0GVJEmSerDm5mYaGxvDLkN9XFpaGikpKbvdjwFVkiRJ6oHi8TglJSVs2LAh7FIkAAYOHEhxcfFnToS0IwZUSZIkqQdqCaeFhYX069dvt0KBtDvi8TibN2+mrKwMgCFDhnS6LwOqJEmS1MM0NzcnwumgQYPCLkciKysLgLKyMgoLCzt9uq+TJEmSJEk9TMs1p/369Qu5Emmrlp/H3bkm2oAqSZIk9VCe1qtk0hU/jwZUSZIkSVJSMKBKkiRJkpKCAVWSJEnqw5rj8EodLKoJPjbHu/fxJk2aRCQSSWyDBg1iwoQJvP7664k2rW9PTU1ln332Yfr06dTX1yfalJeXM23aNPbZZx8yMjIoLi5m/Pjx/PWvf020GT58eJu+Wrabb765e5+kOs1ZfCVJkqQ+avFm+Ol6KGveeqwwBa7Mg5O7cf6lCRMmsGDBAiBYLufaa6/ltNNOY9WqVYk2CxYsYMKECTQ2NvLaa68xefJk+vfvzw033ADAWWedRUNDA4888ggjR46ktLSUxYsXs27dujaPNWfOHKZOndrm2IABA7rvyWm3GFAlSZKkPmjxZvhRBWw7YFreHBy/taD7QmrLiCdAcXExM2bM4Pjjj6e8vJzBgwcDMHDgwESbYcOGcfrpp7N8+XIANmzYwAsvvMCSJUs44YQTANh3330ZM2bMdo81YMCARD9Kfp7iK0mSJPUC8TjUxnZu29QMt67fPpxCcCxOMLK6qXnn+ovvxmnBmzZt4rHHHmP//ffvcE3Xd999lz/96U+MHTsWgOzsbLKzs3n66afbnParni8Sj+/Oj1PfUF1dTW5uLlVVVeTk5IRdjiRJkvq4uro6Vq5cyYgRI8jMzASCoPjFT8Op5697Q9ZODn1NmjSJxx57LFF3TU0NQ4YM4dlnn+Xoo48GgmtQMzMzSUlJoampifr6ek477TSeeuop0tLSAHjyySeZOnUqtbW1HH300Zxwwgmce+65HHHEEYnHGj58OGvXrk3cp8Xvfvc7jj/++C545mqtvZ/LFjubqRxBlSRJkrRHfeUrX2HFihWsWLGCl156ifHjx3Pqqafy8ccfJ9rccccdrFixgtdee41nn32Wd999l29/+9uJ28866yzWrFnDM888w4QJE1iyZAlHH300CxcubPNYV155ZeKxWrbRo0fvqaeqXeQ1qJIkSVIvkBkJRjJ3xvI6uLTis9vdVQBHZ352u8zIzj1ui/79+7P//vsnPn/wwQfJzc1l/vz53HjjjUBwbWpLm4MOOoiNGzdy3nnnceONNyaOZ2Zmcsopp3DKKadw3XXXcdFFFzF79mwmTZqU6LugoKDNYym5OYIqSZIk9QKRSHCa7c5sn88KZuvtKFdGgKKUoN3O9BfZxYC6fe0RotEotbW1HbZJSUkB2GGbQw89lJqamt0rRqFyBFWSJEnqY1IiwVIyP6oIwmjrSWlasuYVeUG77lBfX09JSQkA69ev5+6772bTpk18/etfT7TZsGEDJSUlxGIx3nvvPebMmcOBBx7IIYccwrp16/h//+//ceGFF3LEEUcwYMAAXnnlFW699VZOP/30No+1cePGxGO16Nevn3PLJCkDag/WHIdX66GiGQpS4HMZ3fdHRJIkSb3Lyf2CpWTaWwf1im5eB3XRokUMGTIECJaBOfjgg3niiSc48cQTE20mT54MBKOrxcXFfPnLX+amm24iNTWV7Oxsxo4dyx133MEHH3xAY2Mjw4YNY+rUqVx99dVtHmvWrFnMmjWrzbHvfOc73H///d33BNVpzuK7E5JxFt+wFlWWJElS+HY0W+quctBDXaUrZvF1BLUHCnNRZUmSJPUuKREYvXsZV+oyTpLUwzTHg5HTjhZVBrhtfdBOkiRJknoSA2oP82p929N6txUHSpuDdpIkSZLUkxhQe5iKHYTTzrSTJEmSpGRhQO1hClK6tp0kSZIkJQsDag/zuYwdL6oMwaLKn8vYYyVJkiRJUpcwoPYwLYsqQ8ch9StZTg0uSZIkqecxoPZALYsqD97mNN6sLaH0iU2wZPOer0uSJEmSdofroPZQJ/eDE7PaLqp8ZDpcvQ4W18KMCrinEI5xTStJkiRJPYQjqD1Yy6LKE/oHH9OicFMBjMmABuCycviny81IkiRJ6iEMqL1MWgTuGAyHpcPmOHy3HFY1hl2VJEmSklpDAyz9v+BjN5s0aRKRSCSxDRo0iAkTJvD666+3ade6TWpqKvvssw/Tp0+nvn7rCEx5eTnTpk1jn332ISMjg+LiYsaPH89f//rXRJvhw4e36atlu/nmm7v8uX300UftPlbrbeHChdx3330MHDiQTz75pM39L730Ug488EA2bw6u1zvxxBMT98vMzOTAAw9k7ty5xONxGhoaKCgo6PB53HDDDRQVFdHY2HEY+PTTT0lPT2fUqFHt3t7Rc/jVr37Vya/QZzOg9kJZUbi3EEakQnUMLiqF0qawq5IkSVLSicfhxb/ApRfAz+bADyYFn8fj3fqwEyZMYO3ataxdu5bFixeTmprKaaedtl27BQsWsHbtWlauXMm9997Lo48+yo033pi4/ayzzuLVV1/lkUce4d133+WZZ57hxBNPZN26dW36mTNnTuLxWrZLL710p+sdPnw4S5Ys+cx2w4YNa/MY//7v/85hhx3W5tg555zDd7/7XcaMGcOUKVMS9128eDH33XcfCxcupF+/fonjU6dOZe3atbzzzjvMnDmTWbNmcf/995Oens7555/PggULtqsjHo+zcOFCJk6cSFpaWof1Lly4kG9+85tUV1fz4osvttum5XvQejvjjDM+82vRWV6D2ksNiMIDRTCxBNY2ByH1F8WQ5/qokiRJAvjoQ3j4bnjrdYhsmW1zXTn89Ho47Ai48Puw78hueeiW0U6A4uJiZsyYwfHHH095eTmDBw9OtBs4cGCi3bBhwzj99NNZvnw5ABs2bOCFF15gyZIlnHDCCQDsu+++jBkzZrvHGzBgQKKf7pSSktLmcbKzs0lNTW33sR966CFGjRrF/fffz7/9279x4YUXMn36dL7whS+0adevX7/E/SdPnszdd9/Nc889x7Rp05gyZQo///nP+ctf/sKXvvSlxH3+/Oc/8+GHH7YJwNuKx+MsWLCAe++9l7333puHHnqIsWPHbteu9fdgT3AEtRcblALziyAvCqub4TtlUBMLuypJkiR1q7randt+fhP88x/BfVpGTFs+vv0PmHfTzvW7mzZt2sRjjz3G/vvvz6BBgzps9+677/KnP/0pEaKys7PJzs7m6aefbnPab08xbNgw5s2bx5VXXsn5559PdnY2N9xwQ4ft4/E4L7zwAv/85z9JT08H4PDDD+fYY4/l4YcfbtN2wYIFfOELX+Dggw/usL/nn3+ezZs3M27cOM4//3x+9atfUVNT0zVPbjc4gtrLDU0NQuqkEni/Eb5XBv9RBBmukypJktQ7nf/13e8jFoOytW2PXXI+VFdt3/Z//rjL3T/77LNkZ2cDUFNTw5AhQ3j22WeJRtuOn5133nmkpKTQ1NREfX09p512GjNnzgQgNTWVhQsXMnXqVO6//36OPvpoTjjhBM4991yOOOKINv1cddVVXHvttW2O/e53v+P444/f5dq70uTJk3nggQf43//9X1588UUyMjK2a3Pvvffy4IMP0tDQQGNjI5mZmfzgBz9I3D5lyhSuuOIK7rzzTrKzs9m4cSP/8z//w5133rnDx37ooYc499xzSUlJYdSoUYwcOZInnniCSZMmtWnX8j1o7a233mKfffbp/BPfAUdQ+4CRaXDvYMiMwOsNML0cmrr3sgJJkiSpQ1/5yldYsWIFK1as4KWXXmL8+PGceuqpfPzxx23a3XHHHaxYsYLXXnuNZ599lnfffZdvf/vbidvPOuss1qxZwzPPPMOECRNYsmQJRx99NAsXLmzTz5VXXpl4vJZt9OjRHdb33e9+NzFCm52dzapVqzj11FPbHOsKr732GsuXL6dfv3688MIL7bb51re+xYoVK/jrX//KqaeeyjXXXNPmNODzzjuP5uZm/vu//xuAxx9/nGg0yjnnnAPAYYcdlqj51FNPBYLTo5966inOP//8RD/nn38+Dz300HaP3/I9aL0NHTq0S55/exxB7SNGZcK8Ari0HJbWwbXr4KZBEHUkVZIkqXd57H93rt2M78Gnqzq+ffA21x3e+1jna9pG//792X///ROfP/jgg+Tm5jJ//vw2kyAVFxcn2h100EFs3LiR8847jxtvvDFxPDMzk1NOOYVTTjmF6667josuuojZs2e3GQksKCho83ifZc6cOVxxxRWJz0888URuueWWdq/R7KyGhgYmTpzIt771LU444QS++93vctppp3HQQQe1aZebm5uo/b//+7/Zf//9+fznP8+4ceMAyMnJ4eyzz2bBggVceOGFLFiwgG9+85uJEP3b3/42MZNvVlYWAL/85S+pq6tr83zi8TixWIx3332XAw88MHG89fdgTzCg9iFjsmBuAfyoAv6wGXIiMDN/6zXxkiRJ6gUys3auXUoqRKPB6bzbikZhm9M6d7rfTohEIkSjUWprd3xNa8uppjtqd+ihh/L000/vVj2FhYUUFhYmPk9NTWWvvfbq0qA2Z84cKisrueOOO8jNzeXJJ59k8uTJ/OUvf9nuVOcW2dnZXHbZZVxxxRW8+uqrRLa8kJ8yZQonnngizz77LH/729/46U9/mrjPvvvuu10/Dz30EP/+7/++3em8l1xyCQ8//HC3LMGzszzFt485qR9cmx/s/08N3NfOZQSSJEnqA34wAw7esv5ly4hFy8dDRgW3d5P6+npKSkooKSnh7bff5tJLL2XTpk18/ettr5/dsGEDJSUlrFmzhj//+c/MmTOHAw88kEMOOYR169Zx0kkn8dhjj/H666+zcuVKnnjiCW699VZOP/30Nv1s3Lgx8XgtW3V1dbc9v8/y8ssvc8stt/DQQw+Rm5sLwH/8x3/wzjvvcMcdd+zwvt/5znd49913efLJJxPHvvzlL7P//vszceJEDj744O1mAm5txYoVLF++nIsuuohRo0a12c477zweeeQRmpq2rlHZ8j1ovXXnZEoG1D7ojGy4bGCw/2A1/DK8301JkiSFZd+R8OOfwY9+DIO2LO0yaHDw+fU/67YlZgAWLVrEkCFDGDJkCGPHjuXll1/miSee4MQTT2zTbvLkyQwZMoS9996b8847j8MOO4zf/e53pKamkp2dzdixY7njjjv48pe/zKhRo7juuuuYOnUqd999d5t+Zs2alXi8lu1HP/pRtz2/Hamvr+eCCy5g8uTJfPWrX00cHzJkCHfddRfXXnst77zzTof3z8/PZ+LEiVx//fXEtox+RyIRLrzwQtavX8+FF164w8d/6KGHOPTQQ9ud4ffMM8+krKyM3/72t4ljLd+D1ttdd921q097p0Xi8W5ehbcXqK6uJjc3l6qqKnJycsIup8vcuR4WboQI8ON8OK1rrvWWJElSN6urq2PlypWMGDGCzMzM3e+woQGW/x2O+Tykpe9+f+qTdvRzubOZyhHUPuzSgXBmf4gDP66EJZvDrkiSJEmhSE+Hz3/ZcKrQGVD7sEgErsmHk7OgGbiqApbVhV2VJEmSpL7KgNrHRSNwUwGMyYBG4LJy+Gd92FVJkiRJ6osMqCItAncMhsPSYXMcvlsOqxrDrkqSJElSX2NAFQBZUbi3EEakQnUMLiqF0qbPvp8kSZIkdZWkDKj33HMPw4cPJzMzk7Fjx/LSSy912Papp55i9OjRDBw4kP79+3PUUUfx6KOPtmkTj8cTU0tnZWUxbtw43nvvve5+Gj3OgCg8UARDUqBiS0hd3xx2VZIkSZL6iqQLqI8//jjTp09n9uzZLF++nCOPPJLx48dTVlbWbvv8/HyuueYali5dyuuvv87kyZOZPHkyv//97xNtbr31Vu68807uv/9+XnzxRfr378/48eOpq3NGoG0NSoH5RZAXhdXN8J0yqImFXZUkSZKkviDp1kEdO3Ysxx57bGJx3VgsxrBhw7j00kuZMWPGTvVx9NFH87WvfY0bbriBeDzO0KFD+fd//3euuOIKAKqqqigqKmLhwoWce+65292/vr6e+vqtMwVVV1czbNiwXrcO6o582AiTSmBTHI5Ih/8ogoxI2FVJkiQJumEdVKkL9Lp1UBsaGli2bBnjxo1LHItGo4wbN46lS5d+5v3j8TiLFy/mnXfe4ctf/jIAK1eupKSkpE2fubm5jB07tsM+586dS25ubmIbNmzYbj6znmdkGtxXCJkReL0BppdDU1K9lSFJkiSpt0mqgFpRUUFzczNFRUVtjhcVFVFSUtLh/aqqqsjOziY9PZ2vfe1r3HXXXZxyyikAifvtSp8zZ86kqqoqsX3yySe787R6rMMyYF4BpAFL6+DadRAzpEqSJEnqJkkVUDtrwIABrFixgpdffpmf/OQnTJ8+nSVLlnS6v4yMDHJyctpsfdWYLJhbEPyg/GEz3FwJyXVSuCRJkrrCun9WdftjRCKRHW7XX389v/3tb0lPT2f58uVt7vuzn/2MgoKCxCDTpEmTEvdLS0tjxIgR/OhHP0rMM3P44Yfz3e9+t906Hn30UTIyMqioqOiw1traWvLz8ykoKGhz+V+L4cOHt/scbr755s5+eQSkhl1AawUFBaSkpFBaWtrmeGlpKcXFxR3eLxqNsv/++wNw1FFH8fbbbzN37lxOPPHExP1KS0sZMmRImz6POuqorn8SvdBJ/eDafJhTCf9TAwNT4JKBYVclSZKkrtC4uYmlc17nvac/4YAzh/GFWUeQmtU9MWHt2rWJ/ccff5xZs2bxzjvvJI5lZ2eTnZ3NxIkTmThxIsuWLSMjI4O33nqLa6+9loULF7bJBRMmTGDBggU0NjaybNkyLrjgAiKRCLfccgtTpkzh+uuv54477iArK6tNHQsWLOBf//VfKSgo6LDWJ598ksMOO4x4PM7TTz/NOeecs12bOXPmMHXq1DbHBgwYsMtfF22VVCOo6enpHHPMMSxevDhxLBaLsXjxYo477rid7icWiyXe5RgxYgTFxcVt+qyurubFF1/cpT77ujOy4bKBwf6D1fDL6lDLkSRJUhdY/341T39jCe8/E1zS9v5vPuHpb/yZ9e93z4u94uLixJabm0skEmlzLDs7G4A77riDTZs2MXv2bJqamrjgggv4+te/vl1IzMjIoLi4mGHDhnHGGWcwbtw4nnvuOQDOP/98amtrefLJJ9vcZ+XKlSxZsoQpU6bssNaHHnqI888/n/PPP5+HHnqo3TYDBgxoU39xcTH9+/fv7JdHJNkIKsD06dO54IILGD16NGPGjGHevHnU1NQwefJkACZOnMhee+3F3LlzgWBCo9GjR7PffvtRX1/Pb3/7Wx599FHuu+8+IDiN4PLLL+fGG2/kgAMOYMSIEVx33XUMHTqUM844I6yn2SNdkANVzbBwI/xsA+RE4bTssKuSJElSa42bmzq8LZISITUjBYD3fr2Kv8x+jXhznPiWZQXjMaheVcPT3/gzX7juCA76f/t+Zr9p/bo+UgwYMICHH36Y8ePHs3LlSj755BMWLVq0w/v84x//4G9/+xv77hvUXFBQwOmnn87DDz/M+eefn2i3cOFC9t57b7761a922NcHH3zA0qVLeeqpp4jH4/zwhz/k448/TvSt7pN0AfWcc86hvLycWbNmUVJSwlFHHcWiRYsSkxytWrWKaHTrwG9NTQ2XXHIJn376KVlZWRx88ME89thjbd5d+dGPfkRNTQ0XX3wxGzZs4Etf+hKLFi1ySu5OuHQgVMXg1zXw40rIjsKJ/cKuSpIkSS1+cfT/1+Fte59QxPj/+DwV/9jA/818td028eY48eY4f7luBYMOyaVg1EAA/vvk56hb37Bd+yn/PL1L6t7WSSedxNlnn82vfvUrHn/8cQYNGrRdm2effZbs7Gyampqor68nGo0mlqsEmDJlCqeeempi6ZN4PM4jjzzCBRdc0CZTbOvhhx/m1FNPJS8vD4Dx48ezYMECrr/++jbtrrrqKq699to2x373u99x/PHH78Yz79uS6hTfFt///vf5+OOPqa+v58UXX2Ts2LGJ25YsWcLChQsTn994442899571NbWUllZyd/+9rfthv4jkQhz5syhpKSEuro6/vjHP3LggQfuqafTq0QicE0+nJwFzcBVFfBKXdhVSZIkaVcMOmxr8OxIav8UBh2Wu2cKasfq1atZtGgR/fr144UXXmi3zVe+8hVWrFjBiy++yAUXXMDkyZM566yzErefcsop7L333ixYsACAxYsXs2rVqsTZmaeeemriutfDDjsMgObmZh555JE2o67nn38+CxcuJBaLtXn8K6+8khUrVrTZRo8e3aVfh74m6UZQlfyiEbipAC4tg5fq4bJyeKgQDs4IuzJJkiRNXP61Dm+LpESCj5EIx1x2CL+furTDtif+dDSRSCTx+TcXn9J1Re6EqVOncswxx3DNNddwyimncPbZZ3PCCSe0adO/f//EZKkPP/wwRx55JA899FDi+tJoNMqkSZN45JFHuP7661mwYAFf+cpXGDlyJAAPPvggtbW1AKSlpQHw+9//ntWrV2836NXc3MzixYsTy1lCcBpxy+OrayTlCKqSX1oE7hgMh6VDbRy+Ww6rGsOuSpIkSWn9UjvcWq4/BdjrS4MpGDWQyDaJIBKFgsMHss9Xinaq3+7w4IMP8pe//IWHHnqIr3zlK0ybNo0LL7yQmpqaDu8TjUa5+uqrufbaaxOhE2Dy5Ml88sknPPXUU/z6179uMznSXnvtxf7778/++++fuL70oYce4txzz91uZPTcc8/tcLIkdR0DqjotKwr3FsKIVKiOwUWlUNrxNfmSJElKIi2jqPG2Z60Sj8Exlx3SZvR0T/r444+ZPn06t912WyI03nLLLUQiEWbMmLHD+/6///f/SElJ4Z577kkcGzFiBCeddBIXX3wxGRkZfOMb3+jw/uXl5fzv//4vF1xwAaNGjWqzTZw4kaeffprKyspE+40bN1JSUtJmq652uYvdYUDVbhkQhflFMCQFKraE1PXNYVclSZKknbHXlwZz+lMncPqTrbanTmCvLw4OpZ54PM6UKVM47rjjuPjiixPH+/Xrx8KFC7nvvvv485//3OH9U1NT+f73v8+tt97aZrR1ypQprF+/nn/7t3/b4USpv/jFL+jfvz8nn3zydredfPLJZGVl8dhjjyWOzZo1iyFDhrTZfvSjH+3q01YrkXg8Hg+7iGRXXV1Nbm4uVVVV5OTkhF1OUlrTBN8ugfUx2C8NFhZBf9/+kCRJ6hZ1dXWJmWldmULJYkc/lzubqYwQ6hJDU4OR1OwIfNAI3yuDet/6kCRJkrQLDKjqMiPT4L5CyIzA6w0wvRyaDKmSJEmSdpIBVV3qsAyYVwBpwNI6uHYdxAypkiRJknaCAVVdbkwWzC0Ifrj+sBlurgSvdJYkSZL0WQyo6hYn9YNr84P9/6mB+6rCrUeSJKk3cr5TJZOu+Hk0oKrbnJENlw0M9h+shv90SShJkqQukZaWBsDmzZtDrkTaquXnseXnszNSu6oYqT0X5EBVMyzcCLdvgNwonJYddlWSJEk9W0pKCgMHDqSsrAwI1gmNRCIhV6W+Kh6Ps3nzZsrKyhg4cCApKSmd7suAqm536UCoisGva+DHlZAdhRP7hV2VJElSz1ZcXAyQCKlS2AYOHJj4uewsA6q6XSQC1+RDdQwW18JVFXBPIYx2TWlJkqROi0QiDBkyhMLCQhobG8MuR31cWlrabo2ctjCgao+IRuCmAri0DF6qh8vK4cFCOCQj7MokSZJ6tpSUlC4JBlIycJIk7TFpEbhjMByWDrVxmFYOq3yzT5IkSdIWBlTtUVlRuLcQRqQGp/xeVAqlTWFXJUmSJCkZGFC1xw2IwvwiGJICFVtC6vrmsKuSJEmSFDYDqkKRnxKE1PworG6Gi8ugJhZ2VZIkSZLCZEBVaIamwgNFkB2BDxrhe2VQHw+7KkmSJElhMaAqVCPT4L5CyIzA6w0wvRyaDKmSJElSn2RAVegOy4B5BZAGLK2Da9dBzJAqSZIk9TkGVCWFMVkwtyD4gfzDZri5EuKGVEmSJKlPMaAqaZzUD67ND/b/pwbuqwq3HkmSJEl7lgFVSeWMbLh8YLD/YDX8Z3Wo5UiSJEnagwyoSjoTc2DSgGD/9g3wv5tCLUeSJEnSHmJAVVK6dCCc2R/iwJxKWLI57IokSZIkdTcDqpJSJALX5MPJWdAMXFUBr9SFXZUkSZKk7mRAVdKKRuCmAhiTAY3AZeXwdn3YVUmSJEnqLgZUJbW0CMwbDIelQ20cppXDqsawq5IkSZLUHQyoSnqZUbi3EEakQnUMLiqF0qawq5IkSZLU1Qyo6hEGRGF+EQxJgYotIXV9c9hVSZIkSepKBlT1GPkpQUjNj8LqZri4DGpiYVclSZIkqasYUNWjDE2FB4ogOwIfNMIlZVAfD7sqSZIkSV3BgKoeZ2Qa3FcImRF4owGml0OTIVWSJEnq8Qyo6pEOy4B5BZAGLK2Da9dBzJAqSZIk9WgGVPVYY7JgbkHwQ/yHzTC3EuKGVEmSJKnHMqCqRzupH1ybH+w/WQP3VoVbjyRJkqTOM6CqxzsjGy4fGOw/VA3/WR1qOZIkSZI6yYCqXmFiDkweEOzfvgH+d1Oo5UiSJEnqBAOqeo3vD4Qz+0McmFMJSzaHXZEkSZKkXWFAVa8RicA1+XByFjQDV1XAK3VhVyVJkiRpZxlQ1atEI3BTAYzJgEbgsnJ4uz7sqiRJkiTtDAOqep20CMwbDIelQ20cppXDx41hVyVJkiTpsxhQ1StlRuHeQhiRCtUxuKgUSpvCrkqSJEnSjhhQ1WsNiML8IhiSAuu2hNT1zWFXJUmSJKkjBlT1avkpQUjNj8LqZri4DGpiYVclSZIkqT0GVPV6Q1PhgSLIjsAHjXBJGdTHw65KkiRJ0rYMqOoTRqbBfYWQGYE3GuCH5dBkSJUkSZKSigFVfcZhGTCvANKAv9fBtesgZkiVJEmSkoYBVX3KmCyYWxD84P9hM8ythLghVZIkSUoKBlT1OSf1g+vyg/0na+DeqnDrkSRJkhQwoKpPOj0bLh8Y7D9UDf9ZHWo5kiRJkjCgqg+bmAOTBwT7t2+A/90UajmSJElSn2dAVZ/2/YFwZn+IA3Mq4fnNYVckSZIk9V0GVPVpkQhckw8nZ0EzMKMCXqkLuypJkiSpbzKgqs+LRuCmAhiTAY3AZeXwdn3YVUmSJEl9jwFVAtIiMG8wjEqH2jhMK4ePG8OuSpIkSepbDKjSFplRuKcQRqZCdQwuKoXSprCrkiRJkvoOA6rUyoAoPFAEQ1JgXQymlML65rCrkiRJkvoGA6q0jfwUmF8E+VFY0wwXl0FNLOyqJEmSpN7PgCq1Y2hqEFIHROCDRrikDOrjYVclSZIk9W4GVKkDI9Lg3kLIjMAbDfDDcmgypEqSJEndxoAq7cBhGTCvANKAv9fBNesgZkiVJEmSuoUBVfoMY7JgbkHwy/LcZphbCXFDqiRJktTlDKjSTjipH1yXH+w/WQP3VoVbjyRJktQbGVClnXR6Nlw+MNh/qBr+szrUciRJkqRex4Aq7YKJOTB5QLB/+wZ4ZlOo5UiSJEm9igFV2kXfHwhn9oc4cEMlPL857IokSZKk3sGAKu2iSASuyYeTs6AZmFEBr9SFXZUkSZLU8xlQpU6IRuCmAhiTAY3AZeXwdn3YVUmSJEk9mwFV6qS0CMwbDKPSoTYO08rh48awq5IkSZJ6LgOqtBsyo3BPIYxMheoYXFQKpU1hVyVJkiT1TAZUaTcNiMIDRTAkBdbFYEoprG8OuypJkiSp5zGgSl0gPwXmF0F+FNY0w8VlUBMLuypJkiSpZzGgSl1kaGoQUgdE4INGuKQM6uNhVyVJkiT1HAZUqQuNSIN7CyEzAm80wA/LocmQKkmSJO0UA6rUxQ7LgHkFkAb8vQ6uWQcxQ6okSZL0mZIyoN5zzz0MHz6czMxMxo4dy0svvdRh2/nz53P88ceTl5dHXl4e48aN2679pEmTiEQibbYJEyZ099NQHzYmC+YWBL9gz22GuZUQN6RKkiRJO5R0AfXxxx9n+vTpzJ49m+XLl3PkkUcyfvx4ysrK2m2/ZMkSzjvvPJ5//nmWLl3KsGHD+OpXv8rq1avbtJswYQJr165NbP/1X/+1J56O+rCT+sF1+cH+kzVwb1W49UiSJEnJLhKPJ9e4ztixYzn22GO5++67AYjFYgwbNoxLL72UGTNmfOb9m5ubycvL4+6772bixIlAMIK6YcMGnn766Z2qob6+nvr6+sTn1dXVDBs2jKqqKnJycnb9SalP+0U1zNsQ7E8fCOf7IyRJkqQ+prq6mtzc3M/MVEk1gtrQ0MCyZcsYN25c4lg0GmXcuHEsXbp0p/rYvHkzjY2N5Ofntzm+ZMkSCgsLOeigg5g2bRrr1q3rsI+5c+eSm5ub2IYNG9a5JyQBE3Ng8oBg//YN8MymUMuRJEmSklZSBdSKigqam5spKipqc7yoqIiSkpKd6uOqq65i6NChbULuhAkT+MUvfsHixYu55ZZb+POf/8ypp55Kc3Nzu33MnDmTqqqqxPbJJ590/klJwPcHwpn9g/0bKuH5zaGWI0mSJCWl1LAL6Eo333wzv/rVr1iyZAmZmZmJ4+eee25i//DDD+eII45gv/32Y8mSJZx88snb9ZORkUFGRsYeqVl9QyQC1+RDdQwW18KMCrinEEZnfvZ9JUmSpL4iqUZQCwoKSElJobS0tM3x0tJSiouLd3jf2267jZtvvpk//OEPHHHEETtsO3LkSAoKCnj//fd3u2ZpZ0UjcFMBjM2ERuCycni7/jPvJkmSJPUZSRVQ09PTOeaYY1i8eHHiWCwWY/HixRx33HEd3u/WW2/lhhtuYNGiRYwePfozH+fTTz9l3bp1DBkypEvqlnZWWgTuKIBR6VAbh2nl8HFj2FVJkiRJySGpAirA9OnTmT9/Po888ghvv/0206ZNo6amhsmTJwMwceJEZs6cmWh/yy23cN111/Hwww8zfPhwSkpKKCkpYdOmYCaaTZs2ceWVV/L3v/+djz76iMWLF3P66aez//77M378+FCeo/q2zGhweu/I1OCU34tKobQp7KokSZKk8CXdNajnnHMO5eXlzJo1i5KSEo466igWLVqUmDhp1apVRKNbc/V9991HQ0MDZ599dpt+Zs+ezfXXX09KSgqvv/46jzzyCBs2bGDo0KF89atf5YYbbvA6U4VmQBQeKIJvl8DaZphSCo8WQ15K2JVJkiRJ4Um6dVCT0c6u2SPtqjVNMLEEKmOwXxosLIL+SXdegyRJkrR7euQ6qFJfMzQV5hfBgAh80AiXlEG9bxlJkiSpjzKgSiEbkQb3FUJmBN5ogB+WQ5MhVZIkSX2QAVVKAodmwLwCSAP+XgfXrIOYIVWSJEl9jAFVShJjsmBuQfBL+dxmmFsJXiEuSZKkvsSAKiWRk/rBdfnB/pM1cG9VuPVIkiRJe5IBVUoyp2fD5QOD/Yeq4bHqUMuRJEmS9hgDqpSEJubA5AHB/u0b4JlNoZYjSZIk7REGVClJfX8gnNk/2J9TCc9vDrUcSZIkqdsZUKUkFYnANflwchbEgBkV8Epd2FVJkiRJ3ceAKiWxaARuKoCxmdAIXFYOb9eHXZUkSZLUPQyoUpJLi8AdBTAqHWrjMK0cPm4MuypJkiSp6xlQpR4gMwr3FMLIVKiOwUWlUNoUdlWSJElS1zKgSj3EgCg8UARDUmBdDKaUwvrmsKuSJEmSuo4BVepB8lPgwSLIj8KaZri4DDbFwq5KkiRJ6hoGVKmHGZIK84tgQAQ+aITvlUF9POyqJEmSpN1nQJV6oBFpcF8hZEbgjQb4YTk0GVIlSZLUwxlQpR7q0AyYVwBpwN/r4Jp1EDOkSpIkqQczoEo92JgsmFsQ/CI/txluqoS4IVWSJEk9lAFV6uFO6gfX5Qf7T9XAPVXh1iNJkiR1lgFV6gVOz4bLBwb7D1fDY9WhliNJkiR1igFV6iUm5sDkAcH+7RvgmU2hliNJkiTtMgOq1It8fyCc2T/Yn1MJz28OtRxJkiRplxhQpV4kEoFr8uHkLIgBMyrglbqwq5IkSZJ2jgFV6mWiEbipAMZmQiNwWTm8XR92VZIkSdJnM6BKvVBaBO4ogFHpUBuHaeXwcWPYVUmSJEk7ZkCVeqnMKNxTCCNToToGF5VCSVPYVUmSJEkdM6BKvdiAKDxQBENSYN2WkLq+OeyqJEmSpPYZUKVeLj8FHiyC/CisaYaLy2BTLOyqJEmSpO0ZUKU+YEgqzC+CARH4oBEuKYP6eNhVSZIkSW0ZUKU+YkQa3FcImRH4RwP8sByaDKmSJElKIgZUqQ85NAPmFUAa8Pc6uGYdxAypkiRJShIGVKmPGZMFcwuCX/7nNsNNlRA3pEqSJCkJGFClPuikfnBdfrD/VA3cUxVuPZIkSRIYUKU+6/RsuHxgsP9wNTxaHWo5kiRJkgFV6ssm5sCFA4L9OzbAM5tCLUeSJEl9nAFV6uO+NxDO7B/sz6mE5zeHWo4kSZL6MAOq1MdFInBNPpycBTFgRgW8XBt2VZIkSeqLDKiSiEbgpgIYmwmNwOUV8HZ92FVJkiSprzGgSgIgLQJ3FMCodKiNw7Ry+Kgh7KokSZLUlxhQJSVkRuGeQhiZCtUxmFoGJU1hVyVJkqS+woAqqY0BUXigCIakwLoYXFQK65vDrkqSJEl9gQFV0nbyU+DBIsiPwppmuLgMNsXCrkqSJEm9nQFVUruGpML8IhgQgQ8a4ZIyqI+HXZUkSZJ6MwOqpA6NSIP7CiEzAv9ogB+WQ5MhVZIkSd3EgCpphw7NgHkFkAb8vQ6uroCYIVWSJEndwIAq6TONyYK5BcEfjD/Wwk2VEDekSpIkqYsZUCXtlJP6wXX5wf5TNXBPVbj1SJIkqfcxoEraaadnw+UDg/2Hq+HR6lDLkSRJUi9jQJW0SybmwIUDgv07NsAzm0ItR5IkSb2IAVXSLvveQPhGdrA/pxKe3xxqOZIkSeolDKiSdlkkAlfnwbgsiAEzKuDl2rCrkiRJUk9nQJXUKdEI/KQAxmZCI3B5BbxdH3ZVkiRJ6skMqJI6LS0CdxTAqHSojcO0cvioIeyqJEmS1FMZUCXtlswo3FMII1OhOgZTy6CkKeyqJEmS1BMZUCXttgFReKAIhqTAuhhcVArrm8OuSpIkST2NAVVSl8hPgQeLID8Ka5qDkdRNsbCrkiRJUk9iQJXUZYakwvwiGBCBDxvhkjKoj4ddlSRJknoKA6qkLjUiDe4rhMwI/KMBflgOTYZUSZIk7QQDqqQud2gGzCuANODvdXB1BcQMqZIkSfoMBlRJ3WJMFswtCP7I/LEWbqqEuCFVkiRJO2BAldRtTuoH1+UH+0/VwD1V4dYjSZKk5GZAldStTs+GHw4M9h+uhkerQy1HkiRJScyAKqnbfTsHLhwQ7N+xAZ7ZFGo5kiRJSlIGVEl7xPcGwjeyg/05lfD85lDLkSRJUhIyoEraIyIRuDoPxmVBDJhRAS/Xhl2VJEmSkokBVdIeE43ATwpgbCY0ApdXwFv1YVclSZKkZGFAlbRHpUXgjgIYlQ61cbikHD5qCLsqSZIkJQMDqqQ9LjMK9xTCyFSojsHUMihpCrsqSZIkhc2AKikUA6LwQBEMSYF1MbioFNY3h12VJEmSwmRAlRSa/BR4sAjyo7CmORhJ3RQLuypJkiSFxYAqKVRDUmF+EQyIwIeNcEkZ1MfDrkqSJElhMKBKCt2INLivEDIj8I8GuLwcmgypkiRJfY4BVVJSODQDfl4AacCLdXB1BcQMqZIkSX2KAVVS0jg2C+YWBH+Y/lgLN1VC3JAqSZLUZxhQJSWVk/rBdfnB/lM1cE9VuPVIkiRpzzGgSko6p2fDDwcG+w9Xw6PVoZYjSZKkPcSAKikpfTsHLhwQ7N+xAZ7ZFGo5kiRJ2gMMqJKS1vcGwjeyg/05lfD85lDLkSRJUjdLyoB6zz33MHz4cDIzMxk7diwvvfRSh23nz5/P8ccfT15eHnl5eYwbN2679vF4nFmzZjFkyBCysrIYN24c7733Xnc/DUm7KRKBq/NgXBbEgBkV8HJt2FVJkiSpuyRdQH388ceZPn06s2fPZvny5Rx55JGMHz+esrKydtsvWbKE8847j+eff56lS5cybNgwvvrVr7J69epEm1tvvZU777yT+++/nxdffJH+/fszfvx46urq9tTTktRJ0Qj8pAA+nwmNwOUV8FZ92FVJkiSpO0Ti8eRaxGHs2LEce+yx3H333QDEYjGGDRvGpZdeyowZMz7z/s3NzeTl5XH33XczceJE4vE4Q4cO5d///d+54oorAKiqqqKoqIiFCxdy7rnnbtdHfX099fVbXwFXV1czbNgwqqqqyMnJ6aJnKmlX1MXg4jL4RwPkRGFhIQxPD7sqSZIk7Yzq6mpyc3M/M1Ml1QhqQ0MDy5YtY9y4cYlj0WiUcePGsXTp0p3qY/PmzTQ2NpKfH6xTsXLlSkpKStr0mZuby9ixYzvsc+7cueTm5ia2YcOG7cazktQVMqNwTyGMTIXqGEwtg5KmsKuSJElSV0qqgFpRUUFzczNFRUVtjhcVFVFSUrJTfVx11VUMHTo0EUhb7rcrfc6cOZOqqqrE9sknn+zqU5HUDQZEYX4RDE2BdTG4qBTWN4ddlSRJkrpKUgXU3XXzzTfzq1/9il//+tdkZmZ2up+MjAxycnLabJKSQ15KEFLzo7CmORhJ3RQLuypJkiR1haQKqAUFBaSkpFBaWtrmeGlpKcXFxTu872233cbNN9/MH/7wB4444ojE8Zb7daZPSclpSGoQUgdE4MNGuKQM6pPqanpJkiR1RlIF1PT0dI455hgWL16cOBaLxVi8eDHHHXdch/e79dZbueGGG1i0aBGjR49uc9uIESMoLi5u02d1dTUvvvjiDvuUlNxGpMF9hZAZCSZOurwcmgypkiRJPVpSBVSA6dOnM3/+fB555BHefvttpk2bRk1NDZMnTwZg4sSJzJw5M9H+lltu4brrruPhhx9m+PDhlJSUUFJSwqZNmwCIRCJcfvnl3HjjjTzzzDO88cYbTJw4kaFDh3LGGWeE8RQldZFDM+DnBZAGvFgHV1dAzJAqSZLUY6WGXcC2zjnnHMrLy5k1axYlJSUcddRRLFq0KDHJ0apVq4hGt+bq++67j4aGBs4+++w2/cyePZvrr78egB/96EfU1NRw8cUXs2HDBr70pS+xaNGi3bpOVVJyODYL5hbAjyrgj7VwUyVckw+RSNiVSZIkaVcl3TqoyWhn1+yRFJ7fbIIfVwb7k3Pg0oGhliNJkqRWeuQ6qJLUWadnww8HBvsLquHR6lDLkSRJUicYUCX1Gt/OgQsHBPt3bIBnNoVajiRJknaRAVVSr/K9gfCN7GB/TiX8aXOo5UiSJGkXGFAl9SqRCFydB+OyIAbMrICXa8OuSpIkSTvDgCqp14lG4CcF8PlMaAQur4C36sOuSpIkSZ/FgCqpV0qLwO0FMCodauNwSTmsbAi7KkmSJO2IAVVSr5UZhXsKYWQqVMfg4jIoaQq7KkmSJHXEgCqpVxsQhflFMDQF1sXgolJY3xx2VZIkSWqPAVVSr5eXEoTU/CisaYapZbApFnZVkiRJ2pYBVVKfMCQ1CKkDIvBhI0wrgzpDqiRJUlIxoErqM0akwX2FkBmBNxvghxXQFA+7KkmSJLUwoErqUw7NgJ8XQBrwYh1cXQExQ6okSVJSMKBK6nOOzYKbC4I/gH+shZsqIW5IlSRJCp0BVVKf9JV+cF1+sP9UDdxdFW49kiRJMqBK6sNOz4YfDgz2F1TDL6pDLUeSJKnPM6BK6tO+nQNTcoL9eRvgmU2hliNJktSnGVAl9XmX5MI3soP9OZXwp83h1iNJktRXGVAl9XmRCFydB+OyIAbMrICXa8OuSpIkqe8xoEoSEI3ATwrg85nQCFxeAW/Vh12VJElS32JAlaQt0iJwewGMSofaOFxSDisbwq5KkiSp7zCgSlIrmVG4pxBGpkJ1DC4ug5KmsKuSJEnqGwyokrSNAVGYXwRDU2BdDKaUwvrmsKuSJEnq/QyoktSOvJQgpA6KwtpmmFoGm2JhVyVJktS7GVAlqQNDUoOQOiACHzbCtDKoM6RKkiR1GwOqJO3A8DS4rxAyI/BmA1xeDo3xsKuSJEnqnQyokvQZDs2AnxdAGvBSPVxTATFDqiRJUpczoErSTjg2C24uCP5o/rEWbqqEuCFVkiSpSxlQJWknfaUfzMoP9p+qgburwq1HkiSptzGgStIu+Nds+OHAYH9BNfyiOtRyJEmSehUDqiTtom/nwJScYH/eBnhmU6jlSJIk9RoGVEnqhEty4RvZwf6cSvjT5nDrkSRJ6g0MqJLUCZEIXJ0H47IgBsysgJdqw65KkiSpZzOgSlInRSPwkwL4fCY0ApdXwFv1YVclSZLUcxlQJWk3pEXg9gI4PB3q4nBJOaxsCLsqSZKknsmAKkm7KTMK9xTCyFSojsHFZVDSFHZVkiRJPY8BVZK6QHYU5hfB0BRYF4MppbC+OeyqJEmSehYDqiR1kbyUIKQOisLaZphaCptiYVclSZLUcxhQJakLDUkNQuqACHzYBNPKoM6QKkmStFMMqJLUxYanwX2FkBmBNxvg8nJojIddlSRJUvIzoEpSNzg0A35eAGnAS/VwTQXEDKmSJEk7ZECVpG5ybBbcXBD8of1jLdxUCXFDqiRJUocMqJLUjb7SD2blB/tP1cDdVeHWI0mSlMwMqJLUzf41G344MNhfUA2/qA61HEmSpKRlQJWkPeDbOTAlJ9iftwF+synUciRJkpKSAVWS9pBLcuGs7GD/hkr40+Zw65EkSUo2uxVQX3jhBc4//3yOO+44Vq9eDcCjjz7KX/7yly4pTpJ6k0gEZubBuCyIATMr4KXasKuSJElKHp0OqE8++STjx48nKyuLV199lfr6egCqqqq46aabuqxASepNohH4SQF8PhMagcsr4K36sKuSJElKDp0OqDfeeCP3338/8+fPJy0tLXH8i1/8IsuXL++S4iSpN0qLwO0FcHg61MVhWhmsbAi7KkmSpPB1OqC+8847fPnLX97ueG5uLhs2bNidmiSp18uMwj2FMDIVNsbh4jIoaQq7KkmSpHB1OqAWFxfz/vvvb3f8L3/5CyNHjtytoiSpL8iOwvwiGJoC62IwpRTWN4ddlSRJUng6HVCnTp3KZZddxosvvkgkEmHNmjX853/+J1dccQXTpk3ryholqdfKSwlC6qAorG2GqaWwKRZ2VZIkSeFI7ewdZ8yYQSwW4+STT2bz5s18+ctfJiMjgyuuuIJLL720K2uUpF5tSGoQUi8ogQ+bgmtS5xcGpwFLkiT1JZF4PB7fnQ4aGhp4//332bRpE4ceeijZ2dldVVvSqK6uJjc3l6qqKnJycsIuR1Iv9VY9XFQWTJw0JgPuKgwmVJIkSerpdjZT7fb78+np6Rx66KGMGTOmV4ZTSdpTDs2AnxdAGvBSPVxTAbHdegtRkiSpZ+n0Kb5z5szZ4e2zZs3qbNeS1GcdmwU3F8CVFfDHWripEq7Jh4gjqZIkqQ/o9Cm+n/vc59p83tjYyMqVK0lNTWW//fbrVWuheoqvpD3tmU1wfWWwPzkHLh0YajmSJEm7ZWczVadHUF999dV2H3TSpEmceeaZne1WkgT8azZUx+D2DbCgGnKjMNH3xyRJUi/XpXNE5uTk8OMf/5jrrruuK7uVpD7p/ByYsiWUztsAv9kUajmSJEndrssXMaiqqqKqqqqru5WkPumSXDhry/xzN1TCnzaHW48kSVJ36vQpvnfeeWebz+PxOGvXruXRRx/l1FNP3e3CJEnB5Egz86C6GZ6rhZkVcNdgGJMVdmWSJEldr9OTJI0YMaLN59FolMGDB3PSSScxc+ZMBgwY0CUFJgMnSZIUtsY4XFYOf6+DzAg8WBgsSyNJktQTdPskSStXruzsXSVJuygtArcXwHfK4I0GmFYGC4pgZHrYlUmSJHWdLr8GVZLUPTKjcE8hjEyFjfEgrK5tCrsqSZKkrrNLI6jTp0/f6ba33377LhcjSdqx7CjML4Jvl8CaZrioFB4rhryUsCuTJEnafbsUUNtb+7Q9kUikU8VIkj5bXkoQUieWwNotIfWR4iC8SpIk9WSdniSpL3GSJEnJ6KNGuKAkON33sHSYXxicBixJkpRsun2SpBZvvfUWq1atoqGhIXEsEonw9a9/fXe7liTtwPA0uK8QLiqDNxvg8nK4qzCYUEmSJKkn6nRA/fDDDznzzDN54403iEQitAzEtpze29zc3DUVSpI6dGgG/LwAvl8OL9XDNRVwcwFEDamSJKkH6vTJYJdddhkjRoygrKyMfv368eabb/J///d/jB49miVLlnRhiZKkHTk2a0soBf5YCz+pBC/ekCRJPVGnA+rSpUuZM2cOBQUFRKNRotEoX/rSl5g7dy4/+MEPurJGSdJn+Eo/mJUf7P+6Bu6uCrceSZKkzuh0QG1ubmbAgAEAFBQUsGbNGgD23Xdf3nnnna6pTpK00/41G6YPDPYXVMMvqkMtR5IkaZd1+hrUUaNG8dprrzFixAjGjh3LrbfeSnp6Og888AAjR47syholSTvp/ByoisFD1TBvA+RG4fTssKuSJEnaOZ0OqNdeey01NTUAzJkzh9NOO43jjz+eQYMG8fjjj3dZgZKkXXNJLmyIwZOb4IZKGBCFk/qFXZUkSdJn69J1UCsrK8nLy0vM5NtbuA6qpJ4mFoeZFfBcLaQBdw2GMVlhVyVJkvqqnc1UXbqke35+fq8Lp5LUE0UjcGMBfD4TGoHLK+Ct+rCrkiRJ2rFOB9SLLrrI5WQkKYmlReD2Ajg8HeriMK0MPmwIuypJkqSOdTqglpeXM2HCBIYNG8aVV17Ja6+91pV1SZK6QGYU7imE/VJhYxy+UwZrm8KuSpIkqX2dDqi/+c1vWLt2Lddddx0vv/wyRx99NIcddhg33XQTH330UReWKEnaHdlReKAIhqbAuhhcVArrm8OuSpIkaXu7dQ1qXl4eF198MUuWLOHjjz9m0qRJPProo+y///6d7vOee+5h+PDhZGZmMnbsWF566aUO27755pucddZZDB8+nEgkwrx587Zrc/311xOJRNpsBx98cKfrk6SeKC8FHiyCQVFY2xyE1E2xsKuSJElqq0smSWpsbOSVV17hxRdf5KOPPqKoqKhT/Tz++ONMnz6d2bNns3z5co488kjGjx9PWVlZu+03b97MyJEjufnmmykuLu6w38MOO4y1a9cmtr/85S+dqk+SerLiVJhfBAMisLIpuCa1zpAqSZKSyG4F1Oeff56pU6dSVFTEpEmTyMnJ4dlnn+XTTz/tVH+33347U6dOZfLkyRx66KHcf//99OvXj4cffrjd9sceeyw//elPOffcc8nIyOiw39TUVIqLixNbQUHBDuuor6+nurq6zSZJvcHwNLivEDIj8GYDXF4OjV222JgkSdLu6XRA3WuvvfiXf/kXKioqeOCBBygtLeXhhx/m5JNP7tRSMw0NDSxbtoxx48ZtLS4aZdy4cSxdurSzZQLw3nvvMXToUEaOHMm3vvUtVq1atcP2c+fOJTc3N7ENGzZstx5fkpLJoRnw84JgfdSX6uGaimDdVEmSpLB1OqBef/31rF27ll//+tecffbZOxzB3BkVFRU0Nzdvd3pwUVERJSUlne537NixLFy4kEWLFnHfffexcuVKjj/+eDZu3NjhfWbOnElVVVVi++STTzr9+JKUjI7NgpsLgn8Cf6yFn1RC3JAqSZJCltrZO06dOjWx/9e//pXRo0fvdkjtDqeeempi/4gjjmDs2LHsu+++/Pd//zdTpkxp9z4ZGRlJ+VwkqSt9pR/MyofrK+HXNTAwBS4dGHZVkiSpL+uSSZJOPfVUVq9evVt9FBQUkJKSQmlpaZvjpaWlO5wAaVcNHDiQAw88kPfff7/L+pSknupfs2H6wGB/QTX8oirUciRJUh/XJQE13gXnhaWnp3PMMcewePHixLFYLMbixYs57rjjdrv/Fps2beKDDz5gyJAhXdanJPVk5+fAlJxgf14V/GZTuPVIkqS+q9On+HaH6dOnc8EFFzB69GjGjBnDvHnzqKmpYfLkyQBMnDiRvfbai7lz5wLBxEpvvfVWYn/16tWsWLGC7OzsxFqsV1xxBV//+tfZd999WbNmDbNnzyYlJYXzzjsvnCcpSUnoklzYEIMnN8ENlTAgCif1C7sqSZLU1+x2QF29ejX33nsvgwcP3u1izjnnHMrLy5k1axYlJSUcddRRLFq0KDFx0qpVq4hGtw76rlmzhs997nOJz2+77TZuu+02TjjhBJYsWQLAp59+ynnnnce6desYPHgwX/rSl/j73//eJfVKUm8RicDMPKhuhudqYWYF3DUYxmSFXZkkSepLIvFOnp/717/+lfPPPz+xZEtBQQGTJk3immuuIScnp0uLDFt1dTW5ublUVVX1uucmSa01xoO1UZfWBWulPlgYLEsjSZK0O3Y2U3X6GtTvfOc7HHLIIbz88su88847/PSnP+WPf/wjRx999G5PmCRJCkdaBG4fDIenQ10cppXBhw1hVyVJkvqKTo+gZmVl8dprr3HggQcmjsXjcb75zW8C8MQTT3RNhUnAEVRJfc2mGEwugQ+aYFAUflEMQ5Jq1gJJktSTdPsI6iGHHEJZWVmbY5FIhDlz5rBo0aLOditJSgLZUXigCIamwLoYXFQK65vDrkqSJPV2nQ6okyZN4tJLL+WTTz5pc9xRRknqHfJS4MGiYAR1bXMQUjfFwq5KkiT1Zp0+xbdlNt309HS+8Y1vcNRRR9Hc3Mxjjz3G1Vdfzbe+9a0uLTRMnuIrqS/7qBEmlUJ1DA5Lh/mFkNklq2hLkqS+YmczVacDamlpKStWrOC1115jxYoVrFixgvfee49IJMIhhxzC4YcfzhFHHMERRxzBhAkTOv1EkoEBVVJf93YDTCkNJk4akwF3FQYTKkmSJO2Mbg+o7amrq+ONN95oE1z/8Y9/sGHDhq56iFAYUCUJXq6F75dDI3ByFtxSAFFDqiRJ2gmhBNTeyoAqSYHnN8OVFRADzuwP1+ZDxJAqSZI+Q7fP4itJ6nu+0g9m5Qf7v66Bu6vCrUeSJPUuBlRJ0i7512yYPjDYX1ANvzCkSpKkLmJAlSTtsvNzYMqWs3PmVcFvNoVbjyRJ6h0MqJKkTrkkF87KDvZvqIQ/bQ63HkmS1PMZUCVJnRKJwMw8OCUrmDRpZgW8VBt2VZIkqSczoEqSOi0agRsL4LjMYPmZyyvgzfqwq5IkST2VAVWStFvSInD7YDgiHericEkZfNgQdlWSJKknMqBKknZbRgTuLoT90mBjHL5TBmubwq5KkiT1NAZUSVKXyI7CA4UwNAXWxeCiUqhsDrsqSZLUkxhQJUldJi8FHiyCQVFY2wxTS2FTLOyqJElST2FAlSR1qeJUmF8EOVFY2QTTyqDOkCpJknaCAVWS1OWGp8F9hZAZgTcb4PJyaIyHXZUkSUp2BlRJUrc4JB3uLIA04KV6uLoCYoZUSZK0AwZUSVK3GZ0FtxQE/2wW18JPKiFuSJUkSR0woEqSutWJ/WB2frD/6xq4uyrceiRJUvIyoEqSut3Xs2H6wGB/QTX8wpAqSZLaYUCVJO0R5+fAlJxgf14VPL0p3HokSVLyMaBKkvaYS3Lh7Oxg/8ZK+NPmcOuRJEnJxYAqSdpjIhGYkQenZEEMmFkBL9WGXZUkSUoWBlRJ0h4VjcCNBXBcJjQCl1fAm/VhVyVJkpKBAVWStMelReD2wXBEOtTF4ZIy+LAh7KokSVLYDKiSpFBkRODuQtgvDTbG4TtlsLYp7KokSVKYDKiSpNBkR+GBQhiaAuticFEpVDaHXZUkSQqLAVWSFKq8FHiwCAZFYW0zTC2FjbGwq5IkSWEwoEqSQlecCvOLICcKK5uCa1LrDKmSJPU5BlRJUlIYngb3FUJmBN5sgMvLoTEedlWSJGlPMqBKkpLGIelwZwGkAS/Vw9UVEDOkSpLUZxhQJUlJZXQW3FIQ/INaXAs/qYS4IVWSpD7BgCpJSjon9oPZ+cH+r2vg7qpw65EkSXuGAVWSlJS+ng3TBwb7C6rhF4ZUSZJ6PQOqJClpnZ8DU3KC/XlV8PSmcOuRJEndy4AqSUpql+TC2dnB/o2VsHhzuPVIkqTuY0CVJCW1SARm5MEpWRAjmNn3pdqwq5IkSd3BgCpJSnrRCNxYAMdlQiNweQW8WR92VZIkqasZUCVJPUJaBG4fDEekQ10cLimDDxvCrkqSJHUlA6okqcfIiMDdhbBfGmyMw8VlsLYp7KokSVJXMaBKknqU7Cg8UAhDU6AyBheVQmVz2FVJkqSuYECVJPU4eSnwYBEMisLaZphaChtjYVclSZJ2lwFVktQjFafC/CLIicLKpuCa1DpDqiRJPZoBVZLUYw1Pg/sKISsCbzbA5eXQGA+7KkmS1FkGVElSj3ZIOtxZAGnAS/XBOqkxQ6okST2SAVWS1OMdkwW3FAT/1BbXwk8qIW5IlSSpxzGgSpJ6hRP7wez8YP/XNXDXhlDLkSRJnWBAlST1Gl/PhukDg/2FG+EXVaGWI0mSdpEBVZLUq5yfA1Nygv15VfD0pnDrkSRJO8+AKknqdS7JhbOzg/0bK2Hx5nDrkSRJO8eAKknqdSIRmJEHX82CGMHMvi/Vhl2VJEn6LAZUSVKvFI3AjQVwXCY0ApdXwJv1YVclSZJ2xIAqSeq1UiNw+2A4Ih3q4nBJGXzYEHZVkiSpIwZUSVKvlhGBuwthvzTYGIeLy2BtU9hVSZKk9hhQJUm9XnYUHiiEvVKgMgYXlUJlc9hVSZKkbRlQJUl9Ql4KzC+CQVFY2wxTS2FjLOyqJElSawZUSVKfUZwahNScKKxsCq5JrTOkSpKUNAyokqQ+ZXga3FcIWRF4swEuL4fGeNhVSZIkMKBKkvqgQ9LhzgJIA16qD9ZJjRlSJUkKnQFVktQnHZMFtxQE/wgX18JPKiFuSJUkKVQGVElSn3ViP5idH+z/ugbu2hBqOZIk9XkGVElSn/b1bJg+MNhfuBEeqQq1HEmS+jQDqiSpzzs/B6bkBPs/r4KnN4VbjyRJfZUBVZIk4JJcODs72L+xEhZvDrceSZL6IgOqJElAJAIz8uCrWRAjmNn3pdqwq5IkqW8xoEqStEU0AjcWwHGZ0AhcXgFv1oddlSRJfYcBVZKkVlIjcPtgOCId6uJwSRl82BB2VZIk9Q0GVEmStpERgbsLYb802BiHi8tgbVPYVUmS1PsZUCVJakd2FB4ohL1SoDIGF5VCZXPYVUmS1LsZUCVJ6kBeCswvgkFRWNsMU0thYyzsqiRJ6r0MqJIk7UBxahBSc6Kwsim4JrXOkCpJUrcwoEqS9BmGp8F9hZAVgTcb4LJyaIyHXZUkSb2PAVWSpJ1wSDrcWQBpwMv1MLMCYoZUSZK6lAFVkqSddEwW3FIQ/PP8Uy38pBLihlRJkrpM0gXUe+65h+HDh5OZmcnYsWN56aWXOmz75ptvctZZZzF8+HAikQjz5s3b7T4lSdqRE/vB7Pxg/9c1cNeGUMuRJKlXSaqA+vjjjzN9+nRmz57N8uXLOfLIIxk/fjxlZWXttt+8eTMjR47k5ptvpri4uEv6lCTps3w9G6YPDPYXboSFVaGWI0lSrxGJx5Pn5KSxY8dy7LHHcvfddwMQi8UYNmwYl156KTNmzNjhfYcPH87ll1/O5Zdfvtt91tfXU19fn/i8urqaYcOGUVVVRU5Ozm48Q0lSb3LvBniwOti/Lh/OzA61HEmSklZ1dTW5ubmfmamSZgS1oaGBZcuWMW7cuMSxaDTKuHHjWLp06R7tc+7cueTm5ia2YcOGderxJUm927RcOHtLKP1JJSzeHG49kiT1dEkTUCsqKmhubqaoqKjN8aKiIkpKSvZonzNnzqSqqiqxffLJJ516fElS7xaJwIw8+GoWxICrK+Cl2rCrkiSp50qagJpMMjIyyMnJabNJktSeaARuLIDjMqERuLwC3qz/zLtJkqR2JE1ALSgoICUlhdLS0jbHS0tLO5wAKYw+JUnaVmoEbh8MR6RDXRwuKYMPG8KuSpKknidpAmp6ejrHHHMMixcvThyLxWIsXryY4447Lmn6lCSpPRkRuLsQ9kuDjXG4uAzWNoVdlSRJPUtq2AW0Nn36dC644AJGjx7NmDFjmDdvHjU1NUyePBmAiRMnstdeezF37lwgmATprbfeSuyvXr2aFStWkJ2dzf77779TfUqS1FWyo/BAIUwsgdXNcFEpPFoM+SlhVyZJ6u2a4/BqPVQ0Q0EKfC4DUiJhV7XrkiqgnnPOOZSXlzNr1ixKSko46qijWLRoUWKSo1WrVhGNbh30XbNmDZ/73OcSn992223cdtttnHDCCSxZsmSn+pQkqSvlpcD8oiCkrm2GqaWwsBgGJM05S5Kk3mbxZvjpeihr3nqsMAWuzIOT+4VXV2ck1TqoyWpn1+yRJKnFx41wQSlUx+CwdJhfCJmGVElSF1u8GX5UAduGupbB01sLkiOk9rh1UCVJ6k32TYP7CiErAm82wGXl0OhbwpKkLtQcD0ZO2/v30nLstvVBu57CgCpJUjc5JB3uLIA04OV6mFkBsR70IkGSlNxerW97Wu+24kBpc9CupzCgSpLUjY7JCk6vSgH+VAs3VoIX10iSOqsmBn+thbs2wA3rdu4+FTsIsckmqSZJkiSpNzqhH8zKh9mV8HQNDIzCD/LCrkqS1BPUxGBFPSyrh1fq4O0G2NW8WdCDZpM3oEqStAd8PRuqYnD7Bli4EXKiMCk37KokSclm05ZA+kodLK9vP5AOToGD0+GgNPifTbAh1n5fEYLZfD+X0d1Vdx0DqiRJe8j5OcGsvg9Ww51VkJsCZ2aHXZUkKUwbWwXSZfXwzwbYNm8Wbgmkh6TD59Lh0Ixg7W2Ag9KDWXyh7WRJLbP4XpHXs9ZDNaBKkrQHTcsN3un+n03wk8pgJDUZpv+XJO0ZG2OwfMvo6Cv18E4HgfSQlkCaAYemQ/8OZg86uV8w10F766Be0QPXQTWgSpK0B0UiMCMPqpvhD7VwdQXcNRjGZIVdmSSpO1TH4NW6IIwuq4N3GrdfFqaoVSA9OiMYLe0okLbn5H5wYlYwW29Fc3DN6ecyetbIaQsDqiRJe1g0AjcWwMZyWFoHl1fAA4UwqgddIyRJal/VlmVdWgLpu+0E0uJtAulBuxhI25MSgdGZu9dHMjCgSpIUgtQI3D4YvlMKrzfA98pgQRGMTA+7MknSrtjQHJyuu2xLIH2vnUA6ZEsgPTgdRmfAgenQzwU/22VAlSQpJBkRuLsQJpfCB41wcRk8WgxD/O8sSUlrfUsg3TKp0XuN27cZ2s4IaZaBdKf4L1CSpBBlR4PTeyeWwOpmuKg0CKn5PWjNOknqzVoCacssu+9/RiA9ZssIqYG0cwyokiSFLC8F5hcFIXVtM0wthYXFMMAXN5K0x1VuE0g/aCeQ7p26ddmXY9LhAANplzGgSpKUBIpTg5B6QSmsbIJpZfBgIWT6gkeSutW65q2n6y6rhw87CKQtI6Sj02E/A2m3MaBKkpQk9k2D+wthSim81QCXlQfXqKb1wGUCJClZVbQOpHXBm4LbGtY6kGbAyDQD6Z5iQJUkKYkcnA53FsAl5fByPcysCBZgjxpSJalTyptheat1SD9qJ5Du0+qU3WO3BFLPYAmHAVWSpCRzTFYQSq+ogD/Vwo2VcF0+RAypkvSZypq2nq67rA4+3iaQRggCaWLZl0wYmWogTRYGVEmSktAJ/WBWPsyuhKdrYGAUfpAXdlWSlHxKm7aG0WX1sGoHgfSQdBiTCcPTgqW+lHwMqJIkJamvZ0NVDG7fAAs3Qk4UJuWGXZUkhaukVSB9pR4+bSeQDm99yq6BtEcxoEqSlMTOz4HqGDxYDXdWQW4KnJkddlWStOesbWo7y25HgfSQVoF0XwNpj2VAlSQpyU3LDUZSn9gEP6kMRlJP7hd2VZLUPdY0bR0dXV4Hq5vb3h4BRqRtuYY0LThld980SDeQ9goGVEmSklwkAlflBSOpv98MV1fAXYNhTFbYlUnS7lvTBK9sGSF9pQ7WbhNIo2wNpC2z7O5jIO21DKiSJPUA0QjcMCgIqUvr4PIKeKAQRmWEXZkk7bx4PBgRXdYqkJa0E0hHprVd9mXfNNeE7isMqJIk9RCpEbh9MHynFF5vgEvKYGERjEwPuzJJal88Hlwz2nqW3W0DaQptA+mYDBhmIO2zDKiSJPUgGRG4pxAml8L7jXBxGTxaDEP8jy4pCcTj8EnT1tHR5fVQ2kEgPaRVIN3bQKot/HcmSVIP0z8K/1EIE0uCU+UuKg1Can5K2JVJ6mvi8WDd0dbLvpS3E0j32yaQ7mUgVQcMqJIk9UB5KTC/KAipa5thaiksLIYB0bArk9SbxePwcdPW0dFX6qGinUC6/zan7BpItbMMqJIk9VDFqUFIvaAUVjbBtDJ4sBAyDamSukg8Dh9ts+xLRaxtm1SCQHpIehBKx2TAUAOpOsmAKklSD7ZvGtxfCFNK4a0GuKwc7i70haGkzonHgze8WgfSddsE0jRg/y1rkB6SHqxDOjQ1mMhN2l0GVEmSeriD0+HOArikHF6uh5kVcGtBsDSNJO1IPA4fNm4Jo1uuI61sJ5AekL71lN2xGcEZHAZSdQcDqiRJvcAxWUEovaIC/lQLN1bCdfkQ8QWkpFZirQLpsi3Xka7vIJAe0iqQFhlItYcYUCVJ6iVO6Aez82F2JTxdA7lRuCwv7KokhSkWhw8aty77sqweqrYJpOm0DaRjDKQKkQFVkqRe5LTs4MXnzzbAIxuDkDopN+yqJO0psXiwRnLrdUi3DaQZETig9bIvmVCUAikGUiUBA6okSb3Mt3KCF6QPVsOdVZCbAmdmh12VpO4Qi8N7jVvDaEeB9MBWgfRYA6mSmAFVkqReaFpu8CL1iU3wk8pgfdRx/cKuStLuam4VSJfVw6v1UL2DQHrolhHSwQZS9RAGVEmSeqFIBK7KC164/n4zXFMBOYNhTFbYlUnaFc1xeKcxWO6lZdmXTfG2bTJbBdLD0mG0gVQ9mAFVkqReKhqBGwbBxhj8rQ4ur4AHCmFURtiVSepIUxzebdg6y+6r9e0H0oPS4ZC0rSOkBSkuLaXewYAqSVIvlhqBnw2G75TC6w1wSRksLIKR6WFXJgmCQPrONoG0ZptAmtUSSFtGSDMMpOq9DKiSJPVyGRG4pxAmlwaze15cBo8WwxBfBUh7XFMc3m4Irh9dVgcr2gmk/doJpIMMpOoj/NckSVIf0D8K/1EIE0tgdTNMKYXHiiE/JezKpN6tsSWQbpnUaEU9bG4nkB6cHmyHp8PRBlL1YQZUSZL6iLwUmF8UhNSSZphaCguLgxl+JXWNxji8tSWQvlIPr9VD7TaBtP+WQNoyQnpMRvBmkYFUMqBKktSnFKcGIfWCUljZBNPK4MFCyDSkSp3SEkhfaTVCWrdNIM1udcpuywhpfkow27aktgyokiT1Mfumwf2FwWm+bzXAZeVwdyGk+WJZ+kyNcfhH/ZZrSLcE0vp2AukhW07ZHWUglXaJAVWSpD7o4HS4a3AwgvpyPcysgFsLPMVQ2lZD60BaB681bB9IB7Q6ZffwdDjKQCp1mgFVkqQ+6ujMIJReUQF/qoUbK+G6fF9Uq2+rbxVIX6mDN9oJpDlRODitbSDNM5BKXcKAKklSH3ZCP5idD7Mr4ekayI3CZXlhVyXtOfVxeKPVCOnr9dCwTZuc6NYR0iO3bAMNpFK3MKBKktTHnZYN1TG4bQM8sjEIqZNyw65K6h51sWBU9JU6WF4fhNNtA2ludOs1pEekw1HpkGsglfYIA6okSeLfcmBDDB6shjurghfjZ2aHXZW0++pi8HqrdUjfqIfGbdq0BNKWEdIjDKRSaAyokiQJgGm5UBWDJzbBTyqD9VHH9Qu7KmnX1LYKpK/Uw5vtBNKB2wbSjOA0XgOpFD4DqiRJAoIX51flBaf7/n4zXFMBAwbD2KywK5M6VhuD1+qDMLq8PpjgqGmbNnmtAulRGcHSL7kpoZQr6TMYUCVJUkI0AjcMgo0x+Fsd/LACHiiEURlhVyYFNrcOpHXwjwZo3qZNfusR0oxgpt0cA6nUIxhQJUlSG6kR+Nlg+E5pcKrkJWWwsAhGpoddmfqizTFY0WrZl7faCaSDthkhPcxAKvVYBlRJkrSdjAjcUwiTS+H9Rri4DH5RDEN95aBuVrNNIH27g0B66JZZdg2kUu/ivxlJktSu/lH4j0KYWAKrm+GiUnisGPINAupCm7YE0pZlX9oLpINTtq5D+rl0ODQjmMRLUu9jQJUkSR3KS4EHi+DbJVDSDFNLYWGx4UCdt7FVIF1WD/9sgNg2bQantDplNx0Oy4Bsf+akPsGAKkmSdqgoFeYXwQWlsLIJppXBg4WQaWDQTtgYCyYzWr5lYqN32gmkha0C6ecygo8GUqlvMqBKkqTPtG8a3F8IU0qDSWouK4e7CyHNdSO1jeoYvFq39RrSdxohvk2boi2B9OB0OCYj+NjfQCoJA6okSdpJB6fDXYODEdSX62FGBfy0IFiaRn1XVTO82mrZl/YCaXGrEdKjM+AgA6mkDhhQJUnSTjs6E24tgCsq4PlauLESrsuHiCG1z9jQHJyuu6weltXBe+0E0iGtJjU6Zksg7WcglbQTDKiSJGmXnNAPZufD7Ep4ugZyo3BZXthVqbus3xJIl9cFo6TvNW7fZug2p+weaCCV1EkGVEmStMtOyw6uNbxtAzyyMQipk3LDrkpdoSWQtsyy+/4OAukhrQJploFUUhcwoEqSpE75txzYEIMHq+HOKshNgTOzw65Ku6pym0D6QTuBdK/UVoE0HQ4wkErqJgZUSZLUadNyoSoGT2yCn1QG66OO6xd2VdqRdc3BtaPLtlxH+mE7gXTvbQLp/gZSSXuIAVWSJHVaJAJX5QWn+/5+M1xTAQMGw9issCtTi4rWgbQuWMt2W8NSt15DOjod9jOQSgqJAVWSJO2WaARuGAQbY/C3OvhhBTxQCKMywq6sbypv3jqh0bI6+KidQLpP6tZZdo/NgJFpkGkglZQEDKiSJGm3pUbgZ4PhO6XwegNcUgYLi2BketiV9X7lTcHoaEsg/XibQBqhbSAdnQkjUw2kkpKTAVWSJHWJjAjcUwiTS4OZXy8ug18Uw1BfbXSpsqatYXRZPazqIJC2XEN6bCaMSAu+P5KU7PyXIUmSukz/KPxHIUwsgdXNcFEpPFYM+SlhV9ZzlTRtvX50WT180k4g3XebQDrcQCqphzKgSpKkLpWXAg8WwbdLoGRLSH2kOJjhV59t7TaB9NN2AunwbQLpvgZSSb2EAVWSJHW5olSYXwQXlAaT9EwrgwcLve6xPWua2s6yu7q57e0RglN0D0mHg9NgzJZAmm4gldQLGVAlSVK32DcN7i+EKaXwVgNcVg53F0JaHw9Wa5rglVaBdM02gTRKq0CaDmMyYB8DqaQ+woAqSZK6zcHpcNfgYAT15XqYUQE/LQiWpukL4vEggLYE0lfqgtOeW2sdSFuWfTGQSuqrDKiSJKlbHZ0JtxbAFRXwfC3cUAmz8iHSCwNYPB5cM9r6GtJtA2kKwbqjB28TSPv6yLIkgQFVkiTtASf0g9n5MLsSflMDA6NwWV7YVe2+eDyYVbdldHR5PZR2EEhbj5AOM5BKUrsMqJIkaY84LRuqY3DbBnhkI+RGYVJu2FXtmpZA2rIO6Sv1UN5OIN2vVSAdkwF7GUglaacYUCVJ0h7zbzlQFYP51XBnVRBSzxwQdlUdi8fh41an7L5SDxXtBNL9W52yayCVpM4zoEqSpD3qu7mwIQZPbIKfrIcBKTCuX9hVBeLxYFmc1su+VMTatkll+0A61EAqSV3CgCpJkvaoSASuygtO9/39ZrimAgYMhrFZe76WeBxWNm0dHV1eB+u2CaRpbHPKbiYMTYVUA6kkdbmkXC77nnvuYfjw4WRmZjJ27FheeumlHbZ/4oknOPjgg8nMzOTwww/nt7/9bZvbJ02aRCQSabNNmDChO5+CJEnagWgEbhgEX8iERuCHFfCP+u5/3HgcPmiA/94IV1XAKavh7LUwdz08tzkIp2nAoenwjWy4Jh+eHAK/KIbrBsHZA4IZdw2nktQ9km4E9fHHH2f69Oncf//9jB07lnnz5jF+/HjeeecdCgsLt2v/t7/9jfPOO4+5c+dy2mmn8ctf/pIzzjiD5cuXM2rUqES7CRMmsGDBgsTnGRkZe+T5SJKk9qVG4GeD4Tul8HoDXFIGC4tgZHrXPUYsDh82bh0dXVYP69sZIT0gve2kRsWOkEpSKCLxeDwedhGtjR07lmOPPZa7774bgFgsxrBhw7j00kuZMWPGdu3POeccampqePbZZxPHPv/5z3PUUUdx//33A8EI6oYNG3j66ad3qob6+nrq67e+jVtdXc2wYcOoqqoiJydnN56dJEnaVk0MJpfC+42QHw1GK4tS4NUtExIVpMDnMiBlJwJjLA4fNLZd9mXDNoE0na2B9OB0GJsBRQZSSepW1dXV5ObmfmamSqoR1IaGBpYtW8bMmTMTx6LRKOPGjWPp0qXt3mfp0qVMnz69zbHx48dvF0aXLFlCYWEheXl5nHTSSdx4440MGjSo3T7nzp3Lj3/84917MpIkaaf0j8J/FMLEEljdDOeXBC9QWk9OVJgCV+bBydtMphSLB8G2dSCt2iaQZkTggG2WfSlK3bnAK0nas5IqoFZUVNDc3ExRUVGb40VFRfzzn/9s9z4lJSXtti8pKUl8PmHCBL7xjW8wYsQIPvjgA66++mpOPfVUli5dSkpKynZ9zpw5s03obRlBlSRJ3SMvBR4sgm+u3X7EE4K1Rn9UAbcMgmFpW8NoR4H0wNaz7GYGI7IGUklKfkkVULvLueeem9g//PDDOeKII9hvv/1YsmQJJ5988nbtMzIyvEZVkqQ9rCAF0iNAOxcftRy6at32N7cE0kPSg8mNjs0MRlwNpJLU8yRVQC0oKCAlJYXS0tI2x0tLSykuLm73PsXFxbvUHmDkyJEUFBTw/vvvtxtQJUnSnvdq/fZLvGwrTjCpUcvpui2BdLCBVJJ6haRaZiY9PZ1jjjmGxYsXJ47FYjEWL17Mcccd1+59jjvuuDbtAZ577rkO2wN8+umnrFu3jiFDhnRN4ZIkabdVNO9cu+kD4eEiuCofvp4dzLhrOJWk3iGpAirA9OnTmT9/Po888ghvv/0206ZNo6amhsmTJwMwceLENpMoXXbZZSxatIif/exn/POf/+T666/nlVde4fvf/z4AmzZt4sorr+Tvf/87H330EYsXL+b0009n//33Z/z48aE8R0mStL2C7aeFaNd+6cE6qpKk3iepTvGFYNmY8vJyZs2aRUlJCUcddRSLFi1KTIS0atUqotGtufoLX/gCv/zlL7n22mu5+uqrOeCAA3j66acTa6CmpKTw+uuv88gjj7BhwwaGDh3KV7/6VW644QavM5UkKYl8LiO4drS8ud3LUIkQ3P45/31LUq+VdOugJqOdXbNHkiTtnsWbg9l6oW1IbRkwvbVg+6VmJEnJb2czVdKd4itJkvquk/sFIXTwNqf7FqYYTiWpL0i6U3wlSVLfdnI/ODErmNW3ojm4NvVzGU6EJEl9gQFVkiQlnZQIjM4MuwpJ0p7mKb6SJEmSpKRgQJUkSZIkJQUDqiRJkiQpKRhQJUmSJElJwYAqSZIkSUoKBlRJkiRJUlIwoEqSJEmSkoIBVZIkSZKUFAyokiRJkqSkYECVJEmSJCUFA6okSZIkKSkYUCVJkiRJScGAKkmSJElKCgZUSZIkSVJSMKBKkiRJkpKCAVWSJEmSlBQMqJIkSZKkpGBAlSRJkiQlBQOqJEmSJCkpGFAlSZIkSUnBgCpJkiRJSgoGVEmSJElSUjCgSpIkSZKSggFVkiRJkpQUDKiSJEmSpKRgQJUkSZIkJQUDqiRJkiQpKRhQJUmSJElJwYAqSZIkSUoKBlRJkiRJUlIwoEqSJEmSkoIBVZIkSZKUFAyokiRJkqSkYECVJEmSJCUFA6okSZIkKSkYUCVJkiRJScGAKkmSJElKCgZUSZIkSVJSMKBKkiRJkpKCAVWSJEmSlBQMqJIkSZKkpGBAlSRJkiQlBQOqJEmSJCkpGFAlSZIkSUnBgCpJkiRJSgoGVEmSJElSUjCgSpIkSZKSggFVkiRJkpQUDKiSJEmSpKRgQJUkSZIkJQUDqiRJkiQpKRhQJUmSJElJwYAqSZIkSUoKBlRJkiRJUlIwoEqSJEmSkoIBVZIkSZKUFAyokiRJkqSkYECVJEmSJCUFA6okSZIkKSkYUCVJkiRJScGAKkmSJElKCgZUSZIkSVJSMKBKkiRJkpKCAVWSJEmSlBQMqJIkSZKkpGBAlSRJkiQlBQOqJEmSJCkpGFAlSZIkSUnBgCpJkiRJSgoGVEmSJElSUjCg9gLr/lkVdgmSJEmStNsMqD1Y4+Ym/m/Gcp4+Ywn/N3M5TbVNYZckSZIkSZ1mQO2h1r9fzdPfWML7z3wCwPu/+YSnv/Fn1r9fHXJlkiRJksLS08+uNKD2QO/9ehW/+caf2fjJZuKx4Fg8BtWravjNN/7Me0+vCrdASZK6QkMD6x7/EzQ0hF2JJCW9xs1N/N+PXgnOrrzqlR57dmUkHo/Hwy4i2VVXV5Obm0tVVRU5OTmh1lLxjw385uw/f2a71H6ppKRFOHzK/oyatB8QYcMHG/nDd/4OEYhEIBKNQDQS7EciHHTOvhwx5QAANq2t5fcXLyUSCW7f2i7YH3nqXhx+4f4A1K1v4I/ffzFoG40E/UeBLffd+/iiLTVAU20Tz//7sja3E4kkPi/6XD6HfXskAPFYnBeufjXx2EQjRCDxGPkH53DIuSMSz/mln75JPBYnEolAlMTzIgI5+/TnwLP2TbR946H3aWpo3lLz1hoiROhXlMl+p+2daPvuU6toqm0iEo0k+mupIWNgOsPHDUm0XfV8CY01TVu/Don+Ia1fKnt9sTDRtnT5OhprmhJfh9b3iaZHKfpcfqLt+veqadzcqobo1r4jKRHy9t/6c1lTUktTXXOb/lpqjkShf1FWom3DpkZijbHtnlfL56lZKcE+EGsO/lREtjy2JHWbeJzGF/7C0ute4b3SkRxQ/CFfmDOa1OO/tOUfkSSptfXvVfPHqX9mY0kzcSJEiJNTnMLJ808g74Bw80uLnc1UqXuwpp12zz338NOf/pSSkhKOPPJI7rrrLsaMGdNh+yeeeILrrruOjz76iAMOOIBbbrmFf/mXf0ncHo/HmT17NvPnz2fDhg188Ytf5L777uOAAw7YE0+nSw06LJeCA7NY995m4vGO/0k3bW6iCdi0ppb1724EoGrlJjaX1XV4nw3vb6TiHxsA2LR2Mxve29hh25xh/RNtayvrKV1W2WHblMwUikcPAqCxpolVfyrpsG1DdWMimMWa47z39Ccdti0ePYjBo/ISn//jkQ+IN7X/fkvB4QPJPyg38fmr974ThMN25B2YQ+7w7MTnL9/2JnWV7b97n7NPf7KLtwa+v815nZq1te227V+cySn3fz7x2uqFa1ZQtXJTu20z89L52n9+KfH5n69azrq32j9dI7VfCt945itbPovw56uWdfj9iKREOOdPpwT7kQgvXPMqn75Q1m5bgHP//FVS0lOIROAvs1bw0R/WtupsS+jd8ibD2YtOInNgBkSCNws++N9PWwVf2rwh8a+Pf5n+RZkQgRX3v8t7T63a+ibBNmF5/AOfZ8De/QF46z8/5N0ngzMEWgJ3636/fNPnyB0RfO8++N9PeefJj7e+CdL6TRng2CsPTQT7VUtK2tSw7ZsGR0w5gPyDgrYlr6zj/d98sl2gb3kT5aCz90n8rK17u4oP/r9P27xZ0vo+w786JNG2auUmPnpuTbtfh0gEhnx+MPkHBjXUlNTyyZLS4I2KVt+DlhoGjxrIwP0GAFC3vp41f69o82ZJ6xpyR2Qnft4bNjVS/vr64PbE13hr2/7FmWQP7QdAU31z8Dei1ZslsKX2aISM3DSyCjIBiDXF2LS2drvn1LKfmpVCenYaEPy9btjYtKW/Vm2jW78n0VRP/unVPvqQ9Xc8zB+f35+NDcMBeL9kOGXf/4CTT/o9eT+8EPYdGW6NkpRE3pu/jL/e8TGxWIT4lhNk40SoLmniN6f/kS9O35cDLjom5Cp3XtIF1Mcff5zp06dz//33M3bsWObNm8f48eN55513KCws3K793/72N8477zzmzp3Laaedxi9/+UvOOOMMli9fzqhRowC49dZbufPOO3nkkUcYMWIE1113HePHj+ett94iMzNzp2v76KOPGDBgQJc9187aN+P/Y3XzFzq8/aj9XiFl0lkQg7TsBkrWfQhxaM6IcdjMQojHiZFCPBKBOMSbYhBrIm1gI6vXfRq0jcXY/3tbwl8sGM2Mx7fsxyEjv55PVr0HQHNDjH2+HbxwjgevmLe0jUFTM+kFDXz86cdBV40xhp6VHTxuPA5xEls8Hid9cAOrPnw36Csep3BCVnBbZEvKiRMU0NxM2uCt/QIMOj5jS53xVn0GH9MGNyb6Bcg+KkqsIZX4lvQUj225T6yZ1IK2/WbsHydlc7RVf/FEv9G8hjb9RosbyMiKkIjJsaBbmuMwsIGPVq5MvPvfnFtLypDgHO2WU7Vb+o71b+DDf7yd6LcuupF4bhOJjlvV0pTRzLtvvEvLK/qNdRtoSmsAttTZqn0kAu+8+Eai38qKcupjHb9p8daLbxNNTwGgoqydts1bd9/+yxukZgU1rH2vnE3V7YdvgH+88AbpecHv3scrSlj36YYO277x+xVkDg7CyycvVLLmHx1fV/H6cyn02ycIs6sXl/Pp39Z12DbjsAYGDA9qWPt/VXy8qOM3WWLFm8ldGfyMl/11PSsfL+2wbU1kHfmjghBXvnwTH/yyvMO25ZVrKRgbvCFT+dpG3ntodYdtR5xdQNHng78/Ve/W8vYDHb/Rs8/pgxhy8mAANn5Yy1vzPu6w7bB/yWPY+DyIQM2nDbx266cdtt17Qh7Dzx4KwOayepZf/X6Hbfc6eSD7nRf8za7f0MiLV6zssO2QL+dy0HeHA8FZFn+Z8maHbYuOy2HU94MzHGIxeP7bbwUhGSARrIO2g48ZwJEztrwRGYmw5NsrtpxlwZZTLNhy3wj5h/XjyOn7JI7/7Yfv0VQX2xKio1v7jcfJ3S+TI2YcmKjplavfpqG6aWv4b2kbgf5DMzj8B/sk2r7x81XUVTZuORMimngDgHiMjPw0Rl02MvE34p35H1NbWtfqTQISb0SkZqdwyEV7Jfpd+VQZNSUNQduUlK1vAMSbScmIcuCF+yb6/fR3pWxeU9vqTY2tX79ICux3dlGi39KlG9i8tiG4LTUtcXYKzc1EInGGfb2YSGrwN2Ldq+upXVOXeOxt+y/+Qi6RtOBrWf3BZmrLGoLO0tO2ft2aG9nw4B/4cPUhxONR4mx9c7C+LoPHf3so+73xnwy8eELieN7B/UnJDPrdvKaezaX1wQ1p6Vv/BjY1QTxG/mG5pAxID9qu3kzNqppEP9ueUJZ3UH/SBgQvk2pL6tn4yZa/fylpEIkE7ZuaIR4j79ABpA8K3qysXVtH9Xut/k5t877pwIP6k5Ef/E2rK2+g6t3NwQ2pW/4nAcSaIRYj96Bssob2T7Td8Pp6OpJzQBb9ijOCr9X6Rirf2PLcoi3/l+PBP5tYjJz9+pM9Mvh70rChiYoXK1p9Hbbpd2QmA4YHz62xuomyl6u39rvld4NYDJpjZI/IIveQgQA01TRTsqTVG6Db9Ju9TwYDDw6eW3NtM2v+b0NwQ2Rrv/FY8P8+e1gG+UcHb3THGuN8+v+t3drhNv32G5pOwee2vCZpjrPqt+u2r3fL64is4jQKW53Z9PGTq4PHbEdWQRpFXxy4te2zFcQa40DwO7e13yYyBqUx9JTiRNtVT6/d/lTLLQ+TnpvK3qdsPWNq1W+3nF1FBKIpW9s3N5GWnco+pw9J/C5/8mwJ9esbtusTIDUryvDTByc+//S5SmorGrbWG9/abzQ9wn7nDUv0u/r3pdSsrmvb4ZbdSDTCAd/a+txW/2k9m1p+N1JTt/4ANQcvEA6cPCzxN2Lt4jKq3t/6O7etA/+tmGhG8D0qeWED61t+N1rXG2uGeJwDzt+b1Jzgd7n0hQrWvV7d9mvQqvT9zykkfWDwO1f6YhUVr24ZgElpVW8seIG737lDydxypln5S5WU/q3j37mRZw6m35Dgd65iRTVr/7rl9z7S6vsWD/odcUZR4neu8vUqVv+h5bXB9j/H+55WQM5+weuI9f+s4ZPftfoZbvkbsaXfYf8ymGhmGn/76ftbOmln8CoW57lb36dmnwxyD+jf4fPZEzZu7Hjwq414khkzZkz8e9/7XuLz5ubm+NChQ+Nz585tt/03v/nN+Ne+9rU2x8aOHRv/zne+E4/H4/FYLBYvLi6O//SnP03cvmHDhnhGRkb8v/7rv9rts66uLl5VVZXYPvnkk1Yxys3Nzc3Nzc3Nzc3Nza0zW1VV1Q7zYFKdJ9XQ0MCyZcsYN25c4lg0GmXcuHEsXbq03fssXbq0TXuA8ePHJ9qvXLmSkpKSNm1yc3MZO3Zsh33OnTuX3NzcxDZs2LDdfWqSJEmSpM+QVKf4VlRU0NzcTFFRUZvjRUVF/POf/2z3PiUlJe22LykpSdzecqyjNtuaOXMm06dPT3xeXV3NsGHDeO2115LiFN+sm64msmY1VfUFxFsdjwC5GRXEi4qoveRHO+4kNXXrKSnNzcHpT5EIpKdvbVNfv+vFpaYEp0xAcLpEY2NQWHrG1jYN9bQpfGekpAQ1t+4XIKN1vw1sd27SZ4lGIS047YN4fOtMka37bWyADk756bjfCKS187VMT986wUdjY/BcdkVH36O0tK2nLjU1JU6t2fl+af971Lrf5qbgdLZd1d73qL2fv93pt+V71N7P365q73vU0c/frmjve9TRz19n+235HnX087cr/BsR8G/Eln7ZY38jqm9cyF/fPL7D5l887AVyrrlg1/r1b0Sw79+Itv2CfyN64N8IX0ew3d+IzDt+wpKXv8iG+sHEWy3SEiHGwIxyThy7lLprbtr1x+xiGzdu5Mgjj/zMdkkVUJNFRkYGGa1/aLcYPnx46LP4ApAzAKoyKcpqZ83TaCbk5cHoY/d8XZIk7ab4iAf46KMq1tVu/0JrUFY5R4xoIOL/OEnaKi+X4/d+jd+v/Nftbjp+79cYkjsARowIobC2qqvbyS7tSKqAWlBQQEpKCqWlbScgKS0tpbi4uN37FBcX77B9y8fS0lKGDBnSps1RRx3VhdXvQT+YAQ/dDW+9HrxD0zL7TTwOh4yCC78fdoWSJHVK5LIZHLPpP/n9/7U98ylOlGPGlBK5bEZIlUlSkvrBDPZ68G5Oj/7XlklFW7JBjEHHDIUpPSsbJNU1qOnp6RxzzDEsXrw4cSwWi7F48WKOO+64du9z3HHHtWkP8NxzzyXajxgxguLi4jZtqqurefHFFzvsM+ntOxJ+/DP40Y9h0JYZ2gYNDj6//mdOvy9J6rn2Hcle91/D6XMGcvoxf+D0/X4VfJwzkL3uu8b/cZK0rX1HEpnzMwpmX0rB3lCQVR58nH0pkR/3vGyQVCOoANOnT+eCCy5g9OjRjBkzhnnz5lFTU8PkyZMBmDhxInvttRdz584F4LLLLuOEE07gZz/7GV/72tf41a9+xSuvvMIDDzwABOvzXX755dx4440ccMABiWVmhg4dyhlnnBHW09x9kQiM+SIcdSws/zsc8/m21ypIktRDRaJRCr55ApxxnP/jJGln9KJskHQB9ZxzzqG8vJxZs2ZRUlLCUUcdxaJFixKTHK36/9u796gorjsO4N9lKQ95CYIo8jKBGkBYfBEBFQIIgUpjE/XUWLJqqiaCiM+G1IjFNkBqFB/4qLEa0yikVmxUoBJULAiIIJqo0GIlakXUHMPLmAh7+0eOWze7IC/DoN/POZzD3Ll75zd37iznN3dmuHIFenr/n/j18/PDnj17sGLFCrz99ttwdXXFgQMH1P8DFQCWL1+O5uZmzJ07F19//TXGjRuHnJycTv0PVMkyMADGTujtKIiIiHoe/8YREXXOE/C9KROis68re/o0NDTAwsIC9fX10nhJEhERERERUR/S0ZxKUs+gEhERERER0dOLCSoRERERERFJAhNUIiIiIiIikgQmqERERERERCQJTFCJiIiIiIhIEpigEhERERERkSQwQSUiIiIiIiJJYIJKREREREREksAElYiIiIiIiCSBCSoRERERERFJAhNUIiIiIiIikgQmqERERERERCQJTFCJiIiIiIhIEpigEhERERERkSQwQSUiIiIiIiJJYIJKREREREREksAElYiIiIiIiCSBCSoRERERERFJAhNUIiIiIiIikgT93g6gLxBCAAAaGhp6ORIiIiIiIqK+50Eu9SC3agsT1A5obGwEADg4OPRyJERERERERH1XY2MjLCws2lwvE49KYQkqlQrXr1+HmZkZZDJZb4ejoaGhAQ4ODrh69SrMzc17Oxwioj5hzJgxKC0t7e0wiHodzwXqCI6TvkWqx0sIgcbGRtjZ2UFPr+0nTTmD2gF6enqwt7fv7TDaZW5uzgSViKiD5HI5vzOJwHOBOobjpG+R8vFqb+b0Ab4kiYiInjrR0dG9HQKRJPBcoI7gOOlb+vrx4i2+fVxDQwMsLCxQX18v2SslREREREREHcEZ1D7O0NAQCQkJMDQ07O1QiIiIiIiIuoUzqERERERERCQJnEElIiIiIiIiSWCCSkRERERERJLABJWIiIiIiIgkgQkqERFRN/ziF7+ApaUlpkyZ0tuhEPUqngvUURwr1B4mqERERN2wcOFC7N69u7fDIOp1PBeoozhWqD1MUJ9gvDpFRPT4BQYGwszMrLfDIOp1PBeoozhWqD1MUJ9gvDpFRH1VUlISxowZAzMzMwwcOBCTJ09GVVVVj27jxIkTiIyMhJ2dHWQyGQ4cOKCzXlpaGpydnWFkZITnn38ep06d6tE4iNqzZcsWeHl5wdzcHObm5vD19UV2dnaPboPnwpMnOTkZMpkMcXFxPdouxwr9GJigPsF4dYqI+qr8/HxER0ejuLgYubm5uH//PkJDQ9Hc3KyzfmFhIe7fv69VfuHCBdTV1en8THNzMxQKBdLS0tqMIyMjA4sXL0ZCQgLKy8uhUCgQFhaGmzdvdm3HiDrJ3t4eycnJKCsrw+nTpxEUFISXXnoJ58+f11mf5wKVlpZi27Zt8PLyarcexwpJliBJys/PF5MmTRKDBw8WAERmZqZWnU2bNgknJydhaGgofHx8RElJiVadY8eOiVdeeeVHiJiI6PG5efOmACDy8/O11rW2tgqFQiGmTJkiWlpa1OWVlZXC1tZWpKSkPLL9tr5nfXx8RHR0tMa27OzsRFJSkkY9ftfSj8nS0lJ88MEHWuU8F6ixsVG4urqK3NxcERAQIBYuXKizHscKSRlnUCXqUVeoeHWKiJ4m9fX1AAArKyutdXp6esjKysKZM2fw2muvQaVS4dKlSwgKCsLkyZOxfPnyLm3zu+++Q1lZGUJCQjS2FRISgqKioq7tCFE3tLa2Ij09Hc3NzfD19dVaz3OBoqOj8bOf/UzjWOnCsUJSpt/bAZBu4eHhCA8Pb3P92rVrMWfOHMyaNQsAsHXrVhw+fBh//vOf8dZbb/1YYRIRPXYqlQpxcXHw9/fH8OHDddaxs7PD0aNHMX78eLz66qsoKipCSEgItmzZ0uXt3r59G62trbC1tdUot7W1RWVlpXo5JCQEZ8+eRXNzM+zt7fHXv/5VZ/JA1FWff/45fH19ce/ePZiamiIzMxPu7u466/JceHqlp6ejvLwcpaWlHarPsUJSxQS1D3pwdSo+Pl5dxqtTRPSkio6OxhdffIGCgoJ26zk6OuKjjz5CQEAAnnnmGezYsQMymeyxx/fZZ5899m3Q023YsGGoqKhAfX099u3bB6VSifz8/DaTVJ4LT5+rV69i4cKFyM3NhZGRUYc/x7FCUsRbfPug9q5O3bhxQ70cEhKCqVOnIisrC/b29kxeiajPiYmJwaFDh3Ds2DHY29u3W7eurg5z585FZGQk7t69i0WLFnVr29bW1pDL5VovC6mrq8OgQYO61TZRZxgYGMDFxQWjRo1CUlISFAoF1q9f32Z9ngtPn7KyMty8eRMjR46Evr4+9PX1kZ+fjw0bNkBfXx+tra06P8exQlLEBPUJ9tlnn+HWrVu4e/curl27xlsniKjPEEIgJiYGmZmZOHr0KIYOHdpu/du3byM4OBhubm7Yv38/8vLykJGRgaVLl3Y5BgMDA4waNQp5eXnqMpVKhby8PH6fUq9SqVT49ttvda7jufB0Cg4Oxueff46Kigr1z+jRozFjxgxUVFRALpdrfYZjhaSKt/j2Qbw6RURPuujoaOzZswd///vfYWZmpr47xMLCAsbGxhp1VSoVwsPD4eTkhIyMDOjr68Pd3R25ubkICgrCkCFDdM4KNDU1obq6Wr18+fJlVFRUwMrKCo6OjgCAxYsXQ6lUYvTo0fDx8UFqaiqam5vVz/8TPW7x8fEIDw+Ho6MjGhsbsWfPHhw/fhz/+Mc/tOryXHh6mZmZaT2jb2JiggEDBuh8dp9jhSStt18jTI8GHa/x9vHxETExMerl1tZWMWTIEK1XeBMR9UUAdP7s3LlTZ/0jR46Ib775Rqu8vLxcXL16Vednjh07pnMbSqVSo97GjRuFo6OjMDAwED4+PqK4uLi7u0fUYbNnzxZOTk7CwMBA2NjYiODgYHHkyJE26/NcoAfa+zczQnCskHTJhBDix0yIqWMevkI1YsQIrF27Fi+88IL6ClVGRgaUSiW2bdumvjr1ySefoLKyUuvZVCIiIiIior6ACapEHT9+HC+88IJWuVKpxK5duwAAmzZtwh//+EfcuHED3t7e2LBhA55//vkfOVIiIiIiIqKewQSViIiIiIiIJIFv8SUiIiIiIiJJYIJKREREREREksAElYiIiIiIiCSBCSoRERERERFJAhNUIiIiIiIikgQmqERERERERCQJTFCJiIiIiIhIEpigEhERERERkSQwQSUiIiIiIiJJYIJKRER9Uk1NDWQyGSoqKno7FLXKykqMHTsWRkZG8Pb27u1wOmXmzJmYPHnyY2tfCIG5c+fCyspKcseNiIikgwkqERF1ycyZMyGTyZCcnKxRfuDAAchksl6KqnclJCTAxMQEVVVVyMvL6+1wJCUnJwe7du3CoUOHUFtbi+HDh/d2SHB2dkZqamqPthkYGIi4uLgebZOI6GnCBJWIiLrMyMgIKSkpuHPnTm+H0mO+++67Ln/20qVLGDduHJycnDBgwIAejKrvu3TpEgYPHgw/Pz8MGjQI+vr6WnW60/dERPRkYIJKRERdFhISgkGDBiEpKanNOqtWrdK63TU1NRXOzs7q5Qe3l7777ruwtbVF//79kZiYiJaWFixbtgxWVlawt7fHzp07tdqvrKyEn58fjIyMMHz4cOTn52us/+KLLxAeHg5TU1PY2toiKioKt2/fVq8PDAxETEwM4uLiYG1tjbCwMJ37oVKpkJiYCHt7exgaGsLb2xs5OTnq9TKZDGVlZUhMTIRMJsOqVat0trNv3z54enrC2NgYAwYMQEhICJqbmwEApaWlmDhxIqytrWFhYYGAgACUl5drfF4mk2Hbtm2YNGkS+vXrBzc3NxQVFaG6uhqBgYEwMTGBn58fLl26pHUMtm3bBgcHB/Tr1w/Tpk1DfX29zhgf7G9SUhKGDh0KY2NjKBQK7Nu3T73+zp07mDFjBmxsbGBsbAxXV1edxwf4/vguWLAAV65cgUwmUx/7tvo+Pz8fPj4+MDQ0xODBg/HWW2+hpaVF3V5gYCAWLFiAuLg4WFpawtbWFtu3b0dzczNmzZoFMzMzuLi4IDs7u839CwwMxJdffolFixZBJpNpzPoXFBRg/PjxMDY2hoODA2JjY9XHCAA2b94MV1dXGBkZwdbWFlOmTFHvZ35+PtavX69us6amps0YiIhIGxNUIiLqMrlcjnfffRcbN27EtWvXutXW0aNHcf36dZw4cQJr165FQkICJk2aBEtLS5SUlOCNN97AvHnztLazbNkyLFmyBGfOnIGvry8iIyPx1VdfAQC+/vprBAUFYcSIETh9+jRycnJQV1eHadOmabTx4YcfwsDAAIWFhdi6davO+NavX4/3338fa9aswblz5xAWFoaf//zn+Pe//w0AqK2thYeHB5YsWYLa2losXbpUq43a2lpMnz4ds2fPxsWLF3H8+HG8/PLLEEIAABobG6FUKlFQUIDi4mK4uroiIiICjY2NGu2sXr0ar732GioqKvDcc8/h1Vdfxbx58xAfH4/Tp09DCIGYmBiNz1RXV+OTTz7BwYMHkZOTgzNnzmD+/PltHo+kpCTs3r0bW7duxfnz57Fo0SL86le/Ul8AeOedd3DhwgVkZ2fj4sWL2LJlC6ytrdvsuwfJfW1tLUpLS9vs+//+97+IiIjAmDFjcPbsWWzZsgU7duzA73//e61jZm1tjVOnTmHBggV48803MXXqVPj5+aG8vByhoaGIiorC3bt3dca0f/9+2NvbIzExEbW1taitrQXw/Uzviy++iFdeeQXnzp1DRkYGCgoK1P15+vRpxMbGIjExEVVVVcjJycGECRPU++nr64s5c+ao23RwcGizj4mISAdBRETUBUqlUrz00ktCCCHGjh0rZs+eLYQQIjMzUzz85yUhIUEoFAqNz65bt044OTlptOXk5CRaW1vVZcOGDRPjx49XL7e0tAgTExOxd+9eIYQQly9fFgBEcnKyus79+/eFvb29SElJEUIIsXr1ahEaGqqx7atXrwoAoqqqSgghREBAgBgxYsQj99fOzk784Q9/0CgbM2aMmD9/vnpZoVCIhISENtsoKysTAERNTc0jtyeEEK2trcLMzEwcPHhQXQZArFixQr1cVFQkAIgdO3aoy/bu3SuMjIzUywkJCUIul4tr166py7Kzs4Wenp6ora0VQmgez3v37ol+/fqJkydPasTz+uuvi+nTpwshhIiMjBSzZs3q0H4IoX3MhdDd92+//bYYNmyYUKlU6rK0tDRhamqqHh8BAQFi3Lhx6vUPxkZUVJS6rLa2VgAQRUVFbcbk5OQk1q1bp7WPc+fO1Sj75z//KfT09MQ333wj/va3vwlzc3PR0NCgs82AgACxcOHCNrdJRETt4wwqERF1W0pKCj788ENcvHixy214eHhAT+//f5ZsbW3h6empXpbL5RgwYABu3ryp8TlfX1/17/r6+hg9erQ6jrNnz+LYsWMwNTVV/zz33HMAoHEL7KhRo9qNraGhAdevX4e/v79Gub+/f6f2WaFQIDg4GJ6enpg6dSq2b9+u8fxuXV0d5syZA1dXV1hYWMDc3BxNTU24cuWKRjteXl7q321tbQFAo69sbW1x7949NDQ0qMscHR0xZMgQ9bKvry9UKhWqqqq04qyursbdu3cxceJEjb7bvXu3ut/efPNNpKenw9vbG8uXL8fJkyc73A8P+2HfX7x4Eb6+vhq33Pr7+6OpqUlj9vzhPngwNn7YBwC0xsujnD17Frt27dLY77CwMKhUKly+fBkTJ06Ek5MTnnnmGURFReHjjz9uc5aWiIg6T/sNBURERJ00YcIEhIWFIT4+HjNnztRYp6enp76F9YH79+9rtfGTn/xEY1kmk+ksU6lUHY6rqakJkZGRSElJ0Vo3ePBg9e8mJiYdbrM75HI5cnNzcfLkSRw5cgQbN27Eb3/7W5SUlGDo0KFQKpX46quvsH79ejg5OcHQ0BC+vr5aLw96uF8eJHK6yjrTVw9ramoCABw+fFgjqQUAQ0NDAEB4eDi+/PJLZGVlITc3F8HBwYiOjsaaNWs6ta2u9v2jxktX+6CpqQnz5s1DbGys1jpHR0cYGBigvLwcx48fx5EjR7By5UqsWrUKpaWl6N+/f+d3hIiINHAGlYiIekRycjIOHjyIoqIijXIbGxvcuHFDI0ntyf+BWVxcrP69paUFZWVlcHNzAwCMHDkS58+fh7OzM1xcXDR+OpMYmZubw87ODoWFhRrlhYWFcHd371S8MpkM/v7++N3vfoczZ87AwMAAmZmZ6vZiY2MREREBDw8PGBoaarzQqTuuXLmC69evq5eLi4uhp6eHYcOGadV1d3eHoaEhrly5otVvDz9TaWNjA6VSib/85S9ITU3Fn/70p27H+eClTw+Pl8LCQpiZmcHe3r7b7T/MwMAAra2tGmUjR47EhQsXtPbbxcUFBgYGAL6fqQ8JCcF7772Hc+fOoaamBkePHm2zTSIi6jjOoBIRUY/w9PTEjBkzsGHDBo3ywMBA3Lp1C++99x6mTJmCnJwcZGdnw9zcvEe2m5aWBldXV7i5uWHdunW4c+cOZs+eDQCIjo7G9u3bMX36dCxfvhxWVlaorq5Geno6PvjgA8jl8g5vZ9myZUhISMCzzz4Lb29v7Ny5ExUVFfj444873EZJSQny8vIQGhqKgQMHoqSkBLdu3VIn1K6urvjoo48wevRoNDQ0YNmyZTA2Nu5ch7TByMgISqUSa9asQUNDA2JjYzFt2jQMGjRIq66ZmRmWLl2KRYsWQaVSYdy4caivr0dhYSHMzc2hVCqxcuVKjBo1Ch4eHvj2229x6NAh9X50x/z585GamooFCxYgJiYGVVVVSEhIwOLFizVuAe8Jzs7OOHHiBH75y1/C0NAQ1tbW+M1vfoOxY8ciJiYGv/71r2FiYoILFy4gNzcXmzZtwqFDh/Cf//wHEyZMgKWlJbKysqBSqdSJvrOzM0pKSlBTUwNTU1NYWVn1eNxERE8yfmMSEVGPSUxM1Lql0s3NDZs3b0ZaWhoUCgVOnTql8w23XZWcnIzk5GQoFAoUFBTg008/Vb9N9sGsZ2trK0JDQ+Hp6Ym4uDj079+/00lDbGwsFi9ejCVLlsDT0xM5OTn49NNP4erq2uE2zM3NceLECUREROCnP/0pVqxYgffffx/h4eEAgB07duDOnTsYOXIkoqKiEBsbi4EDB3Yqzra4uLjg5ZdfRkREBEJDQ+Hl5YXNmze3WX/16tV45513kJSUBDc3N7z44os4fPgwhg4dCuD7mcL4+Hh4eXlhwoQJkMvlSE9P73acQ4YMQVZWFk6dOgWFQoE33ngDr7/+OlasWNHttn8oMTERNTU1ePbZZ2FjYwPg+2db8/Pz8a9//Qvjx4/HiBEjsHLlStjZ2QEA+vfvj/379yMoKAhubm7YunUr9u7dCw8PDwDA0qVLIZfL4e7uDhsbG63nh4mIqH0y8cMHg4iIiOiJsmrVKhw4cKBHb60mIiJ6HDiDSkRERERERJLABJWIiIiIiIgkgbf4EhERERERkSRwBpWIiIiIiIgkgQkqERERERERSQITVCIiIiIiIpIEJqhEREREREQkCUxQiYiIiIiISBKYoBIREREREZEkMEElIiIiIiIiSWCCSkRERERERJLwP3WotgDASrUgAAAAAElFTkSuQmCC", "text/plain": [ "
      " ] @@ -227,16 +227,16 @@ "id": "40b5a90f", "metadata": { "execution": { - "iopub.execute_input": "2023-09-21T15:20:00.195951Z", - "iopub.status.busy": "2023-09-21T15:20:00.195751Z", - "iopub.status.idle": "2023-09-21T15:20:08.181487Z", - "shell.execute_reply": "2023-09-21T15:20:08.180840Z" + "iopub.execute_input": "2023-09-21T17:59:56.318088Z", + "iopub.status.busy": "2023-09-21T17:59:56.317885Z", + "iopub.status.idle": "2023-09-21T18:00:04.388661Z", + "shell.execute_reply": "2023-09-21T18:00:04.388006Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6gAAAKrCAYAAAD8oqAyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAADb3UlEQVR4nOzdd3hUZd7G8e+ZSSa991ATQu+CgNgVBXRdO+iiCLhYVl3XLroCFhTb6q59URB3VbDg6q4u+i6KBUFEiiAt9JLeeyaZOe8fhwRiKCEkmUlyf67rXOSceebMb2KQ3PM0wzRNExEREREREREPs3m6ABERERERERFQQBUREREREREvoYAqIiIiIiIiXkEBVURERERERLyCAqqIiIiIiIh4BQVUERERERER8QoKqCIiIiIiIuIVfDxdQGvgdrtJS0sjJCQEwzA8XY6IiIiIiEirYpomxcXFJCYmYrMduZ9UAbUB0tLS6NSpk6fLEBERERERadX27t1Lx44dj/i4AmoDhISEANY3MzQ01MPViIiIiIiItC5FRUV06tSpNlsdiQJqA9QM6w0NDVVAFRERERERaaRjTZnUIkkiIiIiIiLiFRRQRURERERExCsooIqIiIiIiIhX0BxUEREREREPcLvdOJ1OT5ch0iR8fX2x2+0nfB8FVBERERGRFuZ0Otm5cydut9vTpYg0mfDwcOLj44+5ENLRKKCKiIiIiLQg0zRJT0/HbrfTqVMnbDbNupPWzTRNysrKyMrKAiAhIaHR91JAFRERERFpQdXV1ZSVlZGYmEhgYKCnyxFpEgEBAQBkZWURGxvb6OG++rhGRERERKQFuVwuABwOh4crEWlaNR+4VFVVNfoeCqgiIiIiIh5wIvP0RLxRU/xMK6CKiIiIiIiIV1BAFREREREREa+ggCoiIiIi0gq5TFhVAYtLrT9dZvO+3qRJkzAMg5tuuqneY7fccguGYTBp0qQ61/fu3cuUKVNITEzE4XDQpUsXbr/9dnJzc+u0O+usszAMA8Mw8PPzo0OHDlx00UUsWrSo3mvVtPv1sWDBAgCWLl2KYRgUFBQ0+r3OnDnzsO917dq1GIbBrl27ANi1axeGYbB27drDnv/6Pf7pT39qdE3thQKqiIiIiEgrs6QMLkyDG7LggVzrzwvTrOvNqVOnTixYsIDy8vLaaxUVFbzzzjt07ty5TtsdO3YwdOhQUlNTeffdd9m2bRuvvvoqS5Ys4ZRTTiEvL69O+6lTp5Kens727dv58MMP6dOnD1dddRU33HBDvTrmzZtHenp6neOSSy5p0vfq7+/PG2+8QWpqapPeV45O28yIiIiIiLQiS8rg3hz4dYdptsu6/lQ0nNtMu9ecdNJJbN++nUWLFjFhwgQAFi1aROfOnUlKSqrT9pZbbsHhcPDFF1/UbkHSuXNnBg8eTLdu3XjwwQd55ZVXatsHBgYSHx8PQMeOHRkxYgS9evViypQpjBs3jlGjRtW2DQ8Pr23bXHr27ElsbCwPPvgg7733XrO+lhykHlQREREREQ8yTSh3N+woccFT+fXDKVjXTODpfKtdQ+5nNmJY8JQpU5g3b17t+dy5c5k8eXKdNnl5eXz++ef84Q9/qA2nNeLj45kwYQILFy7EPEYB1113HREREYcd6ttYNUOAa4bpHs3s2bP58MMPWbVqVZO9vhydelBFRERERDyowoRT9zXd/bJccMb+hrVd1hECjnNnkGuuuYZp06axe/du6x7LlrFgwQKWLl1a2yY1NRXTNOndu/dh79G7d2/y8/PJzs4mNjb2iK9ls9no0aNHvTB59dVXY7fb61zbuHFjvWHGhxMYGEjPnj3x9fU9ZtuTTjqJcePGcd9997FkyZJjtq8xcuRIbLa6fYHl5eUMGjSowfdorxRQRURERESkwWJiYrjwwgt58803MU2TCy+8kOjo6MO2PVYPaUOYpllvf83nnnuuzpBfgMTExAbdb9iwYWzevLnBr//YY4/Ru3dvvvjii6OG6UMtXLiwXjivGRItR6eAKiIiIiLiQf6G1ZPZEKsr4LacY7d7IRpO8m/YazfGlClTuPXWWwF46aWX6j2ekpKCYRhs2rSJSy+9tN7jmzZtIiIigpiYmKO+jsvlIjU1lZNPPrnO9fj4eFJSUhpX/HHq1q0bU6dO5f777+eNN95o0HM6depUr75fD3WWw9McVBERERERDzIMCLA17BgRALF2OFKuNIA4u9WuIfczGhlQx4wZg9PppKqqitGjR9d7PCoqivPOO4+XX365zoq/ABkZGbz99tuMHz++Xs/or82fP5/8/Hwuv/zyxhXaRKZPn87WrVtrt7KR5qMeVBERERGRVsJuwD0R1mq9BnUXS6qJendHWO2atQ67nU2bNtV+fTgvvvgiI0eOZPTo0Tz22GMkJSXxyy+/cM8999ChQwdmzZpVp31ZWRkZGRlUV1ezb98+PvroI5577jluvvlmzj777DptCwoKyMjIqHMtJCSEoKCg2vP169cTEhJSe24YBgMHDmTlypVMnDiRJUuW0KFDhwa937i4OO68806efvrpBrWXxlMPaivW0pszi4iIiIjnnRtobSUT86tcGGtv3i1mfi00NJTQ0NAjPt69e3dWrVpFcnIy48aNo1u3btxwww2cffbZLF++nMjIyDrt58yZQ0JCAt26deOyyy5j48aNLFy4kJdffrnevSdPnkxCQkKd44UXXqjT5owzzmDw4MG1x5AhQwArCG/ZsoWqqqrjer933303wcHBx/UcOX6G2RQzl5vYSy+9xNNPP01GRgYDBw7khRdeYNiwYYdtO2fOHN566y02bNgAwJAhQ3j88cfrtJ80aRLz58+v87zRo0ezePHiBtVTVFREWFgYhYWFR/1L2JKWlFlLiGe5Dl6LtVufqLXU/5RERERE5PhVVFSwc+dOkpKS8PdvwETRI3CZsKYSclwQbYfBfs3fcypyNEf72W5opvK6HtSFCxdy5513MmPGDFavXs3AgQMZPXo0WVlZh22/dOlSrr76ar766iuWL19Op06dOP/889m/v+7a2mPGjCE9Pb32ePfdd1vi7TSLms2ZDw2ncHBz5iVlnqlLRERERFqO3YCh/jAmyPpT4VTaAq8LqH/5y1+YOnUqkydPpk+fPrz66qsEBgYyd+7cw7Z/++23+cMf/sCgQYPo1asXr7/+Om63u94+RX5+fsTHx9ceERERLfF2mpzLtHpOj7Q5M8Az+RruKyIiIiIirY9XBVSn08lPP/1UZ08jm83GqFGjWL58eYPuUVZWRlVVVb0x7UuXLiU2NpaePXty8803k5ube8R7VFZWUlRUVOfwFmsq6/ecHsoEMl1WOxERERERkdbEqwJqTk4OLpeLuLi4Otfj4uLqrdJ1JPfddx+JiYl1Qu6YMWN46623WLJkCU8++SRff/01Y8eOxeU6fNJ74oknCAsLqz06derU+DfVxHKOEk4b005ERERERMRbtKltZmbPns2CBQtYunRpnUm5V111Ve3X/fv3Z8CAAXTr1o2lS5dy7rnn1rvPtGnTuPPOO2vPi4qKvCakRh9+Fe9GtxMREREREfEWXtWDGh0djd1uJzMzs871zMxM4uPjj/rcZ555htmzZ/PFF18wYMCAo7ZNTk4mOjqabdu2HfZxPz+/2mWzj7V8dksb7Hf0zZkB7IBfSxUkIiIiIiLSRLwqoDocDoYMGVJngaOaBY9OOeWUIz7vqaee4tFHH2Xx4sUMHTr0mK+zb98+cnNzSUhIaJK6W1LN5sxw5JDqAiZnwSsFUKXFkkREREREpJXwqoAKcOeddzJnzhzmz5/Ppk2buPnmmyktLWXy5MkATJw4kWnTptW2f/LJJ3nooYeYO3cuXbt2JSMjg4yMDEpKSgAoKSnhnnvuYcWKFezatYslS5Zw8cUXk5KSwujRoz3yHk/UkTZnjrPDzEgY6Q9uYE4RTMyAXce3B7GIiIiIiIhHeN0c1PHjx5Odnc306dPJyMhg0KBBLF68uHbhpD179mCzHczVr7zyCk6nkyuuuKLOfWbMmMHMmTOx2+38/PPPzJ8/n4KCAhITEzn//PN59NFH8fNrvQNhzw2EswIOvznzRUHwr1J4Nh+2VMFV6XB7OFwVAob2xxIRERERES9lmKapQaDHUFRURFhYGIWFhV41H/VYMqrgvlxY77TOh/rBY1EQ63UfS4iIiIi0HxUVFezcuZOkpKQ6C3uKtHZH+9luaKbyuiG+0nTifWFeHNwaBr7Aqkq4PB0Wl3q6MhERERFpEk4nLP/G+rOZTZo0CcMwuOmmm+o9dsstt2AYBpMmTapzfe/evUyZMoXExEQcDgddunTh9ttvJzc3t067s846C8MwMAwDPz8/OnTowEUXXcSiRYvqvVZNu18fCxYsAGDp0qUYhkFBQcEJvd+ioiIefPBBevXqhb+/P/Hx8YwaNYpFixZR08d31lln8ac//anec998803Cw8PrnB+u5poQ53K5GDlyJJdddlmd+xQWFtKpUycefPBBAHbt2lXn+VFRUZx//vmsWbOm9jmHfi8PPQ7973bo9dDQUE4++WQ+/vjjoz6/5jjrrLNO6Pt6LAqobZzNgClh8E48JPlAqQkP5MI92VCovVJFREREWifThB++g9uug2cfgT9Oss6beXBkp06dWLBgAeXl5bXXKioqeOedd+jcuXOdtjt27GDo0KGkpqby7rvvsm3bNl599dXaBVDz8vLqtJ86dSrp6els376dDz/8kD59+nDVVVdxww031Ktj3rx5pKen1zkuueSSJnufBQUFjBw5krfeeotp06axevVqvvnmG8aPH8+9995LYWHhcd8zNDS0Xs27d+8GwG638+abb7J48WLefvvt2ufcdtttREZGMmPGjDr3+t///kd6ejqff/45JSUljB07tk4gr/leHno89dRTde5R8z1ctWoVp556KldccQXr169n0aJFtc9ZuXJlnddLT08/7IcGTUmDPduJbg5YkAB/K4B3i2FJOaxJh0ej4JQAT1cnIiIiIg22awfMfRE2/nxwgZHcbHh6JvQdAFNuhS7JzfLSJ510Etu3b2fRokVMmDABgEWLFtG5c2eSkpLqtL3llltwOBx88cUXBARYv3B27tyZwYMH061bNx588EFeeeWV2vaBgYG1W0t27NiRESNG0KtXL6ZMmcK4ceMYNWpUbdvw8PBjbkN5Ih544AF27drF1q1bSUxMrL3eo0cPrr766kYNzTYM46g19+jRg9mzZ3PbbbdxzjnnsHLlShYsWMCPP/6Iw+Go0zYqKor4+Hji4+N55plnOPXUU/nhhx9qF4E99Ht5JDXfw/j4eB599FH++te/8tVXX/HHP/6xtk1FRUWd12sJ6kFtR3wNuCsCXo+FeDvkueGWbJiVC+VuT1cnIiIi0s5VlDfs+OvjsHmD9ZyaHtOaPzdtgOcfb9h9G2nKlCnMmzev9nzu3Lm1O27UyMvL4/PPP+cPf/hDbTitER8fz4QJE1i4cCHHWg7nuuuuIyIiokl77WqGAO/ateuwj7vdbhYsWMCECRPqhNMawcHB+Pg0Tz/fbbfdxsCBA7n22mu54YYbmD59OgMHDjzqc2q+v85GDvOurq7mjTfeAKgXhD1BPajt0CB/+DABHs+DT8vgw1JYUQGzo6Fv613YWERERKR1u+aiE7+H2w1Z6XWv/eEaKDrMkNQP/teol7jmmmuYNm1a7fDUZcuWsWDBApYuXVrbJjU1FdM06d2792Hv0bt3b/Lz88nOziY2NvaIr2Wz2ejRo0e9MHn11Vdjt9fdc3Hjxo31hhkfTmBgID179sTX1/ewj+fk5JCfn0+vXr2OeS+Al19+mddff73Oterq6nq9rIWFhQQHB9e5dvrpp/Pf//639twwDF555RV69+5N//79uf/++4/62gUFBTz66KMEBwczbNiwo9b02muv1fZ6w8HvYXl5OW63m65duzJu3LgGvefmpIDaTgXY4NFoOLcMHsmD/S64LhOmhMLUMKu3VURERETk12JiYrjwwgt58803MU2TCy+8kOjo6MO2bYoNQ0zTxPjVXonPPfdcnSG/wGF7Ow9n2LBhbN68+aivdzwmTJhQu4hRjUWLFvH443V7skNCQli9enWda7/uXQarRzowMJCdO3eyb98+unbtWq/NyJEjsdlslJaWkpyczMKFC2u35TxSTYc+Dge/hzt27OCOO+7gb3/7G5GRkQ16z81JAbWdOyvQ2j/1z7mwrAJeL4JvyuGJaEg6/IdKIiIiItIc/vnvhrW7/xbYt+fIj8f8aq7gy/9sfE1HMGXKFG699VYAXnrppXqPp6SkYBgGmzZt4tJLL633+KZNm4iIiCAmJuaor+NyuUhNTeXkk0+ucz0+Pp6UlJQTeAdHFhMTQ3h4+FFD7KHCwsLq1XK4XmGbzXbMmr///nuee+45vvjiCx577DGuv/56/ve//9UL6AsXLqRPnz5ERUXVWS34aDX9Ws33MCUlhXnz5nHBBRewcePGo/ZotwTNQRXC7PBCLMyIhEADtlbBVenwThG4tUuuiIiISMvwD2jYYfcB2xF+jbfZ4FdDX494nxMwZswYnE4nVVVVtQvzHCoqKorzzjuPl19+uc6KvwAZGRm8/fbbjB8/vl7w+rX58+eTn5/P5ZdffkL1Hg+bzcZVV13F22+/TVpaWr3HS0pKqK6ubvLXLSsrY9KkSdx8882cffbZvPHGG6xcuZJXX321XttOnTrRrVu3w4bTxhg2bBhDhgxh1qxZTXK/E6GAKrUuDoYP4qG/A6qAZwrgxizIbPq/fyIiIiLSWH+8H3r1s76uCXg1f/buZz3ezOx2O5s2bWLjxo315oLWePHFF6msrGT06NF888037N27l8WLF3PeeefRoUOHemGorKyMjIwM9u3bx4oVK7jvvvu46aabagPboQoKCsjIyKhzlJaW1mmzfv161q5dW3usW7cOgJUrV9KrVy/2799/xPc3a9YsOnXqxPDhw3nrrbfYuHEjqampzJ07l8GDB1NSUnLc3zPTNOvVnJGRgdttrVY6bdo0TNNk9uzZAHTt2pVnnnmGe++994gLOh1Jzffy0CM/P/+oz/nTn/7Ea6+9dtTvS0vQEF+pI94X5sXB/CJ4tRB+qoQr0uGBCBgbfOzni4iIiEgz65IMDz8LP34Pc1+CnCyIioEpt8DJIw+G1WYWGhp61Me7d+/OqlWrmDFjBuPGjSMvL4/4+HguueQSZsyYUW++45w5c5gzZw4Oh4OoqCiGDBnCwoULDztE+NerBgM88cQTdRYVOuOMM+o8brfbqa6upqysjC1btlBVVXXE2iMjI1mxYgWzZ8/mscceY/fu3URERNC/f3+efvppwsLCjvreD6eoqIiEhIR619PT09myZQsvvfQSS5cuJTAwsPaxG2+8kUWLFtUO9W2omu/loUaPHs3ixYuP+JwxY8aQlJTErFmzePnllxv8Wk3NMJti5nIbV1RURFhYGIWFhcf8i9iWbHfCvTmw80AP6jkB8FCkNSRYRERERBqnoqKCnTt3kpSU1Kj9NOtwOmH1ChgyAnw9v0WItG9H+9luaKbSEF85om4OWJAA14RYPyhflsPl6fB947fNEhEREZGm5HDAiDMUTqXNUECVo/I14M4IeD0W4u2Q54Zbs2FWLpS7PV2diIiIiIi0JQqo0iCD/OHDBPhNkHX+YSmMS4cNlZ6tS0RERERE2g4FVGmwABs8EgXPRUOEDfa7YFImvFQAVZrJLCIiIiIiJ0gBVY7bmYGwKAFO8wc38EYRXJsBO4+8EJqIiIiIiMgxKaBKo4TZ4W+xMCMSAg3YWgVXpcPbReBWb6qIiIiIiDSCAqqckIuD4cN4GOCAKuDZArgxCzKrPV2ZiIiIiIi0NgqocsLifGFeHPwxDBzAT5VwRTp8VgLaZVdERERERBpKAVWahGHApDB4Ox6SfaHUhD/nwT05UOjydHUiIiIiItIaKKBKk+rmgHfj4doQ64fry3K4LB2WlXu6MhERERER8XYKqNLkfA24IwLeiIUEO+S74bZseDQXyt2erk5ERESkbcndXNgirzNp0iQMw+Cmm26q99gtt9yCYRhMmjSpzvW9e/cyZcoUEhMTcTgcdOnShdtvv53c3Nw67c466ywMw8AwDPz8/OjQoQMXXXQRixYtqvdaNe1+fSxYsACApUuXYhgGBQUFjX6vM2fOrL2vj48PXbt25Y477qCkpKROuxtvvBG73c77779/zHtER0dzxhln8Pzzz1NZWVmv/bZt25g8eTIdO3bEz8+PpKQkrr76alatWlXnvf/rX/+q99xJkyZxySWX1Dk/3PdozJgxtW3WrVvHb3/7W2JjY/H396dr166MHz+erKysOrUf6WguCqjSbAb6wwcJ8Jsg6/yjUrgyHdbX//soIiIiIsepqqyab+5fzb8uWco301ZTXd78q1R26tSJBQsWUF5+cHhcRUUF77zzDp07d67TdseOHQwdOpTU1FTeffddtm3bxquvvsqSJUs45ZRTyMvLq9N+6tSppKens337dj788EP69OnDVVddxQ033FCvjnnz5pGenl7nODSgNYW+ffuSnp7Orl27ePLJJ/n73//OXXfdVft4WVkZCxYs4N5772Xu3LlHvceePXv46quvuPLKK3niiScYOXIkxcXFte1WrVrFkCFD2Lp1K6+99hobN27ko48+olevXnVe83iMGTOm3vfo3XffBSA7O5tzzz2XyMhIPv/8czZt2sS8efNITEyktLSUu+++u87zOnbsyCOPPFLnWnPxabY7iwABNngkCkYFwMN5kOaCyZkwKRRuDLN6W0VERETk+ORvK+J/t66keE8pANs+3kvW2nzOfeFkIlJCm+11TzrpJLZv386iRYuYMGECAIsWLaJz584kJSXVaXvLLbfgcDj44osvCAgIAKBz584MHjyYbt268eCDD/LKK6/Utg8MDCQ+Ph6Ajh07MmLECHr16sWUKVMYN24co0aNqm0bHh5e27a5+Pj41L7G+PHjWbJkCZ988gmvvfYaAO+//z59+vTh/vvvJzExkb1799KpU6cj3iMxMZH+/ftz3nnnMXDgQJ588kkee+wxTNNk0qRJdO/enW+//Rab7WAf4qBBg7j99tsbVb+fn98Rv0fLli2jsLCQ119/HR8fKxImJSVx9tln17YJDg6u/dputxMSEtLs33NQD6q0kDMC4aNEON0f3MDcIrgmA3ZUeboyEREREe9QVVZ9xKO68uCqk6kf7eFfl31N8d4yzAPTp0w3FO0p5V+Xfc2W93c36L6NNWXKFObNm1d7PnfuXCZPnlynTV5eHp9//jl/+MMfasNpjfj4eCZMmMDChQsxj7Hlw3XXXUdERMRhh/o2Vs0Q4F27dh3X8wICAnA6nbXnb7zxBtdccw1hYWGMHTuWN998s0H36dWrF2PHjq19T2vXruWXX37hrrvuqhNOa4SHhx9XnQ0RHx9PdXU1H3300TH/G7Q09aBKiwm1wV9j4ZMSeDofUqvg6nT4YzhcHQI29aaKiIhIO/bWSZ8e8bGOZ8Yx+rUR5Gwo4Jtpaw7bxnSZmC6T7x5aS1TvMKL7hQPw3rn/R0W+s1776zdf3Kg6r7nmGqZNm8bu3VYQXrZsGQsWLGDp0qW1bVJTUzFNk969ex/2Hr179yY/P5/s7GxiY2OP+Fo2m40ePXrUC5NXX301dru9zrWNGzfWG2Z8OIGBgfTs2RNfX99jtq3x008/8c4773DOOecA1vtbsWJFbci85ppruPPOO/nzn//coPmZvXr14osvvqi9V821hjjce6+srOTCCy+sc+0///lPnV5QgAceeIAHHniAESNG8MADD/C73/2Om266iWHDhnHOOecwceJE4uLiGlRHc1FAlRb322AY7gf35cLPTni2AL4qh8eiIF4/kSIiIiJHFNXXCp45GwqO2MYnyE5U37BmqyEmJoYLL7yQN998E9M0ufDCC4mOjj5s26bonTNNs17oe+655+oM+QVrCG1DDBs2jM2bNx+z3fr16wkODsblcuF0Ornwwgt58cUXAavXePTo0bXv+4ILLuD666/nyy+/5Nxzzz2u93S836PDvff77rsPl6vu3o5nn312nSHUAJGRkbVfz5o1izvvvJMvv/ySH374gVdffZXHH3+cb775hv79+x9XTU1JcUA8Is4X5sXBW0XwSiGsroQr0mFaBFwQZO2rKiIiItKeTFx94REfM+zWL0eGYTDk9t58PnX5Edue9fTQOoFu3JLzmq7IA6ZMmcKtt94KwEsvvVTv8ZSUFAzDYNOmTVx66aX1Ht+0aRMRERHExMQc9XVcLhepqamcfPLJda7Hx8eTkpJyAu/g2Hr27Mknn3yCj49P7SrENTXNnz+fjIyM2vmbNdfnzp3boIC6adOm2jm7PXr0AGDz5s0MHjz4mM893HsPCQmpt2pxUFDQMb9HUVFRXHnllVx55ZU8/vjjDB48mGeeeYb58+cfs47mojmo4jGGAdeFwdvx0M0Xykx4KA/uzoEC17GfLyIiItKW+Ab6HPHw8Ts4pLPDaTFE9wvH+NVv8oYNovuH0/nsuAbd90SMGTMGp9NJVVUVo0ePrvd4VFQU5513Hi+//HKdFX8BMjIyePvttxk/fvwxh8POnz+f/Px8Lr/88hOqtzEcDgcpKSl07dq1NpwCfPbZZxQXF7NmzRrWrl1be7z77rssWrTomNvbbN68mcWLF9e+p0GDBtGnTx+effZZ3O76ezKeyHY5x8PhcNCtWzdKS0tb5PWORAFVPK6bA96Nh4kh1g/kV+VweTosKz/mU0VERETanZpeVPNXWcZ0w5DbezfrHpU17HY7mzZtYuPGjfXmQ9Z48cUXqaysZPTo0XzzzTfs3buXxYsXc95559GhQwdmzZpVp31ZWRkZGRns27ePFStWcN9993HTTTdx880311ldFqzQlpGRUef4dbBav359nQC5bt06AFauXEmvXr3Yv39/o977G2+8wYUXXsjAgQPp169f7TFu3DjCw8N5++23a9tWV1eTkZFBWloa69ev54UXXuDMM89k0KBB3HPPPYD133PevHls3bqV008/nc8++4wdO3bw888/M2vWLC6+uHFzhSsrK+t9j3JycgBrfuo111zDf/7zH7Zu3cqWLVt45pln+Oyzzxr9ek1FQ3zFK/gY8KcIOCcQHsixtqO5LRsuDYK7I6ztakRERETE0uG0GC5edCYcOn3RgKjezTf39NdCQ4++nU337t1ZtWoVM2bMYNy4ceTl5REfH88ll1zCjBkz6syHBJgzZw5z5szB4XAQFRXFkCFDWLhw4WGHCP961WCAJ554gvvvv7/2/IwzzqjzuN1up7q6mrKyMrZs2UJV1fFvJ5GZmcmnn37KO++8U+8xm83GpZdeyhtvvMEtt9wCwC+//EJCQgJ2u52wsDD69OnDtGnTuPnmm/Hz86t97rBhw1i1ahWzZs1i6tSp5OTkkJCQwMiRI3n++eePu06AxYsXk5CQUOdaz5492bx5M3369CEwMJC77rqLvXv34ufnR/fu3Xn99de59tprG/V6TcUwvW1dYS9UVFREWFgYhYWFx/yLKCeuwg1P5MO/D3wIlmiHx6NhgN/RnyciIiLSGlRUVLBz506SkpLw9/f3dDkiTeZoP9sNzVTqlxKv42+Dh6PgrzEQYbN6UydnwgsFUKWPU0RERERE2iwFVPFapwfAR4lwhr81emVeEUzIgB3HPxpDRERERERaAQVU8WqhNng+FmZGQpAB26rg6nT4RxG41ZsqIiIiItKmKKBKq/DbYPggHgY6oAp4rgCmZkFGtacrExERERGRpqKAKq1GnC/MjYPbw8ABrKmEK9Lh0xLQUl8iIiLS2mitUmlrmuJnWgFVWhXDgOvC4J146OYLZSY8lAd350CBy9PViYiIiBxbzb6hTqfTw5WINK2ysjIAfH19G30P7YMqrVKyA96NhxcL4O1i+Koc1qbDI1FwaoCnqxMRERE5Mh8fHwIDA8nOzsbX1xebTX1G0rqZpklZWRlZWVmEh4fXfgjTGNoHtQG0D6p3+7kSHsixtqMBuDQI7o6AAP2/XkRERLyU0+lk586duN1uT5ci0mTCw8OJj4/HMIx6jzU0UymgNoACqvercMPsfPik1DpPsMMT0TDAz7N1iYiIiByJ2+3WMF9pM3x9fY/ac9rQTKUhvtIm+NtgZhScGwgP50K6CyZnwqRQuCkMfOt/iCMiIiLiUTabDX9/f0+XIeJVNAhS2pTTA+CjRDjDH0xgXhFMyIAdVZ6uTEREREREjkUBVdqcEBs8HwuPREKwAduq4Op0+EcRuDWgXURERETEaymgSpv1m2D4IAEGOqAKeK4ApmZBerWnKxMRERERkcNRQJU2LdYH5sbBHeHgZ8CaSrgiHf5TAloeTERERETEuyigSptnGHBtKLwbB918odyE6XlwZw7kuzxdnYiIiIiI1FBAlXajqwPejYdJIWAHvi6Hy9Phu3JPVyYiIiIiIqCAKu2MjwF/jIA34iDRDgVu+GO2tTVNmfbJFhERERHxKAVUaZcG+FkLKF0cZJ1/XApXpsO6Ss/WJSIiIiLSnimgSrvlb4MZUfC3GIi0QboLpmTCCwVQpQWURERERERanAKqtHunBcBHiXBmAJjAvCKYkAE7qjxdmYiIiIhI+6KAKgKE2OC5GHg0EoIN2FYFV6fDP4rArd5UEREREZEWoYAqcogLg625qYMcUAU8VwC/z4T0ak9XJiIiIiLS9imgivxKrI+1yu8d4eBnwFonXJEO/y4BU72pIiIiIiLNRgFV5DAMA64NhXfjIMUXyk2YkQd35EC+y9PViYiIiIi0TQqoIkfR1QHvxMOkULAD35TD5enwbbmnKxMRERERaXsUUEWOwceAP4bD3DhItEOBG27Phodzoczt6epERERERNoOBVSRBurvZy2gdHGQdf5xKVyZDusqPVuXiIiIiEhboYAqchz8bTAjCl6IgSgbpLtgSib8NR+qtICSiIiIiMgJUUAVaYRTA2BRIpwZACYwvxh+lw7bnZ6uTERERESk9VJAFWmkEBs8FwOPRkKwAdur4XcZ8FYRuNWbKiIiIiJy3BRQRU7QhcHW3NRBDqgCni+A6zMhrdrTlYmIiIiItC4KqCJNINYH3oiDO8PBz4B1TmsBpX+XgKneVBERERGRBlFAFWkihgHXhMKCOOjuC+UmzMiDO3Ig3+Xp6kREREREvJ8CqkgT6+KAt+NhcijYgW/K4fJ0+Lbc05WJiIiIiHg3BVSRZuBjwG3hMDcOOvhAgRtuz4aZuVDm9nR1IiIiIiLeSQFVpBn197MWULokyDr/pBSuSIe1lZ6tS0RERETEGymgijQzPwOmR8GLMRBlgwyXtcrvX/OhSgsoiYiIiIjUUkAVaSEjA2BRIpwdACYwvxh+lw7bnJ6uTERERETEOyigirSgEBs8GwOPRUKwAdur4XcZML8Q3OpNFREREZF2TgFVxAMuCLbmpg72g2rgr4XWsN+0ak9XJiIiIiLiOQqoIh4S6wOvx8Jd4dY81XVOawGlj0vAVG+qiIiIiLRDCqgiHmQYMCEUFsRBd1+oMOHhPPhTNuS7PF2diIiIiEjLUkAV8QJdHPB2PEwOBTvwbQVcng7flHu6MhERERGRlqOAKuIlfAy4LRzejIMOPlDgtnpSZ+RCqdvT1YmIiIiIND8FVBEv09fPWkDp0iAwgH+XwpXpsLbS05WJiIiIiDQvBVQRL+RnwENR8GIMRNkgw2Wt8vt8PlRpASURERERaaMUUEW82CkBsCgRzg4AE3irGK5Oh21OT1cmIiIiItL0FFBFvFyIDZ6NgVlREGzAjmr4XQa8WQgu9aaKiIiISBuigCrSSowNgg8T4CQ/qAb+VmgN+02r9nRlIiIiIiJNQwFVpBWJ8YE5sXB3uDVP9WcnXJEOH5eAqd5UEREREWnlFFBFWhnDgN+FwsJ46O4LFSY8nAe3Z0O+y9PViYiIiIg0ngKqSCvV2RfeiYfrQ8EOfFcBl6XD12WerkxEREREpHEUUEVaMbsBt4TD/Djo6AOFbrgjB6bnQKnb09WJiIiIiBwfBVSRNqCPH7yfAJcFgQH8p8yam7qmwtOViYiIiIg0nAKqSBvhZ8Cfo+DFGIiyQaYLfp8Fz+WDUwsoiYiIiEgroIAq0sacEgCLEuHsADCBfxTD1emQ6vR0ZSIiIiIiR6eAKtIGhdjg2Rh4PApCDNhZDRMy4M1CcKk3VURERES8lAKqSBs2Jgg+SICT/KAa+FshXJ8JadWerkxEREREpD4FVJE2LsYH5sTCPRHWPNWfndYCSv8qBlO9qSIiIiLiRRRQRdoBw4CrQ2BhPPTwhQoTHsmH27Mhz+Xp6kRERERELAqoIu1IZ194Ox6uDwU78F0FXJ4OX5d5ujIREREREQVUkXbHbsAt4TA/Djr6QKEb7siB6TlQ6vZ0dSIiIiLSnimgirRTffzg/QS4PAgM4D9l1tzU1RWerkxERERE2isFVJF2zM+AB6PgpRiItkGmC6ZmwV/ywakFlERERESkhSmgiggjAmBRIpwTACbwz2K4Oh22Oj1dmYiIiIi0JwqoIgJAsA2eiYHHoyDEgJ3VcE0GzC0El3pTRURERKQFKKCKSB1jguDDBBjiB9XAi4UwJRP2V3u6MhERERFp6xRQRaSeaB/4eyzcEwH+Bqx3wpXp8FExmOpNFREREZFmooAqIodlGHB1CCyIhx6+UGHCo/lwezbkuTxdnYiIiIi0RV4ZUF966SW6du2Kv78/w4cPZ+XKlUdsO2fOHE4//XQiIiKIiIhg1KhR9dqbpsn06dNJSEggICCAUaNGkZqa2txvQ6RN6OwLb8fD70PBDnxXAZelw1dlnq5MRERERNoarwuoCxcu5M4772TGjBmsXr2agQMHMnr0aLKysg7bfunSpVx99dV89dVXLF++nE6dOnH++eezf//+2jZPPfUUf/vb33j11Vf54YcfCAoKYvTo0VRUaMNHkYawG/CHcJgfB518oMgNd+XA9BwocXu6OhERERFpKwzT9K4ZZcOHD+fkk0/mxRdfBMDtdtOpUyduu+027r///mM+3+VyERERwYsvvsjEiRMxTZPExETuuusu7r77bgAKCwuJi4vjzTff5KqrrjrmPYuKiggLC6OwsJDQ0NATe4MirZzThGfy4MNSa0uaWLu18u9J/p6uTERERES8VUMzlVf1oDqdTn766SdGjRpVe81mszFq1CiWL1/eoHuUlZVRVVVFZGQkADt37iQjI6POPcPCwhg+fPgR71lZWUlRUVGdQ0QsDgMeiIKXYyDaBlkumJoFz+Zb4VVEREREpLG8KqDm5OTgcrmIi4urcz0uLo6MjIwG3eO+++4jMTGxNpDWPO947vnEE08QFhZWe3Tq1Ol434pImzc8ABYlwrkBVk/q28VwVTpsdXq6MhERERFprbwqoJ6o2bNns2DBAj766CP8/Rs/3nDatGkUFhbWHnv37m3CKkXajmAbPB0Ds6Mg1Aa7qmFCBrxRCC71poqIiIjIcfKqgBodHY3dbiczM7PO9czMTOLj44/63GeeeYbZs2fzxRdfMGDAgNrrNc87nnv6+fkRGhpa5xCRIzs/CD6Mh6F+4AJeKoTJmbC/2tOViYiIiEhr4lUB1eFwMGTIEJYsWVJ7ze12s2TJEk455ZQjPu+pp57i0UcfZfHixQwdOrTOY0lJScTHx9e5Z1FRET/88MNR7ykixyfKB16LhXsjwN+ADU64Mh0WFYN3LcUmIiIiIt7KqwIqwJ133smcOXOYP38+mzZt4uabb6a0tJTJkycDMHHiRKZNm1bb/sknn+Shhx5i7ty5dO3alYyMDDIyMigpKQHAMAz+9Kc/8dhjj/HJJ5+wfv16Jk6cSGJiIpdccokn3qJIm2UYcFUILIyHHr5QYcJj+XBbNuS6PF2diIiIiHg7H08X8Gvjx48nOzub6dOnk5GRwaBBg1i8eHHtIkd79uzBZjuYq1955RWcTidXXHFFnfvMmDGDmTNnAnDvvfdSWlrKDTfcQEFBAaeddhqLFy8+oXmqInJknXzh7Xj4eyHMLYLvK+DydJgeAecEebo6EREREfFWXrcPqjfSPqgijbexEqblwt4D81EvCIT7I60FlkRERESkfWiV+6CKSNvTxw/eT4ArgsAAPiuzelN/qvB0ZSIiIiLibRRQRaTZOQx4IApejoEYO2S74IYseDYfnBrDISIiIiIHKKCKSIsZHgAfJsCoADCBt4vhqnTY6vR0ZSIiIiLiDRRQRaRFBdvgqRiYHQWhNthVDRMy4I1CcKk3VURERKRdU0AVEY84PwgWJcDJfuACXiqEyZmwr9rTlYmIiIiIpyigiojHRNrh1Vi4LwL8DdjghHHpsKgYtL64iIiISPujgCoiHmUYMD4EFsZDT1+oMOGxfLgtG3Jdnq5ORERERFqSAqqIeIVOvvDPeLghFHyA7yvgsjRYUurpykRERESkpSigiojXsBtwUzjMj4POPlBswj258OccKHF7ujoRERERaW4KqCLidXr7wXsJMC4YDOCzMrg8HX6q8HRlIiIiItKcFFBFxCs5DLg/El6JhRg7ZLvghix4Jh8qtYCSiIiISJukgCoiXm2Yv7UdzagAMIF3iuGqdNji9HRlIiIiItLUFFBFxOsF2eCpGJgdBaE22F0N12TA64XgUm+qiIiISJuhgCoircb5QVZv6sl+4AJeLoRJmbCv2tOViYiIiEhTUEAVkVYl0g6vxsJ9EeBvwC9OuDIdPiwGU72pIiIiIq2aAqqItDqGAeND4L146OVrLZo0Kx9uzYZcl6erExEREZHGUkAVkVaroy/8Ix5uDAUfYHkFXJYGS0o9XZmIiIiINIYCqoi0anYDbgyHt+Kgsw8Um3BPLjyYA8VuT1cnIiIiIsdDAVVE2oRefvBeAowLBgP4bxlckQ6rKjxdmYiIiIg0lAKqiLQZDgPuj4RXYiHGDtkuuDELns6z5qmKiIiIiHdTQBWRNmeYv7UdzfmBYALvlsBV6bDZ6enKRERERORoFFBFpE0KssHsaHgyCkJtsLsars2A1wvBpd5UEREREa+kgCoibdp5QfBRAgzzAxfwciFMyoS9VZ6uTERERER+TQFVRNq8CLs1L3VaBPgb8IsTxmXAB8VgqjdVRERExGsooIpIu2AYcGUIvBcPvXytRZMez4dbsiHH5enqRERERAQUUEWknenoC/+MhxtDwQdYUQGXp8GSUk9XJiIiIiIKqCLS7tgMuDEc3oqDzj5QbMI9ufBADhS7PV2diIiISPulgCoi7VYvP3gvAcYFgwEsLoMr0mFVhacrExEREWmfFFBFpF1zGHB/JLwWC7F2yHbBDVnwdJ41T1VEREREWo4CqogIMNQfPkyA8wOt83dL4Kp02Oz0bF0iIiIi7YkCqojIAUE2mB0NT0VBmA12V8O1GTCnEKrVmyoiIiLS7BRQRUR+ZVQQLEqAYX7gAl4phEmZsKfK05WJiIiItG0KqCIihxFhh1diYVoE+Buw0QnjM+D9YjDVmyoiIiLSLBRQRUSOwDDgyhD4IB76OKxFk57Ih1uyrcWURERERKRpKaCKiBxDoq+1Z+pNoeALrKiAK9Lgf6WerkxERESkbVFAFRFpAJsBN4RbQbWLDxSbcG8uTMuBYrenqxMRERFpGxRQRUSOQ08/eC8BxgeDAXxeBpenwcoKT1cmIiIi0vopoIqIHCdfA+6LhNdiIdYOOW64KQuezIMK9aaKiIiINJoCqohIIw31t7ajOT/QOl9YAldlwGanZ+sSERERaa0UUEVETkCgDWZHw1NREGaDPdVwbQb8vRCqtR2NiIiIyHFRQBURaQKjgqze1OH+4AJeLYRJmbCnytOViYiIiLQeCqgiIk0kwg4vx8C0CAgwYKMTxmfA+8VgqjdVRERE5JgUUEVEmpBhwJUh8H489HFApQlP5MMt2ZDt8nR1IiIiIt5NAVVEpBkk+lp7pt4cBr7Aigq4Ig3+r9TTlYmIiIh4LwVUEZFmYjNgahj8Ix66+ECxCfflwrQcKNZ2NCIiIiL1KKCKiDSzHg54LwGuCgYD+LwMLk+DlRWerkxERETEuyigioi0AF8D7o2Ev8dCrB1y3HBTFjyZBxXqTRUREREBFFBFRFrUEH9rO5oxgdb5whJrpd9NTs/WJSIiIuINFFBFRFpYoA0ej4anoyDMBnurYWIGvFYA1dqORkRERNoxBVQREQ85N8jqTR3hDy7gtSK4LgP2VHm6MhERERHPUEAVEfGgCDu8FAMPRkCAAZuqrCG/7xWDqd5UERERaWcUUEVEPMww4PIQeD8e+jig0oTZ+fCHbMh2ebo6ERERkZajgCoi4iUSfeGtOLg5DHyBHyqs7Wi+KPV0ZSIiIiItQwFVRMSL2AyYGgb/iIcuPlBiwv25cH8OFGs7GhEREWnjFFBFRLxQDwe8lwBXB4MBfFEGl6VZvaoiIiIibZUCqoiIl/I14J5ImBMLcXbIdcPNWTA7DyrUmyoiIiJtkAKqiIiXO8kfPkyAsYHW+Xsl1kq/G52erUtERESkqSmgioi0AoE2mBUNT0dBmA32Vlt7pr5aANXajkZERETaCAVUEZFW5NwgWJQAI/zBBfy9CCZmwO4qT1cmIiIicuIUUEVEWpkIO7wUA3+OgEADNlfBVRnwXjGY6k0VERGRVkwBVUSkFTIMuCwE3o+Hvg6oNGF2vrWIUna1p6sTERERaRwFVBGRVizBF+bHwS1h4AusrITL0+HzUk9XJtI0cjcXeroEERFpQQqoIiKtnM2A68Pgn/HQ1QdKTJiWC/dlQ5G2o5FWqqqsmm/uX82/LlnKN9NWU12uoQEiIu2BAqqISBvR3QELE+B3wWAA/1cOl6fBDxWerkzk+ORvK+Jfly1l2yd7Adj28V7+ddnX5G8r8nBlIiLS3BRQRUTaEF8D7o6EObEQZ4dctzUvdXYeVKg3VVqB1I/28PFlX1O8twzzwM+s6YaiPaV8fNnXpP5rj2cLFBGRZqWAKiLSBp3kb21HMzbQOn+vBMZlwMZKz9YlcjQ5Gwr4ZtoaXE43pqvuktSmy8TldPPN/WvI2VDgmQJFRKTZKaCKiLRRATaYFQ3PRkGYDfZVw3WZ8GoBVGs7GvFC4d2DCU8JwTjCbyeGDaL7hxPVN6xlCxMRkRajgCoi0sadHQQfJcAp/uAC/l4EEzNgd5WnKxM5KG1FNv+6eCklaQeH9v6a6YbBt/TEMIyWLU5ERFqMAqqISDsQbocXY+DPkRBowOYqGJ8OC4rAVG+qeFB5biVL7/2J/076nsJdpdh8bQR3CDhiL+rPr6dSVaoVfUVE2ioFVBGRdsIw4LJgeD8e+jrACTxVADdlQbZ+35cWZrpNNr+3iw8uWML2T/aBAV1HJzLmjVM4deagw/ai2nwNMlfl8Z8J3yqkioi0UT6eLkBERFpWgi/Mj4N5RfD3QvixEi5Lt3pXRwd5ujppD1xON/+dvIzMn/IACOsazMAbu5N8YQfsDjumaXLxojPh0N59A1yVLr64YQUhnYIoTislsrvmooqItDUKqCIi7ZDNgOvD4MwAuC8HdlbDtFxYUgZ/joJQja+RZmQYEBDph93fRu/xSfSbnExQfOAhjxtE9wk/7HMv+egsKnKduCtNcjYUEN3v8O1ERKR1MkxTs4+OpaioiLCwMAoLCwkNDfV0OSIiTarKhL8WwIJicAORB1b/He7v6cqkLdmzNIPwpGAMu43KAidVpdVUO110PDUWw3b8ix7lbCzAXWWy9uUtDLyxO3EnRTVD1SIi0lQamqn0GbmISDvna8DdETAnFuLtkOeGm7Pg8TwoP8JqqiINVZpZzpI/ruT/bvqBpfeupiLf2ow3qm8YnU6Pa1Q4BYjuE86Oz/ax9+tM/jvpe3Z/ldGUZYuIiIcooIqICACD/eHDBLjwwEjLD0pgfAb8UunZuqR1crtMNry1nQ/GLmHXF+kYNgjrEoQjxIfofuE4gn1P+DWG3N6b+GFRuJxultzyA1sX7W6CykVExJM0xLcBNMRXRNqbpWXwSB4UuK1PMq8Phd+HWb2tIseSvT6fZTPWkbuxEICIHiEMvKEHSaMTsfk27Wfj7io3X921il1fpAMw9O4+DPx99yZ9DREROXENzVQKqA2ggCoi7VGBCx7MheUV1nlPX3giGrqeeMeXtGH7vs3iixuXY7rBN8iHPhOS6HtdMgFRzTep2XSbfP/Iz2xesAuAvtclM/z+fhiGPlEREfEWmoMqIiInJNwOL8ZY288EGrClCq5Kh3eLQB9typEExfsTlBBIx9NjOe+V4Qy5o3ezhlMAw2YwcsYABt/aE4DNC3eRu6GgWV9TRESah3pQG0A9qCLS3qVXwX25sMFpnQ/1g8eiIFablbV7RXtL+eXN7Qy+tScl+8sBqCqrJqZ/OD4BLf8DsmnBTsxqk9hBkQTG+RMYo+WoRUS8gYb4NiEFVBERcJvwZhG8VghVQJBh9a6ODvJ0ZeIJLqebDfO2seblLbgq3fS9NpmUizvhH+VHcEKAx2vL31oEQEVBJTEDIvEL1dh0ERFP0hBfERFpUjYDpoTB2/GQ5AOlJkzLhXuzoUjb0bQrGT/l8q/Ll7LquU24Kt1E9wsnbmgUkb1CPR5OAewOG5G9wyhJK+OrO3/i3+O+oTSz3NNliYhIAyigiojIcUlxwIIEmBBi/SPyv3K4LA1W6Pf/Nq8i38m3f17DpxO+oyC1GEeoLyfd1ovRr4+wVuj18Z5fK2x2g5AuQRg2g8JdJXxy5TcU7irxdFkiInIMGuLbABriKyJyeGsqrJV+M1zW+RVBcEcEBHhPTpEm9L9bf2D3/zIA6HJuPANu6E7MgAivXi23eF8pn16zjNKMchyhvoydO5LofuGeLktEpN3REF8REWl2g/3hwwS4MNA6/6AUxmfAL5WerUuaXmWBk+QLOxKWHMxpjw3irL8MJXZgpFeHU4CQjkFc/MEZhCUH4yyq4j/XfMf+77M8XZaIiByBelAbQD2oIiLHtrQMHsmDArf16eeUUJgaBr7enV/kCKorXKz7+1aqy110u7Bj7XX/aAfB8YEerKxxnCVVfP775WStzcfmYzB6zggST4n1dFkiIu2GelBFRKRFnRUIHyXAqf7gBl4vgokZsKvK05XJ8dq/LItFv/2KtS9vZcP87ZSklYEBkb3DWmU4BXAE+3LBW6fS6cw4wpJDsDnsuJwuT5clIiK/oh7UBlAPqojI8fm4BJ7OhzITHMDt4TA+xFoJWLxXWXYFP8zewI5P9wPgH+mg/+QUel7VBb8Qh4eraxpul0nJ/jKcRdYnJ6FJQfgG+nj9UGURkdZO+6A2IQVUEZHjl1EF9+XCeqd1PtQPHouCWB/P1iX1mW6TzQt3seovG3EWV4MNksd0YMDU7kT1DvN0ec2isqiK4j2lbF64C9M0OfXhQdjsCqkiIs2loZlKvyaIiEiziPeFeXHwZhG8VgirKuHydHggAsYGe7o6OVRFvpMfn91IVUk1YcnBDLqxB0ljO2B3tN2ZQH6hvhS6TbZ8sBtM63twznNDsTvsni5NRKRdUw9qA6gHVUTkxGx3wr05sLPaOj83AP4cCWHKAh5TXenCx8+Oy+kmf2sRu7/MoLq8mn6TUwiK9fd0eS1m27/38s20NZjVJnFDIjn/tRE4gn09XZaISJujRZJERMRrdHPAggSYEGL9w7Ok3OpNXV7u6crap91L0vlgzBK2fLCb/K1FACSNTmDYPX3bVTgFSLmoE+e/Mhy7v43Mn/L4z9XfUp6nfZJERDxFAVVERFqErwF3RcDrsRBvhzw33JINs3Kh3O3p6tqHkvRy/u+WH/jfLSspTS9n84JdAIQlBRPZMwyjna5i1fH0OC586zQcob7kpxbzyRVfU7yvzNNliYi0SwqoIiLSogb5w4cJcOGB3Uo+LIVx6fCLOq2ajbvazfp52/jwgiXsWZKBYTfofmknzph9EtH9wvEN0pIUMQMiuGjB6QTE+FGSVs72f+/1dEkiIu2S5qA2gOagiog0j6/L4JE8yHdbn5hOCYWpYVZvqzSN7PX5fPfQWvI2W0N5I3uFMvCGHnQ9LwGbrz6n/rXSzHK2vL+bzmfFAxDVN0xb0IiINAHNQRUREa93ZiAsSoDT/MENvF4E12bAzipPV9Z2lKaXk7e5CN9gHwbd1IMxb4wk+YIOCqdHEBQXwEm39sIn0FrBK+37bPZ+nenhqkRE2g/96yQiIh4VZoe/xcKMSAg0YGsVXJUO7xSBW2N8jptpmhTtLQWgcFcJwYmB9JvcjfNeHc5Jt/ciIMrPwxW2DuHJIdj8bCyftZ7/u3kFW97f7emSRETaBQVUERHxChcHwwfx0N8BVcAzBXBjFmRWe7qy1qNodwmf/345H1+2lH3fZVFVYn3zhvyxFwlDozVU9TiFdw0mskcophu+e2gta1/d6umSRETaPAXU1s7phOXfWH+KiLRy8b4wLw7+GAYO4KdKuCId/lvi6cq8m8vpYs0rW1h00VfsX5ZNdYWL/K1FBET7Ed0vHJ8ALYLUGDZfG2c/N5TeE5IA+On5TSyf9TNavkNEpPlokaQG8MpFkkwTVi6DuS9BbjZEx8LkP8CwU0GfkItIG7DdCfflwo4D81HPCYCHIq0hwXJQ+socls1cR+EOK8XHDAhnwNTudD4nAZtd/x40lTUvb2H13zYDkHxBB8588iTN4xUROQ4NzVQKqA3gdQF11w6Y+yJs/NkKo6Z58M++A2DKrdAl2dNVioicsCoTXiyAt4utRZQibfBIFIwM8HRlnmeaJt89tJatH+wBwC/cl36TUuh1dVf8wxwerq5t2rxwF98/vA7TDd0v68wZjw/2dEkiIq2GVvFty16YDZs3WF/XfL5Q8+emDfC32Z6pS0SkifkacEcEvBELCXbIc8Ot2fBYLpS7PV2d57kq3WBA1/MTGD3nFAbd1EPhtBn1Gt+Vc/56MkHx/nQdlUDx/jJPlyQi0uZ4XUB96aWX6Nq1K/7+/gwfPpyVK1cese0vv/zC5ZdfTteuXTEMg+eff75em5kzZ2IYRp2jV69ezfgOWoDbbR1HfMzVsvWIiDSzgf7wQQL8Jsg6X1QKV6bD+krP1tXS8rcVUbS7hMoCJ7m/FNLzyi6cPmswZz49hJj+EZ4ur13oel4iVyweRWCsP5X5Tgp2FONy6t9dEZGm4lUBdeHChdx5553MmDGD1atXM3DgQEaPHk1WVtZh25eVlZGcnMzs2bOJj48/4n379u1Lenp67fHdd98111vwDnt3w/23wt+fh//7D6Ruhsp29luciLQ5AQeG9z4fDRE2SHPB5Ex4qcAaCtyWVZdXs+q5jfzrkqV8eceq2m1kwpKC6XFZZ3z8NDG3Jfn424nqGwbA3qWZvHfe/yjYUezhqkRE2gavWtbvL3/5C1OnTmXy5MkAvPrqq3z66afMnTuX+++/v177k08+mZNPPhngsI/X8PHxOWqAbZO2bbaOGjYbJHaC5O6QlAIXXAp2/UIjIq3PGYGwyA8eyoXvKuCNIvi2HJ6IhiRfT1fX9PZ9m8n3D/9M8T5rOKlvoA+uKjdxgyIxbFoEyVMMwyCydxhf3b2KsswK/n3Vt4x+fQSxAyI9XZqISKvmNT2oTqeTn376iVGjRtVes9lsjBo1iuXLl5/QvVNTU0lMTCQ5OZkJEyawZ8+eo7avrKykqKiozuFVbDbrONJj8Ylw3Y1w5nnQvRcEBVtDf/fthm/+Bx++DTu3QXYmVJTDonfg/X9CZlrLvg8RkUYKs8PfYmFGJAQasLUKrkqHt4vA3UZ6U8uyKvjyjh/5fOoKiveV4R/lx7B7+3Leq8OJPylK4dQL2OwGv3nndMJTQnAWVfHZxGXs+y7T02WJiLRqXtODmpOTg8vlIi4urs71uLg4Nm/efIRnHdvw4cN588036dmzJ+np6Tz88MOcfvrpbNiwgZCQkMM+54knnuDhhx9u9Gs2uz/eD28cYRXf3v3qr+LrdsP+vdbCSjtSrWuGAUWF1vGfRVBUABGRYAIhodaw4PVrrN7WpBRI6HDkUCwi4iEXB8MIP2s7mp+d8GwBLC2Hx6Igzmv+hTt+Ob8U8Nl1y6gqqcawQfKFHRkwNYXIHmGeLk1+JSDSj4sWnM7nU1eQtSaPL276gTOeGEzKRZ08XZqISKvUiv/5bpixY8fWfj1gwACGDx9Oly5deO+997j++usP+5xp06Zx55131p4XFRXRqZMX/UPTJRkefhZ+/N7aBzUnC6JiYMotcPLI+vug2mzQqYt1HKqiHAoL4PRzIW0vJHaE0hLr+GoxLFt6sK2fv/W6NUOEk1Ks+/lqtUgR8aw4X5gXB/OL4NVC+KkSrkiHaREwNqh1bg0dEO2Hf6QfQfEBDLqxB11HJ2J36ENCb+UI9uWC+SP58vZV7Pkqg6/vXU1FXiX9rkvxdGkiIq2O1wTU6Oho7HY7mZl1h8ZkZmY26fzR8PBwevTowbZt247Yxs/PDz8/vyZ7zWZhGDDsVBh0MqxeAUNGHH9Y9A+wjsk3H7xW5YTiIujZD1wuq+c1Yz9UVsDWjdZRw26Hjl0OBtZe/aBbj6Z5fyIix8EwYFIYnB5g9abuqII/58GScpgeaQ0J9mbOkio2/nMHfa7tRtHOEgBO+XN/InuHERTj7+HqpCHsDjvnvjiM76avJfXDPWStyafqymp8A73mVy0RkVbBa/6v6XA4GDJkCEuWLOGSSy4BwO12s2TJEm699dYme52SkhK2b9/Otdde22T39CiHA0ac0XT383VAZDRccIl1gBVat22GrZtg906rtzVtH5SVwu4d1rH0CxgyHH7/RwgNAx9f+HghdE2BgUO0IJOItIhuDng3Hl4sgLeL4atyWJturf57aoCnq6vPNE12/186y2etpyyzgrLMCnpc3gWbw0bH02MxWmP3bztmsxuc/tggEk6OIjwphMIdJYR0DsIvtA2u3iUi0ky8JqAC3HnnnVx33XUMHTqUYcOG8fzzz1NaWlq7qu/EiRPp0KEDTzzxBGAtrLRx48bar/fv38/atWsJDg4mJcUaVnP33Xdz0UUX0aVLF9LS0pgxYwZ2u52rr77aM2+yNfJ1QO8B1lHD7Ya9u6x5rTu3WYE1ucfBea0ZafDOXGto8DOvQmg4BAZZw4ZtNqvHNS5B81pFpMn5GnBHBJwTAA/kQroLbsuGS4Pg7ghruxpvULyvjOWP/czepdbIocA4f8K7hRCWHKxet1bMMAy6X9KZqrJqCneUULi9mL3fZDLo5h7YHfqwVkTkWLzqX8Dx48eTnZ3N9OnTycjIYNCgQSxevLh24aQ9e/ZgOyTQpKWlMXjw4NrzZ555hmeeeYYzzzyTpUuXArBv3z6uvvpqcnNziYmJ4bTTTmPFihXExMS06Htrc2w2a07qoYsxAZSXWUOEM9Ot4cc2A8rKrAPgn3OsObNgDS9O6gZJ3aFrNyu0duwCvvqkWURO3EB/+CABZufDv0vho1L4ocLajqa/B2dxuKvcbJi/nTUvbaG63IXhY9D94k70/30K4UmHX7xPWh/fQB8ieoTUzktN+yGH0X8fgSNY/8aJiByNYZpmG1mQv/kUFRURFhZGYWEhoaGhni6n9XEemNdaVAAf/BP277F6WKur67f18bFC6qGLMXXtZoVZEZFG+rYcZuZCvtvaX21SKNwYZvW2trRlM9execEuAKL6hDHwhu50GZWAzcdLunalSe1blsX/blmJq8JFeEoIF8w/lYAoL1/nQkSkGTQ0UymgNoACajOoqDg4r3XPIfNaK8rrt73+VjhnLPj5WT2z6fusXtew8BYvW0RaryI3PJQD31ZY5919rd7U5Bbs0KqudLHv60yWzVxH76uT6HNNEv4RCittXfb6fBZfvxxnURVBCQFc+I9TCekY5OmyRERalAJqE1JAbSEul7Xg0pZfYOf2g6F16h8h9sBKzl//H3z2kTV8+M4/W/NaTRNWLoOuyRCb0Dr3lBCRFvNJCTydD6Um+AK3hcPvQqwZCU3NNE22/2cfhTtL6PabjlSXuQCw+RpE9AjVIkjtSMHOYv573feUZVXgF+7ggvkjieypfW1FpP1oaKbyqjmo0s7Z7dbQ3uTuB6+Z5sF5rSXF1vzU6FiIT4D0/VabvBx4eqb1dUDgwaHBNUeHztbQYRER4LfBMNwP7s+FdU74SwEsLYfHoiC+Cf9XUbizhO8fWUfa8hwwIKxLMOHdQghPCcHHX4vltDfhSSH89v0z+GziMop2l7L4+uWMWzIKHz/9+yQicij1oDaAelC9UEUFlBRZwXXvLvjwbchIB9fh5rX6QuckSD4ktHZJtlYYFpF2yzThrSJ4pRCcQKAB0yLggqATG4hRXeni5zmprHstFXeVG5vDRs/LO9Pv+hRCNayz3assquKLG1eQ8tuOxPSPILJ3GDa7etJFpO3TEN8mpIDaSlSUW3NaU2vmte6zjsqK+m0NA+a8B+ER1nn6fggOhhANtxJpb7Y7rd7U7VXW+dkB8FAkhDeikzNtRTbfz1xH4a5SAGIHRTDg993pdHa8QojUMk2TkrRyKvOdAATE+hMUqw9NRaRt0xBfaX/8A2DASdZRo7oadm2DzRth93bYf2Beq68P5GZbB8Ccv8K2LXDTHTDqQutacZEVeqNjNa9VpA3r5oB34+HFAvhnMXxVDmvT4ZEoOPU4FhCvKq3my9t/pLKwCr9wB/2ndKPXVV3xC3U0W+3SOhmGQUiHQOwOGxmrcvnv5GX0m5LCoJt6aF6yiLR7CqjStvn4QEov66hhmtZerG4XlJRY1yorrT99/WD7Vuvr5d/AvxZAUPCBocGHbH2T2NGaMysibYKPAX+KgHMC4YEcSHPBbdlwaRDcHQEBR9gBxjRNDMM40CNWRu/fJVG4s4QBU7sT3Te8Rd+DtD6BMf4UpBbhLK5m9V83U55TySkP9sdojhW7RERaCQ3xbQAN8W0n8nOtoFpWaoXY//sUvvwvuN312zoc1rzWQ0Nr5yRrKxwRadUq3PBEPvzbGqVLoh0ej4YBv/rrnbeliGUz19FrfFciUkJqr0f0CMHu0AdY0nBrX93CT89vBqDrmETOfnoINl/tiysibYvmoDYhBdR2rKwUtm605rbu3W1tfZO+H5yV9dvabDDidLjzoYPXysuslYVFpNX5thwezoU8NxjApFC4KQwor2bNy1vY8OZ2zGqT4I6BnPOXoQQnBhAQrXmE0jhbPtjNshnrMF0mCcOjOe+V4fgGaqCbiLQdCqhNSAFV6qhywo5tVnDdvePAvNa9UFoCw0+Dy353sN30uyAqCp5+DYIP9LBUVoDDT/NaRVqBIjdMz4FvDqy1NmJVBqe++DMVaeUAJAyPZsDUFDqMjNWwTDlhu5ek89Udq3A53UT1DmPsmyPxC9McZhFpG7RIkkhz8XVAzz7WUcPttoJqceHBa9mZ1jzXsjLISDsYSP85B3btgKRudYcIJ3SwemFFxGuE2uD5WPjX9nJ+emI9Xb9LpwIwY/wZfn0KPa/ojCPY19NlShvR5dwExswbyRc3rgCgJK1MAVVE2h0FVJGmYLNBpy51r3XrAX0GWFveHNpbun+PFWR/Xm0dNfz8rf1Zkw7Zr7VzVysQi4hHDdlXRO536Zg2gzWXd+PHa3qyPNyHx/whwdPFSZsSPySKixaeTkWOE9MFORsLiO4T7umyRERajIb4NoCG+EqTKi2GLQfmte7bbfW8ZuyHqqr6be126NAZxl9nDR8WkRZTWejEL8xBeU4FpRkVbHl/F3EnR7NsZCKvltqoNCHQgGkRcEGQRu1L08vZUADAlg93k3JxJ+IGRXq2IBGRE6A5qE1IAVWandMJ2zfDlk1Wj2vagf1ayw4sIzrxBug7yPoNeNd2+OCfMPx0uO5Gj5Yt0hY5i6v46flNbPtkH2c9O4SASGv53uAOAfhHWF/vdMK9ubD9wOdKZwXA9EgI1+K90sTWzdnKqmc3Yfezce4Lw+h0RpynSxIRaRTNQRVpTRwO6D3AOmq43bB3F2zeAAkdrWumCambISvD6n2t2bM1MBAeuc/qbU1KOTC/NQXiEjWvVaSBTNNk1+dprJi1nrJsa6Xu9B9y6H5JJ8JTQjAO6SJNcsC78fBSAfyzGJaWw9p0eDQKTg3w0BuQNqnP75LZuzSTzJ/y+L+bf+CMxweTcnEnT5clItJs1IPaAOpBFa+SkwUbf7bCascD814z0+Evj9Zv6x8AXbvVndfasQv4alEXkUMV7S1l+aM/s++bLACCEgIYMLU7PS7thE/A0T/L/bkSHsiBNJd1fnEQ3BMBgfpsSJqIy+nmyz/9yJ4vMwAYdm9f+k9J8XBVIiLHR0N8m5ACqni90lIrtKYemNeattdaObi6un5bHx8rpCZ3hwnXQ1hEy9cr4kV+fiOV1X/bjKvSjc3HoPulnen/+xTCugQ3+B4VbngyHz4+MCo/wQ5PRMMAv2YqWtod022ybMZatry/B4D+16dw8t196vTsi4h4MwXUJqSAKq1SRQVs22wtxnTovNYKa/9GDAMe+YvVyxoSCl8utsLteb+B/oM9W7tIC/ruobVseX830f3CGTC1O13Ojcfm07juz2/L4eFcyHODAUwKhZvCwFcZQpqAaZqs/ttm1r5iTe8Y/foIOp6mOaki0jpoDqpIe+fvD/0GWUcNlwt274Atv1jDgh1+1lzXwgL44Tvrsc5JEBgEwSFWL+yni+rOa41N0HKl0qpV5DupKq0iINqfgm3FpPy2E8EdAul1VRf8w0+sy/P0APgoER7KgW8qYF6RFVpnR0OyRtbLCTIMgyG39yYgyo/i/WX4h/tRnlNBQLS/p0sTEWky6kFtAPWgSptmmlBeBj+tsHpbBw6BiCjrsW+WwKcf1m0fEFh3TmtSirU4k48+7xLvZpom2/61l5VP/UJQQgCnzhyIYTPwCbQTlhTc5EMl/1MCT+VDiQm+wK3hMCEEbPp8R5qAy+kmf2sRAKYBYZ2DcIToUxAR8V4a4tuEFFClXaqstOa0rv0R9u2xhgdnplm9sL/m42v1vCZ1g9794azzW75ekaMo2FHMshnryPgxF4CQToGMnD6Q+GFR+Pg1394wWdVwfw6sdVrng/3gsShI0Oc50gTc1W4yf8rju4fWYvM1GPvmqQTGqDdVRLyTAmoTUkAVOaCi3OplTa2Z17rPOiorDrZJ7g5/uBtCwqy5rW+/DpFRcM5Y61ykBVVXuFj32lZ+npOKu9rE7rDR88ou9L8+heDEwBapwTStrWheLoRKEwIMmBYBFwZptLycuLwthXw2cRmVhVUExftzwVunEdo5yNNliYjUo4DahBRQRY6iuhp2bYMtG2HXdoiMhmGnWo+Vl8PMu6yvpz8F8YlWSP3hO2sObM0Q4ehY/aYuTa54Xyn/nbKc4j3W0rpxJ0XSf2oKnc6Ix2Zv+Z+3XU64Jxe2V1nnZwbA9EiIaL4OXGkninaX8OnEZZRlVuAX7svYeacS1TvM02WJiNShgNqEFFBFjpNpQlkpZKXD//4L+Xlw+e8OPv763yB188HzoOADYbX7wdCa2BHs+s1dGq+yyMm/x31LZZGT/lNS6Dm+C34hDo/WVG3CywXwj2JwAeE2eCQKTgvwaFnSBpRlVfDZdd9RuLMUn0A7570ynMThMZ4uS0SklgJqE1JAFWkilRVQVGhtabMj9eC8Vre7fluHAzonQ3IKdE2B/oMgoWOLlyyth+k22fbxXrqOTaR4Txlup5uS9HJCOgZ6XW/Sz5XwQA6kHZjSfXEQ3BMBgY3b3UYEgMqiKhZf/z056wuw+Rqc+8JwOp+lbWhExDsooDYhBVSRZlRWCls3WnNb9+629mtN3w/OyrrtLrgMLhlnDREuLoJlS6FbT+jT3yNli3fJ3VTIspnryF6XT88ru9BrfFcAInqEYnd4Z+qrcMOT+fCxNQKZBDs8Hg0DT2ynG2nnqitc/O+WH8jdXMQZswaRODLWa/8OiEj70iIB9dtvv+W1115j+/btfPDBB3To0IF//OMfJCUlcdpppzX2tl5HAVWkhVU5rR7WrRth907YvxfOGQ3JPazHf15tLb7UsQs8+LgVWv0D4PNPICrGGiIcGa15re1AVWk1q1/YzC//2IHpMvEJsNP32mT6XteNgKjWkfSWlcPMXMh1gwFcFwI3h4OvfnylkdzVbvK2FFr7zwDh3YLxCdDS0SLiWQ3NVI3+v9WHH37Itddey4QJE1izZg2VlVZvR2FhIY8//jifffZZY28tIu2drwN69rWOGjXzWouLICgI+g60Fl0qKrSO6ip448WDw4VDQuvPa03oADb1JLQVu5eks/yx9ZSmlwOQeEoMA6Z2J3FENEYr2mz01ABYlAjTc+HrcnizGL6rgCeioJtnp8xKK2XzsRHdN4LKQifFe8vY+M+dFKeVMfKhAa3q74aItE+N7kEdPHgwd9xxBxMnTiQkJIR169aRnJzMmjVrGDt2LBkZGU1dq8eoB1XEi1WUW6E1Iw3+/b41rzUr4/DzWv38oUuytRVOUgp07Wbt3+qrze1bm7WvbuWn5zcBEBjrz4Dfp9Dj8i74BrXuXqJPS6xhvyUm+AK3hMM1IaBMIY1VuKuERRd9ibvKpMt5CZz97FAN+RURj2j2Ib6BgYFs3LiRrl271gmoO3bsoE+fPlRUVBz7Jq2EAqpIK1NabG17s3Uz7Ntlhdb0fVBVVb/t9Ceh9wArpO7abvXSdu0GgdpH0FuZbpO9X2fy1V2rSBqdSP/ruxOREuLpsppMVjXcnwNrndb5IAfMioaE1p29xYO2frSH7/68FtNlEj8sivNfGdHqP8wRkdan2Yf4xsfHs23bNrp27Vrn+nfffUdycnJjbysicuKCQuCk4dZRo8oJ27YcnNeathcyM8AvAPbstNq8/w9YtRwuuBQmXG/1uJaWwJZfrB7XiCjPvB8ha10e6Sty6H5ZZ8oyKwiM8ef8V0YQd1IkNt+21RsU6wNvxME/i+HlQiuoXpEO90fAb4I0tVqOX49LO+Mf7uDLP/1Ixspc/jPhW8bOG4l/ROuYpy0i7UujA+rUqVO5/fbbmTt3LoZhkJaWxvLly7n77rt56KGHmrJGEZET5+uA3v2to4ZpWgG0uBDKyiAgEMIirIWW9u2x2mzeAPNetr4OCz9kTms368+4RM1rbUaVRVWsem4jmxfsAhP8IxxE9QknuEMg/hFtd4KmYcC1oXC6P9ybC9uqYEYeLCmHGZEQoS2C5Th1PjuesW+eyudTl5O3uYiPr/yGC986leDEQE+XJiJSR6OH+JqmyeOPP84TTzxBWVkZAH5+ftx99908+uijTVqkp2mIr0g7U1YGJUXW3NZf1sLiTyA70wq0v+YfYA0JrlmIKSnFWl1Y81pPiGma7Ph0Pz/M3kB5jrUIX6ez4hgwNYW4k6Iw2lE3YrVp9aT+owhcQLgNHo6C0wM8XZm0Rvnbivjsuu+pyK2k1/gunPrwIE+XJCLtRIvtg+p0Otm2bRslJSX06dOH4ODgE7mdV1JAFRGKi2DzL5C6Cfbttua1ZuyH6ur6bSOj4eV/gs+BQSp7d0N0jNVDK8dUtLuEZQ//TNr32QAEJwYw8IYepFzcsV1vlbG+Eh7Ihf0HfuQuDoJ7IiBQHfhynErSy1nz0mZ6jeuKYTOI6hvWrj70ERHPaLGA2h4ooIrIYVVWwrbN1oJMew7Ma03fB52TYcotB9vNmmYF3Eeeg979rGt5OWC3W0OKpZa72s175/2P0vRybL4GPS7vQv8pKYR21qJVABVueCof/lVqncfb4YloGKiphNIIBduLqS534apyY7pN4odonr2INJ9mXyTpkUceOerj06dPb+ytRURaBz8/az/WvgMPXnO5IDfb6lktL7O2weFAz4Tphu1bra8/fg++XwoRkXX3ak1Kgdj4drsSTnlOJT2v6MLerzMZMLU7nc+Jx2Zvn9+Lw/G3wfQoODcQZuZChgumZMLEEPhDOPjqWyXHIbxbCIW7S/hx5s+kr8zh9McG0f3Szp4uS0TauRPaB/VQVVVV7Ny5Ex8fH7p168bq1aubpEBvoB5UETlh2ZnW3qwlxdb5u3Nh3U+Hn9caEFg3sCalQIfOB4cMtyHleZX8+NQvJI6MITzZ2irGNE1COgfhH9Z2F0FqCsVumJELS8ut824+Vm9qir5tchzcVW6+vHMVu/8vHYCT7+nDgOu7e7gqEWmLPDLEt6ioiEmTJnHppZdy7bXXNtVtPU4BVUSaRWGBtUpw6mbYv8caIpyRDq7DzGv18YVLxsNVk6xzl8vaOse/da6UY7pNti7aw49P/0JlYRX+kQ7Oe2k4fuEOwpLa3loGzemzEpidDyUm+AK3hMM1IWBTb6o0kOk2+f7hdWxeuBuAfpO6Mey+vpqXKiJNymNzUNevX89FF13Erl27mvK2HqWAKiItpqIctm6yFmPas9NajCltH1RWwG+vhFPPttplpsNzj0G3HjD7pYPPr6yw9m/1YvmpRSybuY7Mn/IACO0axMAbetDtNx2wO7R/SmNkVcO0XFhjLXjMQAfMiobEttfpLs3ENE3WvLSFNS9uAaDbRR0544nB2Hy0CpeINI1mn4N6JIWFhRQWFjb1bUVE2gf/ABhwknXUqK6GXdusXtMa6fus4cEu18F5rQDPPmK1T/7VvNboWI/Pa60ur2bNy1tZP28bZrWJ3d9Gr3Fd6Te5G8EJWuH4RMT6wOux8E4xvFgI65xwZTrcFwEXBXn8P720AoZhcNKtvfCPcLB81nq2/3sf7io35zx/sqdLE5F2ptEB9W9/+1udc9M0SU9P5x//+Adjx4494cJEROQAHx9I6VX3WnJ3GHEG5GQcvOasPLhfa14OrFp+8LGg4ANh9ZDgmtjRWkm4hWT/XMDPc1IBiD85igFTu9PxtFgMjUVtEoYBE0LhNH+4NxdSq2BmHiwpg5lREKHOaWmAPhOS8Y/y47sH19JhZAwlaWUEJ+oDJBFpOY0e4puUlFTn3GazERMTwznnnMO0adMICQlpkgK9gYb4ikirkZ8LmzZY29/s32sND85MsxZo+jWHw9oSZ+ofraHCzcDldGN32KgqraZwZwm//GM7kT3D6DmuC45g32Z5TYFqE14phLeKwAWE26yQekbrnLIsHlBR4KRkXxkAvsE+hHYJ0pxUETkh2ge1CSmgikirVlYKWzdac1v37raGB6fts3pcAe6eATFxYPeBH76F5d/A6Itg7CWNfkm3y2TzuztZ9/dUTn98EP7h1kadjjBfQjtpT9OWsqHSmpu6/8C6W78NgnsjIFDTCqUBTNMk95dCCneVsPaVLZz38nBCu2gRMxFpHAXUJqSAKiJtTlUV7Ei1gmuvfmA7kFjemQvrVsGY38LZY6xrlZXwwhP192uNjD7s5MacXwpYNmMdORsKAOh+aSf6TEgmokcodoeSUUurNOHJPPhXqXUeb4fHo2GQn2frktbBNE0+vvxrcjcW4hfmy5i5I4nuG+7pskSkFWqWgHrnnXc2uIC//OUvDW7r7RRQRaRdME1rq5uN6yE0zFpYCeDn1fD26/Xbh4TWmdfqjEti9cIiNr6zE9MNPoF2+kxIps/EZIJivHtl4fbg+3Jr39RcNxjAxBD4Qzj4atSmHEN5TgWfTlxG4Y4SfALsjHppGB1Gxnq6LBFpZZoloJ599tkNamcYBl9++WVDb+v1FFBFpF3Lz4Vf1sG2rZC2xxoenJVRZ17rrqJklqedSVm1NfyvS1IxfaafT8KIGM1b8yLFbpiZC1+VW+fdfOCJaEhxeLYu8X7OkioWX7+c7HX52HwMznz6JJLHdvR0WSLSimiIbxNSQBUR+ZXSYthyYF7rvt2sXBLE+p3dCXEUMDJhKR06l2Hc/6i1AnFoGCx409r+5pLx0Kmrp6tv9z4rgdn5UGJay/nfEgbXhoIWVJajqa50seTWlez7NgsMOOXP/ekzIdnTZYlIK9Fi+6Bu3LiRPXv24HQ6a68ZhsFFF110orcWEREv5XYEUdFxIP4Dh5G3pZDOZ7tw/WcPfU7rQFiJvzVvFaxQmpsD3y+F8nIYONSa/xoSChvWwk8r6s5rjYjy5NtqNy4IhpP94f5cWFMJfy2EpeUwKxoSm3yHdGkrfPzsnPfqCL59YDXbPt5H6kd7Sbm4k1bkFpEm1ege1B07dnDppZeyfv16DMOg5jY1Q7lch24o38qpB1VE5KDM1Xksm7EWm6+NU2cMxLBb/9+P7BWKzedXiyCZJhQXwopvYcc2OPt88Dnwy+wH/4Qfv6/bPiwcuqZA8iGhNS7x4CJO0qRME94phhcLrcWU/A24L8Ja7Vcjs+VITNNkw7ztRPcPxzfA2oLGEaKQKiJH1+xDfC+66CLsdjuvv/46SUlJrFy5ktzcXO666y6eeeYZTj/99EYX720UUEVEoLLAyY/PbmTL+7sBcIT4cNpjg0kcHo1f+HFOYiwvh/WrrV7UtH3W4kzZmVZi+jX/AOjazQqrg0+Gk4af+JuROvZUwT05kFplnZ/ub+2bGmH3bF3i3Wr2NzZNk5wNBfS4vItW6haRI2r2gBodHc2XX37JgAEDCAsLY+XKlfTs2ZMvv/ySu+66izVr1jS6eG+jgCoi7Zlpmmz/9z5+mL2BijxrOkfnc+IZcEN3YgdGNN0iSMVFsPkXSN0E+/ZYoTVjvzVMuMaI02HcRAgJA4cD5r9qhdfRvwW70tSJcJnwSiHMLwIXEGaDh6PgjABPVyberLrSxY/PbGTjP3YQNzSK818driG/InJYzT4H1eVyERISAlhhNS0tjZ49e9KlSxe2bNnS2NuKiIgXqch38tWdP5K2PAeA4I6BDLqhO91+2wkf/yYOhCGhcPIp1lHD6bQC65aNsGcnpPS05rDm5VjnXy6G4BBrL9fQMCu4/vdfYLqtHteuKRAe0bR1tlF2A24Nh3MCrLmp+6rhT9lwURDcGwFB6hiTw/Dxs9Px9Fi2vL+LzFW5/GfCd4ydN5KASG20KyKN0+iA2q9fP9atW0dSUhLDhw/nqaeewuFw8Pe//53kZK3oJiLSFvgE2inLqsTmsNHzii70m9KN0I5BLVeAwwF9B1pHDbcbSkus49yxgGENDS4ssI5P3oeigoPtwyMguXvdxZhiEzTJ8gj6+MH7CfB0HnxUCv8uhZUV8HgUDNZ2tnIYnc6I44L5p/L575eTv6WIT678mgveOo2QDoGeLk1EWqFGD/H9/PPPKS0t5bLLLmPbtm385je/YevWrURFRbFw4ULOOeecpq7VYzTEV0Tak/SVOcQMiKAi30lFbiVFe0uxO2x0Oisem92LQ115GRTkw2cfwf691hDh3OzDz2sNCKwbWAcO0QrCh7G8HKbnQq4bDOCaELglHBxe/GMgnlOwo5jPJi6jPKcS/0gHF8w/lYju+r1JRCwe2Qc1Ly+PiIgmnI/kJRRQRaQ9KM+t5IcnN7D9k310v6wzfX6XBNC6V+gsLIDNGyB1M+yvmdeaDq7quu2uvxVOOdMaZrxnJ2zdCD37WvNb27liN8zMha/KrfNkH5gdDSnHuS6WtA+lmeV8es13FO8twxHiw5X/Ow//MP2wiEgL7oN6qMjIyKa8nYiItADTbbLl/d38+OxGnEVVYIDb6cIR4kNol2BPl3diwsJh+GnWUaOiHLZusua27tllhdbYBKu3NTcb/u9T+N+nMGQE3HC7Na/Vbof/fAhJB1YTDgnz1DtqcSE2eDYG/lsKs/NgRzX8LgP+EAbXhlpzV0VqBMUFcPH7Z/Lfyd/T4bRYSvaW4Qj29e7RFyLiVRrdg/r73/+ea665hrPOOquJS/I+6kEVkbYqb0sRy2auI2tNHgBhScEMvLE7yRd0wO5oR6viut1QWgxFRbD8G1izEvoPhpNHWo9npMFzjx1sHxUNSb+a1xod2+bntWZXw7RcWF1pnQ9wwOPRkNikH3dLW+CudlOaUUFlgbXyd2jXIK3uK9LONfsQ34svvpjPP/+cmJgYrrrqKq655hoGDhx47Ce2QgqoItIWbftkL988sAaz2sTub6f31V3pd10yQfFa2ASw5q6WlUJJEWzbavWqpu2zelkPJyj4QFitCa7doENnsLWt5W9NE94thhcKodIEfwPui4DfBrX5fC6NUJZVQcH2Yr6bvpaeV3Zh4A09PF2SiHhIi8xBzc/P5/333+edd97h22+/pVevXkyYMIHf/e53dO3atbG39ToKqCLSFmX8lMPiKcuJHRTJgKkpdBgZi2FTwjim/FzYtB62bTmwGNM+yEyzemEPZRjw0j8gKsYaIrxpPfj4Quck8Gv9W3DsqYJ7ciC1yjo/zd/aNzWiHXW8S8Osm5PKqmc3AtDn2mRGPNCvza1XIiLH1uKLJO3bt493332XuXPnkpqaSnV19bGf1EoooIpIW1CaUc7uJemkXNyJol2lgNW7kTA8Gt8gjdE8IWWl1sJKWzfB3t3WvFa3G26992Cbl562FmC6/jYYNRZ8HZCdaQ0fTkqx9nNtZVwmvFoIbxaBCwizwcxIOFOd8HII0zRZ+/IWVr+wBYDkCztw5pMnYfNpW6MLROToWnSRpKqqKlatWsUPP/zArl27iIuLa4rbiohIE3BXu9n49k5++usmqstcGHaDmH4R+IX7Et0v3NPltQ2BQTDoZOuoUV1tBdfiQqiosFYIDgq29mXds8tq8/X/WdvigDWH9df7tUZGe/W4WbthbTtzdgDcnwv7quGOHPhNINwXCUHKHwIYhsHgW3rhH+XP94+sY8en+6nId3LeS8PwCdCHYyJS1wn1oH711Ve88847fPjhh7jdbi677DImTJjAOeec06aGbqgHVURaq+z1+SybsY7cjYUARPQIZdBNPeh6XgI2X6WHFud2H5jXWgylJfDdl7DsK8jLPXz7kNBfzWtNgYQOXjmvtdKEp/Pgo1IwgTg7PB4Fg/09XZl4k52fp7H0np9wO91E9wtnzBun4KdtaETahWYf4tuhQwfy8vIYM2YMEyZM4KKLLsKvDcypORwFVBFpbZzFVax6bhOb3t0JJvgG+dDnmiT6TkwmIEqJwevkZh/Yr3ULpO2x5rVmZdSf1wrQbxA89KQ1rxVg1w7o0NEaMuwFVpTD9FzIcYMBTAiBW8PB0XY+t5YTlLYyh/+7aQW+QT6c/ZehJJwc7emSRKQFNHtAnTNnDldeeSXh4eGNrbHVUEAVkdbENE0+vvzr2l7TjmfEMuD33Yk/OapNjW5p80qLYcuBea37dlsLMmXsh+Gnw0VXWG3Ky2Dm3VZY/ftCa99XgMx0a05rkGf2sS1xw8xc+LLcOk/ygdnR0N07MrR4gdzNBRTvKSM4MRDDxyCqV/vZW1ikvWrRRZKWLVvG0KFD1YMqIuIFnMVVbHx7J5sX7mLg1O50v7ST5nm1FVVOyM2FaidUVlo9rXP+aq0KfP8h+7TO+au1ynBsfP15rRFRLVbu4lJ4Ig+KTWvRi5vDYGKoNXdVBCBnQwEA+7/PJvGUaGL6R3i2IBFpNi0aUENDQ1m7di3JyckneiuvpIAqIt7M5XSzYd42ghIDCU+yesxM08QR6iCsS5CHq5Nm53ZDVvqBfVvLrGt/fcJaSfhwwsKhawokHxJa4xKbbV5rTjVMy4WfKq3z/g54PBo66DMTOWDroj1899BabL42Rr04jI6nxXq6JBFpBi0aUENCQli3bp0CqohIC8tYlcuymeso2FaMI9SXUS8MwzfIh8heodrCob3LyoTNB/ZrTdtnBdbsTCvI/pp/APz+NjjrfOu8ygkY4OvbJKWYJiwogRcKoMIEfwPuCYdLgr16kWJpIc6SKj7//XKy1uZj+BicOfskuv2mo6fLEpEm1qLbzIiISMuqyHey8ulfSF20BwBHqC/9JnUjomcI/uFtc7qFHKfYOOs4Y9TBa8VFsOWXA/Na91ihNSMNKsqhvBy2b7XabVgL77wBI8+C26cdfH5lpTWc+DgZBlwdAqf6w705sLUKHs2Hr8phZhRE2k/onUor5wj25YK3TmXJbT+y9+tMlt7zExV5lfSd2M3TpYmIB5xwQN2/fz8vv/wyMTExTVGPiIgchWmapH60l5VP/UJlgROALuclMOD3KcQMiNAiSHJ0IaEw9BTrqOF0Quom8As4eC1tL7hc4Kw8GFpd1fDQHRATV39ea1jD5g129oW34+G1QphXBN9VwOXpMCMSzgpswvcprY7dYWfUy8P57s9rSP1oLyse30BZTiVD7+it/6+JtDONHuK7bNkyrrnmGvbssT69j46OZtKkSTz44INtbhishviKiLfI+aWAjy//GoCQzkEMvKE73S7qiI+fuqCkCblcsGentV9r4IF5zPv3wt+eOHz7iMi6gTUpBWITjjp+d2Ml3J8L+6qt898Ewn2REHRgZLrLhLXFTmyrV+A+aQSDQhxaXKkdME2TVX/ZxM9zUgE486mTSPltJw9XJSJNodnnoPbr14/OnTvz2GOPERoayvfff89f//pXCgsL+frrr+nQoUOji/c2Cqgi4kmmaWIYBu5qN3mbi/j5jVQCIv3of30KwYnqdpIWlJFm7de6fasVWNP2Wnu4Hu5XiYBAK6je8WcrwB5GpQnP5MGiUjCBODvMioJ8l8myr5dxw6KXiC/IJj08ljmX/YFTzzyVc4OUUtuD9W9uI/PHXAbe1IPgDoEERGrqgkhr1+wBNSAggHXr1tGjR4/aa6ZpMm7cOADef//9xtzWKymgioin7Psui5VP/cKpMwdgdxzoJbVBZM8wbOpOEm9QWACbDizGtL9mXmu6NSTY7gOPPmft0+pwwL8Wwt5dcOW1cPLI2lusKIfpuZDjhu5pO7h30YsM2fEzLsPAbpq1f67qNoDqKbcyomfbXJRR6qqurKYgtQQAR4gP/lF+OIKbZuEuEWl5zb5IUu/evcnKyqoTUA3D4JFHHmHYsGGNva2IiABlWRWsmL2BnZ/tB2Dd31M56dZehHYN0i9o4l3CwmHE6dZRo6L8wEJMu61wCtZc162bIH2fdWzfaj22azsjPnyHT5O683lsCoO++TcJ+VkA2A98hl7z5+AdG9j90mxcf/27hvu2Az5+1orkOb8U8u1Da6nMdzL2zVMJiFJvqkhb1uiAOmnSJG677TY++eQTOnU6ODdAvYwiIo3ndplsXriLVX/ZSFVJNdggeWwHBkztTlSvME+XJ9Iw/gEw4CTrqOF2w5+mweZfoFNX65rLBVs2Qvo+fNP38Ru+Oupt7aYbt8vFmkoY6t985Yv3sPnY8AvzJW9zEc6iKj658msueOs0QjpqeoNIW9XoIb62Axt6OxwOLrvsMgYNGoTL5eKf//wnDzzwABMmTGjSQj1JQ3xFpCXkbipk2Yy1ZP9cAEB4txAG3tidpDEdsDu0p6m0QaYJmemwcR1sTyU9PYOoX1bjcFUf+SlAXq+BRD327MGLq3+wFnNKSgE/Jde2qGBHMZ9dt4zy7Er8Ihxc8OapRPbU72QirUmzz0HNzMxk7dq1rFu3jrVr17J27VpSU1MxDIPevXvTv39/BgwYwIABAxgzZkyj34g3UEAVkZaw6rmNrHstFZ8AO71/l0Tf67oRFKtftqX9WFUB4Xf/npSMXUdtV9izP2FTbj544eF7oKwUHnwCUnpAQBCs+h7Wr4XYeIhLOPhnUHCzvgdpPqWZ5Xx27TKK9pTiG+TDea8NJ2FotKfLEpEGavaAejgVFRWsX7++TnDdsGEDBQUFTfUSHqGAKiLNxVlchSPEl6K9pZRnV7LxnzvocUUXEkdEY9g0yU7aF5cJu2+/gS7pu7Cb7vqPGzb2xHYk6uY7CA0Jgupq63jjBcjPtVYMrulBXfQO/PBd/RcJDLK2wIk/EFpj463zuHiIibcWcxKvVVno5L+Tvyd3YyE2h41znj+ZLufEe7osEWkAjwTUtkoBVUSaWklaGcsfW09JWhmnPjyodkXesKRgfIMavTyASKu3YssOfOa+yNDth1/F96lLb6WgYzKPRx9mHmplJVSUQVkZrP0RdqRCXi7k5VgBtqT46C/eZwA8MMsKuYYBH75jbZEz8kxrXq14heryar64+QeyVucxcsYAul3USdMgRFqBZl/FV0REjp+7ys0vb+1g9YubqS53YfgYFKQWkXBKDCEdtOiHyIieySyZ/iwPf/M9N3z4EgkFWWSFxTDn8ltIGDGSojKDHBfcmAW/C4HbwsFRM9jAz886wiIg4Vf7sbvdUJgP+/ZA2j7ITKsbXvNyISTU2t8VoLIC3p1rfZ3QESIjwT8QPvsItm48OGw4tmb4cDyEhlvBVpqVT4APY+acQtrKHPzDHORvLSI8JQQff7unSxORJqAe1AZQD6qINIWstXksm7GOvC1FAET1DmPADd3pOioBm68+/Rc5lMuEtcVObKtX4B4ygkHBDuwGlLnhkTz4osxql+wDT0ZDtxMdmVtdDSVFUFVlbZOTnweff2L1uk688WC7N160Aurh+PnXnfNa83XnrhCXeIIFyuFUFjgp3ldGwY5icjcXMuzuvpoeIeKlNMS3CSmgisiJqK5w8cPsDWxeuAtM8A32oe+1yfS5Jln7+Yk00uelMCsPSkzwBf4YDleHQLNlkyonlJfD5g2weyfkZlm9r3kHel+LC61ViQ/nlDNg0h8gMNBq8+pfrOB61eSD+8SapnpfG6kko4x/XbKUyoIqksZ24KynTtKHfiJeSEN8RUS8hN1hI2tdPpjQ6ew4Bk7tTuzgSAz9MirSaKODYLAf3J8Da53wbAF8Uw6PRUFMc/x24+uwjmGnWsehTNPqad23B9L2QHoa5B8SXmPioCDPOjLS4PuvrTmtI86wQmlAoLXQ097dVnA9tAe2ZhhxRCTYFLoOJzg+kJPv6suyGWvZ+d/9VBY4Oe/lYfgE6NdckdZIPagNoB5UETleRbtLCIjxx11tUrynlKK9pTiLqki5uJPmSYk0IdOE+UXwSiFUASEGTI+Ec4M8XdkhXC5r2HBFubXv6w/LwFUNZ48+2ObZRyAr48j38PGF2LiDKw7HxkPfQZDSs9nLby12L0nnqztW4XK6ieobxtg3RuIXrlWZRbyFhvg2IQVUEWkol9PFz69vY92rW0kam0jfa7sBEBDjR1CcVgEVaS7bnHBPDuyuts5/Ewj3RUJQa+h0rK62elb374G0vZCTdbD3NS/HWtzJXX/bHc6/CMZeAgEBUFgArzwLXZLhtvsOtsnNhuBQa/GodiB9VS7/d+MKqkqrCe0SxAXzTyUoXv/vFfEGGuIrItLC0n/IYdnMdRTuLAGgeG8Zptskqm947TYyItI8UhzwXgI8mw/vl8B/ymBVJTwRDQO9PZv5+EDHztZxOGVl1tDh/fsgY78VYPNzoVMXcFZax+YNsGu7tfrw9q0Hn/v8LEjfb61sXDN0+Nd/RsUcnAvbyiUMjeI375zGfyd/T9HuUr5/9GfOe2m4p8sSkeOgHtQGUA+qiBxNeV4lK5/8hW0fW9tT+IX70m9SCr2u7op/mIaXibS0H8rhz7mQ6wYDmBIKN4SBb1v8nMg0oaICstJh8y/WYk69+x98bNYD1gJOR2O3Q2TMgfmv8XDW+Qfv4XZb82Rb2Zz54v1lfD9zHQNv6IFPgJ2ovmGa9y/iYRri24QUUEXkSNKWZ/Pln36ksrAKDOh6fiIDpqYQ0y/C06WJtGvFbpieC1+XW+c9fa3taDr7erauFlddba04XLP/a1bGwX1f83Ks7XRc1XWfM/46OGk4/9/efYdHUa59HP/ObpLd9F4h9IDU0JEiWBDEylGxHsDuUVERK74KdrBjQVGPx3YsKHYFjkhTem/SkU4SSEjv2Z33j4FgJGiAkN0kv891zUVmdnb23s1u2Huee+4HX1/4fQu8/Qokd4EHnziyz9qV1ryxMXEQ4E0X/FaUuTUHV5Eb0zTxcdoJT9L3OBFPUYmviEgNcEb4UVbsJqRJIMm3tKT5hQ2w+9WNUjmR2izYBi9Hw7d58HwmbCqFK1PhvjC4NKjWDQieOB8faw7W2AToUsntxUVW1+G9u6xS4PT9kNjEuq201EpsS4qtLsWHS4dNE8Y/at0XICj4D52HD5cPH/o5Osbqfuwh4S1CyNmdz9p/b2XTlzvp+0wnWlyc6LF4ROTvaQS1CjSCKiKHlRWWsXNWKk0HJHBwUw4AWb/nEtctkqD4AA9HJyKVSSmF+zNgfYm13tsJT0RCuM4l/TXThII82LMbCvMhJMzaVlIMb71sjcIW5P/1MQwDwiOtBPaaG46UDufnWV2NwyNP+fQ5ptvk5xFL2DUrFQzo8WBb2l3X4pQ+pogcTSW+1UgJqogA7P4ljYVPrCF3TwE9H2lPTMcIDLtBRKsQDFt9GY4RqZ3cJryTDf/OARcQaoMnI6GPGryeOLfbKhfec6j7cFqKlbT+cQ7Y0pIj+996DzRLsn5eMh++/Bg6drNKh319reT3hy+tpk2HR2GDQqpluNt0m8wbs4rNU3YB0OHmFnQd1UbXpYrUIJX4iohUk/y0QhY9s44d/9sHgH+UAwwIaRKIX1B9u6BNpHayGXBrGJzhDw9lwJ4yuOsAXBoI94aDf22Yjsbb2GxWMhkZbV2j+melpVbzpr27IWUPxDc4clt+nnX/gADYtd3aVpAPH0yqeAyn/6HmTYdLiA+VDsfGW/PCOpxVCtWwGfR5siP+kQ5Wv7WFNe9spTC9mD5PdVKXdREvoxHUKtAIqkj95HaZbPhkO8snbKA0vwzDBs0uaEiHm1sQ0TLU0+GJyAkqcsOzmfDtoerUhj4wPgraqOl2zSoshJwsa+S0sACyMmHqV0caOOXm/P0xQsPg4WegeUtrfe9ua+7Xho0gIqrSu/z20TYWjVsHbmh0dhz9J3bXSKpIDdAIqojISZp51xJ2zUwFIDwpmORbW9JkQAJ2Pw21iNRmThuMjYSz/OHxg9Zo6vBUayqaG0JAA2o1xN/fWv6oUzfrX9OEnGzYu/PQ/K/7rKT1YPqRLsRFhZCdZa0fbuA0/VuY/T844xy47l/gDLC6FL//Zvnoa9tucTgfa8UvT24momUIBWlFBMap1lvEWyhBFRGphKvETWynCPYtPECba5vRZlgzAqOrVkomIrVD3wD40gEPZ8CiIngzG34ttEZTE/QNybMMwxodDQ2DNslH3+5yWSOlu3dAVCyUlVrbnf4QHQvhEZB+wNq2dzfMml7h7s2BmFYR+G/0x/1KLCUxcfi1aPSHMuI4CAw6hU9QRI5FJb5VoBJfkbrPNE12zkjBdENkm1BKckoxTdNKVDtHqPxLpA4zTZiSBy9nQZEJTgNGh8OFgfVoOpq6prQUigqgoMCaPmfxvIqjr9mZ1i/+kMIyJ7/sOZeeCXMJ8TtUWvzi29aUOzYbrFoGafugTYcj0/CIyHFRF99qpARVpG7L3VPAwifXsHtuGn7BPpz9SnccIb6ENgvCN0DDKCL1xa5SuD8dthwajDvLH8ZEQKimo6l78nOt6XP27YaUvfz0vg+7d4Xi71fEwJbTibTthadeAfuhX/5n78HKpTBoMJw/2CodPpgO771xqONwfMV/wyOP3FdEAF2DKiLyt9ylbta+v42VEzfhKnJh+Bg0GZBAYLyTsKbBng5PRGpYI1/4OA7eyIaPcmB2IaxOgaejoIcq/OuWwGBo1cZagD79i/hx2DxydsAP2y5jwIttiI8MsUZhi4qsUdPiYkhItEZlCwrgt1WwcZ21/JndB6JjDnUc/kPZcGw8NE1S8iryFzSCWgUaQRWpe9JWHGT+2FVkbskFrLLe5Ftb0vicOGw+aoIkUt+tLoLRGZDqstavDoK7wsGhkt86qzinlOk3LCB9XRY2X4MzX+pK03MTjt7R5bK6DqfshfWr4UDakXlfMw8tbnflD2IY8Nr71vyu/gEw7Rvr/mecAy1aWfuYpmrLpU5SiW81UoIqUrfk7snniwE/Y7rBL8SXtsOa0ebapjjDHZ4OTUS8SKEbnjoI0wqs9SY+8GwUJGk6mjqrrMjFz3csZu/8A2CDXmOSaX1Vk+M7SFGh1Xl43y4ric04cCR5dblgxANH9n3zRdixDa65AZK7Wk2eNq+HD9+GuHhrBLZ89PXQHLBRMeCjIkipfZSgViMlqCJ1h2maZG/PY/mEDbjLTDrckkRMcriaIInIMc3Ih6czIcdtXRs1Igz+GQw2/dmok9xlbuY+uILff9xLYJw/g7/uV30nME0TiousEdjCQpg/20piu/e2ug+Dte27L459DMOw5niNjT90zWu8lcyecU71xChyiihBrUZKUEVqt6zfc1k8fh1d7joNsL5Rmm6T8JYh+Dh1HZCI/L0MFzyYDiuKrfXODng6EmI1kFUnmabJ8lc2EN0+nMBYf0KaBOIX5HvqH9jlgqyDsGs77NsD+1MPlQ8fngP24JEpdf4oNAzGPGeVDfv7w3tvQm4OXDn8SOlwYYFVeqzpc8RDam2TpIkTJ/L888+TmppKcnIyr732Gt27d690399++40xY8awfPlydu7cycsvv8zIkSNP6pgiUneUFbtY89YWVr+zBXepm7ICFz0eaod/tIPAWE3KLiJVF2mHd2Lgv7kwMctKVC9PgUcjYECgp6OT6mYYBl1HtqE0v4zs7Xnk7MgnP62QhmfEYvc7hX0K7HaIjLaWTpV8Vy0uhv0psOdQ+XD6fitxdTigrMxKSnNzYPVyayqdnv2OXM+6ZB58+QkEBB5p3nS46/Dh9eg48FMNu3iWVyWokydPZtSoUUyaNIkePXowYcIEBg4cyKZNm4iJiTlq/4KCApo1a8aQIUO45557quWYIlI37Ft4gPmPrSZnZz4AMR3DaXd9cyJah2Kzqy5PRI6fYcDQEOjlhAfSYXsZPJQBcwrh4QgIUn+1Osc30IewpGA2frqDJc+tI65rJOdOOt1zU5A5HFZH4WPNxVpcbI2UDr0FUvZYyedhmZnWvwX5sGOrtVQmPOJQwhoPTVvARZcfuU0NnKQGeFWJb48ePejWrRuvv/46AG63m8TERO68804eeuihv7xvkyZNGDly5FEjqCdzzMNU4itSexSmF7H42d/Y9v0eABzhfrS/vgWnXdUYR4jOCotI9Sg1YUIWfJYLJhBjh3GR0EnT0dRJu2alMGvkMlwlbiJOC2HQe71xhtey/1PcbmtUdc8uq3w4bV/F8uGDGVBSXPE+jZvB7fdZI7v+/vDEg9b2h548kiSn7LVGbWPjICRMCawcU60r8S0pKWH58uWMHj26fJvNZqN///4sXLiwRo9ZXFxMcfGRD2hOTs4JPb6I1LxNX+2yklMDmp6XQPLNSUS2CfN0WCJSx/gacH84nOkPj2TAfhfctB+GBcPtYdbtUnc0Ojue897rxU+3LuLgxhy+u2Iu53/Yh6D4WnS5iM0G4ZHW0r7T0beXlVlT3uzZaSWd+1Mh6NCc4C4XZGdb20zTKi0uKbFu+/Er+OVn62eH88h8rzF/mv81Jt5KckX+htckqOnp6bhcLmJjYytsj42NZePGjTV6zHHjxvH444+f0GOKSM1zl7qx+dooyiwmvlsUDXpF0/zihjQ7vwF2PzVBEpFTp5sTvoyHsRkwuxA+yIUFRTA+CprWQE8dqTlxXSK58NMzmHbdAnJ3F/Dt5XO54MPehDUP9nRo1cPHB+IbWEtlSorh+UlWAhsabiWqAD6+1shpbrbVoXj3DmupTHCIlah26gZXXXdk+/5UK3H21YdGvChB9SajR49m1KhR5es5OTkkJiZ6MCIRqUxpQRkrJ25i34ID9BrbAZuPDbuvjX7PdcY/SnV2IlIzgmzwYjT8kAfPZsKWUrg6Be4JhyuCVPFYl0QkhXDJF335ceh88vYW8N2Vv/CPb88kuEE96JTl54Amza3lj26/10pW83IPNW/aDfv2QuahsuHDc8AW5B9p4hQcDNs2W/d3u+H/7rKO8doHEJdgbV+zwrrf4RHYsAhrFFjqPK9JUKOiorDb7aSlpVXYnpaWRlxc3DHudWqO6XA4cDiqab4rETklds1KZcFTa8jfVwhA6vKDNOgdTUTLEAxNTigiHnBhEHRzwAMZsLbESlbnFsKTkVYXYKkbghICuGRKX6Zdt4CQRoEUHSwhKD6gfv/fYxjW6GjrdtbyZy6XdZ3r3kPXvzr+cBI5N8e6xtVtWj/n51nbv/4M1q44sp+PL8TEHuk4fLj78OEENqiOjGSL9ySofn5+dOnShZkzZzJ48GDAamg0c+ZMRowY4TXHFBHPyk8tZOHTa9k5IwUA/ygHHW5KotWQxvgGes2fNBGpp2J94b1Y+E8OvJMNi4rgshR4PAL6BXg6OqkuznAHF356BgUHiijNLSNjfTbhScHYHToTUSm7HaJjraVjt6Nv//A76/pXX19rpLWsDBIaWj9npkNWpjX/67491lKZgADofwEMu9Vad7lg9TIrgU1I1OhrLeJV3+ZGjRrF8OHD6dq1K927d2fChAnk5+dz/fXXAzBs2DAaNGjAuHHjAKsJ0vr168t/3rt3L6tWrSIoKIgWLVpU6ZgiUju4XSbr//s7y1/ZQFmBC8MGzS9KpMNNSYQn6aypiHgPmwE3hcIZTms0dXcZ3JMOlwTCA+Hgr+/JdYJvgA+hjYPITyskP6WQ6TcuJPHsWDrckOTp0GofX18rIf2j5i2P/FxQAPt2wd491vQ5f+w8fDAD8nKsfXKyj5QOZx6E8Y9YyfEb/4WAIHA6Yfq3VsL7x2ZOkdHWfuIVvCpBvfLKKzlw4ABjxowhNTWVjh07Mn369PImR7t27cL2h7Mf+/bto1OnI13IXnjhBV544QX69evHnDlzqnRMEakdDBtsn7aXsgIX4S1D6HhrEk0GJGDz1Tc9EfFOrRzweTw8fxC+yodv82FpETwbBW11JVGdERjrz67ZqaQuyyB1WQZF6cV0u78thi4+rj4BAdDiNGv5M9OE7CyredMfJ88sLoL4htYZo6xMawH46YejmzjZ7RARbSWssXFHlxGHhuli8hrkVfOgeivNgyriGSW5pRg2A5uvQebmXHL35JOxIZu2w5rhH6kmSCJSe8wrtDr9ZrrBBtwcAjeGgo++89YJpmmy4rWNrHrDGr1rcUlDzni6EzYfnUT1OJcLigqhsMBa5v4MqXuPzAGbeRBcZX99jAsutUqH7XbrOtk5P1ndjrv2rJnnUEdUNadSgloFSlBFapZpmmyfto9F49bSoHcMbf/ZDAC7w0ZYi2CdlRaRWinbBf+XYU1DA9DGz5qOpqFX1bPJyVj/8e8sfHotuKHhGTGc83p3fHRdqncrLoKUfVYDp5S91hyvmRlHyohzsmHwlXB6X2v/7Vth0ksQEQljngP/QGt+1/fesBLhPzZuio2DqFhNn3OIEtRqpARVpObk7MpnwRNr2DtvPwBBDQM487kuRLYOwcdf3+JEpHYzTfg6D17MgkITnAY8GA4XB6qCsK74fdpe5j6wHHepSXRyOOf9uyd+wUpQaiXTtLoKF+Rbo6yFhVYp8eyfICgIBl91ZN8nH7Kuhf0zw7DmeI2NP3LN6+HS4cTGVvfj6lRSAssXQZfTwc+veo99kpSgViMlqCKnnqvEzdr/bGHVm5txFbux+RgkXdqI9je2ILRxkKfDExGpVntL4b502FRqrffzh7EREKbBtjph36IDzLh9Mabb5MwXutKkf7ynQ5JTwe0+VD5cCEvmQVrKoXlf/9DAqbTk2Pe/cjgMvNgagU3dB9O+gaZJcO4Fxx+LacKS+fCfiZBxAKJi4PrboXtvrzn7pQS1GilBFTm1Dm7KYfaopWRts+Y+i2oXRvItSTQ6O07X74hIneUyYVI2vJ8DLiDcBk9FQk9/T0cm1SF9fRYHVmUS3SEcm6+NiFb6DlnvlJbC/hTYuxv27YYD+ysmsP+4Glq2tvZdsRgmfwDNkuDWe6zRT/8AePwBq0Q4LqHi6OvhJk4OJ+z4Hf7zOqxfYyWjpnnk37Yd4IYR0LiZZ18LlKBWKyWoIqdW7p58vrp4NjYfG+2ua07ra5rgDFOLSxGpH9YUw+h0SHFZ61cEwcgwcOr8XJ2Qvi4LgMytOYS3DCGqTZhH4xEvUlJypHnT1k2wZgWEhUOPPtbtpSXwyMi/PkZomDWCW1Jc+e02GyQ2gRffrsbAT4wS1GqkBFWkepmmScqidOJPjyL79zzKCl2kr8sionUIMckRng5PRKTGFbrhmYPwY4G13tjHmo6mpXddQiYnaNfsVOu61DKTc9/sQcLp0Z4OSbydaVrXvu7cZs3/mrrvSOOmzEPlw0WFVTtWYhN4+d+nNNyqUIJajZSgilSfrG25zB+7mtRlGZz+cDtiO0cCEJYUrE6HIlLvzcyHpzIh221NVn97KAwLsaZylNqrJLeUaTcsIH1tFjYfg37Pd6HZoAaeDktqM5fLutZ0z05440XIOnjsfWtZgqriERGpEWVFLpZN2MDXl8wmdVkGdoeNoswSAmKcRLULU3IqIgKcEwhfxUM3B5QBr2bDTWmQ+jfTNIp38wv25YL/9qHBGTG4y0xm37uM9Z9s93RYUpvZ7dY1qJ17VH8nYA9Tgioip9yeX/fz1UWzWD1pM+4yk7iukZz9Sjc6jTiNgBinp8MTEfEq4XaYFAP3h4PDgFUlMCQFpud7OjI5GT4OOwMmnU7zixqCGxY+sYblr25AxYxy0mw2azne27xU7YpWRGqdxePX8b+bF5K7uwBnhB/d7m9L/ze70+jMOGx21ayJiFTGMODqYPg0Fpr7Qr4JD2fAg+mQ6/Z0dHKibHaDfs91pt31zQFY9cZm1v9XI6lyku56CE5rZ/18eEqZw/+2bmfdXoto1nsROWVM0yQoIQBs0Pz8BrS/KYnI00I9HZaISK3RxA8+iYPXsuDjXJhRAKuK4ZlI6KIClFrJMAx6PNgO/ygHv/+wl8g2oRRlFuMMV/d6OUGNm8HjL8LSBdY8qOn7ITIabrgDuvXymnlQq0pNkqpATZJEqi59fRb5KYXEdIogf5/VXS4/tZCGfWOx+6loQ0TkRK0oskZR97vAAP4ZDCPCwLd2ffeUPyjJLyVnu1W77YzywxnmwMepngxyEkpKYMUi6HI6+HpXG3B18a1GSlBF/l5pfhnLX93I+o+24ePvw9mvdMMZ5kdgvD/+kTorLCJSHfLd8HgG/HxodonmvtZ0NM18PRuXnDh3qZuDm3LY8Ol20n/LYtB7vTSaKnWSuviKSI3Z8XMKX14wk98+2IbphpjkcOy+NiLbhCo5FRGpRoE2eC7aKvENMmBbKVydAp/mWNMmSu1j87UREOtkx0/7OLgxh2+H/ELevgJPhyXiMRpBrQKNoIpULndvAYueXsuuWakABMQ66XBTEi0vbYRvoC5xFxE5lfaXWU2TVpdY690d8FQURKlCtFbK3JbDtOELKEwvxhnhx/kf9ia8hb53St2hEt9qpARV5GhFmSV83n8GpfllGD4GLS5OpP1NLQhvFuzp0ERE6g3ThPdzYFI2lALBBoyJsOZTldonP7WQH4fOI3d3Ab5BPgx8+3RiO0d6OiyRaqESXxE5pdxlbhr2jSGydShnPt+FPo8nKzkVEalhhgHXh8JHcdDYB3JNuD8DxqRDgaajqXUC4/y55It+RLQOoTSvjGnXLWDXnFRPhyVSo5SgikiVFGeXsOCJ1WRszCZ9XRYFaUW0Hdqcgf/uSbNBDbD56s+JiIintPSDyfEwJMjq8PtDAVyeAmuKPR2ZHC9HmB8XfnwGcd0jcZW4SV+XhbtUZxuk/lCJbxWoxFfqM9M0+f2HvSwav46ijGKi2oXRa2wHfAN8CG0WhFHL5tYSEanrFhbCmAzIcFsjETeEwC2h4KM/17WKu9TN71P3Etbcqk4KSwrGx6ELjKX2UomviJy0nJ15TL9xIXPuX05RRjFBDQJoNaQx4UkhhDUPVnIqIuKFevrDVwnQ1wlu4N85MCwVdpV6OjI5HjZfGy0uSSSoQQAAqUsyWPnGJjS2JHWd2myKyFFcJS7W/HsrqydtxlXixuZno+VljWh/QwtCEtV5Q0TE2wXbYEIMfJMHL2TCxlK4MhXuD4N/BFnXrkrt4Az3A8Nkzv3Lyd6eR/b2PPqO64TNR+NMUjfpnS0iR9n85S5WvLoRV4mb6ORwzn6pKz0f6aDkVESklhkcBJ/HQWtfKDbhqUy4+wBkujwdmRwPZ5iDtsOagQ22fb+Hn/61iLIi/RKlblKCKiIA5SVDZYVlRLYOJbpDOF1GtmbA26fTuH88NrtOt4uI1EYJvvBhHNwSAnZgXhFclgLzCz0dmRyP1lc35eyXu2HzNdg77wBTh86jOEd121L3qElSFahJktRlpttk81e72PL1Lno+0h7z0AlZ3yAfQpsEeTY4ERGpVuuL4cEM2FtmrV8WCKPCwV9DFrXGvsXpzLhtEWUFLkKbBHH+h70JiHF6OiyRv6UmSSLytzK35PDj0HnMe2QVacsP8vvUfQCEtwxWcioiUge1ccAXcXDxoSs2vsyHq1JhQ4ln45KqS+gRxQUf98ER5kf2jjxmjVzq6ZBEqpUSVJF6qKywjKUvrufrf8whbflB7E4bbYc3o/U1TYhqF4bdT23sRUTqKqcNHouEl6Ig1Aa7y6wuv+9mg0t1dbVCVOswLv6iL1FtQ+lwcxLp67I8HZJItVGJbxWoxFfqkt1z01jwxBry9hYAENc9kg43JdGwTwyGTdeZiojUJ5kuGJ0OS4qt9Q5+8EwUJGieh1rj4OYc3CVuAAJiHATE+Hs4IpHKqcRXRI5imiZr3t1C3t4C/KMcdH+wLee+0YPEvrFKTkVE6qFwO7wZAw+Gg9OANSUwJAV+zAMNYdQOES1D8Av2Yd+iA3ze/2d+n7rH0yGJnBSdHxOp49wuE3eJC7vDTuaWHNr+sxlB8f60v6kFEUmhng5PREQ8zDDgymDo6YT702FLKTx6EOYUwqOREKLhDK8X0jiI/aszcZW4mX3vcgoPltD2n808HZbICVGJbxWoxFdqq/Tfspg/djXhScG0ufbIf1ThLUOw++kbh4iIVFRmwsQs+CgX3ECkzSr57aYmsV7P7TL59eGVbP12NwDJtybRZWRrDEMVUuIdVOIrUo+V5JWy8Om1fDdkLunrstgxI4WS3FICE/wPNUHSR19ERI7mY8Dd4fBODMTaIcMN/9oPL2RCiYY0vJrNbtB3fCfa39QCgNVvbWHeo6twq/OV1DL6lipSh5imyfb/7ePL82ex/qPfMd3QoE8M/Sd2J/70KPwjHJ4OUUREaoFOTvgyHgYGgAl8kgtXp8BWTUfj1QzDoPt9ben+QFswYPOUXcy8awnuMrenQxOpMl2DKlJH5KcVMm/MavbMTQMgMM5Jh5uSSLq0Eb4B+qiLiMjxCbDBuCg4Kx+ePgjby+DaVLgzDK4JBvXW817tb2iBf5SDXx5eid3PTkF6EUFxAZ4OS6RK9K1VpI4wbAZpyzMwfAySBifS/sYWhDUN9nRYIiJSyw0IhE4OeCgDVhbDS1kwtxCeiYRofZP0Wi0uTiS0WRC4oSi9BHepSUhioKfDEvlbapJUBWqSJN4qc0sO4Ukh5KcVUnigmLQVGQTE+tP4nDhsPqrgFxGR6mOa8N9cq4lSCRBkwJgI6K+cx6uZbpOM9dm4S92s+3Ab3e5rS3ADjaZKzVOTJJE6rDirhF8fWclXF81m7X+2UnjAmmG9xcWJNB2YoORURESqnWHA0BD4OA6a+ECeCQ9kwCPpkKdLHL2WYTOIbBvK+o9/Z/u0fXw3ZC4HN+d4OiyRY9K3WJFaxDRNtnyziymDZrJ5yi4AMrfm4hNgJ7JtKI4wPw9HKCIidV1zP5gcD1cFgQFMLYAhKbCq2NORybEYhkG3+9sSnBhA0cESfrj6V1KXp3s6LJFKqcS3ClTiK94g6/dcFjyxhpRF1n8owQ0DSL4lieYXJ+LjtHs4OhERqY+WFFkjqOluK1m9LgT+FQq+aqDklYqzSph2/QIyNmRj87Nx9stdaXxOvKfDknpCJb4idcj6T7bz9SVzSFmUjs3PRutrmnLe+71odUUTJaciIuIx3Z3wZQKc5W9NR/NeDgxNhZ2lno5MKuMI8+PCT/oQ3yMKd4mbmXcuYdOUnZ4OS6QCJagitYBvoA/uUjcxnSI4++WunP5/7QlpqK4UIiLiecE2eDEaHo+AQAM2l8JVqTAl12qsJN7Fx9+H8/7dkyYDEzDdsOiZteSlFHo6LJFyKvGtApX4Sk0rTC/i4KYcYjtHkLUtD4CDG7NpPCAeR4iuMxUREe+UWmo1TlpXYq33csITkRChYh+vY7pNFo9fR1izYKLahRHSJBC/IF9PhyV1WFVzKiWoVaAEVWqK6TbZ+PkOlr24HrfL5OwJ3fCPcOAX7ENI4yBPhyciIvK33Ca8mwPvZEMZEGqzktQz/D0dmVSmJK+UnB35ALjL3ES1DcPmqyJLqX66BlWklsnYmM33V//KgsfWUJJbRmCcP2WFLsJbBis5FRGRWsNmwM2h8EEsNPSBbDfcfQCezIBCTUfjdfyCfAlrEUzO7nym37SQ/926iLLCMk+HJfWYElQRDyvNL2Pxs+v49rK5HFidiY+/nXbXN2fQe71oOjABu5/qokREpPZp7YAv4mHwoZYJX+fDlamwXtPReB0fpx0fpx1XiZt9Cw7w49D5FGeXeDosqadU4lsFKvGVU6WsyMVXF84id08BAPGnR5F8SxIJp0dj2NSjX0RE6oZfC+GxDMh0gx1rhPXGELDrvzqvkrIknRm3LaY0v4yQxoGc/2FvAmNVmy3VQyW+IrWAu8xNTMdw/KMd9BjdjnMn9qBBrxglpyIiUqec4Q9fxUNPJ7iASdlwXRrsVSWpV4nvHsUFn/TBGeFHzs58vr18Llm/53o6LKlnNIJaBRpBleriLnOz/r/bSegZhekG02VSVuTCEepHeFKwp8MTERE5pUwTvsyDl7KgyASnAQ+Fw0WBYOjcrNfI3VPAj0PnkZ9SiF+ILxd+0ofwFvoOLCdHI6giXubAmky+HfILi8evY+6DK3CXWp0iYpLDlZyKiEi9YBhweTBMjoOWvlaS+thBuDcdslyejk4OC24YwCVT+hHWIpjghgGU5JRhujWmJTVDI6hVoBFUORkluaUse3k9Gz7dASb4BvnQ9p/NaDO0Kf6RTk+HJyIi4hEuE97Mhg9yrLLfCBs8FQmn65JHr1GSV0ru7gJMl5UuRJwWgs1H41tyYjQPajVSgionwjRNfp+6l8Xj11F4wGpZ2LBvLB1uaUFcl0gM1TKJiIiwphgeSofUQyOoVwbByHBw6L9Jr5GfWkhhejHrP/6diNahtBvW3NMhSS1U1ZzKpwZjEqlXdvxvH3PuXQ5AYII/yTcnkTQ4ER9/fexEREQO6+CAL+Ph6YMwtQAm58GiIng2Clr6eTo6AQiM82f/mky2fL0bvt5N4YFiuo5qrZPtckpojF7kFHC7TALjAwhPCqbVFY05//3etL66qZJTERGRSvjb4KkoeD4SQmywswz+mWqV/+rSR+/Q5Nx4km9JAmDNO1v49f9W4XbplyPVTyW+VaASX6mKlKXprHtvGz0eaktJjtU333SZRLYN1fUaIiIiVXTQBQ+mw3Lr6hg6OeCZSIjVOV6vsO7DbSwetw5MSDwrlnNe6Ybdz+7psKQWUBdfkRpSlFnML6NXMHXofHbNSmXd+78DEJwYQHRyuJJTERGR4xBhh7dj4N4w6zrUlcVweQr8L9/TkQlAu2HNOfP5zth8DHbPTmPqdQsoySv1dFhSh+ibs8gJMk2TzV/uZMqgWdY1GVjlLy0uaUhUuzAcobpwRkRE5EQYBlwbAp/EQjNfyDdhdAaMTodct6ejk+YXJnLuW6djd9rZv+Igv0/d6+mQpA5RiW8VqMRX/ixzaw4LHltD6rIMAEIaB5J8SxLNLmyIj0NlLiIiItWl1IRXsuDTXDCBaDuMi4TOmqnN4w6szWTnz6k0OTcem5+NiJb6nizHpmlmqpESVPmzn/61iN1z0rA7bJx2RRPaXd+coIQAT4clIiJSZy0vgocz4IALDGBYMNweBr5qJOtRpmmS8Vs2AIUHiwmM9Seilb4vy9F0DapINXOXWTVFuXsLaDWkMQmnR3H2K93oMbqdklMREZFTrIvTmo7mHH9rJPWDXLg2Fbbr8kePMgyDqHZhlBaVsfCptXx/9S+kLE33dFhSiylBFfkbBfuLmDVqGb8+uor0dVkUZ5YQGOvPOa93p9GZcRg2nboVERGpCUE2eD4anoyAIAO2lsLVKfBZDqgm0LMiWobiF+xDWYGL6TcuZMeMFE+HJLWUElSRY3C7TNZ//DtTzp/J9ql72fbdHgoOFOEX4ktUuzD8gnw9HaKIiEi9dEEQTImH9n5QAjyXBbfvh3SXpyOrvxwhvlz48Rkk9IzCXeJm5t1L2Dh5h6fDklpICapIJdLXZ/H9Vb+w8Mm1lOaVEdYimL7jOtGgdwwhjQI9HZ6IiEi9F+MD78XCiFDwBRYXw2X7YHaBpyOrv3ycdga+05OmgxLADfPHrmblm5tQyxs5HmqSVAVqklR/lOaXsfzVjaz/aBumG3wC7LS5pilthjUnMEbtAkVERLzR5hJ4IB12lVnrFwfCA+EQoKEYjzBNk0VPr2X9f7cD0GXkaXT8VysPRyWepiZJIifAVeJmyze7MN3QoFc0507sQdd72yg5FRER8WIt/eDzeLg80Orw+10+DEmBtcWejqx+MgyDno90oMvI0/CPdhDZOoyizBJPhyW1hEZQq0AjqHVbwYEi/KMclOaXkbMjn5Ql6dj9bCRd2gjfAB9PhyciIiLHYUEhjMmAg25rJObGELg5FHzU09AjCg8Wk7+vEICAGCf+UQ41mKynNIIq8jfcpW7WvruVLwb8zJp/byFnRz4ATQYm0OafzZScioiI1EK9/OGrBOjjBDfwTg4MT4Xdmo7GI/wjHOXzom75ZhffDplLcZZGU+XYlKBKvZS28iDfXj6XJc//Rlmhi30Lrfm6IlqFENxAc5qKiIjUZiE2eDUGHo0AfwM2lMKVqfB1rqaj8QSbr42QJoGs/c82Mn7L5tsrfiE/tdDTYYmXUolvFajEt+4ozi5h2Usb2Pj5DjDBL9iHNkOb03ZoU5zhDk+HJyIiItVsXynclw4bD42g9vWHsREQbvdsXPXRwc3ZTLtuAUUHS/CPcnD+h70Jaxbs6bCkhlQ1p1KCWgVKUOuGXbNT+fWRVRRlWB0TEs+KJfnmJGI6RWAYuhZCRESkrnKZ8HY2/CcHXEC4DZ6MtMqBpWbl7Svgx3/OI29fIX7BPgx4pyexHSM8HZbUAF2DKvInptukKKOYoIYB9H48mbNf7kZs50glpyIiInWc3YDbwuD9WEiwQ6YbRhyAcQehyO3p6OqXoIQALvmyH+FJwZTkljFt+Hx2/5Lm6bDEiyhBlTrLVeJi/6qDuMvcpK/LIjDWn+4PtGXQ+7047com+DhV2yMiIlKftHXAlHi4MNBa/yIPrkqFTerZU6Oc4Q4u+qwvsV0icBW7+f3HvbjLdKZALCrxrQKV+NY++xYdYMHja8hPKeTsCV3xj7LmMY1oHYrNrhFTERGR+m52PjyRCdlusAO3h8KwEGu0VWqGq8TNug+2ktAjGsNmEJYUjI9DAwh1lUp8pV4qPFjM3AdXMO26BWRvz8PutJO/v4jgRoFEtQtTcioiIiIAnBUIX8VDd4d1Xepr2XBTGqSUeTqy+sPuZyP55pYEJ1ozKGSsz2b9J9vR+Fn9pokepU4w3Sabv9zFkhd+oyS7FAxoMiCBDje3ILpduKfDExERES8Uboc3Y2ByHrySBatLYEgK/F84DArydHT1hzPcgWE3mHXXUvYtSufAmkzOeLqTBhbqKSWoUuu5XSbTb1hAymJrLtPQJkF0uCWJ5hc2wO6nMhERERE5NsOAq4KhpwPuy4BtpfB/B2F2ITwaCcGqN6wRjhA/Gp0Tx74l6Wz9ZjfFmSWc/Wo3lfzWQ/rISe3nNgmM98futNFueHPOe68nLS9tpORUREREqqyxH3waB0ODrS/IPxfCZftgWZGnI6s/2g5tzpnPd8HmY7B7bhrThs+nJLfU02FJDVOTpCpQkyTvs3tuGoFxTnwDfSnOKqGs2EVpQRkNe8dg2FQOIiIiIiduRRE8nAH7XWAA1wTDnWHgp68YNWLvgv38fMcSygpdhDUPYtD7vQmIdno6LDlJapIkdVJ+WiEz71rCT7cuYs59yynKKAYgolUIiWfEKjkVERGRk9bZaTVQGhAAJvBxLlyTAts0HU2NaNArhgs+6oMj1JesbXlMu26BGifVI0pQpVZwu0x++3AbX54/ix0/pWDYILJ1KL7BdqLaheEX5OvpEEVERKQOCbDB+CgYFwlBBvxeBtekwsc54FaudMpFtQvj4s/7EpwYQLvrmpPxW7anQ5IaohLfKlCJr2cdWJvJgsdWk37oD1N4UjDJt7ak6cAEbL46xyIiIiKn1v4yeCgdVh0aQe3mgKciIVrtRk85t8ska2sO7lIrZQltFohvgAYmaiOV+EqdkLI0ne+v/IX037LxCbDT4eYkBr3fi+YXNlRyKiIiIjUixgfejYW7QsEXWFoMl6fAzHxPR1b32ewGEa1C8Q3yIXtHHpPPnsH2/+3zdFhyCukbvni1gEgHoc2CadgnhnPf7EHXUa3xj9RF8iIiIlKzDAOuC4WP46CxD+SacH8GjEmHfLeno6v7QpsEsWtOKsVZpcy6ZykbPt3u6ZDkFFGJbxWoxLfm5O7JZ9VbW+hy12kUpFl93cuKXES2CcU3QHU0IiIi4nmlJryYCV/kWU2U4uwwLgqSHZ6OrG5zl7n55aEVbPthLwCdRrSi0x2tMAw1yawNqppT6Ru/eAV3qZu1721l5RubcRW5wG3S+uqmOCP8CEoI8HR4IiIiIuV8DXgoAs7yh0cyINUFN6TBDSFwS6h1u1Q/m4+Nfs93wRnp4LcPfmfl65soTC+m15gOmsmhDlGJr3hc6vIMvr50Dste2oCryEVU21Aa9o0l4rQQJaciIiLitXr4w1cJ0M/fGkl9NweGpcKuUk9HVncZhsHpo9vT7d42AGz8bAcz716Kq0R11nWFRlDFY4qzSljywm9snrILAL8QX9oNb07ra5vgDFONjIiIiHi/YBu8HA3f5sHzmbCpFK5MhfvC4NIg69pVqX4dbk7CGenHvEdXk59aSH5aISGJgZ4OS6qBrkGtAl2DemrMeWA5277bA0Djc+LocEsS0R3CdR2BiIiI1EoppVbjpPWHpqPp7YQnIiHc7tm46rJ9C/Zj+Nrw9ffBEeZLcEMlqd5K08yIVzp8PqQ4q4RmgxoQ1iKYPk925MyXuhKTHKHkVERERGqteF/4MBZuDbHKFOcXwaUpMK/Q05HVXQm9YojrEglAUWYJi59dR96+Ag9HJSdDI6hVoBHUk1dW5GL125sp2F9E66ualm93RvkRFKfrTEVERKRuWV8MD2XAnjJr/dJAuDcc/DU8dEqYpsnS59ez9j9bcUY6OP+DXoS30Pd2b6IRVPEae+fv56uLZ7Pqjc1snrKL7O15YEBE61AlpyIiIlIntXHAF/FwyaGK06/yrWtTD5f/SvUyDIM2Q5sR1CCAooxivr/qV9JWZng6LDkBSlDllCk4UMTse5cx/caF5O7KxxnhR7d729CwXwxRbcOw2VXOKyIiInWXw4CxkTAhCsJt1mjq8FR4JxtcqmGsdkHx/lwypR8RrUIozStj2nUL2D03zdNhyXFSiW8VqMT3+Jhuk42f72DZi+spyS0DGzQd2IDkm1sQ2SbM0+GJiIiI1LgsFzycAYuKrPV2fjA+ChI0p0a1Ky0o46dbFpG6LAPDbnDGUx1J+kcjT4dV76nEVzymNL+MFa9upCS3jNBmQfR9pjP9nu2k5FRERETqrTA7TIyG0eHgNGBdCVyeAt/ngYaLqpdvgA/n/acXjfvHYbpMfv2/lRzcmuPpsKSKNIJaBRpB/XtlhWXYnXbcpSaZm3PYt+gAhRnFtLuuOYGx/p4OT0RERMRr7CqF+9NhS6m1fpY/jImAUE1HU61Mt8n8x1bjCPWj6cAEQpsG4RuoIWtPqWpOpQS1CpSg/rWds1JY+ORa2l3XjLguUQDYfA3Ck0IwbLrOVEREROTPykx4Ixs+ygEXEGGDp6Ogh9PTkdU9JXml5OzIB8A30E5wYiA2HxWS1jSV+Mopl5dSyIw7FvPz7UvITylk85RdmKZJaNMgIlqFKjkVEREROQYfA+4Kg3/HQJwdDrrhtv3wfCaUaPioWvkF+RLWPIiS3FKm37SIGbctpqzI5emw5BiUoMpxc5e5WfveVr48fya7ZqZi2A2S/pHIWS93I7p9uEonRERERKoo2QlfxsOgQzPvfZoLV6XAFk1HU618/H1wlbop2F/Inl/3M3XYPIpzSj0dllRCJb5VoBLfI9J/y+LXR1ZxcEM2ABGnhZB8S0uanBuPzVfnO0RERERO1Ix8eDoTctzgC4wIg2uDQUVp1WffogPMuH0xZQUuQpsGcf4HvQmIUV11TVCJr5wSxdklHNyQjW+QDx1va8l57/ai2fkNlJyKiIiInKRzA2FKHHR2QCnwchbcuh/2l3k6sroj4fRoLvhvHxxhvmRvz+PbIXPJ2Znn6bDkDzSCWgX1eQTVNE2yt+cR1iyY7B15lOaVsXNmCg36RBPbORLD0Ck9ERERkepkmvDfXJiYBSVAoGF1+T030NOR1R05u/OZOnQe+alFOEJ9Of/D3kS0CvV0WHWaRlDlpOXsyud/Ny3km3/MYefMFErzrNN3ybckEdclSsmpiIiIyClgGDA0BD6Og6Y+kG/Cgxnwf+mQ5/Z0dHVDSGIgl0zpR2jTIOwOOwX7izDdGrfzBhpBrYL6NoLqKnGx5t2trJ60GVexG5uvQecRp9HikkQC4zSnqYiIiEhNKTVhQhZ8lgsmEGOHcZHQSZdNVouSvFIyfsvCN9AXsPqraAqaU6NWj6BOnDiRJk2a4HQ66dGjB0uWLPnL/b/44gtOO+00nE4n7du3Z+rUqRVuv+666zAMo8Jy3nnnncqnUGulLEnn68FzWPHKRlzFbqI7hHHWS11pf2MLJaciIiIiNczXgPvDYVIMRNthvwtu2g+vZVnJq5wcvyBf4ntE44x0ALD67S389t/fPRxV/eZ1CerkyZMZNWoUY8eOZcWKFSQnJzNw4ED2799f6f4LFizg6quv5sYbb2TlypUMHjyYwYMHs27dugr7nXfeeaSkpJQvn376aU08nVrDNE3mj13N1GHzyf49D0eoL13uPo0B7/SkybkJOpMkIiIi4kHdDk1Hc5a/NZL6Xg4MTYUdmimlWgTF+1NaUMbKiZtY9NRalr+yARWaeobXlfj26NGDbt268frrrwPgdrtJTEzkzjvv5KGHHjpq/yuvvJL8/Hx++OGH8m2nn346HTt2ZNKkSYA1gpqVlcU333xzQjHVhxJf0zRZ8PgaNk7eQZNz4+lwUxLRHcI9HZaIiIiI/MkPefBspnVtqh9wTzhcEWRduyonzjRNlr6wnrXvbgWg1ZDG9H48GUPz/FSLWlniW1JSwvLly+nfv3/5NpvNRv/+/Vm4cGGl91m4cGGF/QEGDhx41P5z5swhJiaGVq1acdttt5GRkXHMOIqLi8nJyamw1EVZ23I5uCmHoswSMn7LpsXFifR9phP9nu+i5FRERETES10YZE1H097P6vL7bCbccQAyXJ6OrHYzDIPu97el2/1twIBNX+xk5l1LcJWoM1VN8qoENT09HZfLRWxsbIXtsbGxpKamVnqf1NTUv93/vPPO48MPP2TmzJk8++yzzJ07l0GDBuFyVf4pHjduHKGhoeVLYmLiST4z71JW5GLZy+v5+pLZzLpnKTm78gEIbhhA0j8a4eOwezhCEREREfkrsb7wXizcHgq+wKIiuCwF5hZ4OrLar8ONSfQd1wnDx2Dnz6lMu2EBpfmajLameFWCeqpcddVVXHzxxbRv357Bgwfzww8/sHTpUubMmVPp/qNHjyY7O7t82b17d80GfArt+TWNry6axeq3tuAuM/GPcFBWXEZkm1ACYtQOTkRERKS2sBlwUyh8GAuJPpDjhnvS4fEMKNSg30lJGtyIcyd2x+60kbYsg7Xvb/V0SPWGVyWoUVFR2O120tLSKmxPS0sjLi6u0vvExcUd1/4AzZo1Iyoqiq1bK3+jORwOQkJCKiy1XcH+Imbds5T/3byI3N0FOCMddH+gLf3f7E5C92jV1ouIiIjUUq0c8Hk8XBporX+bD0NS4Ldiz8ZV2yX2i+P893vT/KKGJPaNJXNr3bzsz9t4VYLq5+dHly5dmDlzZvk2t9vNzJkz6dmzZ6X36dmzZ4X9AWbMmHHM/QH27NlDRkYG8fHx1RO4l8vcmsOU82eyfdo+sEHzCxtw3n960v6GFjiC/TwdnoiIiIicJIcBj0TCq9EQboN9LhieBm9lQZlXtUStXWI6RtDvuc4YhoGryE3a8gyyt+d5Oqw6zasSVIBRo0bxzjvv8MEHH7BhwwZuu+028vPzuf766wEYNmwYo0ePLt//7rvvZvr06bz44ots3LiRxx57jGXLljFixAgA8vLyuP/++1m0aBE7duxg5syZXHLJJbRo0YKBAwd65DnWNEeoH0EJAYS1CKbf+M6c8UxnIluFejosEREREalmffzhq3jo5QQ38FYOXJcGe3QJ5QkzDIOodmGYmCybsIFvh8wldcWxG67KyfG6BPXKK6/khRdeYMyYMXTs2JFVq1Yxffr08kZIu3btIiUlpXz/Xr168cknn/D222+TnJzMlClT+Oabb2jXrh0AdrudNWvWcPHFF9OyZUtuvPFGunTpwq+//orD4fDIc6xuGRuzK6yX5JWy4rWNFGWVkL4ui4K0Ino82Jbz3utFi4sTsft53a9dRERERKpJqB1ei4ZHwsHfgPUlcEUKfJsH3jXBZO0S2jiIkrxSSvPKmH7dAnbOqryJq5wcr5sH1Rt56zyopQVlLHxiDVu+2U3SPxLp+Wh79s4/wKKn15KfWkSLixvSdlhzbL42wlsGY2hyLBEREZF6ZW8p3JcOm0qt9X7+MDYCwjRpwwkpLSjjp38tInVJBoYN+jzZkZaXNfZ0WLVCVXMqJahV4I0JaubWHH4esYTcXfmYbsAGPg47ZYXW1DkBsU6Sb04i6dJG+Ab4eDZYEREREfEYlwmTsuH9HHBhXaP6VCT09Pd0ZLWTu9TN7PuWs+N/+wDoOqo1ybe09HBU3q+qOZVqPWuhLV/v4ttL55K7u8BKTgHclCencV0jOO+9XrT5ZzMlpyIiIiL1nN2AO8LgP7GQYIdMN9xxAMYfhCJNR3PcbL42zn65K6dd3QSAZS9tYNmE9Z4Nqg5RglrLpK/L4pfRK3GVuDFdlQ9+py47iKvAVcORiYiIiIg3a++AL+LhggBr/fM8uDoVNpd4Nq7ayLAZ9BrTgc53tsLutBHSKIjiLL2Q1UEJai0T2TaUqHZhGMf4zRk2iGofRmRbdekVERERkYr8bfBkFDwfCaE22FkG/0yF97PBrQv/jothGHS64zQu/f5sIlqGkLungIIDRZ4Oq9ZTglrLGIZBl7tbHynt/RPTDV3ubq2GSCIiIiJyTOcEWtPRdHNAGfBqNtyUBqmajua4hSQGEt7SuqZy38ID/DhsHsXZGk09UUpQa6EGfaIrHUU9PHraoHe0ZwITERERkVoj3A6TYuD+cHAYsKoEhqTA9HxPR1b72P1shLUMYdmEDaQuyeC7K38hP63Q02HVSkpQa6FjjaJq9FREREREjodhwNXB8GksNPeFfBMezoAH0yFXDZSOi4+fjXPf6I4j3I+cHfl8e/lcsrfneTqsWkfTzFSBN04zY5omGRuy4Y+/PQMiW4cqQRURERGR41ZqwmtZ8HGu9RUz2g7PREIXp6cjq11y9+Tz49D55KcU4hfiy3n/6Ul0u3BPh+Vxmge1GnljgioiIiIiciqsKLJGUfe7wAD+GQwjwsBXYyBVVphRzNRh88jalofdaefcid1p0DvG02F5lOZBFRERERGR49bZCV/GQ39/ayT1o1y4JhV+L/V0ZLWHf6SDiyb3JaZjOK4iF6smbcZdpprpqtAIahVoBFVERERE6qPp+fDMQcgzwRcYGQZXBVvXrsrfc5W4WPriepqcm4CP0054y2DsfnZPh+URGkEVEREREZGTcl4gTImHZD8oBZ7Pgtv2Q7rL05HVDnY/O6ePbk9osyAADm7KYfv/9qIxwmNTgioiIiIiIscU4wP/iYU7Q61R1CXFcNk+mKXpaKrMP8JBcKNANn2xk1l3L2PeI6twu5SkVkYJqoiIiIiI/CXDgOtD4aM4aOwDuSbclwFjM6BAl1ZWiSPE1xpJNWDzl7uYeecSXCUaiv4zJagiIiIiIlIlLf1gcjwMsfIsvs+Hy1NgTbGnI6sd2l/Xgn7PdcbwMdg1K5Vp1y2gJE/dp/5ICaqIiIiIiFSZnwGjI+D1aIi0QaoLbkiDN7OgTFWrf6vFRYkMeLMHdqedtBUH+eHqXynMUIZ/mBJUERERERE5bj394asE6OsEN/BODgxLhV0aEPxbDc+I5YIPe+MX4kvmlly+v+oXXCWqlQYlqCIiIiIicoKCbTAhBsZEQIABG0vhylT4KhfUqPavRXcI56LPziAgxknzCxuSuTnH0yF5Bc2DWgWaB1VERERE5K/tK4X702HDoRHUPk54PBLC6+e0n1VWWlBGzq58zEP10eGnhWD3qXvjiJoHVUREREREakyCL3wYB7eEgB2YVwSXpcD8Qk9H5t18A3yIPC0UnwA7xdklfHXBLHb8nOLpsDxGCaqIiIiIiFQLuwH/CoMPYqGBD2S54c4D8EwGFOoSy78U1iyY7f/bR87OfGbdtYSNX+z0dEgeoQRVRERERESqVRsHfBEHFwda61Py4apU2FDi2bi8Xa9HO9D0vARMN8x/dBWrJm32dEg1TgmqiIiIiIhUO6cNHouEl6Ig1Aa7y6wuv+9mg0tdcCpl87Vx1stdaXNtUwCWT9jAwqfXYLrrzwumBFVERERERE6ZMwPgq3jo7gAXMDEbbkyDfWWejsw7GYZBz0c70Pnu0wBY/9F2Zt+7HHdp/aiRVoIqIiIiIiKnVLgd3oyBB8PBacCaEhiSAj/maTqaY+l0Wyv6PNkRwwb7Vx4ke3uep0OqET6eDkBEREREROo+w4Arg6Gn05qOZkspPHoQ5hTCo5EQoqGzo7Qa0hj/SD9ME1wlbnL3FBDcMMDTYZ1SehuIiIiIiEiNaeQLH8fB8GArGZlZCJftg6VFno7MOzU6O57EM+MAKM4q4bcPt5GfWnfn7lGCKiIiIiIiNcrHgLvD4Z0YiLVDhhv+tR9eyIQSlfwexWY3iGwbSuryDBaNX8e3Q+aS9Xuup8M6JZSgioiIiIiIR3RywpfxMDAATOCTXLg6BbZqOpqjGIZB4/7xBMb5U3igmO+v+pX9aw56OqxqpwRVREREREQ8JsAG46JgfCQEG7C9DK5Nhf/mQD2aXaVKghsEcMmUfoQnBVOSU8rUYfPZMy+twj4ZG7M9FF31UIIqIiIiIiIeNyAQpsRDJweUAi9lwa374YCmo6nAP8LBRZ/1JbZzBK4iNz/9azFbv9tNaUEZvzy0gm8Gz+GX0SsoK6ydL5xhmmrs/HdycnIIDQ0lOzubkJAQT4cjIiIiIlJnmSb8NxcmZkEJEGTAmAjoH+jpyLyLq8TNrJFL2TUrFYDAOCcF+4sw3WDYIKRxEOe81o3wFt6Rv1Q1p9IIqoiIiIiIeA3DgKEhVqffJj6QZ8IDGfBIOuS5PR2d97D72ej/endiu0aAjfLkFMB0Q86ufL69dC5bvtnl2UCPkxJUERERERHxOs39YHI8XBUEBjC1AIakwKpiT0fmPTLWZ5O27CC4KU9ODzNdJq4SN788tJL0dVkeie9EKEEVERERERGv5GvAAxHwZgxE2SDNBTemwWtZUKoLFYlsG0pUuzCMY2R1hg2i2ocR2Ta0ZgM7CUpQRURERETEq3V3wpcJcJa/NR3NezkwNBV2lno6Ms8yDIMud7c+avT0MNMNXe5ujWEYNRvYSVCCKiIiIiIiXi/YBi9Gw+MREGjA5lK4KhWm5FqNleqrBn2iKx1FPTx62qB3tGcCO0FKUEVEREREpNa4KAi+iIN2flBswjOZcOcBOOjydGSecaxR1No4egqaZqZKNM2MiIiIiIh3cZvwbg68kw1lQKgNnoiEM/w9HVnNM02TjA3ZVv3zYQZEtg71mgS1qjmVEtQqUIIqIiIiIuKdNhTDgxmwp8xa/0cg3BcO/qoV9SqaB1VEREREROq81g74Ih4GB1rrX+fDlamwXtPR1EpKUEVEREREpFZzGDAmEl6JhnCbNZo6PM0q/3WpXrRWUYIqIiIiIiJ1whn+8FU89HSCC3gzG65Lg71lno5MqkoJqoiIiIiI1Bmhdng9Gh4OB6cBv5XAkBT4Lq9+T0dTWyhBFRERERGROsUw4PJgmBwHLX2hyITHDsJ96ZBdT6ejqS2UoIqIiIiISJ2U6Asfx8ENIWAHZhfCZSmwuMjTkcmxKEEVEREREZE6y27AiDB4Nxbi7HDQDbfth+cOQrFKfr2OElQREREREanzOjjgy3g4P8Ba/ywPrkqBzSWejUsqUoIqIiIiIiL1gr8NnoqC5yMhxAY7y+CfqfBBDrg1muoVlKCKiIiIiEi9ck6gNR1NFweUAa9kwc37IU3T0XicElQREREREal3IuzwdgzcGwYOA1YWw+Up8L98T0dWvylBFRERERGReskw4NoQ+CQWmvlCvgmjM2B0OuS6PR1d/aQEVURERERE6rWmfvBpHFwTDAbwvwJrNHWFpqOpcUpQRURERESk3vM14L5wq+w32g4HXNZ1qa9kQqkaKNUYJagiIiIiIiKHdHFaDZTO8QcT+CAXrk2F7aWejqx+UIIqIiIiIiLyB4E2eD4anoqAIAO2lsLVKfBZDpgaTT2llKCKiIiIiIhU4vwgmBIP7f2gBHguC24/AOkuT0dWdylBFREREREROYYYH3gvFkaEgi+wuAgu2wezCzwdWd2kBFVEREREROQv2Ay4IRQ+ioNGPpBrwr3p8FgGFGg6mmqlBFVERERERKQKWvrB5/FweaA1Hc13+TAkBdYWezqyukMJqoiIiIiISBX5GfBwJLwWDRE2SHHB9WnwZhaUqYHSSVOCKiIiIiIicpx6+cNXCdDHCW7gnRwYngq7NR3NSVGCKiIiIiIicgJCbPBqDDwaAf4GbCiFK1Ph61xNR3OilKCKiIiIiIichH8EwRdxcJovFJnwZCbckw6Zmo7muClBFREREREROUkJvlaX35tDwA78UgiXp8CCQk9HVrsoQRUREREREakGdgNuC4P3YyHBDpluGHEAxh2EIk1HUyVKUEVERERERKpRWwdMiYcLA631L/LgqlTYVOLZuGoDJagiIiIiIiLVzGmDJyLhxUgItcGuMvhnKryXDS41UDomJagiIiIiIiKnyFmB8FU8dHeAC3gtG25Kg5QyT0fmnZSgioiIiIiInELhdngzBh4IB4cBq0tgSApMy/N0ZN5HCaqIiIiIiMgpZhhwVTB8FgvNfaHAhP87CA8egFw1UCqnBFVERERERKSGNPaDT+NgaLCVjM0ohMv2wbIiT0fmHZSgioiIiIiI1CAfA+4Jh7djIMYO6W64dT+8lAkl9byBkhJUERERERERD+jstBooDQgAE/hvLlybAr+Xejoyz1GCKiIiIiIi4iEBNhgfBeMiIciAbWVwdQp8kgNmPRxNVYIqIiIiIiLiYQMDYUo8dPSDUuCFLPjXfjjg8nRkNUsJqoiIiIiIiBeI8YF3Y+GuUPAFlhbD5ftgZr6nI6s5SlBFRERERES8hGHAdaHwcRw09oFcE+7PgDHpkF8PpqNRgioiIiIiIuJlWvjB5/FwRRAYwA8FMCQFVhd7OrJTSwmqiIiIiIiIF/I14KEIeCMaIm2Q6oIb0mBiFpTW0QZKSlBFRERERES8WA9/+CoB+vlb09G8mwPDUmHXH6ajcZmwrAim51v/umppAuvj6QBERERERETkrwXb4OVo+DYPns+ETaVwZSrcFwZhNng+C/b/oeNvjB3uD4dzAjwV8YkxTLM+zq5zfHJycggNDSU7O5uQkBBPhyMiIiIiIvVYSqnVOGl9ybH3MQ79+1yUdySpVc2pVOIrIiIiIiJSi8T7woexcHPwsfc5PAr5QmbtKvdVgioiIiIiIlLL2Azo5v/X+5hAmgtW1qLOv0pQRUREREREaqF019/vczz7eQMlqCIiIiIiIrVQlL169/MGSlBFRERERERqoU4Oq1uvcYzbDSDWbu1XWyhBFRERERERqYXshjWVDBydpB5evy/c2q+2UIIqIiIiIiJSS50TYE0lE/2nMt4Yu/dMMXM8fDwdgIiIiIiIiJy4cwLgTH+rW2+6y7rmtJOjdo2cHqYEVUREREREpJazG9DV6ekoTp5KfEVERERERMQrKEEVERERERERr6AEVURERERERLyCElQRERERERHxCkpQRURERERExCsoQRURERERERGvoARVREREREREvIISVBEREREREfEKSlBFRERERETEKyhBFREREREREa/glQnqxIkTadKkCU6nkx49erBkyZK/3P+LL77gtNNOw+l00r59e6ZOnVrhdtM0GTNmDPHx8fj7+9O/f3+2bNlyKp+CiIiIiIiIHCcfTwfwZ5MnT2bUqFFMmjSJHj16MGHCBAYOHMimTZuIiYk5av8FCxZw9dVXM27cOC688EI++eQTBg8ezIoVK2jXrh0Azz33HK+++ioffPABTZs25dFHH2XgwIGsX78ep9NZ5dh27NhBcHBwtT1XERERERGR+iA3N7dqO5pepnv37uYdd9xRvu5yucyEhARz3Lhxle5/xRVXmBdccEGFbT169DBvvfVW0zRN0+12m3Fxcebzzz9ffntWVpbpcDjMTz/9tNJjFhUVmdnZ2eXL7t27TUCLFi1atGjRokWLFi1atJzEkp2d/Zf5oFeV+JaUlLB8+XL69+9fvs1ms9G/f38WLlxY6X0WLlxYYX+AgQMHlu+/fft2UlNTK+wTGhpKjx49jnnMcePGERoaWr4kJiae7FMTERERERGRv+FVJb7p6em4XC5iY2MrbI+NjWXjxo2V3ic1NbXS/VNTU8tvP7ztWPv82ejRoxk1alT5ek5ODomJiaxevVolviIiIiIiIscpNzeX5OTkv93PqxJUb+FwOHA4HEdtb9KkCSEhIR6ISEREREREpPbKycmp0n5eVeIbFRWF3W4nLS2twva0tDTi4uIqvU9cXNxf7n/43+M5poiIiIiIiNQ8r0pQ/fz86NKlCzNnzizf5na7mTlzJj179qz0Pj179qywP8CMGTPK92/atClxcXEV9snJyWHx4sXHPKaIiIiIiIjUPK8r8R01ahTDhw+na9eudO/enQkTJpCfn8/1118PwLBhw2jQoAHjxo0D4O6776Zfv368+OKLXHDBBXz22WcsW7aMt99+GwDDMBg5ciRPPfUUSUlJ5dPMJCQkMHjwYE89TREREREREfkTr0tQr7zySg4cOMCYMWNITU2lY8eOTJ8+vbzJ0a5du7DZjgz89urVi08++YRHHnmEhx9+mKSkJL755pvyOVABHnjgAfLz87nlllvIysqiT58+TJ8+/bjmQBUREREREZFTyzBN0/R0EN4uJyeH0NBQsrOz1SRJRERERETkOFU1p/Kqa1BFRERERESk/lKCKiIiIiIiIl5BCaqIiIiIiIh4BSWoIiIiIiIi4hWUoIqIiIiIiIhXUIIqIiIiIiIiXkEJqoiIiIiIiHgFJagiIiIiIiLiFZSgioiIiIiIiFdQgioiIiIiIiJeQQmqiIiIiIiIeAUlqCIiIiIiIuIVlKCKiIiIiIiIV1CCKiIiIiIiIl5BCaqIiIiIiIh4BSWoIiIiIiIi4hWUoIqIiIiIiIhXUIIqIiIiIiIiXkEJqoiIiIiIiHgFH08HUBuYpglATk6OhyMRERERERGpfQ7nUodzq2NRgloFubm5ACQmJno4EhERERERkdorNzeX0NDQY95umH+Xwgput5t9+/YRHByMYRieDqeCnJwcEhMT2b17NyEhIZ4OR0SkVujWrRtLly71dBgiHqfPglSF3ie1i7f+vkzTJDc3l4SEBGy2Y19pqhHUKrDZbDRs2NDTYfylkJAQJagiIlVkt9v1N1MEfRakavQ+qV28+ff1VyOnh6lJkoiI1Dt33HGHp0MQ8Qr6LEhV6H1Su9T235dKfGu5nJwcQkNDyc7O9tozJSIiIiIiIlWhEdRazuFwMHbsWBwOh6dDEREREREROSkaQRURERERERGvoBFUERERERER8QpKUEVERERERMQrKEEVERERERERr6AEVURE5CT84x//IDw8nMsvv9zToYh4lD4LUlV6r8hfUYIqIiJyEu6++24+/PBDT4ch4nH6LEhV6b0if0UJah2ms1MiIqfemWeeSXBwsKfDEPE4fRakqvRekb+iBLUO09kpEamtxo0bR7du3QgODiYmJobBgwezadOman2MX375hYsuuoiEhAQMw+Cbb76pdL+JEyfSpEkTnE4nPXr0YMmSJdUah8hfefPNN+nQoQMhISGEhITQs2dPpk2bVq2Poc9C3TN+/HgMw2DkyJHVely9V6QmKEGtw3R2SkRqq7lz53LHHXewaNEiZsyYQWlpKQMGDCA/P7/S/efPn09paelR29evX09aWlql98nPzyc5OZmJEyceM47JkyczatQoxo4dy4oVK0hOTmbgwIHs37//xJ6YyHFq2LAh48ePZ/ny5Sxbtoyzzz6bSy65hN9++63S/fVZkKVLl/LWW2/RoUOHv9xP7xXxWqZ4pblz55oXXnihGR8fbwLm119/fdQ+r7/+utm4cWPT4XCY3bt3NxcvXnzUPrNnzzYvu+yyGohYROTU2b9/vwmYc+fOPeo2l8tlJicnm5dffrlZVlZWvn3jxo1mbGys+eyzz/7t8Y/1d7Z79+7mHXfcUeGxEhISzHHjxlXYT39rpSaFh4eb//73v4/ars+C5ObmmklJSeaMGTPMfv36mXfffXel++m9It5MI6he6u/OUOnslIjUJ9nZ2QBEREQcdZvNZmPq1KmsXLmSYcOG4Xa72bZtG2effTaDBw/mgQceOKHHLCkpYfny5fTv37/CY/Xv35+FCxee2BMROQkul4vPPvuM/Px8evbsedTt+izIHXfcwQUXXFDhd1UZvVfEm/l4OgCp3KBBgxg0aNAxb3/ppZe4+eabuf766wGYNGkSP/74I//5z3946KGHaipMEZFTzu12M3LkSHr37k27du0q3SchIYFZs2ZxxhlncM0117Bw4UL69+/Pm2++ecKPm56ejsvlIjY2tsL22NhYNm7cWL7ev39/Vq9eTX5+Pg0bNuSLL76oNHkQOVFr166lZ8+eFBUVERQUxNdff02bNm0q3Vefhfrrs88+Y8WKFSxdurRK++u9It5KCWotdPjs1OjRo8u36eyUiNRVd9xxB+vWrWPevHl/uV+jRo346KOP6NevH82aNePdd9/FMIxTHt/PP/98yh9D6rdWrVqxatUqsrOzmTJlCsOHD2fu3LnHTFL1Wah/du/ezd13382MGTNwOp1Vvp/eK+KNVOJbC/3V2anU1NTy9f79+zNkyBCmTp1Kw4YNlbyKSK0zYsQIfvjhB2bPnk3Dhg3/ct+0tDRuueUWLrroIgoKCrjnnntO6rGjoqKw2+1HNQtJS0sjLi7upI4tcjz8/Pxo0aIFXbp0Ydy4cSQnJ/PKK68cc399Fuqf5cuXs3//fjp37oyPjw8+Pj7MnTuXV199FR8fH1wuV6X303tFvJES1Drs559/5sCBAxQUFLBnzx6VTohIrWGaJiNGjODrr79m1qxZNG3a9C/3T09P55xzzqF169Z89dVXzJw5k8mTJ3PfffedcAx+fn506dKFmTNnlm9zu93MnDlTf0/Fo9xuN8XFxZXeps9C/XTOOeewdu1aVq1aVb507dqVa6+9llWrVmG324+6j94r4q1U4lsL6eyUiNR1d9xxB5988gnffvstwcHB5dUhoaGh+Pv7V9jX7XYzaNAgGjduzOTJk/Hx8aFNmzbMmDGDs88+mwYNGlQ6KpCXl8fWrVvL17dv386qVauIiIigUaNGAIwaNYrhw4fTtWtXunfvzoQJE8jPzy+//l/kVBs9ejSDBg2iUaNG5Obm8sknnzBnzhz+97//HbWvPgv1V3Bw8FHX6AcGBhIZGVnptft6r4hX83QbYfl7VNLGu3v37uaIESPK110ul9mgQYOjWniLiNRGQKXLe++9V+n+P/30k1lYWHjU9hUrVpi7d++u9D6zZ8+u9DGGDx9eYb/XXnvNbNSokenn52d2797dXLRo0ck+PZEqu+GGG8zGjRubfn5+ZnR0tHnOOeeYP/300zH312dBDvuraWZMU+8V8V6GaZpmTSbEUjV/PEPVqVMnXnrpJc4666zyM1STJ09m+PDhvPXWW+Vnpz7//HM2btx41LWpIiIiIiIitYESVC81Z84czjrrrKO2Dx8+nPfffx+A119/neeff57U1FQ6duzIq6++So8ePWo4UhERERERkeqhBFVERERERES8grr4ioiIiIiIiFdQgioiIiIiIiJeQQmqiIiIiIiIeAUlqCIiIiIiIuIVlKCKiIiIiIiIV1CCKiIiIiIiIl5BCaqIiIiIiIh4BSWoIiIiIiIi4hWUoIqIiIiIiIhXUIIqIiK10o4dOzAMg1WrVnk6lHIbN27k9NNPx+l00rFjR0+Hc1yuu+46Bg8efMqOb5omt9xyCxEREV73exMREe+hBFVERE7Iddddh2EYjB8/vsL2b775BsMwPBSVZ40dO5bAwEA2bdrEzJkzPR2OV5k+fTrvv/8+P/zwAykpKbRr187TIdGkSRMmTJhQrcc888wzGTlyZLUeU0SkPlGCKiIiJ8zpdPLss8+SmZnp6VCqTUlJyQnfd9u2bfTp04fGjRsTGRlZjVHVftu2bSM+Pp5evXoRFxeHj4/PUfuczGsvIiJ1gxJUERE5Yf379ycuLo5x48Ydc5/HHnvsqHLXCRMm0KRJk/L1w+WlzzzzDLGxsYSFhfHEE09QVlbG/fffT0REBA0bNuS999476vgbN26kV69eOJ1O2rVrx9y5cyvcvm7dOgYNGkRQUBCxsbEMHTqU9PT08tvPPPNMRowYwciRI4mKimLgwIGVPg+3280TTzxBw4YNcTgcdOzYkenTp5ffbhgGy5cv54knnsAwDB577LFKjzNlyhTat2+Pv78/kZGR9O/fn/z8fACWLl3KueeeS1RUFKGhofTr148VK1ZUuL9hGLz11ltceOGFBAQE0Lp1axYuXMjWrVs588wzCQwMpFevXmzbtu2o38Fbb71FYmIiAQEBXHHFFWRnZ1ca4+HnO27cOJo2bYq/vz/JyclMmTKl/PbMzEyuvfZaoqOj8ff3JykpqdLfD1i/3zvvvJNdu3ZhGEb57/5Yr/3cuXPp3r07DoeD+Ph4HnroIcrKysqPd+aZZ3LnnXcycuRIwsPDiY2N5Z133iE/P5/rr7+e4OBgWrRowbRp0475/M4880x27tzJPffcg2EYFUb9582bxxlnnIG/vz+JiYncdddd5b8jgDfeeIOkpCScTiexsbFcfvnl5c9z7ty5vPLKK+XH3LFjxzFjEBGRoylBFRGRE2a323nmmWd47bXX2LNnz0kda9asWezbt49ffvmFl156ibFjx3LhhRcSHh7O4sWL+de//sWtt9561OPcf//93HvvvaxcuZKePXty0UUXkZGRAUBWVhZnn302nTp1YtmyZUyfPp20tDSuuOKKCsf44IMP8PPzY/78+UyaNKnS+F555RVefPFFXnjhBdasWcPAgQO5+OKL2bJlCwApKSm0bduWe++9l5SUFO67776jjpGSksLVV1/NDTfcwIYNG5gzZw6XXnoppmkCkJuby/Dhw5k3bx6LFi0iKSmJ888/n9zc3ArHefLJJxk2bBirVq3itNNO45prruHWW29l9OjRLFu2DNM0GTFiRIX7bN26lc8//5zvv/+e6dOns3LlSm6//fZj/j7GjRvHhx9+yKRJk/jtt9+45557+Oc//1l+AuDRRx9l/fr1TJs2jQ0bNvDmm28SFRV1zNfucHKfkpLC0qVLj/na7927l/PPP59u3bqxevVq3nzzTd59912eeuqpo35nUVFRLFmyhDvvvJPbbruNIUOG0KtXL1asWMGAAQMYOnQoBQUFlcb01Vdf0bBhQ5544glSUlJISUkBrJHe8847j8suu4w1a9YwefJk5s2bV/56Llu2jLvuuosnnniCTZs2MX36dPr27Vv+PHv27MnNN99cfszExMRjvsYiIlIJU0RE5AQMHz7cvOSSS0zTNM3TTz/dvOGGG0zTNM2vv/7a/ON/L2PHjjWTk5Mr3Pfll182GzduXOFYjRs3Nl0uV/m2Vq1amWeccUb5ellZmRkYGGh++umnpmma5vbt203AHD9+fPk+paWlZsOGDc1nn33WNE3TfPLJJ80BAwZUeOzdu3ebgLlp0ybTNE2zX79+ZqdOnf72+SYkJJhPP/10hW3dunUzb7/99vL15ORkc+zYscc8xvLly03A3LFjx98+nmmapsvlMoODg83vv/++fBtgPvLII+XrCxcuNAHz3XffLd/26aefmk6ns3x97Nixpt1uN/fs2VO+bdq0aabNZjNTUlJM06z4+ywqKjIDAgLMBQsWVIjnxhtvNK+++mrTNE3zoosuMq+//voqPQ/TPPp3bpqVv/YPP/yw2apVK9PtdpdvmzhxohkUFFT+/ujXr5/Zp0+f8tsPvzeGDh1avi0lJcUEzIULFx4zpsaNG5svv/zyUc/xlltuqbDt119/NW02m1lYWGh++eWXZkhIiJmTk1PpMfv162fefffdx3xMERH5axpBFRGRk/bss8/ywQcfsGHDhhM+Rtu2bbHZjvy3FBsbS/v27cvX7XY7kZGR7N+/v8L9evbsWf6zj48PXbt2LY9j9erVzJ49m6CgoPLltNNOA6hQAtulS5e/jC0nJ4d9+/bRu3fvCtt79+59XM85OTmZc845h/bt2zNkyBDeeeedCtfvpqWlcfPNN5OUlERoaCghISHk5eWxa9euCsfp0KFD+c+xsbEAFV6r2NhYioqKyMnJKd/WqFEjGjRoUL7es2dP3G43mzZtOirOrVu3UlBQwLnnnlvhtfvwww/LX7fbbruNzz77jI4dO/LAAw+wYMGCKr8Of/Tn137Dhg307NmzQslt7969ycvLqzB6/sfX4PB748+vAXDU++XvrF69mvfff7/C8x44cCBut5vt27dz7rnn0rhxY5o1a8bQoUP5+OOPjzlKKyIix+/oDgUiIiLHqW/fvgwcOJDRo0dz3XXXVbjNZrOVl7AeVlpaetQxfH19K6wbhlHpNrfbXeW48vLyuOiii3j22WePui0+Pr7858DAwCof82TY7XZmzJjBggUL+Omnn3jttdf4v//7PxYvXkzTpk0ZPnw4GRkZvPLKKzRu3BiHw0HPnj2Pah70x9flcCJX2bbjea3+KC8vD4Aff/yxQlIL4HA4ABg0aBA7d+5k6tSpzJgxg3POOYc77riDF1544bge60Rf+797v5zoa5CXl8ett97KXXfdddRtjRo1ws/PjxUrVjBnzhx++uknxowZw2OPPcbSpUsJCws7/iciIiIVaARVRESqxfjx4/n+++9ZuHBhhe3R0dGkpqZWSFKrcw7MRYsWlf9cVlbG8uXLad26NQCdO3fmt99+o0mTJrRo0aLCcjyJUUhICAkJCcyfP7/C9vnz59OmTZvjitcwDHr37s3jjz/OypUr8fPz4+uvvy4/3l133cX5559P27ZtcTgcFRo6nYxdu3axb9++8vVFixZhs9lo1arVUfu2adMGh8PBrl27jnrd/nhNZXR0NMOHD+e///0vEyZM4O233z7pOA83ffrj+2X+/PkEBwfTsGHDkz7+H/n5+eFyuSps69y5M+vXrz/qebdo0QI/Pz/AGqnv378/zz33HGvWrGHHjh3MmjXrmMcUEZGq0wiqiIhUi/bt23Pttdfy6quvVth+5plncuDAAZ577jkuv/xypk+fzrRp0wgJCamWx504cSJJSUm0bt2al19+mczMTG644QYA7rjjDt555x2uvvpqHnjgASIiIti6dSufffYZ//73v7Hb7VV+nPvvv5+xY8fSvHlzOnbsyHvvvceqVav4+OOPq3yMxYsXM3PmTAYMGEBMTAyLFy/mwIED5Ql1UlISH330EV27diUnJ4f7778ff3//43tBjsHpdDJ8+HBeeOEFcnJyuOuuu7jiiiuIi4s7at/g4GDuu+8+7rnnHtxuN3369CE7O5v58+cTEhLC8OHDGTNmDF26dKFt27YUFxfzww8/lD+Pk3H77bczYcIE7rzzTkaMGMGmTZsYO3Yso0aNqlACXh2aNGnCL7/8wlVXXYXD4SAqKooHH3yQ008/nREjRnDTTTcRGBjI+vXrmTFjBq+//jo//PADv//+O3379iU8PJypU6fidrvLE/0mTZqwePFiduzYQVBQEBEREdUet4hIXaa/mCIiUm2eeOKJo0oqW7duzRtvvMHEiRNJTk5myZIllXa4PVHjx49n/PjxJCcnM2/ePL777rvybrKHRz1dLhcDBgygffv2jBw5krCwsONOGu666y5GjRrFvffeS/v27Zk+fTrfffcdSUlJVT5GSEgIv/zyC+effz4tW7bkkUce4cUXX2TQoEEAvPvuu2RmZtK5c2eGDh3KXXfdRUxMzHHFeSwtWrTg0ksv5fzzz2fAgAF06NCBN95445j7P/nkkzz66KOMGzeO1q1bc9555/Hjjz/StGlTwBopHD16NB06dKBv377Y7XY+++yzk46zQYMGTJ06lSVLlpCcnMy//vUvbrzxRh555JGTPvafPfHEE+zYsYPmzZsTHR0NWNe2zp07l82bN3PGGWfQqVMnxowZQ0JCAgBhYWF89dVXnH322bRu3ZpJkybx6aef0rZtWwDuu+8+7HY7bdq0ITo6+qjrh0VE5K8Z5p8vDBIREZE65bHHHuObb76p1tJqERGRU0EjqCIiIiIiIuIVlKCKiIiIiIiIV1CJr4iIiIiIiHgFjaCKiIiIiIiIV1CCKiIiIiIiIl5BCaqIiIiIiIh4BSWoIiIiIiIi4hWUoIqIiIiIiIhXUIIqIiIiIiIiXkEJqoiIiIiIiHgFJagiIiIiIiLiFf4fikEvuGL/gz8AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7EAAAKuCAYAAAB31JujAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAADwAElEQVR4nOzdd3wUdf7H8dfsJpveKz30IiiIVBUbiIr+TuXEAirggQVRBAtYwN57xbNgQ+E88U49Tz1RLAgiIErvHdJ73ezu/P6YFEJCCSTZTfJ+Ph77YDI7O/vZBbL7nm8zTNM0EREREREREWkEbN4uQERERERERORoKcSKiIiIiIhIo6EQKyIiIiIiIo2GQqyIiIiIiIg0GgqxIiIiIiIi0mgoxIqIiIiIiEijoRArIiIiIiIijYZCrIiIiIiIiDQaCrEiIiIiIiLSaCjEioiIiIiISKPh5+0CDvbKK6/w1FNPkZyczEknncRLL71E//79azx27dq1zJw5kxUrVrBz506ee+45pkyZUuWYpKQkdu7cWe2xN910E6+88goAZ555Jj/88EOV+6+//npmz5591HV7PB727dtHWFgYhmEc9eNERERERESaO9M0ycvLo2XLlthsh29r9akQO3/+fKZOncrs2bMZMGAAzz//PMOHD2fjxo3Ex8dXO76wsJAOHTpw2WWXcdttt9V4zt9++w23213x85o1axg2bBiXXXZZleMmTJjAgw8+WPFzcHBwrWrft28fbdq0qdVjREREREREpNLu3btp3br1YY/xqRD77LPPMmHCBMaNGwfA7Nmz+c9//sPbb7/N9OnTqx3fr18/+vXrB1Dj/QBxcXFVfn788cfp2LEjZ5xxRpX9wcHBJCYmHnPtYWFhgPWmh4eHH/N5REREREREmpvc3FzatGlTkasOx2dCrNPpZMWKFcyYMaNin81mY+jQoSxZsqTOnuODDz5g6tSp1br8zp07lw8++IDExEQuuugi7rvvvsO2xpaUlFBSUlLxc15eHgDh4eEKsSIiIiIiIsfgaIZm+kyITU9Px+12k5CQUGV/QkICGzZsqJPn+Ne//kV2djZjx46tsv+qq66iXbt2tGzZkj///JO77rqLjRs3smDBgkOe67HHHuOBBx6ok7pERERERETk6PhMiG0Ib731Fueffz4tW7assn/ixIkV27169aJFixacc845bN26lY4dO9Z4rhkzZjB16tSKn8ubv0VERERERKT++EyIjY2NxW63k5KSUmV/SkrKcY1VLbdz506+/fbbw7aulhswYAAAW7ZsOWSIDQgIICAg4LjrEhERERERkaPnMyHW4XDQt29fFi5cyMUXXwxYy9YsXLiQm2+++bjPP2fOHOLj4xkxYsQRj121ahUALVq0OO7nFRERERE5Vm63m9LSUm+XIVInHA7HEZfPORo+E2IBpk6dyrXXXsspp5xC//79ef755ykoKKiYrfiaa66hVatWPPbYY4A1UdO6desqtvfu3cuqVasIDQ2lU6dOFef1eDzMmTOHa6+9Fj+/qi9569atfPjhh1xwwQXExMTw559/cttttzFkyBBOPPHEBnrlIiIiIiKVTNMkOTmZ7Oxsb5ciUmdsNhvt27fH4XAc13l8KsRefvnlpKWlMXPmTJKTk+nduzdfffVVxWRPu3btqpLc9+3bR58+fSp+fvrpp3n66ac544wzWLRoUcX+b7/9ll27djF+/Phqz+lwOPj2228rAnObNm0YOXIk9957b/29UBERERGRwygPsPHx8QQHBx/VjK0ivszj8bBv3z72799P27Ztj+vftGGaplmHtTVbubm5REREkJOToyV2REREROSYud1uNm3aRHx8PDExMd4uR6TO5OTksG/fPjp16oS/v3+V+2qTp46/Q7KIiIiIiNSZ8jGwwcHBXq5EpG6VdyN2u93HdR6FWBERERERH6QuxNLU1NW/aYVYERERERERaTQUYkVERERERKTRUIgVEREREWmi3CYsL4avCqw/3fU8pevYsWMxDIMbbrih2n2TJk3CMAzGjh1bZf/u3bsZP348LVu2xOFw0K5dO2699VYyMjKqHHfmmWdiGAaGYRAQEECrVq246KKLWLBgQbXnKj/u4Nu8efMAWLRoEYZhHNcSRvfff3+Nr3XVqlUYhsGOHTsA2LFjB4ZhsGrVqhp/Pvg1Tpky5Zhrai4UYkVEREREmqCFhTBiH0xMhbszrD9H7LP216c2bdowb948ioqKKvYVFxfz4Ycf0rZt2yrHbtu2jVNOOYXNmzfz0UcfsWXLFmbPns3ChQsZNGgQmZmZVY6fMGEC+/fvZ+vWrXzyySf06NGDK664gokTJ1arY86cOezfv7/K7eKLL67T1xoYGMhbb73F5s2b6/S8cng+tU6siIiIiIgcv4WFcGc6HNzwmua29j8ZC+fU0+THJ598Mlu3bmXBggWMHj0agAULFtC2bVvat29f5dhJkybhcDj45ptvCAoKAqBt27b06dOHjh07cs899/Daa69VHB8cHExiYiIArVu3ZuDAgXTr1o3x48czatQohg4dWnFsZGRkxbH1pWvXrsTHx3PPPffwj3/8o16fSyqpJVZERERExMeZJhR5ju6W74Yns6oHWLD2mcBTWdZxR3M+8xi6II8fP545c+ZU/Pz2228zbty4KsdkZmby9ddfc9NNN1UE2HKJiYmMHj2a+fPnYx6hgGuvvZaoqKgauxUfq/LuxuVdgg/n8ccf55NPPmH58uV19vxyeGqJFRERERHxccUmnLqn7s6X6oYhe4/u2MWtIaiWK6OMGTOGGTNmsHPnTuscixczb948Fi1aVHHM5s2bMU2T7t2713iO7t27k5WVRVpaGvHx8Yd8LpvNRpcuXaoFziuvvBK73V5l37p166p1aa5JcHAwXbt2xd/f/4jHnnzyyYwaNYq77rqLhQsXHvH4coMHD8Zmq9qmWFRURO/evY/6HM2VQqyIiIiIiNSpuLg4RowYwTvvvINpmowYMYLY2Ngajz1SS+vRME2z2hqkzz33XJXuxQAtW7Y8qvP179+fDRs2HPXzP/zww3Tv3p1vvvnmsIH7QPPnz68W4Mu7X8vhKcSKiIiIiPi4QMNqET0aK4thcvqRj3spFk4OPLrnPhbjx4/n5ptvBuCVV16pdn+nTp0wDIP169dzySWXVLt//fr1REVFERcXd9jncbvdbN68mX79+lXZn5iYSKdOnY6t+Frq2LEjEyZMYPr06bz11ltH9Zg2bdpUq+/gbtVSM42JFRERERHxcYYBQbajuw0Mgng7HCp7GkCC3TruaM5nHGOIPe+883A6nZSWljJ8+PBq98fExDBs2DBeffXVKjMZAyQnJzN37lwuv/zyai2sB3v33XfJyspi5MiRx1ZoHZk5cyabNm2qWMZH6o9aYkVEREREmhC7AXdEWbMQG1Sd4Kk8Dt4eZR1Xr3XY7axfv75iuyYvv/wygwcPZvjw4Tz88MO0b9+etWvXcscdd9CqVSseeeSRKscXFhaSnJyMy+Viz549fPrppzz33HPceOONnHXWWVWOzc7OJjk5ucq+sLAwQkJCKn5evXo1YWFhFT8bhsFJJ53EsmXLuOaaa1i4cCGtWrU6qtebkJDA1KlTeeqpp47qeDl2aokVERGRRsltwvJi+KrA+tN9/MPqRJqMc4KtZXTiDsqO8fb6XV7nYOHh4YSHhx/y/s6dO7N8+XI6dOjAqFGj6NixIxMnTuSss85iyZIlREdHVzn+jTfeoEWLFnTs2JFLL72UdevWMX/+fF599dVq5x43bhwtWrSocnvppZeqHDNkyBD69OlTcevbty9gheWNGzdSWlpaq9d7++23ExoaWqvHSO0ZZl2MpBZyc3OJiIggJyfnsP9RRURE5PgtLLSWCEl1V+6Lt1utTw315VykvhQXF7N9+3bat29PYOBRDFo9DLcJv5dAuhti7dAnoP5bYEUO5XD/tmuTp9SdWERERBqVhYVWN8mDr8Knua39DdnKJOLr7Aaccnw5WMTnqDuxiIiINBpu02qBrakbWfm+p7PUtVhEpClTiBUREZFG4/eSql2ID2YCKW7rOBERaZoUYkVERKTRSD9MgD2W40REpPFRiBUREZFGI7bmVTqO+TgREWl8FGJFRESk0YixHfnLS0LZDKwiItI0KcSKiIhIo7DPBZPSwHOE4y4L0RIiIiJNmUKsiIiI+LxkF0xMgWQ3tLDD9eHWurAH8i/789082OFs8BJFRKSBaJ1YERER8WlpLrg+Ffa5ra7C90XDwCD4W4Q1C3G62xoD29UfrkuFLaVwfRrMTdTYWBGRpkgtsSIiIuKzMtxWgN3tgjg73FMWYMHqMnxKIJwXYv0ZZofZ8VbQTXPD9SlQcKS+xyIi0ugoxIqIiIhPynLDDamww2VN6HR3FJwWdPjHRNvh9XgIt8F2F0xOhVKzYeoV8VlOJyz50fqzno0dOxbDMLjhhhuq3Tdp0iQMw2Ds2LFV9u/evZvx48fTsmVLHA4H7dq149ZbbyUjI6PKcWeeeSaGYWAYBgEBAbRq1YqLLrqIBQsWVHuu8uMOvs2bNw+ARYsWYRgG2dnZx/V6c3Nzueeee+jWrRuBgYEkJiYydOhQFixYgGmaFXVPmTKl2mPfeecdIiMjq/xcU82BgYEAuN1uBg8ezKWXXlrlPDk5ObRp04Z77rkHgB07dlR5fExMDOeeey6///57xWMOfC8PvB3493bg/vDwcPr168e///3vwz6+/HbmmWce1/t6JAqxIiIi4nOyywLs1lKIssHd0XBG8NE9tq0/vBwLAQascsLd6eBRkJXmyDTh159h8rXwzINwy1jrZ7N+/0O0adOGefPmUVRUVLGvuLiYDz/8kLZt21Y5dtu2bZxyyils3ryZjz76iC1btjB79mwWLlzIoEGDyMzMrHL8hAkT2L9/P1u3buWTTz6hR48eXHHFFUycOLFaHXPmzGH//v1VbhdffHGdvc7s7GwGDx7Me++9x4wZM1i5ciU//vgjl19+OXfeeSc5OTm1Pmd4eHi1mnfu3AmA3W7nnXfe4auvvmLu3LkVj5k8eTLR0dHMmjWryrm+/fZb9u/fz9dff01+fj7nn39+ldBe/l4eeHvyySernKP8PVy+fDmnnnoqf/3rX1m9ejULFiyoeMyyZcuqPN/+/ftrvLBQlzQmVkRERHxKngduSoXNpRBhgxnRcNZRBthyPQPhyRi4LR0WFsHTWXBndP3UK+KTdmyDt1+GdX+CUTZdd0YaPHU/nHAijL8Z2nWol6c++eST2bp1KwsWLGD06NEALFiwgLZt29K+ffsqx06aNAmHw8E333xDUJDV1aJt27b06dOHjh07cs899/Daa69VHB8cHExiYiIArVu3ZuDAgXTr1o3x48czatQohg4dWnFsZGRkxbH14e6772bHjh1s2rSJli1bVuzv0qULV155ZUULam0YhnHYmrt06cLjjz/O5MmTOfvss1m2bBnz5s3jt99+w+FwVDk2JiaGxMREEhMTefrppzn11FP59ddfGT58OFD1vTyU8vcwMTGRhx56iBdeeIHvv/+eW265peKY4uLiKs/XENQSKyIiIj4j3wOTUmFDqdUl+O5oGFrLAFvu9GBrDC3AvHx4t/aNIiK+p7jo6G4vPAob1liPKW95Lf9z/Rp4/tGjO+8xGj9+PHPmzKn4+e2332bcuHFVjsnMzOTrr7/mpptuqgiw5RITExk9ejTz58+v6JZ7KNdeey1RUVF12vpX3t14x44dNd7v8XiYN28eo0ePrhJgy4WGhuLnVz/thZMnT+akk07i6quvZuLEicycOZOTTjrpsI8pf3+dx9il3OVy8dZbbwFUC8veoJZYERER8QmFHmsM6xonhBowIwqGHmEM7JFcEgqpLng9F17MgTg/uCCkbuoV8YoxFx3/OTweSN1fdd9NYyC3his9//z2mJ5izJgxzJgxo6Ir7OLFi5k3bx6LFi2qOGbz5s2Ypkn37t1rPEf37t3JysoiLS2N+Pj4Qz6XzWajS5cu1QLnlVdeid1edYrydevWVevSXJPg4GC6du2Kv79/jfenp6eTlZVFt27djngugFdffZU333yzyj6Xy1WttTYnJ4fQ0NAq+04//XT++9//VvxsGAavvfYa3bt3p1evXkyfPv2wz52dnc1DDz1EaGgo/fv3P2xNr7/+ekXrOVS+h0VFRXg8HpKSkhg1atRRveb6pBArIiIiXlfkgVvS4A8nBBswPRrODa7sBXk8JkZAihv+VQD3Z1iTRA04znAsIocXFxfHiBEjeOeddzBNkxEjRhAbG1vjsUdqaT0apmliHPQL47nnnqvSvRiosdW0Jv3792fDhg2Hfb7aGD16dMXES+UWLFjAo49WbREPCwtj5cqVVfYd3EoNVst2cHAw27dvZ8+ePSQlJVU7ZvDgwdhsNgoKCujQoQPz588nISHhsDUdeD9Uvofbtm3jtttu48UXXyQ62vtjMxRiRURExKuKPXBbGqwsgSAD7oqG8+sowIJ1nnuirfVkfy6Gaenwdjx0Caib84s0qA8+P7rjpk+CPbsOfX/cQWMXX/3g2Gs6hPHjx3PzzTcD8Morr1S7v1OnThiGwfr167nkkkuq3b9+/XqioqKIi4s77PO43W42b95Mv379quxPTEykU6dOx/EKDi0uLo7IyMjDBt0DRUREVKulptZlm812xJp/+eUXnnvuOb755hsefvhhrrvuOr799ttqIX7+/Pn06NGDmJiYKrMgH66mg5W/h506dWLOnDlccMEFrFu37rAt4w1BY2JFRETEa0pMK1QuK4FAA+6IghF1GGDL2Q14MhZOcEChCTemQbKrbp9DpEEEBh3dze4HtkN81bfZ4KButoc8z3E477zzcDqdlJaWVkwmdKCYmBiGDRvGq6++WmUmY4Dk5GTmzp3L5ZdfXi2cHezdd98lKyuLkSNHHle9tWGz2bjiiiuYO3cu+/btq3Z/fn4+Llfd/5IpLCxk7Nix3HjjjZx11lm89dZbLFu2jNmzZ1c7tk2bNnTs2LHGAHss+vfvT9++fXnkkUfq5HzHQyFWREREvKLUhDvTYEmxtRzO7VHwfyFgq+MAWy7QBq/EQxs/yPLAhFTIcdfPc4l43S3ToVtPa7s8BJb/2b2ndX89s9vtrF+/nnXr1lUbm1ru5ZdfpqSkhOHDh/Pjjz+ye/duvvrqK4YNG0arVq2qBabCwkKSk5PZs2cPS5cu5a677uKGG26oCHUHys7OJjk5ucqtoKCgyjGrV69m1apVFbc//vgDgGXLltGtWzf27t17yNf3yCOP0KZNGwYMGMB7773HunXr2Lx5M2+//TZ9+vQhPz+/1u+ZaZrVak5OTsbj8QAwY8YMTNPk8ccfByApKYmnn36aO++885CTUB1K+Xt54C0rK+uwj5kyZQqvv/76Yd+XhqDuxCIiItLgSk2Yng4/FYM/MDUSLq7HAFsu3Aaz42FMMux1WUv5vJVgBVyRJqVdB3jgGfjtF3j7FUhPhZg4GD8J+g2u++4OhxAeHn7Y+zt37szy5cuZNWsWo0aNIjMzk8TERC6++GJmzZpVbfzlG2+8wRtvvIHD4SAmJoa+ffsyf/78GrsjHzwbMsBjjz1WZSKkIUOGVLnfbrfjcrkoLCxk48aNlJaWHrL26Oholi5dyuOPP87DDz/Mzp07iYqKolevXjz11FNEREQc9rXXJDc3lxYtWlTbv3//fjZu3Mgrr7zCokWLCA6unLb9+uuvZ8GCBRXdio9W+Xt5oOHDh/PVV18d8jHnnXce7du355FHHuHVV1896ueqa4ZZFyOphdzcXCIiIsjJyTnif1YREZHmzGXCPRnwv0Lravq0KPhrqNXlt6FsdsK4FKtr8aBAeDGuYZ9f5HCKi4vZvn077du3P6a1RqtxOmHlUug7EPy9vzyKNF+H+7ddmzyl644iIiLSYNwmzCoLsHbg1kgY2cABFqCzA56LtUL0kmJ4KLNyCU2RJsfhgIFDFGClyVCIFRERkQbhMa2w+N+yAHtLJFweBn5eagHtFwQPxoABfFYAr9WwRKaIiPgehVgRERGpd6YJj2ZZYdEGTIqEK7wYYMudFwJTIq3tN3PhkzyvliMiIkdBIVZERETqlWnCk1mwIN9q9bwhAkaHgb+PjEG9OhyuCrW2H8uCHwq9W4+IiByeQqyIiIjUG9OEZ7NhflmAnRAB14T7ToAtNzUKhgWBB5ieAauLvV2RiIgcikKsiIiI1AvThJdyYG5ZF93x4dbN4WMBFqylfR6OhZMDoMSEyemw69Ara4iIiBcpxIqIiEi9mJ0D7+Ra22PD4W8Rvhlgy/kb8EIcdPCDXA9MTIVMt7erEhGRgynEioiISJ17MwfeKAuwY8JgYjgE+HCALRdig9kJEG+HVDdcnwKFHm9XJSIiB1KIFRERkTr1Ti68WrZczZVhcGMEBDaibxyxdng9HsIM2OqCyWlQqjVkRUR8RiP6SBERERFfNzcXXsy2ti8LhUkRENQIv22084eX4qzW499L4J50a4yviIh4XyP8WBERERFfND8Pnsm2ti8JgVsiIbgRf9M4MRCeiLG+LH1bBM9kebsikWOXsSGnQZ5n7NixGIbBDTfcUO2+SZMmYRgGY8eOrbJ/9+7djB8/npYtW+JwOGjXrh233norGRkZVY4788wzMQwDwzAICAigVatWXHTRRSxYsKDac5Ufd/Bt3rx5ACxatAjDMMjOzj7m13r//fdXnNfPz4+kpCRuu+028vPzqxx3/fXXY7fb+fjjj494jtjYWIYMGcLzzz9PSUlJteO3bNnCuHHjaN26NQEBAbRv354rr7yS5cuXV3nt//rXv6o9duzYsVx88cVVfq7pPTrvvPMqjvnjjz/4v//7P+Lj4wkMDCQpKYnLL7+c1NTUKrUf6lZfGvFHi4iIiPiKBfnwRFnIuygEpkRa40sbuyHBMCPK2v4wH97P9W49IrVVWujix+kr+dfFi/hxxkpcRa56f842bdowb948ioqKKvYVFxfz4Ycf0rZt2yrHbtu2jVNOOYXNmzfz0UcfsWXLFmbPns3ChQsZNGgQmZmZVY6fMGEC+/fvZ+vWrXzyySf06NGDK664gokTJ1arY86cOezfv7/K7cAQVxdOOOEE9u/fz44dO3jiiSf4+9//zrRp0yruLywsZN68edx55528/fbbhz3Hrl27+P7777nssst47LHHGDx4MHl5eRXHLV++nL59+7Jp0yZef/111q1bx6effkq3bt2qPGdtnHfeedXeo48++giAtLQ0zjnnHKKjo/n6669Zv349c+bMoWXLlhQUFHD77bdXeVzr1q158MEHq+yrL371dmYRERFpFj7Lh0fKvmeeHwzTIiHM7tWS6tTIMEhxw5u58Hw2xNnhvBBvVyVyZFlbcvn25mXk7SoAYMu/d5O6KotzXupHVKfwenvek08+ma1bt7JgwQJGjx4NwIIFC2jbti3t27evcuykSZNwOBx88803BAUFAdC2bVv69OlDx44dueeee3jttdcqjg8ODiYxMRGA1q1bM3DgQLp168b48eMZNWoUQ4cOrTg2MjKy4tj64ufnV/Ecl19+OQsXLuSzzz7j9ddfB+Djjz+mR48eTJ8+nZYtW7J7927atGlzyHO0bNmSXr16MWzYME466SSeeOIJHn74YUzTZOzYsXTu3JmffvoJm63yKmHv3r259dZbj6n+gICAQ75HixcvJicnhzfffBM/Pys2tm/fnrPOOqvimNDQ0Iptu91OWFhYvb/noJZYEREROQ5fFsADmWACw4LhzigIb0IBttyNEfB/IdbrnJUBy4u9XZE0V6WFrkPeXCWVa0Jt/nQX/7r0B/J2F2KWzbBteiB3VwH/uvQHNn6886jOe6zGjx/PnDlzKn5+++23GTduXJVjMjMz+frrr7npppsqAmy5xMRERo8ezfz58zGPMCD92muvJSoqqsZuxceqvLvxjh07avW4oKAgnE5nxc9vvfUWY8aMISIigvPPP5933nnnqM7TrVs3zj///IrXtGrVKtauXcu0adOqBNhykZGRtarzaCQmJuJyufj000+P+HfQ0NQSKyIiIsfkf4UwM8MKdmcHwYxIiGiCARbAMOC+aEh3wy/FMCUN3kmATg5vVybNzXsn/+eQ97U+I4Hhrw8kfU02P874vcZjTLeJ6Tb5+b5VxHSPILZnJAD/OOd/FGc5qx1/3Ya/HFOdY8aMYcaMGezcaYXlxYsXM2/ePBYtWlRxzObNmzFNk+7du9d4ju7du5OVlUVaWhrx8fGHfC6bzUaXLl2qBc4rr7wSu73qL6V169ZV69Jck+DgYLp27Yq/v/8Rjy23YsUKPvzwQ84++2zAen1Lly6tCKJjxoxh6tSp3HvvvUc1XrRbt2588803Fecq33c0anrtJSUljBgxosq+L774okprKsDdd9/N3XffzcCBA7n77ru56qqruOGGG+jfvz9nn30211xzDQkJCUdVR31RiBUREZFa+74Q7k4HDzAkyBo3GtnEv1XYDXgqFq5LgQ2lcEMqzE2EhCb+uqXxiTnBCqfpa7IPeYxfiJ2YEyLqrYa4uDhGjBjBO++8g2majBgxgtjY2BqPrYtWPtM0qwXD5557rkr3YrC66x6N/v37s2HDhiMet3r1akJDQ3G73TidTkaMGMHLL78MWK3Pw4cPr3jdF1xwAddddx3fffcd55xzTq1eU23fo5pe+1133YXb7a6y76yzzqrSXRsgOjq6YvuRRx5h6tSpfPfdd/z666/Mnj2bRx99lB9//JFevXrVqqa6pF+7IiIiUis/FcFd6eAGTg2Ee6Mgppl8owiywavxcHUy7HXDxFT4IBHCNEBLGsg1K0cc8j7DbgUewzDoe2t3vp6w5JDHnvnUKVVC36iFw+quyDLjx4/n5ptvBuCVV16pdn+nTp0wDIP169dzySWXVLt//fr1REVFERcXd9jncbvdbN68mX79+lXZn5iYSKdOnY7jFRxZ165d+eyzz/Dz86uYXbm8pnfffZfk5OSK8aTl+99+++2jCrHr16+vGEPcpUsXADZs2ECfPn2O+NiaXntYWFi12ZhDQkKO+B7FxMRw2WWXcdlll/Hoo4/Sp08fnn76ad59990j1lFf9CtXREREjtovRXB7GriAgYFWF9vYZhJgy0Xa4fUEiLTBbhfcmAolvjVcTJow/2C/Q978Aiq7j7Y6LY7YnpEYB33bN2wQ2yuStmclHNV5j8d5552H0+mktLSU4cOHV7s/JiaGYcOG8eqrr1aZyRggOTmZuXPncvnllx+x6+27775LVlYWI0eOPK56j4XD4aBTp04kJSVVBFiAL7/8kry8PH7//XdWrVpVcfvoo49YsGDBEZf22bBhA1999VXFa+rduzc9evTgmWeewePxVDv+eJYKqg2Hw0HHjh0pKChokOc7FIVYEREROSrLimFaOpQC/QKsABvfzAJsuZZ+MDseggxY54Q70sCtICs+pLw11jwo75ge6Htr93pdw7Oc3W5n/fr1rFu3rtr4zHIvv/wyJSUlDB8+nB9//JHdu3fz1VdfMWzYMFq1asUjjzxS5fjCwkKSk5PZs2cPS5cu5a677uKGG27gxhtvrDJrLljBLjk5ucrt4PC1evXqKiHzjz/+AGDZsmV069aNvXv3HtNrf+uttxgxYgQnnXQSPXv2rLiNGjWKyMhI5s6dW3Gsy+UiOTmZffv2sXr1al566SXOOOMMevfuzR133AFYf59z5sxh06ZNnH766Xz55Zds27aNP//8k0ceeYS//OXYxi6XlJRUe4/S09MBa7zsmDFj+OKLL9i0aRMbN27k6aef5ssvvzzm56srzfSjR0RERGpjRdlkRiUm9AmAWdHQopl/i+jigGdj4eY0+LkYHs2Ee6OtSaBEfEGr0+L4y4IzrNnXyhkQ073+xsIeLDz88Ev5dO7cmeXLlzNr1ixGjRpFZmYmiYmJXHzxxcyaNavK+EyAN954gzfeeAOHw0FMTAx9+/Zl/vz5NXZHPng2ZIDHHnuM6dOnV/w8ZMiQKvfb7XZcLheFhYVs3LiR0tLS2rxcAFJSUvjPf/7Dhx9+WO0+m83GJZdcwltvvcWkSZMAWLt2LS1atMButxMREUGPHj2YMWMGN954IwEBARWP7d+/P8uXL+eRRx5hwoQJpKen06JFCwYPHszzzz9f6zoBvvrqK1q0aFFlX9euXdmwYQM9evQgODiYadOmsXv3bgICAujcuTNvvvkmV1999TE9X10xTF+bL7mRys3NJSIigpycnCP+ZxUREWlM/iiBm1KhyIQTHfBQDLQ5+gk7m7wvC+DeDGv7+nC4PtKr5UgTUFxczPbt22nfvj2BgYHeLkekzhzu33Zt8pS6E4uIiMghrSmBm8sCbE8H3K8AW80FIXBLpLX9ei58mufVckREmjyFWBEREanReidMSoUCE7r5w/3RkKQAW6Ox4XBF2VKLj2ZZMziLiEj9UIgVERGRajY5rS7EeSZ08YcHYqCD48iPa85uj4Kzg6ylh+5Kh3Ul3q5IRKRpUogVERGRKrY64YZUyPFAx7IW2M4KsEdkM+DRWOjtgGITbkqDPS5vVyUi0vQoxIqIiEiFHaVWgM32QJIfPBAN3QKO/DixOAx4Md5673I9MCEFstzerkoaK82/Kk1NXf2bVogVERERAHaVwvWpkOGBtn7WJE49FGBrLdQGrydArA1S3NZ7WuQ58uNEyvn7W4PPCwsLvVyJSN1yOp0Ah1w3+Gg18xXeREREBGCfy2qBTXNDaz9rHdgTFWCPWZwd/p4A1yTDllK4NQ1eiQd/rSErR8FutxMZGUlqaioAwcHBGFqAWBo5j8dDWloawcHB+PkdXwxViBUREWnmkl0wMQWS3dDSDvdFQR8tTXnckvzhpTirJXZ5CczMgEdjQFlEjkZiYiJARZAVaQpsNhtt27Y97osyCrEiIiLNWKoLJqbCPjck2OHeaOgX5O2qmo6TAq3Jnu5Ih68LId4Ot0V5uyppDAzDoEWLFsTHx1NaWurtckTqhMPhwGY7/hGtCrEiIiLNVLrb6kK8x2V1f703GgYqwNa5s4NhehQ8lgXv51kXC64K93ZV0ljY7fbjHj8o0tRoYicREZFmKKsswO5wQYwN7o6CUxVg681lYTA+zNp+Jhu+LfBqOSIijZpCbDORsSHH2yWIiIiPyC4LsNtKIcoGd0fDGcHerqrpmxQJI0LABO7JgJXF3q5IRKRxUoht4koLXfw4fSX/ungRP85YiatIq66LiDRnuR64KRU2l0JEWYA9SwG2QRiGNevzgEAoxZqxeJvT21WJiDQ+CrFNWNaWXP516SK2fLYbgC3/3s2/Lv2BrC25Xq5MRES8Ic8Dk1JhQymElwXYcxRgG5SfAc/GQld/KDCtmYvTdH1ZRKRWFGKbqM2f7uLfl/5A3u5CzLIF1k0P5O4q4N+X/sDmf+3yboEiItKgCjxwSyqsdUKoATOiYJgCrFcE2eDVeGs5owwPTEi1LjCIiMjRUYhtgtLXZPPjjN9xOz2YbrPKfabbxO308OP030lfk+2dAkVEpEEVeayuq384IdiA6dFwrgKsV0XZ4fUEq0v3LpfVQu40j/w4ERHxwRD7yiuvkJSURGBgIAMGDGDZsmWHPHbt2rWMHDmSpKQkDMPg+eefr3bM/fffj2EYVW7dunWrckxxcTGTJk0iJiaG0NBQRo4cSUpKSl2/tAYTc0IEsT0jMQ7xt2vYILZXJDEnRDRsYSIi0uCKPTAlDVaWQJABd0XD+cHW+EzxrlZ+8Fo8BBqwxgl3poFHQVZE5Ih8KsTOnz+fqVOnMmvWLFauXMlJJ53E8OHDSU1NrfH4wsJCOnTowOOPP05iYuIhz3vCCSewf//+itvPP/9c5f7bbruNzz//nI8//pgffviBffv2cemll9bpa2tIhmHQ99buFd2ID2Z6oO+t3TH0DUZEpEkrMWFqOvxWYgWlO6PgQgVYn9LNAc/Egh34sRgeywRTQVZE5LB8KsQ+++yzTJgwgXHjxtGjRw9mz55NcHAwb7/9do3H9+vXj6eeeoorrriCgICAQ57Xz8+PxMTEiltsbGzFfTk5Obz11ls8++yznH322fTt25c5c+bwyy+/sHTp0jp/jQ2l1Wlxh2yN9Q/xI7FfdMMXJSIiDabUhDvSYGkxBBhwexRcFKIA64sGBVmzFgN8UgBva/5FEZHD8pkQ63Q6WbFiBUOHDq3YZ7PZGDp0KEuWLDmuc2/evJmWLVvSoUMHRo8eza5dlZMarVixgtLS0irP261bN9q2bXvY5y0pKSE3N7fKzZccrjW2tMDFtzctw+3ULBIiIk1RqQnT0+HnYvAHpkXCxSFgU4D1WReGws1lo3xeyYHP8r1bj4iIL/PzdgHl0tPTcbvdJCQkVNmfkJDAhg0bjvm8AwYM4J133qFr167s37+fBx54gNNPP501a9YQFhZGcnIyDoeDyMjIas+bnJx8yPM+9thjPPDAA8dcV0NodVocf1lwhrWqepmUVZn8+thq9i5O44+/b+Lkm7sd+gQiItLouEy4NwO+L7IC7NQouCRUAbYxGBcOKW74OB8eyoRYOwwO8nZVIiK+x2dCbH05//zzK7ZPPPFEBgwYQLt27fjHP/7Bddddd8znnTFjBlOnTq34OTc3lzZt2hxXrXXNMAxie0RW2Rd7QiThrUNYP287rU9PoCCliJAEfUKKiDQFbhNmZcD/Cq0xlrdGwV9Dwa4A2ygYBtwVBWluWFQEt6fDW/HQ/dAjpkREmiWf6U4cGxuL3W6vNitwSkrKYSdtqq3IyEi6dOnCli1bAEhMTMTpdJKdnV2r5w0ICCA8PLzKrbFoc0YCQ18egM1uUJRWQkFyER6XuhaLiDRmHhMezIT/lgXYWyJhlAJso2Mz4PFYONEBxSbclAZ7Xd6uSkTEt/hMiHU4HPTt25eFCxdW7PN4PCxcuJBBgwbV2fPk5+ezdetWWrRoAUDfvn3x9/ev8rwbN25k165ddfq8vsZmN4juFo7pMfnlwT9ZeOtvCrIiIo2Ux4RHMuHzAuuDfVIkXBEGfgqwjZLDgJfioZ0f5HhgQgpkub1dlYiI7/CZEAswdepU3njjDd59913Wr1/PjTfeSEFBAePGjQPgmmuuYcaMGRXHO51OVq1axapVq3A6nezdu5dVq1ZVtLIC3H777fzwww/s2LGDX375hUsuuQS73c6VV14JQEREBNdddx1Tp07l+++/Z8WKFYwbN45BgwYxcODAhn0DGpjNz4aJye4fU9i1MJnvbluOx615/UVEGhPThCez4NMCMIAbImB0GPgrwDZqYTZ4PR5ibZDshhtToUjXmkVEAB8LsZdffjlPP/00M2fOpHfv3qxatYqvvvqqYrKnXbt2sX///orj9+3bR58+fejTpw/79+/n6aefpk+fPvztb3+rOGbPnj1ceeWVdO3alVGjRhETE8PSpUuJi4urOOa5557jwgsvZOTIkQwZMoTExEQWLFjQcC/ci+JPjOasZ0/BsBvs/N9+vp+mICsi0liYJjyTDf/ItwLsxAi4NlwBtqmI94PZCRBiwKZSmJJmTdwlItLcGaapJbXrQm5uLhEREeTk5DSq8bHltv13L4umLcf0QIcLWnHm030xNJWliIjPMk14MRvezbN+/ls4/C3C6ooqTcvvxXBDKpQC5wfDwzFa71dEmp7a5CmfaokV7+lwfivOfKovhg22fbmXRXeuwPTo+oaIiK+anVMZYMeFw3UKsE1Wn0B4NMZqbf9vIbyc4+2KRES8SyFWKnQY0ZohT5wMNtj+1T72L0vzdkkiIlKDN3LgjVxr++owmBAOAQqwTdo5IXBnlLU9Jxfm53q3HhERb2ry68RK7XS6qA2mG4qzSnCEOijOchIY5fB2WSIiUuadXHitrCXuyjBrIqdAXZJuFi4Pg2SX1QL/ZDbE+cHZwd6uSkSk4eljT6rpfHEbeozuAED+3kJytuehodMiIt73Qa41DhbgslCYFAFB+iRvVm6JtMbFmsDd6bCq2NsViYg0PH30SY3sDhtRXcIoSCniP1cvZvF9fyjIioh40fw8eDbb2r4kxAozwfoUb3YMA+6PgX4B4ARuSYPtTm9XJSLSsPTxJ4dkd9hx5pVSlFHCxn/u5Jf7FWRFRLzhk3x4IsvavigEpkRCiD7Bmy1/A56Pg87+kG/C9amQ5vZ2VSIiDUcfgXJYnS9uy+CZJwKwYf5Oljz0p4KsiEgD+nc+PJJpbV8QDNMiIczu1ZLEBwTZYHY8JNoh3QMTUyDf4+2qREQahkKsHFH3K9sz6L5eAKz/cAdLH1mjICsi0gC+LIAHywLsucFwRxSEK8BKmSg7/D0Bwm2w0wU3p0KpPp5FpBlQiJWj0mN0Bwbc0xOAdR9s49fHFWRFROrT/wphZoY1gc85QTA9EiIUYOUgrf3g1XgINOBPJ9yVDlrmXUSaOoVYOWo9r+7IgOlWkN39fQqFqZoSUUSkPnxXaM086wHOCIIZURCpRfHkEHo44OlYsAOLiuDJLG9XJCJSv/SRKLXSc2xHHGF+hLQIpiitBP8QPxyh/t4uS0SkyfixCKangxs4LRDuiYJofVrLEQwOgnuj4YFM+Ec+JNhhXIS3qxIRqR9qiZVa6zKyHQl9ogDI3VFA8vJ0L1ckItI0/FIEd6SBCxgYaIWSWAVYOUp/CYUbw63tl3LgPwXerUdEpL4oxMox8QvyI6JDKDu+2cd/xixmxQvrvV2SiEij9msxTEuHUqw1QGdGQ7wCrNTS3yLg0hBr+4EMWFrk3XpEROqDQqwcM/9gP+yB1iwjq17bxMqXN3i5IhGRxmlFMUxJgxITTg6AWdGQqAArx8AwYEY0DAm0WvSnpcPGEm9XJSJStxRi5bj0uakrfSZ1BeD3lzfy+2sbvVyRiEjjsqoEbikLsCc5rADbUlMNyHGwG/BEHPR0QJEJN6bBPpe3qxIRqTsKsXLcTp7cjd43dAFg5Qsb+OPvm7xckYhI47CmBCanWkGjpwPuj4E2CrBSBwIMeDke2vhBtgcmpkC229tViYjUDYVYqRN9p3TnxAmdAFj+7Hr+fHOzlysSEfFt651wUyoUmNDdAfdHQzsFWKlD4Tb4ezxE22CfG25MhWKPt6sSETl+CrFSZ06Z2oNe11lBNmd7Pq4i9V0SEanJprIAm29CF38rwHZweLsqaYoS/OD1eAg2YGMpTE0Ht+ntqkREjo9hmqZ+ldWB3NxcIiIiyMnJITw83NvleI1pmuz6PpnguEAMwyCyUxh+ZZM/iYgIbHXChFSri2dHf3goGroFeLsqaepWFlstsaXAhSHwQLQ1CZSIiK+oTZ5SS6zUKcMwaHd2CyKSQgFIX5vNtq/2erkqERHfsL0UbigLsO39rCChACsN4eRAeDgGDOCLAng1x9sViYgcO4VYqReOMH9CWgTy62Nr+H7KctZ9uM3bJYmIeNWuUrg+FTI80NYPZsVADwVYaUDDQmBqpLX9Vi58nOfVckREjplCrNSbwOgAYntFArDkwdWsn7fduwWJiHjJXpcVYNPd0NrPmoX4RAVY8YLR4TAmzNp+Igu+L/RuPSIix0IhVuqNYRgMnnki3S5vB8AvD/zJxo93eLcoEZEGtt8F16dAihta2mFmFPRWgBUvui0Szg0CD3B3BvxZ7O2KRERqRyFW6pVhGAy+/yS6XtYOTPh55h9s+mSnt8sSEWkQqWUtsPvckGiH+6LhlCBvVyXNnWHAQ7HQNwBKTJicBjuc3q5KROToKcRKvTMMg1MfPIkul7YFE366bxWb/73L22WJiNSrdLcVYPe4IN4O90TDAAVY8RH+BrwQB538Ic+E69Osf7MiIo2BQqw0CMMwOO3h3nT6Sxv8g/0wDAO3Uyuui0jTlOm2ZiHe6YIYG9wdDacqwIqPCbbBa/GQYIc0t9XtvUAfzSLSCGid2DqidWKPjukxyVifA2X/6qK6hGN36FqKiDQd2W6YmApbSiHKZnUhPjPY21WJHNquUrgmBXI90NsBrydYLbUiIg1J68SKzzJsBrEnRBLaymqS2PrFHrb9V+vIikjTkOuBm8oCbKTN6kKsACu+rq0/vBwLAQascsLd6aAmDhHxZQqx4hWBUQG4S90seehPFt2+gu1fKciKSOOW54FJqbChFMJtMCMazlaAlUaiZyA8GWN9MVxYBE9nebsiEZFDU4gVr4k7MZrWQxIw3SbfT1vB9q/3ebskEZFjUuCByamw1gmhBsyIgmEKsNLInB5s9R4A+Cgf3sv1bj0iIoeiECteY7MbnPXsKbQbmlgWZJez41sFWRFpXIo8cEsa/OmEEMNqgT1XAVYaqUtCYWLZULQXsuG/BV4tR0SkRgqx4lU2u8HZz/ej7TmJmC6T76csZ+fC/d4uS0TkqBR54NY0+L0Eggy4KxrOC7bW4RRprK6PgItDrDkYZ2XAsiJvVyQiUpVCrHidzc/GOS/0o82ZCXhcJt/d+hvJy9O9XZaIyGGVmDAtHZaXQKABd0XBCAVYaQIMw+pWfFoguICp6bCpxNtViYhUUogVn2DzszH0pf60HhJPbK8oDJsNj1tTI4qIb3KacEcaLC22ZnS9IwouDFGAlabDbsCTsdDDAYUm3JgGyS5vVyUiYtE6sXVE68TWDbfTQ0FKEc6cUgCiu0dgs+tboYj4jlIT7kqHRUXgAG6PgktDwaZfVdIE5bjh6hTY44JWfvBBAkTYvV2ViDRFWidWGi27w0Z4mxCC4gIwTZOf71vFnsWp3i5LRAQAlwn3ZlgB1h+4LcqaCEcBVpqqCDu8Hg9RNtjrstZBLlHzh4h4mUKs+KSQhCCSf8tg84JdfHvjr+xdkubtkkSkmXOb1iQ3/ysEP2BKFPw11Op2KdKUtfCD2fEQbMD6UpiWZv1/EBHxFoVY8VndR7enRf8Y3E4P/7thKfuXabInEfEOjwkPZsJ/C8EOTI6EyxRgpRnp7IDnYq0LOL8Uw8OZoAFpIuItCrHis/wC7Jz7xiAST4nBXeLh64lLNGuxiDQ4jwmPZMLnBdaH5qRIuCIM/BRgpZnpFwQPxIAB/LsAZud4uyIRaa4UYsWn+QXYGf7mIBL6RuMu9vDV35aSsjLD22WJSDNhmvBEFnxaYH1xvzECRoeBvwKsNFPnh8CUSGv7jVxYkOfVckSkmVKIFZ/nF2jnvDcHEd8nGnexm68nLKU4UwvWiUj9Mk14Ohs+zrcC7PURcE24AqzI1eFwVai1/WgW/Fjo3XpEpPlRiJVGwS/Ij/PesoJsz3Edyd9XhFaHEpH6YprwQjZ8VNbK9LdwGKsAK1JhahQMDQIPcFcGrC72dkUi0pwoxEqj4R/sx4VzT6PzxW0AyFibg8fj8XJVItIUvZYD75UF2HHhMD4CHAqwIhVsBjwSCycHWEvuTE6HXaXerkpEmguFWGlUDJtBWOsQHBH+FGeV8O9LfiBtTZa3yxKRJuSNHHgz19q+OgwmhEOAAqxINf4GvBAHHfwg1wMTUyHT7e2qRKQ5UIiVRim8TQgb5u8kc2Mu/x37C+nrsr1dkog0AXNyrFZYgKvC4IYICNQnpcghhdhgdgLE2yHVDdenQKE6SYlIPdNHszRaQx7vQ3T3cErzXfz32sVkbMj2dkki0oh9kAsvlQXYUaEwKQKC9CkpckSxdng9HsIM2OqCW9KgVNNWiEg90sezNFqOUH9GvHcaUV3Dcea5+PKaX8jcqEXrRKT25uXBs9nW9qWhMDlSAVakNtr5w0tx4ABWlsC9GdYEaSIi9UEf0dKoOcL8GfH+aUR1DsOZW8p/rl5M1uZcb5clIo3IP/PgybKh9f8XArdGWF0kRaR2TgyEx2OtL5f/K4RnNWWFiNQTfUxLoxcQ7s+ID04jspMVZL+ftkLL74jIUfl3vrXOJcAFwTA1EsLsXi1JpFE7MximR1nbc/Nhrq4ri0g9UIiVJiEgwsGFH5xGq9Pi6De1Oxlr1a1YRA7vPwXwYKa1fW4w3BkF4QqwIsftr2FwXbi1/Ww2fF3g1XJEpAlSiJUmIyDSwXlvDiasTQgA6WuycZVorn8Rqe6bApiVASZwThBMj1SAFalLN0XARSHW/7GZGbC82NsViUhTohArTU5kxzDsgTb2/pLKP4b+j9yd+d4uSUR8yHeFcE8GeIAzgmBGFET6ebsqkabFMOC+aBgUCKXAlDTY4vR2VSLSVCjESpMUkRTK5gW7KEor4fOrfiZ3l/oyiQj8UAjT08ENnBYI90ZBtAKsSL3wM+DpWOjmD4Um3JAKKS5vVyUiTYFCrDRJNj8bIz44jbA2wRRnlPDFVT+Rt0dBVqQ5W1wEd6aDC6t16L5oiFGAFalXQTZ4NR5a2SHTAxNTIc/j7apEpLFTiJUmKyg2kAs/PJ3QVsEUpZfw+ZU/kben0NtliYgX/FoM09Ksbo39AmBmNMQpwIo0iEg7vJ4AkTbY7YKbUqFEiwiIyHFQiJUmLTgukAs/PI2QlkEUpVktsvn7FGRFmpMVxdZ4PCdwcgDcHw0JCrAiDaqlH8yOh0AD1jrhjjTwKMiKyDFSiJUmLyQhiIs+Op2QFkEUphaz6vVN3i5JRBrIqhK4Jc1q9TnJYQXYFv7erkqkeerigOdiwQ78XAyPZIKWdReRY6EQK81CeZDtdkUSXf/ajvR12d4uSUTq2eoSmJwKRSb0dMADMdBaAVbEqwYEWf8XAT4tgDdyvVuPiDROCrHSbIQkBnHq/Sdh2AzwQNrqLIoySrxdlojUg3VOmJQKBSZ0L2uBbasAK+ITLgiBWyKt7dk58GmeV8sRkUZIIVaandgTIvGUelj21Fo+u+wHClO1ArtIU7LJaU0ck29CF394IBo6OLxdlYgcaGw4XB5qbT+aBT8VebceEWlcFGKlWQppGUTOtnzy9xXx+VU/UZSuICvSFGxxWmtR5nqgU1mA7aQAK+KT7oiCs4OsdZvvSod16hwlIkdJIVaapZCEIC786HSCYgPI31PI51f+pK7FIo3c9lIrwGZ7oL2f1YW4a4C3qxKRQ7EZ8Ggs9HZAsQk3pcEel7erEpHGQCFWmq3wNiFc+OHpBEY7yNtdyBdX/URRpoKsSGO0qxSuT4VMD7Tzg/tjoIcCrIjPcxjwYjwk+Vk9KCamQJbb21WJiK9TiJVmLbxtZZDN3VnAf676ieIsBVmRxmSvywqw6W5o7QezYqCXAqxIoxFqg9cTINYGyW7r/3ORx9tViYgvU4iVZi8iKZQRH5xGQKSD/P1F7P05zdslichR2u+yWm5S3NDSDrOioLcCrEijE2e3gmyoAVtKYUoauLSGrIgcgkKsCBDZIYwLPzyNQff0IqJ9KNnbNN+/iK9LLWuB3e+GRDvcFw19g7xdlYgcq/b+8GIc+AO/lcB9GWAqyIpIDRRiRcpEdgij66gkAFyFbnYtSqYkx+ndokSkRmllXQ73uCDeDvdGwwAFWJFGr3cgPBYLBvB1IbyQ7e2KRMQXKcSKHCS2ZyS5O/P54c6V/OfqxZTklnq7JBE5QKYbbkiBnS5rDN3d0TBYAVakyTg7GO6Ksrbfy4OPcr1bj4j4HoVYkRpEdAoD0yRrUy5fXvMzznwFWRFfkOW2ltHZ7oLosgA7RAFWpMkZFQbjwqztp7Ph2wKvliMiPkYhVqQGMV0jOP+9U/EP9SNzQy5fXr1YQVbEy3LccFOqNelLZFmAPTPY21WJSH25ORJGhIAJ3JMBK4u9XZGI+AqFWJFDiO0eyQXvWkE2Y30OX16rICviLXkemJQGG0sh3AYzoq0uhyLSdBkGzIqGAYFQCtyaBts0VYWIoBArclixJ0Ry/juD8Q/xI2NtDv8d9wulBS5vlyXSrBR44OZUWOe0lt+YEQXDFGBFmgU/A56Nha7+UGBaE7ql6WNYpNnzuRD7yiuvkJSURGBgIAMGDGDZsmWHPHbt2rWMHDmSpKQkDMPg+eefr3bMY489Rr9+/QgLCyM+Pp6LL76YjRs3VjnmzDPPxDCMKrcbbrihrl+aNFJxPaM4b84g/ILteJwe8vZoYI5IQynywOQ0WO2EEMNqgT1XAVakWQmywavx1lrQGR6YkGr1zhCR5sunQuz8+fOZOnUqs2bNYuXKlZx00kkMHz6c1NTUGo8vLCykQ4cOPP744yQmJtZ4zA8//MCkSZNYunQp//vf/ygtLeXcc8+loKBqEJkwYQL79++vuD355JN1/vqk8Yo/MZoRc09j4L298JSa5O0p9HZJIk1ekcfqPriqBIINmB4N5wVbXQxFpHmJssPrCRBhg10uq3eGU2vIijRbhmn6zjLSAwYMoF+/frz88ssAeDwe2rRpw+TJk5k+ffphH5uUlMSUKVOYMmXKYY9LS0sjPj6eH374gSFDhgBWS2zv3r1rbMk9Wrm5uURERJCTk0N4ePgxn0d8m+kxyViXA0DK75l0vawdfoF2L1cl0vSUmHBbGiwthkADpkfBRSEKsCLN3QYnjE+BYhPOCIRn4sCm3wsiTUJt8pTPtMQ6nU5WrFjB0KFDK/bZbDaGDh3KkiVL6ux5cnKsABIdHV1l/9y5c4mNjaVnz57MmDGDwsLDt7SVlJSQm5tb5SZNn2EziOkRweZ/72bpI6v56m9LcJW4vV2WSJPiNOGOsgAbYMAdUXChAqyIAN0c8HQs2IEfiuGxTG9XJCLe4DMhNj09HbfbTUJCQpX9CQkJJCcn18lzeDwepkyZwqmnnkrPnj0r9l911VV88MEHfP/998yYMYP333+fMWPGHPZcjz32GBERERW3Nm3a1EmN4vsMm0HSsBbYA22kLM/g6wkKsiJ1pdSE6enwczE4gGmR8JcQtbSISKXBQdasxQCfFMBbOd6tR0Qans+E2IYwadIk1qxZw7x586rsnzhxIsOHD6dXr16MHj2a9957j08//ZStW7ce8lwzZswgJyen4rZ79+76Ll98SIv+sZz7+kDsATaSl2XwzcSluJ0KsiLHw2XCPemwqAj8galRcEmoAqyIVHdhKEyKsLZfyYHP8r1bj4g0LJ8JsbGxsdjtdlJSUqrsT0lJOeSkTbVx880388UXX/D999/TunXrwx47YMAAALZs2XLIYwICAggPD69yk+al5YA4zp09ELvDxv5f0/nmhl9xOzVdosixcJswMwO+LQI/YEoUjAwFuwKsiBzC+HD4a6i1/VAm/FLk3XpEpOH4TIh1OBz07duXhQsXVuzzeDwsXLiQQYMGHfN5TdPk5ptv5tNPP+W7776jffv2R3zMqlWrAGjRosUxP680Dy0HxTH0tQHYHDb2/ZLG/25aiunxmbnSRBoFjwkPZMJXhdY4t1si4TIFWBE5AqNs0rczg8AN3J4O60u8XZWINASfCbEAU6dO5Y033uDdd99l/fr13HjjjRQUFDBu3DgArrnmGmbMmFFxvNPpZNWqVaxatQqn08nevXtZtWpVlRbUSZMm8cEHH/Dhhx8SFhZGcnIyycnJFBVZl+u2bt3KQw89xIoVK9ixYwefffYZ11xzDUOGDOHEE09s2DdAGqXWp8Yz9OX+2Bw2ojqHU5hW7O2SRBoNjwmPZMIXBdYH0s2RcHkY+CnAishRsBnweCyc6LBmLL4pDfa5vF2ViNQ3n1piB+Dll1/mqaeeIjk5md69e/Piiy9WdO8988wzSUpK4p133gFgx44dNbasnnHGGSxatAgA4xDTWc6ZM4exY8eye/duxowZw5o1aygoKKBNmzZccskl3HvvvbXqIqwldiR3TyHObCcAwfGBBMcHerkiEd9mmvB4FnycDwbW+Larw8FfAVZEainPA9ckw04XtLDD3ESI1Ap4Io1KbfKUz4XYxkohVgA8Lg+ZG3Jx5peye1EK/W7vgc3Ppzo8iPgE04Sns+GjPCvAXh8B4xRgReQ4pLpgdDJkeKCLP8xJgCB9BIs0Go1ynViRpsDmZyOqSxhLH13Dmne28t2U3/C4NNmTyIFME57PtgIswN/CYawCrIgcp3g/eD0BQgzYVAq3pVmznotI06MQK1LH7A47J0/uiuFnsPPbZL6fuhyPW5+iImAF2Fdy4P2yADsuHMZHgEMBVkTqQAd/eCHOWqZrWQncn2H93hGRpkUhVqQeJA1ryVnP9MWwG+z4Zj+LpinIigC8kQtv51rb14TBhHAIUIAVkTp0ciA8EmMNVfiyEF7O8XZFIlLXFGJF6kn74a0486mTMWyw/at9/HDHCi2/I83a2zkwu+zL5FVh1jjYQH0KiUg9GBoCt0dZ23NyYX6ud+sRkbqlrw8i9ajDBa0548m+GDbY9uVelj662tsliXjF+7mVrSGjQq2ZiDXhiojUpyvD4Nowa/vJbPiu0KvliEgd0lcIkXrW8cLWDHn8ZIJiA0jsF0txllZil+ZlXh48l21tjwyFWyIVYEWkYdwSCecHgwncnQ6rtJS7SJOgrxEiDaDT/7Vh5JfnENYqmPy9RRRnOb1dkkiD+GcePJllbf8lBG6JgGB98ohIAzEMuD8G+gWAE7glDbbrI1ik0dNXCZEGEhDuT1QXa82rbf/Zw+L7/0DLNEtT9q98eLQswI4IgdsiIczu1ZJEpBnyN+D5OOjsD/km3JAGaW5vVyUix0MhVqQB2R02AqL9WfbkWjbM28HiWQqy0jT9pwAeyrS2hwfDHZEQrgArIl4SZIPX4iHRbgXY61MgX8u4izRaCrEiDSysZQgD7+kJwMZ/7OSXB/5UkJUm5esCmJVhjUE7JwjuilSAFRHvi7bD6/EQboMdLrg5FUr18SvSKCnEinhBt8vbM2jWiQBsmLeDJQ+vVpCVJmFhIdybAR7gzCCYEQWRft6uSkTE0sYfXo2z1qf+0wnT00Gr34k0PgqxIl7S48r2DLy3FwDr527n18fWKMhKo/ZDofWF0A2cHgj3REG0AqyI+JgeAfB0DNiB74sqJ58TkcZDIVbEi04Y04EBM6yuxWvf28amBbu8XJHIsVlcBHeWBdhBgXBvNMQowIqIjzo12Po9BfCPfJiT4916RKR29BVDxMt6XtsR0zTZ93MaUZ3CceaX4gj193ZZIkft12KYlgalWMtYzIyGOH26iIiP+0sopLhgdi68lAPxftZM6iLi+9QSK+IDeo3txNkvnoLNbpC7o4CSPC1iJ43D8mKYkmatv9g3wFqPMUEBVkQaiQkRcGlZcH0gA5YWebceETk6CrEiPsI/2J/IjqGYbpMf7/yd5c+v83ZJIof1ezHcmgYlJpwUALOioYUCrIg0IoYBM6JhSCC4gGnpsKnE21WJyJEoxIr4EL8gP/JTitj1fTJ/zN7MihfXe7skkRr9WQK3pEGRCT0d8EA0tFYveBFphOwGPBEHJzis32k3psF+l7erEpHDUYgV8THtz21Jn8ldAVj16iZ+f2WjlysSqWpdibW+YoEJPRxwfzS0VYAVkUYswIBX4qGNH2R5YEIK5Li9XZWIHIpCrIgPOnlSN3rf1AWAlS9tYNVsBVnxDRudcFMa5JvQ1d9qge3g8HZVIiLHL9wGr8dDtA32ueGGVCj2eLsqEamJQqyIj+p7S3dOut4Ksiue38Aff9/k5YqkudvitL7U5Xqgs7/VAttRAVZEmpBEP5gdD8EGbCy1xsi6tYS7iM9RiBXxYafc1p0TJ3QCYMWLG8jakuvliqS52l5qBdgcD7T3swJs1wBvVyUiUvc6OeCFWPAHlhTDA5lgKsiK+BTNIyni406Z2gOAoJgA3MUeXEUu/IL0X1cazq5SuD4VMj3Qzg8eiIHuCrAi0oT1DYKHY2B6BnxRAAl2mBTp7apEpJxaYpsDpxOW/Gj9KY2OYRj0m3YCXf7aDoDsrfkUZWn+f2kYe1xWgE13WxOezIqBngqwItIMDAuBqZHW9lu58M88r5YjIgdQiG3KTBN+/RkmXwvPPAi3jLV+Vp+YRskR6k94uxAKkov49P++Z+0H27xdkjRx+1xwfQqkuKGlHWZFQW8FWBFpRkaHw5gwa/vxLFhU6N16RMSiPolN1Y5t8PbLsO5PayVvgIw0eOp+OOFEGH8ztOvg1RKl9hxh/qStyaYorYSlD6/GsEGPq/T3KHUvxWWNgd3vhkQ73BcNJwd5uyoRkYZ3WySkuuCbIpiRAa/b4MRAb1cl0rypJbapeulx2LDG2i5veS3/c/0aePFx79Qlx63vrd3odkUSAEseXM36edu9W5A0OWluqwvxHhfElwXYAQqwItJMGQY8FAt9A6DEhMlpsFMjtES8Si2xTZXHY90OdV9qMjz9INgMMGxgs1m/pe1268+IKBh9XeVj/j0fMjPg3AuhVVtr39ZNsOxnsJU9xmYrO9eB2wft8/OHc86vPO+fKyE7C7r2gIQW1r6sTNi83jqvzbDOXX6u8jpreq72naxtgMx0KCqCiEgILesHVOqE3Nyqjyk/V8V57dX3+RjDMBg860RMj8nGf+zklwf+xGY36HpZkrdLkyYgw211Id7lglgb3B0NgxRgxZc5nbBiKfQdCA6t+ST1w9+A5+NgXApsKYWJafBhIsTYvV2ZSPOkENtcFRXC0h8PfX9MHAw8vfLnhf+FfXsgsSUUF1v7li2GTz6s3fMGBEJSx8qfP3obNm+Ay6+1voAArP0D3p1du/MCPPcWOPwBA955DX77BUaOhqEXWGF022Z4ctYxnPdN6/0wDJj3Liz8Ei64GEaOsfalJcOsaTUHbZut5sBss8HkuyovCPy4EL77L/TpD38ZZe0rKYbnHjkoxFvbhs3GqTEGRo8ENqyL5uf7VmH8+A1dTiyC8y6GNtYkUGxab/09t20PZ55b+Zo+mWu1zB98IaA8yJdfPDgw1J9wkvX3D5CRDhtWQ3gk9OpTed7Vv4Or9IDzHsUFjugYCI+wHu90Qla6dbEjJq7yvHk54DEPek8PurjhoxcdGpMsN9yYCjtcEF0WYIcowIqvMk3rc+jtV6zhMrHxMO4m6H+qfhdIvQixwWvxMCbZmitgYgq8l2jtF5GGpRDbXIVHwNnnWV8CPJ6qf5omBB70zbXfYMjJhujYyn3xiTD4jMrHHPj4Q237H/RPrlVbMMvqKe/uHBhkhS7TBNNjhZcq2wecr3zbY1rB3Fl2SdQwICgY3C7IzbH25eVaLc3l9Ryt9NTKmZ2zM6C4yGot3rPT2peWYrUm19a2zZUXBDasgTWrICgEem6y9hUWwvIlh3y4AQw2gOgz2JB5Iut+Mui07wtsrZPAWTZ78fIl8NnH0ONEaJNU+eD57x66pf5QrhhrhWyAtavgvb9b46on3VEWKA147uHK9/tojbwKzj6/8kLD0w9AXAI8/Lz1Kg3gwbsq3+8jKQ+2F40su9CA1fPgvtsgOBRefLvsvAa89ARsWldDC38NrfTl+/sNgkuutJ6ruAievN8K59MfBr+yf99ffGL9nR6qdb+mCxxJHav2Upj3jvXv9C+jIDjE2vfnCqsHxKFqrOm5IqOgd7/K865cZl1oOOEkCAm19qXsJ3//fl7OsRHuNjjNz8Y1ETZOKTzUBQ6bdcEooWXlebMyweO2/i/7l7WGlTqt/zuNqKeDNBKa90G8JMYOr8fD1cmw3QW3pMHseKulVkQajkJsU1X+JbGmoGKzQVQMjJlw9Ofr2KXmfQd+6T4WN99Z83mHjTi6x1eEWbPqz7fdY4Vj0wTK9rVsUz10ezzWF2+P2wrCVfaVbYeGWV+STODSK+G8v1hBOzTMOk9AINz9MLjLjjc91nZFgC/b7y7fLjt3XKIVqk3Tas2MjbdaJcs5/K2WZPOg4H7ARQHD42GwxyRocSZJ7fIoChhGYEQsFb2bWrSCIUMhvkXV923AaZX1HHxeT00XCTxW1+xywaHQobPVBfzA9z+xFYSFH935KvYB+WXrFhQWgCPACoMHXhhwlR7dvweofP9zc2DfbmtfWgoU5FvPu2tH5bHJ+6z7aiMyygqS5fX+ucLa3rbZ+vsE+P03+GN57c57wklVeyks+NCqt1vPypbqhf+FxYtqd952HSCs7PGGYY2Xz8uFqfdCy7ZgQMm3XxL6339xX23OG58IDzxTed6Hp8OeXTDlHitEYMCP38L7fz/8eQ5spTds1v+rl96h4kLDC4/CxrUwfhIMKOsd8ucKePNlsB+il8PBvRfKw/PMJyv/jv41H9avtnpq9Bts7du7G/7x3qEvOhwqiP91TOWFhpXLYMsG68JRz97Wvrxc+P7rw/d0sB10ocBmg5NOqbzQsH+P1RsmNr4ynLlc1ntTYy+HA89btScHUTEQUDbNdEmxNfTC4ah8DeX7axpy4Steehx277C2DzXvwzNH+Lcncoza+sPLcVaX4t9L4O50eDLWt/6LiDR1CrFN1S3T4a0DrlKbZuWf3XtaV6mbgvIWwIYSE1vz/tZtj++87TvVvL/rCUd8qAGcPAGKs0rI31tEEeBn8yOyfah1QeCs4dUfNG3mcZVLxy7Wl/+DPfrioR9z8MWGKvvKwmzrdnDqmZXhtvwCxBOvHuKig3nQzwdcfAgIhKAg6/HBITDrKet8oWGVz3flOKsFv0rg9oDbXdnqf+A5TdMKseX/5hwOqyu8aVaOxwYrFLXvVHNoP1S4j0+s+n4NPtM65sAxfm3awyklh+ntcNCfHrPqeU3T+rdaUGB12Xa7yMfGx8EtOa1Fe/xMD/HuEkKqneeA85XvcwRUbXU3TSsgFuRb4+cB8nMP/e+hnMcDeMBd9nOxnxWGy6WnWhc09u+DHVutfTu3Q8q+I5/7YNs2V/49/bnCGpPfqk1lD5PtW2Dx97U/74knV14oWPQ1/PKD1bsgKNjal5oM771e+/Pedg+0aG39e/v2S/j6M2uYx6hrrH0FBdZQhtqacjd070XFhYa5b1q9LCbdYf1CwYC/jbL+rg9WJRAfEMQNAyZOgQGnWo9ftRzefAE6dav8fWMYMHOqddGqpgsFhxqGcN7/WV2EAXbvtIahZKQdft6H2vY0EamlXoHwZAzclg4Li+DpLLgj2ttViTQfCrFNVbsOVivJb79Y44XSU60xhuMnWV+wdbmwyQmMslpWVr+9ldVztnDmkyfT4YLWXq7qAA19weFgLVpV35fYsvq+2qrpQkNNPRdqa8rd9XPeh56v2Cz0WF3hVp3aibdPu5S7oyEpGCvIHM1FhwN7Ojz+auV2+fEXXQYXXFLZOn64iw4HXigob3k2TbjmeqvbdlRMWSg0rVbrKfcc4aJD+c8HnPfAf38DT4cuPap2s4+Ohf+7rOYLDdUuFBywz3HA4rlJHa395ePSwbqgcnL/wwyNOOgiQfmfjoDK5woNsy5AREZBaVnPhNJSq+v94Xo61LRdVFjZ06Ewv/JcGWmVNdcUYMv3uw+46HCg1OTKng57dlpj58OTrYsD5XZtty501Eb7jpVj5LdtssbB2u2Hf0zqfmtuhfadoH1naNn6yI8RqaXTg+GeaHgoEz7KhwQ/uCbc21WJNA+GadZmcKAcSm5uLhEREeTk5BAe7mO/wZxOWFk2c6O/48jHS6NlmibfT1vO9i/3YdgNznqmL+3PqyG8SbNX5IFb02B5CQQbMCMaLgjW9a1Gq7YXHQ7s6VDtsaY1Xr/KRYcDLzYc4iJEeETZfAqm1UqclmL1JEhoWXne7VuswFwxvOKA8x140aH8AoVpWj004hKs+nKzrR5G331lzdNwtBwOaNcROpSF2vadoG2SPhOlTszOhr/nWtf/HomB80KO9AgRqUlt8pRCbB3x6RArzYrHbfL9bb+x45v9GHaDs58/haRhddDiKE1GiQlT0uDXYgg0YHoUXBSiACuNyLSJ1pjYmroNG4Y1c/oJJ1rjiPftqZzs7kDjJ8GwC8Hf32qFTk22WtLLu4GLHCXTtFpj/1UA/ljjZftpZneRWlOI9QKFWPElHpeH7279jZ0LkzH8DM55vh/thrY48gOlyXOaMC0NFhdDgAF3RcH/hVhDEUUajZ3bDj3vw8GzE5c6rfHQG9bCrm2wd4816dsNUyvXJ/9poTWreO9+cMf91sRXpmktG9a+Y+WYZ5FDcJddHFxcbPVumRMPnQOO/DgRqaQQ6wUKseJrPC4PC2/5jV3fJWPzMzj7xX60O1tBtjkrNeHOdPihCBxYk5BcogArjZVpVp33ITb+6Od98Hissbn5udZyZj8utILsgNMqJ63LyoDHy+bsjomFDl2sbsgdyrojR2s6Wqmq2AN/S4V1ToiywdxESNTsMyJHTSHWCxRixRd5Sj18e/Mydv+QQtdR7Rg880RsflqVvTlymTCjbBZNf2BaFIwMBbu+g0tjV1fzPpgmFORZ43nz86zuyh/NqTrh1YHCIsrG2B4QbBNaVp2pXJqdHDdcnQJ7XNDKzwqy4fonIXJUFGK9QCFWfJWn1MPGf+4krlcUANHdI7ApuTQrbhPuzYCvC60p6W+LglEKsCJHJysT1v8JWzZayz/t222Nn61pPG5gELw211ovGyAnC0LCrLWvpdnY74IxyZDlgR4OeCvBGr4hIoenEOsFCrHi6wpSiihKK8FV4sawGST00YJ2zYHbhPsz4D+FYAemRMLlYeCnL1Qix64gDzaus257dsLe3ZC81wqsdz9Sedzbr8DWTTD5LmsNbLCWjDJs1rhbabI2O2FsChSZMDgQXojThUORI6lNntKlQZFmIiQhCFeRi8X3/0HWplyGzR5Iq8Fx3i5L6pHHhEcyrQBrA26OVIAVqRMhYXDyAOtWrrgY9u6ylvNxOq196angKrUml9q6ydq3bDF8+hG0amMt91PeFTmpI4SENvxrkXrR2QHPx8KkNPilGB7OhJnRGkYtUlfUEltH1BIrjYHb6ebriUvZvzQde4CNc/8+kJYDFGSbItOEx7Lgn/nW2oWTIuDqcPDXFyiRhuNywY4t4B9ghVmAz/8JP39X8/HxLaxQWz7Wtn1niIxquHqlzv23wBrOYQITw+GGSG9XJOK71J3YCxRipbFwlbj5esISkpdlYA+0Mfzvg2jRP9bbZUkdMk14Ogs+Kguw10fAOAVYEd/g8Vhr165fbS39s2+3dcvKrPn4qGg49SwYe2PlvvIlhaRReD8Xnsu2tu+LgkvCvFqOiM9SiPUChVhpTFwlbr6+bgnJyzOwB9o5782BJJ6iINsUmCY8nw3v51k/TwiH6yLAoe+7Ir4tNQU2rLYmkNq32xpnm55q/afufyqMHG0d5+8P998B7drDnQ9AULB365aj8nQmfJhvzU3wTCwM0V+bSDUKsV6gECuNjavYzVfX/ULKikz8guyc99YgEk6O8XZZchxME17OgTm51s/jw2FChGbFFGm0crKtFluPBxLK1vneswteehyCQ2Dmk1aLbEAAzHsXMtMrx9i27wRtkqzQK17nMWF6OnxbZP1OfiMeempuL5EqNLGTiByRX6Cd894cxH/HLyFrcy55ewqJ7x2NYVPiaaz+nlsZYK8Jg7+FK8CKNGoRkTDw9Kr7WraGex+D/XsruxSXlMDGNVaX5E3rKo+1260g27ELJJUF26QO1lJA0qBsBjwSCxkp8LsTbk6D9xOgja4xiBwTtcTWEbXESmNVWugi5fdMAiMcAMScEIGhsVaNzls58EqOtT06DG6KgCCbd2sSkQbidsOmtbBxPezcVjnOtqio+rGGAS1aWy22wy+C7r0avt5mLN8D1ybDdhfE2+HDRIi2e7sqEd+g7sReoBArjV3engJKskvJ3JRLVJcw4npqRszG4r1caxwswOWhcEukAqxIs+d2W4F241rYvqVsnO0eyMupPObqCdCzD4SFW92Uv/0S+pwCwy70Xt3NQLobRidDmhs6+sG7iRCs39ki6k4sIrUX1jqEzE37WfLQnxh2gwvePZXYEyK9XZYcwUd5lQF2ZChMjlSAFRGsrsQdytahLWea1szIG9dY69a2bW/tz8uFFUtg2c/gLIEOXaw1a0NC4NVnrC7J5eNsE1poZuTjFGuHv8fD1cmw1QW3pMFr8ZpBXqQ21BJbR9QSK02BM7+UL69ZTMa6HPxD/bjg/VOJ7R7p7bLkEP6ZB49mWdt/CYHboyBEAVZEaqu4CDasgd+XQ3wCdOtp7U9NhmcerHpsULAVZssnkOrQGVq2sUKz1MqfxTAxFZzAsGB4PEbXB6R5U3diL1CIlabCmV/Kf8b8TOaGXBxhVpCN6Rbp7bLkIP/KhwfLlpW8MARuj4RwfYcUkbridFqttr8sgt07re7IyfvA7ap+rL8/tOtQGWxPOweCNHnU0VhUCLengwcYEwZTNZJHmjGFWC9QiJWmxJlXyhejfyZrUy6OcH9GvH8q0V0jvF2WlPmiAGZlgAmcFwzToxRgRaQBFBfBpvXWDMi7dpRNILXH6oJczjDgoRcgPh7CImDpj5CbCyf3hxatvFa6LzuwV83tkXCVvkZKM6UxsSJyXBxh/oz44DT+M/onsjbn8Z+rF/OXf55BeNsQb5fW7H1dAPeXBdihwXCXAqyINJTAIDjxZOtWrrTUmjhq4xrYsQ3y88Dfz1ruJysT/v0P2LEVCgvgrHOtSaRSk2H50spxthGRXntJvuCvYZDihrdy4Zlsa8zsufq4FTkshVgRqVFAuD8j3j+NL0b/RECEg6L0EoVYL1tYCPdmWN3OzgyC6ZEQoQArIt7k7w9dulu3cqYJBfnWTMjde1njaNu0g5xs6/bTd/DFPyuPj46t7IpcPs42Jq5ZDRC9KQJS3fB5AdyXATF26Bvo7apEfJe6E9cRdSeWpqokx0l+chFmqfWrIrZnpHcLaqZ+KBs35QZOD4SZ0RCjy5Ai0pgUFUJuDvz2C6z81eqKnJ5a87GhYWXBtizcduzS5Lsju0y4NQ2WFEOwAe8mQEeHt6sSaTgaE+sFCrHS1GVvzaO00MWmf+6i57iORCSFerukZuPnIpiaBi5gcCDMioY4BVgRaQqyMmH9atiyAfbuhr27rO7GHk/V4zp2gXses5b+sdthyY9WqG2T1KRmRi7ywHUpsKEUYmzwQSIk6Pe9NBMKsV6gECvNwa9PrGHNnK0ERju46KPTCW+nIFvflhbBlDRrCYb+AfBgDMTrC42INGUF+bBxrTWJ1J6dVrjt2AXOv9i6v6QYZk2zui0/+ya0bA1+ftbxAO3aQ0Dj7Yub7YYxybDPDW38rCAbpuXTpBlQiPUChVhpDooySvj8ih/J211IYEwAF807nfA2GidbX34rhlvSoMSEvmUBtoUCrIg0R2435OVat+R98PF7Vtidel/lMW+9bM2cbBjQqm3VcbbtO1mtuI3EPheMToYcD5zggDcTIKD5DBGWZkoh1gsUYqW5KEov5rMrfiJ/TyFBsQFcNG8IYa2DvV1Wk7OyGG5Og2ITegfAg9HQ2t/bVYmI+BCPBwryrCV8iotg3juweb01Q3JN4hOhQ5eyyaM6WeNtI313YdaNThiXYn0OnBYIz8eBTUFWmjCFWC9QiJXmpDC1mM+v+JH8fUUExZUF2VYKsnXljxKYlAqFJvRywEMx0FYBVkTkyDwea8Ko9ath2+aytWx3W2Nva3LVeLjkSqv1tqjQaumNS/CZmZF/LbIuaLqBS0PgnmifKU2kzinEeoFCrDQ3BSlFfH7lTxTsKyIkMZC/fj0Uv4CmM7mGt6wrgetTocCEHmUBtr0CrIjI8UlLhfV/wpaNVqjdu9uaGXncTdD1BOuY1b/DB29At57w4LNgKxuImrIPYhO8NoHUlwXW8moAN0bAhAivlCFS72qTpzS6SkSOSUhCEBd9dDpfXPkTXUa2I3tLHrEnRHq7rEZtgxNuLAuwXf3hgWgFWBGROhEXD3FDYcjQyn052Vbra1Gh1YKbm20F1bBw2L7FOsblgpm3gd0PkjpUdkdu38maGdm//n9JXxBirSH7Yja8lgNxNrg4rN6fVsSnqSW2jqglVport9NN1pY88AA2iO0R6e2SGqXNTpiYak3i0dnfGgPbNcDbVYmINDNFhZCRZk0k5XJBWgq88BiUOqsfa7dbQfbA9WyTOkBgUL2U9kQmzM8HO/BcHJxWP08j4jXqTuwFCrHS3KWvzaY4s4Q//r6Zs545heD4xru8QUPbVgoTUiDLAx384aFo6K4AKyLiG0qdsHUzbFwDO7dbXZH37bYC78EMw1q/9r4nrLG1YAXiOuiK7DHhjnT4vggCDXgzHnros0KaEIVYL1CIFYHPLv+RtD+yCG0VxEXzhhAcpyB7JDvLAmy6B9r5WWNge+pLiYiIb3O7Ydd22LAWdmypDLa5OdZY2oeeA7+yrsaffWyte3vV+MruzB6PFXhrOUuT04TrU+APJ0TY4P1EaK3BgdJEaEysiHjFWc/05fMrfiJ/bxFfXPkTF807naBYBdlD2V1qTeKU7rEWtL9fAVZEpHGw2yvHxpYzTWsN222bKgMswI6t1iRSGemwdZO1b+c2axKp9p0r17Pt0BkSWhw22DoMeDEerk2GHS6YmAJzEyFK8ypKM6OW2DqillgRS+6uAj6/8ieKM0oIaxvCRR+dTlCMktnB9rngbymQ7IZWfvBAFJys8U0iIk1PZjqsXwPhERAcYu37/iv46rPqxwYFV4bj8nDbqm217shpLhidbF0E7eQP7yZAkK0BXotIPVJ3Yi9QiBWplLsz3wqymU7Ck6wgGxilIFsupSzA7nVDot2ahbifAqyISPORl2t1Md60HvbstLoiJ++zJpM6mL8/tOsAvU6G0ddV7N5earXI5pvQLwBeiQc/rSErjZhCrBcoxIpUlbM9n8+v+omSLCctB8Vy/pxTvV2ST0hzwYRU2OWCeDvMioZBCrAiIlJcDJs3wKa11njbfXusW0mxdX/n7vC3ydZyP+Hh8PKTZEbEMuac60gOj+G8YHgkptbDbEV8hsbEiojXRbQP5cK5p7Fo2gp6ju1E9tY8Ijs274XtMtzWGNhdLoizwz0KsCIiUi4wEHr1tm7lSkutiaM2rgVbWZditwv27II/VxIN3DXsUqaZ0XxVaHDB1x9yWsrWyiV/2neCiMiGfy0i9UwtsXVELbEiNTNNk4y1OQD4BduJSArFsDW/y8RZbmsd2K2lEG2De6PhzGBvVyUiIo2OaUJWJiz/BfbvhdPO5h9GBI/7JfDGy1Ppu+3PqsdHx1aOry0faxsTpyZb8TnqTuwFCrEih5e+Jpu9i1PZ9t+9XPDeaQSE+x/5QU1ETlkL7KZSiCwLsGcrwIqISB16Ka2UP1av48Sd6xm1ezWJ+7ZbsyLXJDSscmbkAadClx4NW6xIDRRivUAhVuTwnAWl/OOcbynJdhLVJZwL556GI6zpB9k8D9yQCuvL1vS7JxqGKsCKiEgdM024LwO+LAR/4LV4OLk4EzassSaQKl/LNmW/tU5tuQtHwrAREBYB+Xnw339B1xPgtLO89VKkmVKI9QKFWJEjy9iQzZdXL8aZ5yK6WzgjPjgNR2jTDbL5HrgpFdY4IcywAuy5Id6uSkREmiqXCZNT4dcSCDXgnQTo4DjooIIC2LjGmkRq9w7of6q1jA/Ayl9h/ruQ1BFumW4F27Bw+Pg9q1ty+07WTMkBWgNe6l5t8pTPrSj1yiuvkJSURGBgIAMGDGDZsmWHPHbt2rWMHDmSpKQkDMPg+eefP6ZzFhcXM2nSJGJiYggNDWXkyJGkpKTU5csSESCmWyTnv3sq/qF+ZG7I5ctrFuPML/V2WfWi0AO3pFkBNtSA6dEwTC2wIiJSj/wMeDYOuvhbS+9cn2rNil9FSAicPAAuvxZunwVDhlqhNTYOWraF086Gk/pak0plpsOmdbDgI3jjRbj7FhhzEdw6Hl58HD7/J6xZBQX53ni50oz5VIidP38+U6dOZdasWaxcuZKTTjqJ4cOHk5pac3/+wsJCOnTowOOPP05iYuIxn/O2227j888/5+OPP+aHH35g3759XHrppfXyGkWau9gekZz/zmD8Q/zIWJfDl9c2vSBb5IFb02BVCQQbcFc0nBesOTRERKT+BdmsrsQt7JDhsZZ1y/Mc4UF2O0REwalnwJS74eqJVqtrfAL4O+DMc60uxqHhVr/lvbvgx2/h3dlw/+1w7cVw42h4+gH4ZC6sXAZFRQ3xcqWZ8qnuxAMGDKBfv368/PLLAHg8Htq0acPkyZOZPn36YR+blJTElClTmDJlSq3OmZOTQ1xcHB9++CF//etfAdiwYQPdu3dnyZIlDBw48KhqV3dikdpJW5PFl9csxlXopveNXeh7a3dvl1QnSkyYkga/FkOgATOi4MIQBVgREWlYe10wJhlyPNDLAW8kgON4P4tM0xpXu34NbNtshdl9eyAro/qx9z0GnbpDcIi1RFB2FnTtAVExx1mENFWNcp1Yp9PJihUrmDFjRsU+m83G0KFDWbJkSb2dc8WKFZSWljJ06NCKY7p160bbtm0PG2JLSkooKSmp+Dk3N/eYahRpruJ6RnH+O4PZ8NEO2p6dSN6eAsJaN+4Bo04Tbi8LsAEG3BkFIxRgRUTEC1r5WS2y41NgtRPuSodnYuG4VrkzDGv8bPkY2nJpqdYEUpvXW6E2NRmCwyB5n3X/J3Ph999gxKXw1zEQEgp5ufDHCujQCVq0tlqDRY6Sz4TY9PR03G43CQkJVfYnJCSwYcOGejtncnIyDoeDyMjIasckJycf8tyPPfYYDzzwwDHVJSKW+BOjiesVRcbaHEqyS3GX5hPaIgi/wMb3QVZqwp3psLgYHMAdUfB/Icf5ZUFEROQ4dHPA07HWEJcfiuDxLLg7uh6eKC4e4s6G08+u3Od0Ql4O5OZATDy0agMJLa2AC9ZY2vf/bm07AiCpg7XsT/latm3aWV2ZRWrgMyG2sZkxYwZTp06t+Dk3N5c2bdp4sSKRxskwDGJ6RJD2RxaLZ67CdJuc9/bgRhVkS02YkQ4/FlnLGkyNgr8owIqIiA8YHASzomFmJvwzHxLscF1EAzyxwwExcdbthtusfS6X1QKbl2O1vCZ1tFpunSXWMkCb1lc+3m6H1u2sQFsebNt1hKCgBihefJ3PhNjY2Fjsdnu1WYFTUlIOOWlTXZwzMTERp9NJdnZ2ldbYIz1vQEAAAQEBx1SXiFRl2AzsgTbSVmfhLvbw9d+WMPytQfgF+H6QdZkwMwO+K7J+od4WBSNDwa4AKyIiPuLCUEhxwys51i3eDheFeqEQPz+IirZubdtba9SWOq3xtRvWwq5tZevZ7oHCAti5zbp9/7X1+Jg4ePEdKP8Ovm2z1Qoc1hCpXHyJz8xO7HA46Nu3LwsXLqzY5/F4WLhwIYMGDaq3c/bt2xd/f/8qx2zcuJFdu3Yd8/OKSO3FdI9k+N8HYQ+wkbw8g28mLsXtdHu7rMNym/BABnxdCHbg1kj4qwKsiIj4oPHh1kVWgAcz4RdfmTzY32HNfPyXUTB5Ojz+CsxZAE+/Dn+bDOecD917QngEJLSAPTth6ybYstGaGXncSGuiqXJpKZCRbk1CJU2Wz7TEAkydOpVrr72WU045hf79+/P8889TUFDAuHHjALjmmmto1aoVjz32GGBN3LRu3bqK7b1797Jq1SpCQ0Pp1KnTUZ0zIiKC6667jqlTpxIdHU14eDiTJ09m0KBBRz0zsYjUjRb9Yzn39YF8M3Ep+39N55uJSzn37wOxO3yvRdZjwsOZ8J9C62rgzZFweZi1Rp+IiIivMcpmzE93W+Njb0+Ht+Khuy92LCzvapzUsXKfaUJONpQUQX6+tYRPUDCUFFsvbusm67hP5sKyxVbrbIfO1sRR5WNtE1qAzWfa8OQ4+NQSOwAvv/wyTz31FMnJyfTu3ZsXX3yRAQMGAHDmmWeSlJTEO++8A8COHTto3759tXOcccYZLFq06KjOCVBcXMy0adP46KOPKCkpYfjw4bz66qu16sasJXZE6s7eX1L55oZf8Tg9tBwcx7mzB2J3+M6HjmnCo1nwST4YwKQIuDoc/BVgRUTEx5WYMLFsxuIIG8xNhJY+1axVSzlZZZNI5Vof0B++DX+uqLklNjCocnxt+07WrXU7zYzsI2qTp3wuxDZWCrEidWvPz6n876ZfMQwY+kp/Wp+WcOQHNQDThKeyYF5ZgL0hAsYqwIqISCOS54FrkmGnC1rYrSAb2ZRyXEEerF9rTRS1Zyfs22Ut9+NyVT/W3x9GjraW/gFwu63jNPdNg1OI9QKFWJG6t/vHFAqSi4jtEUlQXAAhCd6dkdA04bls+CDP+nliOIyPqIPF40VERBpYqgtGJ0OGB7r4w5wECPKdTk91r7gYNm+ATWth1w7YVzaBVEkxXHIFDBxiHbdvD7z0OHTrCQ8+W/n4UqeW/KlntclTjbnzgIg0cW2GJOBxm2Suz6EorYSC/UXE9ozE5tfwn7KmCS/nVAbY8eEwTgFWREQaqXg/eD0Brk2GTaUwNR1eimvCczsEBkKv3tatnMsF2zdbE12U27sbPB4rtJaPszUMePw+q9W2Q+eq3ZEjohryVUgZtcTWEbXEitQfj8vD9q/28cuDf5J4SgznvNivwYPs7Gz4e661fW0YXB8BgU35irWIiDQLK4vhxlQoBUYEw4MxVmZrtjwe2LsL0tOsGZHBWu7ngTtqPj4qpnqwjY1v5m/isVF3Yi9QiBWpXzsX7mfhrb9hukzaDU3k7OcbLsi+mQOv5ljbo8Pgpogm3uVKRESalW8L4K4MMIFx4TA50tsV+aDUZFi/2lraZ+9uqztyRlrNE0iFhFqhdtxN1nq4clQUYr1AIVak/m3/Zh/f37Yc022SdG4LznquH7Z6XpT13Vx4IdvaviLU+mBXgBURkabmozxr4kKAu6KsZePkCLKzYMNqa6ztnl3WeNqUfVZrLsD0h6yW2sBAWPwD/LEcho2AM8/1bt0+SmNiRaRJan9uS3imL99PW8GOb/azaNpyznzmlHoLsh8eEGD/GmqtBasAKyIiTdGVYZDigvfKwmy8Hc4K9nZVPi4yypoQqnxSKLC6Hm9aZ82MHBlt7SsuhrWrYONa6NQN2myyxtcWFMDbLx/QFbkztGtvLQUkh6WW2DqilliRhrPtyz0sun0Fpgc6XNCKM5/ui2Gr2yD7cR48VnZF+uIQmBYFIQqwIiLShJkm3JMBXxWCA5gdD70DvV1VE+B2w5YNsG41tGgFcWXLBv7+G8ybU/VYw4CWra1Ae+A429Cm3zSullgRadI6XNAa0w0/3LWC7G15FCQXEtoypM7O/6/8ygB7YQjcFqkAKyIiTZ9hwAMxkOGG30rgljR4NwHaa2WZ42O3Q9cTrFs5j8fqZhwcDDu2WuNs9+6G/NzK7Z+/qzw+Lh46dIGOXeCSK49v4iink4xPfybmktPA0Tj/ctUSW0fUEivS8HYtSsY/xA//ID9CWwUTGHX8v4i/yIdZmdbkFucFw/QoCG9KC8CLiIgcQaEHxqbAllKIs8PcRIjVZ2H9M01rwqgNa63lffaVTSCVmVF5TFwC3D7LmjwqLBz+OdfqmjxsRGUL72HOX/rTzyy5bzmbUzrQOXEbgx88Bb/TT/OJ2ZQ1sZMXKMSKeIfb6SFrk7X2Te7uAtqf1xLjGH8Rf1UA92aABxgWDHdHQYQ+tEVEpBnKdMOYZEh2Q5IfvJcIoeqV5B0ZadbMyJs3WIF10BnWfo8HZk0DZwncdq/V7TgsHFb/DpvXV46zbdkadu8k67m3+fb7TuQ5IzCxYeAh3JHDOWdvIeq28dCug1dfpkKsFyjEiniP2+lm6WNr2PDRDrr8tS2nPdS71kH220KYkQ5u4KwguCcKojXgQkREmrHdpXB1CuR64CQH/D0B/L3fYCcATidkpsPC/1pdjy++3Oq2DDD/HVi5rPJYh4PNGV1YvOt0PKYNk8qrEQYebIaHU09cQ+f5sxr2NRxEY2JFpFmxO+zE9IgAAzb9cxeGzeDUB0466iC76IAAe3qQ1QKrACsiIs1dG394NQ6uS4U/nDA9HZ6KhTqeS1GOhcMBiS1h9HWV+1wuyMuF3v2sGY737YF9e0jPCefHnWdhDZaq+pdnYsNtGvz4R2+i1mQT2zOyIV/FMVNLbB1RS6yI962ft51f7v8TgG5XJjF45olHDLI/F8HUNHABgwPh/miIVYAVERGp8HMh3FZ2sffyULgr2tsVyVErdWJu3cS/R/9GZkFklVbYcgYeYiJy+L+l1x7zkKy6UJs8pZ7tItJkdL+iPYNm9gJgw0c7WPLIag53nW5JEdxeFmD7B8JMBVgREZFqTguGe8qC6/x8eCfHu/VILfg72Lo5guyi8BoDLFitsX07b/RqgK0tfV0TkSalx1UdMN2w9JHVrP9gOzabwcC7e1U7blkxTE0HJ9A3AGZFQ7x+I4qIiNTo4lBIdcHsXHgpB+L8YETdrW4n9eDAOUPAjwB7EU53QLUxsTFBabSKzzjkeXyRWmJFpMk54eoODJjREwDDbuDMK61y/8pimJIGJSb0DrC6ELdQgBURETmsCRFwSYg1svKBDFha5O2K5FDy9hTyxVU/WwHWgG7nR3DagE3VWmNNbPTtn4Jx63TvFHqMNCa2jmhMrIjvSVudVdE1JjwpBEeoP3+UwKRUKDShlwMejrEmrhAREZEjc5vWXBI/FUOQAXPioUuAt6uSA+1alMwPd63EmVOKf6gffW/tTtdR7bD7G2T88yf49z8gOxMio+Evo4j56+kYNu+3bWqJHS9QiBXxTa4iF9lb83Hml7J2Qx4PntOBAhN6lAXYJAVYERGRWikx4W8psNYJUTb4IFE9mnxF2p9ZfDbqRwAiO4XR7/YetDkjoep4V6cTVi6FvgPB3+GlSqvTEjsiImX8gvwIaxPEP69aSfHWPLrtL6VgbFcejFaAFRERORYBBrwSD1cnw24XTEiBuYkQYfd2ZRLSMojWp8fjH+rHKVN7EN6mhoHLDgcMHNLwxdUh77cbi4jUs11BASw+uw0AA9/dwLh/bKCD71x4FBERaXTCbfB6PETbYJ8bbkyFYo+3q2qeUn7PpCTHSdbmXAqTizn55m6c/kifmgNsE6EQKyJN2rZSuCEVll7WmY3XdQdg12sb+f3VjV6uTEREpHFL9IPZ8RBswIZSmJZujZmVhmGaJqvnbOE/Y37m20nLcBW7AYjtFYl/cNPucKsQKyJN1s5SuCEFsjyQ5AfX3tKF3jd1AWDlixtY9fomL1coIiLSuHVywAux1hjFJcXwYCZoxp3658wr5btbfmPZE2sx3Sb2QDt+wXZie0Zi2BrPeq/HqmlHdBFptnaXwvWpkO6Btn4wKwZOCABu6Y7pNvnj9c2seG49/kF2Trimo7fLFRERabT6BlmTJc7IgM8LIMEON0V6u6qmK2NDDt/d+hu5Owsw/Ax6je3IiRM7ExDefMZKHVdL7E8//cSYMWMYNGgQe/fuBeD999/n559/rpPiRESOxT6XFWBT3dDKD2ZGwUkHTP9/ym096PW3TgRGOwhJDMJV5PJesSIiIk3AuSFwW6S1/WYu/DPPq+U0WZsW7OLzy38kd2cBQbEBnP5Qb/pO6d6sAiwcR4j95JNPGD58OEFBQfz++++UlJQAkJOTw6OPPlpnBYqI1EayC65PgWQ3JNqtAHtyUPXj+k3rwUX/GEJoy2Cyt+YryIqIiBynMeEwOszafjwLFhV6t56mprTAxYoX1uMu8RDfJ5pzXu5P50vaYvNrfiNEj/kVP/zww8yePZs33ngDf//KdSpOPfVUVq5cWSfFiYjURlpZC+xeN8TbYWY09KshwAIYhkF46xDCk6yZ+zZ9sou1H2xrwGpFRESanqmRMCwIPFjdi/8s9nZFTUdJjpO+t3an2xVJDH25Hwm9o71dktcc85jYjRs3MmRI9fWFIiIiyM7OPp6aRERqLcNtBdjdLoizwz3RMPAQAfZAjlB/TNPk1yfW4Ck1MYAeYzrUe70iIiJNkWHAw7GQmQorSmByGryfAG2bV2/XOrNz4X6c+aVEdQwHILpLOB0vbIXd0bwX5T3mltjExES2bNlSbf/PP/9Mhw76AigiDSfLbS2js8MFMTaYEQWnH0WALRfbM5KulyUBsOTh1az/aHv9FCoiItIM+BvwfBx08oc8EyamWReb5eh5XB6WPbWWbyct4+f7/iB3dwGG3SDmhIhmH2DhOELshAkTuPXWW/n1118xDIN9+/Yxd+5cbr/9dm688ca6rFFE5JCyywLs1lKIssGMaDgzuHbnMAyDQff1otsVSQD88uCfbPjHjjqvVUREpLkIscFr8dZMxalua76KQo+3q2ocClOL+XLsL6x+y2owbH9uC+JOjCSmewSG0fSXzzkax9ydePr06Xg8Hs455xwKCwsZMmQIAQEB3H777UyePLkuaxQRqVGeB25Khc2lEFEWYM+uZYAtZxgGg2ediOkx2fiPnSye9QeGzaDrX9vVbdEiIiLNRIwdXo+Hq5Nhm8vqWjw73mqplZrt/zWd76ctpyi9BL8gO30mdaXH6Pb4BWll1AMZpnl8yxE7nU62bNlCfn4+PXr0IDQ0tK5qa1Ryc3OJiIggJyeH8PBwb5cj0uTllwXYNU4It1ljYIcdY4A9kGma/HzvKjZ9sgsMOO+tQbQaHH/8JxYREWmmVhdbXYpLTBgaBE/EWmNnpao/39rM8mfWYXogvG0I/W7vQbuhLTBszePNqk2eOu5I73A46NGjx/GeRkTkqBV6YHJZgA01YHqU9aFYFwzD4LSHeuNxmxSnl+Af4o/b6cHuaH7T14uIiNSFXoHwRAxMTYdvi+CZLLi9+U6se0jFGU5MD7Q5I4F+d5xAVKcwb5fks465JfbBBx887P0zZ848poIaK7XEijSMIo/VHWllCQQbVhfiC4Lr/oqu6TEpynRSmFwEQFSXcAVZERGR47AgDx7OsrZvi4Sr9ZUZ02Ni2AxytufjzC0l5fcMOo9sS0BY85vOuTZ56phDbJ8+far8XFpayvbt2/Hz86Njx47Nbq1YhViR+lfsgSlpsKwEggyYHg0X1kOArfKcWSXk7Srkj79vov35reh4Yev6ezIREZEm7rVseCMXDOCRGDgvxNsVeYdpmmz8eCebF+yi/509Ky6UR3ePwGZvHt2HD9Yg3Yl///33Gp947NixXHLJJcd6WhGRGjlNuD3dCrCBBtwRBSPqOcACBEYFsOWzPexcmMyu75Mx7AYdzm9Vv08qIiLSRN0QASlu+KwAZmVYS+P1q6MhQY2Fq8jF4vv/ZMu/dwPWWrBdRrYlsoO6Dx+t457Y6WCrV6/moosuYseOHXV5Wp+nlliR+lNqwh3p8GMRBJQF2ItDoKHmOfC4Tb6ftpwdX+3DsBuc9Uxf2p+nICsiInIs3KbVs2pxsTU0aE48dA7wdlUNI2d7Pgtv/Y2sTblggx5Xtqf3TV0Jimkmb8Bh1CZP1fkAr5ycHHJycur6tCLSTJWaML0swPpjjaFpyAALYLMbnPXMKbQb1gLTbfL97SvY8e2+hitARESkCbEb8FQs9HBAoQk3pkGyy9tV1b/tX+3j33/9gaxNuQRE+nPqzJPof1dPBdhjcMwtsS+++GKVn03TZP/+/bz//vucccYZfPjhh3VSYGOhlliRuucy4d4M+KbQGvswNQouC7U+/LzB4/Lw3a2/sXNhMoafwTkv9KPdOS28U4yIiEgjl+OGq1Ngjwta+8EHidayeU3R2ve3sfSR1QDE9Iig/x09aDlIS/gdqEEmdmrfvn2Vn202G3FxcZx99tnMmDGDsLDm1adbIVakbrlNa6zMl4Xw/+3dd3zT1f7H8VeSNt3pHpRVNmXvMgUFBVwXt4iCyhUHU5x4FRTvFdSrV7kO1Ou9TsTr/V25ioAisil7yFaUKXSPdLdJvr8/gr32Aspom6R9Px+PPki/Ofnmk5A033fO+Z5jAaZEwE1h4OfhuQ5cDhdfT9zI0eXp+AVZuPHrIQRFB3q2KBERER91wgG3pkGuy90z+3a8+9Shuibz21yWjF1Hk0sa0H1KW0IbVMPi9nVMrYRYqUohVqT6uAyYmeOe9MECTIyAW7wgwP7MVeHim/s3k9AjmoQe0fV6JkEREZEL9V053JEOJQb0C4SXYj036qo6FRwrIrRhMDn77RgOgzJ7BfHdovALtHi6NK/k0XNiRUQuhGHAM7nuAGsC7ouAkV4UYAHM/maGvNKLZsMTAcjZm4+jzOnhqkRERHxTayv8JcZ96tDaUvhTjvt4wFcZLoNtr+3nk6HL2P3ejxgO94NJ7BOjAFtNzmmJnalTp5512xdffPGcixGR+s0w4Llc+HehO8DeGw63hoG/FwXYXwqJd68JkLUzj68nbaT/011o1E/nt4iIiJyrXkHwVDT8IRsWFEGcBe6J8HRV5640t5yVj2zh2KoMALJ25ZF0aQNCEzV8uDqdU4g93dqwp2Oq6YUbRaTOMQx4MQ8+Phlg7wqH0TbvDbA/C4kPYuNzuyk6XsLX927g0jd607BPrKfLEhER8TnDQyDDCS/nwZt2iLfANT40zU7mt7ksm7KJouMlmK1mOt/Vig53tMAa6u/p0uocnRNbTXROrMj5Mwz4az68Y3f/PtbmDrFWLw+wP3OWO/nyrvWc2JCFJcDM0Lf60KBXjKfLEhER8UnP5cD8Qve8GC/EwEVe3olpGAZ7PzrEhmd24nIYhCQE0fPBdjQb3lBzZpyDWp3Yac+ePRw5coTy8vL/7tRk4qqrrrqQ3fochViR8/d6Hrx1MsCOscE94b43M6GjzMmXv08lbVM2lsCTQbangqyIiMi5cp1cI/7rEvfxwN/ioL0XL6V6YlMWi25bC0CDXjH0eqQ9Me0jPFuUD6qVEPvjjz9yzTXXsHPnTkwmEz/v5uehxE5n/ZrkRCFW5Pz8LR9ey3dfvjXMfR5skI9OOecodbJk7DrSt+RgCbQw7O0+JHSP9nRZIiIiPqfCgHvSYVu5e+3Y9+OhsZeOyi04VsSmF/YQHBtIl/taExjhxYnbi9XK7MSTJ0+mWbNmZGRkEBwczO7du1m1ahU9evRgxYoV57tbEalH3rH/N8De7OMBFsAv0MKwv/UhrmsUzlIn6/+4E5fT5emyREREfI6/CV6Og2Z+YHfBuAzI8aI+soNLjlOcWUrWrjzK8iroNLYVvR5qrwBbS877cDE1NZWZM2cSExOD2WzGbDbTv39/Zs2axaRJk6qzRhGpgz60w5w89+UbQmGCjwfYn/kF+TH8731ocXUjej3cnpy9djT1gIiIyLkLNcMb8RBrgXQn3J0BxR7+bthZ7mTdzG/5Zsomlt63AcNpYLaaiekQgdm/DhzI+IjzfqadTidhYe7pwmJiYjh+/DgATZs2Zf/+/dVTnYjUSf8sgBfy3JevCYFJERBch/7u+wX5Mei57oQ1ds9Ekb07n9LcMg9XJSIi4ntiLPBGHISa4IcKmJzpHmrsCQU/FfPFrWvYO+8gAFGtbQQ3CCKqtU4lrG3nfdjYoUMHduzYAUBKSgrPPfcca9euZebMmTRv3rzaChSRuuXTQpid6758ZQhMiYCQOhRgfymsUQjWcH8Ofnmcf176NZm7cj1dkoiIiM9J8odXYsEKbCmDJ7LdKxvUpmOr0/nPtSvI/DYP/1A/UqZ1oM/0ToTEBdZuIQJcQIh9/PHHcbnc/fkzZ87k4MGDDBgwgEWLFjFnzpxqK1BE6o7PC+GPOe7Lw4LhwQgIs3i0pBoX2iCI46mZVBQ6WHz7OrL25Hm6JBEREZ/TKRBmxbjXkv+qGP6SVzv363IabJ2zjy/Hracsv4KIFmEMeq477Uc3xy+gjh/EeLFqXSc2JyeHyMjIyhmK6xPNTizy6xYXwePZYACXBsNjkRBeT/72lxdWsOi2tWTvzcc/1I/L3+9HTHKEp8sSERHxOf8qgGdODmx6MAJuqeHD7vLCChZcs4KCo8UkXdaAng+2x9YkpGbvtJ6q1XVixU0hVuTMlhbDY1ngBC4OgscjIdLP01XVrvKCChbeuobc/XasYX5c/kF/otuEe7osERERn/NqHrxtd/fKzoqGy2owU+YesJOzz479SBEdxrTAP6SeHcDUolpZYuf3v/+9ltIRkd+0/BcBdkCQuwe2vgVYAGuYP1e835/IVmGUFzhYdNtacr7L93RZIiIiPue+cPe8Ggbu82O3llbfvg3DYNd7P7D7/R/J2pWHs9RFeFIoXe5prQDrRc47xGZmZjJs2DAaN27MQw89VDnJk4jIz1aXwCMnA2zfQHgiEqLr8d//AJs/V3zQn4iWYZTbK9j/z8OeLklERMTnmEwwPQr6BEIF7hmLfyi/8P2WF1aw/P7NbHhmFxue3UXBT8VYbf7EdIjAZK5/p0t6swsaTpybm8snn3zCvHnzWL16NW3btmXUqFHccsstJCUlVWOZ3k/DiUWqWlcC92e6P1xSAuGpKIirxwH2l8ryytn9wY80GZQAQEyHCM8WJCIi4oNKXDA2HfZVQLQZPkw4/2ONnP12vpm8kfxDRZj8THQY3YJOd7ciMNxavUXLGXnknNhjx47x0Ucf8fe//53vv/8eh8NRHbv1GQqxIv+1sdT9rWiZAT0C4KloaKAAe4q8HwpwlDhxlDoJSQgkrJEmihARETkXeU64NQ2OO6GxH3yQAGHnONb0+/8cZe2MHThLnQTFBNBjajtaXt0Is18dXQPQS9XKObG/VFFRwebNm9mwYQOHDh0iPj6+OnYrIj5oSylMORlguwbAk1EKsGcS0SIMA4P1z+zksxtXkX+o0NMliYiI+JQIC7wZD+FmOOqA8RlQfg5ddOtmfsuqR7biLHUS2zmSS17uQetrmyjAerkL+t9Zvnw5d911F/Hx8dx+++3YbDYWLlzIsWPHqqs+EfEhO8pgUiaUGtDJ6g6wif6ersq7hSYGU1HooDSnnIW3rMZ+pMjTJYmIiPiURD+YGweBJthVDg9ngussg6zV5g8maHNjUwa/0ouE7jE1W6xUi/MeTtywYUNycnIYNmwYo0aN4qqrriIgIKC66/MZGk4s9d2uMrg3A4oMaG+Fp6MhSQH2rJRklfL5yNUUHC0mKCaAKz8agK2xhhaLiIici/UlMDHTPaHktSHwhyj3JFD/y1HqxBJgJnt3PoZhkP9jIc2GJ2Kx1pMF7L1UrQwnfvLJJzlx4gSffvop119/fb0OsCL13d5y9/CdIgPa+rsncVKAPXtBMYFcOW8AoY2CKckqY+HI1RQcK/Z0WSIiIj6ld5B7FBjAv4vgb/aq17scLja/uIcF164gfXMOACaLiRZXN1KA9THnHWLvuusuIiIiAFi7di1lZWXVVZOI+JDvyuG+DCgwoLW/exKn5prI75wFxwZy1bwBhCYGuYPsLasp+ElBVkRE5FxcEQoTw92XX8+H/5ycbqIkq5QlY1PZ8eb35P9YyImNWQTFBhDTLgLT6bprxatVyxnLw4cP56effqqOXYmID/mxwj2EON8FLfzd3362UoA9b8FxgVz50QBCGgRRUewgY1uOp0sSERHxOXeEw42h7st/zIGla7NZcM0KTmzIwhJoocf9yXS4owUh8UGeLVTOW7XMGVpNq/SIiA85VAF3p0OuC5L83AG2rc4quGAh8UFc9dEA0rflYGscQtaePGLaRXi6LBEREZ/ycCRkOgxy3/+BQ2/vwewyCGsUTM+H2pN0aQNMZvW++jLNHS0i5+xIBdydAdkuaOIHT0ZDewXYahOSEETz4Q3df6FdcOA/RylKL/F0WSIiIj7DbIKb/7mffm/txuwy+PHihnR8rTfNhiYqwNYBFxxif/rpJ1577TViY2Orox4R8XLHHXBPBmQ6oaEfzIiCTgqwNSKmXQQ5+/NZM2MHC0eupjij1NMliYiI+IzGfWIJjAlgx/iOLH60Ow+EhJHr9HRVUh3OO8SuXbuWZs2a0aRJE26//XZatmzJI488gt1u/+0bi4hPSnPAuHRIc0IDC0yPhK6Bnq6qbmuQEos11I/C4yV8PnIVxZkKsiIiImeSsT0Hl9Mga1cefgEWhszpxR/GJRFjMZHmdH8RX+LydJVyoc47xN59990kJyezadMm9u/fz/PPP8/XX39Nt27dNMmTSB2U4YBxGXDcCfEWeCIKemo+hBoX1iiYKz8aQFBMAIU/lbBw5GpKsjUbvIiIyC85Sp2semwbn9+8mp1vfw+AX7CF+G5RxAeYmRsPISb4vgKmZIJDU/r4NJNxnrMyBQUFsWPHDlq3bl25zTAMbrzxRgA++eST6qnQR5zL4rwivibL6e6BPeSAWAtMj4J+CrC1yn6kiM9vXkVpTjlhTUK4av4AgqI0jltERMR+uJBlkzeRs88OZmh/W3O63NOawMiqn5PbS91zelQAw4LhT9Gg1XW8x7nkqfPuiU1OTiYjI6PKNpPJxMyZM1myZMn57lZEvEzuyaE3hxwQbYbHIhVgPcHWJIQr5w0gMMpKwZEiFt6ymtLcck+XJSIi4lGHlh5nwXUrydlnJyDcn75PdKLnA+1PCbAAXQJhVgyYgCXFMCev1suVanLeIfb2229n4sSJHD16tMp29USK1B15JwPsjxUQaYbHomBgsKerqr/Ck0K58sMBBERaCYoKoPBEkadLEhER8QhXhYsNz+5i2cRNVBQ6iGprY9CLPUge2QyL9cwR55Jg9/I7AO8WwHxN5+OTzns4sdnsfnFYrVauvfZaunTpgtPp5IMPPuCxxx5j1KhR1Vqot9NwYqlr7C64Jx32VUC4Gf4QBUMUYL1CwbEiijPLsPib8QuyENEizNMliYiI1KrjqZksvmMdAC2uakSP+5MJTTz7A5U5ufBOgbtX9rkYGKxjHI+rleHEJ06cYPHixcycOROAd955h+nTp/P999/z3HPPceutt/Lcc8+d19DiV199laSkJAIDA0lJSWHjxo2/2v6TTz6hbdu2BAYG0rFjRxYtWlTlepPJdNqf559/vrJNUlLSKdfPnj37nGsXqQsKXDA+wx1gbSd7YBVgvUdYoxDiu0YBUFHsYNOLeyjL19BiERGpPwKjrLS5oSk9H2xH/5mdzynAAkyMgMuDwQD+kAXbNPm/TznvntjTKS0tZefOnWzfvp0dO3awfft2du3aRV5e3lnv4+OPP2b06NHMnTuXlJQUXnrpJT755BP2799PXFzcKe3XrVvHRRddxKxZs7jyyiuZN28ezz77LFu3bqVDhw4ApKWlVbnN4sWLGTt2LAcOHKB58+aAO8SOHTuWu+66q7JdWFgYISEhZ1W3emKlrihywYQM2FEOoSZ3D+xlwZr4wFutfnwb3/3rCJGtwrjiwwEE2Pw9XZKIiEi1M1wGu979gaaDG1Bur6jcHt0uHJP5/A5SHAZMzIANZe5jnnfiobm1uiqWc3UueapaQ2x1SElJoWfPnrzyyisAuFwuGjduzMSJE3n00UdPaX/TTTdRVFTEwoULK7f17t2bLl26MHfu3NPex4gRIygoKGDZsmWV25KSkpgyZQpTpkw5r7oVYqUuKHHBxEzYWgbBJncP7HAFWK+WvT+fRbetpdxeQWQbG1d+0B9rmIKsiIjUHWX55ax8ZCtHV6QT1cZGv5ldCIoJIKzhhQ8TK3HBHenwXQXEmOHDBIj1q4ai5ZzVynDimlBeXs6WLVsYMmRI5Taz2cyQIUNITU097W1SU1OrtAcYOnToGdunp6fzxRdfMHbs2FOumz17NtHR0XTt2pXnn38eh8NxAY9GxLeUuuD+kwE2yASPKMD6hOg24Qx/ty/+oX7k7rfzxeg1lBdW/PYNRUREfEDmzlwWXLuSoyvSMfubaHJJAhEtQqslwAIEmeH1OGhggSwXjMtwn1Yl3s2rQmxWVhZOp5P4+Pgq2+Pj408ZEvyztLS0c2r/7rvvEhYWxrXXXltl+6RJk5g/fz7Lly/n7rvv5plnnuHhhx8+Y61lZWXY7fYqPyK+qsyAB7JgYxkEmtyz9l2pAOszYpIjuPy9fviH+pGz186i0WsVZEVExKcZhsG++YdYeMsaCn8qJjg+kAF/6krXCW2xhlbviKNIC7wR757I8rDDfVpVuVeNVZX/5VUhtjb8/e9/Z9SoUQQGBlbZPnXqVAYNGkSnTp245557eOGFF/jrX/9KWVnZafcza9YswsPDK38aN25cG+WLVLsKAx7OhNRSCDDBg5FwVYgCrK+JaRfB8Hf64h/iR/aefJbcuQ7DpU9gERHxPY4SBysf2craJ3fgqnCR0DOaIa/0ouXVjTFbauYApZEfvBbn/jJ/Zzk8kgX6GPVeXhViY2JisFgspKenV9menp5OQkLCaW+TkJBw1u1Xr17N/v37+f3vf/+btaSkpOBwODh06NBpr582bRr5+fmVP/+7Xq6IL6gw4NEsWF0K/sDUCBgRAuc5P4J4WGyHSHeQDfWj8aAECo8Xe7okERGR85L1bR4mM7S7rTmD5/QktmNkjd9nshX+HAMWYGUJzM6t8buU8+RVIdZqtdK9e/cqEy65XC6WLVtGnz59TnubPn36VGkPsHTp0tO2f/vtt+nevTudO3f+zVq2b9+O2Ww+7YzIAAEBAdhstio/Ir7EYcDj2bC8BPyAqZFwbagCrK+L7RjJjcsupfFF8ZTlVVBwTEFWRER8g2EYGC6DvB8K6TE1mb5PdqbXQ+0JjAyotRr6BsET7lXs+FchvJ1fa3ct58Dr5t6aOnUqY8aMoUePHvTq1YuXXnqJoqIi7rjjDgBGjx5Nw4YNmTVrFgCTJ09m4MCBvPDCC1xxxRXMnz+fzZs38+abb1bZr91u55NPPuGFF1445T5TU1PZsGEDF198MWFhYaSmpnL//fdz6623EhlZ89/6iNQ2pwEzsmFpsfvbxskRcH0o1NAIHallgeFWAmz+ZO/OJ/9gAZv/socBf+qKX6DF06WJiIicwlnuYuPzuwkM96fxIPdoSlvTUJIu80wn0dWhkOGE1/Lh1XyI94Mrz27VTaklXhdib7rpJjIzM5k+fTppaWl06dKFJUuWVE7edOTIEczm/3Yg9+3bl3nz5vH444/z2GOP0apVKxYsWFC5RuzP5s+fj2EYjBw58pT7DAgIYP78+Tz55JOUlZXRrFkz7r//fqZOnVqzD1bEA1wGzMyBxScD7KQIuClMAbauMZlMRCXb+PTqFeT9UEBRWgnD3u6rICsiIl6l8EQJ30zZROaOXExmiEoOJ65zJEExgb994xo01gbpTvi/QngqG6LN0CfIoyXJL3jdOrG+SuvEii9wGfCnHPi0yH0uwYQIGBUG/gqwddaJTVl8eVcqzlL3xBhD/9YHvwAFWRER8byf1maw4sEtlOaW4xdsodvEtiSPbOY1X7i6Tq7esLLEPeHT3+Ogbe2NbK53fHadWBGpOYYBz+W6A6wJuCdcAbY+aNAzhqFv9sESYCZtUzZfjVuPs9zp6bJERKQeM1wG217dz5Lfp1KaW05481AGPd+dDre38JoAC+55QmbHQEcrlBpwXyYcd3i6KgGFWJF6wTDghTz4Z6E7wN4VDmNsCrD1RYNeMVz2Rm8sVjMnNmTx1d0KsiIi4hmGYfD1xI1s/es+MKDpkAZc+noKTQc3wOSF6/sFmOCVOGjiB3kuuCsd8vQR6nEKsSJ1nGHAnDyYV+D+/U6b+0cBtn5J7B3LkNdTMFvNHE/NYu2MHZ4uSURE6iGTyURUGxsWq5muE9ow8NluhDcN9XRZvyrMDG/EQZQZTjjhngwocXm6qvpNIVakjpubD++eDLC32+D34WBVgK2XGvWL49LXUrA1DaHZsIYUpZd4uiQREakHDMOgJLsMl8NF1q48mlycwCUv96TLvW3wD/G6eWZPK97PHWSDTfBdBUzNci9XKJ6hECtSh72VD2/Z3ZdvDYNxNvewGKm/GvWP45rPLyEoOoCSzDIFWRERqVHlhRUsf2ALn92wkrTN2QAE2PxpcnECZh9bGqGFFebEgj+wodQ9a7GmyPUMhViROuodO7x+coHukWFwbzgE6h0vgJ/VTFRyOAAHFhzl6wkbcDk0LkpERKpX7vd2PrtxFQcX/URReik5+/IJaxyMzcuHD/+aboHwx2j3HCNfFLvXkZXap0NakTroQ7v7PFiAG0JhfDgE6d0uv2C2mAiKCWDbq/s5/HUayyZvUpAVEZFq88Pnx/jsxlXk/1hIYJSV/k91pt2o5gSEWz1d2gW7NAQeiHBf/rsd/lng0XLqJR3WitQxHxe4ZyIGuCYEJkVAsN7pchohCUEMerE7Jj8TR5al8c39m3E5NS5KRETOn7PcybqZO1jx0BYcJU5iOkZwycs9aX19U8z+deeA5BYbjA5zX34uF5YXe7ae+qbuvJJEhH8XwrO57stXhcCUCAjRu1x+RdKQRC5+sQcmi4nDS0+w/AEFWREROX+b/7KXvfMOAdD6uiYMeTWFBj1jPFtUDZkcAcOCwQVMy4IdpZ6uqP7Q4a1IHfFZIfwpx315eLB7mEuY96wXLl6s2WWJDPpzd0xmOLTkOCsf2oLhUpAVEZFzYxgGjQfGE94slN6PdaDP9E6ExAV6uqwaYzLBU9HQIwDKgYmZcKjc01XVDwqxInXAoiJ4KgcM4NJgeDgSbAqwcg6aD2/IoOfdQfbHRT+x75+HPF2SiIj4AJfT4NBXx3GUOcnenY811J+Bz3Wj3W3N8Quo+wcj/iZ4KRZa+kOhAXdnQpbT01XVfb6xMJOInNHSYpie7Q6wlwTBtAgIr/ufGVIDml/RCMMFR1akEdM+gtLcMgIjAzxdloiIeKmS7DKWP7CZE+uz6HJva5oObkBQTAAhCUGeLq1WBZthbhyMSoN0J4xLh/cSIFTdhTVGT62ID/umGB7Lcp+LcVEQPBYJEfpqSi5Ai6sacdGsbphMJgp/KqE4s1RDi0VE5BTpW7NZcM0KTqzPwhJgxhJgIbx5aL0LsD+LssCbcWAzwyEHTMyACn181hiFWBEftaoEHs0CJ9AvEB6PhCgFWKkGFquZyNY2nBUult+/mTWPb8fQau4iIoL7vNed/zjAF7etpTijlNCGwVw0uxudx7XCP7h+H4g09ofXYiHABDvK3ZM96XvgmqEQK+KD1pXAQ5ngAHoHwhNREFO/PzekmlmsZsoLyknbks13/z7C2id2KMiKiNRz5YUVfDN5Exuf3Y3hNGjYL5ZLX+9F8+ENMZlNni7PK7QLgOejwQJ8UwJ/zvV0RXWTQqyIj9lQCg9kQQXQMwCmR0GcAqzUgMYXJdDvqc5ggv3/Osy6JxVkRUTqs6xdeRxaegKTn4mOY1sy6MUeRLUO93RZXqd/MPwhyn15fiG8m+/ZeuoiHfqK+JAtpTAlE8oM6BoAM6IgQe9iqUFtb0zCcBqse+pb9n18GJPFTJ8nOmIy6Rt3EZH6xOU0sIb60/GOlkS0DKPl1Y0w+6k/7ExGhEKGA+baYU6+e8TcFSGerqru0OGviI/YXgaTTgbYTlZ4MgoS/T1dldQHySObYbgMUp/eyd55BzGZTfT+QwcFWRGROs5R5mTTn/fQ5vqmuCpcALS+rgkRLcI8XJlvuCvcPVvxp0XwVDbEmCGlfs57Ve309YmID9hV5p7lrsSADlZ4Mto9eYBIbWk3qjkpj3UAYP+/DpGzz+7hikREpCbZjxaxcORq9rz/I8unbsZwGYQ2DFKAPQcmEzwWBQMC3fOYPJAF35V5uqq6QT2xIl5ubznclwFFBiSf7IFNUoAVD+gwugUmkwm/ADOG06C8sAJrqF6MIiJ1zeFvTrDqka2UFziw2vxJviWJqLY2LFYtRH+uLCZ4NgbuyoDd5XBvJnyQAA2Uwi6IydAsHdXCbrcTHh5Ofn4+NpvN0+VIHfFdOdydAfkuaO0PT0dDK6unq5L6zlHiIO+HQgD8bX6ENwn1cEUiIlIdXA4Xm1/ay86/HQAgsnUYPR9qT6P+cTqF5ALZXXBbGhx1QKIFPkyAcH0nUMW55CkNJxbxUj+Uwz0nA2wLf3cPrAKseAO/ID8iWoSSf6iQz65fxea/7PF0SSIicoFKc8tZfMe6ygDb/IqGDHkthcYD4hVgq4HNDG/EQZQZjjvh3gwodXm6Kt+lECvihQ5VuANsnguS/OCpKGgb4OmqRP7LL8iP4oxSyu0V7Hjje7a8vNfTJYmIyAXwD7FQlleOJdBCj6ntGPDHLtgaaTrd6pTgB3PjINgE+yrc58g6NSb2vGg4cTXRcGKpLkcq3OdNZDqhiR/MjIZOCrDipba9tp+tc/YB0HVCG7pNaOvhikRE5GwZhoHhAsNpkPudneLMUpzlLpIubYDJrN7XmrK5BO7LdE/2dHWIe8lEdXZrOLGIz/rJ4e6BzXRCIz/3HzUFWPFmXe9rQ9fxbQDY9sp+tr2+38MViYjI2SizV/D1+I1sem43ud+5Z5yPbGWj2dBEBdga1iPIPc+JCfisCF7P93RFvkfzYol4iRMOuDsd0pzuE/6nR0LXQE9XJfLbuk1si+E02D73O7a+vA+zxUTnca09XZaIiJxB1p48vpm0iYJjxZitZhL7xhLfPUozzteioSHuTosX8+BvdoizwPVaveisqSdWxAtkONyzEB93QrwFHo9yf0sn4iu6T0mm010tATi4+DjlBeUerkhERP6XYRjs/+QwC29eTcGxYoLjAhnwdBca9otVgPWAW20w6mRwnZ0LK4s9W48vUU+siIdlOd0B9pgDYk8G2N4KsOKDekxtR0hCEFGtw7EfLiaihRm/IH3MiIh4A0eJg3Uzv+X7T48CEN89il4Ptyeuc5SHK6vfpka4OzOWlsCj2fCmGTpqJN5v0sRO1UQTO8n5yHHCuAz4sQKize4AOzDY01WJXJjywgrsh4oAcFa4iO+qAyQREU8yXAafj1xN5o5cMEPyyGZ0va8NQdGaeMMbVBhwXwZsKXMvxfNeHDSph8sqamInER+Q53RP4vRjBUSa4TEFWKkjrKH+2JqGuIesjVzN7g9+9HRJIiL1XuOL4gkI96fv9E6kPNJBAdaL+JvgpVho4Q92F4zLhGynp6vybgqxIh5gd7m/cTtQAeEnA+zFCrBSh/iH+mH2d89uuf6PO9kzT0FWRKQ2uSpc2A8X4ihxkL0nn8YD47n09RSSb26GxaoI4G1CzPB6nHuCpwyne7LPYpenq/JeegWL1LICF4zPcC9ybTsZYAcrwEodYzKZ6P2HjrQdmQRA6syd7J1/0LNFiYjUE0XpJXwxei0LR60hfWsOAMHxgcR3i/ZwZfJrYizwZhyEmeBHB0zMdA81llMpxIrUoiIXTMyA3eUQaoJpkXCpAqzUUSaTib7TO9H2pqYArHvqW/Z9csizRYmI1HHHUzNZcM0KMrblUFHsoOCnYiJahhEcq9mCfEETf3glFgJMsK0M/pAFmsHoVAqxIrWkxAWTM+Hbcgg2waNRcJkCrNRxJpOJvk92ps0NTcGAtdN3sP9fhz1dlohInWO4DLbP3c+SsesozSnHlhTCoOe60+aGpvgFWjxdnpyDjoHwbLQ7qH1dAi/keroi76MQK1ILSl0wJRO2lkGQCR6JguHBYDJ5ujKRmmcymeg3szOtr20CBuT9UICzXDNWiIhUl7K8cr66dwNbXtqH4YImgxO49PUUmg5pgEkHGz7pomB4LNJ9eV4hvG/3bD3eRgv4idSwMgOmZsGmMgg0wcORcKUCrNQzJpOJ/n/sQuNLEghNCCL3uwIiW9s0uYiISDXYMmcfx1amY7aa6fT7VnS8swXWUH9PlyUX6NowSHfCW3Z4KQ9iLTAsxNNVeQeFWJEaVGHAQ5mwvtR9bsODkXBViAKs1E8ms4mkIQ0ozS2n8Kdi0rdkU1HsoOngBp4uTUTEZ7kcLpoNSyR7bz7tRjWj2fCGmC060Kgr7gl3B9nPimBGtnvypx46vVnDiUVqSoUBj2bBmlLwBx6IgBEhYNbnitRzgZFWrOF+rJv5LcsmbuTHL455uiQREZ9SUexgz4c/UmYvJ2efHf9gPy6a1ZUWVzZSgK1jTCZ4Igr6BkIF7tPTDpR7uirPU4gVqQEOAx7PhuUl7gA7NRKuCVWAFflZaGIIUW1tGC5Y8fBWDi75ydMliYj4hLwfC/jsxlWkPr2T7a9/B0BYo2DCk0I9XJnUFIsJ/hwDyf5QbMA9GZDm8HRVnqUQK1LNnIZ7uMfSYrAAkyPh+lD3HyARcTNbTAz6cw+ShiZiOA2WP7CFg18e93RZIiJe7YcvjvGf61aSd6CAgEgrEc1CiWpjIyDC6unSpIYFmuG1OGhogRwXjMsAu8vTVXmOQqxINXIZMDMHFp8MsJMi4EYFWJHTMltMXPxiD5oOSTgZZDdz6GsFWRGR/+Usd5L69LeseGALjhInMR0iuOSlnrS5MQmzvw7n64twC7wRD5FmOOaA+zLcE4jWR3rVi1QTlwF/yoHPi9xvrPERcHMY+CnAipyR2WLikpd60mRwAobDYPmUzRxZkebpskREvEbh8WK+uHUNez48CECra5sw5NVeJKbEeLgy8YREP3g9zr1k455y9wSiznoYZBViRaqBYcCzufBpEZhwzyQ3Kgz8FWBFfpPZz8zgl3vSeFA8Vps/rnIXLkc9HiMlIvILBT8Vk7UrD/9QP1KmdaDvjE6ExAd5uizxoNZW+EuMe5mZNaXwTI77WLQ+MRlGfXvINcNutxMeHk5+fj42m83T5UgtMgz4cx58VOAOsOPC4U6bAqzIuXJVuMjel4/p5BpUUcnhmmVTROo1Z7mT3O8KOLoqnei24TS+OL7yb6TI4iL4Q7b78t02uDvCo+VcsHPJU+qJFbkAhgEv57kDLMBYG9yhACtyXsz+ZmI7RhIUGwDAvo8OcmxNhoerEhGpXaW5ZXw9cSNpW7LJ/c59gNHqmiY0uSRBAVaqGB4CkyPcl9+ww6cFHi2nVinEilyA1/PhvZN/MO6wwdhwsOrzReSChMQHUZxZwobZu/j6vg0cW6sgKyL1Q8b2HBZcs4LDS0+wdvoODMMgvFkooQ00fFhOb4wNbj65utIzubC62LP11BaFWJHz9FY+/M3uvnxbGNxlgwAFWJFq0bBfHAk9onGWu/j63g0cX5/p6ZJERGqMYRjsfu8HFt66hqK0UkITg+g6vg0x7SPwD/HzdHni5R6MhMFB4AQezobdZZ6uqOYpxIqch3fs7l5YgJFh7omcAvVuEqk2FquFS9/oTYNe7iD71d3rObExy9NliYhUu/LCCpZP3cz6Z3ZhOAwS+8Qy5LUUml/eEJNZ347LbzOb4JkY6GJ1L7kzPhOOVni6qpqlw26Rc/SBHebkuS/fEAoTwiFI7ySRaucXYOGyt/q4e2TLXHw5LpUTmxRkRaTuKEov4bMbVnFw8XFMFhMd7mjBxS/1ILptuKdLEx/jb4I5cdDMD+wuGJcBuU5PV1VzdOgtcg4+LoAX89yXrwmBSREKsCI1yS/AwtC/9SG+exTOUhdf3rWe3O/tni5LRKRaBEZa8QuyEBgdQP+Znek5tR2B4VZPlyU+KtQMc+Mh1gLpTneQLamjK9ZpkL3IWfq/QvdasABXhcCUCAhRgBWpcX6BFob9rQ+L70zFGupHRbETw2VomJ2I+CRHmROTyYSrwkX+wUJ63N8Ov2AzCd1jPF2a1AGxFngjDkanwQ8VMDkTXo2reytnaJ3YaqJ1Yuu2/xTCUznuy5cHw8ORYLN4tiaR+sZR6qQovZSKAveJPtHtw7XchIj4lIJjRXwzeRNRbcNJHtkMgJDEIIKiAjxcmdQ135a6e2LLgaHB8Ew0ePtHptaJFalGXxTBzJMB9jIFWBGP8Qu0EN40hIAIfwynwfKpm8ncmevpskREzsqR5WksuHYlWbvzOfTVccryy4lsHaYAKzWiUyDMigET8GUxvJTn3u40YHMpLCly/+v00e5MDScW+RVfFcGMbDBwT13+aIQCrIinhTUKYc+8gxxcfJxjqzIY/m5fYjtEerosEZHTcjlcbJ2zjx1vfg9AZKswejzYjsS+sRpNIjXq4mCYFuleP/b9Ash3wvoyyPjFhE9xFngoEgYHe67O86GeWJEz+KYY/pANLmBgkPuPQIS+9hHxCl3va0N0u3Aqihwsvn0dWXvyPF2SiMgpSrJKWTI2tTLANhvekCGvp9BkYIICrNSK68Ng7MmRuZ8VVw2wAJlOeDgLlhXXfm0XQiFW5DRWFsOjWe5Fo/sHwh8iIUoBVsRrWEP9ufy9fkQl26godLB4zFqy9+V5uiwRkUoup8EXo9dyYkMWlkAz3ackM+BPXbA1CvF0aVLP3G2DwDN8Z/LzaOI/5/rW0GKFWJH/sbbE/Y2UA+gdCE9EQYwCrIjXsYb6c8V7/YlsY6O8wMGi0evI2Z/v6bJERNxcBq2vbUJY42AGzu5G53Gt8A/WAYXUvu3lUPorAdXAvSTPtrJaK+mCKcSK/MKGUnggEyqAngEwPQpi9Xkj4rWsYf5c8X5/IluFUW6vYPGdqTjK6vDq7iLi1coLKsjanUdZfjk5++0k9o5l6Fu9aTasoZYFE4/JOsuPxbNt5w0UYkVO2lIKUzLdU5F3C4AZUZCgACvi9QJs/lzxQX+ik8PpPK4Ved8XeLokEamHsvfls+C6lSy5cx0Z290zp9uahhCeFObhyqS+iznLSUnPtp03UIgVAbaXwaRMKDOgs9UdYBP9PV2ViJytgHArv/v3QBoNiAMga1ceWgZdRGrLd/93mM9vWkXBkSLM/mbKCyqIamvDGqaDCfG8rgHuWYjPNBbABMRb3O18hUKs1Hs7y2BiBpQY0MEKT0VDY33miPgck8lERPMw/IIsFKWV8OnVy8k/WOjpskSkDnOUOln9h22s/sN2nGUu4rpGMfiVXrS4shFmPx1mi3ewmNzL6MCpQfbn3x+MdLfzFXp3Sb22txzGZ0CRAclWeDIKmijAivi0iBZh7PzHAXK/L2DhqNXYDyvIikj1sx8u5PObV/Hd/x0BM7QdmcSQV3oS3yXK06WJnGJwMDwXA7H/M2Q4zuLe7mvrxJoMjbeqFna7nfDwcPLz87HZbJ4uR87Cd+Vwdwbku6C1P/wxGlpaPV2ViFSHkpwyFt68GvuRIgKjA7jqowHYmmhZCxGpPmuf3MG++Yew2vzpMSWZ1tc3wWL1oZMKpV5yGu5ZiLOc7nNguwZ4Tw/sueQp9cRKvfRDOdxzMsC28IenohRgReqSoKgArpzXn7DGwZRml7HwltUUHCvydFkiUkc4Sp20uKoRTQYncPFfetB2ZJICrPgEiwl6BMKwEPe/3hJgz5VCrNQ7ByvcATbPBc383AG2jQ+dyC4iZycoJpAr5w0gtGEwJVllfD5yNQXHij1dloj4qOKMUra8vJei9BLyDhTgF2Ch34zONOoXh8nko0lAxEcpxEq9cqTCPYQ42wVN/ODJaGinACtSZwXHBnLlvP6EJAZRklnGqmlbPV2SiPigExuyWHDtCra//h3fvvU9ABEtQgmOC/RwZSL1k0Ks1Bs/OdwBNssJjU4G2I4KsCJ1Xkh8EFd9NIDEPrF0va8NWbvzPF2SiPgIw2Ww483vWHzHWkqyyrA1CaFBSgzR7cLxC9Ji8iKeonef1AsnHDAuHdKdkGiB6ZHQRQFWpN4IiQ9i+D/6krUnD1yQtSePiBZh+AXoHDYROb2y/HJWPrKVoyvSAWg8KJ6eD7UnskWYhysTEfXESp2XcbIH9oQTEizwRBT0CPJ0VSLiCTHtIsAEBxf9xP8NX0ZReomnSxIRL5S1J4//XLeSoyvSMfub6Hx3awY+300BVsRLKMRKnZbpdAfYYw73OliPR0GKAqxIvRbeLJQDnx2j8HgJC29ZTXFGqadLEhEv46owKEorITgukAF/6kq3SW0JCNMyBiLeQiFW6qwcJ9yTDocdEG2Gx6KgrwKsSL3nH+zHlfP6ExQTQOFPJXx+y2pKshRkReo7wzAAKC+swGwx0evh9gx5pRctr26M2VfXIRGpoxRipU7KdbqX0TnogEgz/CEKLlKAFZGTwhqFcOVHA9xB9lgxn49cTUl2mafLEhEPyfuxgM9uWMWR5WnYD7nXlG55dWNiO0V6uDIROR2FWKlz8p1wXwYcqICIkwF2ULCnqxIRb2NrHMKV8wYQGGWl4GgxC29ZTUmOgqxIfXNwyU98dsMqsnblseWlvRiGQWRrGwERGj4s4q28MsS++uqrJCUlERgYSEpKChs3bvzV9p988glt27YlMDCQjh07smjRoirX33777ZhMpio/w4YNq9ImJyeHUaNGYbPZiIiIYOzYsRQWFlb7Y5OaVeCC8ZmwvwJsZpgWBZcowIrIGdia/DfI2g8XseeDHz1dkojUEme5i/XP7OSbKZupKHIQ3S6clEc7ENsxEovVKw+RReQkr3uHfvzxx0ydOpUZM2awdetWOnfuzNChQ8nIyDht+3Xr1jFy5EjGjh3Ltm3bGDFiBCNGjGDXrl1V2g0bNowTJ05U/nz00UdVrh81ahS7d+9m6dKlLFy4kFWrVjFu3Lgae5xS/YpcMCED9pRDqAmmRcKlCrAi8hvCk0K54oP+tB/TnKaXNCDvhwJPlyQiNaworYRFo9ew+z33F1ctRzRmyKu9SOwT6+HKRORsmIyfz2L3EikpKfTs2ZNXXnkFAJfLRePGjZk4cSKPPvroKe1vuukmioqKWLhwYeW23r1706VLF+bOnQu4e2Lz8vJYsGDBae9z7969tGvXjk2bNtGjRw8AlixZwuWXX86xY8dITEz8zbrtdjvh4eHk5+djs9nO9WHLBSpxwYRM2FYGISb3JE7DgsGkeRhE5Bxk7cpzXzBDWMNgAsI1nFCkrrEfKeLzm1ZRmluOX7CFbhPbkjyyGX6BWjdaxJPOJU95VU9seXk5W7ZsYciQIZXbzGYzQ4YMITU19bS3SU1NrdIeYOjQoae0X7FiBXFxcbRp04Z7772X7OzsKvuIiIioDLAAQ4YMwWw2s2HDhtPeb1lZGXa7vcqPeEaJCyafDLBBJnhEAVZEzlNMhwgcJU7WPL6dhaPWUJZf7umSRKSaBccFYEsKJTwplEHPdafD7S0UYEV8jFeF2KysLJxOJ/Hx8VW2x8fHk5aWdtrbpKWl/Wb7YcOG8d5777Fs2TKeffZZVq5cyfDhw3E6nZX7iIuLq7IPPz8/oqKizni/s2bNIjw8vPKncePG5/x45cKVGfBAFmwug0ATPBIJVyjAisgFCIoJoOBYMXkHCvjitrWU2Ss8XZKIXKDS3HIcpU5Kc8vIO1BIjynJDHm9F02HNMCkgwYRn+NVIbam3HzzzVx99dV07NiRESNGsHDhQjZt2sSKFSvOe5/Tpk0jPz+/8ufo0aPVV7CclXIDHsqE9aUQYIKHIuHKEAVYEbkw4c1Cufz9fljD/Mj9zs6i0WsoL1SQFfFVmd/msuC6Fax8aAuFP5UAEN0+nIhmYZ4tTETOm1eF2JiYGCwWC+np6VW2p6enk5CQcNrbJCQknFN7gObNmxMTE8OBAwcq9/G/E0c5HA5ycnLOuJ+AgABsNluVH6k9FQY8mgVrSsEKPBABvwsBswKsiFSD6DbhDH+vH/6hfuTss7PotrUKsiI+xjAM9nz4IwtvWU3R8RIyd+ZRXlhBVHI41lB/T5cnIhfAq0Ks1Wqle/fuLFu2rHKby+Vi2bJl9OnT57S36dOnT5X2AEuXLj1je4Bjx46RnZ1NgwYNKveRl5fHli1bKtt88803uFwuUlJSLuQhSQ1wGPCHLFhRAv7A/ZFwTagCrIhUr5jkCC5/1x1ks/fms2iMgqyIr6gocrDigS2kPr0Tl8OgQUoMl77Wi8TesZgtOmAQ8XVeFWIBpk6dyltvvcW7777L3r17uffeeykqKuKOO+4AYPTo0UybNq2y/eTJk1myZAkvvPAC+/bt48knn2Tz5s1MmDABgMLCQh566CHWr1/PoUOHWLZsGb/73e9o2bIlQ4cOBSA5OZlhw4Zx1113sXHjRtauXcuECRO4+eabz2pmYqk9TgOmZ8PXJeAHTImE60NBn0ciUhNi2kcw/J2++If4YT9cRPq2HE+XJCK/IfeAnc9uXMmPi37CZDHRYUwLLnm5B9HtIjxdmohUEz9PF/C/brrpJjIzM5k+fTppaWl06dKFJUuWVE7edOTIEczm/2bvvn37Mm/ePB5//HEee+wxWrVqxYIFC+jQoQMAFouFb7/9lnfffZe8vDwSExO57LLLePrppwkICKjcz4cffsiECRMYPHgwZrOZ6667jjlz5tTug5df5TLgqRxYUgwWYGIE3KAAKyI1LLZDJMP+0YeCI8UERQZQcKyIsEYhni5LRE7DVeHiq3HrKTxeQmCUlR5T29Hqd40x+3tdv42IXACvWyfWV2md2JrlMuBPOfBpkXv4wIQIGBUG/gqwIlJLDMMge3c+AMVZZSSmROMX5HXfBYvUaxXFDr7/9xEOfH6Mng+2o0HPGE+XJCJn6VzylD59xesZBjyb6w6wJuDecAVYEal9JpOJ6HbhfPd/R0j9005i2oUz7O99tb6kiIcV/FRMwdEiwpuFUpJZRlyXKJKGJRIcE+jp0kSkhmhshXg1w4A/58Enhe4Ae3c4jLYpwIqIZ5jMJsKbhQAG6Vtz+PL3qTjKnJ4uS6TeOroqnf9cu4Kl920ga2ceABGtwhRgReo4hVjxWoYBL+XBRwXu339vg9sVYEXEwxJ6xDD0zT5YAs2kbc7my7sUZEVqm8tpsGXOXr66ez1l+RWENgjGZDER3T4cvwCNjhCp6xRixSsZBryaD++fDLB32ODOcLAqwIqIF2jQK4bL3uiNJcBM2sZsvrp7Pc5yBVmR2lCSU8aXd6Wy/bXvwICkoYlc+noKTS5OwGTSgYJIfaAQK17pLTv83e6+fFsY3GWDAH0uiYgXSUyJ5bK5vbFYzZxYn8VX92zAWe7ydFkidVr61hwWXLOC4+sysQSY6TapLRc90xVbE80YLlKfKMSK1/lHPsx1TwDKLWFwTzgE6pUqIl4osU8sQ15PwWw14yx1UpRe4umSROq0Hz4/SnF6KaGJQVw0uxtd7mmNf4jmKRWpb/SuF6/ygR3+ejLA3hgK48MhSAFWRLxYo35xXPF+fwyXQXl+BUXWEkLigzxdlkidU2avoMXVjXFWuGh3W3Oi24R7uiQR8RDFA/Ea8wvgxTz35WtDYVKEAqyI+Ia4zpHEdooEoDijlN3v/YCrQkOLRS5Uzn47qx/fRt6PdgqOFGHxN9Pr4Q4KsCL1nHpixSv8qwCey3VfvjoEJodDsAKsiPgQs8VEVFsbqx/bxoHPjnF8fRaD5/TE7Kc/ZiLn4/sFR1j75Lc4S51YrBZaX9uEqLY2vadERD2x4nkLCuGZkwH28mCYGgFhmh1fRHyQ2c9M0mWJmPxMHPkmjW+mbMLlUI+syLlwlDlZ88R2Vj26DWepk7gukbS4qhExHSIUYEUEUIgVD/uiCJ7OcV++LBgejgSbAqyI+LCmQxpw8Ys9MFlMHP46jeVTN+NyGp4uS8Qn2I8WsXDkavZ/chhM0Pampgx+pRfxXaM8XZqIeBGFWPGYL4tgRjYYwOAgeDRCAVZE6oZmlyVy8QvdMVlMHPrqBMsfUJAV+S0/rc3gP9etJHtPPlabP30e70jvP3QkOCbQ06WJiJdRiBWPWFYMj2eDCxgYBNMiIUJnaItIHdJsWEMGPd8NkxkOLTnOyke2eLokEa9mDffHWeYksnUYg17oTvItzbBY9e22iJxKsUFq3cpieDQLnED/QHg8EqL0ShSROqj55Y0wnLBq2lYimodRmltGYGSAp8sS8RrOchcWq5mSrFJMmOj3ZGfie0ZjaxTi6dJExIspOkitWlsCD58MsH0C4YkoiNarUETqsBZXNSK2cyTl9goKfyoBUJAVAU5symLlI1vpPqktkS1tACQNTcQ/WAcGIvLrNJxYas2GUnggEyqAngEwPQpi9TklIvWArUkIka3dB+mZO/PY9MIeDEPnyEr9ZBgG3779PYtvX0fR8RL2zT8EQHS7cAVYETkr+kshtWJzKUzJhHKgWwA8GQXxevWJSD1isZqxNQtl2eRNFP5UTGluGf2f7oLJZPJ0aSK1psxewappWzmyLA2ARhfF0euh9kS2snm4MhHxJeqJlRq3vQwmZ0KZAZ2t7gDbwN/TVYmI1D5riB9d7mkFJvjuX0dYO2OHemSl3sjak8d/rlvBkWVpmP1MdB7XikF/7q4AKyLnTH1hUqN2lsHEDCgxoIMVnoqGRgqwIlKPtbkhCcNlsHbGt+z/52FMZhN9Z3RSj6zUaTnf2Vl482qc5S6C4wLp+UA7ml/RELOf+lNE5NwpxEqN2VMO4zOgyIDkkz2wTRRgRURoe1MzXC5Ifepb9s0/hMlios/jHRVkpc4KaRBIXLcoXOUuej3SnrjOUZ4uSUR8mEKs1IjvyuG+DCg0oLU/PBUFza2erkpExHu0G9kMw2mw/o872fvhQYKiA+h6XxtPlyVSbeyHCwmMDqAsv4Ky3HK6T2yLLSmUoGjNzi0iF0YhVqrdgXK4JwPsLmh5MsC2VIAVETlF+1ubYzgNdr37AzHtIygvqMAapiEr4vsOfXWcVY9tI7ZTJD3uT8ZkMhHTMRKLVcOHReTCKcRKtTpY4Q6weS5o5uceQtxGX7iKiJxRhzEtaPm7xhQeK8Z+uAhbUgjWUAVZ8U2uChebXtjDrnd+AKA0pwyXw0V812gPVyYidYlCrFSbIxVwdwbkuKCpHzwZDe0UYEVEflNghBW/ADN5PxSy54ODVBQ76Dm1nafLEjknReklLJ+6mfQtOQC0vLoR3ackE5oY7OHKRKSuUYiVanHM4Q6wWU5o5AczoqGjAqyIyFnzC/LDZIYtc/aCC0wm6HG/gqz4huPrM1n+wBZKs8vwC7bQdXxb2o1qhl+gxdOliUgdpBMT5IIdd8Dd6ZDuhEQLPBkJXRRgRUTOWXS7CLpNbAvAjje+dwdaES/nKHOy8pGtlGaXYWsawsBnu9HxzhYKsCJSY9QTKxck3eE+B/aEExIs8EQUdAvydFUiIr6r671tMFwG2/66n+2vfYfZYqbreM1aLN7LUeyk2/g2HF2ZTvcH2hHZPMzTJYlIHacQK+ct0+keQnzMAXEWeDwKUhRgRUQuWLfxbTGcBttf+46tf92HyQJd7lGQFe+RuTOXovRSIpqH4ih2Et0ugmaXN9SkZCJSKzScWM5LttM9hPiIA2LM8FgU9FWAFRGpNt0nJdP57lYAbHlpH0dWpHm4IhEwDIO9Hx1k4S1rWPHAZnL22wGISg5XgBWRWqOeWDlnuU64NwMOOSDqZIC9SAFWRKTa9bi/HYbLoPCnEoKiA3CUOPAL0ke3eEZFsYO1M3bww+fHAEjoFU1Y42BiOkR4tjARqXf0SSjnJN8J92XAgQqIOBlgB2nmfBGRGtNjajvKCysoOFxM3g+FhDcPwT9YPV5Su/J+LGDZ5E3kfV+AyQztRjWny32tCYzUTI4iUvs0nFjOWoELxmfC/gqwmWFaFFyiACsiUqNMJhMBYVZsSSE4K1x8dfcGdr33g6fLknrkx8U/8Z/rV5L3fQEBEVb6PtmZXg+3V4AVEY9RT6yclSIXTMiAPeUQaoJpkXCpAqyISK2xhvqTszeftE3ZpG3Kxmw20e7W5p4uS+qBzB05OIqdxLQPp+fD7UlMifV0SSJSzynEym8qccHETNhZDiEmdw/sZQqwIiK1ru3IJHIPFLB33kFS/7gTLCbajWzm6bKkDitKL6HZ8EZYrBaSb0kiJEEHACLieQqx8qtKXDA5E7aXQbAJHo2CYcFgMnm6MhGR+sdkMtHniY4YLoN98w+R+tS3mEyQfLOCrFSfY2sy2PPBj3S5tzVmixmzxUSX8W3wC7B4ujQREUAhVn5FmQEPZMHmMgg0wcORcLkCrIiIR5lMJvrO6IThMtj/z8Ose+pbzBYTbW5I8nRp4uNcToPtr+9n26v7wYCwRsG0GtGE6PbhmPThLyJeRBM7yWmVG/BQJqwvhQATPBQJV4YowIqIeAOTyUS/pzrT+vomYMD6WbsoSi/xdFniw0pzy/hqXCrbXnEH2KaXNqDdbc2J6RChACsiXkc9sXKKCgMeyYI1pWAFHoiA34WAWZ9hIiJew2Qy0f/pLlj8zUS3i6Aks4zAyAAsVn0/LecmY3sO30zZRFFaKRarmU7jWtHxjpb4h+gwUUS8k/46SRUOAx7LgpUl4A9MjYRrQhVgRUS8kXtocWdKc8sp/KmY3O/shDYKJjDC6unSxEf88MUxVj2yFZfDIKRBEL0ebEfSsIaYLfrgFxHvpa9rpZLTgCeyYVmJ+9uNKZFwXSjoc0xExLsFRloJbRhE/qFC/jXsa35YeMzTJYmPCE8KxWw1k9g7hktfS6H5FY0UYEXE66knVgB3gH0yG74sBgswKQJuUIAVEfEZgZEBnNiYRVleBSsf3oLJDM0vb+TpssQLleWVExBhxX60CAwY+Gx3EnpGERgR4OnSRETOinpiBZcBf8qBL4rdL4gJEXBzGPgpwIqI+JS+MzqTNCwRwwUrHtrKwSU/ebok8TIHPj/Kx4OXsmfeQcrzKwBoMiheAVZEfIpCbD1nGDA7FxYUgQm4LxxuUYAVEfFJZouJi1/oQdJlDTCcBssf2MKhpcc9XZZ4AWe5k7VP7WDlQ1upKHJw5Js0LIFmYjpEYPbX4aCI+Bb91arHDAP+nAv/KnQH2LvD4TYb+CvAioj4LLPFxMUv9qDp4AQMp8E392/m8NcnPF2WeFDBsWIW3rKGfR8dAqD19U0Y8ExXIlvaPFuYiMh5UoitpwwDXsqDjwrdv//eBrcrwIqI1AlmPzOXvNyTJpckYDgMdrz5Hc4Kp6fLEg84ujKdBdetIGtXHv6hfvR+rAN9nuhESFygp0sTETlvmtipHjIMeDUf3i9w/36HDe4MB6sCrIhInWH2MzN4Tk82/2UvTQYlkLu/gKjkcM08W49k7szlq7vXAxDRMoyeD7Sj8aB4TCa9BkTEtynE1kNv2eHvdvfl0WFwlw0C9HkmIlLnmP3M9HqoPcUZpRRnlJKzNx//MD/Cm4Z6ujSpBSENgmg8KB6/QAs9HmiHrXGIp0sSEakWCrF1nNOAbWWQ5YQYC2wvhbknA+wtYe7zYAM1qFxEpE4LjgvEMAy2v7af7z49yqWvp9CoX5yny5IakL41h4jmoRRnluIsc9H13jZEtArDP1iHfCJSd+gvWh22rBiez4WM05wGdWMojA+HIAVYEZF6ISgmEPvRYlzlLr6+dwOXzu1Nw76xni5LqolhGOz6xw9semEPcZ0jSXm0AyaziZiOEZjMGm4lInWLIkwdtawYHs46fYAF6BygACsiUp+YLSYum5tCYu8YnOUult67nuMbMj1dllSD8oIKvpm0iY3P7cZwGvgF++EfaiGmgwKsiNRNijF1kNNw98Aav9JmTp67nYiI1B8Wq4VL3+hNQq9onGUuvrp7PSc2Znm6LLkA2fvy+c/1Kzm09AQmPxOdft+Si1/sTkRzLZ8jInWXQmwdtK3szD2wP0t3utuJiEj94hdgYehbfYjvHoWz1MWX49aTtllB1hd99+8jfH7TKuyHiwiKCWDA013oPiWZAJvV06WJiNQohdg6KOsslwI823YiIlK3+AVYGPZ2X+K7ReEsdXJ0ZQaGS8NzfElFsYOtf92Hs8xFXNcoBr/Si1bXNMHsp0M7Ean7NLFTHRRjqd52IiJS9/gFWhj2dh++/+wYse0jyN6TT3T7cK0h6iPK8srpPjmZjO05dJvYhqDoQE+XJCJSaxRi66CuARBngUzn6c+LNeG+vmtAbVcmIiLexC/Ij+Sbkig4VkxZXjkn1mdhDfcnpl2Ep0uT0zi87ARl9nKiWoUDENkyjOaXJ2Kx6ltpEalfNOakDrKY4KFI9+X//T79598fjHS3ExERCWsUDGZYN/NbFt22lsxduZ4uSX7B5XCx8fndfD1+I2un78B+pAiTxUR0+3AFWBGplxRi66jBwfBcDMT+z2dbnMW9fXCwZ+oSERHvFN40FL9gCxVFDhbfvo6s3XmeLkmA4oxSFt++jp1vHwAg6bJEYjpFEJ2sod8iUn+ZDMPQTA7VwG63Ex4eTn5+Pjab90xr7zTcsxBnOd3nwHYNUA+siIicXnlhBYtGryV7Tz7+oX5c/n4/YpIjPF1WvXViQxbLH9hMSVYZfkEWut7Xhna3NsMvSGeDiUjdcy55Sj2xdZzFBD0CYViI+18FWBERORNrqD+Xv9ePqLY2KgodLB69luz9+Z4uq17a+fYBFt+xlpKsMmxNQhj4bDc6jm2pACsigkKsiIiI/II11J8r3u9PZGsb5QUOFt22lhwF2VpXml+O4YLGA+MZ8loKSZclYjLrm2gREdDsxCIiIvI/rGH+XPFBf74YtZqS7DLsR4qIahPu6bLqPMNlYDKbyD9YSNKQBgRFB9Dq2sYEhFk9XZqIiFfRObHVxFvPiRURETlfZfnlZO7KIzDcHaJiOkR4tqA6yjAM9n9ymP2fHKb3ox2wBLhnZYxKDses84BEpJ7QObEiIiJywQLCrTTqF4dfsDtU7fngR/J+LPBwVXWLo8TBqke3sXb6DrJ25nF4WRp+wRZiOkQowIqInIFCrIiIiPyqiOZh5HyXz4bZu1g4ag35hwo9XVKdkH+wkM9uWs2B/xwFM7Qb1YyOY1sS0TzM06WJiHg1hVgRERH5TY0HJRDaMJiy3HIW3rIa+2EF2QtxcMlx/nP9SnK/sxMQ4U+/6Z3p9UgHgqIDPF2aiIjXU4gVERGR3xQUFcCV8wYQ1jiY0pxyPr9lDfajRZ4uyyft+eBHvpmyiYoiB9HtwrnkLz1oe3MSFqsOy0REzob+WoqIiMhZCYoO4KqPBhDaKJjS7DIWjlxNwbFiT5flc2I7R2K1+dPyd40Y8movEvvEebokERGfohArIiIiZy0oJpCr5g0gNDGIkqwyPh+5iuLMUk+X5fXsR4owDIPsffmYTCYGv9yTfk91IbRBsKdLExHxOQqxIiIick6C4wK58qMBhCQGEZ0cQdHxEk+X5LUMl8G21/fzr+HL2PWPHzAc7pUNG/SOwS/Q4uHqRER8k5+nCxARERHfExIfxO/+NbAywGbtziOmfYRni/IypbnlrHxkC8dWZQCQvTefZsMSCU1U76uIyIVQT6yIiIicl6CoAGI6RIAZDIfB6j9soyhdvbIAmd/msuC6FRxblYHZaqbr+Db0ndFJAVZEpBooxIqIiMgFiWkXwZ55P/Ld/x1h4cjVFGfU33NkDcNgz7yDLLxlNUXHSwhJCOKiZ7rS5b42WEP9PV2eiEid4JUh9tVXXyUpKYnAwEBSUlLYuHHjr7b/5JNPaNu2LYGBgXTs2JFFixZVXldRUcEjjzxCx44dCQkJITExkdGjR3P8+PEq+0hKSsJkMlX5mT17do08PhERkbqm28RkgmICKDxeUq8ne0rfmkPqzG9xOQwapMQw5NVetLiyEWaLydOliYjUGV4XYj/++GOmTp3KjBkz2Lp1K507d2bo0KFkZGSctv26desYOXIkY8eOZdu2bYwYMYIRI0awa9cuAIqLi9m6dStPPPEEW7du5d///jf79+/n6quvPmVfM2fO5MSJE5U/EydOrNHHKiIiUleENQrmqvkD3EH2pxIWjlxNSVb9C7Ih8YE0v6Ih7Uc355KXe+g8YRGRGmAyDMPwdBG/lJKSQs+ePXnllVcAcLlcNG7cmIkTJ/Loo4+e0v6mm26iqKiIhQsXVm7r3bs3Xbp0Ye7cuae9j02bNtGrVy8OHz5MkyZNAHdP7JQpU5gyZcp51W232wkPDyc/Px+bzXZe+xAREfF19iNFfD5yNaXZZYQ1CeGqjwYQFB3g6bJq1MElPxHXNYqSzLLKbVFtbJj9va6vQETEa51LnvKqv67l5eVs2bKFIUOGVG4zm80MGTKE1NTU094mNTW1SnuAoUOHnrE9QH6+e422iIiIKttnz55NdHQ0Xbt25fnnn8fhcJz/gxEREamHbE1CuGpefwKjrBQcKWLRmLUYLq/6vrzaOMudrJu5g2+mbObr8RtxOQ3MVjMxHSIUYEVEapBXLbGTlZWF0+kkPj6+yvb4+Hj27dt32tukpaWdtn1aWtpp25eWlvLII48wcuTIKgl/0qRJdOvWjaioKNatW8e0adM4ceIEL7744mn3U1ZWRlnZf79xtdvtZ/UYRURE6jpb01Cu/HAAi8aspe2NTcn7sYDIlnVrlFLBT8Usv38Tmd/mAe6e15AGQYTEBXq2MBGResCrQmxNq6io4MYbb8QwDF5//fUq102dOrXycqdOnbBardx9993MmjWLgIBTh0HNmjWLp556qsZrFhER8UXhzUK58etLyf3OjrPURd4PBUS0CPN0WdXi2Op0Vjy4hbL8CvxD/eg+qS1tbkrCL8Di6dJEROoFrxrrEhMTg8ViIT09vcr29PR0EhISTnubhISEs2r/c4A9fPgwS5cu/c1x1ikpKTgcDg4dOnTa66dNm0Z+fn7lz9GjR3/j0YmIiNQvlpNDawHyfixk0e1rKcsv92xRF8DlNNgyZy9fjltPWX4FES3CGPRcd9rd1lwBVkSkFnlViLVarXTv3p1ly5ZVbnO5XCxbtow+ffqc9jZ9+vSp0h5g6dKlVdr/HGC///57vv76a6Kjo3+zlu3bt2M2m4mLizvt9QEBAdhstio/IiIicqro9uFsfnEPJ9Zn8cWtayizV3i6pPPiLHXy48KfwICkoYlc+noKTS5JwGTS8jkiIrXJ64YTT506lTFjxtCjRw969erFSy+9RFFREXfccQcAo0ePpmHDhsyaNQuAyZMnM3DgQF544QWuuOIK5s+fz+bNm3nzzTcBd4C9/vrr2bp1KwsXLsTpdFaeLxsVFYXVaiU1NZUNGzZw8cUXExYWRmpqKvfffz+33norkZGRnnkiRERE6giTycQlL/Xgi9vWkvt9AV/ctoYrP+iPNczf06Wdk8ITxXS/P5n8g4V0GNMC/xCvO4wSEakXvG6JHYBXXnmF559/nrS0NLp06cKcOXNISUkBYNCgQSQlJfHOO+9Utv/kk094/PHHOXToEK1ateK5557j8ssvB+DQoUM0a9bstPezfPlyBg0axNatW7nvvvvYt28fZWVlNGvWjNtuu42pU6ee9nzY09ESOyIiIr8ue18ei25bS3mBg6i2Nq74oD/WUO8NsoZhsPv9H8FlkNAjpnJ7dLtwTGb1voqIVKdzyVNeGWJ9kUKsiIjIb8vak8ei0WupKHQQ3S6cy9/r55VBtrywgtV/2M6hL49jspi4+IXuRLeLwNYkxNOliYjUST67TqyIiIjUbTHtIhj+Tl/8Q/zI3pPP2uk7PF3SKXL22/ns+pXuAOtnosOYFjToE6sAKyLiJRRiRUREpFbFdohk+Lt9iekQQZsbmmI/WuTpkip9/5+jfHbTKvIPFREUE0D/mV3oMTWZwHCrp0sTEZGTNCOBiIiI1LrYDpFc9c8B5OyxU55fQYGpiJAGwZgtnjvXNPXpb9nz4UF3fZ0j6fVwOxK6x/zGrUREpLapJ1ZEREQ8wmw2E90+HIC9Hx3ii1vX4ChxeKwea4QVTNDmxqYMfqWXAqyIiJdST6yIiIh4jMlkIjg+kL3zDuIocbJkbCrD/t4Xv0BLrdy/o8SBJdBC9u58mgyKJ7xpCM2GJWKx1s79i4jIuVNPrIiIiHhUcGwgl73ZG0ugmfStOXz5+1QcZc4avU+Xw8WmF/aw4NqVpG3OBsBkMdHiqkYKsCIiXk4hVkRERDyuQc8Yhr7ZB0uAmbTN2Xx5V80F2eLMUpbcmcq3b31P/sFCTmzIIig2gJh2EZhMWv9VRMTbKcSKiIiIV2jQK4bL3uiNxWombWM2X929Hmd59QbZtM3Z/OfaFZzYmIUl0EKP+5PpeGdLQuKDqvV+RESk5ijEioiIiNdI7B3LkNdTMFvNnFifxf5PDlfLfg3DYOfbB1g0Zi3FmWWENQpm4LPd6HRXK/yDNUWIiIgv0V9tERER8SqN+sVx6WspHFmeRlznKIrSSy64p3T769+xdc4+9/4HxNHr4fZEtrJVR7kiIlLLFGJFRETE6zTqH0din1hy9uZTklmGo9RJWGIwZv/zG0SW2CeGffMDafm7xnS6qyUBNms1VywiIrVFw4lFRETEK5ktJqKSw3GUOFl+/2a+nrgRV4XrrG+fvjUHl9Mga1ceFn8Ll7zck+6T2yrAioj4OIVYERER8VpmiwmXy0XOd3aOrkhn2eRNuBy/HmQdJQ5WPbaNhbes5ts3vwPAL9hCfNcozH469BER8XX6Sy4iIiJeLTEllkte6oHJz8SRb9L4ZsomXE6j8vrsffmVl+2HC/n85tV8/+8jYIbS3HJCGwYT0TzME6WLiEgNMBmGYfx2M/ktdrud8PBw8vPzsdk0UYSIiEh1O/jVcZbfvxnDaZA0NJH+f+zChj/t5PsFR2l1TWMa9o9l7YxvqSh0EBDuT/cpybS+rikWq76zFxHxdueSpxRiq4lCrIiISM37cfFPrHhgM4YL/EIsOEucGC7ABJw8oolqa6PnQ+1p1C/Ok6WKiMg5OJc8pa8mRURExGc0H96QNjcmAeAoOhlgoTLAmszQckRjBVgRkTpMIVZERER8RtauPPbNP3TG6w0XbJy9m6xdebVWk4iI1C6FWBEREfEZ0e3DiekQgekMRzAmM8R0jCC6fXjtFiYiIrVGIVZERER8hslkovvk5P8OI/4fhgu6T07GZDLVbmEiIlJrFGJFRETEpzTsH3va3tife2Eb9ov1TGEiIlIrFGJFRETEp5ypN1a9sCIi9YOfpwsQEREROVcN+8fyu38PrJyVGAATRCfrXFgRkbpOIVZERER8jslkIqZdhKfLEBERD9BwYhEREREREfEZCrEiIiIiIiLiMxRiRURERERExGcoxIqIiIiIiIjPUIgVERERERERn6EQKyIiIiIiIj5DIVZERERERER8hkKsiIiIiIiI+AyFWBEREREREfEZCrEiIiIiIiLiMxRiRURERERExGcoxIqIiIiIiIjPUIgVERERERERn6EQKyIiIiIiIj5DIVZERERERER8hkKsiIiIiIiI+AyFWBEREREREfEZCrEiIiIiIiLiMxRiRURERERExGcoxIqIiIiIiIjPUIgVERERERERn6EQKyIiIiIiIj5DIVZERERERER8hkKsiIiIiIiI+AyFWBEREREREfEZCrEiIiIiIiLiMxRiRURERERExGcoxIqIiIiIiIjPUIgVERERERERn6EQKyIiIiIiIj5DIVZERERERER8hkKsiIiIiIiI+AyFWBEREREREfEZCrEiIiIiIiLiMxRiRURERERExGcoxIqIiIiIiIjPUIgVERERERERn6EQKyIiIiIiIj5DIVZERERERER8hkKsiIiIiIiI+AyFWBEREREREfEZCrEiIiIiIiLiMxRiRURERERExGcoxIqIiIiIiIjPUIgVERERERERn6EQKyIiIiIiIj5DIVZERERERER8hkKsiIiIiIiI+AyFWBEREREREfEZXhliX331VZKSkggMDCQlJYWNGzf+avtPPvmEtm3bEhgYSMeOHVm0aFGV6w3DYPr06TRo0ICgoCCGDBnC999/X6VNTk4Oo0aNwmazERERwdixYyksLKz2xyYiIiIiIiLnz+tC7Mcff8zUqVOZMWMGW7dupXPnzgwdOpSMjIzTtl+3bh0jR45k7NixbNu2jREjRjBixAh27dpV2ea5555jzpw5zJ07lw0bNhASEsLQoUMpLS2tbDNq1Ch2797N0qVLWbhwIatWrWLcuHE1/nhFRERERETk7JkMwzA8XcQvpaSk0LNnT1555RUAXC4XjRs3ZuLEiTz66KOntL/pppsoKipi4cKFldt69+5Nly5dmDt3LoZhkJiYyAMPPMCDDz4IQH5+PvHx8bzzzjvcfPPN7N27l3bt2rFp0yZ69OgBwJIlS7j88ss5duwYiYmJv1m33W4nPDycHTt2EBYWVh1PhYiIiIiISL1QUFBA586dyc/Px2az/Wpbv1qq6ayUl5ezZcsWpk2bVrnNbDYzZMgQUlNTT3ub1NRUpk6dWmXb0KFDWbBgAQAHDx4kLS2NIUOGVF4fHh5OSkoKqamp3HzzzaSmphIREVEZYAGGDBmC2Wxmw4YNXHPNNafcb1lZGWVlZZW/2+12ADp37nzuD1xERERERETOilcNJ87KysLpdBIfH19le3x8PGlpaae9TVpa2q+2//nf32oTFxdX5Xo/Pz+ioqLOeL+zZs0iPDy88qdx48Zn+ShFRERERETkfHlVT6wvmTZtWpUeYLvdTuPGjTWcWERERERE5Bz9PJz4bHhViI2JicFisZCenl5le3p6OgkJCae9TUJCwq+2//nf9PR0GjRoUKVNly5dKtv878RRDoeDnJycM95vQEAAAQEBp2xPSkr6zTHcIiIiIiIi8l8/n555NrxqOLHVaqV79+4sW7ascpvL5WLZsmX06dPntLfp06dPlfYAS5curWzfrFkzEhISqrSx2+1s2LChsk2fPn3Iy8tjy5YtlW2++eYbXC4XKSkp1fb4RERERERE5MJ4VU8swNSpUxkzZgw9evSgV69evPTSSxQVFXHHHXcAMHr0aBo2bMisWbMAmDx5MgMHDuSFF17giiuuYP78+WzevJk333wTAJPJxJQpU/jjH/9Iq1ataNasGU888QSJiYmMGDECgOTkZIYNG8Zdd93F3LlzqaioYMKECdx8881nNTOxiIiIiIiI1A6vC7E33XQTmZmZTJ8+nbS0NLp06cKSJUsqJ2Y6cuQIZvN/O5D79u3LvHnzePzxx3nsscdo1aoVCxYsoEOHDpVtHn74YYqKihg3bhx5eXn079+fJUuWEBgYWNnmww8/ZMKECQwePBiz2cx1113HnDlzau+Bi4iIiIiIyG/yunVifdXP68SezbpGIiIiIiIi8l/nkqe86pxYERERERERkV+jECsiIiIiIiI+QyFWREREREREfIZCrIiIiIiIiPgMhVgRERERERHxGQqxIiIiIiIi4jMUYkVERERERMRnKMSKiIiIiIiIz1CIFREREREREZ+hECsiIiIiIiI+QyFWREREREREfIZCrIiIiIiIiPgMhVgRERERERHxGQqxIiIiIiIi4jMUYkVERERERMRnKMSKiIiIiIiIz1CIFREREREREZ+hECsiIiIiIiI+QyFWREREREREfIZCrIiIiIiIiPgMP08XUFcYhgGA3W73cCUiIiIiIiK+5ecc9XOu+jUKsdWkoKAAgMaNG3u4EhEREREREd9UUFBAeHj4r7YxGWcTdeU3uVwujh8/TlhYGCaTydPlVGG322ncuDFHjx7FZrN5uhwREa/Xs2dPNm3a5OkyRLyC3g9yNvQ68S3e+P9lGAYFBQUkJiZiNv/6Wa/qia0mZrOZRo0aebqMX2Wz2RRiRUTOgsVi0d9LkZP0fpCzodeJb/HW/6/f6oH9mSZ2EhER+R/jx4/3dAkiXkPvBzkbep34Fl///9Jw4nrAbrcTHh5Ofn6+V37jIiIiIiIicrbUE1sPBAQEMGPGDAICAjxdioiIiIiIyAVRT6yIiIiIiIj4DPXEioiIiIiIiM9QiBURERERERGfoRArIiJSw6655hoiIyO5/vrrPV2KiEfpvSBnS68V+TUKsSIiIjVs8uTJvPfee54uQ8Tj9F6Qs6XXivwahVgREZEaNmjQIMLCwjxdhojH6b0gZ0uvFfk1CrH1nIZqiIivmjVrFj179iQsLIy4uDhGjBjB/v37q/U+Vq1axVVXXUViYiImk4kFCxactt2rr75KUlISgYGBpKSksHHjxmqtQ+TXvP7663Tq1AmbzYbNZqNPnz4sXry4Wu9D74W6Z/bs2ZhMJqZMmVKt+9VrRWqDQmw9p6EaIuKrVq5cyfjx41m/fj1Lly6loqKCyy67jKKiotO2X7t2LRUVFads37NnD+np6ae9TVFREZ07d+bVV189Yx0ff/wxU6dOZcaMGWzdupXOnTszdOhQMjIyzu+BiZyjRo0aMXv2bLZs2cLmzZu55JJL+N3vfsfu3btP217vBdm0aRNvvPEGnTp1+tV2eq2I1zKk3lu+fLlx3XXXeboMEZELkpGRYQDGypUrT7nO6XQanTt3Nq6//nrD4XBUbt+3b58RHx9vPPvss7+5f8D49NNPT9neq1cvY/z48VXuKzEx0Zg1a1aVdvpbK7UpMjLS+Nvf/nbKdr0XpKCgwGjVqpWxdOlSY+DAgcbkyZNP206vFfFm6on1YWczXENDNUSkvsjPzwcgKirqlOvMZjOLFi1i27ZtjB49GpfLxQ8//MAll1zCiBEjePjhh8/rPsvLy9myZQtDhgypcl9DhgwhNTX1/B6IyAVwOp3Mnz+foqIi+vTpc8r1ei/I+PHjueKKK6r8X52OXivizRRifdhvDdfQUA0RqS9cLhdTpkyhX79+dOjQ4bRtEhMT+eabb1izZg233HILl1xyCUOGDOH1118/7/vNysrC6XQSHx9fZXt8fDxpaWmVvw8ZMoQbbriBRYsW0ahRIx2oSbXbuXMnoaGhBAQEcM899/Dpp5/Srl2707bVe6H+mj9/Plu3bmXWrFln1V6vFfFWfp4uQM7f8OHDGT58+Bmvf/HFF7nrrru44447AJg7dy5ffPEFf//733n00Udrq0wRkRo3fvx4du3axZo1a361XZMmTXj//fcZOHAgzZs35+2338ZkMtV4fV9//XWN34fUb23atGH79u3k5+fzr3/9izFjxrBy5cozBlm9F+qfo0ePMnnyZJYuXUpgYOBZ306vFfFG6omtozRUQ0TqiwkTJrBw4UKWL19Oo0aNfrVteno648aN46qrrqK4uJj777//gu47JiYGi8VyygQn6enpJCQkXNC+Rc6F1WqlZcuWdO/enVmzZtG5c2defvnlM7bXe6H+2bJlCxkZGXTr1g0/Pz/8/PxYuXIlc+bMwc/PD6fTedrb6bUi3kghto7SUA0RqesMw2DChAl8+umnfPPNNzRr1uxX22dlZTF48GCSk5P597//zbJly/j444958MEHz7sGq9VK9+7dWbZsWeU2l8vFsmXLTns+okhtcblclJWVnfY6vRfqp8GDB7Nz5062b99e+dOjRw9GjRrF9u3bsVgsp9xGrxXxVhpOXM9pqIaI+Krx48czb948/vOf/xAWFlb5BV14eDhBQUFV2rpcLoYPH07Tpk35+OOP8fPzo127dixdupRLLrmEhg0bnrZ3obCwkAMHDlT+fvDgQbZv305UVBRNmjQBYOrUqYwZM4YePXrQq1cvXnrpJYqKiipP5RCpadOmTWP48OE0adKEgoIC5s2bx4oVK/jyyy9Paav3Qv0VFhZ2ypwBISEhREdHn3YuAb1WxKt5enpkqR78zxTmZWVlhsViOWVa89GjRxtXX3117RYnIlIDgNP+/OMf/zht+6+++sooKSk5ZfvWrVuNo0ePnvY2y5cvP+19jBkzpkq7v/71r0aTJk0Mq9Vq9OrVy1i/fv2FPjyRs3bnnXcaTZs2NaxWqxEbG2sMHjzY+Oqrr87YXu8F+dmvLbFjGHqtiPcyGYZh1GZolpphMpn49NNPGTFiROW2lJQUevXqxV//+lfA/Y1akyZNmDBhgiZ2EhERERERn6ThxD7st4ZraKiGiIiIiIjUNeqJ9WErVqzg4osvPmX7mDFjeOeddwB45ZVXeP7550lLS6NLly7MmTOHlJSUWq5URERERESkeijEioiIiIiIiM/QEjsiIiIiIiLiMxRiRURERERExGcoxIqIiIiIiIjPUIgVERERERERn6EQKyIiIiIiIj5DIVZERERERER8hkKsiIiIiIiI+AyFWBEREREREfEZCrEiIlInHTp0CJPJxPbt2z1dSqV9+/bRu3dvAgMD6dKli6fLOSe33347I0aMqLH9G4bBuHHjiIqK8rr/NxER8S4KsSIiUiNuv/12TCYTs2fPrrJ9wYIFmEwmD1XlWTNmzCAkJIT9+/ezbNkyT5fjVZYsWcI777zDwoULOXHiBB06dPB0SSQlJfHSSy9V6z4HDRrElClTqnWfIiL1jUKsiIjUmMDAQJ599llyc3M9XUq1KS8vP+/b/vDDD/Tv35+mTZsSHR1djVX5vh9++IEGDRrQt29fEhIS8PPzO6XNhTz3IiJSdyjEiohIjRkyZAgJCQnMmjXrjG2efPLJU4bWvvTSSyQlJVX+/vNQ1meeeYb4+HgiIiKYOXMmDoeDhx56iKioKBo1asQ//vGPU/a/b98++vbtS2BgIB06dGDlypVVrt+1axfDhw8nNDSU+Ph4brvtNrKysiqvHzRoEBMmTGDKlCnExMQwdOjQ0z4Ol8vFzJkzadSoEQEBAXTp0oUlS5ZUXm8ymdiyZQszZ87EZDLx5JNPnnY///rXv+jYsSNBQUFER0czZMgQioqKANi0aROXXnopMTExhIeHM3DgQLZu3Vrl9iaTiTfeeIMrr7yS4OBgkpOTSU1N5cCBAwwaNIiQkBD69u3LDz/8cMr/wRtvvEHjxo0JDg7mxhtvJD8//7Q1/vx4Z82aRbNmzQgKCqJz587861//qrw+NzeXUaNGERsbS1BQEK1atTrt/w+4/38nTpzIkSNHMJlMlf/3Z3ruV65cSa9evQgICKBBgwY8+uijOByOyv0NGjSIiRMnMmXKFCIjI4mPj+ett96iqKiIO+64g7CwMFq2bMnixYvP+PgGDRrE4cOHuf/++zGZTFVGD6xZs4YBAwYQFBRE48aNmTRpUuX/EcBrr71Gq1atCAwMJD4+nuuvv77yca5cuZKXX365cp+HDh06Yw0iInJ6CrEiIlJjLBYLzzzzDH/96185duzYBe3rm2++4fjx46xatYoXX3yRGTNmcOWVVxIZGcmGDRu45557uPvuu0+5n4ceeogHHniAbdu20adPH6666iqys7MByMvL45JLLqFr165s3ryZJUuWkJ6ezo033lhlH++++y5Wq5W1a9cyd+7c09b38ssv88ILL/DnP/+Zb7/9lqFDh3L11Vfz/fffA3DixAnat2/PAw88wIkTJ3jwwQdP2ceJEycYOXIkd955J3v37mXFihVce+21GIYBQEFBAWPGjGHNmjWsX7+eVq1acfnll1NQUFBlP08//TSjR49m+/bttG3blltuuYW7776badOmsXnzZgzDYMKECVVuc+DAAf75z3/y+eefs2TJErZt28Z99913xv+PWbNm8d577zF37lx2797N/fffz6233lr5JcETTzzBnj17WLx4MXv37uX1118nJibmjM/dz18AnDhxgk2bNp3xuf/pp5+4/PLL6dmzJzt27OD111/n7bff5o9//OMp/2cxMTFs3LiRiRMncu+993LDDTfQt29ftm7dymWXXcZtt91GcXHxaWv697//TaNGjZg5cyYnTpzgxIkTgLvHeNiwYVx33XV8++23fPzxx6xZs6by+dy8eTOTJk1i5syZ7N+/nyVLlnDRRRdVPs4+ffpw1113Ve6zcePGZ3yORUTkDAwREZEaMGbMGON3v/udYRiG0bt3b+POO+80DMMwPv30U+OXHz8zZswwOnfuXOW2f/nLX4ymTZtW2VfTpk0Np9NZua1NmzbGgAEDKn93OBxGSEiI8dFHHxmGYRgHDx40AGP27NmVbSoqKoxGjRoZzz77rGEYhvH0008bl112WZX7Pnr0qAEY+/fvNwzDMAYOHGh07dr1Nx9vYmKi8ac//anKtp49exr33Xdf5e+dO3c2ZsyYccZ9bNmyxQCMQ4cO/eb9GYZhOJ1OIywszPj8888rtwHG448/Xvl7amqqARhvv/125baPPvrICAwMrPx9xowZhsViMY4dO1a5bfHixYbZbDZOnDhhGEbV/8/S0lIjODjYWLduXZV6xo4da4wcOdIwDMO46qqrjDvuuOOsHodhnPp/bhinf+4fe+wxo02bNobL5arc9uqrrxqhoaGVr4+BAwca/fv3r7z+59fGbbfdVrntxIkTBmCkpqaesaamTZsaf/nLX055jOPGjauybfXq1YbZbDZKSkqM//u//zNsNptht9tPu8+BAwcakydPPuN9iojIb1NPrIiI1Lhnn32Wd999l7179573Ptq3b4/Z/N+Prfj4eDp27Fj5u8ViITo6moyMjCq369OnT+VlPz8/evToUVnHjh07WL58OaGhoZU/bdu2Bagy3LZ79+6/Wpvdbuf48eP069evyvZ+/fqd02Pu3LkzgwcPpmPHjtxwww289dZbVc4nTk9P56677qJVq1aEh4djs9koLCzkyJEjVfbTqVOnysvx8fEAVZ6r+Ph4SktLsdvtlduaNGlCw4YNK3/v06cPLpeL/fv3n1LngQMHKC4u5tJLL63y3L333nuVz9u9997L/Pnz6dKlCw8//DDr1q076+fhl/73ud+7dy99+vSpMry3X79+FBYWVumF/+Vz8PNr43+fA+CU18tv2bFjB++8806Vxz106FBcLhcHDx7k0ksvpWnTpjRv3pzbbruNDz/88Iy9vSIicn5OnTVBRESkml100UUMHTqUadOmcfvtt1e5zmw2Vw6X/VlFRcUp+/D396/yu8lkOu02l8t11nUVFhZy1VVX8eyzz55yXYMGDSovh4SEnPU+L4TFYmHp0qWsW7eOr776ir/+9a/84Q9/YMOGDTRr1owxY8aQnZ3Nyy+/TNOmTQkICKBPnz6nTHj0y+fl57B3um3n8lz9UmFhIQBffPFFleALEBAQAMDw4cM5fPgwixYtYunSpQwePJjx48fz5z//+Zzu63yf+996vZzvc1BYWMjdd9/NpEmTTrmuSZMmWK1Wtm7dyooVK/jqq6+YPn06Tz75JJs2bSIiIuLcH4iIiJxCPbEiIlIrZs+ezeeff05qamqV7bGxsaSlpVUJstW5Ruj69esrLzscDrZs2UJycjIA3bp1Y/fu3SQlJdGyZcsqP+cSnmw2G4mJiaxdu7bK9rVr19KuXbtzqtdkMtGvXz+eeuoptm3bhtVq5dNPP63c36RJk7j88stp3749AQEBVSahuhBHjhzh+PHjlb+vX78es9lMmzZtTmnbrl07AgICOHLkyCnP2y/P8YyNjWXMmDF88MEHvPTSS7z55psXXOfPE1X98vWydu1awsLCaNSo0QXv/5esVitOp7PKtm7durFnz55THnfLli2xWq2Au8d/yJAhPPfcc3z77bccOnSIb7755oz7FBGRc6OeWBERqRUdO3Zk1KhRzJkzp8r2QYMGkZmZyXPPPcf111/PkiVLWLx4MTabrVru99VXX6VVq1YkJyfzl7/8hdzcXO68804Axo8fz1tvvcXIkSN5+OGHiYqK4sCBA8yfP5+//e1vWCyWs76fhx56iBkzZtCiRQu6dOnCP/7xD7Zv386HH3541vvYsGEDy5Yt47LLLiMuLo4NGzaQmZlZGbpbtWrF+++/T48ePbDb7Tz00EMEBQWd2xNyBoGBgYwZM4Y///nP2O12Jk2axI033khCQsIpbcPCwnjwwQe5//77cblc9O/fn/z8fNauXYvNZmPMmDFMnz6d7t270759e8rKyli4cGHl47gQ9913Hy+99BITJ05kwoQJ7N+/nxkzZjB16tQqw82rQ1JSEqtWreLmm28mICCAmJgYHnnkEXr37s2ECRP4/e9/T0hICHv27GHp0qW88sorLFy4kB9//JGLLrqIyMhIFi1ahMvlqvwyICkpiQ0bNnDo0CFCQ0OJioqq9rpFROo6/dUUEZFaM3PmzFOGbyYnJ/Paa6/x6quv0rlzZzZu3HjamXvP1+zZs5k9ezadO3dmzZo1fPbZZ5Wz5P7ce+p0Ornsssvo2LEjU6ZMISIi4pyDxaRJk5g6dSoPPPAAHTt2ZMmSJXz22We0atXqrPdhs9lYtWoVl19+Oa1bt+bxxx/nhRdeYPjw4QC8/fbb5Obm0q1bN2677TYmTZpEXFzcOdV5Ji1btuTaa6/l8ssv57LLLqNTp0689tprZ2z/9NNP88QTTzBr1iySk5MZNmwYX3zxBc2aNQPcPY7Tpk2jU6dOXHTRRVgsFubPn3/BdTZs2JBFixaxceNGOnfuzD333MPYsWN5/PHHL3jf/2vmzJkcOnSIFi1aEBsbC7jPtV25ciXfffcdAwYMoGvXrkyfPp3ExEQAIiIi+Pe//80ll1xCcnIyc+fO5aOPPqJ9+/YAPPjgg1gsFtq1a0dsbOwp5zOLiMhvMxn/eyKSiIiI1CtPPvkkCxYsqNZh3CIiIjVFPbEiIiIiIiLiMxRiRURERERExGdoOLGIiIiIiIj4DPXEioiIiIiIiM9QiBURERERERGfoRArIiIiIiIiPkMhVkRERERERHyGQqyIiIiIiIj4DIVYERERERER8RkKsSIiIiIiIuIzFGJFRERERETEZyjEioiIiIiIiM/4f6Wsax/TO6EpAAAAAElFTkSuQmCC", "text/plain": [ "
      " ] @@ -285,10 +285,10 @@ "id": "9ba03fac", "metadata": { "execution": { - "iopub.execute_input": "2023-09-21T15:20:08.187450Z", - "iopub.status.busy": "2023-09-21T15:20:08.187246Z", - "iopub.status.idle": "2023-09-21T15:20:24.439511Z", - "shell.execute_reply": "2023-09-21T15:20:24.437810Z" + "iopub.execute_input": "2023-09-21T18:00:04.394939Z", + "iopub.status.busy": "2023-09-21T18:00:04.394576Z", + "iopub.status.idle": "2023-09-21T18:00:20.649021Z", + "shell.execute_reply": "2023-09-21T18:00:20.647490Z" } }, "outputs": [ @@ -305,7 +305,7 @@ "output_type": "stream", "text": [ "\r", - "Filter (num_proc=6): 17%|█▋ | 4266/25596 [00:00<00:00, 32117.36 examples/s]" + "Filter (num_proc=6): 17%|█▋ | 4266/25596 [00:00<00:00, 32885.86 examples/s]" ] }, { @@ -313,7 +313,7 @@ "output_type": "stream", "text": [ "\r", - "Filter (num_proc=6): 50%|█████ | 12798/25596 [00:00<00:00, 59308.24 examples/s]" + "Filter (num_proc=6): 50%|█████ | 12798/25596 [00:00<00:00, 60226.40 examples/s]" ] }, { @@ -321,7 +321,7 @@ "output_type": "stream", "text": [ "\r", - "Filter (num_proc=6): 83%|████████▎ | 21330/25596 [00:00<00:00, 68146.59 examples/s]" + "Filter (num_proc=6): 100%|██████████| 25596/25596 [00:00<00:00, 76067.48 examples/s]" ] }, { @@ -329,7 +329,7 @@ "output_type": "stream", "text": [ "\r", - "Filter (num_proc=6): 100%|██████████| 25596/25596 [00:00<00:00, 50082.92 examples/s]" + "Filter (num_proc=6): 100%|██████████| 25596/25596 [00:00<00:00, 50791.85 examples/s]" ] }, { @@ -352,7 +352,7 @@ "output_type": "stream", "text": [ "\r", - "Filter (num_proc=6): 17%|█▋ | 4266/25596 [00:00<00:00, 30327.52 examples/s]" + "Filter (num_proc=6): 17%|█▋ | 4266/25596 [00:00<00:00, 31789.60 examples/s]" ] }, { @@ -360,7 +360,7 @@ "output_type": "stream", "text": [ "\r", - "Filter (num_proc=6): 67%|██████▋ | 17064/25596 [00:00<00:00, 65741.29 examples/s]" + "Filter (num_proc=6): 50%|█████ | 12798/25596 [00:00<00:00, 57330.27 examples/s]" ] }, { @@ -368,7 +368,15 @@ "output_type": "stream", "text": [ "\r", - "Filter (num_proc=6): 100%|██████████| 25596/25596 [00:00<00:00, 49186.86 examples/s]" + "Filter (num_proc=6): 83%|████████▎ | 21330/25596 [00:00<00:00, 65867.94 examples/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "Filter (num_proc=6): 100%|██████████| 25596/25596 [00:00<00:00, 49247.74 examples/s]" ] }, { @@ -391,7 +399,7 @@ "output_type": "stream", "text": [ "\r", - "Filter (num_proc=6): 17%|█▋ | 4266/25596 [00:00<00:00, 27875.77 examples/s]" + "Filter (num_proc=6): 17%|█▋ | 4266/25596 [00:00<00:00, 30620.49 examples/s]" ] }, { @@ -399,7 +407,7 @@ "output_type": "stream", "text": [ "\r", - "Filter (num_proc=6): 50%|█████ | 12798/25596 [00:00<00:00, 54151.32 examples/s]" + "Filter (num_proc=6): 50%|█████ | 12798/25596 [00:00<00:00, 51340.50 examples/s]" ] }, { @@ -407,7 +415,7 @@ "output_type": "stream", "text": [ "\r", - "Filter (num_proc=6): 83%|████████▎ | 21330/25596 [00:00<00:00, 64771.65 examples/s]" + "Filter (num_proc=6): 83%|████████▎ | 21330/25596 [00:00<00:00, 60968.84 examples/s]" ] }, { @@ -415,7 +423,7 @@ "output_type": "stream", "text": [ "\r", - "Filter (num_proc=6): 100%|██████████| 25596/25596 [00:00<00:00, 47503.36 examples/s]" + "Filter (num_proc=6): 100%|██████████| 25596/25596 [00:00<00:00, 44759.52 examples/s]" ] }, { @@ -438,7 +446,15 @@ "output_type": "stream", "text": [ "\r", - "Filter (num_proc=6): 17%|█▋ | 4266/25596 [00:00<00:00, 26967.65 examples/s]" + "Filter (num_proc=6): 17%|█▋ | 4266/25596 [00:00<00:00, 30416.40 examples/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "Filter (num_proc=6): 50%|█████ | 12798/25596 [00:00<00:00, 56194.37 examples/s]" ] }, { @@ -446,7 +462,7 @@ "output_type": "stream", "text": [ "\r", - "Filter (num_proc=6): 67%|██████▋ | 17064/25596 [00:00<00:00, 59482.00 examples/s]" + "Filter (num_proc=6): 100%|██████████| 25596/25596 [00:00<00:00, 73573.79 examples/s]" ] }, { @@ -454,7 +470,7 @@ "output_type": "stream", "text": [ "\r", - "Filter (num_proc=6): 100%|██████████| 25596/25596 [00:00<00:00, 47554.34 examples/s]" + "Filter (num_proc=6): 100%|██████████| 25596/25596 [00:00<00:00, 50134.96 examples/s]" ] }, { @@ -477,7 +493,7 @@ "output_type": "stream", "text": [ "\r", - "Filter (num_proc=6): 17%|█▋ | 4266/25596 [00:00<00:00, 31119.55 examples/s]" + "Filter (num_proc=6): 17%|█▋ | 4266/25596 [00:00<00:00, 30705.09 examples/s]" ] }, { @@ -485,7 +501,7 @@ "output_type": "stream", "text": [ "\r", - "Filter (num_proc=6): 50%|█████ | 12798/25596 [00:00<00:00, 58048.25 examples/s]" + "Filter (num_proc=6): 50%|█████ | 12798/25596 [00:00<00:00, 51688.20 examples/s]" ] }, { @@ -493,7 +509,7 @@ "output_type": "stream", "text": [ "\r", - "Filter (num_proc=6): 83%|████████▎ | 21330/25596 [00:00<00:00, 65662.26 examples/s]" + "Filter (num_proc=6): 83%|████████▎ | 21330/25596 [00:00<00:00, 61192.63 examples/s]" ] }, { @@ -501,7 +517,7 @@ "output_type": "stream", "text": [ "\r", - "Filter (num_proc=6): 100%|██████████| 25596/25596 [00:00<00:00, 47736.93 examples/s]" + "Filter (num_proc=6): 100%|██████████| 25596/25596 [00:00<00:00, 46152.58 examples/s]" ] }, { @@ -524,7 +540,7 @@ "output_type": "stream", "text": [ "\r", - "Filter (num_proc=6): 17%|█▋ | 4266/25596 [00:00<00:00, 29740.41 examples/s]" + "Filter (num_proc=6): 17%|█▋ | 4266/25596 [00:00<00:00, 28207.56 examples/s]" ] }, { @@ -532,7 +548,7 @@ "output_type": "stream", "text": [ "\r", - "Filter (num_proc=6): 50%|█████ | 12798/25596 [00:00<00:00, 53287.44 examples/s]" + "Filter (num_proc=6): 50%|█████ | 12798/25596 [00:00<00:00, 54832.62 examples/s]" ] }, { @@ -540,7 +556,7 @@ "output_type": "stream", "text": [ "\r", - "Filter (num_proc=6): 83%|████████▎ | 21330/25596 [00:00<00:00, 62028.81 examples/s]" + "Filter (num_proc=6): 83%|████████▎ | 21330/25596 [00:00<00:00, 62902.11 examples/s]" ] }, { @@ -548,7 +564,7 @@ "output_type": "stream", "text": [ "\r", - "Filter (num_proc=6): 100%|██████████| 25596/25596 [00:00<00:00, 45598.12 examples/s]" + "Filter (num_proc=6): 100%|██████████| 25596/25596 [00:00<00:00, 47213.04 examples/s]" ] }, { @@ -571,7 +587,7 @@ "output_type": "stream", "text": [ "\r", - "Filter (num_proc=6): 17%|█▋ | 4266/25596 [00:00<00:00, 30003.42 examples/s]" + "Filter (num_proc=6): 17%|█▋ | 4266/25596 [00:00<00:00, 29575.29 examples/s]" ] }, { @@ -579,7 +595,7 @@ "output_type": "stream", "text": [ "\r", - "Filter (num_proc=6): 50%|█████ | 12798/25596 [00:00<00:00, 54249.63 examples/s]" + "Filter (num_proc=6): 50%|█████ | 12798/25596 [00:00<00:00, 54485.36 examples/s]" ] }, { @@ -587,7 +603,7 @@ "output_type": "stream", "text": [ "\r", - "Filter (num_proc=6): 83%|████████▎ | 21330/25596 [00:00<00:00, 64059.31 examples/s]" + "Filter (num_proc=6): 83%|████████▎ | 21330/25596 [00:00<00:00, 61190.33 examples/s]" ] }, { @@ -595,7 +611,7 @@ "output_type": "stream", "text": [ "\r", - "Filter (num_proc=6): 100%|██████████| 25596/25596 [00:00<00:00, 45676.58 examples/s]" + "Filter (num_proc=6): 100%|██████████| 25596/25596 [00:00<00:00, 46946.69 examples/s]" ] }, { @@ -618,7 +634,7 @@ "output_type": "stream", "text": [ "\r", - "Filter (num_proc=6): 17%|█▋ | 4266/25596 [00:00<00:00, 31113.54 examples/s]" + "Filter (num_proc=6): 17%|█▋ | 4266/25596 [00:00<00:00, 31376.30 examples/s]" ] }, { @@ -626,7 +642,7 @@ "output_type": "stream", "text": [ "\r", - "Filter (num_proc=6): 50%|█████ | 12798/25596 [00:00<00:00, 56549.55 examples/s]" + "Filter (num_proc=6): 50%|█████ | 12798/25596 [00:00<00:00, 57991.21 examples/s]" ] }, { @@ -634,7 +650,7 @@ "output_type": "stream", "text": [ "\r", - "Filter (num_proc=6): 83%|████████▎ | 21330/25596 [00:00<00:00, 65331.50 examples/s]" + "Filter (num_proc=6): 83%|████████▎ | 21330/25596 [00:00<00:00, 64886.52 examples/s]" ] }, { @@ -642,7 +658,7 @@ "output_type": "stream", "text": [ "\r", - "Filter (num_proc=6): 100%|██████████| 25596/25596 [00:00<00:00, 47465.24 examples/s]" + "Filter (num_proc=6): 100%|██████████| 25596/25596 [00:00<00:00, 46966.92 examples/s]" ] }, { @@ -654,7 +670,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6gAAAKrCAYAAAD8oqAyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAADJNUlEQVR4nOzdd3hUZd7G8e+UzEx6IR1CSOgt9A5JaErRtbfVVVcXy2vZ1dVVLFjX7uq6tt0VRFdFFMVCs6AgUkR6k95LKIH0TGYyc94/TkgIvQQmgftzXblIzvPMmd+QUO55msUwDAMRERERERGRALMGugARERERERERUEAVERERERGRWkIBVURERERERGoFBVQRERERERGpFRRQRUREREREpFZQQBUREREREZFaQQFVREREREREagV7oAuoC/x+P9u3byc8PByLxRLockREREREROoUwzAoLCwkOTkZq/XI46QKqMdh+/btpKSkBLoMERERERGROm3Lli00aNDgiO0KqMchPDwcMH8zIyIiAlyNiIiIiIhI3VJQUEBKSkpltjoSBdTjsH9ab0REhAKqiIiIiIjISTrWkkltkiQiIiIiIiK1ggKqiIiIiIiI1AoKqCIiIiIiIlIraA1qDfL5fHi93kCXIbVYUFAQNpst0GWIiIiIiNRKCqg1wDAMcnJyyMvLC3QpUgdERUWRmJioM3VFRERERA6igFoD9ofT+Ph4QkJCFDzksAzDoKSkhF27dgGQlJQU4IpERERERGoXBdRT5PP5KsNpvXr1Al2O1HLBwcEA7Nq1i/j4eE33FRERERE5gDZJOkX715yGhIQEuBKpK/b/rGi9soiIiIhIdQqoNUTTeuV46WdFREREROTwFFBFRERERESkVlBAFRERERERkVpBAbWW8Bkwzw1Tis1ffcbpfb7du3dz++2307BhQ5xOJ4mJiZx//vnMnDmzsk+jRo2wWCyHfDz33HMATJo0CYfDwYIFC6rd++WXXyY2NpacnJzjrufGG2/EYrFw2223HdJ2xx13YLFYuPHGGw9pmz17NjabjaFDhx7StnHjRiwWC4sWLTrsc44ePfqwr8/lch133SIiIiIiUnO0i28tMLUEXtwHu3xV1+JtcH809D9Ney9ddtlleDwe3nvvPdLT09m5cydTp04lNze3Wr8nn3ySYcOGVbsWHh4OwJAhQ7j++uu5/vrrmT9/Pk6nkxUrVvDII48wevRoEhMTT6imlJQUPv74Y1555ZXK3W7dbjcfffQRDRs2POxjRo4cyV133cXIkSPZvn07ycnJJ/ScERERrFq1qto1rREVEREREQkMBdQAm1oCf9sDBw+Y7vaZ11+IrfmQmpeXx4wZM5g2bRpZWVkApKam0rVr10P6hoeHHzVovvLKK7Rt25bHHnuMp59+mhtuuIELL7yQq6666oTr6tixI+vWrePzzz/n2muvBeDzzz+nYcOGpKWlHdK/qKiIsWPHMm/ePHJychg9ejQPPfTQCT2nxWI54SAtIiIiIiKnh6b4ngaGAaX+Y38U+eCFfYeGUzCvGZgjq0W+47ufcZzTgsPCwggLC+OLL76grKzslF5reHg4o0aN4uWXX+baa69ly5YtvPXWW9X67J9Kezxuuukm3n333cqvR40axR//+MfD9v3kk09o0aIFzZs357rrrmPUqFEYx/ubICIiIiIitY5GUE8DtwG9ttbMvXb5IHPb8fWd2QCCjyMH2u12Ro8ezbBhw3j77bfp2LEjWVlZXH311WRkZFTr+8ADD/DII49UuzZ58mT69OlT+XW/fv24/PLL+fjjjxk7diz16tWr1j8yMpLmzZsf12u47rrrGD58OJs2bTJf08yZfPzxx0ybNu2QviNHjuS6664DYNCgQeTn5zN9+nSys7OP67kA8vPzCQsLq3atT58+TJ48+bjvISIiIiIiNUMB9Rx12WWXMXToUGbMmMGcOXOYPHkyL7zwAu+88061zYjuv//+QzYnql+/frWvt23bxpQpUwgJCWHGjBlceeWV1dovueQSLrnkkuOqKy4ujqFDhzJ69GgMw2Do0KHExsYe0m/VqlXMnTuX8ePHA2bovuqqqxg5cuQJBdTw8PBDNnnav/5VRERERETOLAXU08BlMUczj2WBG+7ac+x+/4qFjsexsazrBPf2cblcDBw4kIEDB/Loo4/ypz/9iccee6xaII2NjaVJkyZHvc+wYcPo1KkTDz/8MAMHDuTyyy+vXNt6Mm666SbuvPNOAN54443D9hk5ciTl5eXVNkUyDAOn08nrr79OZGTkcT2X1Wo95usTEREREZEzQ2tQTwOLBYKtx/7oHmzu1nukXGkBEmxmv+O536luPtuqVSuKi4tP6DHvvPMOP//8MyNHjqRv377cfvvt3HTTTSd8nwMNGjQIj8eD1+vl/PPPP6S9vLyc999/n5dffplFixZVfixevJjk5GTGjBlz0s8tIiIiIiKBoxHUALJZzKNk/rbHDKMHbu+zP2veF232q0m5ublcccUV3HTTTWRkZBAeHs68efN44YUXuOiii6r1LSwsPOQ805CQECIiIti0aRP33nsvL730EqmpqQA8//zzTJ48mQcffJB//etfAIwfP57hw4ezcuXK46rPZrPx22+/VX5+sAkTJrBv3z5uvvnmQ0ZKL7vsMkaOHFntPNWDj5EBaN26NWCOuh7uvNb4+HisVr1/IyIiIiJyJimgBlj/EPMomcOdg3rfaToHNSwsjG7duvHKK6+wbt06vF4vKSkpDBs27JBjWkaMGMGIESOqXbv11lt56623uPnmm+nRowe33HJLZVtISAijR48mOzu7cqpvfn7+YUPi0URERByxbeTIkQwYMOCw03gvu+wyXnjhBZYsWVJ5j6uvvvqQflu2bAGgoKCApKSkQ9p37Nih42dEREREpM7wGbCo0IN1wRz8HbvTPtxR4wNdZ4LF0Lkcx1RQUEBkZCT5+fmHBCe3282GDRtIS0vD5TqOhaJH4DNgYRns8UGsDTo4a37kVGqHmvqZEREREREBmFpsMHP6TG75/A0S83azIyqe/176f/TK6kX/0NoRKo6WqQ6kEdRawmaBzsoqIiIiIiJyAn5ZuZ6oUa8zYv0SfBWb0sTn72bEqMeZNz2DOTfdSffm6QGu8vhpkZ2IiIiIiEgd5DMg7s3naL9hGQC2ismx+3/tsH4Z8W88h68OzZlVQBUREREREamDFpaB3+/HZvgP224z/Pj9fhaWneHCToECqoiIiIiISB20s9hNZHH+Mfvt8R2zS62hNagiIiIiIiJ1SHFxCb99/RU9p4wjuijvmP1jDz25sdZSQBUREREREakDCguLWPXFeJp99zmdSwoB8Njs2P0+rIc5nMVnsWK1WungPNOVnjwFVBERERERkVosPy+fNeM/o8XUL+jsLgFga1x91mdfgDe9GZHj3qPzOnMXX5thVP66ML0N5TfdSXrtOGnmuCigioiIiIiI1EJ7c/ex/vNPafXjV3T2uAHYlJDKpr5DaZWVSWZcLABTW73MEz/N4pbP3iApbxe7IuP472V30CuzZ605B/V4KaCKiIiIiIjUIrvK4fuFy7j0Hw/Q2Wtuwbu+fmO2Zg+hTZ9MMmOjq/XvH2ohe1AvFvXqQs6COfg7defhMAe2upVNAQVUERERERGRWmG7u5z3Sux8UWRgiWnGwOAwtiQ1Iid7CBmZfUiPijjiY20W6BThgOzMM1hxzdMxM7WJxwOzfzJ/Pc12797N7bffTsOGDXE6nSQmJnL++eczc+bMyj6NGjXCYrEc8vHcc88BMGnSJBwOBwsWLKh275dffpnY2FhycnKOu54bb7zxsM+1du3ao7YPGjTokHo//vjjQ+7funVrLBYLo0ePPqTt2WefxWaz8eKLLx7SNnr0aKKiok647gPrEhERERE5mm25eSx45WVK77uNzwp8eLHQ2FrOvNsfIeHx5+jzu6FEHiWcnk00globGAbMnQmj3oDc3RAbD3/8P+jaCyynZ1z+sssuw+Px8N5775Gens7OnTuZOnUqubm51fo9+eSTDBs2rNq18PBwAIYMGcL111/P9ddfz/z583E6naxYsYJHHnmE0aNHk5iYeEI1DRo0iHfffbfatbi4uKO2O53VtyRLSUnh3Xff5eqrr668NmfOHHJycggNDT3s844aNYq//e1vjBo1ivvvv/+Eaj7eukREREREDrbBC6Py4ae9QXy14GciSwu5ctUcWqY1pG9yDGFpbQNd4hmngBpoG9fDqNdhxZKqMJq7G158HFpnwE13Qmp6jT5lXl4eM2bMYNq0aWRlZQGQmppK165dD+kbHh5+1KD5yiuv0LZtWx577DGefvppbrjhBi688EKuuuqqE65r/0juybYDXHvttbzyyits2bKFlJQUwAyg1157Le+///4h/adPn05paSlPPvkk77//PrNmzaJnz541WreIiIiIyIE2rV3P+h+nct95N2NYrOAKZcylt9Iu3MGdPTsSEhIc6BIDRlN8Tyd36bE//vkMrFxm9t9/dtH+X39bBq8+A2Vlx77vCQgLCyMsLIwvvviCsoPvfYLCw8MZNWoUL7/8Mtdeey1btmzhrbfeqtZn9OjRWE7TSPDBEhISOP/883nvvfcAKCkpYezYsdx0002H7T9y5EiuueYagoKCuOaaaxg5cuQZqVNEREREzj0bVq5m6VOPkfrgLfT9Ziy9fptL1/IinnNv4oZB2fQY0O+cDqegEdTT67oLT+3xfj9s2Qh/Hw5P/qPq+v9dBwX51fuO+/64b2u32xk9ejTDhg3j7bffpmPHjmRlZXH11VeTkZFRre8DDzzAI488Uu3a5MmT6dOnT+XX/fr14/LLL+fjjz9m7Nix1KtXr1r/yMhImjdvfsy6JkyYQFhYWOXXgwcP5tNPPz1iO8BDDz3EQw89VO3aTTfdxF//+lcefvhhxo0bR+PGjWnfvv0hz1dQUMC4ceOYPXs2ANdddx19+vThn//85yHPcyJ1H6kuERERETk3rV22grJPP6D18rkA+C0WFrbtye9D/bRPDsLlSg1whbWHAuo56rLLLmPo0KHMmDGDOXPmMHnyZF544QXeeecdbrzxxsp+999/f7WvAerXr1/t623btjFlyhRCQkKYMWMGV155ZbX2Sy65hEsuueSYNfXt27fa6OvBa0YPbgeIiYk55D5Dhw7l1ltv5aeffmLUqFFHHD0dM2YMjRs3pl27dgC0b9+e1NRUxo4dy80333zMek+0LhERERE5t6xatAT/uA9oudLcVNRnsbKgQx/o05923TrjcDgCXGHto4B6On3w9bH7PHgHbN185PYGDeHhZ6tfe/ODU6urgsvlYuDAgQwcOJBHH32UP/3pTzz22GPVAmlsbCxNmjQ56n2GDRtGp06dePjhhxk4cCCXX3555drWExEaGnrU5zpW+352u50//OEPPPbYY/zyyy+MHz/+sP1GjhzJ8uXLsdur/hj4/X5GjRp1QgH1eOsSERERkbOf4TdYOX8BtnEf0HzdUgDKrTbmd8oiKLM/7Tt1JMgRFOAqay8F1NPJdRzzx212sFrN6bwHs1rN9oN3hD2e+56EVq1a8cUXX5zQY9555x1+/vlnli5dSmpqKrfffjs33XQTS5YsOeKuuWfCTTfdxEsvvcRVV11FdHT0Ie1Lly5l3rx5TJs2rdpo5969e8nOzmblypW0aNHiTJYsIiIiInWY4TdY/ssvuD77gJYbVwLgsQWxoEtfXJn96dihHUFBil/Hot+hQLv7QRh5wC6+hlH1a8s25i6+NSw3N5crrriCm266iYyMDMLDw5k3bx4vvPACF110UbW+hYWFh5xnGhISQkREBJs2beLee+/lpZdeIjXVnDf//PPPM3nyZB588EH+9a9/ATB+/HiGDx/OypUrT6nusrKyQ2qx2+3ExsYe0rdly5bs2bOHkJCQw95r5MiRdO3alczMQw8y7tKlCyNHjqw8F9Xn87Fo0aJqfZxOJy1btjzhukRERETk7OI3YFopfL5xN6+88hhBfh9uu4MF3foTnjWAzhltsNttgS6zzlBADbTUdHjiZfh1lnkO6p5dUC8ObroDuvQ8LeeghoWF0a1bN1555RXWrVuH1+slJSWFYcOGHbKxz4gRIxgxYkS1a7feeitvvfUWN998Mz169OCWW26pbAsJCWH06NFkZ2dXTvXNz89n1apVp1z3lClTSEpKqnatefPmRwy+B2/WtJ/H4+GDDz7ggQceOGz7ZZddxssvv8wzzzwDQFFRER06dKjWp3Hjxqxdu/ak6hIRERGRus9X7mPe0hW8nNiWtV4gLJ4vel5AfaufqKz+dGvdEpuC6QmzGMb+M03kSAoKCoiMjCQ/P5+IiIhqbW63mw0bNpCWlobL5Tq1J/J4YMEc6NQdgrRg+mxVoz8zIiIiInJGlRvwbV4ZbR+5nZSdm7ni/v+yI7Ehg8vzuMTupkWDJKw2neZ5sKNlqgNpBLU2cTig+6FTTkVEREREJLC8Pj8TS62MKoCt5U6eT2xEZMFertnxG22SHDRppGBaExRQRUREREREjqCszMOyKZNJnjSOkbc9z7Z6yUQY5awbehWNr7mOS9LTsFhrflneuUoBVURERERE5CClpW6WT5xIo8mf0Ck/F4AbZoxn25AruDjYoGH7Zgqmp4ECqoiIiIiISIXi4hJ+m/A1jSd/SueiPAB2RcXxW9YQumf1pUHD+MAWeJZTQBURERERkXNeYVERq774gqbffkbnkkIAdsQksjprKE2z+5JVPzHAFZ4bFFBFREREROScVZCXz+ovPqf591/Q2V0MwNa4+qzPGkrz7CyyEhMCXOG5RQFVRERERETOOXvdHtZ/8B6tfvyKzmWlAGxKSGVT9lBaZWeSGRcb4ArPTQqoIiIiIiJyzthdDu8VwmeFdkYuW0hIWSnrk9PZ1ncorftkkhkbHegSz2kKqCIiIiIictbbmbOTTV98zoP9/kCeKwywMvaCGxlQvIuMzD6kR0cGukRBAVVERERERM5iW8vh3TyDq//+KF13rOcSRySz+17M5d69DOjaioiIroEuUQ5gDXQBUl3uyvwz+nyzZ8/GZrMxdOjQw7Z7PB5efPFFOnbsSGhoKJGRkbRr145HHnmE7du3V/a78cYbsVgsh3wMGjTohOr5z3/+Q3Z2NhEREVgsFvLy8g7ps3r1ai666CJiY2OJiIigd+/e/Pjjj0e976pVq+jbty8JCQm4XC7S09N55JFH8Hq9lX1Gjx59SP0ul+uE6hcRERGR2mHrpi08uaOMS7YbjC+x8F7fK1neJIMODRL4d6zBpc0aEBERFugy5SAaQa0lvCXlzH5yCWu+2ELTS1LoOSIDe/Dp//aMHDmSu+66i5EjR7J9+3aSk5Mr28rKyjjvvPNYsmQJTzzxBL169SIuLo4NGzYwZswY/vWvf/Hss89W9h80aBDvvvtutfs7nc4TqqekpIRBgwYxaNAghg8fftg+F1xwAU2bNuWHH34gODiYV199lQsuuIB169aRmHj47b+DgoK4/vrr6dixI1FRUSxevJhhw4bh9/t55plnKvtFRESwatWqyq8tFh2+LCIiIlKXbF63gX2ffkjb+dNxXnwHvj4X095XTM/WTUkb9HdahwQHukQ5CgXUWmDf2gK+v3MuhZvNba3XfrmFXYv20f9fXYhuEnHanreoqIixY8cyb948cnJyGD16NA899FBl+yuvvMLPP//MvHnz6NChQ+X1hg0bkpWVhWEY1e7ndDqPGBCP11/+8hcApk2bdtj2PXv2sGbNGkaOHElGRgYAzz33HG+++SbLli074vOnp6eTnp5e+XVqairTpk1jxowZ1fpZLJZTfg0iIiIicuZtWLWGwk8/JGPRzzSsuNYtZy0d3Jvok5JAcHBqQOuT46MpvqeRt6T8iB/lZT4A1ozfzJeXTqdwSwmG33yc4YeCzcV8cel0Vn6ykXK375j3PRmffPIJLVq0oHnz5lx33XWMGjWqWugcM2YMAwcOrBZOD3Sio4s33ngj2dnZJ1XrfvXq1aN58+a8//77FBcXU15ezr///W/i4+Pp1KnTcd9n7dq1TJkyhaysrGrXi4qKSE1NJSUlhYsuuojly5efUr0iIiIicnqtXf4byx5/mLSHbydj0c/4LRYWZPRk7p2P0f2OuzivWSrBwVq2VVdoBPU0er/jxCO2NchKoNNdLfhp+MLDths+A8NnMHPEYlZ+vJGLP8+ubPuk/3e493mq9b955UUnXN/IkSO57rrrAHN6bn5+PtOnT68MkatXrz4kUF5yySV89913AGRkZDBr1qzKtgkTJhAWVn0e/0MPPVQ5KpuUlITf7z/hOg9ksVj4/vvvufjiiwkPD8dqtRIfH8+UKVOIjj72luA9e/ZkwYIFlJWVccstt/Dkk09WtjVv3pxRo0aRkZFBfn4+L730Ej179mT58uU0aNDglOoWERERkZq1atFS/OM+oOXK+QD4LFYWtu+NkTmAjK6dcTodAa5QToYCagDVax1JbJsoclfkVY6eHo49xFbjz71q1Srmzp3L+PHjzeew27nqqqsYOXLkUUc533zzTYqLi3nttdf46aefqrX17duXt956q9q1mJiYys8PXK96sgzD4I477iA+Pp4ZM2YQHBzMO++8w4UXXsivv/5KUlISrVu3ZtOmTQD06dOHyZMnVz5+7NixFBYWsnjxYu6//35eeukl/va3vwHQo0cPevToUdm3Z8+etGzZkn//+9889dRTp1y7iIiIiJwaw2+wcsECrOM+pPnaJQCUW20s6JiFLbM/7Tp3JMgRFOAq5VQooJ5G1y84/M64ABabuUtspz+35Jths4/Yb8AbXanfK77atSunDjzl2kaOHEl5eXm1TZEMw8DpdPL6668TGRlJ06ZNq20YBOYoKFQPnvuFhobSpEmTU67taH744QcmTJjAvn37iIgw1+e++eabfPfdd7z33ns8+OCDTJo0qXJ33uDg6ovgU1JSAGjVqhU+n49bbrmFv/71r9hsh74JEBQURIcOHVi7du1pfU0iIiIicnSGATPdEPbcI7Rf/gsAHlsQCzpn48oaQIcO7QgKUrQ5G+i7eBoFhRz7t7d+77jDjqJarFCvdRQN+yUestbzeO57NOXl5bz//vu8/PLLnHfeedXaLr74YsaMGcNtt93GNddcwyOPPMLChQuPuA71TCspKQHAaq2+fNpqtVZOH05NPb4F8H6/H6/Xi9/vP2xA9fl8LF26lCFDhpxi1SIiIiJyMvw+P9PdFt4ptPCbB4Y1aEGLVQtZ0LU/YVn96NwuA7u95mcbSuAooAbYkUZRDT90+nPL03LMyf4RyJtvvpnIyMhqbZdddhkjR47ktttu45577mHixIn079+fxx57jD59+hAdHc3q1auZPHnyIaGurKyMnJycatfsdjuxsbEADB8+nG3btvH+++8fsbacnBxycnIqRy2XLl1KeHg4DRs2JCYmhh49ehAdHc0NN9zAiBEjCA4O5r///S8bNmw44lmuAB9++CFBQUG0bdsWp9PJvHnzGD58OFdddRVBQeY0kCeffJLu3bvTpEkT8vLyePHFF9m0aRN/+tOfjv83V0REREROmc+AJTNmEjNuNJ8P+RO/teqG0/CT17Mv67t2oFvrltgUTM9KCqi1QP3ecVz0eRYceGqLBeq1jDziY07FyJEjGTBgwCHhFMyA+sILL7BkyRIyMjKYOnUqr776Ku+++y7Dhw/H7/eTlpbG4MGDueeee6o9dsqUKZVTgPdr3rw5K1euBGDHjh1s3rz5qLW9/fbbPPHEE5VfZ2ZmAvDuu+9y4403Ehsby5QpU3j44Yfp168fXq+X1q1b8+WXX9KuXbsj3tdut/P888+zevVqDMMgNTWVO++8s9pr2LdvH8OGDSMnJ4fo6Gg6derErFmzaNWq1VFrFhEREZGaUW7ANyUwMh8uXrKM67dv4Prp40ho2oRLbaW0aJGM1abNK89mFuPgwyzlEAUFBURGRpKfn1+57nE/t9vNhg0bSEtLw+XS9tVybPqZEREREanO6/Gy9Pvv+SiqET80aAlAg4I93P/zZyRl9yW9aROsNp2QWZcdLVMdSCOoIiIiIiISEB6Ph6WTp5Ay4WM67ttFWbNOzLv171zg3cfFkeU0vuUWLNaaX/ImtZcCqoiIiIiInFGlpW5WTJpE6qSxdMrPBWBveDTeJi14z7qbhumJCqbnKAVUERERERE5I0pKSlnx9Vc0nvwpnYryANgVGcvKrKGkZWWTmZoS2AIl4BRQRURERETktCosKmLVl1/S9NvP6FxcAEBOdAKrsy+gSVY2mQ2SjnEHOVcooIqIiIiIyGlRkF/A6vGf0/z78XR2FwOwLTaZddkX0Dw7i8zEhABXKLWNAqqIiIiIiNSovT74sBCav/k65y34AYDNCQ3ZmD2UlllZZMbHBrhCqa0UUEVEREREpEbk7snlkyIL79uiKTMsNOt7JU1yNrI1ewhtMrPIjI0OdIlSyymgioiIiIjIKckph0Vff03fsW8S3/k8yq68hyY+N5fGBlPviRdJj44MdIlSRyigioiIiIjISdnqNXi3wMLXxQZtohsxqNxLi91beKRkMwOSY4iIqB/oEqWOUUAVEREREZETsnXTFvZ8+hGLQ2IYf8EwwEJ5amOm/98IOnbuSOuIsECXKHWUNdAFnOt2FW9l7d7FR/zYVbz1tD7/7NmzsdlsDB069LDtHo+HF198kY4dOxIaGkpkZCTt2rXjkUceYfv27ZX9brzxRiwWyyEfgwYNOqF6br31Vho3bkxwcDBxcXFcdNFFrFy5slqfwz3Pxx9/fMx75+Xlcccdd5CUlITT6aRZs2ZMmjSpsv3xxx8/5L4tWrQ4ofpFREREzmZb1m1g8XN/J+m+m2k/5zuu/PlLehTt4mn3Zt5KsJDVL5NwhVM5BRpBDaBdxVu59esueP1lR+wTZHXy7wt/JT60wWmpYeTIkdx1112MHDmS7du3k5ycXNlWVlbGeeedx5IlS3jiiSfo1asXcXFxbNiwgTFjxvCvf/2LZ599trL/oEGDePfdd6vd3+l0nlA9nTp14tprr6Vhw4bs3buXxx9/nPPOO48NGzZgs9kq+7377rvVwm9UVNRR7+vxeBg4cCDx8fGMGzeO+vXrs2nTpkMe17p1a77//vvKr+12/RERERER2bB6DYWffEjGop9Jqbi2qFVX3Fnn8VKjcIJD4gNan5w99L/vACooyz1qOAXw+ssoKMs9LQG1qKiIsWPHMm/ePHJychg9ejQPPfRQZfsrr7zCzz//zLx58+jQoUPl9YYNG5KVlYVhGNXu53Q6SUxMPKWabrnllsrPGzVqxNNPP027du3YuHEjjRs3rmyLioo6oecaNWoUe/fuZdasWQQFBVXe/2B2u/2UX4OIiIjI2WLdipWUfvIBbZbNAcBvsbCoTXe8mefRrkdXXK4TG4wQORZN8T2N3OXFuMuLqwU5r8+Du7wYr+/owfRAB/fdf1+/4T+l+j755BNatGhB8+bNue666xg1alS1WseMGcPAgQOrhdMDWSyWE3q+G2+8kezs7OPuX1xczLvvvktaWhopKSnV2u644w5iY2Pp2rXrIXUfzldffUWPHj244447SEhIoE2bNjzzzDP4fL5q/dasWUNycjLp6elce+21bN68+bjrFRERETlbrF68lBWPPkDjEXfSZtkcfBYr89r3Yf7dT9D6wUfp1rePwqmcFgqop9Hln6Rw+ScpFJTlVl77/Ld/cfknKbw172/HfZ8xS1+s9vVNX7bn8k9S2JK/6pTqGzlyJNdddx1gTs/Nz89n+vTple2rV6+mefPm1R5zySWXEBYWRlhYGD179qzWNmHChMq2/R/PPPNMZXtSUhINGzY8Zl1vvvlm5eMnT57Md999h8PhqGx/8skn+eSTT/juu++47LLL+L//+z/+9a9/HfWe69evZ9y4cfh8PiZNmsSjjz7Kyy+/zNNPP13Zp1u3bowePZopU6bw1ltvsWHDBvr06UNhYeExaxYRERGp6wwDVixdwarhf6XZU/fQ6rf5lFutzO3cl0X3PEm7vz1Elz49cTodx76ZyEnSFN9z1KpVq5g7dy7jx48HzKmtV111FSNHjjzqKOebb75JcXExr732Gj/99FO1tr59+/LWW29VuxYTE1P5+YHrVY/m2muvZeDAgezYsYOXXnqJK6+8kpkzZ+JyuQB49NFHK/t26NCB4uJiXnzxRe6++242b95Mq1atKtsfeughHnroIfx+P/Hx8fznP//BZrPRqVMntm3bxosvvshjjz0GwODBgysfl5GRQbdu3UhNTeWTTz7h5ptvPq7aRUREROoaw4BZbngnHxqs2cZTaxbjtdlZ0Kkvzqx+dOjYgaAgxQY5M/STdhqNu3ILAE5bSOW1S1vexUUtbsNmsbMpf+WRHlrNNW3vr/b1qIsWAeCwBZ90bSNHjqS8vLzapkiGYeB0Onn99deJjIykadOmrFpVfZQ2KSkJqB489wsNDaVJkyYnXdN+kZGRlc/fvXt3oqOjGT9+PNdcc81h+3fr1o2nnnqKsrIykpOTWbRoUWXb/jqTkpIICgqqttFSy5YtycnJwePxVBuh3S8qKopmzZqxdu3aU35NIiIiIrWN4TdYNnMWU4v9vN+qDwCr2mfTL2ct9bp2p1P7DOx22zHuIlKzNMX3NHLZQ3HZQ6ut1QyyOXDZQwmyHf+c/YP77r+v1XJy377y8nLef/99Xn75ZRYtWlT5sXjxYpKTkxkzZgwA11xzDd999x0LFy48qeepCYZhYBgGZWVHXrO7aNEioqOjcTqd2O12mjRpUvmxP6D26tWLtWvX4vdXrdtdvXo1SUlJhw2nYG4itW7duspQLiIiInI28BvwXQm8PmEqbf/5GFeNe5NQbxkXevfyJjlk3nILGZ07KJxKQGgE9Rw0YcIE9u3bx80330xkZGS1tssuu4yRI0dy2223cc899zBx4kT69+/PY489Rp8+fYiOjmb16tVMnjy52mgkmMfS5OTkVLtmt9uJjY0FYPjw4Wzbto3333//sHWtX7+esWPHct555xEXF8fWrVt57rnnCA4OZsiQIQB8/fXX7Ny5k+7du+Nyufjuu+945plnuO+++476mm+//XZef/11/vznP3PXXXexZs0annnmGe6+++7KPvfddx8XXnghqampbN++ncceewybzXbEkVsRERGRuqS83MeMrbt43ZHEhnJwtM7kd3EfsKVNZ/5TvoXmTdKx2g6dJSdyJimgBlCEsx5BVucxz0GNcNar0ecdOXIkAwYMOCScghlQX3jhBZYsWUJGRgZTp07l1Vdf5d1332X48OH4/X7S0tIYPHgw99xzT7XHTpky5ZDRxubNm7NypTmVeceOHUfdFdflcjFjxgxeffVV9u3bR0JCApmZmcyaNYv4ePNsraCgIN544w3uueceDMOgSZMm/OMf/2DYsGFHfc0pKSl888033HPPPWRkZFC/fn3+/Oc/88ADD1T22bp1K9dccw25ubnExcXRu3dv5syZQ1xc3NF/Q0VERERqMa+3nGXffUfC1x+ThoVND4wk1AJDKKT0gafomVIfq00TK6V2sBjHOp9DKCgoIDIykvz8fCIiIqq1ud1uNmzYQFpaWuUmPidiV/HWarv8HizCWe+0nIEqgXOqPzMiIiIix8Pj8bBsyjfUn/AxCXt3ApAXEsFntz1GZko8TeonYrGe2LGBIifraJnqQBpBDbD40AYKoCIiIiJSY9zuMpZPmkTDiWPpmL8HgL3h0SzrM4SG2X25qVGqgqnUWgqoIiIiIiJngZKSUlZM+Jr0yZ/SqXAfALsj6/Fb5gWkZWeTmZoS4ApFjk0BVURERESkDissKmbVV1/S9JtxdC4uACAnOp5V2RfQJDObzJTkY9xBpPZQQBURERERqYMK/PDT7Plkvf0UnUuLANgWm8zarKG06JtNVmJCYAsUOQkKqDVEe03J8dLPioiIiJyKfeUGHxRZ+KTQwBWZxgCvh83xKWzMHkrLrGyyEmIDXaLISVNAPUVBQUEAlJSUEBwcHOBqpC4oKSkBqn52RERERI7Hnn15bPzkY4pzdvDuH58ALMSGhTL19kfp0bo5mbE6w1TqPgXUU2Sz2YiKimLXrl0AhISEYLFoVzQ5lGEYlJSUsGvXLqKiorDZbIEuSUREROqAnHJ4rwDmbCrh06mfY/f76b95BZ0TIjkvNozorB6BLlGkxiig1oDExESAypAqcjRRUVGVPzMiIiIiR5KzfQcLfpnP452GUo4F6iXzyaDraRgXwyNtGhAZdeSzJEXqKgXUGmCxWEhKSiI+Ph6v1xvocqQWCwoK0sipiIiIHNW2zVvZ9ekY2v7yHUP8fkbVb0NwXDyXe3Ppe8XFRISHBbpEkdNGAbUG2Ww2hQ8REREROSmb129i76cf0nbeNOobfgCWNWvPXe7tdI6PJzRU55jK2U8BVUREREQkgDauXkvBpx/SZtHPNKzY7X9xyy6UZp9Pux7daBOijTjl3KGAKiIiIiISAOtWrKT00w9ps3R25bUFbXvgzTyPjB5dCXY5A1idSGAooIqIiIiInEFrlizDO+4DWq2YB4DPYmVhu14YmQPI6NYFp9MR4ApFAkcBVURERETkNDMMmFcGk5evY8SzfwGg3GplQYdMrJn9yejSCYdDwVREAVVERERE5DQx/AYLNm3jjZAGLCoD4hpzXrOOWKJicGT1p0PHDgQF6b/kIvvpT4OIiIiISA0zDJi1K5/EFx6i1Y5NbHzkA4JCI+hfXoDtxtvpkN4Qu12nP4gcTAFVRERERKSG+A34oRTeyYfVngg+8BlYDIObNsyjTcvmtE1NxmaPCnSZIrWWAqqIiIiIyCnylftYOm0azm+/4ok/PUOxKxQXBj9dcQuWyCCuadECm0ZMRY5JAVVERERE5CR5veUs+34q8V99RPvd2wC4ZuZX5GeexyVBbpp1z8Bqswa4SpG6QwFVREREROQEeTwelk75lvoTPqbD3hwA8kPCWdJ7COf37EJ6WgwWqyXAVYrUPQqoIiIiIiLHye0uY/nkSTSc+Amd8nYDsDcsimV9htCwbz96N0pVMBU5BQqoIiIiIiLHUFpSyooJX5M2+VM6Fe4DYE9EPVZkDiEtuy+ZjRoGuEKRs4MCqoiIiIjIERSVulk5/nOafjOOTsUFAOyMimdV9lAaZ2WTmVI/wBWKnF1q5YrtN954g0aNGuFyuejWrRtz5849Yt///ve/9OnTh+joaKKjoxkwYMAh/Q3DYMSIESQlJREcHMyAAQNYs2bN6X4ZIiIiIlJHFfjh3/lw6Q4Lqd9/SWRxAdvrJTH9smHwxD/IvO5a6iucitS4WhdQx44dy7333stjjz3GggULaNeuHeeffz67du06bP9p06ZxzTXX8OOPPzJ79mxSUlI477zz2LZtW2WfF154gddee423336bX375hdDQUM4//3zcbveZelkiIiIiUgfk7cvn54/HcuGWcv6dD3vsTt674I/8dOVt2J98haxrriKhfmKgyxQ5a1kMwzACXcSBunXrRpcuXXj99dcB8Pv9pKSkcNddd/Hggw8e8/E+n4/o6Ghef/11rr/+egzDIDk5mb/+9a/cd999AOTn55OQkMDo0aO5+uqrD7lHWVkZZWVllV8XFBSQkpJCfn4+ERERNfRKRURERKS22OODD/J8XP3AdSTm7ebBPzzMynY9udyby+B6IdSLiQp0iSJ1WkFBAZGRkcfMVLVqBNXj8TB//nwGDBhQec1qtTJgwABmz559XPcoKSnB6/USExMDwIYNG8jJyal2z8jISLp163bEez777LNERkZWfqSkpJzCqxIRERGR2mr37lxeyDW4cJvB+8U2xncbwrr6jTnPWc67kW6ua5qscCpyBtWqgLpnzx58Ph8JCQnVrickJJCTk3Nc93jggQdITk6uDKT7H3ci9xw+fDj5+fmVH1u2bDnRlyIiIiIitdjO7TkseO1VIu+8ji2/zqUMC818pcT36kPsEy/Sb9BAoqMjA12myDnnrNrF97nnnuPjjz9m2rRpuFyuk76P0+nE6XTWYGUiIiIiUhts37yVnePG0HbO9yT4fQBc8Nts+qcn0y8pmojwRoEtUOQcV6sCamxsLDabjZ07d1a7vnPnThITj74Y/aWXXuK5557j+++/JyMjo/L6/sft3LmTpKSkavds3759zRUvIiIiIrXWlg2byP3kQ9rOm0ay4QdgWdP2FGQPpnfvHoSGhgS4QhGBWhZQHQ4HnTp1YurUqVx88cWAuUnS1KlTufPOO4/4uBdeeIG///3vfPPNN3Tu3LlaW1paGomJiUydOrUykBYUFPDLL79w++23n66XIiIiIiK1wMY16yj49EPaLJxBSsXeoEtadqY463za9+xOcEhwgCsUkQPVqoAKcO+993LDDTfQuXNnunbtyquvvkpxcTF//OMfAbj++uupX78+zz77LADPP/88I0aM4KOPPqJRo0aV60rDwsIICwvDYrHwl7/8haeffpqmTZuSlpbGo48+SnJycmUIFhEREZGzy/oVKyke9yFtl1RtirmwTTc8meeT0aMrwcEnvxxMRE6fWhdQr7rqKnbv3s2IESPIycmhffv2TJkypXKTo82bN2O1Vu3t9NZbb+HxeLj88sur3eexxx7j8ccfB+Bvf/sbxcXF3HLLLeTl5dG7d2+mTJlySutURURERKT2WVzqx/r8CNoumwOA32JhYUZP/JkDyejeFafTEeAKReRoat05qLXR8Z7ZIyIiIiJnnmHA/DL4bz78WgaPj3mRIfO/Y2GHTCx9+pPRtRMOh4KpSCAdb6aqdSOoIiIiIiLHwzBgxa/zsH/2Ic9d9mfWJzbCbhgsGXgpDbIyad+xI0GOoECXKSInoFadgyoiIiIiciyGAdNL4IadsGPKRJqvW8rNU8dwvjePN7ybeaBtKh27d1M4FamDNIIqIiIiInWC3+dn2c8/8996zZgZYR4l+N6A3xMSEUFKVn+eSg3Hbo8KbJEickoUUEVERESkVvOV+1g2bTrRX35Exo6NZHcfyvwr/syg8jwuSXbR6s67sdltgS5TRGqAAqqIiIiI1EpebznLvp9K/Fcf0W73NgAKXaHERoTyDjto0SgJqy0mwFWKSE1SQBURERGRWsXr8bD0229J/vpjOuSaZ9znh4SzpNdgkrL7ktm0CRarJcBVisjpoIAqIiIiIrVCmbuMZZMn03DiWDrm7QZgb1gUy/sMpn52P3qnNVIwFTnLKaCKiIiISECVlpSyYsIEGk35lE4FewHYExHDisyhNMruS+/UhliUS0XOCQqoIiIiIhIQxX74pBDavPA4XVbNB2BXVBwrsy8gPTOLzIYNAlyhiJxpCqgiIiIickYVFhbxaamN98tcFBgW+va4kAZ7trEm6wKaZWWTWT8x0CWKSIAooIqIiIjIGbHPB0u+/JJOn4+ksP/vKeh/Ncl+D22apmF78hUyE+ICXaKIBJgCqoiIiIicVnt88L8CGFdk0M8IJstdQt9VvxLTO5PBMcHENqof6BJFpJZQQBURERGR02LPrj1sGjeWb2LTGNd9CGBhVfte/BR0D2169SSjXnSgSxSRWkYBVURERERq1M4dO9k2bgxtfv6GTj4vyVFxLO/Qm0uMQgYmRBD5u6GBLlFEaikFVBERERGpEdu3bGPnuDG0nf0dCX4fAL+lt2Zv9hDeSrAQEaGpvCJydAqoIiIiInJKtmzcRO4nH9H21x9JNvwALGvajoLswbTr3ZOWoSEBrlBE6goFVBERERE5KRvXrqfgkw9os3AGKYYBwJIWnSjJPp+Mnj0ICQkOcIUiUtcooIqIiIjICVm/cjXFn35A28WzKq8tbNMNT+Z5ZPToRnCwK4DViUhdpoAqIiIiIsdlcRm8kw+tZ8zhtsWz8FssLGzbA1/WebTr3hWn0xHoEkWkjlNAFREREZEjMwxWLVrCF2VBjE1uBcCy3hfTbu82gnpmkdGtMw6HgqmI1AwFVBERERE5hGHAHDes/+oLrv30DQY1asW4O18l21/IpfZ9dL7nPoIcQYEuU0TOMgqoIiIiIlLJ8BvM3lvE2+XhLPNAvdZZ/O7r0ZQmpvCmewPtG6cSFBQZ6DJF5CylgCoiIiIi+H1+lv08k/DxH2IJjWTZrc/jMPx0D7aw4eGX6Nw0HbvdFugyReQsp4AqIiIicg7zlftYNv0nor/4kIwdGwFIcLi4Nnct50U7aZWajM0eHdgiReScoYAqIiIicg4qL/ex9PupxH/1Ee12bQWgyBXCop6DiMvuzz3N07HarAGuUkTONQqoIiIiIucQr8fL0m+/JfnrMXTIzQGgIDiMxb0Hk5Tdl15Nm2KxWgJcpYicqxRQRURERM4BZWUelk2eTMqEj+mYtxuAfWGRLOs9hPrZfemdnqZgKiIBp4AqIiIichYr9cOcmXPIePcVOhXkArAnIoYVfYbQKCub3o1SFUxFpNZQQBURERE5CxX74dMi+F+BQbytHmMKctkVFcfKrCGkZ/Uls2GDQJcoInIIBVQRERGRs0hhYRGrvvyCVYVuXhv6J8CCIzmVyTfeT/sO7cisnxjoEkVEjkgBVUREROQskOeDDwvht0XreP2L0bSz2fm2xxCyQi1cEO0k/oLzA12iiMgxKaCKiIiI1GF7c/fx0/LVvJjWlVLDAunt+Kbb+QSnNebl+g5i42IDXaKIyHFTQBURERGpg/bs2sPGzz6hzU8TOc9i4bVHPiQxxMnl3r10ufkWYmIiA12iiMgJU0AVERERqUN27tjJtnEf0+bnKXT2eQFYk9KMv+WuontyS6KikgNcoYjIyVNAFREREakDtm/ZRs64j8mY/S0Jfh8AK9NasSd7CBm9e9E0MjzAFYqInDoFVBEREZFabOvGzez59CPazv2BZMMPwPImGeRnDyajd09ahIUGuEIRkZqjgCoiIiJSC21au568Tz+k7YKfaGAYACxt0ZGi7EG069mDkJDgAFcoIlLzFFBFREREapEVHpj+y0Ju/+f9pFZcW9S6K2WZ55PRsxvBwa6A1icicjopoIqIiIjUAsv35PNvfyQ/u8HWIIOhscnsSW6EN2sg7bp1xeVyBrpEEZHTTgFVREREJICWbNuN480XiNm1jTnD38Nqs9PLKGbzHQ/TtXkaDocj0CWKiJwxCqgiIiIiZ5hhwC9u+G8BLHdH8vX2TUQX53Pj+l9pn5pMl9T6BDmaB7pMEZEzTgFVRERE5Awx/AbLf5lLwfSp3H31A/itNux2O19cfSddokMZ1qEdQUH675mInLv0N6CIiIjIaeb3+Vk2cxbh4z+kzZY1AAxq0R1L2w5cQiEZ/Xtht9sCXKWISOApoIqIiIicJr5yH8t++ono8R+SsWMjACUOF4u6D+TatHiapUZgs0cHtkgRkVpEAVVERESkhpWX+1g6dSpxX46h3a4tABQ7Q1jU83xis/vTvUUzrDZrgKsUEal9FFBFREREaojX42Xpd9+R9NUYOuTuAKAwOIzFvQaRmN2PHk2bKJiKiByFAqqIiIjIKSor87BsymRSJoyl475dAOSFRrK0z2CSs/rRq3EaFqslwFWKiNR+CqgiIiIiJ6nUD58XwYSthYwe8zbOci+54dEszxxCo6x+9G7UUMFUROQEKKCKiIiInKDi4hLmzfqFp1r2Za8fCKvHmAHXkO6wkJ7Vl8zUBoEuUUSkTlJAFRERETlOhX74bE8pv/vb9WQV5fHOn5Owp6RziXcf5184hKSE2ECXKCJSpymgioiIiBxDXnEpH3mD+bjQoMgIJqZlVzptWMbvi7bSMTSOhLiEQJcoInJWUEAVEREROYJ9e/ex7rNxtJz2NT/8+TWKEhuR4i+jeMhlOBJvYnCcRkxFRGqSAqqIiIjIQXJ37WHD55/QZvpEOnvLAPj9r1Nwn/c7BtULJaZR4wBXKCJydlJAFREREamwa8dOto77mDY/T6GzzwvA2pSm7MgeSv/MPkRGRwa4QhGRs5sCqoiIiJzzdmzdTs6nY2g7+1vi/T4AVjVqye7sIWT06U2TyPAAVygicm5QQBUREZFz1raNm9k97iPazP2BJL8fgBWN27Kv7xAyevageURYgCsUETm3KKCKiIjIOWddkYei11+g7fzp1DcMAJY270hR9vm069WTViHBAa5QROTcpIAqIiIi54zfPPBOPvxY6uC/e/diNQwWteqKO/s82vXoTnCwK9Alioic0xRQRURE5Ky3dtkKir74hHsvvYe8sEgshsG3F96Az1dARveuuFzOQJcoIiIooIqIiMhZbIEb3sk3uOudf9F+6xqujW3IkvMu51LvXrp3bYnT6Qh0iSIicgAFVBERETmrGH6DlQsW8HpcS2ZbQgALwQOv46ql02if0ZrrGwQT5GgU4CpFRORwFFBFRETkrGD4DVb8MhfnZx/QcuNvNBv6J37tdyV9ywu4rFkDOpz3AEFB+q+PiEhtpr+lRUREpE7z+/wsnzWb0M8/pPWW1QC47Q7aluXzlncL7Ro1wG6PCmyRIiJyXBRQRUREpE7ylftY9tNPRH3xEW23bwCg1OFkQffziMrqT1brltjstgBXKSIiJ0IBVURERGodnwGLCj1YF8zB37E77cMd2CxmW3m5j2U//EDsl2Not3MzAMXOEBb2PJ+47H70aNEcq80awOpFRORkKaCKiIhIrTK12GDm9Jnc8vkbJObtZkdUPH+/9P/o0bMrsTOnkvj1GNrv2Q5AYXAYi3oNIim7Hz2bNlEwFRGp4yyGYRiBLqK2KygoIDIykvz8fCIiIgJdjoiIyFnrl5XrsY96nU7rl+CzWLAZRuWvRc4QwspKAMgLjWRpn8EkZ/UjvXEaFqslwJWLiMjRHG+m0giqiIiI1Ao+A+LefI7UHRsBsFW8h77/15CyUsqtNmYOvppGWf3o3aihgqmIyFlGAVVERERqhYVlEOX3YzP8h223YrAhrgGh1/yRVNcZLk5ERM4IBVQREREJmDIDFrhhlhu+KTJ48xj9DYuFPb4zUpqIiASAAqqIiIicUZu9ZiCdVQrzS310XT6Ha6d/xtasy47r8bE6OUZE5KylgCoiIiKnVakf5pfBzFIzmG4phxB3Cb+b+w33zxhPSq65I299yimxWPBZrIed5uuzWLFarXRwnulXICIiZ4oCqoiIiNQow4CN5VWBdIEbPBVtSXtz+OuML7jkl0mEuM0deY3gECzdepOU2Z859kj2vfcmndcduovvwvQ2lN90J+naF0lE5KylgCoiIiKnrNgPv7qrpu5uP3CdqGGQuWk5N834jDaLZmLdPzoalwC9+2LJGgj1G4LFQndg6oiXeeKnWdzy2Rsk5e1iV2Qc/73sDnpl9qR/qNKpiMjZTOegHgedgyoiIlKdYcDairWkM0thURmUH9BuB1rbyrl86XT6TP2MiA2rqxqbtoDe/aF3NkRGH/b+PgMWFXqwLpiDv1N32oc5sCmbiojUWToHVURERGpUoR/muqum7u46aDfdeBu0c0KGA3ray2l0/x+x7NxhNtrt0KEb9O4LnbuD8+jnxNgs0CnCAdmZp+nViIhIbaSAKiIiIoflN2C1tyqQLimDAzOpA2jphHYO6OyEDoU7CY1NAJ8PduZAg1QoKYYeWZA1AJq0AJu24BURkSNTQBUREZFK+T6Yc8Ba0tyDNtNNtkGG0xwp7eGC+nbMHXdfeAzmzYY/D4fkFLPz0Evhj3dAYtKZfyEiIlInKaCKiIicw/wG/OaBmRWBdJkHDsykTgu0dpiBtLPTDKehVqC83Jy2C1BUBB4PWCywYa0ZUBOTITQsEC9JRETqMAVUERGRc8w+X9UI6Ww35B00StrAXrWWtJcLEu1g3b9B0d498M1X8N0kuOdhCAk1r59/IQy5BNp1hCDHGX09IiJy9lBAFREROcuVG7DcYwbSmW5zxPTALfyDLdDGYY6OdnOZI6bB1oNusm41TPwcZk4DX8V+vT99D4MuMkdK05qA9eAHiYiInBgFVBERkbPQbh/Mrgikv7ih4KBR0lR71VrSni5zB17rwce4+HzmutIJn8FvS6uuN2oMffpBn/4QE3vaX4uIiJw7FFBFRETOAl7D3GV3/9TdVd7q7aEWaFuxhrSbE1ocbpR0v5Ji+GEKTBoPu3LMa1YrtOsEvftB194QHHxaX4+IiJybFFBFRETqqJzyqkD6ixuKD5i3awHSgswjYDIqRkljbeY+Rke0cztM+sIMp6Ul5rWQUOjWG7IGQos2VRsjiYiInAb6V0ZERKSO8BiwsMwMpLPcsO6gUdIIK7StCKTdndDMae7Ce1y2bYG/3AxGxVzg+ERztDRrgLkr71GTrYiISM1QQBUREanFtpXDzIpA+qsbSg8aJW0SZAbS9hWhNOZYo6T7eb2waR00aQHFReaIaYOGEBxiBtNeWRAZfbpeloiIyGEpoIqIiNQibj/MP2At6aby6u2R1orNjRzQIxgaB4HjRAc39+yC4XdBSREM/7sZSi0WuPUvkNYUnM6aejkiIiInRAFVREQkgAwDNlesJZ1ZaobTsgNGSa1As4pR0g5O6OqE6JP517uwAMIjzJ153W4zhJaXw66d0LwVJCaDzVZTL0tEROSkKKCKiIicYaV++LXMDKSz3bD1oFHSGKt5/EuGE3q4zM2Ogk5mCahhwKJfzWNi1q6CB54Ep8tsu/42aJRurjUVERGpJRRQRURETjPDgA0HrCVd4IYD9zeyYR77kuGEjg7o7ILIUxnMLHPD9O9h0uewdbN5zWKBDWvNnXgTk6Fxs1N4AhERkdNDAVVEROQ0KPLDXHfVWtIcX/X2OBtkOMyR0h4uaHiyo6QHyt0DU76E7yZAUaF5zemCLj2hT3/I6ABBjlN8EhERkdNHAVVERKQGGAas8VatJV1UBgdm0iDMUdJ2TuhcsetuRE0t+Vy7ypzGO3u6ucYUIKYe9OwL2QOhYRpYrTX0ZCIiIqePAqqIiMhJKvDDL+6qqbt7DholTbRV7LjrhB5OaBAE9po6TtTng19nmsF05fKq62lNzGNiMvtBdGwNPZmIiMiZoYAqIiJynPwGrPSaU3ZnuWHpQaOkTgu0cphTdzs7oZ0Lwk7XwOWMqfD6C+bnNhu062QG0y69IDj4ND2piIjI6aWAKiIichT7fDCnYh3pbDfs9Vdvr2+vWkva0wVJdrDV1CjpgXK2w75caN4adu4wNzqKS4C2HSGzP7Rsq2NiRESkzlNAFREROYDPgBWeqmm7yz1wwLGkuCzQuiKQdnFCWyeEnO7lnb/Oghceg9h4uPdRcz1pkAOeeNkMqZbTkYhFRETOPAVUERE55+X6YHZFIJ3thvyDRkkb2s21pBkO6Blsri21ns5M6PWYO/ImJkNxEYSGmbvxxsRCaYm5zjQ84jQWICIiEhgKqCIics4pN8z1o/t33F3prd4eYoE2TmjngG4uaOmA4DOxCW5+Hnw7Ab75CsLC4c6/maOjThc8+BQ0bQlO5xkoREREJDAUUEVE5Jywq7zqTNI5bigyqren7R8ldUIvl3lO6RmbObt5A0z8HH76HrwVadnvNwNrUn1ISNL6UhEROScooIqIyFnJa8Disqq1pGsOGiUNs5jrR9s5obsTmjnAdSaPCvX7YdGv5jExSxZUXW+QCn36QeYAc32piIjIOUQBVUREzhrby6t22/3FDSUHjJJagPQgM5BmOKCHC2LP5Cjpfu5SmP4dTBwP27dUFGeBNu3NY2K69zHXnIqIiJyDFFBFRKTOKjNgobtqLemG8urtEVYzjGY4zUDaxGGeVRoQe3bBlC/hu0lQXGhec7qgay/oMwDatoegoAAVJyIiUjsooIqISJ2yxQszK9aSzisD9wGjpFagScUoaXsndHVCTCBGSQ/nq09h0njz83px0CsbsgZAw/RaUqCIiEjgKaCKiEitVuqH+WVmIJ3phi0HjZJGW80R0nZO6O6CxkEQFOi85/PBLz+bx8Qk1YftW6FtB1i1Anr3NT+i6wW4SBERkdpHAVVERGoVw4CN5VWBdIEbPAe02zA3NGrngA5O6OKEqNr2r9lHI+HLT6B1O7j+VvNaTCw88RK4ggNbm4iISC1W2/5JFxGRc1CJH351V03d3e6r3l7PWrG5kRN6uiC1NoySHmjHNnOabnwi7NwBjZub55gmNQCHA5JTdEyMiIjIcVBAFRGRM84wYN0Ba0kXlsGBM3ftQIuKzY06VXxE1LZ8ZxiwfLF5TMz8OdCuM1zzR7MtIQmefwPik7S+VERE5AScyRPfjssbb7xBo0aNcLlcdOvWjblz5x6x7/Lly7nsssto1KgRFouFV1999ZA+jz/+OBaLpdpHixYtTuMrEBGRwyn0w9QSeCoXhmyHK3Pgn3nwa0U4jbfBwBD4axSMTYRRCXBfNPQNqWXh1OuBH7+B+2+Dx++DebPNsOr1mGebJiRB42aQkKxwKiIicoJq1Qjq2LFjuffee3n77bfp1q0br776Kueffz6rVq0iPj7+kP4lJSWkp6dzxRVXcM899xzxvq1bt+b777+v/Npur1UvW0TkrGQYsMpbtZZ0SRkcOHM3CGjlMKfudnJCexeE17q3TQ+Qvw+++Rq++Qry88xrQQ7o3B169YWO3czpvCIiInLSalVS+8c//sGwYcP44x/NKVJvv/02EydOZNSoUTz44IOH9O/SpQtdunQBOGz7fna7ncTExNNTtIiIVMr3wZyKc0lnl8Ief/X2JFv1taT17WCr7YOMG9fDxM9gxg9Q7jWvRUZBz2zzmJj0ZmCtzclaRESk7qg1AdXj8TB//nyGDx9eec1qtTJgwABmz559Svdes2YNycnJuFwuevTowbPPPkvDhg2P2L+srIyysrLKrwsKCk7p+UVEzlZ+A37zVK0lXeaBAzOp0wKtK9aSdqkIpqF1JcvNnwNffwbLFlZdS2kEvftBZn+ISwhYaSIiImerWhNQ9+zZg8/nIyGh+j/4CQkJrFy58qTv261bN0aPHk3z5s3ZsWMHTzzxBH369GHZsmWEh4cf9jHPPvssTzzxxEk/p4jI2WyfzxwhnVUKs92Qd9AoaQM7ZFRM3e3pgsS6MEp6OF99am6CZLVCm/ZmMO3eB0JCA12ZiIjIWavWBNTTZfDgwZWfZ2Rk0K1bN1JTU/nkk0+4+eabD/uY4cOHc++991Z+XVBQQEpKymmvVUSkNvIZ5sjorFIzmK7wgHFAe7AF2lSMknZ1mZ8H15VR0v1274QpX8GQi6G8HIoKoWcW1IszR0tbt4egoEBXKSIictarNQE1NjYWm83Gzp07q13fuXNnja4fjYqKolmzZqxdu/aIfZxOJ06ns8aeU0Skrtnjqwqkc9xQcNAoaardDKT7R0njbWCti6Ok+732HPy2FArz4fzfmdfad4HzLtROvCIiImdQrQmoDoeDTp06MXXqVC6++GIA/H4/U6dO5c4776yx5ykqKmLdunX84Q9/qLF7iojUdV7D3GV3/9TdVd7q7SEWaOuEdg7o5jLPKK1zo6T7lZfDLzOgbUew22HHNujUHTweSGsCsfHmJkgiIiJyxtWagApw7733csMNN9C5c2e6du3Kq6++SnFxceWuvtdffz3169fn2WefBcyNlVasWFH5+bZt21i0aBFhYWE0adIEgPvuu48LL7yQ1NRUtm/fzmOPPYbNZuOaa64JzIsUEakldpabgXRmKfzihmKjenuavfqOu3G2Oj6YWFQI30+CyV9A7m44/0LoV7EMpE17GHwROF2BrFBEROScV6sC6lVXXcXu3bsZMWIEOTk5tG/fnilTplRunLR582asB2zlv337djp06FD59UsvvcRLL71EVlYW06ZNA2Dr1q1cc8015ObmEhcXR+/evZkzZw5xcXFn9LWJiASax4BFZWYgne2GtQeNkoZXjJJmOKG7E5o7zV1467ztW2Hi5zDtG9i/Q3tYuBlGnU5IagA2W2BrFBEREQAshmEYx+52bisoKCAyMpL8/HwiIiICXY6IyHHbXm4G0llumOuG0gP+xrcATYKq1pL2cEJMXR8l3c8wYOlCmPAZLPil6npSfXM33qwBkFg/cPWJiIicY443U9WqEVQRETk1ZQbMd1etJd1YXr090loRSB3Q3QVNHOA4GwLpfh4PzJhqjphu3mBes1igRRvo0w96ZEG43mgUERGprRRQRUTquM3eqrWk88rMkLqfFWhWMUrawQldnBB9toySHqjMDV+MhW++hoI885rDCZ27Q69+0KELOBwBLVFERESOTQFVRKSOKfXDr2VVx8BsPWiUNNpqTtlt54QeLkgLgqCzLZAezGKF7yea4TQqxjzDNGuguSuvta5uNywiInLuUUAVEanlDAM2lJuBdKYbFrjhwP2NbEBzhxlIOzqgswsiz+Y9f/x+mD/HnMp7y19g5w7z+uCLzaDapz/EaiM8ERGRukgBVUSkFiryw69uM5DOKoUcX/X2OBtkOKqOgGl4LoyS7ucrh7f+YY6WpqZD+y7m9cEXQ3BIICsTERGRU6SAKiJSCxgGrPFWbW60sAwOzKRBQIuKUdJOFetJI87mUdID7d4J076DS66G3F1QVGTuwltYAE1bmCHVrn/OREREzgb6F11EJEAK/TDHXbWWdPdBo6SJtupHwDQIAvu5MkpqGLBqhXlMzC8/g+E3zyxt3c5sH3wxxCWchbs9iYiInNsUUEVEzhC/ASu9VYF06UGjpA6gVcURMJ2d0M4FYefa/j7l5TDnJ5jwOaxdWXW9SQsIDTNDaURk4OoTERGR00oBVUTkNNrng18qjoCZ7Ya9/urtyTZzhDTDCb1ckGQH27k4KFhYYO7CO/lL2LvHvGa3Q4eu0KsvdOkBTldgaxQREZHTTgFVRKQG+QxY4TED6Sw3LPfAAceS4rJA64rNjbo6oa0TQs61UdIDbdsMk8bDtG+hrMy8FhYBPTLNdaZNW4LtXFlsKyIiIgqoIiKnKNcHsysC6Ww35B80SppirxgldZg77ibawXoujpIeaMdWGPUmLJxbdS2pAfTpB5kDIDE5cLWJiIhIwCigioicoHIDllWMks4sNdeVHijEAm0qRkm7uaCVA4LP5VHSw/H5YckCc5Ojlm2hdz/omQVh4YGuTERERAJIAVVE5DjsLjfPJJ3thjmlUGhUb29kr9pxt6fLPKf0nB8l3a8w39z0aPsWuP5WKMg3r1/xB0hNg/adIcgR2BpFRESkVlBAFRE5DK8Bi8vMabszS80zSg8UZoE2FYG0uxOaO8ClUdLDKymB8WPA74euvSG5gbkj76XXgFW/aSIiIlJFAVVEpMKOcjOQziqFuW4oPmCU1AKkB5nrSNs5oYcLYm06hvMQPh/MnwNrV5kBdNsW83r/IRCfCK0yoF5sYGsUERGRWksBVUTOWR4DFpZV7bi7/qBR0girGUgznNDdBU0d4FQgPbySYvjxG3NH3p07zGvpTc1zSwGuvwWCQwJXn4iIiNQJCqgick7ZWl4RSEvh1zJwHzRK2jTIDKTtndDNCTEaJT26nTtg8hcwdTKUlpjXQkKhW28Ij4DUdPM8UxEREZHjoP81iMhZze2H+WVmIJ3phs3l1dujrBVHwFRM200PAocC6dEZBqxcBhM+g7mzwKg4VycuwdyNN3sgJKco2YuIiMgJU0AVkbOKYcCm8qpAuqAMyg4YJbUBzRzm1N2OTujihCj9TXh8vF6Y/RNM/AzWra663rSleX5pr2yIjA5YeSIiIlL36b9lIlLnlfjhV3fVBkfbfNXb61mrHwGTGgRBGtw7MXNnwjuvwd5c82t7EHTsCr36Qufu4HQFtj4RERE5KyigikidYxiwzlsVSBeWwYH7G9mBFhWbG3V0QicnRNoCVW0d5vebx8D4fODxmOE0PBJ6ZkLmAGjSAmz6jRUREZGao4AqInVCod88+mVWxY67Ow8aJY23VawldZijpClBYNco6clZuwo+Hg3xCebxMACJyXDDbeY5pgmJAS1PREREzl4KqCJSKxkGrPZWHQGzuAwOzKRBQKuKUdLOFdN3IzSYVzNyd8GiX81pu30GgMMBSfWhSfNAVyYiIiJnOQVUEak18n0wp2It6exS2OOv3p5kq76WtL4dbBolPTV798CUr8Dlgj79oSAf6sXDoN9Bh67QpBkEOQJdpYiIiJwjFFBFJGD8BvzmMQPpzFJY5oEDM6nTYo6StqvYbTfDCaHWgJV7dlm32jwmZtY0c41pcDC0aGOOmoaFw013mutPRURERM4gBVQROaP2+WB2RSCd7Ya8g0ZJG9jNdaQZFaOkSRolrTk+H/w6CyZ+Dr8trbqe1gR69zXXmcbEBq4+EREROecpoIrIaeUzzJHR/ZsbrfDAAceS4rJAm4pR0q4u8/NgDdzVrJJimDoZJn8Bu3LMa1YrtOsMvftB117mCKqIiIhIgCmgikiN2+OrCqRz3FBw0ChpQ3vFjrsVo6QJNrBqlLTm7dwOk76AH6ZAaYl5LSQUuvWGrIHmlF67/hkQERGR2kP/MxGRU+Y1YGkZzKw4BmaVt3p7iAXaVhwB091lnlGqUdLT7H//ga/GgVHx7kB8ojlamjUAklPAoncEREREpPZRQBWRk7Kz3BwhnVVqjpIWG9Xb0+zVd9yNsykTnVZeL2CYO+4WF4E9yAynzVqZwbR3NkREBbhIERERkaNTQBWR4+I1YGFZ1dTdtQeNkoZZzECa4YTuTmjmAJdGSc+M7ybC2PdgyMXmulKADl0gNR06dQenM6DliYiIiBwvBVQROaLt5WYgnemGuW4oPWCU1AI0DjJHSNtVTN2tp1HSM8cwzN9snw9274S8vfDLz2ZADQ6BRo3BZgt0lSIiIiInRAFVRCqVGbDAXbWWdGN59fZIa9URMN1d0NQBDgXSM8fvh0XzzPNLe2ZCWlPzevvO4HBA5gBzramIiIhIHaWAKnKO2+ytWkv6a5kZUvezAk2DzEDawQldnRCtUdIzz10K07+HSeNh22bzWu4uuHu4+XlqOrTKCFx9IiIiIjVEAVXkHFPqh3llVVN3tx40ShptrdrcqIcL0oMgSIE0MHL3wJQv4NuJUFxoXnO6zHNL+/SHho3MTZFEREREzhIKqCJnOcOADeVVmxstcIPngHYb0Lxi2m4nB3RyQpT+ZgistSvNabyzfzLXmALExELvvuYxMSlpYNUOVCIiInL20X9DRc5CxX749YC1pDt81dtjreYIaUbFKGmqRkkDz+eDuTPNYLpqedX19KbmMTF9+kJ0bODqExERETkDFFBFzgKGYR77sj+QLiqDA2fuBgEtHGYo7VjxEaENXmsPvx/+djtsWm9+bbOZu/H27gdde4IrOLD1iYiIiJwhCqgidVShH35xV03d3XXQKGmCrWqUtKcTGgSBXaOktcfunRAbb767sHMHpDSCPbugex/IHAgtWuuYGBERETnnKKCK1BF+A1Z5YWZFIF1aBgdmUgfQymkeA9PZCe1dEKZlirWPYcA/n4GZ0+C2e83zSgH6D4Er/gDJDbRNsoiIiJyzFFBFarE8H8xxm4F0dink+qu3J9uqdtzt6YJkO9iUbWqf8nKwV/x1W1IMHq8ZVNevNgNqfCKERwS2RhEREZFaQAFVpBbxGbDCYwbSmaWw3AMHHEuKywKtK3bc7eKEtk4I1Shp7ZW/D76dAN98Bbf/FaJizOv9BkFmf+jQFZzOwNYoIiIiUosooIoEWK4PZlesJZ3thvyDRklT7BWjpA5zlDTRDlaNktZum9bDxM9hxlTwes1rP34Dl1wDwSHmqKnWl4qIiIgcQgFV5AwrN2CZp2ot6W+e6u3BFmhTseNuV5c5YhqsUdLaz++HhXPNYLpkQdX1BqnQpx9kDoC4hMDVJyIiIlIHKKCKnAG7y80jYGa7YU4pFBrV21PtB+y464J4m0ZJ6wx3KUz/DiaOh+1bzGsWC7TpAL37mrvyhoYFtkYRERGROuKUAuqMGTP497//zbp16xg3bhz169fnf//7H2lpafTu3bumahSpc7wGLCkzQ+nMUljjrd4eZoE2FYG0u9M8o9SlUdK6Zc8umPIlfDcJigvNa04XdO0FfQZA2/YQFBTQEkVERETqmpMOqJ999hl/+MMfuPbaa1m4cCFlZWUA5Ofn88wzzzBp0qQaK1KkLthRbk7ZnVUKc91QfMAoqQVIDzKPgGnnhB4uiLXpNJE6a+8euOMP4Ks46KdeHPTKhqyB0DBN31gRERGRk3TSAfXpp5/m7bff5vrrr+fjjz+uvN6rVy+efvrpGilOpDbzGLCwzAykM92w/qBR0ggrtK0IpN2c0MwJTuWWusnng3WroVlLKC2BfXshvRn4fdC7nzmVN7peoKsUERERqfNOOqCuWrWKzMzMQ65HRkaSl5d3KjWJ1FpbyysCaSn8Wgbug0ZJmwSZgbR9RSiN0Shp3VeYD/ffZobSB5+CiCjz+g23mrvxuoIDWp6IiIjI2eSkA2piYiJr166lUaNG1a7//PPPpKenn2pdIrWC2w/zK0ZJZ7lhU3n19iiruY40wwE9g81pvA4F0rqvMB/CI82deYsKISwCSkthV465E29SAx0TIyIiInIanHRAHTZsGH/+858ZNWoUFouF7du3M3v2bO677z4effTRmqxR5IwxDNhcXnUEzPwyKDtglNQGNA0yQ2lHJ3RxQrT2wj47GAYsWwQTPoNlC+HBpyEk1Gy76kZokAKJ9TUkLiIiInIanfR/rR988EH8fj/9+/enpKSEzMxMnE4n9913H3fddVdN1ihyWpX44Vd31QZH23zV2+vtHyV1Qi8XpAZBkDLK2cPjgZ9/MM8v3bS+6vrq36B9Z0hIgsbNAlefiIiIyDnEYhiGcexuR+bxeFi7di1FRUW0atWKsLCz77y/goICIiMjyc/PJyIiItDlyCkyDHNDo1kVR8AsLIMD9zeyA80rNjfq4IDOLojUbM6zT94++OYr+PZryM8zrwU5oHMPc9OjDl3B4QhoiSIiIiJni+PNVKc8OdHhcNCqVatTvY3IaVXkN49+mVkKs92Qc9AoaZzNDKTtHOYRMCkaJT17bVxnjpbO+AHKK96aiIyuOCZmAKQ1BasOpRUREREJhJMOqE8++eRR20eMGHGytxY5ZYYBa7xVa0kXlcGBmTQIaFkxStqpYtfdCI2Snr38fljwS8X60kVV1xummcfE9OkPcfEBK09ERERETCcdUMePH1/ta6/Xy4YNG7Db7TRu3FgBVc64Aj/MqQiks9yw56BR0sSKUdIMJ/R0QX072DVKem6YPweer/g7yWqFNh3MYNq9d9VGSCIiIiIScCcdUBcuXHjItYKCAm688UYuueSSUypK5Hj4DVjpqVpLutQD/gPanRZo5TADadeKYBqqmZvnht07YecOaN3OPBomMhqSG0DTltCnH7RuD0FBga5SRERERA5yypskHWzp0qVceOGFbNy4sSZvG1DaJKn22Ocz15DOqlhLus9fvb2+3VxHun+UNMkONo2SnluWL4Yn7ofwCHjgqarzSkPDzB15dUyMiIiIyBl3xjZJOlh+fj75+fk1fVs5R/kMWOYxA+ksN6zwwIHvqLgs0Gb/KKnL/DxEo6TnlvJy2J0DSQ2gpBjsdjOMxiVAUSE0aQ4RkYGuUkRERESOw0kH1Ndee63a14ZhsGPHDv73v/8xePDgUy5Mzl17fDC7FGa6YY7bXFt6oIZ2M5C2c5o77ibawKpBsXNPUSF8Pwkmf2GOiv51hLm+1B4E9z4KzVqC0xXoKkVERETkBJx0QH3llVeqfW21WomLi+OGG25g+PDhp1yYnDu8BiwtMwPp7FJY6a3eHmKBNhVHwHRzmbvvBmuU9Ny1bQtMGg/TvoGyMvNaWDjk7oaUVEisXzWtV0RERETqlJMOqBs2bKjJOuQcs7O8YrfdUvjFDUUHrYROO2CUtKfLPKdUSwfPYYYBSxfAhM/N42L2S6pv7sabNcAMpiIiIiJSp9X4GlSRw/EasLCsai3p2oNGScMsZiDNcEJ3JzRzgEujpOLxwIypMPFz2FzxppjFAi3amLvx9sgyN0MSERERkbPCCQXUe++997j7/uMf/zjhYuTssr3cDKQz3fCrG0oOGCW1AI2DzEDa3gHdXVBPo6Sy37698O3X8M3XUJBnXnM4oXN3c8S0fRdwOAJaooiIiIjUvBMKqIc7+/RwLEoZ56QyAxa4q84l3VhevT3CChkOc9pudxc0dYBDPypyON98DeP+Z34eFQM9syBrIKQ1MTdCEhEREZGz0gkF1B9//PF01SF11GZv1VrSX8vMkLqfFWgSZAbS9k7o6oQYjZLKwXw+mD/HnKqb1sTcBKlFa0hvak7h7dMfYuMCXaWIiIiInAGnvAZ1xYoVbN68GY/HU3nNYrFw4YUXnuqtpRYq9cP8MnOEdJYbthw0ShptrX4ETHoQBCmQytF8MRbGjDID6a33mNfCI+CJlyE4JLC1iYiIiMgZddIBdf369VxyySUsXboUi8WCYZhDZ/un9/p8vpqpUALKMMypuvsD6QI3eA5otwHNHebU3Y5O6OyEKG29JUezKwc8ZVC/IezaAY3SITQMGqaZx8M0SAW7fohEREREzkUn/b/AP//5z6SlpTF16lTS0tKYO3cuubm5/PWvf+Wll16qyRrlDCv2m5sa7V9LuuOg9xrqWc0R0v2jpKkaJZVjMQxYtRwmfAa/zITmreCP/2e2RcXAc6+bx8Ro/reIiIjIOe2kA+rs2bP54YcfiI2NxWq1YrVa6d27N88++yx33333cW+oJIFnGOaxL/sD6aIyOHDmrh1oUbG5UUcndHJChC1Q1UqdUl4Os6ebwXTd6qrrPp/ZllQfIiIDV5+IiIiI1ConHVB9Ph/h4eEAxMbGsn37dpo3b05qaiqrVq2qsQLl9Cj0w1x31dTdXQeNksbbzECa4YCeLkgJArsGt+R4FebDdxNhypewN9e8ZrdDh27Qu695XIzTFdgaRURERKTWOemA2qZNGxYvXkxaWhrdunXjhRdewOFw8J///If09PSarFEOsqt4KwVlufgNWOmBPRuKiE0Lo4UDrBaIcNYjPrRBtcf4DVjtrQqkS8rgwEzqAFo6oZ3DXEfa3gVhOs1DTtS2zTDhc5j+nbnOFMwNj3pkQVZ/aNLSXGcqIiIiInIYJx1QH3nkEYqLiwF48sknueCCC+jTpw/16tVj7NixNVagVLereCu3ft0Fr7+sesPGqk+DrE7+feGvOF0NmOOuOgYm11/9Icm2qh13e7og2Q42jZLKyVgyH77+DBbOrbqWnAJ9+kGfAZCYFLjaRERERKTOOOmAev7551d+3qRJE1auXMnevXuJjo6u3MlXal5BWe6h4fQgXn8Z92zPZZWzAQdmUqcFWlesJe3ihLZOCNUoqdSEyV+a4dRigVYZ5jTeHlkQFh7oykRERESkDqnRsxxiYmJq8nZyGH7j+Ppt3pOPI3gnceHhZESFkOGA7kE+ojzF2Ow2nLZgLH7wGxawGFitSqpynPblwpSvIGsABDmgIB+69gKHA3r3h/adzOsiIidh/zKW/fI3FhHZKKzy68MtYxERkbPHSQfUP/3pT1x33XVkZ2fXYDlyLItWFR5Xv7Rp97M3dQ3999zDlZffBF5Y+dtiXtpxHc6iCIb845+Vfede9ibbWv/KgD13cOMf7gFg44Y1jFj6O4LKQvjdW6+BxYLFAgv6/Y/NLWaT6b6B224aDhYrO3O2cd+352M1rFzy8b/MvlYLSzp8yvr0mfSyXMmdtz0GQEF+Hnd8mI0FCxf98AI2fxAWq4UVjSexJmU6nRxDuOOWEQB4veXc8XY/LFgZsvhhHP5QLBZYnTSNVQnTaBucxW1/erjydfz19Uvw4WPgprsJ9kVhscCGqLmsjP6RpqGdGfbHByr7Pvn2LXh8bvrk/pEwIwaLxcLW4CX8FvYTqaEtufH6eyr7vvbuw5R4C+laehmRxGOxWMixr2GlcwZJIelcc81tlX3fG/sKRe582vkGEmVNBCvsZSurrLOoF5LEpZfeWNn3y4kfUFCcS3NbT6JtCVisFvKNXazzzyfCGcOgIZdX9p3+02TyC/fSyNGWKHs8FquFYiOPTZ5lBDtCycweVNl38aK5FBTuI9GZRkRQLBYLeChle9lagmxOOnTuXtl344a1FBXlE+1MICwoCizgw8te7w5sliAaNW5SOSNib+4e3KWlhLzzb1yLFsH6HRhDLsJNCdb6qURkDsBSsb7U6/FgGAZWmx2bzapZFSJyXI64jGVl1af7l7EopIqInJ1OOqDu3r2bQYMGERcXx9VXX811111Hu3btarI2OQx3w7Bq602PyGIOtXrLStm6dT0Ae3bnVDQdfrS0tLSYtWuWA7Bj+xb8QV58Pg/lpVUThT2WEjzBRRTs2suypfMBM7iUhu3F4rdSvMNd2beg7V4KI3ewc+MW5s2dAUBxYSH7ojabj1tRgNVv/gjuStzKrpjVbNnYtLJvudfL9nrLANg+bzcOdwkAm7PWsKnVPFwbIyv7AqyO/BnD5qPJe5cSXGiuj17dYwkrBk7FvamsWt+Fjkl4XSXEftiL8L2JAKzv/CuLh4wjZ3MX2sztXNn3J+8Y3GF5BH3UhKicVAA2ZfzMgotHkrQlg6ZzW1f2nZz7H4qidlL0QSixW5oBsK3lr8y94k3i1jen4dzGlX0/Xf8SefU20/O9e0lY1xaAnCaLmf37V4ne2IjYOLMui8XC6IVPsDtuNd3G3knyqk7m9zN1JTNueJ7w3CSiY2IrQ+Ab0+5ne/xSOo0fRsOlPQHYl7yeaX96iuD8evw9bLzZ12Lh1Yn3sCnhV9pPuJ60BX3N71vsNqb+3yM4SsL4h+87wtYsw9MglRd/fJI1CT/TdsPVNFk5DFZCyVdz+ObP92PzOnjd8gvOiCAsWHl57D0si/2Glj9eQosZvwOgLKSQSff+GQsW3u6yhLCEYCwWC699NJx5wV/SbN4g2sy5DIsVyoO8TLjpz2BY+GevGcSnm28MvP3BU/zsHUvjNdm0X3wFWCxYrTD+IvMNhef6TiClhfk9+t8n/+T73e/TaHs3Oq66CosVsFiY2HMEPpuX4Vnv0rit+T364uv3mLLxPRrsy6DzZrOvxWLhmxYv4rWX8n99XqRFe/P7PPWHr5i4YhSJxc3psusKLFYLFitMS/oPpfYCru8xnFadMgD45ZfpTJj/LrHehnQtuBwq+s6KGEOJbR+XdL2V1h3bA7B82QImzv4fkf4EunguBgtYrBYWOCZQaM1lQIcraNOhg/mzum4138wcSxjRdGQwFqsFLLDC8hOFlj10b30eLTPMGnK2b2PqrPG4LGG0c/Sv+N7Dev9CCo09tG3SjaatWgGQt28vM2d/S5DNScvgnpV9t5evosjYR1pKK9KaNDH/LBcXsWjhHOw2O+mh7cx6LRb2lG+j1F9AQlwDklNSAPMNizVrVmCz2EgKTat4EwuKyvMo85cSGR5NdFw9wNwhfvfuHKwWKxHOGCxWq/kz4ffgoxyHw4XT5QTA7/fj8/mx2ayaBXKWON5lLAVluQqoIiJnqZMOqF9++SX79u3j008/5aOPPuIf//gHLVq04Nprr+X3v/89jRo1qsEyZb+o49zFaNClL9EvrHHlGbWGYVC/fiodS2fj8/tx9Q0BA/w+Pz3LX8TrKyO4Qyiu0GAAYqLjeXjnZ1iAyFEJGH4DDIOW3r9SWn4LkekxREfH4DcMgoPDub38LQzDT9JL9TF8BoZh0MD3Bwr8g4npGE9IaBiGYWCzB3F1zlMYhp/UB2LBMGuLNAbT2t2O2CbJWG3mj6XVMBhSdA+GYZD2xxhshh0McNl60SCvPnHJ9au95uz8P+I3/KReUg+73wUG2BztiNztJC4mpVrfzoWXUJ7voUG/WFzlZl8juCnWnIuJDanet03xANyFxSR2rkdYmRPDgPLQFEp29CfWWr1vursLxTvyiGtej8gGDjCgLCKeRju6Ee2rXm99T0tCc2KITo4mPDQIw28QGRVJ4q5WRJYlmQfUAoZhEFPeAGO3j/CYCILTbeCHkJhgonIbElYSR5m7tPK+Yb4YwvMSCQ4OwRFvBQMc4UGEFMYQXBpFQcG+yr52vxNHSThBNie2EAuGAVaHBZvHic3rIO75EYQW5JLTJgNfiBcMC1D1M2hUvBGCAdu3bsRWsajZ4/UAYDEO/Hk1wGpgYLBp/Woc+eZoa1FJPuWRbsp95XiLzBN4y4M8lAWbswXWrF5OTuFGAHbmbaU4cQ/FnnwKt5RU3NUgP3IbACuWLGRngfkGyIbtK8mN30DYhhT2LMurrCJnyEp8QR6WL17AvtKdAPy2fiFb4xbBdhdJP++q7Luh8694QotYtnAeRZ69ACxaMZPVMT9RuKuQehN7VvZdfvcPlETlsnB+NiW+fADmLviBhVFfEb+uNWEfdqrs++vtX1EYvZ36s1tQWm6+zvmLf+an0PeI2dIY+7stK/v+ePOH5NXfiOunSNzeIgCWrpjHRMcrROak4PlP1c/gjOv/zZ5Gqyj6roRit1nDqtVLGWMdQWhuPHlvRFf2nXXNK+xsuoS+k26jb+mFAGzcsIpRnntxFUYx+JVXKvv+cvkbbG81j8x5NzN08DXmjIPNG3lt380EuYO54IU3K/vO/907bG4/k55Tr+eKi27BarGwe2cOT2++DIvPxsV/f6ey76LB/2NDlx/osu0qbrrqbwAU5ufzt6X9ALjo6f9Wvom1dMBY1vacQodtF3P39c9gsVjwlLm5ZYYZ2oe+8DqOslAsVljZ+2tW9vqKtrsG8+AtrwFgtVi4fmwGfms5gz98npDiaCxWC2vafsfyzl/QojCLEXf+G/OdDLj5P93w2koY8O2jRJbEg9XChrSZLG79OU08XXn8L/+pfB13/Os8Siz59F34F6KL62OxWtgcv4CFjcfR0GjLo3dX/f4Mf+P35Pt302f9MOqVNsRitbA9YgULGnxGIo0ZfmfV7JZn/3M3ez076LrrKuLL0rFYYZdrPQtix1PP2oC/3v58Zd+33n+KncWb6FB0AQnlTbBYYZ99O/PDvyTCGstdf3qisu9H495gR95GWnmzSaQJFgsUWnNZ5JhMsCWcP93wt8q+Eyd/zLbc9TSxdCbJ2hQsUEohSy1TCcLF1ZffhrXi36Wff/6Wbbs2kGJrRWJQOlTM3lhZPhOrxc7Q867B5jB/fxcvmkvOrs3EBzUi3tkQi8VCOR7mF/2MiIic205pDWp0dDS33HILt9xyC1u3bmXMmDGMGjWKESNGUF5eXlM1ygFaHOfSvs71IkmsV//YHY8ivWnz4+7bum374+7boWP3Y3eq0LVb5nH37dy1z2GuDjyBvucf5tqR+g4C7j7OvoNPoC/An4+7711Hu+//mSNMRkXQvd1/GxjmaLhhGPgNg+czPgHDj//3FUFzVw5B327g7qldsJSWALn4g0OIikvmyewbID4JY7DNvK/PwO/3c1n5QAy/H4fTBRbzzYm7Ln4Gj9uLtZ0Nx70u/D4/Pn853T2T8PnLSYhLwmKzYBgGV2bdzdCiP+K6KoTgayIw/OD3lZPmHYlhGCSmJGMPMsPsoI6/p/O+foT1jSaibzyG34/fbxDufx6/309cowQcwQ4Mw6Bb8/NI3d2C0DbRxLWMxjAMDL/BBd578Xt9xKTHmucyGdAqpTNhO6OIqB9L0i2hYAAGZJf9kfKyMrNvhbTEVpRvv5GIyHiSfx8ChoFhQGf3xXh2lRCbGlfZN7leIzpvu5zwoDgSLnKZ7zkY0Nrdl5KcfGLqx1f2jY1MpPWW8wkrj6Nef6f5pokB6d4uFO1oRL24qvtGhkaTvrkXoaUxRHV3mN9WwyC5vAUhOWFERVTVG+IKJXlLBsGlUYS1sYPfrKGeLwVjVxnhwdH4febf1zZbEDF70nGWhRHcyFZZQ7g/lsi9DXDZQyktMWcneMs9hOXHY/e6cMRaK1+bkxBcRVFYsZGfZ64jLCjMI8gdgtVvw+qi8vfXarFiLbfjL/ezM2crAIUF+Yf9Wa+cFeL1smnTGgA8Hs8Bzeb30vCBn3L89nLcnlJWrVxS2cfjKsKw+vHke7EVeQEo9RZRGppHwZ69LF70S2XfgpAcyp2lFO0ogn2hAOyrt5u8qM3s2pxYbUbGTtca3KH57Fm7B+/OEABy2m1hR9flWLbYq/XdYF1AUfQutnx5PiVbzZHgra3Wsi5jFoXb9lbru9wznbyYLcRM7EDBhiAAdjRdzpJrJhOzM61a31/2fc2euLXYJtcnebUZGHc3+o3Z148hYk8yPeYOqOz7w5aPyUlYTuHnNlKWmd/7vcnrmf6nNwjJi6X93B6VfSf89g5bEhfQ/usbSVtovhFWELeNqbc/haM4nKa/tMZScUj2J7/8k/VJs2n7zTU0+eU8AIqjdvPt3X/D5nGQ9Esj7KHmlP///fgiqxJ/pNUPl9H85wsAKAspYNJ9jx7++3+Qxf9ZjTUjlvCUEGKaR2Bz6PgqEZGzhcXY/7/XU+D1epk4cSIffPABEydOJCYmhm3bttVEfbVCQUEBkZGR5OfnExEREdBa1u5dzF+m9D1mv1cH/UiTGE25luNgGLByGUz4DObOqgyxxCVA736QPdA8MkbrSOUgfr8fA8OcjeGvSJ2GUfkGCGC+AXLAbAD85s+Xv6Lf/usHfu7z+TAMP4YP8JtvAHjLPXh9bmy2IBwuJ/jN59+3dzc+v59QayT4LfgNP6XeQkrLi3A5g4muV898fsNg08a1+P1+oq1J2Aw7fsNPgXcvhb5cQl3hJDVoUFnDb78twuf3kWCkYycIw4B8325yja2Eu6JJa9K0subFS+bgKS+jQXkrHEYIhh/yySHHtpYwexQt27QzQzkwf/EM3N4SUt0dCPZFgmGQb81hi2spYdYYOnXuVfn7O3v+dxR5Ckgv6kq4NxYM2GfbwbqIOYQRTWbPwZV9p8+dQJ5nN0339ibaXd+sNyiH3+K/J9gXweCsqyv7fj/nc/Z4t9I8J5vYwsZgQIEzh0WpX+DyhnNZv1sq+34z6xN2+NbSbEs/knNbgx8Kg/cwt9X7BHmD+UPW/eYUc2DSrI/YbCyj+br+pGzrAn4oce1jRs/XsfmCGNb579hcZt8JMz9gnX0uTX8bQOM1WeZsE0chU373GCURe475s9f3P48RldMIgKEf9SamaQRBoXY2frud3JUFRKSEEN4wlIiGoYTEuSprFBGRwDneTHVKAfXHH3/ko48+4rPPPsPv93PppZdy7bXX0q9fv7NqU5TaFFCPuIHEAbSBhBwXrxdm/2QG0/Wrq643bWmeX9orGyKjj/hwEZGadrxvwl49/zVC19WndE8ZA97oVjnNeN6rv7HtgGn6ADaHlfCUECIahpH5XAeckeZUpLJ8D/Zge+W0YxEROb2ON1Od9BTf+vXrs3fvXgYNGsR//vMfLrzwQpxO58neTo5TfGgD/n3hrxSU5eI3YKUH8vwQZTWn/1ot2oJfjsHrha8+hW++hL0VRznYg6BjV+jVFzr3AP1ZFpFazH3tSi5sNYgIZz3KS3x4irx4i8tJ7BRDUIiN4hw3xTtLKd3txufxk7euiPwN5ofVbgbShW+sYsv0HEISgolIDSUiJdQcdU0JJbxhCDHNIyuDr4iInDknHVAff/xxrrjiCqKiomqwHDke8aENKgNoswDXInWQxQI/fmOG0/BI6JkJmQOhSXOwaR2XiNR+X6x8kx83fMJ/fzePkFBzei9A+9ur753gKfKSt66IvHUFFO9wV4ZTgOKdpRh+KN5RSvGOUnbMqZpabLFauPzb/riiHASF2Fn1ySZKdrkJbxhCRMNQwlNCCY51nlWzxUREaouTDqjDhg2r/HzmzJl07txZI6gitY1hwOJ58P0kGPYX2GPuWsv5F4K71AymCYkBLVFEZL8IZz2CrM6jLmOxWx1Eu+Jpm9CL7YXraRDRFJc99LB9HWFBxLeLJr7docsVLhzbh4JNxexbU0j+xiKKtpVQUjHyavjBk+fFk2dupvXbmA3sXVVQvY5gG+ENQohMD6ffq50rw6p7nwdHuL1aGBYRkeNXI5skRUREsGjRItLT02uiplqnNq1BFTkhPh/cdQPsyoGLr4YeFbsiJyZDaFhgaxMROYxdxVspKMs9YnuEsx5Rrlj2FG+npNwMjT6/nzJfMRkJR9od/cQYfgNviXn0lafIy9ovt5K/oYjinFJz6nBumbkjNhAc5+S8typ2p7fAzBGLyF1ZQFhysDna2vCA6cMNQ4lppv9HiMi56bSvQT1QDWRcEakJuXvgh8lw0ZWQnwcF+dCnP+zcAS3bQsNGEHScZxWJiATAgctYjiY5Ih2vr4yNeSt4f/GTLN75E9e3e5QrW99zyjVYrBYcYUE4woIIJZguf21Vrb2s0EvemgL2rSvEU3DAsXoGlOwuw/AZFG4pMc9rnrm7sjk4zslF47JwhAVhD7Gx+N9rMHyGOXU4JZSI1FCcUQ5NHRaRc1qNBFQRCbC1q8zdeGdPN0dN/X5zsyOAfudDXCJYNd1MRM4uQTYnadFtiHLFYbPYiQupz67iLcSHppzW53WGB5HQsR4JHesd0nbFtwMo2FTEvrWF5G8oomh7KSU5pRTvdOOKcVC6u4zS3eYU5uXvr8O911Pt8UGhdsIbhhLfPppej1UdF1eaW4YzyqGNm0TkrHfKAXXbtm28+eabxB1wiLyInAE+H/w60wymK5dXXU9rAlExEBunY2JE5KxntwZxf6//cmXre/H6yygoy62cIpwa2Yog25mdNWJ32YhpHklM88hD2gy/gbe4HE9ROZ5CD2mD6pubNO0spTinFPdeD97icvb+lo/FAnuW5ZkPtMK3t86hLM9DWHIIEY3Cqs56TQklMi2MyEZatiEiZ4eTDqgzZ87kuuuuY/PmzQDExsZy44038vDDD2udpsjpVFwEP0yByV+Ya0vB3H23XSfo3Q+69ILg4ICWKCJypqVGtQRga8EadhZt4vmZNxMX0oAn+46jXkhSgKszWawWHOFBOMKDICmYniMyKtsMw8C9z0Pe2kL2rSsEX9XyKX+Zn7J8L36vQcGmYgo2FVe7b73WkZz3VneCwuzYg23MfWE5zkhHxY7D5s7D+89/FRGp7U46oN566620bNmSzz77jIiICGbNmsU///lPPvvsM6ZPn079+vVrsk4RydkOk8ab4dRdal4LCYXumZDZH1q0Abtm7YvIua1BRFNyijYCFvyGjz0l28wpwNba/fejxWIhOMZJcFcnSV1jD2m/7pfB5K8vIm9tIXkbi8yR15xSSnLcRKSEUrLLDbvA7/WzbPQ6OGh7EEdEEBENQ0nJSqDjXS0qr5fsdhNcz4nFqqnDIlI7nPQuvsHBwSxevJhmzapO4jQMgyuvvBKATz/9tGYqrAW0i68E1O6d8O6b8Oss89gYgPgk6N0XsgZCcgPzbFMREamUW7KD9fuWER1sLkGKDa5PueElNiQ5wJXVPL/PwFvkxVNUTuluN2vGb6a44sic4pxSyiqOywFokJlAp7vNgGoYBl9f9RNWu7VipDWscsOm8IahRDUOJ7x+SKBeloicZU77Lr4tW7Zk165d1QKqxWLhySefpGvXrid7WxE5mMUCi+eb4bR5azOY9uoLEYeubxIREVO9kCTqhSRR5Mkjp2gjX6/+D+NXvsGtnZ7n/CZ/CHR5Ncpqs+CMdOCMdBBeP4T49jGVbYZhULqnjH1rCshbX0SQy1bZtn+zJp/HT966IvLWFVW7b8O+ifR+qh1BYUFY7RZmP7WU8JQQwlNCK6cPO8KCzsyLFJFzxkkH1BtvvJG77rqLr776ipSUqt3yNMoocgqKi8y1patXwC33QP4+8/rl15lnl3bsBk5nQEsUEalLwhxRpEW15b/zH8bjc7MpfwVFnjzCHFGBLu2MsFgshMS5CIlzUb9n/CHt1/06hPx1RexbW0D+huLKs15LctyEJgdTnOMGzNHYlWM3HvJ4Z7S51rXJRSm0+n0aYG4GVZpbRnCsU0fmiMgJO+kpvtaKIyscDgeXXnop7du3x+fz8cEH/9/efcdXVd9/HH/fe3NH1s0gJCGDEEjYIUGWLEFAEUelrduf4mi1yhCpWrFWFFtR68CBo9qqHY5qHS0iiqigyIag7L2TsJLc7HHv+f1x5WoMYIDAuUlez8fjPsg9K+97c2/I534/53v+qXvuuUdXX311owY1Ey2+OG2KCqVbrpZqqqWbb5faZ0qhYVJCG/9ESACAE+IzfJq9+TVlxPaQ1WKTzWJXYkSaQu3Mfns0vlqfakr9sw6X7CrV1ll7v591uKBS1Z7vW4c7/rKtulzpL1ArDlXqk5sWKyTUpsiUMLnTwn8w6hqu2I5uhcW7zHpYAEzS0JrqhAvUgoIC5ebmatWqVcrNzVVubq42bdoki8WiLl26KCsrSz169FCPHj103nnnnfADCQYUqDglfD4pd6n07Urpiuuk3f4ZsTVvjuSO9k98FJ9oZkIAaHa8Pq+2FX0rn+HTjCW/VXx4qsb3my63M/and0aA4TNUtq9CRZtKVLSlRGGtXXKn+Yv9g2uL9NWUVfUmajqs8xXtdMb4zrJHhKjaU6OVz20InPfqTvW3DtvDgntSKwDH75QXqEdSWVmpb7/9tk7hunr1ahUVFTXWtzAFBSoaVWWFvwj98D1p7y7/snF3Sant/F8nJknhfKIPAKfS0j0f68H5VyvE6tC9g/+hM5KGmx2pWanyfHfJnM0l8mwvC0zYVFZQqY6/aKvUsxIkSfu/LdTXD3xTb//QVk5FpoWr+7XtlX6e/8oQ3mqvaspq5Yx20DoMNEGmFKjNFQUqGsXB/dLsD6RPPpTKSvzLnC6p70BpyLlStx6SnckmAOB0WX9gmVbv+0o5iUMlSSnujnLYXLJarOYGa+a81T7VlNWqpqxGBzd4tHNuvsq/K17LCipUU1ob2DbnNx2VNsJ/HdtDG4v15T25soeH+Edb24bL3fb7SZtiO0XJFcP1XoFgRYHaiChQcVI2rZc+/I+0cL7k9fqXxcZ9d5mYEVJqumTljyEAMMu+st3yVB1QQelOvZo7VRP6PaWshIFmx2qRDJ+h0rwKFW7yqHhriaLaRQbOV939ZYGWP7X+qPv2uq2zOl3eTo6IEBVvK9OGf2//vm34u0I2xMl8DoBZKFAbEQUqjpvXKy1ZIM38j7RhzffL22dKg4ZJg8+WYupfiB0AYI5qb6Ue+OIKrSqYr85xfTVt+Aey25g1PZgYhqHKwu9ah7eUqGTH4dZh/8hrzk0dFdc9WpK047N85T63oe4BLFJYvEvutuE6Y1xntenn/3+4pqxWvlqfnFGMvgKnEgVqI6JAxXFZtVx64Qlpf4H/vs0mZff2F6Z9B0iuUHPzAQCOqLymRC8su0tnpf1C0a7WcjvjFB+eYnYsNJC32qvq0lrVlNaqYOVB7f36QOCSOWUFFaqt8Aa27f+HLMVn+yfG2r1gn5Y/uU4Ot/27tuHDEzaFKbJtuFp1ieJ6r0AjaGhNxRRpQGPwev2FqM8neWv9xWl4hHTmYOmsc6TO3bhMDAAEuTB7pCb1f16VteXa7dkoT9UBvbvuGUU4onVF9zsUYqVICWY2h02hsTaFxjrlbhuuzIvbBtZ5a30q3V2mwk0lKt5aquj2kYF15fsqJUnVnhodWF2kA6uL6hz3rGk9lTo0UY6IEBWsOKQdc/N+UMSGKyI5TDYHp+oAjYUCFTgZO7ZKb7ziv1bpzy71F6hRMdJ1t0hn9JPaJEvMNAgATYorJEwZsTlamfe5Ptr0irxGrRLD0zSiw1VmR8MJsoVYFdUuUlHtIuuta9UtSjm3dFThRo+KtpaqZGeZf8bh70ZeHZF2le4plyRtmblbG97eUWd/i1UKSwiVOy1c/X+fpZhM/8hQladGFqsYfQWOEwUqcDJKPNKyhZItRBp2nhQW7r92aYeOZicDAJyknm3O1ri+T2jR7o+UFt1Fmw/lKj06SzYrHTHNicViUVicS2FxLiUPiK+3vrbKq5rSWtWU1qhV1yh1uCilTuuwt8qnsrwKleVVqHhbqbxVPknSpvd2au2/tskZ4wi0Dh+esMndNlytukYrxMVrCfgxzkFtAM5BhSSpuFD6+H9STY103s+kokL/8nlzpK49/COmDiZYAIDmxjAMbS9aK69Ro1pftWZtfEVX95ishIi2P70zmjVvjVeeHd+1Dm8vVfKZrWW1+9t9V720Sds/3nvUfc/72wDFdY2SPSJEOz7N175Vh/ytw99dNiciKVTWEFqH0XxwDirQWLZv9V8m5svPpNoaKcQuZfX0n2MaFiaN+Q3nlwJAM2axWJQe002l1UX628r79Nn2t7Sq4Eu9/LMVstv4YLIls9ltislwKyaj/h/bw57srbJ9FSraVKKiLSUq2VXuv9ZrfoXK91UqJNSmkt3+1uFNH+zUrs8L6uxvsVkU3iZU7rbhGvroGQqN819up7KwSjanTfYw/oxH88QrGzgSn09ascR/mZjVK79fntrOPxtvm2SpdYJp8QAAp1+EI1q/7HKbNh9apaHtLtGO4rVKjEhXhCPK7GgIQharRRGJYYpIDFPK4Pp/M9RWelVTWqPq0lol9o6TPSzEf+5rQaXKCyrkqzFUurtcpbvL5dlRprJ8/2ROq/6yUds/yVNoK6ci0/xtw/5Jm8LkTg1XXPdoRl7RpNHi2wC0+LYgFRXSF59Is96V8vb4l1ksUvee0uBh/ll5w8LNzQgAMJXP8MlTdVAHyv3/T+z2bJLNYtfgtNHmBkOz4a3yqnh7qQo3l6hkd7lSBn5/buyih75VwYpDR933l7OGKTTOJXt4iDa+vUMle8oCbcORqeEKTwyV1cYEjjj9aPEFjsf+Amn2B9Kns6SyUv8yV6jUb6A0aLjUPUeyMwsfAECyWqyKdrVWpCNG6w8s1Wu5D2p/+W4drMjT6M63mB0PzYDNaVNspyjFdqo/On/BPwepNK9ChZs8Kt5at3XYW+VTbblXJTvLJEkb3tlR77I5VrtFEUlhcreL0Dkz+gZGWysOVMoeYWfiJpgu6ArUGTNm6M9//rPy8/OVnZ2tZ555Rn379j3itmvWrNF9992n5cuXa8eOHXryySc1ceLEkzomWqC3/+G/+fyz7qlVa2nQ2f7rl7Ztx2ViAABHZLOGqGOrXuqfcoG+3Pm+2sdkabdnk1LcmWZHQzNmsVoUmRymyOQwaWhinXWGYai2wj/rcHVpjVKHJCgyNSxwyZzyfZXy1Rjy7ChTVXG1Dq33BPb9+o/faH9uocLiXd9f57VtWGD0tXVWzOl+qGihgqpAfeuttzRp0iS98MIL6tevn6ZPn66RI0dqw4YNio+vP+13eXm52rdvr0svvVS33357oxwTLYDXK9XWSk6nVFHun/TI55M6dPIXpoOGSTGxZqcEADQBdptDN/Wepquyfqf8su2qrC3T5kO52lm8Qf1TLlCoPcLsiGhBLBaL7GEhsoeFKCzepTPGd66zvqaiVsVbS1W0uUQVhVV11lUeqpYkle+rVPm+SuUvOxhY54yya/T7Z8sRESJ7eIhW/WWTaitq68w6HBbvksXKh/o4eUF1Dmq/fv3Up08fPfvss5Ikn8+n1NRUjR8/Xnffffcx923Xrp0mTpxYbwT1RI5ZVVWlqqrv37Qej0epqamcg9oczJ8rvf6ydNYIqd9g/zKvV9qXJ/Xu72/rBQDgBO0r26Vle+fouaV3qHVYqmZc8JXC7JFmxwJ+krfWp9I95Src6FHx1lKV7i0PjLw6Iuzqd3f3wLZzxi5WeUFlnf1tDqsiU8MU1z1GQx45I7C8rKBCrhinbA4mbmrpmtw5qNXV1Vq+fLkmT54cWGa1WjVixAgtXLjwtB5z2rRpeuCBB07oeyIIGYa/Tdfnkw4dkA7slxZ9JfUdJLlcUpsUqWMXs1MCAJqB+PBUJUV2UIwrXpmtcrS3ZIvSorrIbnOaHQ04JluIVVFpEYpKqz/qbxiGasu9qi6tUU1Zrdqfn6zSvRX+S+Z81zrsrfapaEupLFZLnfNe505YorL8CoUlhMr93azDkW39/0alRyi2E4M/qCtoCtQDBw7I6/UqIaHuNNwJCQlav379aT3m5MmTNWnSpMD9wyOoaEIMQ1qd679MTPccqVu2f1mXLOmya/0z8iYmc34pAKDR5SQO0QsXLlFB6U75VKsdxevksLlU66tR+5gss+MBx81iscge7m/vlaR+v+teZ311WY2Kt5SqaLNHNZW+wHLDZ6iquEaGTyrLq1BZXoXyFh0IrI/JjNTIl/v7jx0WoiWPrlFImE3utt/POhwa55SFv9dalKApUIOJ0+mU08knnU1SdbX01WfSh+9KO7b6l23f4i9MLRYpOVXq1NXcjACAZi/c4Vb72O6qrC3Tbs8mvZo7Vcv2ztHNvR7WBR1vNDse0Kgc4Xa17hGj1j3qT6R09aLzVLKzXIWbSlS8rSQw8lpWUKGodhGq2F+liv1VMryG1vxzq4zaumcfhoTaFJkSppSzEtT3zm6B5aV5FQpr7eSar81Q0BSocXFxstlsKigoqLO8oKBAiYmJR9nr9B8TQaqoUPr4v9In/5OKi/zL7A7/eaWDzpbapksOh6kRAQAtjyskXO2iu6nGWynD8Mluc6iwYp9iQpmoES2DzW5TdIdIRXeofy624TNUU16rmtJaVRyqVJfL2wUumVNWUKGKg1WqrfCqcFOJQlu7Aq3DhmFo5lVfyfAZikgK/X7W4e/ah2MyIhXVjgnKmqqgKVAdDod69eqluXPnavTo0ZL8ExrNnTtX48aNC5pjIshs3+IfLf3yM6m2xr8sKkYaOFQaMkJKz5SsfLIGADBPiNWuqWf/R2v2LZTLHqaDFXt1sGKvwkLcSoxsJ6uF/6fQMlmsFjki7HJE2BWeGKq4rnVHYKtKalS0yaPCLSWy/mCG4KqiGskiGV5DJbvKVbKrXFqwP7A+eWBrDX6opxwRdtlcVi24b5UiksIU2TYsUMS6Yhy0DgepoClQJWnSpEkaM2aMevfurb59+2r69OkqKyvT9ddfL0m69tprlZycrGnTpknyT4K0du3awNd79uxRbm6uIiIilJGR0aBjogny+aQVi/3nl67O/X5523T/JWIGD5da88k0ACB4WCwWdU8YIMMwtK1otTxVh/SHz36ptlGdNXnwq4p2tTY7IhB0nJF2JZzRSglntKq37tql56t4e5mKtnhUtLVUpXsrVJ5fobKCSkWmhgdahysOVmnjf3bW298eHqLI1DBlXJSqrBv9dYNhGCrdW6HwxFBZbRSvZgmqAvXyyy/X/v37dd999yk/P185OTmaPXt2YJKjnTt3yvqD0bC9e/eqZ8+egfuPPfaYHnvsMQ0ZMkRffPFFg46JJui+SdL61f6vrVape09/Ydp/sBQaZm42AACOwWKxqH1Mlr7a8YEqa8t1sGKv8ku2K8oZx2gOcBxsTptiO7mPOAuw4TNUU1ar6tJa1VbWqsuVP2gdzq9Q5aFq1ZTV6tB6jw51Kg60DlcWVenjXy2SNcSiiOSwerMOx3Z2KyKJvzVPtaC6Dmqwaug1e3CK7C+QYuP8xei+fOm9N6UFn/kvEzN4uH+GXrvd7JQAAByXXcUbta1otZIi20uSEsPTJYsU4YgyORnQfBmGocrCahVtLlHhlhI5I+2B81ULN5foy3tX1puo6bDMn6eq9+1dZY8IUW1lrZY9vk6RqYdnHA6Tu224nFHMeXI0Da2pKFAbgALVRC8+Kc39SBrzG6nzd1OaV1ZIkVFSahqXiQEANHmFFft0sGKvlu+dq/fWz9CEvk9pQNuLzI4FtEg1FbUq3lqqos0lKtpeqrK871uH00clK22Yf6LVQ+uL9eW9ufX2d7jtcrcNV9f/S1fm6LaSJG+1V5WHqhUW75LF2nL/dm1oTRVULb6Aamslm81feJaX+S8b4/NJWzf6C9TWCZKbT5YBAM1HTGi8Ih0xmrFkkkqri7Q8b656tjlboXZmIQVON3toiOK6RSuuW3S9dT6vv3W4prRGofEudb48TWX5lSorqFBZfqWqiqpV7anRgdVFKtxUEmgdLtzi0fzfrZTNYVVESlid67y624arVdcohbV2NdpjOLi+WK06N92/lxlBbQBGUE+DEo/06YfSRx9IY26WEpO/W14slZZIfQZIzsZ74wIAEGxqvFV6Z+1TOqPNMNmsIQoNiVBiRDvZrIwnAMHOMAxVHKxS4Ub/pE0RbUIVnhAqScpbckBLH1sjw3fkfXNu6aiuV6fLHmFX6Z5yrX51yw8um+MvaB0RP306W015rRZO/Uab3t+lzJ+nasB9PRQSGjy/P2jxbUQUqKfQnl3SrHelLz6Rqqr8y3L6SFdeL7lc/kLVZjM3IwAAp1GNt1o7itfKMAy9vOL3So3qrF+d8aBcIeFmRwNwgqpLa1S0pVRFWzwq3lYWuNZreX6lul3bXvE5sZKk3V8WaPlT6+vt74x2yN02XGeM76SUwf7JXmvKalVTXqvQOKeKtpTo03FLVLKzTIZPslgld1qEhj/TRzEZwVG/0OKL4GUY0jcrpA//I61Y8v3ypBT/bLxnjZASk8zLBwCAiew2hzJic/Tljg+0Zv8ibTi4XANTL1LPNmebHQ3ACXJE2BWfHaP47Jh663y1PtWU+mcdjmofoU6XpgUK2LL8SlV7alRVVK39RdUq2lIqV4xTkrR30X4tfWytrHaLfIcndjr8j0/y7CzTB7+Yp4FTswPnwzYFFKg4faqqpC/nSh++K+3a7l9msUhdsvyF6YAhUkSkqREBAAgWg9MultP2hjYeWq5IZ4w2H8pVWlRX2W3MEgo0J9YQq5zRDjmjHYpMCVP6yOTAOsNnqGxfhX/Spi0lisn4/m/lykPVkkXy1Ry5IdbwGvJ6Dc2/e6ViMtyK6x59qh9Ko6DFtwFo8T1JhQel2f+VPpnpP6dUkhxOqU9/f2Ga01uy858tAABHs8ezWRW1pTpYnq+31jyu8X2nKz2mm9mxAJis0lOtmVd8qeJtpYHR0x+yWKVW3aL1s3+fZfq1lmnxRXAoK5XGXfv9+aUxsdKAof423vQM/7VNAQDAMSW7M1RRU6pXVt6vjQeX6+nFE/TYuR8zgRLQwrncDp05OUsf/3rhEdcbPqnXbV1ML06PB7/V0Li8XmnzBqlTV//1SvP3Sp26SZ5iaeDZ0uDhUlxrs1MCANDkhNoj9Nv+L+qpxeM0KvM6bStarbiwZEW7+H8VaMmSB7VWXPdoHVxbVGem4MOjp8kDm9bvCFp8G4AW3waqqpTuuFnK2yPdMcV/zVJJqqmW0tpLoWHm5gMAoJkorS5Wfuk2SdJXOz9QXFiyLsi8sUmNkgBoPLu/3HfEUdSRL/dXyqB4ExLVR4svTo+SYikySvL5pKJDUnSMVFQo7cv3z8qblCqF8DIDAKAxRTii1D6mh5btmaMP1j+vGl+1wkIiNaz95WZHA2CC5EGtdfG7Q+qeh2qRWnWJMi3TiaJywPEzDGnDGmnmf6RlC6XfPSi5v3vxj75CSmgjJbf1z9ALAABOCavFqt7J5+iqrLu1Im+uUqM6amvhaqVHd2MkFWhhLBaL4rpGmx2jUdDi2wC0+H6ntlZaOM9fmG7Z+P3yn18pnTlYik/wj6YCAIDTqtZbq+3FqyVJXp9XX+18X5d0vU1RrjiTkwGAHy2+aDwlxdKcD6XZH0iHDvqXhYRIPftJg86Wep8pOV3mZgQAoAULsYUoIzZHhRUFemP1nzVr09+0YNf/9NJFy2Wz2syOBwANRoGKo9u9Q/rwPWneHKn6u8vERLql/kOkISOkjM6Sjf/0AAAIFjGhCRrR/iqtzPtcw9tfoW1F3yrFnSlXSLjZ0QCgQWjxbYAW1eJrGNKq5f423tyl3y9PSpUGD5MGj5AS25iXDwAA/KQab7UKKwrkqfZ3Ph2qKJDTFqrsxLNMTgagpaLFFydm3bfSH+/2f22xSF17+Nt4+w+RIiLNzQYAABrEbnMoPiJVMd54bSlcpZeW/155pVs1ts8TGpV5ndnxAOCoKFBbukMHpJ3bpOze0oF9ksMptU2XUtP8o6XZZ0h2h9kpAQDACbDbnGoX3V0dW/VUSXWhEiPStK9sl+LDU82OBgBHRItvAzTbFt+tm6TJ4yWnQ5r8J39xKklh4f5LxVit5uYDAACNZn/ZHhVX7Q/cL6o4oOzEs2S38UE0gFOvoTUVFUhL4vVKe3b5v66o8N+PjpHi20glHqlVa6lDR6lNMsUpAADNTOvwZGXE5sgVEq5thWv0wLwrNHH22SqvKTE7GgAE0OLbEpSXSXM/kj56X6qskH43VQqx+4vQcXf5Z+MNDTU7JQAAOA1S3JnaXrRWofYItQ5P1t6SLUqP7i6blT8LAZiP30RNXXW1tHyR1OtMyfGjFp2CvdKs96XPZksV5f5lYeFSQb6U3kFqk+K/nikAAGhRBrW9WF3i+qqgbKckaVvRarkdreSTV4kR7cwNB6BFozppqgxDWrJA+tsM6eB+KS5euv5Wqc8Aaf1q/2Viln7t306S4hOlQcP81y9NSvXP0AsAAFqsVmFt1CqsjUqri5Vfuk2v5N6vxXs+0vi+03V2+mVmxwPQQlGgNkXbt0p/e1Za+833hebB/dKf75dcof423sM6dvUXpoOGSu5oE8ICAIBgFuGIUtuoLsor3aZqb6XKaopVWl2kCEe02dEAtEDM4tsAQTeL729vknZtl3y+o2/Tb5A08Gx/66/TedqiAQCApsln+LRw14dKiPBfgsZmsSva1VrRrtay0HkF4CQxi29z5vMduzhNaCNN+oM0YAjFKQAAaBCrxaqBbS9SenSWJKm0ulATPjpLf/ryWpVWF5kbDkCLQYHaHDmcks1mdgoAANAE2aw2ZcTmqKBsp4qrDmjTwRXKK9lmdiwALQTnoAIAAKCeEe2vUoo7U7s9m2WxWLT5UK5S3B1ls9hkt9GhBeDUYAS1KbJa/bfjXQcAAHAcOsf10Yj2V8rtjJMkzd78qn713176tmCByckANFdUMk3RhLulzt39Xx+etODwv126+9cDAAA0kvjwFLV1d9acLa/rYMVefbLl76rxVpkdC0AzxCy+DRB0s/hK/uubLv3afx3UA/v810G9Yaz/OqjMtAcAAE6B8poS/T33QQ1pd4nsNofczji1Dktmll8AP6mhNRUFagMEZYF6WHW1tGKR/3IydofZaQAAQAtQWVuu3Z6NkqR/rHpIGbE5ujLrToVY7SYnAxCsuMxMS+FwSGeeRXEKAABOG1dImDJic7SzeIOW532qt9c+odX7OC8VwMljFl8AAACckLPbXaZaX7V2FK1ThCNamw/lKj06SzYrl7sDcGIYQQUAAMAJsVgsOrfDNfrVGX+SzeJv783N/1z3f365Ckp3mpwOQFNEgQoAAICTYrFYlB7TTYkR7fTuume1LG+OHvpyjHyGz+xoAJoYClQAAAA0ighHtG7t87g6tuqlS7pO0NbCb1RaXWx2LABNCLP4NkBQz+ILAAAQhIoq9+tA+R5J0sq8L5QQkaaz0n5ucioAZmloTcUkSQAAAGh00a7WinTEaEXeXL25+s+q8lZIMnRW2i/MjgYgiNHiCwAAgFPCZg1RTuLZOi9jjDJic5QYkabdnk1mxwIQxGjxbQBafAEAAE5OZU2FdpdskCT5DJ++yf9SF3S8UaH2CJOTATgdGlpTMYIKAACAU85lD1VGbI7czlb6csd7enXVA7r94+Hy+rxmRwMQRChQAQAAcNrEh6cqJ3GoYlzxOjPlfG0r+lY13iqzYwEIErT4NgAtvgAAAI2rvKZEh8oLVOktlSRV1pYpNCRSHWJ7mJwMwKlAiy8AAACCVpg9UilRGUpxZ8rr8+q5pXfq9o+H6/Nt/zY7GgATUaACAADANK6QcKVGZSo2NFEOm0uRzhgVVhSYHQuASWjxbQBafAEAAE4twzC0o3itan01gWW1Pq86tuopq4UxFaCpo8UXAAAATYbFYlG76G7qEJMtq8WmPZ4t+t2cUZr86UWqqCk1Ox6A04QCFQAAAEHDYrGofUyWqr2VsllDZLVYtcezRTT9AS1DiNkBAAAAgB87p8PV6tK6r/aX7ZYshrYUrlJcaLJkkaJdrc2OB+AUYQQVAAAAQSnFnamebc5Wq9AkSdKrqx7Qb2b20+Lds01OBuBUoUAFAABAUIsJjVdKZEetP7BEpdVF2u3ZyHmpQDNFiy8AAACCnssepmdGfak5W/+ljq3O0J6SzQoNiVCrsDZyhYSbHQ9AI2EEFQAAAE2C3ebU+Zk3KC2qqySpuOqAbv1wgJ5dMkmVtWUmpwPQGChQAQAA0KTYbQ5lxOZoW+Ea7SvbpYW7ZmqvZ5vZsQA0Alp8AQAA0CRd0PFGtQ5P0YHyPfKpVpsP5Sotqmvg8jQAmh7euQAAAGiy+iaP1PmZNyg0JEKSNGfrPzVu1iBtK1xjcjIAJ4ICFQAAAE1esjtDSREd9L8NL2ln8Xq9teYxeX21ZscCcJwoUAEAANAshDki9adh72tw25/roo43aVvRahVV7jc7FoDjQIEKAACAZiM2LEG/G/RXtYvuJkk6UL5Hj3x1o2ZufFmGYZicDsBPoUAFAABAsxPucKt9TA9tPbRaX+58Ty8u+51W7/va7FgAfgKz+AIAAKBZslqsGtHhKhVXHVBe6VaF2sO1tfBbpUd3l8ViMTsegCNgBBUAAADNltVi1aXdJmpsnyclST7Dq1UF8/XEwltVXHnA5HQAfowCFQAAAM2ezWpTRmyOWoW20bvrntFn297U/V9cYXYsAD9CgQoAAIAWIyY0Qf/X4x4lR2book6/1uZDuaqsLTM7FoDvWAymM/tJHo9HUVFRKi4ultvtNjsOAAAATpJhGDpQvkfFVf42300Hc5UU2V7ZiWeZnAxonhpaUzGCCgAAgBbHYrGodXiK0qK6qLjyoF7JvV+//2y0Fu2eZXY0oEWjQAUAAECLZbc51bV1P/VJOlep7k6KccVrX9kus2MBLRYtvg1Aiy8AAEDzV1x5UPvL/cWpYRjaXrRWQ9tdKrvNYXIyoOmjxRcAAAA4DlGuVsqIzZErJFyL93ykpxaP1x2fjJTX5zU7GtBiUKACAAAAP5DizlSKO1Nhdre6xZ+pbUXfyuurNTsW0CLQ4tsAtPgCAAC0PIUV+1RYWSCf4R9BtciqMHuk2kSmm5wMaHpo8QUAAABOQkxovNrHZCkxIl0+w6enF9+msbMGauGuD82OBjRbFKgAAADAMUQ4opQY0a7OstLqIlOyAM0dLb4NQIsvAAAAfIZPa/YtVKg9XJJks9jlsLmU7O5gcjIg+NHiCwAAADQiq8WqrISBSo/OkiTtLdmicbMG6k/zr1FlbbnJ6YDmgQIVAAAAOA42q00ZsTk6UL5HXqNWhyryta90p9mxgGYhxOwAAAAAQFN0cedb1Cmuj0qrC1Xtq9TmQ7lqE9FeFotFYfZIs+MBTRIjqAAAAMAJ6hzXW72TzpHbGSdJ+vuqP+qWmf21et/XJicDmiYKVAAAAOAkxYenKCmig5bsma2DFXv1TcFXqvZWmh0LaHJo8QUAAAAaQZgjUjMuWKAP1j+v3knnaGfxermdcYoNTVCI1W52PKBJYAQVAAAAaCRh9khdmXWXUqM6SZIOVezV+FmD9Y9VD6nWV2NyOiD4UaACAAAAjcwVEqaM2Byt2bdIuzwbNXPjS9rt2Wh2LCDo0eILAAAAnCK/7DpBbmesymqKVeur0eZDuUqPzpLNajM7GhCUGEEFAAAATqFzOvyfLu50q2wW/3mon29/S7+bc4HyS3eYnAwIPhSoAAAAwClmsViUHtNNCeFpemftU1qzf6FeXvF7+Qyf2dGAoEKBCgAAAJwmkc4Y/eGs15WTOEQ/63SzthZ+o9LqYrNjAUGDAhUAAAA4jZLdHfTHYe8pLaqLJCm/dJtmLPmt5u94z+RkgPkoUAEAAAATRLnilB7dXVsLV+ujza/o0QU3au3+RWbHAkzFLL4AAACASWzWEJ3d7jJtL1yjwsoCOWwu7fZsUoo70+xogCkshmEYZocIdh6PR1FRUSouLpbb7TY7DgAAAJqh6toq7fSskyRV1pZp8e6PdVXWXQq1R5icDDh5Da2paPEFAAAAgoAjxKmM2By5na303rrn9N76Z3Xf55eaHQs4rShQAQAAgCASH56q8zOvV2xooka0v1KbD+WqxltldizgtKDFtwFo8QUAAMDpVuOt1v7y3Sqv8UiS8kq2KSmygzrE9jA5GXD8aPEFAAAAmjC7zaGkyPZKcWeqtLpYzy29Q7d/PFzL9n5qdjTglKFABQAAAIKYKyRc7WOy1CE2W/HhKQq3u1VYUWB2LOCUoMW3AWjxBQAAgNkMw9D+8l3yVB0KLDtYnq8+yefKamHcCcGNFl8AAACgGbFYLIoPb6sOMdmyWkK0Iu8zPTj/Kv1+7mj5DJ/Z8YBGQYEKAAAANCEWi0XtY7orLCRSDptLSZHtta1wtWiMRHNAi28D0OILAACAYLS3ZKtKqg7JZg2RJIWGRCrMHqmY0HiTkwF10eILAAAANHNJke3VKa63WoUmyTAMPbV4vG758Eyt2PuZ2dGAExJidgAAAAAAJ+fwiGlR5T5V1JSprKZYFTWlCrVHmJwMOD4UqAAAAEAzEBMarxnnf60lez5WQkSq9pRsVmhIhMIdUYp2tTY7HtAgtPgCAAAAzYTd5tDAthcpLaqrJGm3Z7N+9d8z9Ozi21XtrTQ5HfDTKFABAACAZsZucygjNkdbC79VZW2ZNhxcroPleWbHAn4SLb4AAABAM3Vl1p3qENtDXl+tymqKtflQrlLdnWW1WGS3Oc2OB9TDCCoAAADQjPVNHqn+qRcoNMQ/YdI/v3lIEz4aom2Fa0xOBtQXlAXqjBkz1K5dO7lcLvXr109Lliw55vZvv/22OnfuLJfLpaysLM2aNavO+uuuu04Wi6XO7bzzzjuVDwEAAAAIKsnuDMWHpeqL7f/WLs9Gzdvxjry+WrNjAXUEXYH61ltvadKkSZoyZYpWrFih7OxsjRw5Uvv27Tvi9l9//bWuvPJK3XjjjVq5cqVGjx6t0aNHa/Xq1XW2O++885SXlxe4vfHGG6fj4QAAAABBw+1qpadHzdeFmb/SwNSfaVvRahVV7pdhGGZHAyRJFiPIXo39+vVTnz599Oyzz0qSfD6fUlNTNX78eN199931tr/88stVVlammTNnBpadeeaZysnJ0QsvvCDJP4JaVFSk999//4QyeTweRUVFqbi4WG63+4SOAQAAAASTsmqP8kq3yuvz6oVld2lY+hW6oOONslqCbgwLzUBDa6qgevVVV1dr+fLlGjFiRGCZ1WrViBEjtHDhwiPus3DhwjrbS9LIkSPrbf/FF18oPj5enTp10i233KKDBw8eNUdVVZU8Hk+dGwAAANCchDvc6hCTrZV5n2vToZV6bdVU7fFsNjsWWrigmsX3wIED8nq9SkhIqLM8ISFB69evP+I++fn5R9w+Pz8/cP+8887TL37xC6Wnp2vLli265557NGrUKC1cuFA2m63eMadNm6YHHnigER4RAAAAELwsFosu6z5JNmuIfIZXVd5ybS38VunR3WWxWMyOhxYoqArUU+WKK64IfJ2VlaUePXqoQ4cO+uKLLzR8+PB620+ePFmTJk0K3Pd4PEpNTT0tWQEAAIDTyWqx6tJuE+X1ebWt6Fv5DK/m73hXC3Z9oLF9nlCUK87siGhBgqrFNy4uTjabTQUFBXWWFxQUKDEx8Yj7JCYmHtf2ktS+fXvFxcVp8+YjtzA4nU653e46NwAAAKA5s1ltyojNUawrUW+ufkxf75qpZ5fcbnYstDBBVaA6HA716tVLc+fODSzz+XyaO3eu+vfvf8R9+vfvX2d7SZozZ85Rt5ek3bt36+DBg2rTpk3jBAcAAACaidiwRN3e/zllxvbU+Zk3aPOhXFXWlpkdCy1EUBWokjRp0iS99NJLeu2117Ru3TrdcsstKisr0/XXXy9JuvbaazV58uTA9rfddptmz56txx9/XOvXr9f999+vZcuWady4cZKk0tJS3XnnnVq0aJG2b9+uuXPn6uKLL1ZGRoZGjhxpymMEAAAAglnHVj315HlzlRrVUZK027NJf1/1R63Kn29yMjR3QVegXn755Xrsscd03333KScnR7m5uZo9e3ZgIqSdO3cqLy8vsP2AAQP0+uuv6y9/+Yuys7P1zjvv6P3331f37t0lSTabTd98841+9rOfqWPHjrrxxhvVq1cvffnll3I6naY8RgAAAKApiAtLVlpUF+0oWqe310zX7z8brY0HV5gdC81Y0F0HNRhxHVQAAAC0ZBU1pXp2ySSV1RTp/3rcI7ezleLDmUQUDdfQmooCtQEoUAEAAACprLpEeaVbJEnV3kqt3bdYF3e+RXabw+RkCHYNramCrsUXAAAAQHAKd0QqIzZHrpBwzdz4sl5d9YAe+OJys2OhGaFABQAAAHBcUtyZ6p00QuH2KPVLOV+bD+XK66s1OxaaAVp8G4AWXwAAAKC+smqP9pfvVq2vWpLkqTyoNpHt1SYy3eRkCDa0+AIAAAA4pcIdbrWL7qrEiHRV1pbpyUXjNHbWQH1T8JXZ0dBEUaACAAAAOCkRjiglhLdTbGiiIh0xslqsKq0uMjsWmiBafBuAFl8AAADgp/kMn7YXrpVP/vNRbRa7qmrL1SmutywWi8npYCZafAEAAACcVlaLVe1juys9OkuS9E3BfN0xZ6SmfTVGPsNncjo0BRSoAAAAABqVzWpTRmyOymtKZbVY5bCFao9nk9mx0ATQ4tsAtPgCAAAAJ2bjwRXy+mpltzkkSdGueIXZIxRm5+/qloQWXwAAAACm69jqDHVp3VdRzjhJ0lOLxuuWmQO0bv8Sk5MhGFGgAgAAADjlWoenKMYVrx3F61RYma+80m2q9laaHQtBJsTsAAAAAABahlZhSXrhwsWav/1dtY3qpJ3F6+V2xinSEa1Qe4TZ8RAEGEEFAAAAcNqE2SN1XuYYpbg7SpJ2FW/QDR9k6x+rHlKtr8bkdDAbBSoAAACA084VEqaM2Bx9UzBfJdWFWrDrfR2qyDM7FkxGiy8AAAAA01zf8wGluDvKFRImT9UheaoOqV1Ud1mtVlktjKe1NPzEAQAAAJjqnA5Xa1Db0bJZ7JKkN9c8qt/NOV8FpTtNTobTjQIVAAAAgOksFovSY7qpVWgbzdr0itYdWKIPNjwvn+EzOxpOIwpUAAAAAEEjJjRBfz5nts5K+4WGtrtEWwu/UWl1sdmxcJpQoAIAAAAIKsnuDrpr4MtKCE+TJO0t2aI/fPZLzd/xnsnJcKoxSRIAAACAoBTlilOEI1r/XvOEVuZ/rjX7FyojtoeSIjuYHQ2nCAUqAAAAgKBls4bokq4TVVpdJGdImMprSrTbs0kp7kyzo+EUsBiGYZgdIth5PB5FRUWpuLhYbrfb7DgAAABAi1TjrdaO4rWSpH1lu7Qy73Pd0HOqQu0RJifDT2loTcUIKgAAAIAmwW5zKCM2RwWlOzV90ThtL1orT9UhTR78qtnR0EiYJAkAAABAk5IQ0VbX59yvpMj2GtH+Km0+lKsab5XZsdAIaPFtAFp8AQAAgOBjGIbySrepvMYjSfq24Cv1SDhLHWJ7mJwMP9bQmooRVAAAAABNksViUVJke6W4M7XHs0Wv5k7V7R8P1+ZDq8yOhhPEOagAAAAAmjRXSLhyEocoK2GQan01MgyfCisKFBOaYHY0HCdafBuAFl8AAAAg+BmGoeKq/TpQvleSVOur0a7iTRre/gpZLTSPmokWXwAAAAAtisViUbQrXh1ismW1hOjjzX/XU4vH6aEvrzU7GhqIAhUAAABAs2KxWNQ+prvaRnWWw+ZSl7i+2nLoG9E8Gvxo8W0AWnwBAACApulgeb4KK/MD92u9tUqIaKuY0HgTU7U8tPgCAAAAaPFahSUqIzZHcWHJqvZW6pEFN+iWD8/Uuv1LzI6GI6BABQAAANDsRbtaK8aVILvNIZvFphpflSpqSs2OhR+hxbcBaPEFAAAAmocab5XWHViiMHukJCk0JEKSRcnuDuYGa+Zo8QUAAACAH7HbnOqRMFhpUV0lSd8UfKnfzOyrZ5dMks/wmZwOFKgAAAAAWhy7zaGM2Bzt8WyRIUPFlQe0v2y32bFavBCzAwAAAACAWX7V64/KSRwilz1cJdWHVHLokBLC0+QKCZPd5jQ7XovDCCoAAACAFq138jnqHj/gu/NRpacWj9eEj4ZoW+Eak5O1PBSoAAAAACAp2Z2hCEeMVu/7Wrs9m7Tx4DJ5fbVmx2pRaPEFAAAAgO8kRqTpufMX6tOt/1KH2GxtK1qtVqFJinTGKMRqNztes8cIKgAAAAD8QGxYgi7rPkltItpLknYWr9Ov/ttT/9vwEjP9nmIUqAAAAABwBOEOtzrEZOvrXTN1oHyv3ls/Q4UV+8yO1azR4gsAAAAAR2GxWHRz70cUF5asVmFtVFiZr+Kq/UqP7h5Yj8bDCCoAAAAAHIPVYtWl3SZqSNolkiSf4dXba6frwflXq7jygMnpmhcKVAAAAABoAJvVpozYHEU6Wun99TO0ZM9svbXmcbNjNSsUqAAAAABwHBIiUnX/0LfVO2mEhqT9UpsP5aqytszsWM0CBSoAAAAAHKeOrXrq/qH/VquwNpKkXcUb9eiCX2tV/nyTkzVtFKgAAAAAcILiwpKVFtVFK/I+0/wd/9H9X1ymfWW7zI7VZDGLLwAAAACcBLvNqZ91ulk7izcoyhUrT9VBSVJ8eKrJyZoei2EYhtkhgp3H41FUVJSKi4vldrvNjgMAAAAgSFXWlGt3yUZJ0qGKfG04sFxXdL9TdpvD5GTmamhNxQgqAAAAADQSlz1MGbE52lW8UW98+6g2HcpVfukO3TnwL2ZHaxI4BxUAAAAAGllqVEdd2PEmxbjiNajtxdp8KFdeX63ZsYIeLb4NQIsvAAAAgBNR463WnpLNqvVVS5K2F65Rt/gBahOZbnKy06uhNRUjqAAAAABwithtDrWL7qrEiHTtK9ulGUvv0NhZA7W9aK3Z0YIS56ACAAAAwCkW4YhS+5geahvVWTZriKq9lSqtLlKEI9rsaEGFFt8GoMUXAAAAQGPwGT4VlO5UWU2RJMkwpKLKfeqddI4sFou54U4hWnwBAAAAIMhYLVa1iWyn9OgsSdKnW1/XA/Ou0JOLxpqcLDhQoAIAAADAaWaz2pQRm6Mwe4SsFpsSI9K0q3iD2bFMR4tvA9DiCwAAAOBU2Vm8QVW15YEWX7vVqdbhyQqzN5/agxZfAAAAAGgC2kZ1UmarnopyxqnWV6M/fXmtbpk5QFsLvzU72mlHgQoAAAAAQaB1eIrCQiJVWVumytoyFVfuV7W30uxYpxUtvg1Aiy8AAACA06W8pkS5+fMUH54iSXI742S3OhQTGm9yshNHiy8AAAAANEFh9kgNSL1QKe6OkqRvCr7U9R9k6R+rHpLP8Jmc7tSiQAUAAACAIOQKCVNGbI7W7luoWl+NNh9aqaLKfWbHOqVCzA4AAAAAADi6CWc+re4JAxQXlqxDFfk6VJGvlMhOcoQ4daB8rzxVB4+6r9vZKtAq3BRQoAIAAABAkBuWfoUMw9D2orXyGjV6esl47fVs0fbidar1VR91P7vVqRcvWtpkilRafAEAAACgCbBYLEqP6abQkAgt3j1bmwtXHbM4laQaX9UxR1iDDQUqAAAAADQhye4MPXP+fA1td6nZURodBSoAAAAANDFJke01uvOtZsdodBSoAAAAAICgQIEKAAAAAAgKFKgAAAAAgKBAgQoAAAAACAoUqAAAAADQBLmdrWS3Oo+5jd3qlNvZ6jQlOnkhZgcAAAAAABy/+PAUvXjR0mNe59TtbKX48JTTmOrkUKACAAAAQBMVH57SpArQn0KLLwAAAAAgKFCgAgAAAACCAgUqAAAAACAoUKACAAAAAIICBSoAAAAAIChQoAIAAAAAggIFKgAAAAAgKFCgAgAAAACCAgUqAAAAACAoUKACAAAAAIICBSoAAAAAIChQoAIAAAAAggIFKgAAAAAgKFCgAgAAAACCAgUqAAAAACAoUKACAAAAAIICBSoAAAAAIChQoAIAAAAAggIFKgAAAAAgKFCgAgAAAACCAgUqAAAAACAoUKACAAAAAIICBSoAAAAAIChQoAIAAAAAggIFKgAAAAAgKFCgAgAAAACCAgUqAAAAACAoUKACAAAAAIICBSoAAAAAIChQoAIAAAAAggIFKgAAAAAgKARlgTpjxgy1a9dOLpdL/fr105IlS465/dtvv63OnTvL5XIpKytLs2bNqrPeMAzdd999atOmjUJDQzVixAht2rTpVD4EAAAAAMBxCjE7wI+99dZbmjRpkl544QX169dP06dP18iRI7VhwwbFx8fX2/7rr7/WlVdeqWnTpunCCy/U66+/rtGjR2vFihXq3r27JOnRRx/V008/rddee03p6en6wx/+oJEjR2rt2rVyuVwNzrZu3TpFREQ02mMFAAAAgJagtLS0YRsaQaZv377G2LFjA/e9Xq+RlJRkTJs27YjbX3bZZcYFF1xQZ1m/fv2Mm2++2TAMw/D5fEZiYqLx5z//ObC+qKjIcDqdxhtvvHHEY1ZWVhrFxcWB265duwxJ3Lhx48aNGzdu3Lhx48btJG7FxcXHrAeDqsW3urpay5cv14gRIwLLrFarRowYoYULFx5xn4ULF9bZXpJGjhwZ2H7btm3Kz8+vs01UVJT69et31GNOmzZNUVFRgVtqaurJPjQAAAAAwE8IqhbfAwcOyOv1KiEhoc7yhIQErV+//oj75OfnH3H7/Pz8wPrDy462zY9NnjxZkyZNCtz3eDxKTU3VokWLaPEFAAAAgONUWlqqM8888ye3C6oCNVg4nU45nc56y7t06SK3221CIgAAAABoujweT4O2C6oW37i4ONlsNhUUFNRZXlBQoMTExCPuk5iYeMztD/97PMcEAAAAAJx+QVWgOhwO9erVS3Pnzg0s8/l8mjt3rvr373/Effr3719ne0maM2dOYPv09HQlJibW2cbj8Wjx4sVHPSYAAAAA4PQLuhbfSZMmacyYMerdu7f69u2r6dOnq6ysTNdff70k6dprr1VycrKmTZsmSbrttts0ZMgQPf7447rgggv05ptvatmyZfrLX/4iSbJYLJo4caL++Mc/KjMzM3CZmaSkJI0ePdqshwkAAAAA+JGgK1Avv/xy7d+/X/fdd5/y8/OVk5Oj2bNnByY52rlzp6zW7wd+BwwYoNdff1333nuv7rnnHmVmZur9998PXANVku666y6VlZXppptuUlFRkQYNGqTZs2cf1zVQAQAAAACnlsUwDMPsEMHO4/EoKipKxcXFTJIEAAAAAMepoTVVUJ2DCgAAAABouShQAQAAAABBgQIVAAAAABAUKFABAAAAAEGBAhUAAAAAEBQoUAEAAAAAQYECFQAAAAAQFChQAQAAAABBgQIVAAAAABAUKFABAAAAAEGBAhUAAAAAEBQoUAEAAAAAQYECFQAAAAAQFChQAQAAAABBgQIVAAAAABAUKFABAAAAAEGBAhUAAAAAEBQoUAEAAAAAQYECFQAAAAAQFELMDtAUGIYhSfJ4PCYnAQAAAICm53Atdbi2OhoK1AYoKSmRJKWmppqcBAAAAACarpKSEkVFRR11vcX4qRIW8vl82rt3ryIjI2WxWMyOU4fH41Fqaqp27dolt9ttdhwAaBL69OmjpUuXmh0DMB3vBTQEr5OmJVh/XoZhqKSkRElJSbJaj36mKSOoDWC1WpWSkmJ2jGNyu90UqADQQDabjd+ZgHgvoGF4nTQtwfzzOtbI6WFMkgQAaHHGjh1rdgQgKPBeQEPwOmlamvrPixbfJs7j8SgqKkrFxcVB+0kJAAAAADQEI6hNnNPp1JQpU+R0Os2OAgAAAAAnhRFUAAAAAEBQYAQVAAAAABAUKFABAAAAAEGBAhUAAAAAEBQoUAEAOAk///nPFRMTo0suucTsKICpeC+goXit4FgoUAEAOAm33Xab/v73v5sdAzAd7wU0FK8VHAsFajPGp1MAcOoNHTpUkZGRZscATMd7AQ3FawXHQoHajPHpFICmatq0aerTp48iIyMVHx+v0aNHa8OGDY36PebPn6+LLrpISUlJslgsev/994+43YwZM9SuXTu5XC7169dPS5YsadQcwLE8//zz6tGjh9xut9xut/r376+PPvqoUb8H74Xm5+GHH5bFYtHEiRMb9bi8VnA6UKA2Y3w6BaCpmjdvnsaOHatFixZpzpw5qqmp0bnnnquysrIjbr9gwQLV1NTUW7527VoVFBQccZ+ysjJlZ2drxowZR83x1ltvadKkSZoyZYpWrFih7OxsjRw5Uvv27TuxBwYcp5SUFD388MNavny5li1bpmHDhuniiy/WmjVrjrg97wUsXbpUL774onr06HHM7XitIGgZCErz5s0zLrzwQqNNmzaGJOO9996rt82zzz5rpKWlGU6n0+jbt6+xePHiett8/vnnxi9/+cvTkBgATp19+/YZkox58+bVW+f1eo3s7GzjkksuMWprawPL169fbyQkJBiPPPLITx7/aL9n+/bta4wdO7bO90pKSjKmTZtWZzt+1+J0iomJMV5++eV6y3kvoKSkxMjMzDTmzJljDBkyxLjtttuOuB2vFQQzRlCD1E99QsWnUwBakuLiYklSbGxsvXVWq1WzZs3SypUrde2118rn82nLli0aNmyYRo8erbvuuuuEvmd1dbWWL1+uESNG1PleI0aM0MKFC0/sgQAnwev16s0331RZWZn69+9fbz3vBYwdO1YXXHBBnZ/VkfBaQTALMTsAjmzUqFEaNWrUUdc/8cQT+vWvf63rr79ekvTCCy/oww8/1N/+9jfdfffdpysmAJxyPp9PEydO1MCBA9W9e/cjbpOUlKTPPvtMgwcP1lVXXaWFCxdqxIgRev7550/4+x44cEBer1cJCQl1lickJGj9+vWB+yNGjNCqVatUVlamlJQUvf3220csHoAT9e2336p///6qrKxURESE3nvvPXXt2vWI2/JeaLnefPNNrVixQkuXLm3Q9rxWEKwoUJugw59OTZ48ObCMT6cANFdjx47V6tWr9dVXXx1zu7Zt2+of//iHhgwZovbt2+uvf/2rLBbLKc/36aefnvLvgZatU6dOys3NVXFxsd555x2NGTNG8+bNO2qRynuh5dm1a5duu+02zZkzRy6Xq8H78VpBMKLFtwk61qdT+fn5gfsjRozQpZdeqlmzZiklJYXiFUCTM27cOM2cOVOff/65UlJSjrltQUGBbrrpJl100UUqLy/X7bffflLfOy4uTjabrd5kIQUFBUpMTDypYwPHw+FwKCMjQ7169dK0adOUnZ2tp5566qjb815oeZYvX659+/bpjDPOUEhIiEJCQjRv3jw9/fTTCgkJkdfrPeJ+vFYQjChQm7FPP/1U+/fvV3l5uXbv3k3rBIAmwzAMjRs3Tu+9954+++wzpaenH3P7AwcOaPjw4erSpYveffddzZ07V2+99ZbuuOOOE87gcDjUq1cvzZ07N7DM5/Np7ty5/D6FqXw+n6qqqo64jvdCyzR8+HB9++23ys3NDdx69+6tq6++Wrm5ubLZbPX24bWCYEWLbxPEp1MAmruxY8fq9ddf1wcffKDIyMhAd0hUVJRCQ0PrbOvz+TRq1CilpaXprbfeUkhIiLp27ao5c+Zo2LBhSk5OPuKoQGlpqTZv3hy4v23bNuXm5io2NlZt27aVJE2aNEljxoxR79691bdvX02fPl1lZWWB8/+BU23y5MkaNWqU2rZtq5KSEr3++uv64osv9PHHH9fblvdCyxUZGVnvHP3w8HC1atXqiOfu81pBUDN7GmH8NB1hGu++ffsa48aNC9z3er1GcnJyvSm8AaApknTE2yuvvHLE7T/55BOjoqKi3vIVK1YYu3btOuI+n3/++RG/x5gxY+ps98wzzxht27Y1HA6H0bdvX2PRokUn+/CABrvhhhuMtLQ0w+FwGK1btzaGDx9ufPLJJ0fdnvcCDjvWZWYMg9cKgpfFMAzjdBbEaJgffkLVs2dPPfHEEzr77LMDn1C99dZbGjNmjF588cXAp1P//ve/tX79+nrnpgIAAABAU0CBGqS++OILnX322fWWjxkzRq+++qok6dlnn9Wf//xn5efnKycnR08//bT69et3mpMCAAAAQOOgQAUAAAAABAVm8QUAAAAABAUKVAAAAABAUKBABQAAAAAEBQpUAAAAAEBQoEAFAAAAAAQFClQAAAAAQFCgQAUAAAAABAUKVAAAAABAUKBABQAAAAAEBQpUAECTtH37dlksFuXm5podJWD9+vU688wz5XK5lJOTY3ac43Lddddp9OjRp+z4hmHopptuUmxsbND93AAAwYMCFQBwQq677jpZLBY9/PDDdZa///77slgsJqUy15QpUxQeHq4NGzZo7ty5ZscJKrNnz9arr76qmTNnKi8vT927dzc7ktq1a6fp06c36jGHDh2qiRMnNuoxAaAloUAFAJwwl8ulRx55RIWFhWZHaTTV1dUnvO+WLVs0aNAgpaWlqVWrVo2YqunbsmWL2rRpowEDBigxMVEhISH1tjmZ5x4A0DxQoAIATtiIESOUmJioadOmHXWb+++/v1676/Tp09WuXbvA/cPtpQ899JASEhIUHR2tqVOnqra2VnfeeadiY2OVkpKiV155pd7x169frwEDBsjlcql79+6aN29enfWrV6/WqFGjFBERoYSEBF1zzTU6cOBAYP3QoUM1btw4TZw4UXFxcRo5cuQRH4fP59PUqVOVkpIip9OpnJwczZ49O7DeYrFo+fLlmjp1qiwWi+6///4jHuedd95RVlaWQkND1apVK40YMUJlZWWSpKVLl+qcc85RXFycoqKiNGTIEK1YsaLO/haLRS+++KIuvPBChYWFqUuXLlq4cKE2b96soUOHKjw8XAMGDNCWLVvq/QxefPFFpaamKiwsTJdddpmKi4uPmPHw4502bZrS09MVGhqq7OxsvfPOO4H1hYWFuvrqq9W6dWuFhoYqMzPziD8fyf/zHT9+vHbu3CmLxRL42R/tuZ83b5769u0rp9OpNm3a6O6771ZtbW3geEOHDtX48eM1ceJExcTEKCEhQS+99JLKysp0/fXXKzIyUhkZGfroo4+O+viGDh2qHTt26Pbbb5fFYqkz6v/VV19p8ODBCg0NVWpqqiZMmBD4GUnSc889p8zMTLlcLiUkJOiSSy4JPM558+bpqaeeChxz+/btR80AAKiPAhUAcMJsNpseeughPfPMM9q9e/dJHeuzzz7T3r17NX/+fD3xxBOaMmWKLrzwQsXExGjx4sX6zW9+o5tvvrne97nzzjv129/+VitXrlT//v110UUX6eDBg5KkoqIiDRs2TD179tSyZcs0e/ZsFRQU6LLLLqtzjNdee00Oh0MLFizQCy+8cMR8Tz31lB5//HE99thj+uabbzRy5Ej97Gc/06ZNmyRJeXl56tatm377298qLy9Pd9xxR71j5OXl6corr9QNN9ygdevW6YsvvtAvfvELGYYhSSopKdGYMWP01VdfadGiRcrMzNT555+vkpKSOsd58MEHde211yo3N1edO3fWVVddpZtvvlmTJ0/WsmXLZBiGxo0bV2efzZs369///rf+97//afbs2Vq5cqVuvfXWo/48pk2bpr///e964YUXtGbNGt1+++36v//7v8AHAH/4wx+0du1affTRR1q3bp2ef/55xcXFHfW5O1zc5+XlaenSpUd97vfs2aPzzz9fffr00apVq/T888/rr3/9q/74xz/W+5nFxcVpyZIlGj9+vG655RZdeumlGjBggFasWKFzzz1X11xzjcrLy4+Y6d1331VKSoqmTp2qvLw85eXlSfKP9J533nn65S9/qW+++UZvvfWWvvrqq8DzuWzZMk2YMEFTp07Vhg0bNHv2bJ111lmBx9m/f3/9+te/DhwzNTX1qM8xAOAIDAAATsCYMWOMiy++2DAMwzjzzDONG264wTAMw3jvvfeMH/73MmXKFCM7O7vOvk8++aSRlpZW51hpaWmG1+sNLOvUqZMxePDgwP3a2lojPDzceOONNwzDMIxt27YZkoyHH344sE1NTY2RkpJiPPLII4ZhGMaDDz5onHvuuXW+965duwxJxoYNGwzDMIwhQ4YYPXv2/MnHm5SUZPzpT3+qs6xPnz7GrbfeGrifnZ1tTJky5ajHWL58uSHJ2L59+09+P8MwDK/Xa0RGRhr/+9//AsskGffee2/g/sKFCw1Jxl//+tfAsjfeeMNwuVyB+1OmTDFsNpuxe/fuwLKPPvrIsFqtRl5enmEYdX+elZWVRlhYmPH111/XyXPjjTcaV155pWEYhnHRRRcZ119/fYMeh2HU/5kbxpGf+3vuucfo1KmT4fP5AstmzJhhREREBF4fQ4YMMQYNGhRYf/i1cc011wSW5eXlGZKMhQsXHjVTWlqa8eSTT9Z7jDfddFOdZV9++aVhtVqNiooK4z//+Y/hdrsNj8dzxGMOGTLEuO222476PQEAx8YIKgDgpD3yyCN67bXXtG7duhM+Rrdu3WS1fv/fUkJCgrKysgL3bTabWrVqpX379tXZr3///oGvQ0JC1Lt370COVatW6fPPP1dERETg1rlzZ0mq0wLbq1evY2bzeDzau3evBg4cWGf5wIEDj+sxZ2dna/jw4crKytKll16ql156qc75uwUFBfr1r3+tzMxMRUVFye12q7S0VDt37qxznB49egS+TkhIkKQ6z1VCQoIqKyvl8XgCy9q2bavk5OTA/f79+8vn82nDhg31cm7evFnl5eU655xz6jx3f//73wPP2y233KI333xTOTk5uuuuu/T11183+Hn4oR8/9+vWrVP//v3rtNwOHDhQpaWldUbPf/gcHH5t/Pg5kFTv9fJTVq1apVdffbXO4x45cqR8Pp+2bdumc845R2lpaWrfvr2uueYa/etf/zrqKC0A4PjVn6EAAIDjdNZZZ2nkyJGaPHmyrrvuujrrrFZroIX1sJqamnrHsNvtde5bLJYjLvP5fA3OVVpaqosuukiPPPJIvXVt2rQJfB0eHt7gY54Mm82mOXPm6Ouvv9Ynn3yiZ555Rr///e+1ePFipaena8yYMTp48KCeeuoppaWlyel0qn///vUmD/rh83K4kDvSsuN5rn6otLRUkvThhx/WKWolyel0SpJGjRqlHTt2aNasWZozZ46GDx+usWPH6rHHHjuu73Wiz/1PvV5O9DkoLS3VzTffrAkTJtRb17ZtWzkcDq1YsUJffPGFPvnkE9133326//77tXTpUkVHRx//AwEA1MEIKgCgUTz88MP63//+p4ULF9ZZ3rp1a+Xn59cpUhvzGpiLFi0KfF1bW6vly5erS5cukqQzzjhDa9asUbt27ZSRkVHndjyFkdvtVlJSkhYsWFBn+YIFC9S1a9fjymuxWDRw4EA98MADWrlypRwOh957773A8SZMmKDzzz9f3bp1k9PprDOh08nYuXOn9u7dG7i/aNEiWa1WderUqd62Xbt2ldPp1M6dO+s9bz88p7J169YaM2aM/vnPf2r69On6y1/+ctI5D0/69MPXy4IFCxQZGamUlJSTPv4PORwOeb3eOsvOOOMMrV27tt7jzsjIkMPhkOQfqR8xYoQeffRRffPNN9q+fbs+++yzox4TANBwjKACABpFVlaWrr76aj399NN1lg8dOlT79+/Xo48+qksuuUSzZ8/WRx99JLfb3Sjfd8aMGcrMzFSXLl305JNPqrCwUDfccIMkaezYsXrppZd05ZVX6q677lJsbKw2b96sN998Uy+//LJsNluDv8+dd96pKVOmqEOHDsrJydErr7yi3Nxc/etf/2rwMRYvXqy5c+fq3HPPVXx8vBYvXqz9+/cHCurMzEz94x//UO/eveXxeHTnnXcqNDT0+J6Qo3C5XBozZowee+wxeTweTZgwQZdddpkSExPrbRsZGak77rhDt99+u3w+nwYNGqTi4mItWLBAbrdbY8aM0X333adevXqpW7duqqqq0syZMwOP42Tceuutmj59usaPH69x48Zpw4YNmjJliiZNmlSnBbwxtGvXTvPnz9cVV1whp9OpuLg4/e53v9OZZ56pcePG6Ve/+pXCw8O1du1azZkzR88++6xmzpyprVu36qyzzlJMTIxmzZoln88XKPTbtWunxYsXa/v27YqIiFBsbGyj5waA5ozfmACARjN16tR6LZVdunTRc889pxkzZig7O1tLliw54gy3J+rhhx/Www8/rOzsbH311Vf673//G5hN9vCop9fr1bnnnqusrCxNnDhR0dHRx100TJgwQZMmTdJvf/tbZWVlafbs2frvf/+rzMzMBh/D7XZr/vz5Ov/889WxY0fde++9evzxxzVq1ChJ0l//+lcVFhbqjDPO0DXXXKMJEyYoPj7+uHIeTUZGhn7xi1/o/PPP17nnnqsePXroueeeO+r2Dz74oP7whz9o2rRp6tKli8477zx9+OGHSk9Pl+QfKZw8ebJ69Oihs846SzabTW+++eZJ50xOTtasWbO0ZMkSZWdn6ze/+Y1uvPFG3XvvvSd97B+bOnWqtm/frg4dOqh169aS/Oe2zps3Txs3btTgwYPVs2dP3XfffUpKSpIkRUdH691339WwYcPUpUsXvfDCC3rjjTfUrVs3SdIdd9whm82mrl27qnXr1vXOHwYAHJvF+PGJQQAAoFm5//779f777zdqazUAAKcCI6gAAAAAgKBAgQoAAAAACAq0+AIAAAAAggIjqAAAAACAoECBCgAAAAAIChSoAAAAAICgQIEKAAAAAAgKFKgAAAAAgKBAgQoAAAAACAoUqAAAAACAoECBCgAAAAAICv8PSYua3El59GgAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6gAAAKtCAYAAAAq+0MvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD0BUlEQVR4nOzdd3hUZd7G8e+0zKT3Tggl9N57r4p1sa6KbbGsuruyNixgWwvqymt31wCyu1LWFQsIKigdRBREQHovISSQXqa+fxwYiBSDlEm5P9c1FzPPOXPmNyGE3PM0k8/n8yEiIiIiIiISYOZAFyAiIiIiIiICCqgiIiIiIiJSRSigioiIiIiISJWggCoiIiIiIiJVggKqiIiIiIiIVAkKqCIiIiIiIlIlKKCKiIiIiIhIlaCAKiIiIiIiIlWCAqqIiIiIiIhUCdZAF1AdeL1e9u3bR3h4OCaTKdDliIiIiIiIVCs+n4/CwkJSUlIwm0/TT+qrgt544w1fenq6z263+zp37uz79ttvT3nuP/7xD1/Pnj19UVFRvqioKN+AAQNOOP/mm2/2ARVuQ4YMqXQ9u3fvPuH5uummm2666aabbrrppptuup3Zbffu3afNXlWuB3XatGmMGjWKd955hy5dujB+/HiGDBnCxo0bSUhIOOH8+fPnc/3119O9e3ccDgcvvvgigwcPZt26daSmpvrPGzp0KBMnTvQ/ttvtla4pPDwcgN27dxMREXEW705ERERERKT2KSgoIC0tzZ+tTsXk8/l8F6imSunSpQudOnXijTfeAIzhtWlpadx333088sgjv/p8j8dDdHQ0b7zxBiNGjADglltuIS8vj48//vg31VRQUEBkZCT5+fkKqCIiIiIiImeospmqSi2S5HQ6+f777xk4cKC/zWw2M3DgQJYtW1apa5SUlOByuYiJianQPn/+fBISEmjSpAl33303ubm5p7xGeXk5BQUFFW4iIiIiIiJyflWpgJqTk4PH4yExMbFCe2JiIllZWZW6xsMPP0xKSkqFkDt06FAmT57MvHnzePHFF1mwYAEXXXQRHo/npNd4/vnniYyM9N/S0tJ++5sSERERERGRSqlyc1DPxgsvvMDUqVOZP38+DofD337dddf577dq1YrWrVvTsGFD5s+fz4ABA064zujRoxk1apT/8dHx0iIiIiIiInL+VKmAGhcXh8Vi4cCBAxXaDxw4QFJS0mmf+/LLL/PCCy8wd+5cWrdufdpzGzRoQFxcHFu2bDlpQLXb7We0iNJRHo8Hl8t1xs+T2sNms2GxWAJdhoiIiIhIlVSlAmpQUBAdOnRg3rx5XHHFFYCxSNK8efO49957T/m8cePG8be//Y0vvviCjh07/urr7Nmzh9zcXJKTk89J3T6fj6ysLPLy8s7J9aRmi4qKIikpSXvqioiIiIj8QpUKqACjRo3i5ptvpmPHjnTu3Jnx48dTXFzMrbfeCsCIESNITU3l+eefB+DFF19kzJgxfPDBB9SrV88/VzUsLIywsDCKiop46qmnGD58OElJSWzdupWHHnqIjIwMhgwZck5qPhpOExISCAkJUfCQk/L5fJSUlJCdnQ1wzj4gERERERGpKapcQL322ms5ePAgY8aMISsri7Zt2zJnzhz/wkm7du3CbD62ttPbb7+N0+nkqquuqnCdsWPH8uSTT2KxWFizZg3vv/8+eXl5pKSkMHjwYJ555pnfNIz3lzwejz+cxsbGnvX1pGYLDg4GIDs7m4SEBA33FRERERE5TpXbB7UqOt2ePWVlZWzfvp169er5w4fI6ZSWlrJjxw7q169fYTEvEREREZGaqlrug1qdaVivVJa+V0RERERETk4BVURERERERKoEBVQRERERERGpEhRQqwiPD1aWwZxi40/PeZ4ZfPDgQe6++27q1q2L3W4nKSmJIUOGsGTJEv859erVw2QynXB74YUXAPj8888JCgrihx9+qHDtV155hbi4OP+KypVxyy23YDKZuOuuu044ds8992AymbjllltOOLZs2TIsFgvDhg074diOHTswmUysXr36pK85adKkk74/zQsVEREREQmMKreKb200rwReOgzZnmNtCRZ4MBoGhJyf1xw+fDhOp5P333+fBg0acODAAebNm0dubm6F855++mlGjhxZoS08PByAiy++mBEjRjBixAi+//577HY769ev5/HHH2fSpEkkJSWdUU1paWlMnTqVV1991b/gVFlZGR988AF169Y96XMyMzO57777yMzMZN++faSkpJzRa0ZERLBx48YKbZojKiIiIiISGAqoATavBB7KgV92mB70GO3j4s59SM3Ly2PRokXMnz+fPn36AJCenk7nzp1PODc8PPy0QfPVV1+lVatWjB07lmeffZabb76ZSy+9lGuvvfaM62rfvj1bt27lo48+4oYbbgDgo48+om7dutSvX/+E84uKipg2bRorV64kKyuLSZMm8eijj57Ra5pMpjMO0iIiIiIicn5oiO954PNBqffXb0UeGHf4xHAKRpsPo2e1yFO561V2w6CwsDDCwsL4+OOPKS8vP6v3Gh4ezoQJE3jllVe44YYb2L17N2+//XaFc44Opa2M2267jYkTJ/ofT5gwgVtvvfWk506fPp2mTZvSpEkTbrzxRiZMmIB2TRIRERERqb7Ug3oelPmgx55zc61sD/TeW7lzl9SB4ErkQKvVyqRJkxg5ciTvvPMO7du3p0+fPlx33XW0bt26wrkPP/wwjz/+eIW22bNn06tXL//j/v37c9VVVzF16lSmTZtGbGxshfMjIyNp0qRJpd7DjTfeyOjRo9m5c6fxnpYsYerUqcyfP/+EczMzM7nxxhsBGDp0KPn5+SxYsIC+fftW6rUA8vPzCQsLq9DWq1cvZs+eXelriIiIiIjIuaGAWksNHz6cYcOGsWjRIpYvX87s2bMZN24c7733XoXFiB588METFidKTU2t8Hjv3r3MmTOHkJAQFi1axDXXXFPh+JVXXsmVV15Zqbri4+MZNmwYkyZNwufzMWzYMOLi4k44b+PGjaxYsYIZM2YARui+9tpryczMPKOAGh4efsIiT0fnv4qIiIiIyIWlgHoeOExGb+av+aEM7sv59fNej4P2lVhY1nGGa/s4HA4GDRrEoEGDeOKJJ/jDH/7A2LFjKwTSuLg4MjIyTnudkSNH0qFDBx577DEGDRrEVVdd5Z/b+lvcdttt3HvvvQC8+eabJz0nMzMTt9tdYVEkn8+H3W7njTfeIDIyslKvZTabf/X9iYiIiIjIhaE5qOeByQTB5l+/dQ02Vus9Va40AYkW47zKXO9sF59t3rw5xcXFZ/Sc9957j8WLF5OZmUm/fv24++67ue222874OscbOnQoTqcTl8vFkCFDTjjudruZPHkyr7zyCqtXr/bffvzxR1JSUpgyZcpvfm0REREREQkc9aAGkMVkbCXzUI4RRo9f3udo1nwg2jjvXMrNzeXqq6/mtttuo3Xr1oSHh7Ny5UrGjRvH5ZdfXuHcwsLCE/YzDQkJISIigp07dzJq1Chefvll0tPTAXjxxReZPXs2jzzyCK+//joAM2bMYPTo0WzYsKFS9VksFn7++Wf//V+aOXMmhw8f5vbbbz+hp3T48OFkZmZW2E/1l9vIALRo0QIwel1Ptl9rQkICZrM+vxERERERuZAUUANsQIixlczJ9kF94DztgxoWFkaXLl149dVX2bp1Ky6Xi7S0NEaOHHnCNi1jxoxhzJgxFdruvPNO3n77bW6//Xa6devGHXfc4T8WEhLCpEmT6Nu3r3+ob35+/klD4ulERESc8lhmZiYDBw486TDe4cOHM27cONasWeO/xnXXXXfCebt37wagoKCA5OTkE47v379f28+IiASa0wnfL4cOXSEoKNDViIjIBWDyaV+OX1VQUEBkZCT5+fknBKeysjK2b99O/fr1cTgqMVH0FDw+WFUOOR6Is0A7+7nvOZWq4Vx9z4iI1Fg+H6xYAhPehNyDEJcAt/4ROvc4+/ksIiISEKfLVMdTD2oVYTFBR2UVERGp7XZsgwlvwPo1x8Jo7kF46Ulo0RpuuxfSGwS0RBEROX80yU5ERESqjtdfgA1rjftHB3kd/fPntfDaC4GpS0RELgj1oIqIiEjV4fUat1Md27cHHrkXrFaw2cBqO3Y/OtYYCnzUrBlQcBj6DobkI/u/7d1lBN2TPd96ssdWsAVBVPT5f+8iIqKAKiIiItWIywlbTrEqfFwC9B547PGcj2H/XoiOg5ISo+3bxfDRB2f2msEh8NokMJvBbIK/P2v08t7xF+jRzxiKvHYVTHjrWLC1HQm3RwPuCfePnHfjH+DoivU/rICsvdC8DdQ7Moy5MB82rq/4nKP3bae4b7UatYqIVEMKqCIiIhJYpSXw5UyoUxc87tOfGx0Lv7seXC7j5nGD2238af/FYg5tO0H9RhV7PyOjoVkr8HgqPtfjOXbf/YvHFgscyjl2jaJC47XzDsPuHUbbjm2wf8+Zv/fufY6Fyc8+hJ9+gMuvAU9fo23bZnj31TO/7v9NgJh4I1D/91+w6GsY9ju47Grj+MEDxnDpCsH2JL3Hv2zrNwQio4xr7Nxm9Egn14H6GUab2w3bt5z8Ose/1km2kRMRAQVUERERCbSZ/4Np70NqGnh9Ro/kyTYZMJshIhIuuqJy123Y+ORtw6489XN8vmPDjH0+8HqMsArGfa8P/jQaykohJASC7EZ7y7ZGu9sJThe4XcY2OceHYLenYgD2eir2dKY3MDZCj0s41mazQVq9kzz/F9f85bDoQ7lQVmbc37/XWGhq/17YuulI2x74+afKfR2Pl5AEiUe2Z/vyM5g32wjZv7vBCMPFhfDEqF+/jsl8XK+yDf46Bpq2NL4eS+fDp/+Fth3h+tuM830++Pszle9BPtrWog3EJxrXyDtsBOrwCKhb/1gtOdnG6/4yUGvFaJGAUEAVERGRCys7y+g1rZNuBKUmLYxw2q2PEVI++uDYKr6+4wJrs5bGKr7nk8lk9O6drofvaA/i8RJToFHTs3vtUwXqvoMrtvkD9JE/vT4jGLuOhGKXE0JCj5176VXG0OewCHA4jLa4BLhppBF2XccHXvex3uUKvcpH2o5eFyAqBho0Mq7lcYMHKCuH6Jhj5x9/jeP5vEadLieUAln7wBFsHNu8wQjS4ZHHArXbDcsWnvnXdMQd0LKdEUBXrYD/ZELjZnDfw0abyQwP3HFsCPjxLNZTDNW2wTUjoFtv47xtm2HqJEhOrTgH+r//guKiE4d5W08y5Pvo66SkHfsAwOmEg1nGhyBHQzYYXzPzr3yPSu1VA/aPVkAVERGRC2PnNvhkOiz+Guo1hDvvN9pDw+DpV48FvzYd4Lulxj6oOdkQGw+33QOduqtXC47Mhf3lHNPgU59/fLg5XtOWZ1dHw8Zw/a0ntv9j2rEQfTRIHw2qzrIjIdoNzvIjIdUFMbFGSPP6jKHZSSkQFl7xQ4rLrz0xRJ90iPZxx8Ijjed7PEbgTEgyhnlXCKSmk/fae04SrI/auc24FsCGdfDDt5Ba91igBvhqptGTfSaG/Q4GDTMC6J6dMG6sMUT9xbeOBernHzNex2zmpMOzT7bgV/c+MOgS4zUKC+Bf/wC7HW6/79hrL50PB7J+vYf6+PsRkcd6/H2+Y4Hc7tC/1QutBu0frYAqIiIi59eGtTBjqvGp/lEWC5SXGcNaQ8Mqnm8yGb9Ute0EPxzpCbBVz56AWqkyvdCnk5oGdDyxvXGzsyqLho2NObhHh3Ef/fOfRwL10WHZziOh2VVesVfa6TzS4+w0wqnFaoTvpGS46kZjMa3jdetjBLZfzmn2eIzXOqHNbfxbKC83nl9aavRYO4KN4clHlZUaf3q9x+r9NTFx0OBID31uDnw9x+iZ7Tvk2DkzP4JN68/sa9qlJ9x8lxGWXS6472aj/Z3/QHCo8b3w/jvw7ZKThNzje6d/EagbND42XxqMKQBgBPiwcOP+5g1GiD/pMO9TBGq7/djza5Iatn+0AqqIiIicez6f0as0Y+qxfU1NJmO4Zd/B0KXHsSGdpxIUBF17n/9apXY5GqDPlfoZxocov3SyIduV5fUaowy69zZ6lY8f0v34C0bvsz9MHw3UzmMh23VkHvTRxcSO70UPDoahlxm9scdr3MyYn+vxnLqn+pdttiCjRxaMYftHHToElnzjfu5BKCo4s/d/KNeYP3zURx8Yr5vRxBhaDjDrI2M0xpmonwGPP2+8d7MZHrwL8vNg7DhjuLrJDF/Phs8/rtwc56P3o2LgyuuOvc7ir43F1Dp2O9bDfPCAsajaaYd5/2JRMrO5cr2fr79wbMG2U+0f/co/zuxrFUAKqFXJBRwzfvDgQcaMGcOsWbM4cOAA0dHRtGnThjFjxtCjRw8A6tWrx86dO0947vPPP88jjzzC559/zhVXXMHy5ctp3769//grr7zC888/z9q1a0lKSqpUPbfccgvvv//+Ce2bN28mIyPjlMeHDBnCnDlzKtQ7ZcoUrrvuugrntWjRgvXr1zNx4kRuueWWE97P448/zgsvvMCDDz5Y4dikSZP4y1/+Ql5e3hnVfXxdIiK1iscDS+bDx1Nh13ajzWKFDl2gzyBo31m9oSK/5ugQ7pMF6XPRA9iq3YltZxKoT7WY2IT/GeHZajPafV5jGPhlVx/XM+06Nmfa/9hVMfxGx1Z8va69j6zUfdyHWglJ0LTFiT3Uv1yM7Phea4Ccg8euUVpi1Hsw26gZYPtWo2f2TMQlQOtjvwsz7X1jUTJMx+am/5YtrkLDjd5ok8kY9v3GOGObrVvuNkaZAKz/ydie6nT7R5/qWBWlgFoVBGDM+PDhw3E6nbz//vs0aNCAAwcOMG/ePHJzK86VePrppxk5cmSFtvBw4wfjxRdfzIgRIxgxYgTff/89drud9evX8/jjjzNp0qRKh9Ojhg4dysSJEyu0xcfHn/a43W6v8DgtLY2JEydWCKjLly8nKyuL0NBQTmbChAk89NBDTJgw4YSA+lvr/mVdIiI1Xnk5fDPHWH01O8toC7JDt17Qb6ixtYsWdRGpGc5kGHdM3Nm/3v2Pndj2a4H6ZIuJedxHgvORgD32JSOgRkQZHwr4fNCjLzRpdmx499HwfPxiYr8cnv3L4d0ZTSE2weiRPio4xBi+7n/uSYZ4/3LOswnYd9z2Vfv3GD9f9+4+Nt95w9pjw8JrCAXUQAvAmPG8vDwWLVrE/Pnz6dOnDwDp6el07tz5hHPDw8NPGzRfffVVWrVqxdixY3n22We5+eabufTSS7n22mvPuC673X7a1/q14wA33HADr776Krt37yYtLQ0wAugNN9zA5MmTTzh/wYIFlJaW8vTTTzN58mSWLl1K9+7dz2ndIiK1wvvvGNuOgDGPrmd/6D/UGFJ3woI+IiLn2UkXE/uF4/dIPiop5exf+8+jT2xr2LjiMODje6FPtZiY22P0mB8N2TeNNIYOxyUaHwD6vMbP2MhoyD984mtWUwqo59PRSeyn83/PGXtywcnHjI9/Dl5405jUfbrr/to8nuOEhYURFhbGxx9/TNeuXc+qty88PJwJEyYwZMgQtm/fzu7du08Y2jpp0iRuvfVWfCfb0+4cS0xMZMiQIbz//vs8/vjjlJSUMG3aNBYsWHDSgJqZmcn111+PzWbj+uuvJzMz84wDqohIrXQox/iFKSYODuwz5outXGpsZ9Jv6JGFbkRE5KR+y2JiCSfpEKlb3wjahfknH8pbmaBexVSvaqubGy/99dvuHacfM757B/ztF5/C/PHGE69zBqxWK5MmTeL9998nKiqKHj168Oijj7JmzZoTzn344Yf9gfbobdGiRRXO6d+/P1dddRXTp0/ntddeIza24ryByMhImjRp8qt1zZw5s8LrXH311ac9HhYWxnPPPXfCdW677TYmTZqEz+fjww8/pGHDhrRt2/aE8woKCvjwww+58cYbAbjxxhuZPn06RUVFv1rrb6lLRKTG+HIm/PEmeO912L7F2LIjKQWefxNuHKlwKiJyIf3pkWPbRh0dkXn0z2YtjePViHpQa6nhw4czbNgwFi1axPLly5k9ezbjxo3jvffeq7CI0IMPPnjCokKpqakVHu/du5c5c+YQEhLCokWLuOaaayocv/LKK7nyyit/taZ+/frx9ttv+x//cs7oL48DxMTEnHCdYcOGceedd7Jw4UImTJjAbbfddtLXmzJlCg0bNqRNG2OVuLZt25Kens60adO4/fbbf7XeM61LRKRa83iMT/pdTmNUj9sFh3OND1OTUirOtRIRkQsnvQE89UqN2T9aAfV8+vdnv37OI/fAnl2nPl6nLjz2fMW2t/59dnUd4XA4GDRoEIMGDeKJJ57gD3/4A2PHjq0QSOPi4sjIyDjtdUaOHEmHDh147LHHGDRoEFdddZV/buuZCA0NPe1r/drxo6xWKzfddBNjx47l22+/ZcaMGSc9LzMzk3Xr1mG1Hvtn4PV6mTBhwhkF1MrWJSJS7fh8sHa1sVVMfAIMPjJip046/OUxY2XeXy4OIiIiF14N2j9aAfV8qsy8UIvVGBd+qjHjFmvF+aeVve5v0Lx5cz7++OMzes57773H4sWL+emnn0hPT+fuu+/mtttuY82aNadcNfdCuO2223j55Ze59tpriY4+cQL8Tz/9xMqVK5k/f36F3s5Dhw7Rt29fNmzYQNOmTS9kySIiVYfXa6wu//FU2LLRaAuyG9vE2B1GQD2bPR5FROT8qAH7RyugBtqfHoHM41bx9fmO/dmspbGK7zmWm5vL1VdfzW233Ubr1q0JDw9n5cqVjBs3jssvv7zCuYWFhWRlZVVoCwkJISIigp07dzJq1Chefvll0tPTAXjxxReZPXs2jzzyCK+//joAM2bMYPTo0WzYsOGs6i4vLz+hFqvVSlzcicuXN2vWjJycHEJCTv7JfmZmJp07d6Z37xP/AXfq1InMzExeeuklADweD6tXr65wjt1up1mzZmdcl4hIleZywcK58Ml02LfbaLPZoFMP6DsEGjc3NpEXERE5T/S/TKAFYMx4WFgYXbp04dVXX2Xr1q24XC7S0tIYOXIkjz76aIVzx4wZw5gxYyq03Xnnnbz99tvcfvvtdOvWjTvuuMN/LCQkhEmTJtG3b1//UN/8/Hw2btx41nXPmTOH5OTkCm1NmjQ5ZfD95WJNRzmdTv7973/z8MMPn/T48OHDeeWVV/wLHRUVFdGuXcUNrRs2bMiWLVt+U10iIlVOaQnM/Rw++9BYnReMobvd+0D/IZDRTHuYiojIBWHyXYi9P6q5goICIiMjyc/PJyKi4iIQZWVlbN++nfr16+NwOM7uhZzOaj9mXH7dOf2eERE5G/l5MPtjmP0JFBcabRGR0Gsg9B8MdRtUu8U1RESkajpdpjqeelCrkhowZlxERKqJmf+DDyaAs9x4HJcAfQcbQ3mTkk//XBERkfNEAVVERKS2OLrOgdttbBvjLDdWi+83BHoPhOiTT40QERG5UBRQRUREarqtm+C//4JGzaBtR6OteWu48y/QrQ+EhQe0PBERkaMUUEVERGq6rRth5TLYtB5atTMWPEpLh0baTktERKoWBVQREZGaxOOBpfPBaoOWbSE7C9IbQq8B0LUX1G+ohfhERKTKUkAVERGpCcrL4Osv4LP/GqE0OhYefNLoLQ0JgXsf0lYxIiJS5SmgioiIVGdFhfDFpzBrBhTkGW2hYdC5B9jtkFYPzOZAVigiIlJpCqgiIiLV0aEcY6uYL2dCWanRFh0LfQZCv6GQUkd7mIqISLWjgCoiIlKd7NsDn0yDBXPB7TLaklKM/Uv7Doa4+MDWJyIichYUUEVERKqDbZvhoynw7SJjP1OAeg2NUNp7IEREBrY+ERGRc0CTUqqY3A35F/T1li1bhsViYdiwYSc97nQ6eemll2jfvj2hoaFERkbSpk0bHn/8cfbt2+c/75ZbbsFkMp1wGzp06BnV849//IO+ffsSERGByWQiLy/vhHM2bdrE5ZdfTlxcHBEREfTs2ZNvvvnmtNfduHEj/fr1IzExEYfDQYMGDXj88cdxuVz+cyZNmnRC/Q6H44zqFxE5b5YthOULjXDarCXcNQqeeRUuGa5wKiIiNYZ6UKsIV4mbZU+vYfPHu2l0ZRrdx7TGGnz+/3oyMzO57777yMzMZN++faSkpPiPlZeXM3jwYNasWcNTTz1Fjx49iI+PZ/v27UyZMoXXX3+d559/3n/+0KFDmThxYoXr2+32M6qnpKSEoUOHMnToUEaPHn3Scy655BIaNWrE119/TXBwMOPHj+eSSy5h69atJCUlnfQ5NpuNESNG0L59e6Kiovjxxx8ZOXIkXq+X5557zn9eREQEGzdu9D82af6WiASC1wsrlkBkFNStD1n7jP1Ld203tovp1N1YAElERKSGUUCtAg5vKWDuvSso3FUMwJZPdpO9+jADXu9EdEbEeXvdoqIipk2bxsqVK8nKymLSpEk8+uij/uOvvvoqixcvZuXKlbRr187fXrduXfr06YPv6BCzI+x2+ykDYmX95S9/AWD+/PknPZ6Tk8PmzZvJzMykdevWALzwwgu89dZbrF279pSv36BBAxo0aOB/nJ6ezvz581m0aFGF80wm01m/BxGRszZjKkyZAPUzjJ5SMHpJHxgLNltgaxMRETmPNMT3PHKVuE95c5d7ANg8Yxef/G4BhbtL8HmN5/m8ULCrmI9/t4AN03fgLvP86nV/i+nTp9O0aVOaNGnCjTfeyIQJEyqEzilTpjBo0KAK4fR4Z9q7eMstt9C3b9/fVOtRsbGxNGnShMmTJ1NcXIzb7ebdd98lISGBDh06VPo6W7ZsYc6cOfTp06dCe1FREenp6aSlpXH55Zezbt26s6pXRKRSSkvg4AHjfm6OEUzDIow/bTZjrmm9hgqnIiJS46kH9Tya3H7WKY/V6ZNIh/uasnD0qpMe93l8+Dw+loz5kQ1Td3DFR339x6YP+Iqyw84K59++4fIzri8zM5Mbb7wRMIbn5ufns2DBAn+I3LRp0wmB8sorr+Srr74CoHXr1ixdutR/bObMmYSFhVU4/9FHH/X3yiYnJ+P1es+4zuOZTCbmzp3LFVdcQXh4OGazmYSEBObMmUN0dPSvPr979+788MMPlJeXc8cdd/D000/7jzVp0oQJEybQunVr8vPzefnll+nevTvr1q2jTp06Z1W3iMhJ5efB7I9h9ieQXh9uvstoj4yC58ZDcpq2ihERkVpFATWAYltEEtcyitz1ef7e05OxhljO+Wtv3LiRFStWMGPGDOM1rFauvfZaMjMzT9vL+dZbb1FcXMxrr73GwoULKxzr168fb7/9doW2mJgY//3j56v+Vj6fj3vuuYeEhAQWLVpEcHAw7733HpdeeinfffcdycnJtGjRgp07dwLQq1cvZs+e7X/+tGnTKCws5Mcff+TBBx/k5Zdf5qGHHgKgW7dudOvWzX9u9+7dadasGe+++y7PPPPMWdcuIuJ38AB8+l+YNxuc5UZbdpaxn2lSCsRqqxgREamdFFDPoxE/nHxlXACTxVgltsOfm/HFyGWnPG/gm51J7ZFQoe2aeYPOurbMzEzcbneFRZF8Ph92u5033niDyMhIGjVqVGHBIDB6QaFi8DwqNDSUjIyMs67tdL7++mtmzpzJ4cOHiYgw5ue+9dZbfPXVV7z//vs88sgjfP755/7VeYODgys8Py0tDYDmzZvj8Xi44447+Otf/4rFcuKHADabjXbt2rFly5bz+p5EpBbZtR0+ngaLvzYWQgJIrQv9hkCfgRAdG9j6REREAkwB9Tyyhfz6lze1Z/xJe1FNZohtEUXd/kknzPWszHVPx+12M3nyZF555RUGDx5c4dgVV1zBlClTuOuuu7j++ut5/PHHWbVq1SnnoV5oJSUlAJjNFadPm81m//Dh9PT0Sl3L6/Xicrnwer0nDagej4effvqJiy+++CyrFpFab8M6+HgqrDzuA8mMptBvMPToB2HhgatNRESkClFADbBT9aL6vNDhz83OyzYnR3sgb7/9diIjK+6dN3z4cDIzM7nrrru4//77mTVrFgMGDGDs2LH06tWL6OhoNm3axOzZs08IdeXl5WRlZVVos1qtxMXFATB69Gj27t3L5MmTT1lbVlYWWVlZ/l7Ln376ifDwcOrWrUtMTAzdunUjOjqam2++mTFjxhAcHMw///lPtm/ffsq9XAH+85//YLPZaNWqFXa7nZUrVzJ69GiuvfZabEcWHXn66afp2rUrGRkZ5OXl8dJLL7Fz507+8Ic/VP6LKyJylM8Hq1YYK/L+/JPRZjJBy7bQdzB06QmO4NNeQkREpLZRQK0CUnvGc/lHfeD4XVtMENvs/Gy8npmZycCBA08Ip2AE1HHjxrFmzRpat27NvHnzGD9+PBMnTmT06NF4vV7q16/PRRddxP3331/huXPmzPEPAT6qSZMmbNiwAYD9+/eza9eu09b2zjvv8NRTT/kf9+7dG4CJEydyyy23EBcXx5w5c3jsscfo378/LpeLFi1a8Mknn9CmTZtTXtdqtfLiiy+yadMmfD4f6enp3HvvvRXew+HDhxk5ciRZWVlER0fToUMHli5dSvPmzU9bs4jISU3+B3z2X+O+xQLtu0LfQdC+M9iCAlubiIhIFWXy/XIzSzlBQUEBkZGR5Ofn++c9HlVWVsb27dupX78+DocjQBVKdaLvGZEaqrzcWPAoPAIOH4I138O746FrL6PHtEUbI6iKiIjUQqfLVMdTD6qIiMjZWroAMl+H1h3gkuFGW510+Nt4SG8IZm07LiIiUhn6H1NERORseL3gdht7mm5YCx4PRERCg0ZQv5HCqYiIyBlQD6qIiMiZ2L8XPp0OYRHQewA4nZBSB26+C7r2hviEX7+GiIiInJQCqoiISGVs22xsFbNskbHUepAd2nY0VuJNTIKMJoGuUEREpNpTQBURETkVnw/W/QgzpsCP3x9rb9rSWPiofgaEhAauPhERkRpGAVVEROSXvF74bqmxh+kWY6sszGZo0wH6DIJOPcBuD2yNIiIiNZACqoiIyFEuFyyaBx9Pg327jTarDTp1N3pMW7cHmy2wNYqIiNRgCqgiIiIAC+fBv/8Jh3KMx45g6N4H+g2Bxs21h6mIiMgFoIAqIiLi88HhXCOchkdCr/7QfyikNwCTKdDViYiI1BoKqCIiUvscPACffQh10qFFaygrg2at4JoR0HsgJKUEukIREZFaSbuHB1h28R62HPrxlLfs4j3n9fWXLVuGxWJh2LBhJz3udDp56aWXaN++PaGhoURGRtKmTRsef/xx9u3b5z/vlltuwWQynXAbOnToGdVz55130rBhQ4KDg4mPj+fyyy9nw4YNFc452etMnTr1V6+dl5fHPffcQ3JyMna7ncaNG/P555/7jz/55JMnXLdp06ZnVL+IVBPfLYXPZ8B/J0NxsdGWmGQEVIVTERGRgFEPagBlF+/hzs864fKWn/Icm9nOu5d+R0JonfNSQ2ZmJvfddx+ZmZns27ePlJRjv5iVl5czePBg1qxZw1NPPUWPHj2Ij49n+/btTJkyhddff53nn3/ef/7QoUOZOHFihevbz3CVyw4dOnDDDTdQt25dDh06xJNPPsngwYPZvn07luPmf02cOLFC+I2KijrtdZ1OJ4MGDSIhIYEPP/yQ1NRUdu7cecLzWrRowdy5c/2PrVb9ExGpETauB2c5NGkBu3dAg0bQsh107QUpdSAsPNAVioiICAqoAVVQnnvacArg8pZTUJ57XgJqUVER06ZNY+XKlWRlZTFp0iQeffRR//FXX32VxYsXs3LlStq1a+dvr1u3Ln369MHn81W4nt1uJykp6axquuOOO/z369Wrx7PPPkubNm3YsWMHDRs29B+Lioo6o9eaMGEChw4dYunSpdiOrMBZr169E86zWq1n/R5EpIrw+WDVd/DxVFi/BhKS4P7Hje1ibEHwyNPGQkgiIiJSZWiI73lU5i6mzF1cIci5PE7K3MW4PKcPpsf75blHr+v1ec+qvunTp9O0aVOaNGnCjTfeyIQJEyrUOmXKFAYNGlQhnB7PdIYLh9xyyy307du30ucXFxczceJE6tevT1paWoVj99xzD3FxcXTu3PmEuk/m008/pVu3btxzzz0kJibSsmVLnnvuOTweT4XzNm/eTEpKCg0aNOCGG25g165dla5XRKoIjwcWfw0P3gXPPWqEU4vFWPDI5YK69aBhY4VTERGRKkgB9Ty6anoaV01Po6A819/20c+vc9X0NN5e+VClrzPlp5cqPL7tk7ZcNT2N3fkbz6q+zMxMbrzxRsAYnpufn8+CBQv8xzdt2kSTJk0qPOfKK68kLCyMsLAwunfvXuHYzJkz/ceO3p577jn/8eTkZOrWrfurdb311lv+58+ePZuvvvqKoKAg//Gnn36a6dOn89VXXzF8+HD++Mc/8vrrr5/2mtu2bePDDz/E4/Hw+eef88QTT/DKK6/w7LPP+s/p0qULkyZNYs6cObz99tts376dXr16UVhY+Ks1i0gVUF4OX3wK990M45+DHVshyA69BsBjz8MDY6F5K6P3VERERKokDfGtpTZu3MiKFSuYMWMGYAxtvfbaa8nMzDxtL+dbb71FcXExr732GgsXLqxwrF+/frz99tsV2mJiYvz3j5+vejo33HADgwYNYv/+/bz88stcc801LFmyBIfDAcATTzzhP7ddu3YUFxfz0ksv8ac//Yldu3bRvHlz//FHH32URx99FK/XS0JCAv/4xz+wWCx06NCBvXv38tJLLzF27FgALrroIv/zWrduTZcuXUhPT2f69OncfvvtlapdRAKguMgIprM+gvw8oy00DHr0M/YwbdjYGNYrIiIiVZ4C6nn04TW7AbBbQvxtv2t2H5c3vQuLycrO/A2nemoF17d6sMLjCZevBiDI8tuHp2VmZuJ2uyssiuTz+bDb7bzxxhtERkbSqFEjNm6s2EubnJwMVAyeR4WGhpKRkfGbazoqMjLS//pdu3YlOjqaGTNmcP3115/0/C5duvDMM89QXl5OSkoKq1ev9h87WmdycjI2m63CQkvNmjUjKysLp9NZoYf2qKioKBo3bsyWLVvO+j2JyHlwONcIpV98BqUlRltUDPQZaOxhmpKmPUxFRESqGX2kfB45rKE4rKEV5mraLEE4rKHYLJVf3faX5x69rtn02/763G43kydP5pVXXmH16tX+248//khKSgpTpkwB4Prrr+err75i1apVv+l1zgWfz4fP56O8/NRzdlevXk10dDR2ux2r1UpGRob/djSg9ujRgy1btuD1Hpu3u2nTJpKTk08aTsFYRGrr1q3+UC4iVcxnH8LH04xwmpgM194Mz78ON90BqXUVTkVERKoh9aDWQjNnzuTw4cPcfvvtREZGVjg2fPhwMjMzueuuu7j//vuZNWsWAwYMYOzYsfTq1Yvo6Gg2bdrE7NmzK/RGgrEtTVZWVoU2q9VKXFwcAKNHj2bv3r1Mnjz5pHVt27aNadOmMXjwYOLj49mzZw8vvPACwcHBXHzxxQB89tlnHDhwgK5du+JwOPjqq6947rnneOCBB077nu+++27eeOMN/vznP3PfffexefNmnnvuOf70pz/5z3nggQe49NJLSU9PZ9++fYwdOxaLxXLKnlsRucC2bQazBVLTjK1iWrWDtauNOaa9B0BkdKArFBERkbOkgBpAEfZYbGb7r+6DGmGPPaevm5mZycCBA08Ip2AE1HHjxrFmzRpat27NvHnzGD9+PBMnTmT06NF4vV7q16/PRRddxP3331/huXPmzDmht7FJkyZs2GAMZd6/f/9pV8V1OBwsWrSI8ePHc/jwYRITE+nduzdLly4lISEBAJvNxptvvsn999+Pz+cjIyODv//974wcOfK07zktLY0vvviC+++/n9atW5Oamsqf//xnHn74Yf85e/bs4frrryc3N5f4+Hh69uzJ8uXLiY+PP/0XVETOv89nwIQ3oXFzuP1eoy0iCp58GUJCA1qaiIiInDsm36/tzyEUFBQQGRlJfn4+ERERFY6VlZWxfft26tev71/E50xkF++psMrvL0XYY8/LHqgSOGf7PSNSK3i9UFIMYeHGIkjr1sArTxu9pteMMLaMsVd+qoSIiIgE1uky1fHUgxpgCaF1FEBFRI5yuYw9TD+eBkkpRhgFiI2DJ16AJi3AZgtsjSIiInLeKKCKiEjglZbCvM+NhY9yDxpth3KMBZCioiG5Dvxi3ruIiIjUPAqoIiISOAX5MPtj41ZUaLSFRxgLH/UbCvUaaDVeERGRWkQBVURELryDB2Dm/2DuLDi6jVRsPPQZBP2HQFJqYOsTERGRgFBAPUe01pRUlr5XpFbbvRM+mQaL5oHHY7SlpkHfIdB3IETHBbY+ERERCSgF1LNkO7JYR0lJCcHBwQGuRqqDkpIS4Nj3jkit8b//wJSJxx43bAJ9B0Ov/sZqvSIiIlLrKaCeJYvFQlRUFNnZ2QCEhIRg0nwpOQmfz0dJSQnZ2dlERUVh0YIvUtP5fMaqvEFBxiJIEVHGfNIWbYxg2qUX6IM9EREROY4C6jmQlJQE4A+pIqcTFRXl/54RqbHW/ACT34WmLaHfEKOtfgY8+BS07WiEVhEREZFfUEA9B0wmE8nJySQkJOByuQJdjlRhNptNPadSO+Qdhh1bjS1jeg0wekpT60JGk0BXJiIiIlWYAuo5ZLFYFD5EpPYpLoIvZxq9op17GFvHpNSBy6+Brr2hYWMwmwNdpYiIiFQDCqgiIvLbHD4Es/4HX3wGpSUQEmoM47U7ICISbhypPUxFRETkjCigiojImcnaB59Oh2++MBZBAkhIhr6DID7RuImIiIj8BgqoIiJSOdu3wMfTYOkC8HmNtrr1jUWQeg+AyOjA1iciIiLVngKqiIicms8H69fAjKmw+rtj7U1aGFvFdO8DoWGBq09ERERqFAVUERE5uTXfw9RJsOln47HJBG06QJ/B0Lm7MddURERE5BxSQBURkZPbtsUIp1YrdOxm9Ji26Qg2W6ArExERkRpKAVVERKCsFObNhth4aNzMWKG3aQsYeDH0HmgM6dU2WiIiInKeKaCKiIixj+nkd40VeEc9YexbGhUDd96vrWJERETkglFAFRGpjXKyoSAf6jWE/XuhYWOoUxc69zT2ME1MDnSFIiIiUgspoIqI1CZ7dsIn02HhXEiuA/c+ZPSQOoLhyVcgSlvFiIiISOAooIqI1AabfoaPp8KKJcfa7HYoLYX6DSEsPHC1iYiIiByhgCoiUlP5fPDjSmMP03U/Hmtv0cZYkbdrbwgODlx9IiIiIr+ggCoiUtN4PLB8oRFMd2w12sxmaN/FWJG3YzcICgpsjSIiIiInoYAqIlJTOJ2w4EtjjmnWPqPNFgRdeho9pi3bGnuaioiIiFRR+k1FRKSmmDbJCKcAIaHQvS8MuMhYoddsDmRlIiIiIpWigCoiUl0dPgTOckhIMnpMm7aERfOgRz/oPxTqpGsPUxEREalWFFBFRKqj+V/Cu69Cs9Zww+1GW0wcPPc6xCUEtjYRERGR30gBVUSkuvB4wGIBlwvsDuPPgjxwuyE5FSIiA12hiIiIyFlRQBURqcp8Pvj5J2NF3rBwuGS40Z6QBPc/Dm07QmhYYGsUEREROUeq5KoZb775JvXq1cPhcNClSxdWrFhxynP/+c9/0qtXL6Kjo4mOjmbgwIEnnO/z+RgzZgzJyckEBwczcOBANm/efL7fhojIb+f1wndL4bE/w5hRsGoFLFsAJcXG8Tp1oUdfhVMRERGpUapcQJ02bRqjRo1i7Nix/PDDD7Rp04YhQ4aQnZ190vPnz5/P9ddfzzfffMOyZctIS0tj8ODB7N2713/OuHHjeO2113jnnXf49ttvCQ0NZciQIZSVlV2otyUiUjlutzG/dNRIeHEMbFpvbA3TtRf8dayxEFLDxsYQXxEREZEaxuTz+XyBLuJ4Xbp0oVOnTrzxxhsAeL1e0tLSuO+++3jkkUd+9fkej4fo6GjeeOMNRowYgc/nIyUlhb/+9a888MADAOTn55OYmMikSZO47rrrfvWaBQUFREZGkp+fT0RExNm9QRGRkykrhXlz4LPpkHPQaLM7oFtv6DcUmrYw5p+KiIiIVEOVzVRVag6q0+nk+++/Z/To0f42s9nMwIEDWbZsWaWuUVJSgsvlIiYmBoDt27eTlZXFwIED/edERkbSpUsXli1bdtKAWl5eTnl5uf9xQUHBb31LIiKnV5gPcz6Fz2dA4ZGfNWER0Ks/9BsC9RpqD1MRERGpNapUQM3JycHj8ZCYmFihPTExkQ0bNlTqGg8//DApKSn+QJqVleW/xi+vefTYLz3//PM89dRTZ1q+iMiZ+XImvP8OlB+ZbhATB30GQf8hkFwnsLWJiIiIBECVCqhn64UXXmDq1KnMnz8fh+O3z88aPXo0o0aN8j8uKCggLS3tXJQoIrWdzwcmkzHX1OsxwmlKHeg7GPoMhti4QFcoIiIiEjBVKqDGxcVhsVg4cOBAhfYDBw6QlJR02ue+/PLLvPDCC8ydO5fWrVv7248+78CBAyQnJ1e4Ztu2bU96Lbvdjt1u/43vQkTkJHZshen/grR06NzDaMtoCnf8xZhnGq757SIiIiJVamJTUFAQHTp0YN68ef42r9fLvHnz6Nat2ymfN27cOJ555hnmzJlDx44dKxyrX78+SUlJFa5ZUFDAt99+e9prioicUzu2wYrFMPtjcLuMttS6MPgShVMRERGRI6pUDyrAqFGjuPnmm+nYsSOdO3dm/PjxFBcXc+uttwIwYsQIUlNTef755wF48cUXGTNmDB988AH16tXzzysNCwsjLCwMk8nEX/7yF5599lkaNWpE/fr1eeKJJ0hJSeGKK64I1NsUkZrM44FvFxvDeNt3hgP7ITUN+gyEDt2gfiMICgp0lSIiIiJVTpULqNdeey0HDx5kzJgxZGVl0bZtW+bMmeNf5GjXrl2Yj1vR8u2338bpdHLVVVdVuM7YsWN58sknAXjooYcoLi7mjjvuIC8vj549ezJnzpyzmqdaleRuyCe2aWSgyxARpxMWfAmf/Bey9ho9owlJYLMZgfTuB4w9TUVERETkpKrcPqhVUVXdB9VV4mbZ02vY/PFuGl2ZRvcxrbEG65dfkQuupNhYkXfm/yDvkNEWEgrd+8LgS6FeA20VIyIiIrVatdwHVSrv8JYC5t67gsJdxQBs+WQ32asPM+D1TkRnVJ0QLVKj5R2GWR/BF58aIRUgMhp6D4D+Q6FOurFir4iIiIhUigJqNbR5xi6WjP0Rr8eHz2u0+bxQsKuYT363gB5Pt6HRFXUDW6RITXZgH3z6X/h6DriOLHiUkGRsFdN3sHFfRERERM6YAmo1k7M2j4WjV530mM/jw+PxsfCRVURnRBDXMurCFidS0+3cBjOmwJIF+D8dSqsH/YZA74EQFR3Q8kRERESqOwXUaia2RSRxLaPIXZ/n//34eCYzxLaIIraFFk0SOedWLoPF3xj3GzeHfoOhWx8ICw9sXSIiIiI1hAJqNWMymejw52Z8MXLZSY/7vNDhz80wad6byNnxeuH75eAIhoaNYf9eaNYKOnSFnv2gcw+w14yVwEVERESqCgXUaii1Z/wpe1EtDjOxzdV7KnLWZn8ME98y9i+97xFjsaPgEHhgrLFtjIiIiIicc9r3oBo62ot6siG+njIvM69fREl22YUvTKQ6KyuFA/uN+4dzjbml4ZHQqBlYLFCvIdTPUDgVEREROY+0D2olVMV9UH0+H7k/58Nxf3sFu4tZ8uSPOPNcRKSHMvzzAZgtGuorclqF+TDnU/h8BiQmw8g/Hztmt0NKmvYwFRERETlL2ge1hjOZTMQ1j6rQFtciirgWUcy+eQnNb6jPoZ/ztZKvyKnkHoTPPoSvZkH5kREHQXYoLoKUOhCXENj6RERERGohBdQaJiItlKu/GMjhLYX4PD5y1uYR3TQCi1U9QCIA7N0FH0+DhfPA4zbaUuoY+5f2GQyxcYGtT0RERKQWU0Ctgcw2M7HNIjm8pYD87cXM+/N39BnXjqQO+sVbarHNG2DGVPhuCRyd2dCgEfQdAr36Q3jVGL4vIiIiUpspoNZg0RkRrHxlPUV7S5hz2zIGvtmZOj0TA12WyIXj88GaH4xgunbVsfYWbYze0m69ITg4cPWJiIiISAVaJKkSquIiSZXlLnXzxR3LyfouF7PVRN+XO1B/aGqgyxK5MKZOgg//bdw3m6FdZ+gzCDp2g6CggJYmIiIiUptokSQBwBpsZWhmN+bet4I9C7L5ZtRKXMVuGg9PD3RpIueeywmlpRARCfmHoW59Y+Gjzj2g7yBo2Q6s+rEnIiIiUlWpB7USqnMP6lFet5cFD33Pts/3AdDl0Za0HNEwwFWJnEPfLYV//B80aQ5XXn+s3WQy9jDVVjEiIiIiAVPZTKXf2GoJs9VM35c70uQao+d04/SdlOc7A1yVyDni84HXC4dzYdN6cLkgLNxYBKlBI4VTERERkWpCY91qEZPZRI+n2hBRN5S4FlEU7i7BZDERFGYLdGkiZ+bAPvj0Q2O47qBhUF5u7Ft66x+hU3dISAp0hSIiIiLyGyig1jImk4nWf2iEq9hN/vYiCnYUU7i3mHqDUjCZTYEuT+T0dmyFj6fCkgXg8xoBtX0Xo7c0PhEaNg50hSIiIiJyFhRQaylbqJWojHBWvbmRNf/cTL2hKfR7uQNmq4ZCShXj88HPa+HjKfDDimPtjZtD38FGKA0LD1x9IiIiInLOKKDWYlaHhaiGYZgsJnbM2ceXRW4GvtkZq90S6NJEjDmlP3xr7GG6cZ3RZjJBq/ZGMO3SA+yOwNYoIiIiIueUAmot1+iKuthCrXwzaiV7F2cz59alDPlnN2yh+taQAHG7Yck38PE02L3DaLNYoWNXYw/Tdp3Apj1MRURERGoibTNTCTVhm5lfs3fpQb7647d4yjzENo/koondsUcqBMgFtmwhvP8O5GQbj+0O6NYb+g6BZi3Bot59ERERkepI28zIGUntHs9FE7tjC7OSuz6fz65fhLvcE+iypDbx+SA/zwinYeEw9HJ4+u/wxwegZRuFUxEREZFaQOM4xS+xXQzD/t2D2bcsJaVrPAU7i4lpXDN7jKUKyM2Bmf+D+ARo2wlKS4wFj64ZAT36QWpaoCsUERERkQtMAVUqiG0axVWzB1C4pwSv00vOujziWkQFuiypiVZ/B5/9F8IjoEFjsNmMrWKuGRHoykREREQkQDTEV07giLYT3yoazOAqcTPrxsUc2lgQ6LKkutuyAVatAJcTtm6COunGirxX3QQpdYze06joQFcpIiIiIgGkRZIqoTYsknQqX49ayfbP92ILszLkvW4kto0JdElSnfh88NMP8NFUWLsKomPhwSePzSdNqQPBIQEtUURERETOv8pmKg3xldPqMbY1+duLOPRzPrNvWcLgt7uS0i0+0GVJVefxwIolxh6m2zYZbWYzNGgE5eXQpDkEaZVoEREREalIPaiVUJt7UAFcxW6+GLmMAz8cwmwz0e/VTtQbmBzosqQqcjlh/lfw6XTYv9doswVB5x7QdzC0agdWfS4mIiIiUttUNlMpoFZCbQ+oAO5yD3P/+C17lxzEZDHR+7l2ZFyuVVbliJJi+GomzPwIDucabcEh0KMv9BsKGU20TYyIiIhILaYhvnJOWe0WBr/TlW/+upIdX+5n+QtrqdMnAUeUPdClSSDlH4ZZM2DOJ0ZIBYiIgt4DjGBatx6YTIGsUERERESqEQVUqTSzzUz/8Z1Y/txPJLSNoWhPKVa7BWuwvo1qrdmfwkcfGPfjE6HPYOg3BBKTAluXiIiIiFRLShZyRkxmE90eb015vpPC3SXkbS3CZIaYZpGY1FNW8+3cBm431K0Pe3dB81bGwkc9+kHvgRCtVZ5FRERE5LdTQJXfxB4ZhMliYvvne1n27E9kXJFGjyfbYDIrpNZY82bD269AvYZw91+NttAwGPuS8aeIiIiIyFlSQJXfLCjMhsflxeP0snH6TlzFbvq82B6z1Rzo0uRc8HqhuAjCI4z5pTGxYLNBRKSxWm+9huAIDnSVIiIiIlKDKKDKWWl+QwMsdgtLxqxm26y9uIrdDHitE5YgrdhabbndsHQ+fDwVIqPhxpFGe0QUPPocNG1hbB0jIiIiInKOKaDKWWtyVTq2UCsLHvye3fMPMOcPyxjyblctnlTdlJfB13Pg0//CwQNGmz0LigqN3tOUNG0VIyIiIiLnlRKEnBMNLkrFFmpl3n0ryFqRy6yblnDRpO4EhdkCXZr8mqJCY5uYWTOgMN9oCwuHnv2MrWLqZ4BZw7ZFRERE5PxTQJVzJq13IkMzu/HFHcuxhVkpPlCqgFqV5ebAzP/BVzOhrNRoi4mF3oOMrWJS0wJbn4iIiIjUOgqock4ldYzjsv/2xlngxlPq5fCWAqIzIgJdlhxv7274dDrM/wo8bqMtORX6Djb2MY2LD2x9IiIiIlJrKaDKORfdMAKfz0fuunzcJR4WPbaKNnc1JiItNNClyWcfwuR3weczHtfPgL5DoFd/Y3VeEREREZEAUkCV88JkMhHXMoolT/3Ipv/tYufXWQyb3IPoRupNvaB8PnA6wW43hvFGRBptzVtDn0HQvQ8EhwS6ShERERERAEw+39GuFDmVgoICIiMjyc/PJyJCAetMlGSXMeumxRTsLCYo3MrQCd2JbxUd6LJqh/U/waS3Ib0BDL3sWPuhHGjdwQitIiIiIiIXQGUzlZbmlPMqJMHBZdN6E904Amehm89HLGH/ipxAl1U7FBXAtk3w7SJwOcFiNcJqp+4KpyIiIiJSJakHtRLUg3r2nEUu5ty+jIM/HsYcZGbAa52o2zcp0GXVHKUl8OVM8Hqh9wDIO2wM5V2+CDp1hYxm2sNURERERAKmsplKAbUSFFDPDXeZhy/vWs7+5TlYHGau+XIgIQnBgS6ress/DJ/PgDmfQnERBNlh9N8gJMTYyzQhCUymQFcpIiIiIrVcZTOVFkmSC8bqsDD0n934etRKElpHU5Jdjj3KjiVII83PWHYWfPpfmDfbGL4LEJ9oLHyUkASJ6p0WERERkepHAVUuKLPNzMDXO1N6qJzifaUc3lRASKKDkHhHoEurHnZug0+mw+KvjeG8AHXSod9g6D0QomMDW5+IiIiIyFlQQJWACI6xYzabOLDqEF/etZzGV6XT4c9NMWk46sltWAszpsL3y4+1NWpq7GHao68xnFdEREREpJpTQJWAsUcFkb+jiNKccn58ZxOuIhddH2ulkHq8dT/ClIlGQAVjPmnLdtB3MHTpAQ7N4RURERGRmkMBVQKq1a0ZeN0+Vr6ynvX/3o6z0E2v59phtiikArBrhxFOLVbo0AX6DIb2ncAWFOjKRERERETOOQVUCbg2IxsRFG5l6dNr2PLJbpxFLgaM74TZVssWTyovg6+/gLAwo5f0UA40aAQDh0HPftCslbaKEREREZEarZYlAKmqml1Xn77jOmCymtg1L4sv7liGu8wT6LIurAVfQebrMPldOHjAaIuIgDv+DC3bKpyKiIiISI2ngCpVRsNL6jDw9U6Yg8wU7i0lf0dRoEs6vw7lwJYNxmq8+/dA3fqQVs/YKiY8wug9Ta4DZv0zFREREZHaweTz+XyBLqKqq+ymsnJu7P8uB0+ZF0d0EEERNiLqhga6pHNr3x74ZBosmAsxsXD/48dCaEwcRMcEtj4RERERkXOssplKc1ClyknuFIfP6yN3fT7OAhdrMjeTcWkaIQnVfK/UrZuMrWK+XQRHPxcKDYOSYqO3NFwffoiIiIhI7aaAKlWSyWwitkUkP767me/H/8z6f21j2L97EV4nJNClnRmfD35aBR9PhTU/HGtv1srYKqZ7HwiuZu9JREREROQ8UUCVKstkMtFgWCo/f7Cd4qwyPr12IcP+1YOoBuGBLu3XeTzw3RKjx3TrJqPNbIa2HY2tYjp2A7s9sDWKiIiIiFQxmoNaCZqDGljFB0qZdcNiCveUEBRh46JJ3YlrHhXosk7O5YSF84w5pvv2GG02G3TqYfSYtm4PVn0uJCIiIiK1S2UzlQJqJSigBl7poXJm3bSY/K1FWEMsDHmvG0ntYwNd1ommvQ///ZdxPzgYuvWFAUMgo5m2iRERERGRWquymUr7V0i1EBxj57KpvYltEYm7xMOcW5dSsLs40GVBfh7s32vMNT2wDxo3M1bmHfY7eHY83D0KmrRUOBURERERqQSNNZRqIyjcxiX/7smcPywnom4IznwX3mQvZmuAPmdZugDeGGeswHvrH422iCj42+sQnxCYmkREREREqjEFVKlWrMFWLp7UnZLcMspynBzaUEBkw3BswReoh9LjMXpD3W6wO4w5p0WF4CyHlDSIjLowdYiIiIiI1EAKqFLtmG1mwpJCsFjNFOws5vObFtPwsjq0HNHw/L3ohnXGVjFmMwy/wWiLioa/PAZtOkBYNVhZWERERESkilNAlWorOM7B1pl7yVmbR87aPFyFLtrd0/TcvYDPB6tWGFvF/PyT0WY2w6BLICISUtOgYeNz93oiIkJ28R4KynNPeTzCHktCaJ0LWJGIiFxICqhSrbW4uQHF2WWsnbCFH17fSHmhiy4Pt8RkMv32i3o8sHS+EUx3bTfaLBZo3xX6DoKWbcAWdE7qFxGRY7KL93DnZ51wectPeY7NbOfdS79TSBURqaEUUKVaM5lMdHmoBUHhVn74vw2sm7QNV6Gbns+0xWQ+w5BaXg7fzIFP/wvZWUZbkB269jL2MG3RRqvxioicRwXluacNpwAubzkF5bkKqCIiNZQCqtQI7e5uQlCYleXPrWXT/3bhKnbT9+UOlVvht7gI5nwKsz6CgjyjLTQMevaD/kOhfiNjaK+IiIiIiJxXCqhSY7S4qSFB4TYWPbqKPYuzObg2j8S2Mad/0jdfwIQ3obTEeBwdA70HQf8hxqq8ZzNUWEREzojLc/re06P2F25j4c6PqB/Vkn71r/a3e31ezCZ9oCgiUp0poEqN0uiKuthCrbiK3FisZoqzSglNCq54ks9nBE+Px/iztASSUoxhvH0Gaw9TEZEAWLnvK55deFOlzv3xwCLmbJlE49gOpEU2wma2Y7eG8MyC35NfnsMjPSfRMqEbAFlFO1hzYDFpEY1oFt/lfL4FERE5BxRQpcapNygFr8fHoZ/zKc0p5+DawyR3jseevxemT4a4BOg1wAiqddLhzr9Al54QERXo0kVEaoXVWfNZtPNjuqddSpO4DuSU7APA7XVW6vkxwYn0SR9O/JF5qC5vOS5nOTkleyl2FXCodD9bDq0GYMXeL/jgpxdpEtuRUd3ewm4NwWEN4eWld1LmLubODi9SP7oFAIdLs9lftI2E0LrEhaSc+zcuIiK/SgFVaiSzxURs80i2fLqbJU+uISwlmGH3WwlethDsDujcw1gAKTUNMpoEulwRkRrL6/Oy7fBPNIxujclkwuVxMn/Hh8zd9gEF5blEOmIBiHLE84d2z/Leqsd/9ZqdU4eS0apNhTanp4yXB3/FgaIdxAQn48UNQKgtkqZxnUmPbEqpu4hSdxEA6w9+S4mrgD0Fm/D4XAB8u2cOU9aOo0V8N0b3moTdEozdGsK7Kx/B43NxVfM/kxRWD4BSVxFur4uwoKizWzleREQqUECVmsnrxbRiCTEFBVjtJvK3FfHps1aGDb2YsF7toEFjsNsDXaWISI3m8bq57ZM25Jbu59Fek/0r7zaP74LTU0abxF5E2uOICU7CYrYCvz3oBVkcpEU2Ii2yUYX2jJi2XN70riP1eCj3lFDuLuGeTn/nYMkeYoKT/OeaTCZigpOIdMSRU7LX3/7NjumUuApok9ibImceJsx8v38uk398lnZJ/RjT5wNsFuP/lP+tfw2L2Uqf9KuIDtaUERGRM6WAKjWLywUL58In02HfbmJDQrn0b2OY9cR+ig64+XRWcy75fSciFE5FRM6pA0W7mL1lIi6Pk5vaPEZuyT5K3UXEBCdR7CrgYPFuEkLrYLcE06vulQxueOJ80wh7LDaz/Vf3QY2wx/6mGi1mCyHmcEJs4fSp97sTjmfEtOX3rR7G5SmnzF1CmbuYUlcxlzYeSV7ZQaKDEwHw4SWv7KBRj8XOzvyf/deYtu4VSlyFxAYnkxbZBIc1lG/3zGbq2pfpWfdy7un8iv/cxbs+wWENoXl8V0Js4b/pPYmI1DQmn8/nC3QRVV1BQQGRkZHk5+cTERER6HLkZEpLYe4s+OxDOJRjtAUHQ7c+MORSioJSmXnzUor3lWKPCuLi93sQ00R/lyIiv9X+wu3YLEHEhaTi8Xr4MWsBY+ZfRZDFwXMDPsFqtgGQX5ZD3cimxIakVGqF3eziPRSU557yeIQ9tkrsgerxeih0HqKoPB+rxUqZuwSnp4xPN75LflkO17YchcMaCsAXW/7F7C0T6ZJ6Ede3etB/jdFzL6PUXcSYPlOoH9UChzWUVfu/ZubmTDqlDObqFn/xn7vl0GrCgqKID6lzpLdZRKR6qWym0k84qd4K8mH2x/D5x1BcaLRFRELP/sYepukNwGQiDLh8em9m3bSE/O1FzLxhEZdO60V0Q4VUEZEz9Y/vR/PpxncZ3PAmLm50KwDh9mh6pF1Gg+hWBFvDSQ6vR5DFccbXTgitUyUC6K+xmC1EOeKJcsRXaH+g+7sVHrs85VzV/M90qzMMHz6MYcw+PF4P9aNbkFeWQ7A1lPzyHPLLc1h7cCnrDy4nwh7jX+gJjoXZFwbMokFMSxzWUH7MWsCiXTNoldCrwnY7Rc48Qm2RmhsrItWSAqpUTwcPGL2lcz8H55GhYHEJ0GcQ9BtibBvzC8FxDi6d2ovPb16CNdiKq8CNz+vDZNZ/4CIiJ+Pz+fjfz6/zw/55/LXbO3h8bgrKcwkPisZsslDkzAPAbLIQF5rKIz0nKhT9gs1iJzGsLolhdU84Nm7QbMBYSKrcXUKZu4QeaZeTFFaP8KBj+3i7vU5CgyJwe5348LCvcCsAS3fP5Mut/6ag/NCRubcm7JZgRn0xEJfXyf8N/Yb0qGYAbMxZybqDy2kU045WiT3O/xsXEfmNFFCletmzE2ZMhcVfG/uYAqTWNUJpnwEQHXfap9sjg7jkP70o3FeCt9xL7vp8YppFYrboFyoRkfyyXLKKttMkriMAhc7DfLn1X+wr3MrcbR/QIWUAAG2SetM97TJSIxr6h/LKb2c2mQm2hRFsCyM6OIE2Sb1POGfSFWtxusso95RS7jHCbOPY9vjwUSci48hZPgrKc/0rFRc6D/l7Yb/a9gFztkyia52LCbdHY7cE47CG8NcvBxNsDeepftOIC0kFYHf+JvYXbSctojHJ4fUvxJdARMRPAVWqlx+/hwVfGfczmkDfIdCzH4RVfnEJW6iVmEYRFO0vpTSnjIUPf0+d3olkXJZ2nooWEan6NuR8x4NfDiXSEcfYPlP9PaF9611FubuEJrEdSQ5rQGiQpkYESpDVQZDVQTjRANSJaMSghjdUOMfr8/LB8C1kF+8iLCiaMncxbq+T5LB6tE/uT/2olri9TtxeJ4dKs8gu3g1AVtFO/8JPc7a8z5wt79Mz7XJub/+Mf+/YZxb8ntCgSO7u+BKRDuMD4cOlByh1FxMbnIzdGnwBvxoiUlMpoErV5fPBqhVgMkHTlrBvDzRsDB26Qrfe0LUXOH77f4ZhycHsWXSArTP3snXWXlxFLpr9vsE5fAMiIlXT9/vm8sXWybRN6ke3OheTW7ofn8+HzWIn2BpOkTOPcHs00Y5Erm3xABazJdAlSyWZTWYi7DFE2GMqtGfEtGV48z/5H7s8TkrdhTzbfwYHi/cQbA3Dhxcw9o6tE9GIuNAU8stzoBzK3aWsypoPwKWN7+BgyR7g2AJQfetdzR87vYzdEoLFbOHNFX8lwh7D8Ob3EWKLOPKa5VjMtkotliUitZcCqlRdcz+Hd1+F+EQY9QSYzRBkhwfGgC3onLxEk6vSyV51iM0zdrP06Z9wFrlpc0fjc3JtEZGqoNxdytrspbRK7EGQxUGpq4ifDixh6e6Z5JZk0Ti2HQA2SxAvDpx1ZGuUkABXLeebzRKEzRJL26Q+JxzLiGnLre2exOvz4vSUUuYuobD8MLe3e5a8suwKPaVur5MgiwOHNcQ/N7bMXcLsLRMBaJ/cH7s1GLslmNlb3mfWpve4tMkd/KH9s/5rzPj5TaIcCXRPu0S9sCKigCpVSHm5sUVMciocPgQpdSAyyug9NQH1GoLl3H6KbzKb6PVcO4LCbaybvI2Vf/8ZZ6GbjqOaaaEPEakR7v28J/uLtnN3x3H+uaVN4zsy1HULzeO7EheSSqQ9Tj/z5ARmkxmHNRSHNZQoRzxpkSd+gPvnrq/zx07G3q8ubznl7hLK3aVc3Og2ipx5/sBZ7iklu3gXHp+bMneJf25smbuYzFVPAJAc9iWRjljs1mC+3PovFu6cwZCGI7i86V2AsWjXir1fEBuSRP2oltpuR6SG0r9sCbziIvjiU5j1EUREwT0PGsN6HcHw5CuQmmb0np4nJpOJro+2whZuZfWbm1jzz804C110H9NaK/yKSLVxsHgPU9a+xKHSLB7o/i45Jftwe52kRTah1F1EictYOCcsKIr0yGZ0rTMswBVLTWGzBBFpifU/To3IoEVCtwrn+Hw+/tL1DbKLduP1ebCZ7bi85bi9bjqmDKTEVYTVYqXYlU+xK58th35kV/4G9hRs9ofZUlcRzyz8PQBvD1tOpCMOuyWY+Ts+5Pv9X9Gr7pX0Sr/S/3r7CrcRG5Lk349WRKoHBVQJnMO5MPMj+PIzKC0x2sxmKMyHOunGtjEX8BP9Dvc1IyjMxooX17Fh+g7qDUomtUfCBXt9EZHK8ng9bDm0GpvFToPolrg8TvLKcvhq67/x4WNjzkr/IjbXtvgrKeENCLdHB7hqqc1MJhNhQVGExUSdcOz4YcZur4sydwlXNf8LXVIvrvB9W+4pJS2iiX8l4+ziXQB8t+8Llu/5nChHvH/V4XJ3GQ/PvRiAf135MxH2WCxmK0t3z2TLodW0T+5Py4TugBFmvT6v5lqLVBEKqHLh7d8Ln06Hb74Et8toS0qBvoONfUzjEwNWWqtbMwgKt1GcVYo9MojSnDKC4858o3kRkfNp6tqXmLJ2HB2SB3BTm8cA4/O8S5vcQXJYfZLDGpAYVldDIKXasZpthAVF0jSuI02PDEk/XseUQfh8PiOk+veOvYzU8IakRzX3n1dQnovdEozZZCG3dD+5pfsBmLdtCt/unU2R8zAOawh2SzAen5s/ze5LlCOe9y5dRZDVDsDa7KUcKNpF49j2Jx3eLCLnh/7nkgtn22b4eCosWwQ+Y6VA6jU0gmnvAcbw3iqgyVXpeJxeDm8qoDirjKKsUqIbhmMN1j8XEbnwpvz0Ekt3f8bdnV4m0h5DqbuIuJBkHNZQgizG/D67JZi4kFTu6PB8gKsVOf9MJhOOI1vfRAKJYXVPOCcjpi3Trt5Bflku4KPMXUK5p5QmcR2xWYKoF9UCMHpl9xdux+vzUOYuZlfBz/5rfPTzG6zYO4dhjW7n8qZ3G2HW62bM/KuIC0nhqb7/9X8ItDt/I6XuYpLD6mu0gshZ0m/ccn75fLDuR5gxxdjD9KimLY1g2r0PhFS9uSGWIDMxTSPYtzyHxU+sJiTeztAJ3QkK04b0InL+7Cvcxo689XRPuwSP10NeWTars+azPW8tC3d+yMAGxvy7+tEteXvYMmJDUrRlh8gpWM02YkOSKrQ1iG5Z4bHP5yM5rCFvXLSIQ2UHCLI4cHrKAEgKS6dxbHsSw9IpcRVQ4ipgf+F29hRs5lDpAbbnrfVf54OfxrFi7xyubHovVzX/E3ZrCG6Pi/Hf3ktcSAp3dHje/2+1oPwQVrPVv/2OiFSkgCrn18fT4D/vGffNZmjTwRjG26kH2O2Bre1XmK1mgsKslOc7Kd5fyszfL+Li93vgiK7adYtI9bS/cDt3fNYRq9nG3/p/7F/9tE+94bRP7k/bpH7UjWxKkEXTDkTOFZPJRGhQOKFBLahHiwrHMmLa+u97vMbqw8HWMEZ1e5vC8sMVznVYQ4i0xxFiC/PvEbu/cDvL98wixBbBwAbXA2A2WZjy00ss2zOT37d6hGta3I/VbKPEVcD0deOJDU7mksZ/8K+q7fP5tMK21DoKqHJuuVxQUgSR0VCQD3XqGnuXduhq9Ji2bg+26tMLmdA2hmH/6snsW5dyeFMhn167kGH/6kloovZpE5Hf7vt9c/lw/Ws0jGnNZU3upKA8F5/PR0JoGhH2WAqdhwi21SUuJJWG0W30C6pIgFnMVkKDIggNiiA1IuOE4w/1eA+fz4fTU3ZkOLGx3c5Vzf+Mx+vxn+f1eSh0Hg23PnbkrQOM0RMfrh9PiC2CZvGdsJntOKyhTP7xWdYcWMSINo8xqOGNgLGa8dLdnxEbkkzbpL7n+62LXHAmn8/nC3QRVV1BQQGRkZHk5+cTEaHhGKe0+jt46xVIbwDX3XLcAR/Uyzjne5heSIe3FvD5TUsoO+QkJNHBsH/3JCKt6g1NFpGqJ78sh1VZ82mT2Ivo4EQKyg8xb9sUMlc9QUJoGo/2et9/bqgtkvjQOljN1eeDPBE5Mx6vm/zygzg95Xh9XsrcJRws3s38HR9iNpm5stk9/nPf+u5BNuV+z+9bPULn1MGAEWbHLfkDobZI/j5kLnZrMA5rKP9d93c25a7iiqZ/pEudoQA4PWVsO/wTcSEpxIWkBuT9ihxV2UylHlQ5N3w+wASHcsDthvIyiI2DhOQLulXM+RLdMILLpvdh1o2LKM4q47NrFzLs3z2JahAe6NJEpIr55ZC8pxf8no25K7m2xV/plmbsPZoR04bhze6jZUIPUsIbaC6aSC1iMVuJCU6u0NYguiVd6lzkf3y0N/b+rm+xv2g7Ycf9jDBhoklsR+zWYErdhZS6CwH4KXsJm3J/oFViT//c232FWxm3ZCRhQdG8e8m32K3B2C0hfLrxXfYWbqFfvatpFt8FMIJzqbuYUFuERm1IQCmgym9z8AB89iG4nHDJVVBWCuERcNs90L6LsW1MDRNeJ4TLpvdh5o2L8Lp8FO0tJbJ+mH6IiwgA+WW5vPnd/Ww99BPjBs3icFk2YCxoVOg8jM1izF+PdiRSP6oVrRJ7BrJcEanCTCYTdmswaZGNSItsVOFYRkxbeqVfCRihstxT4t87dk/+ZtKjmvnPLXeXEe1IINwe7Z8bC7Bg54dsyv2BaEcCNosdE2YOluzh2YU3Eh9Sh39e9r1/JMfCnR9xuDSb9sn9td2OXBAKqHJmdu8wFj5a/DV4PMbCR516QGQUxMVDwysDXeF5FZLg4LJpfTi0MZ+gMBu56/KJbR6JyayQKlKblLtLWZu9BJPJTPvk/pS6ijhcmsUP+7+hzF3Mqqz51DuyJ+PlTe7iD+2fxWENCXDVIlLTWMxWQswRhNgi6J52CaRVPJ4R05aBDX6P01NGuafUmB/rLqZbnUuoF9XcHzh9eDlYvBeAIIvDPzcWYMbPb7L50CpuaPUI3dMuxW4NIbt4F+OW/IF6US14tv9H/nPXZi+l3F1Kw5jWRDniz/8XQGokBVSpnI3rja1iVi471pbRBPoOgcbNIKz2DHV1RAeR0jWegl3FOAtcrH57E7EtoqjbNzHQpYnIeeLz+fDh828TMXfbB7y98kHqR7Ukwh7jP++6ln8l2pFE++R+RDkSNMJCRALuaG+s3Rrs/3mVFtnkhPPqR7WiZ93LySvLxmENpcxdgsfnoklcR0KDIkgKq4fLW47LWc72w+vIKzvIweI9bDm02n+NzB+eYPOhVdza9in61BuOwxpCdvEe/vH9aNIjm3F3p3H+c/cWbD2yFVCy5t1LBQqocmo+H6z6Dj6eCuvXGG0mE7RoC30HQdde4Ki9q9lG1A1l2+y9/PDmBkxmE33HtafBxXUCXZaInGP/WfMCX237Nze3GUP96Ja4vU7iQlKJciSQHF4fn89HuD2G2OCkCttSiIhUJxazhejgBKKDEyq0//LnmtNTRoQ9jtTwhpS6iyociwtJpciZT7g9mrwj0xzWZS9jbfYS8soOVAizb333AJtyf+Duji8xoMF1BFmCOVC0k//9/BppEY25vOnd/nPL3aUEWRz60K+WUECVE3k8sGwBzJgKO7cZbRaLMbe0zyDjz6CgwNZYRaQPSCatTyK7vznANw98j7PYQ9Or0wNdloj8Bl6fl825q9iQs4LLm96Ny+Mkt3Q/ewo2kVOyj+V7PvcPh0sMq8vbw5YRbo8OcNUiIhdWkMVBQmgdEkJP/FD+sd6TAfB4PUe22imhcWwHbmk7FhMVw6XP58NismE2WdhTsBkwwuycLe9TJ6IRLRK6YcKM3RrM+OX3svXQGv7a/V161r0MgJySvSze9Qkp4Q3pnDrkPL9ruZAUUKWilctgwpuQnWU8DrJDl57Qbwi0aFOtt4o5HyxBZga+0YWFj/zA1s/2sOSJ1bgKXbS67cQ90kSk6nF7Xf6hZaWuIh766iI8PjcJoXWJDzW2ZOiedinN47vRPrkfSWH1sJj1X6eIyOlYzBZCzOGE2MKJDk6kWXznE855deg8yt3GvFjnkfmxsSGpDGk4grCgSMCYG1vmLia3ZD8ubzlFzsP+Xth12ct474fHqRPRiITQNBzWUOyWYN5YcT/ZxbsZ2eE5Wh9ZjC6/LIfNh1aRGFr3pMObpWrR/7JSUVGhEU5Dw6BHPyOYNmxsLIYkJ2W2mOgzrj22UCsbpu5gxbh1OItctL+vqYaiiFRRP2Yt5J8/PEZCaB1ub/eMf5has/gumE1m3F4ndksIcSEpGrYrInKeHJ0be1RaZGN/D+lRHq+HV4fO40DRLhzWEHz4cHudhNgiaJfUj5jgJNxeJ0VOJ0UcZuvhNeSU7GVf4VZCbGGAsXjTez88Tt3Ipjzd77/YLSE4rCFMWDWWvLKDXNX8zzSMaQ0YH1bml+cSG5zkX31dLiwF1Nrs8CGY9T9jgaMuvaCkGOqkwzUjoHsfSK1bI/YwvRBMJhPdx7YmKMLGmn9sZvVbm4hpGkn9wTVvux2R6mZ/4XZW7ptLq8QepEU0Ia8sm0OlWezIW0dW0Q6KnPlYzMbokId7vEekI96/GJKIiASWxWwhyhF/wqrAGTFtGdTwBv9jl6ecMncJ93d9g/1FO0gJPzaazWwykxLekMTQuuSVHfS3L9szi5ySvbRN6o0PLwDrD67gH98/Qv2olrw4aBYOayhmk5n/rX+NMncx/etfR3J4fcAIz2aTWR0S55gCam22fo2xZUxwCDRuDnYHxMYZAVXOmMlkotOo5gSFWcn9uYCw5GDK853YIzVfV+RCKneXVvhEfuLqJ1m6+zMGN7yRixvdBkBqRAYj2jxBm8Q+1I9uTpDFEahyRUTkHLBZ7Ngsdtok9aENfSocy4hpy2VN7sLr81LuNvaNLfeUcmXTP3KwZA+JYcfWDylx5WM12wgNimRf4VZ/+2eb/klOyV7iQlIpdhVgtwTz88FveWvlg7RL6sfYvlP85y7c+RE+n482Sb0vyHY72cV7KCjPxeuDDU7I80KUGZoGgdkEEfbYk84ZrqoUUGuTbZvhUA606WjsZ5qQBG07Go9T0yBSi32cC23uaIyr1E3+1iIKd5fgLHETGufAbFOPjMj55PSUMfaba9iYu5KXB3+B1+cBoEF0K7KLd5MQmobZZCEuJJXwoGgax7YPcMUiInIhmU1mgm1hBB8Z+nv8SsFHZcS05XdN/0SR6zBen+fI3rGldKszjJySfcSFpAA+yj0l7CvahtvrpNRdVGGF4gmrxpBTso+/dH2TFvFdcVhD+DnnO/6z5gXaJPXijg7P+8/9+eC3BFmCqRPRqMKHq5WVXbyHOz/rhMtbfspzbGY77176XbUJqQqoNZ3PB+t+NPYw/fF7CI+Ah58Bm82YVzrqCQgJDXSVNY4t2Ep043By1+Uzf9T3WIMtDHqrC1aHFpkSOReKnHms3DcXl6ecgQ1+T6HzMDklezlYsgenp4zVWQv8i2P0r38tVzX/s/bZExGRSgmy2omxJlVoOzpH9Sivz0tiaDo9615OqasEqzkIt9dpnBvdhkh7HJH2GIpd+RS78tmU+z0789cTYY+uEGZfWHwbuaX7Gd1zEq0Se+KwhrApdxUzN/2DZnFduLzpXf5zc0r2ER4UXSHIFpTnnjacAri85RSU5yqgygXidML3y6FD14pbv3i98N1SY6uYLRuMNpMJGjaB8jKo39AY0ivnjSXIAibIWZeH1+ll9i1LGPJeN4LC9EuyyJlye124vS4c1hAA1mYv4+WldxDlSKBeVHP//J9rWowi2pFIi4QuhNgiAlmyiIjUYGaTmXB79Em3G3uiz3/8910eJ+WeEnrWvYKUsAaYTRXjV4Q9FqenDKvZRnbxLgC+2/sFi3d9QkF5Li0SugJgMdl4esF1HCzZyzP9/kfrxN5YzBZ25W+uVL1e3299pxeeAmp15fPBiiXGljC5ByEuAW79I7TrDIu/hk+mw17jmxyrDTp1M/YwbdPR6D2VCyKhbQxD/tGVr+7+luzVh5l142IuntQDe5TmpYpU1pSfXmLGhjf4XdN76Zg6CIAIewx1I5vQKKYdbq+LhNA0ohwJWnFXRESqFJslCJsliIyYKDJi2pxw/PWLF+L1ef1b7ZS5S2ga14krm95DdHCi/zy310mxqxAwprRsz/sJgLn7Fleqjg1OaHwO3s+FoIBaHe3YBhPeMBY5OrpqWO5BeOlJI4y6XUabIxi69Yb+Q6BxC+1hGiApXeO5aFJ35ty+jEMbCvj0uoUM+1dPQuLVgy1yPK/Py6r9X/PD/m+4pe0Y3F4XOSV7KXQeosRVyE/ZS/wBNdIey9+HzPP3qIqIiFRXZpMZhzUUh9WYdpcUlk63tGEnnPef323iUOkBTKZjqxZbHGmVeo087zkt+byqcqu2vPnmm9SrVw+Hw0GXLl1YsWLFKc9dt24dw4cPp169ephMJsaPH3/COU8++SQmk6nCrWnTpufxHVwAr78AG9Ya932+in+6Xcbc0ouvhGfGwx8fgGatFU4DLKFNDJf8pyf26CAKdhTz6TULKdxbEuiyRALK5/NRUH7I/9jr9fD3ZX/kk41v89W2/7C3cAvlnlI6JA9gVLe3eaD7uzSMbkNGTFtSIzIUTkVEpFaxWYJIDEsjITSN1IgMGsa0plPKwEo9N6rKpb5Tq1I9qNOmTWPUqFG88847dOnShfHjxzNkyBA2btxIQkLCCeeXlJTQoEEDrr76au6///5TXrdFixbMnTvX/9hqrVJv+8x5vcbtVBJT4LZ7Llw9UikxTSK5bFpvZt24mPI8J1nf5RKeql+wpXbakPMdLyy+lbCgaP7a7R08PmPkR8eUgRS7Cgi1RRIWFE1scDK2GA2JFxEROZmQSm7B2rQa/VdapZLa3//+d0aOHMmtt94KwDvvvMOsWbOYMGECjzzyyAnnd+rUiU6dOgGc9PhRVquVpKSkUx6vcap7AK/BIuqGctn03uxddpDojHBy1uYR1zIq0GWJnFfbD69j+Z5ZNI3rRMuE7uSW7qfUVUROyT7yy3Ipch4m2BaG1RzEyA7PExYUGeiSRUREqrwdLnjxMNgrca65kkG2KqgyScbpdPL9998zevRof5vZbGbgwIEsW7bsrK69efNmUlJScDgcdOvWjeeff566deuebckiv0loUjCNr6zL4S0FeMq8bJ6xi/D0UJLaxwa6NJFz4lBpFtGOREwmEz6fjy+2Tmbmpn/SMWWQf7XDcHs0f+ryf7RM6E5iaDoWc5X570hERKTK2+eGu7MhzxJLotkOv7IPaoS9+vyeWWV+I8jJycHj8ZCYmFihPTExkQ0bNvzm63bp0oVJkybRpEkT9u/fz1NPPUWvXr1Yu3Yt4eHhJ31OeXk55eXH/pILCgp+8+ufF2azcTvZMN+jx6TKi86IYPeiAyz72094XV4GvtmFOj1PHMouUl34fD4e/GooG3K+44ne/yE2JBmABtGtaJPYm+bxXbBbQogLSSHYFqYVd0VERH6DHI8RTg94ICW0DqMGf0ddcvH6jNV687zGnNOmQUbPaYQ9ttrsgQpVKKCeLxdddJH/fuvWrenSpQvp6elMnz6d22+//aTPef7553nqqacuVIln7k+PQOZxq/j6fMf+bNYSbrs30BVKJSV1iCWmSSQHvs/lq7uW0/fvHak/OCXQZYn8qvyyXBbu/Ij88oNc3/JhDpcdIK8sG7PJjAkTWw796A+onVIGMbDB7zGb9OGZiIjI2cj3wB+zYbcb4i3waAx0D64DGAG0umwlczpVJqDGxcVhsVg4cOBAhfYDBw6c0/mjUVFRNG7cmC1btpzynNGjRzNq1Cj/44KCAtLSKreE8wWR3gCeegW+W2rsg5qTDbHxxsJInbof23pGqjxbiJWLJnZj7j0r2LMom2/+8h3uZ9vR6Hcagi5VS4mrEJennEhHHABZRTt59/uHsZpttE/uT5DF2DbpiqZ/5A/t/ka96Ob+NhERETl7xV647yBscRk9pI9EQ/fgQFd17lWZgBoUFESHDh2YN28eV1xxBQBer5d58+Zx773nrkewqKiIrVu3ctNNN53yHLvdjt1emenGAWQyQece0LYT/LAcOnQFWzVankv8LEEWBr3dhfkPfM/2OftY+NgqyotdtLypYaBLEwHgw/Wv8e81f6N//Wu5uNFtAJhNJtol9aNORCN8PhMJoXWJsMdo2K6IiMh5UO6DUQdhrRPCTEY47VdDN4OoMgEVYNSoUdx888107NiRzp07M378eIqLi/2r+o4YMYLU1FSef/55wFhYaf369f77e/fuZfXq1YSFhZGRkQHAAw88wKWXXkp6ejr79u1j7NixWCwWrr/++sC8yXMtKAi69g50FXKWzFYz/f7eEVvYj2z6cCff/m0tjsggMi6rQj33Uiss2PE/Vu6by81tHifIGkxOyV7Ai9vrYnf+Jv95kY44xvaditVsC1yxIiIitYDLBw/nwHfl4DDBgzEwqIaGU6hiAfXaa6/l4MGDjBkzhqysLNq2bcucOXP8Cyft2rUL83ELAO3bt4927dr5H7/88su8/PLL9OnTh/nz5wOwZ88err/+enJzc4mPj6dnz54sX76c+Pj4C/reRH6NyWyi5zNtCAqzkvVdDuGpITiLXASFKQDI+eH2usgq2kGdiEYAOD1l/Hf9eHbkrSMprC5d6hhz+JvFdWFsn2m0SOhCiC0ikCWLiIjUKh4fPJkLC0vBBjwQDcNCavaMPpPP5/MFuoiqrqCggMjISPLz84mI0C9ncv6VHi6neG8pAGFpIdjDbZiq0wZWUuXtzt/IX78cjNlk4el+/8VssgCwdPdMckv20SFlIC3iuxEdnKjFjURERALA54O/HYaPisAC3B8N14aBpZr+SljZTFWlelBFxBAcbcfmsJC3tYgVL6zFXeqh78sdMFsVFOTMbTm0mq+3T6NeVHN61r2C3JJ9lLgK8fq8mDBxuDSb2JBkgq1hXNNiFA5rDR43JCIiUg34fPB/eUY4NQF3R8LV1TicngkFVJEqyhpsxWSBLZ/sxucFV4mbgW90xhJkCXRpUoX5fD525W8gMSwdhzUEj9fN9/vm8enGd2kY3ZoG0a0AsJitPND9XZrEdiDKkYCpJo8VEhERqWYyC2ByoXH/9gi4MQJsteS/anXHiFRhsc2i6D++E2abiT0Ls5l92zJcJe5AlyVV2CNzL+Gez3vw5ZZ/s+XQarbnraVeVAu61RlG33pXExYUTXpkczJi2tK1zsVEBycqnIqIiFQhUwvhrXzj/g3hcFsEBNWi/6rVgypSxdUbnMKgd7oy955vObAyl1k3LeaiiT2wR2jxpNqssPwwn236B3sKNnN/1zfJLd1PkTOPKEc8NnMQuaV7AbCag2iR0I0udYYGuGIRERH5NZ8VwbjDxv0rQ42hvY5a1qWoRZIqQYskSVVw4Idcvhi5HFexm6gGYVz8r54Ex1bx/XrlnMkt2U+Zu5jUiAx8Ph/7i7Zz18zOeH1enuj9H2JDkgEocuaREJpGYmg6FrM+gxQREaku5pUY28l4gaEhxl6nETVoZpcWSRKpYRLbx3Lxv3sw55al5G0rYutnu2l5S0agy5ILYNamTN5e+SDtkvpyc9sx/vaBDX5PtCOBKEcCqeEZBNvCAliliIiI/FZLS2H0kXDaJxgeiqpZ4fRMKKCKVCNxzaK4dGpvts7cQ1LHOHLW5xHXPCrQZck5NHfbByzZ9SnXtniAuNAU8sqysVtDMGGixFXoPy82OIV7O4/XFjAiIiLV3Koy+GsOuIEuDng0GqJqcUrTEN9K0BBfqYpy1uWBD8oOOwlNchDdSN+b1U2Jq5Cth9bQKrEHAMXOAl5YfBursr5mSMMRXNToFgC8Pg/4TNSLbk6QxRHAikVERORc+tkJdxyAYh+0CYJnYyG1hi4zoiG+IjVcXIsosr7PZekzayg7VM7QCd1IaB0T6LKkkvLKDnLLxy3xeD38bcAMQmzhAHROHUydiAxaJ/YmIbQuEXb9nYqIiNRE21xwT7YRTpva4ImYmhtOz4QCqkg1Fp0Rji3YQmGRm89HLGXwO11I6Rof6LLkFzbnruLTjf8gLiSZK5reQ27pPrw+D7HBKXh8bg6VHiDEFk6EPY6LGt2K1az/nURERGqyfW74YzbkeaG+FcbEQIOgQFdVNWiIbyVoiK9UZc4iF1/8YRnZqw9jDjLTf3wn0vsnBbqsWsvtdbEh5ztSwxsSHZyI01PG19un88aKvxDtSGRMnw/8+466vS7qRjYhxKafKyIiIrXFQQ/cfgD2uCHVagzrbVMLNmaobKZSQK0EBVSp6tzlHr66+1v2LT2IyWKi9wvtyLg0LdBl1UpPzr+GlfvmMrzZffRKvxKAcncpX279F03jOtEpZQgxIUla3EhERKQWyvPAyGzY6oIECzwZA12DA13VhaE5qCK1iNVuYci7Xfn6/pXsnLufBQ/9AD7IuEwh9XwpdRUx+cdn+TlnBU/3+y/5ZTmUe0pJCqtPqC0St9cFQLA1jDoRjbk/oVuAKxYREZFAKvLCfQeNcBptNvY5rS3h9EwooIrUEGabmQGvdWLhY6vYuygbe4QNd5kHq6OWbqJ1Dvl8Pnblb6DImU+LhK54vG4Kyg/xzY7pFDnzWLp7JhkxbQDok34V17b4K1GOeP9QXhEREandyrzwl4OwzgnhJngkBvqGBLqqqkkBVaQGMZlN9H6uHQU7inAVe8jbUkhk/TBsofqnfjYW7vyIl5aOJC2iCX/t/ra//ZLGIwm2htI0rhOp4RnYLFrdQERERCpy+eChHPihHIJN8FAMDFTP6Snpt1aRGsZkMhFZPxxnkYuCHcWs/892irNK6fZEK/XoVcIXWybz1bb/cEnjkTSN60iRM4+woChsZjthQZF4vB7s1mDiQlK5sfXoQJcrIiIiVZjHB4/nwuIyCAIeiIaLQkC/kp2aAqpIDRUUZsMaauGH137G6/bhLHTR+4X2mC36iXhUbsl+1hxYRN96VwOQX57D2uylbMj5jgh7DHUiMgCIdMTy1rClJITWxWLWkGkRERH5dT4fPHcIvioBC/CXaLgsFMz6Vey0FFBFarCo+uF0f7INi8esZutne3AVu+k/vhOWoNq5gqzP5/P3Irs85Yz8rANOTxlWs43k8PoAdEwZREJoGq0Te5MankGwLSyQJYuIiEg15PPBq3kwoxhMwD1RcFUYqJ/g1ymgitRwTa5KxxZiZf5D37Pr6yy+GLmMwe90wRpce/75bz20hn+veQ6r2cadHV8krywbgIyYNhQ58ylzFwMQG5xCw+g2GgotIiIiZ+WfBfDvQuP+yAi4IRys+vWiUmrPb6gitViDi1OxhVqYd9937P82h89vXsLQCd0JCrMFurRzrsRVyJoDi0gJb0DdyKYUOws4ULyL7/Z9ic0cxJXF9xJkMXbD/lPn10gISyPI4ghw1SIiIlJT/KcA3sk37o8Ih1siwKZwWmkKqCK1RFqfJIa8140v71rOwTV5rPnHZjqOah7oss7a8cN2Ad5d+TDztk+lX71ruLzpXQDEh6RyZdN7aRzbgTrhjYhwxASqXBEREanBPi6CV/KM+1eFwZ2R4KidM6t+MwVUkVokuXMcF0/uwbpJW0kfmEze1kKiGoYHuqzfxOP18H/f3scP+7/mb/0/xuNz4fV5SI3IIC4klbCgKAAi7HHEBCfSKLZdYAsWERGRGu2rEnj2kHH/4hC4LxKCFU7PmMnn8/kCXURVV1BQQGRkJPn5+URERAS6HJGz5vP5yF1njD3x+nyExjsITaq6G3K5vS425HzH4dID9Eq/knJ3Kbml+3lmwe/ZXbCJ37d6hM6pgwGwmoNICK1DiE3/VkVEROTCWFIK9x8EN9AvGJ6Ihih1BVZQ2UylL5tILWQymYhrGUX2j4dZ+ep6Dm8qYNi/elap3lSP1+Pf0mVd9jIe+/oKwoKiSAxLx2wyPo4c1vh2LCYbHVL6ExdSx98uIiIicqF8XwYP5BjhtKsDRiucnhV96URqsYi6oRTtK6HskJPPrl/E0AndiG8ZHdCavtgymRkb3qRP+lX0rHsZ5Z5S7NZgYoOTSY9qRpm7hNjgZGJDksmIaRvQWkVERKR2W18OfzkI5T5oZ4cnYiBOCeusqLtBpBZzRAdx2bQ+RDcKx1ng4vMRS9i/MueCvLbP52NH3no++vkNytzFeLxuDhbvYV/hVvYUbGbF3jmUe0oBsJnt/N/Q+TzV97+0TuxJakRDHNaQC1KniIiIyMlsdcI9B6HYB82DjHCarHB61vQlFKnlHNFBXDKlF7NvXUrOT3l8cdsyBrzembQ+ief8tVweJzZLkP/xk/OvJadkL1azlebxXQFoldiTCHss7ZL7kxbRuML5IiIiIlXBHjfcfRDyvdDQZsw5rVfzdu8LCAVUESEozMawf/XkyzuXs//bHL6651v6vtSBBhelnpPr787fyPjl91HiKmRs3ykUOfMAaBHflQPFu7GZHVjNQcSFpJIR05aOKYPOyeuKiIiInGvZbrjrAOR4IM1q9Jw2sQe6qppDAVVEALA6LAz5Zzfm/XkF+5YcxFXowuP0Ygk6s5kAh0qz+H7fPBLD6tIqoSf55TkcLstmU+4P+PCyp2AzUY54AG5t9yTRjiT/YkgiIiIiVdlhD9ydDfs8kGiBx6KhtcLpOaWAKiJ+liAzA9/oQtZ3OQSF2Ti8qYCoRuFY7acOkE5PGVZzkH8F3c82/pP/rn+Vtkl9CLEZqwKH2MK5rd1TNIhuTZO49jisoRfk/YiIiIicK4VeuCcbtrshxgyjY6Bz1d2lr9pSQBWRCswWEyld4ynPc1K4p4Rdc/dTsLuYNnc2xmQyVTj3pSUjWbbncx7pOYGYYGPOampEBnUjm1I3sikAscEpRDniteKuiIiIVFulXvjzQdjggggzPBIDvRVOzwsFVBE5KXtUEM4iF0v/sIbioiJWl84jfIiH4c3vo9hZwMGSPRwuy8bpKWXV/m8Y0OA6wJhX2jv9SoIsjgC/AxEREZGz5/LBgzmwuhxCTPBwNAxQOD1vFFBF5ARen5cydzHhdcJpdWsGCyYu5LPExzGtMtMoqi0hDmPo7pCGI7go4zbaJPYiwhET4KpFREREzi23Dx7NgaVlYDfBA9EwNAR+MahMziEFVBGpYN62KUxc9SQdUwdzaeORhF7tpbWlMT9uaUXooQTWLt9H/2e6Ex+RrGG7IiIiUmN5ffDMIZhXaoSm+6PgslCF0/PtzJbnFJEaZf3B5Uz+8Vmyi3dT7i5lb8FWCp2HySs/yLrsZfjwAtDg6gRGtfonbb+6idKvHKwetRufSz+dRUREpGby+eCVw/BZsRGY7o2C34WBWb/+nHfqQRWpRQrKDxFhN4bien1eMn8Yw8bclXh9HnrWvRyARjHtuKfT3+mQ0p+4kDr+1Xm5EsIiwvn6/pXsXXqQb19YS4+xbQL1VkRERETOm3fyYUqRcf+OSLg+HKwKpxeEAqpILZBTspfH5l3JodIDvDToc9w+FwCtEnsQFhRJYmhdgq3hxIWkYLcG0yKh20mvkz4gmSH/6MrKv6+nwcWpFOwuJiJNW8aIiIhIzfGvAvhngXH/5gjjZlM4vWAUUEVqmKyinSzd/SlRjgT6pA8ntzSLvLID5JVlU+4pZkf+z9SJyMCEmSub3kuEPeaE7WNOJ6VrPJdM6cWhnwtw5rvIcxUSkuAgKMx2Ht+ViIiIyPn3URG8mmfcvyYM7ogwFkeSC0cBVaSaKyw/TJDFgd1qrHf+3d4vmbBq7JG9SJsAYDZZuLPjC9SPakWdiEbYLEFn9Zpmi5nYFpHkrstn/b+3s+ubLIb9uyfhqSFn/X5EREREAuGLYvjbIeP+JaFwXxQEa8WeC04BVaQae2XpXSzY+SF3dHiepnGdAEgJr0+zuM40j++CxWQjPrQOYUGR53zFXZPJRES9UHbO3U9JdhmfXbuQYf/qSWT9sHP6OiIiIiLn28JSeDwXfBh7nP41CkIVTgPirL7sixYt4sYbb6Rbt27s3bsXgH/9618sXrz4nBQnIoYydwlfbv03b6wYhdfrJa/sIFsOrcbr8+L1edl6aI3/3PSoZrwwcBa3tnuK+tEtCAuKPG91BYXZuGx6b8JSQyjNKeez6xaSuyH/vL2eiIiIyLn2XRk8dBA8QA8HPBINkZZAV1V7/eaA+r///Y8hQ4YQHBzMqlWrKC8vByA/P5/nnnvunBUoUhs5PWXklOzzPy53l/DWdw8wZ8sklu75jJwS4wOhfvWv5vkBn3JnxxfIiGlLRkxb4kJSsZgv3E/V0KRgLpvem8gGYZTnu5h1w2IO/JD7/+3de3xT9f3H8VeS5tJb0qRXyv0m94Lcb4ICE1Bx6ub9gpd5B0W8gQo4dUOdbup0OndRp3M6t59OUZkMLwgUEBARuQjIvbRN7/c2l/P7I1CpXCylNGn7fj4eeXB6cnLySZuEvPO9Ndn9i4iIiDTU19VwhxdqgEF2uN8DiepjGlYNDqiPPPIIL7zwAn/605+wWr+fHGXUqFGsXbu2UYoTaY2W7v4Pl/yrK7/LvIVtBevYVrAOb8VeRrY/h4ldr8IRFUNidDpd3f0ZnP4T+qWOxhEV3pl0oxPtTHljDIm9XfjK/Xx47XL2LcsNa00iIiIix7K1BqZ7ocKAPjaY44E0hdOwa/CfYMuWLYwZM+aw/S6Xi6KiohOpSaTVWLv/Y5bvWcCELpfS3tkDb8VegoafmkAl+0q3EzSCmE1mYq0u7hj+HFaLPdwlH5XdaeXs10bz3+szyVlTQNaKPNoMS8IcpQEcIiIiEll2++CWXCgJQncrzPVABy1IEBEaHFDT0tLYtm0bnTp1qrN/6dKldOnS5UTrEmlxgkaQvSXf0sHVEwB/0MeHW18mc+8CfIEqpvS4AYA2cV2YNfolMlJOw+nwhLPk42aNiWLySyPZ+s4eknonULC5BE8PJ2arQqqIiIhEhmw/3JwL+UHoEBVqOe1+YgscSCNqcEC9/vrruf322/nrX/+KyWQiKyuLzMxM7rrrLubMmdOYNYo0e1X+cn7x7iCKqnJ55Iy3ibOHJi7qmzKSKHMUvZOH47QnkRidhsUcRffEU8NcccNZbBZ6XtSJCm8VFTlVZK/OpyynklPO6xDu0kRERKSVKwiEWk73ByDNAg+4oW/kdlBrlRocUGfNmkUwGGT8+PFUVFQwZswY7HY7d911F9OnT2/MGkWalazS71i0/e/YLHYu6DWdvIosKv2lxFqdVPpK2V/2Hd3tp2KzOPhJ18v5ac+bwl3ySRGT7CDoD/LZrLUUbSulYn8lA27uEe6yREREpJUqDcKtubDTD4lmmO2BwdHhrkp+yGQYhnEiJ6ipqWHbtm2UlZXRu3dv4uJa3hqIJSUluFwuiouLcTqd4S5HIkx22S6io2JxOZIIGkGW73mXR5dei9Pu4Zenv4XJZAIgvyKbzu7eJMW0w2xqHV1eDcNg1WPfsOHl7QD0vaYrQ+/pU/s7EREREWkKlcFQy+lXNeAyh7r1josJd1WtS30z1QnPU2Wz2ejdu/eJnkakWXpm5W18tP01zu85jbGdLgAgKSadIelnckriQOyWGFLjOmCPiqZb8xpO2ihMJhPDZvXFGhfFl89uYcNL2/GV+Rn1y/6YzAqpIiIicvLVGHBnXiicxpjgXrfCaSRrcEB96KGHjnn93LlzG3pqkYjjD/p4d8sLfJW9hHtH/YUyXwkl1XnEWl2YTRYKq3IAMGGmTVxX5o79h1oJDzFwWk9s8VZWPrqBLW/toqbMz+m/GagZfkVEROSk8hswOw9WVIHdBPe4YaLCaURrcBffU0+tO4mLz+djx44dREVF0bVr1xa1Fqq6+LY+JdUF5FVk0cXdN/RzVQG3fDCSoqpcbhz0KL2ShwKhyY9irQm0c3bHatH0bz/m27d3sfT+dRhBOOVnHTjtV813MigRERGJbEED5uXD+xVgBe5yw8/iQJ24wuOkd/H98ssvj3inV199Neeff35DTysSdmv3f8yDn15Em7gu3D3qxdr94zpfhGEYtHf1IC2uM3E2VxirbJ5OOb8j1hgrK371Ne1PT6M8u5LYNM1OICIiIo3LMODxwlA4NQPTEuAChdNm4YTHoB7K6XTyy1/+kilTpnDllVc25qlFTopV+/7LxzveYFT7n9I3ZST5lVlYTFEYBgSNANX+SuxR0SQ4Upjafx4WsyXcJTd7nSem0+60ZIq/K6cyr5qg3yAuPVpjUkVERKTRPFcM/ywDE3CTCy6JB4s+ajQLjRpQAYqLiykuLm7s04qcsJpAFRu9K8hIHYPZZKbKX87qrI9Yuvs/lNeU0Ca+EwCxNieP/eR9urj74oiKDW/RLZQ1xkpibxf5G4vZ/fF+tvx7N5NfGkm0RwuRiYiIyIl5uQT+WhLavtoJVznBqnDabDQ4oD7zzDN1fjYMg/379/Pqq68yefLkEy5MpDEFjSDX/qc/RVVe7hzxAu1dpwDQO3kEgWCAPikjSIxOJ8GRrMmNmojJbCKhezwf3byCSm817120hLNfG60uvyIiItJgb5XCM0Wh7Uvi4RdOsOmjXbPS4EmSOnfuXOdns9lMcnIy48aNY/bs2cTHxzdKgZFAkyQ1L9llO/nXxmeo9ldw0+DH8VbsxR+s4c9r57CneDMX9rmDvikjibW6SIpJx2pRq104Fe8o4/0rl1KZV010sp1z/n4azg5quRYREZHj8345zM0HA/hpbGhSpFgtGBAx6pupGhxQWxMF1MgVNIJ8V7ie6Kg42jq74QvUsMm7ivs+PhezycKvx/8HR1RoLvEafzXtnN1xOlrhgqQRriyrggWXLaU8uxK728ZZr4zCc4peayIiIlI/n1bA3XkQAM6Mgfvc4NTUIRHlpM/iKxIJ/rz2Ad7d8gKndTifn/WeDkCMLY4zu15JR1cvPNFtSI1tj8Wsp3oki0uP4dy3xvD+FUsp2VXOgss+Z9JfR5CSoS8TRERE5NhWVsG9B8LpaQ64O0HhtDk7rk/tM2fOrPexv/3tb4+7GJGjMQyDv389ny/2fcRdI1/EbLJQ6S8lKSYdu+X7MYs2i4OkmLbcNuzpMFYrDRGT7ODcN8fwwdRlFGwpYcNL2znjSbdm9xUREZGj+qoaZnrBBwyxw/0eSFS7RLN2XH++I619eiSaZEZOVHbZTvaVbGdQ+niCRpCiqlxW7l3IjqINfLzjTUZ1mAJAn+ThPH9OJkkx7TCbNMigubMn2Dj776P58rktdJnUlvyNxXh6uTBrXngRERH5gW9r4LZcqDSgnw0e8ECKwmmzpzGo9aAxqE1rW8E6ZiwcR3RUPI+M+7/atUe/zllGdaCCAaln0NndB3uUZnttycr2V1KVX00wYOCv9JM+PDncJYmIiEiE2OWD63KgIAinWOFXidDVFu6q5FiabAzqxo0b2b17NzU1NbX7TCYTU6ZMOdFTSyuwcu+HvLvlRTJST+OMzhdRUp1H0AgQZ3OTEtuOsppCEhwpJMW05byet6h1vhWJaxONyQTL5n3Fns9zGDk3g16XdP7xG4qIiEiLtt8PN+eGwmnHKJjrUThtSRocUL/77jvOP/98vv76a0wmEwcbYg8GiEAg0DgVSotRUl3AuuxPGdRmArE2J6XVhWwt+Iqvcj6juNrLoPRxAJhNFp488yNSYttjtejdpjWLTnZgT7BCEJY/uJ6aUj/9r+8e7rJEREQkTPIDoXCaHYB0C8zxQG+tGNiiNDig3n777XTu3JnFixfTuXNnVq1aRX5+PnfeeSdPPPFEY9YozZRhGHVaPO9ZNJm9JVu5ZsCD9E8bA0CvpCGc33MafVNG0iauC7E2daGW75ktJsY8OhBbvJWNr+1g9ZMb8ZX5GDSjl1rTRUREWpmSINySC7v9kGSG2R4Y6Ah3VdLYGhxQMzMz+fjjj0lKSsJsNmM2mxk9ejTz58/ntttuq/eEStLy5FXs489rH2B/6U7mjX2Dgqr9AHRx98Mf9GEQam1PcKTQOaEfg9LHh7NciXAmk4nh9/fDFm9l3fPf8tUft1JT6mPEnAyFVBERkVaiIgjTc2GrD1xmmOWBUZqOpEVqcEANBALEx8cDkJSURFZWFj169KBjx45s2bKl0QqUyFYTqOKb3EzsUdH0Th5Olb+coqo8Mve8T8Dwszl/FSmx7QG4uM+dpMZ1wBEVG+aqpbkxmUwMur0X1rgovvjNRja9vpNgjcHoRwaEuzQRERE5yaoNuMMLX9dAnAlmuWFcTLirkpOlwQG1b9++fPXVV3Tu3Jlhw4bx+OOPY7PZePHFF+nSpUtj1igR5Idjjd/e9AdeXf8IfZJHcP2gX9Ued1GfO0iN60jPpCG4Halq6ZJGkXFdd2zxVlY88jWenk4q86uJTtTAExERkZbKZ8CsPPiiGhwmuNsDZyqctmgNDqgPPPAA5eXlADz00EOcc845nHbaaSQmJvLmm282WoESOV5Z9zCf7foXNw/+Dcmx7fAHa0iNa4/LnognOg2AOFsCidFt6OYZEN5ipcXqeVEn2o5OobqghvL9lQT9QWJT1cdHRESkpQka8GA+fFYJVmBmApwdA2r3aNkadR3UgoIC3G53i2sta23roAaNIN8Vrmd7wXomdrsKX6CGgsps/vDFnazZv5gJXS7jnFN+AYCZKJJi0nE6PGGuWlqboD9IweYSyrIq2PLv3Zzx5CBscdZwlyUiIiKNwDBgfiH8qwwswIwEuCQeLC0rZrQqTbYO6qE8HoWU5ioQDGAxWwAoqMhmxsJxmDCRGteROJsLgDEdL2BQ+ngGpo2jTXwXLOZGffqIHBdzlBl3Dycfz1xN6e5yFly2lLNeGYXDraWJREREmjPDgGeKQuHUBNzsgosUTlsNc0Nv+Itf/IJPP/20EUuRcPhi3yJu+3AsT6+czr6S7WwrWEdRdS5d3P3omzKSSl8Zdks06fFdGd/lUs7tcRPtXKconEpEsFjNnPHbQdjioyj8toT3LllCRW5VuMsSERGRE/DXEnilNLR9rROucIJV4bTVaHDK8Hq9TJo0ieTkZC655BKuuOIK+vfv35i1yVHklu+lpDr/qNc77YmkxLY7bH922S7W7l/MwDbjSYltT1FVLrnlu/iu8GsKKrOZcsr1td2z5419A3d0KmZTg7/DEGkSyX3dnP36aXw4dRklu8p596LPOPu104hvpxkUREREmps3SuG54tD2ZfFwnRNsCqetygmNQS0sLOStt97i9ddf5/PPP6dnz55cfvnlXHbZZXTq1KkRywyvSBqDmlu+lxvfG4IvWH3UY6xmO3+c8gVuRwpWy/fdHe9ffB5f5SzhvJ43c3qnCwHwBWr4Kucz+qeOpYu7H/YoTTYjzVPp3nIWXL6UipwqHB4bZ782moQu8eEuS0REROppQRnMLQhtnx8Ld7ohRm0lLUZ9M1WjTZK0d+9e/vGPf/DXv/6VrVu34vf7G+O0ESGSAuq2gq+YsfCMHz2um+dU9pd+x28n/o9Kf6iPxJJd/8dX2UsY1eGnDE6fQGJ0Ok67p8VNaiWtV3lOJe9fsZTSPRWkDU7krFdH6fktIiLSDCyugHvzIAhMjIHZbnBawl2VNKYmnSTJ5/OxevVqVq5cyc6dO0lNTW2M08oJyC79jnJfMetzltA98VQAzu7+C67MeKBOq6pISxKbGs25/xzD0gfW0fvKLuR/U0xiH5dCqoiISATLrITZB8LpmGi4O0HhtDU7oYD6ySef8Prrr/Pvf/+bYDDIBRdcwIIFCxg3blxj1ScNNKnbVHolD6dP8gji7K5wlyPSZBxuOxOeG0bJrjJqSv3kf1OMNT4KV8e4cJcmIiIiP7CuGmbmgR8Y6oD73ODRXJytWoP//G3btqWgoIBJkybx4osvMmXKFOx2e2PWJidgdMfz6ebRpFXSejk7xlG6r4KNr33Hxle/Y+xvBtFlcttwlyUiIiIHbK6B6blQbUB/G8xxQ4rCaavX4KfAgw8+yIUXXkhCQkIjliMi0nji0qMp2VVO0G/wyZ2r8ZX76fHzjuEuS0REpNXb4YNbcqHcgB5WmOOBttZwVyWRoMHzYl1//fW14XTZsmVUVx99VlkRkXAwmUyM//1QupzTFoKw9IF1bHhle7jLEhERadWy/HBzLhQFoXMUzPNAF02RIgc0ysTNkydPZt++fY1xKhGRRmW2mDj98UH0vKQTACvnb2Dts5vDW5SIiEgr5Q3ATbmQG4C2UTAnEXpqlKAcolECaiOtVCP14LQnYjUf+1VsNdtx2hObqCKRyGcymxg5L4OM67sB8OWzW1jx6NdhrkpERKR1KQqEuvXu9UOyBe53wwCFU/kBDUNuZlJi2/HHKV9QUp1/1GOc9kRSYts1YVUikc9kMjHkzj7Y4qys/t0mDL9BdXENdpf6FImIiJxs5UGY7oXtPnCbQ+ucDo8Od1USiU44oO7bt48//OEPJCcnN0Y9Ug8pse0UQEUaqP+Np5A6OJEou4XSPRUEAwbRHn19KyIicrJUBWGGF76pgTgTzPLA6THhrkoiVYO7+C5btozOnTvToUMHrr76arp168a9995LSUlJY9YnItLo0gYl4j4lHoCibaUsf2g9/upAmKsSERFpeXwG3JMHa6oh2gT3emCCWk7lGBocUG+88UZ69erFF198wZYtW/jNb37D//73PwYOHKgJk0Qk4llsFtynxLP6txvZ9PoOPrx6Ob5yf7jLEhERaTECBszJh6VVYAPudMPkGDCZwl2ZRDKT0cAZjqKjo/nqq6845ZRTavcZhsFFF10EwFtvvdU4FUaAkpISXC4XxcXFOJ3OcJcjIo1oX6aXRTevJFAVwNPLxVkvj9S4VBERkRNkGPBIAbxdDhZgphsuigOLwmmrVd9M1eAW1F69epGbm1tnn8lk4qGHHmLhwoUNPa2ISJNqOyKZs14eiTUuioJNxbx3yedU5lWFuywREZFmyzDgd0WhcGoCbk2ACxVOpZ4aHFCvvvpqpk+fzp49e+rsVyujiDQ3KQM8nPP30dgTbBTvKOM/Fy2hLKsi3GWJiIg0S38qgddKQ9u/cMLl8RClcCr11OAuvmZzKNvabDYuuOACBgwYQCAQ4LXXXuO+++7j8ssvb9RCw0ldfEVah5JdZSy4YimV3mrc3eM5/90zMGmgjIiISL29XgJPFIW2r4iHW1zgaHCTmLQk9c1UDQ6oOTk5rFu3jq+++op169axbt06tm7dislkolevXvTr14+MjAwyMjKYNGlSgx9IJFBAFWk9yvZXsujmFfS/8RSc7WNJ6psQ7pJERESahXfK4KGC0PbP4mBmAkQrnMoBJz2gHklVVRVff/11neC6YcMGioqKGusuwkIBVaR1MQyDom2lBKqDADg7xWKLs4a5KhERkci1qAJm50EQOCsG7nGD0xLuqiSShCWgtlQKqCKtU/GOMvavzOOL325k3O8G03ZUSrhLEhERiTjLKuEOL/iBM6JhjhsSosJdlUSakz6Lr4hIS+fqHMfO/2VRU+Ljo5tWsHPR/nCXJCIiElHWVsFdeaFwOtwBsxRO5QQpoIqIHMOE54bRdnQKQZ/Bx7evYus7u8NdkoiISETYWA23e6HagAH2UMtpssKpnCAFVBGRY4iyWzjzhWF0mpiOEYQls79k49+/C3dZIiIiYfWdD271QrkBvWww1wNtNF2DNAIFVBGRH2GOMjPud4PpfkEHMCDz4a9Z98KWcJclIiISFnv9cFMuFAehixXmuqGTwqk0EgVUEZF6MJlNnParAfSZ2gWA7FX5VJfUhLkqERGRppXrh5tzIC8A7aJgjgd62MNdlbQk6iUuIlJPJpOJ4bP74enpIqFTHKW7K6CDCbtTXxuLiEjLVxiAm3NhXwBSLHC/G/ornEojUwuqiMhxOuX8Dnh6hqZHL9lZxoZXthP0B8NclYiIyMlTGoRpXtjhB48ZZrthWHS4q5KWSAFVRKQBoqKjSOgez4aXt7Ny/gb+N20VgZpAuMsSERFpdJVBmOGFTTXgNMMsD4yNCXdV0lIpoIqINFCU3UKnM9tgjjKx59McFl6Xia/CH+6yREREGo3PgLvz4MtqiDHBPW4Yr5ZTOYkUUEVETkDnSW35yfPDsNjNZH+RzwdXLqOm1BfuskRERE6Y34D782B5FdhNcJcbJseAyRTuyqQlU0AVETlB7U5LZdJfRxIVYyHvmyLeu+RzKguqw12WiIhIgwUNeKQA/lcZmlV1RgJMiVU4lZNPAVVEpBGkDUrk7NdGY3NaKdpeyvuXLyUYMMJdloiIyHEzDHiyCN4tD4WFWxPgZ3FgUTiVJqCAKiLSSJJ6JzDljdOISXFwys87UvhtSbhLEhEROW4vFMM/SkPb17vgsniIUjiVJqKAKiLSiBK6xHPhogmkD0vCCBjkbSjCMNSSKiIizcNrJfCnA9+vTo2Hq51gVTiVJhRxAfW5556jU6dOOBwOhg0bxqpVq4567DfffMPPfvYzOnXqhMlk4qmnnjrhc4qInKgou4WkvgmYrWYqvFX8e/LHeL8uDHdZIiIix/R2Gfy2KLR9YRzc4ApNjiTSlCIqoL755pvMnDmTefPmsXbtWvr378/EiRPJzc094vEVFRV06dKFRx99lLS0tEY5p4hIY/H0cLL5jZ0U7yzjg6uWsX9VXrhLEhEROaL/locmRQI4JxamuSA6opKCtBYmI4L6ng0bNowhQ4bw7LPPAhAMBmnfvj3Tp09n1qxZx7xtp06dmDFjBjNmzGi0cx5UUlKCy+WiuLgYp9N5/A9MRFqtmjIfC6/LxPtVIWabmXFPD6HjGUf+Qk1ERCQcPq+EmV4IEFrj9AEPuCzhrkpamvpmqoj5XqSmpoY1a9YwYcKE2n1ms5kJEyaQmZkZMecUETketjgrZ70yijbDkwjWBFk8bRXb398b7rJEREQAWF0F9+SFwulIB8xyK5xKeEVMQM3LyyMQCJCamlpnf2pqKtnZ2U16zurqakpKSupcREQaKsphYdKfRtBhfBpGwODTu9ew+c2d4S5LRERauQ3VMMML1QYMtMP9HkiMCndV0tpFTECNJPPnz8flctVe2rdvH+6SRKSZM1vNjH9mKF3PbQdB2PDSdmpKfeEuS0REWqltNTDNCxUG9LHBXA+0UTiVCBAxATUpKQmLxUJOTk6d/Tk5OUedAOlknXP27NkUFxfXXvbs2dOg+xcROZTZYmLsYwM5dVoPRszpR8mucnwV/nCXJSIircxuH9ySCyVB6GYNhdMO1nBXJRISMQHVZrMxaNAgFi9eXLsvGAyyePFiRowY0aTntNvtOJ3OOhcRkcZgMpkYOK0nyf3dABR/V8aez3K0VqqIiDSJHD/cnAt5QegQFQqn3W3hrkrkexHVkD9z5kymTp3K4MGDGTp0KE899RTl5eVcc801AFx11VW0bduW+fPnA6FJkDZu3Fi7vW/fPtatW0dcXBzdunWr1zlFRMLBFmfF1SWO9X/ayrrnv6Xbue04bf5AzBYtOCciIidHQSAUTvcHIM0C97uhrz3cVYnUFVEB9eKLL8br9TJ37lyys7MZMGAACxcurJ3kaPfu3ZjN3zf6ZmVlceqpp9b+/MQTT/DEE08wduxYPv3003qdU0QkXKwxUcS2iQYzbHt3LzXlfsb9bggWW8R0bhERkRaiNAi35sJOPySaYZYHhkSHuyqRw0XUOqiRSuugisjJtH3BXj6btRbDb5A+IomfPD+cKIfm+BcRkcZRGQyNOf2qBpxmmOOB8THhrkpam2a3DqqISGvV9Zx2THh2KBabmazMPD6YuoyaMs3wKyIiJ67GgDvzQuE0xgT3uhVOJbIpoIqIRIAOp6dx5p9HEBVtwftVIQsuX4q/OhDuskREpBnzGzA7D1ZUgd0E97hhksKpRDgFVBGRCJE+NImzXhmFLT6K5H4JlO2tCHdJIiLSTAUNeKgAPqkMTTpzRwKcEwsmzcUnES6iJkkSEWntkjPcXLBgHBW5VfgrAxRsKcbTwxXuskREpBkxDPhNISwoD7VGTU+AC+LArHAqzYBaUEVEIkxsajTJ/ULrpNaU+Vl47XKKvisNc1UiItJcPFcMb5aBCbjRBZfEQ5TCqTQTCqgiIhEqqW8CG1/7jn3Lvbx3yefkfVMU7pJERCTCvVwCfy0JbV/thKucYFU4lWZEAVVEJIKNnJtBQrd4akp8vH/lUrLX5IW7JBERiVD/KoVnikLbF8fBL5yhyZFEmhMFVBGRCOZw25nyj9NI6puAvyLAwmsz2bs0J9xliYhIhPmwHOYXhrbPjYVpCRCtT/rSDOlpKyIS4WzxVs5+dRRpQxIJVAdZdNNKdizcF+6yREQkQnxWAXPzwQB+EgMzEyBWn/KlmdJTV0SkGYiKjmLSX0bSfmwqQb/Bsge/oqqoJtxliYhImK2sgnvzIACMdsA9CeC0hLsqkYbTMjMiIs2ExWZmwnNDWfbgV7QZkkTZ3gqioi1E2fVJRESkNVpfDTO9UAMMtsP9HkjUp3tp5vQUFhFpRsxRZk575FSqCmso21dB0dZSoqLNJHR1hrs0ERFpQt/WwPRcqDSgrw3meCBVn+ylBVAXXxGRZsjhtuHsGEvBtyW887PPWDH/awzDCHdZIiLSBHb54JZcKDWguxXmeaC9NdxViTQOBVQRkWbKFm+luqiGQFWQb175jqUPrMMIKqSKiLRk+/1wcy4UBKFjVCicdrWFuyqRxqOAKiLSjPW7thsjHugHJvj237v5eOZqgv5guMsSEZGTID8QCqfZAWhjgQfc0Nse7qpEGpcCqohIM9f7ii6MmX8qJouJnQuz+OimlfirA+EuS0REGlFJMNStd7cfksxwnwcGRYe7KpHGp4AqItICdD+vA+OfHoLZamLf0lwWXrMcX4U/3GWJiEgjqAiGJkTa6gOXGWZ5YJTCqbRQCqgiIi1ExwltOPOPI7A4LGCCitzKcJckIiInqNoILSXzdQ3EmmCWG8bFhLsqkZNHk1GLiLQgbUcmM+Ufo/FXBPCVBSjeUYarc1y4yxIRkQbwGTArD1ZVg8ME97jhTIVTaeHUgioi0sIk9kogZaAHgJoyH8sfWk/ZfrWmiog0J0EDHsyHzyrBCsxMgLNjwWQKd2UiJ5cCqohIC2QymUjqm8DWd/aw6fUdvHvhZxTvLAt3WSIiUg+GAY8WwocVYAFuS4Dz48CscCqtgAKqiEgLlvGL7sSmR1OZV817lyyhYEtJuEsSEZEf8fti+FcZmICbXHBRPFgUTqWVUEAVEWnB4tpE89O3xuLqHEd1kY8Fl39OzrqCcJclIiJH8ddiePnAd4nXOuFKJ1gVTqUVUUAVEWnhohPtTHlzDJ5eLnxlfj68ehlZmd5wlyUiIj/wZik8WxzaviwernOCTeFUWhkFVBGRVsDutHLOa6NJHeghUBXko5tXUOGtCndZIiJywIIyeKwwtH1eLNziAoc+qUsrpKe9iEgrYY2NYtJLI2l3Wgr9bziFipwqgr5guMsSEWn1Pq6ABw+MvjgzBmYkQIw+pUsrpXVQRURakSi7hTNfHE5lXjUVOVUUbCkhrl00jgR7uEsTEWmVVlTC7DwIAqdFwz0J4LSEuyqR8NF3MyIirYzJZCIm2UFc22iqCqt557xPWffHLeEuS0Sk1VlXDTPzwAcMscP9bvCo+UhaOQVUEZFWyuG2k7+5hPLsKtb8bjOrfvMNhmGEuywRkVZhcw3clgtVBmTYYI4HUhRORRRQRURas/7Xd+fUaT0A+Pov21j24FcYQYVUEZGTaYcPbs2FMgN6WGGuB9pZw12VSGRQQBURaeUGTuvJsNl9ANjy5i4+vXsNQb8mTxIRORmy/HBLLhQGoVNUKJx2sYW7KpHIoYAqIiL0ndqN0Y8MwGSG797fx/+mrSJQEwh3WSIiLYo3ADflQk4A0i0wNxF6aY46kToUUEVEBIAeP+/I6U8OxhxlovDbEop3lIW7JBGRFqM4EOrWu9cPyRa43wMDFE5FDqOh2CIiUqvL5LbYnFYMv0HQZ1C6t4L4djHhLktEpFkrD8J0L2zzQYIZZrthRHS4qxKJTGpBFRGROtqNSqHdaSkAVBfVsPG176gsqA5zVSIizVNVEO7wwoYaiDPBLDecru/9RI5KAVVERA5jMptI7OMia4WXzF99zXsXL6E8pzLcZYmINCs+A+7Ng9XV4DDBPR74icKpyDEpoIqIyBGZTCban5GKw22jdE8F7160hJI95eEuS0SkWQgYMDcfPq8CK3CXG86KAZMp3JWJRDYFVBEROSp3Vyfn/nMssWkOKnKqePeiJRRuLQl3WSIiEc0w4NcF8N8KsAAz3PDTWDArnIr8KAVUERE5pvh2MZz7z7E4O8ZSXVjDgss+x7uhMNxliYhEJMOAp4rg7XIwAbckwIVxYFE4FakXBVQREflRMSkOprwxBvcp8dSU+vngymXq7isicgR/LoFXS0Pbv3DCFfEQpXAqUm8KqCIiUi8Ot41zXj+N5IwEOoxLo7qohmDACHdZIiIR4/USeL44tH1FPFzjBKvCqchx0TqoIiJSb7Y4K2e/NpoKbxXVhT4KNhXj7hGPxWoJd2kiImH1nzJ4oii0fUEc3OQCh5qCRI6bXjYiInJcLDYL8W1jiU62E/AF+eCq5Wz+585wlyUiEjb/q4CHC0Lbk2PgNhfE6FO2SIOoBVVERBokNjWa7e/vJffLAnK/LKCm1EfGdd3DXZaISJNaVgn35UEQOD0a7k4ApzqViDSYvtsREZEG63dNN3pd2gmAL36zkTVPb8IwNC5VRFqHtVVwVx74geEOmO2GBDX/iJwQBVQREWkwk8nEiLkZ9L8x1HK67vlvWfGrrxVSRaTF21gDt3uh2oD+dnjADckKpyInTAFVREROiMlkYvAdvRl8Z28ANr62gyWzvtQMvyLSYn3ng1tzodyAnlaY64F0a7irEmkZFFBFRKRR9L++OyMfzAAz7FyURd43heEuSUSk0e3zw825UByELgfCaWeFU5FGo44IIiLSaHpd0hlbnBV/ZQCz2UxFbhUxKY5wlyUi0ii8B8KpNwDtomCOB3raw12VSMuigCoiIo2q6zntCPqDFGwuoSK3ivwtxaSe6sEWpyYGEWm+CgNwsxf2+iHFAve7Q2NPRaRxqYuviIg0OnOUGU8vF8U7y/hkxmrev3wp1UU14S5LRKRByoIwzRsae+o2h2brHRYd7qpEWiYFVBEROSnMFhPODrGYzFCwpYR3L15Chbcq3GWJiByXyiDM8MKmGog3wWwPjI0Jd1UiLZcCqoiInDTJGW7O/vto7G4bJbvKefeiJZTuqwh3WSIi9eIz4O48WFsN0Sa4xwPj1XIqclIpoIqIyEnlOcXFuW+OISbFQfn+St69aAlF35WGuywRkWMKGPBAPiyvAhtwlxvOigGTKdyVibRsCqgiInLSOTvEcu5bY4hvF0NVfjXvXfI5xTvKwl2WiMgRBQ14pAAWVYAFmOGGc2MVTkWaggKqiIg0idjUaKb8cwyurnE4O8ZSVViDYRjhLktEpA7DgN8WwX/KwQTcmgA/jwOLwqlIk9AyMyIi0mSiPXbOfWMMpXvLMQKQ/00xib1dmMz65CcikeGPxfD6gVEI17vg8niI0luUSJNRC6qIiDQpW7yVxF4J2BNsGIbB5/d/yY6F+8JdlogIr5XAiyWh7avi4RonWBVORZqUWlBFRCQs4tvFsG9ZDlvf3sO2/+zBVxHglAs6hLssEWml3i4Lde0FuDAObnSBXeFUpMmpBVVERMLmlJ91pMtZ6RhB+Py+L9nwt+3hLklEWqH/locmRQI4OxamuSBan5JFwkIvPRERCRtzlJnTnxhMjws7ArDy1xv48rnNYa5KRFqTzytDy8kYwLhouCsB4i3hrkqk9VJAFRGRsDKZTYx6qD99r+0GwNrfb2HFo19rhl8ROenWVME9eRAARjpglhtcCqciYaWAKiIiYWcymRh2Tx8G3t4TgG9e+Y6sTG+YqxKRluybarjdC9UGnGqH+z2QpNlZRMJOL0MREYkYp97cA1tcFJXeauxOG1WF1Tjc9nCXJSItzLYamOaFCgN622CeB9roU7FIRNBLUUREIkqfK7sSqAlQ+G0pZfsqKc+tIqFzHBab+t2JyInb7YNbcqE4CF2toXDawRruqkTkIHXxFRGRiGOxWfD0cFJd4mPxrav48NpMfBX+cJclIs1cjh9uzoW8ILSPgrke6G4Ld1UicigFVBERiUhmqxmL3UxFXhU5q/N5/8qlVJf4wl2WiDRThYFQON0fgFQLPOCGfhpBIBJxFFBFRCRipQ1KZPJLo7DGRZH/TTELLllCZX51uMsSkWamNAi35sJOPySaYbYHhkSHuyoRORIFVBERiWipp3o4+7VR2BOsFH1XxrsXLaFsf2W4yxKRZqIyGJqtd7MPnGa41wNjFE5FIpYCqoiIRLzEnglMeWMM0Ul2yvZV8O6Fn1GyqyzcZYlIhKsx4M48WFcNMSa41w0TYsJdlYgciwKqiIg0C65OcZz7zzHEpkdjMpso3lke7pJEJIL5DbgvD1ZUgd0Ed7thksKpSMTTMjMiItJsxKXH8NN/jiFvYzHRHjt5G4pI7OPCZDKFuzQRiSBBAx4ugI8rQx9270iAKbGgtwqRyKcWVBERaVaikxy0H5NKVExoXdT1f9pKVqY3zFWJSKQwDPhNIbxXHvqgOz0BLogDs8KpSLOggCoiIs1SQpd4SvaUs+bpzfz3hkx2Ld4f7pJEJAL8oRjePDBE/QYXXBIPUQqnIs2GAqqIiDRbHcal0WZYEkGfweLbvmDbu3vCXZKIhNErJfCXktD2VGfoYlU4FWlWFFBFRKTZirJbmPjH4XT8SRuMgMFn965l4+vfhbssEQmDf5XC00Wh7Yvi4AZnaHIkEWleFFBFRKRZM1vNjH96CN3Pbw8GZD70NV+9+G24yxKRJrSwHOYXhranxIbGnUbrU65Is6SXroiINHsms4nTfn0qva/sDMDq325i56KsMFclIk3hswqYkw8GoTVO70yAWH3CFWm2tMyMiIi0CCaTiRH3Z2BzWincXEJsWjQ1pT5s8dZwlyYiJ8mqKrg3DwLAaAfcmwBOS7irEpEToYAqIiItyqDpvagp91Gyo5ySXeVEJ9uJTrRjjlKTikhLsr4a7vBCDTDIDvd7IFGfbEWaPf1vLSIiLY4t1kpC93iCAYNP717D/6atIlATDHdZItJIvq2B6blQaUBfG8z1QKrCqUiLoIAqIiItUpTdQtAfJHdtAXs+zeG/v1iOv9If7rJE5ATt9sGtuVBqQHcrzPNAe/XkF2kxFFBFRKTFShuUyITnhmKxmdm/Kp/3r1pGTakv3GWJSAPt98NNuZAfhA5RoXDa1RbuqkSkMSmgiohIi9Z+bBqT/jqCqBgLeV8X8d6ln1NVWB3uskTkOOUH4JZcyA5AmgXmuKG3PdxViUhjU0AVEZEWL21wEme/Ohqb00rRtlLevXgJ5TmV4S5LROqpJBjq1rvLD4nm0IRIg6LDXZWInAwKqCIi0iok9UngnNdH4/DYqMipImuFN9wliUg9VARDEyJ96wOXGWZ7YJTCqUiLpfnORESk1XB3c3LuP8eyd2kO7q5O8jYUkdQ3IdxlichRVBsw0wtf10CsCWa5YVxMuKsSkZNJLagiItKqxLeLodclnTFbTQBsf28v3g2FYa5KRH7IZ8DsPFhVDXYT3O2GMxVORVo8BVQREWmVPD1cVBZUs/zh9Xxw1TL2f5EX7pJE5ICgAb/Mh08rwQrcmQDnxILJFO7KRORkU0AVEZFWK3WgB1enWPwVAf57XSa7P80Jd0kirZ5hwGOF8EEFWIDpCXB+HJgVTkVaBQVUERFptWxxVs7622jaDE8iUBPkf9NW8t0He8Ndlkir9mwxvFUGJuBGF1wcDxaFU5FWQwFVRERatSiHhYkvjqD9GakYfoNP7lrD5rd2hbsskVbpr8XwUklo+xonXOUEq8KpSKuigCoiIq2exWZmwrPD6DqlHQRh2Zx1bH9fLakiTenN0lDrKcCl8XCdE2wKpyLHLX9zcbhLOCFaZkZERAQwW0yMfXwgtrgostcUEJsaja/CjzVG/1WKnGwLykPjTgF+Ggu3uiBazSgix8VX4SfzofVsfWcP3c9vz8i5GURFN7//w0yGYRjhLiLSlZSU4HK5KC4uxul0hrscERE5iQzDoDKvmoqcKgDiO8Zgi7Ni0vShIifFxxVwbx4ECC0jc58bnJZwVyXSvBRuK+F/01ZRurscIwgmMzg7xjH+90Nwd4uM/FLfTKXvpkRERA5hMpmISXbg6hwHwOonNrJk9pcEA/o+V6SxragMrXUaAE6LhnsSFE5FjtfWt3fznws+o3RPBUYwtM8IQsnucv5zwWdsfWd3eAs8Ts2vzVdERKQJWGOjwERowqQg+Mp8jPvdEMxWfbcr0hi+qoaZeeADhtjhfjd49MlU5LjkbShiyewvj3idETAIBAyWzPoSdzcnSX0Tmra4BtL/siIiIkeR1CeBsY8NwmQxset/2fz3xhX4qwLhLkuk2dtSA9NzocqAfjaY44EUhVORYzKCBnkbi1j/l60svG45e5fm4kiykdA1PrQu0xGYzJDUL4HEPq6mLfYE6K1ARETkGLpNaYc1xsLHd6wma7mXD69exsQ/j8AWZw13aSLN0k4f3JILZQacYoV5Hminl5PIEZXuqyAr08u+5V72Z3qpKqypvc7hsdN3ald6XdqJzEe+PuLtjSAMur1Xs5pHQQFVRETkR3Qc34aJLw5n0c0ryV1XyPtXLOWsl0dhT7CFuzSRZiXLDzfnQmEQOkWFwmkXvYxEahlBA5M5FCaLd5Txr8mL61xvcVhI6uMiOcNNm6FJxLePIbGPi63v7CF/Y1HtGFQItZ4m9kmg7ajkpnwIJ0wBVUREpB7Shycz+eWRLLwuk4LNJXz79m76XdMt3GWJNBt5gVA4zQlAuiXUrbeXPdxViYRXoCZA7peF7FueS1aml/h2MQye2ZvqIh+GYRCdZCc60U5yhpvkDDdtRycTmxpdG2IPGnR7L/57fWadfc2x9RS0zEy9aJkZERE5qGBLMdsX7KPzxHTMVjOeHvp/QeTHFAfg+lzY5oNkCzzogRHR4a5KJDwKthSzb5mXrEwv2avz8Vd+P7eBzWll0p9H1AbQqNgo4tvGYLEde+ogwzDI31QMhyY7EyT2ckVMQK1vplILqoiIyHHw9HDh6eEib0MRQV+QfctyiUuPqV2WRkTqKg/CdG8onCaYYZZb4VRal8qCaqI9oe4ChhGaVTd/U3Ht9fYEK8n9Qi2kacMSSegaH5pJ/jiYTCaSeic0Ztlho4AqIiLSAEl9E8henU/mI19TmV/NWa+MIrFX85klUaQpVBtwhxc21ECcKRROz4gJd1UiJ1dNqY/9q/JqW0lLdpcz5c3TMB2Yaje5vxuLw0JyRgKpAz20GZqEPcEWMS2d4aaAKiIi0kAJXePADDUlPhZc/jmT/jyC1IGJ4S5LJCL4DLg3D1ZXg8MEd3vgJwqn0kIVfFvCjoX72LfMS97XhXUmK8IMBRuLSTzQwnnqLT1wJNoxWxRIj0RjUOtBY1BFRORoakp9fDB1Gfkbi7E4zEx4dhjtRqeEuyyRsAoYMCcfFlaAFbjHA+fHglmfx6UFMAyDwq2lxCQ7cLhtBAMG6/+0lTVPbao9JjY9muR+blL6u0kfmURCl3gsNksYqw6/+maqY4+2DZPnnnuOTp064XA4GDZsGKtWrTrm8W+99RY9e/bE4XDQr18/PvjggzrXX3311ZhMpjqXSZMmncyHICIirYQt3srZr40mdVAigaogi25awY6PssJdlkjYGAb8uiAUTi3A7W44T+FUmrnynEq2vr2bT+9Zwz/G/Je3z/2Eb17dTt6GIgo2FZPQNY62o5IZcPMpTH55JBe8ewbjnx5Cv2u7kdgzodWH0+MRcV1833zzTWbOnMkLL7zAsGHDeOqpp5g4cSJbtmwhJeXwb6SXL1/OpZdeyvz58znnnHN4/fXXOe+881i7di19+/atPW7SpEm89NJLtT/b7ZrXXEREGoc1JorJL43gf9NWsXdJLp/M+ALjiUF0OatduEsTaVKGAU8VwdvlYAJudsGFcaCejNIcVXir+OqP35KV6aVoe1md6yw2M1WFNQCYokykDU6i44Q2GkfaCCKui++wYcMYMmQIzz77LADBYJD27dszffp0Zs2addjxF198MeXl5SxYsKB23/DhwxkwYAAvvPACEGpBLSoq4p133mlQTeriKyIi9RH0B/n07jXsX5nH6IcH0HZ0ClF2fWsurcefi+EPByYn/YUTfuECmz6vSzMQ9AXxfl1IoCZI+vBkAjVBinaU8s75n0IQMENCl/gD65Em0HZUCnHpMRpHehya5TIzNTU1rFmzhtmzZ9fuM5vNTJgwgczMzCPeJjMzk5kzZ9bZN3HixMPC6KeffkpKSgput5tx48bxyCOPkJh45Iksqqurqa6urv25pKSkgY9IRERaE3OUmTOeHEzh1lKCviBFW0tJ6BpHVHRE/XcrclL8o/T7cHp5PFzrVDiVyGUYBkXbS8la7iUrM4/9q/Lwlftxn+JkzK9PrT2u96WdiW0TTfrIZNzdNI60KUTU/5h5eXkEAgFSU1Pr7E9NTWXz5s1HvE12dvYRj8/Ozq79edKkSVxwwQV07tyZ7du3c9999zF58mQyMzOxWA5/ks2fP59f/vKXjfCIRESktTGZTXh6OKku8VG6u5zNb+6kwlvNkLt6q+uXtFjvlsFvCkPb58eGuvY6InKmExHI/NXX7PxvFhW5VXX22+KjiE1xYAQNrLFRxKQ6GDEnI0xVtl4RFVBPlksuuaR2u1+/fmRkZNC1a1c+/fRTxo8ff9jxs2fPrtMqW1JSQvv27ZukVhERaRnsTiuV0Ra++O0mgjVBqkt8jP5lf0yaKUZamMUV8FBBaHtSDNyeADEKpxIBasp8ZK/Ox7u+kIHTexKoClCeXUXhtyVU5FZhtplJ7OkiOSOBlAEe0kck4fDY9WVimEVUQE1KSsJisZCTk1Nnf05ODmlpaUe8TVpa2nEdD9ClSxeSkpLYtm3bEQOq3W7XJEoiInLCErrGM/Su3qyYv4Fv39qFr8zH6b8ZhDlKn96lZVheCbPzQkP0xkbDPQngVA9ICZOgP4j36yKylnvZl+kld10Bhj803U5iLxdxbUIL8Xb7aXs6T0yn7ejk0DhSvSdHlIgKqDabjUGDBrF48WLOO+88IDRJ0uLFi5k2bdoRbzNixAgWL17MjBkzavctWrSIESNGHPV+9u7dS35+Pm3atGnM8kVERA7T56quWOOjWHr/OnZ8mIWv3M+EZ4dqHJM0e2ur4M488APDHHCfGxIi6pOltCZb3trFysc24Cvz19kfk+IgOcMNmLC5rMSkOEjqmxCWGqV+Iu5tZObMmUydOpXBgwczdOhQnnrqKcrLy7nmmmsAuOqqq2jbti3z588H4Pbbb2fs2LE8+eSTnH322bzxxhusXr2aF198EYCysjJ++ctf8rOf/Yy0tDS2b9/OPffcQ7du3Zg4cWLYHqeIiLQep5zfEVuslU/uXM3eJbl8eG0mE18cjjUm4v4bFqmXTTVwuxeqDehvgzluSNbTWZpAZV4VWZl57FueS8+LO+HqEk95diW+ch++Mj/WuCiS+yaQnOEmbWgiKQM82OKs4S5bjkPEvZVcfPHFeL1e5s6dS3Z2NgMGDGDhwoW1EyHt3r0bs/n7ZviRI0fy+uuv88ADD3DffffRvXt33nnnndo1UC0WC+vXr+eVV16hqKiI9PR0zjzzTB5++GF14xURkSbT6cx0fvLCcP5360pyVufz1R+/ZfAdvcNdlshx+84Ht+ZCuQE9rTDHA+n6/C8nia/CT86afPYt85KV6aVgyyGra5hM9L6sMwBJfd2MeXwg6SOSiUnSONLmLOLWQY1EWgdVREQaS87afDa8vJ2M67pjc1pxdY4Ld0ki9bbPD9fmgDcAnaPgV4nQU9/3y0lSvLOM/5vyCUFfsM5+V6c4kvsn0GZYMm1HJhOdZNc40magWa6DKiIi0tKlDkwk5VQP+d8U4yv3k7+piOgkBzHJjnCXJnJMXj/cnBsKp22jYK7CqTQCwzAo2VXOvuWhFtLYtGgG3HQK5dmVGAGDKIcZi8tKcn83KRlu0kck4z7FSZRD4/hbKgVUERGRJmYymUjqm4B3fSFrntpM/pZiznltNM6Oak2VyFQYgJu9sNcPKRa43w39FU6lgSoLqsnKDAXSfcu9lGdV1l7n8Njodm47TCYTJrOJCc8Pw3OKE7vTFsaKpSkpoIqIiIRJXLsYCreXUumt5t2LP+esv43Cc4qGkkhkKQvCNG9o7KnbDLPcMDw63FVJcxL0BTFbv++C++HVyyj8trT2Z1OUicQeTpIz3CT3dxPbJproRI0jba0UUEVERMIk2mPnp2+NYcEVSynZWc6Cyz5n0l9HkJLhCXdpIgBUBmGGNzRrb7wJZnng9JhwVyWRLhgwyN/4/Xqk+RuLmfLPMfgPLAHj6eEiUB0MBdIMN21HJeNsH1snxErrpUmS6kGTJImIyMlUXVzDB1OXUbC5BIvDwpkvDCN9eHK4y5JWzmfATC8sq4JoE9zngbNiQI1aciRl+yvZ+1kO+zK97F/hpbrYV+f6UQ/2r11/1BprITYtmqhotZW1JvXNVAqo9aCAKiIiJ5uv3M/C65aTu64Qs83MuKeG0HFcWrjLklYqYMB9+bCoAmzAvR44L1bhVL5XVViDxWbGGhsKmV8+v4W1T2+uvT4qxkJS3wSS+7lJG5xIykAPDpfGkbZmmsVXRESkGbHGRjH5lVEsunkl2avyKM+uPGzclkhTMAz4VUEonFqAGW44V+G01fNXB8hZkx+a3Gi5l7yNxQy5s3dtbw9Xh1gSe7kOdNtNoO2oZGJSojGZ9cSR46MW1HpQC6qIiDSVoC/IvmW5RCeFlp1xnxKPxablFKRpGAb8tgj+XgomYHoCXBEPUcoYrVJVYQ3f/nsX+5Z7yVmTT6C67nqk3X7anj5XdgFCs+/GJDv0pZoclVpQRUREmiGz1Uz709OoLKimPKuS3R9nU55TRd+pXcNdmrQCL5aEwinA9U64XOG0VSndW0FNmY/Eni4Mw6CqoIovnthYe73DYyO5X2im3TbDkkjq7dI4Uml0ekaJiIhEoGiPHV+Zj+UPraeqoIbK/GoG39FLyy7ISfNaCfyxOLR9ZTxc4wKrnm4tWnVRDVkr82rXIy3dXU5yRgIj5/avPabz5LbEpjlIHZxI2iAPjgQtgCsnlwKqiIhIhIpvH0vPSzqx7g/fsv7FrdSU+hg5N0MhVRrdO2Whrr0AP4+Dm1xg19OsxVr3whZ2Lc4mb0MRHDLYz2QGIwiGYWAymYhJdXDGk4M0jlSalAKqiIhIhDKZTAy6rRe2OCurHv+Gzf/Yia/Mz5hHB2K26AOjNI6PyuHhgtD2WTEw3QXRGkbYIhhBg4JvS/B+VUjPizsRDBhU5lWxd0kueV8XARDXLoaUAxMbpY9MwdUpDotNTwAJHwVUERGRCNfv2m5Y46NYNu8rtr+3F1+5n3FPDdGHSDlhSyvh/vxQI9oZ0XBXAsRrTq5mrSyrItRld5mXrBVeqgpqAIhNddROvtblrLakj0wmfVgSiX0SsMYoEkjk0LNRRESkGeh5YSdssVY+vWcNuz/OZuVjGxg5JyPcZUkztqYK7s6DADDcAbPdkKBPhs3W9gV7Wfv7zZTsKq+z3+Iwk9Q7AV9lgFirmdhUB0l9E8JTpEg96G1IRESkmehyVlussRZW/24Tnc9Mp3RfBfFtY8JdljRDG6thhheqDTjVDnM8kKRPhc1CoCZI7roCsjK9dJ7UFlfnWCpyqyjLqqRkVzkmMyR0c5KckUBKhpv0USnEpkVrWIA0G3orEhERaUbaj00jfVQKhZtLqC6swfAHiUmNJsqhfplSP9tq4FYvlBvQ2xYKp230iTBiGYZB4bel7FueS1aml+wv8vFXBoDQOqU9ft4RgOSMBIbe04f0kckkdInXEABptvR2JCIi0sxYoswk9nGR/00xG1/fwe5Pcjj71VHEpkaHuzSJcHt8cEsuFAehqxXmuKGTNdxVydGU7CpjweVLqcyrrrPf7rKS3M9NQtd4omIsxKZGY42NIn14cpgqFWk8CqgiIiLNkMlkwtkplu0L9lGVX827Fy3hnL+PJr5dbLhLkwiV44ebcyEvCO2iQi2nPbSkZUSoKfOxf1UeWcu9RCfZ6XNlV8pzKqkp8eEr92OxmUns7SI5w03qIA9pg5NweGxackpaJJNhGMaPH9a6lZSU4HK5KC4uxul0hrscERGRWqV7y1lw+VIqcqpweGyc/epoErrGh7ssiTCFAbguB3b6IdUCD3lgiBrcwyboC5K7vpCsZV72ZXrxri/ECIQ+ksemOZjw7LDaY0t2lZGU4SYuPUbjSKVZq2+mUkCtBwVUERGJZOU5lbx/xVJK91Rgc1qZ9NcRJPd1h7ssiRClQbgxBzb7wGOGuYkwRuE0rN4+7xMKNpfU2RfbJprkDDfJGW46nZlGbGo0FpvGlkvLUd9MpS6+IiIizVxsajTn/nMMH1y1jMKtpXxw1TLOfHE4bQYnhbs0CbPKINzuDYVTpxlmeRROm0p5TiVZK0Lddr3rCzn71VFU5tcQ9AVxdoyjLKuS5H4JJGe4SRuaSHI/N7Y4DQgWUUAVERFpARxuO+f84zQ+vGY5eV8XsXtxNqmnJqpLYCtWY8BdebCuGmJMcK8bJmhVopOmpsxH9hf5ZGV62bfcS9G20jrX7/40h8SeLgD6XN2FkXP74fDYNY5U5AcUUEVERFoIW5yVs18dzeZ/7iRtYCIFm4rx9HRijtJyE62N34D78yCzCuwmuMsNkxROG1XQF8QwqF3OZcPL2/ny2S3fH2CChC7xJGeEWknbDE0krm2svjQS+REKqCIiIi1IlMNC36tCM4BWeqvJWVNAZUE1XSa3DXdp0kSCBjxcAIsrQx/0ZiTAubGghroTYxgGxd+VsW+5l6zlXvavymPoPX1I6pMAQFx6DLFpDpL7uUnu7yZ9RDIJ3eKJsmscqcjxUEAVERFpgWJTowkGDD6//0sKtpRQnl1Jv2u6hbssOckMA54ohPfKwQzcmgA/iwOzwmmD1JT52P1Jdu1suxU5VXWuz8r01gbU5IwELlgwTuNIRU6QAqqIiEgLFdcmmpRTPRRsKWHVY99QU+pj4PSeGvPWgj1fDG+UhbZvcMFl8RClP3e9+cr9VBXVEN821B+60lvFZ3evrb3ebDXh6ekiJcNNyqke0oYlEZOkcaQijUkBVUREpIUymUyMnJeBLT6K9X/axro/fEtNqZ/h9/XVB+oW6G8l8OcDK5dMdYYuVv2ZjynoD5K3oYh9mV6ylnnJXVdA6qBEht7dp/aYNsOTiE2NJrm/m7ajkolvG6Nx3SInkQKqiIhIC2YymRhyZx9scVZW/24TG1/9Dl+Zj9GPnKrJWlqQf5fBU0Wh7Yvi4AZnaHIkObIt/9rFnk+z2b8yj5pSf53ryrIqMAwDk8mEzWnlzD8O1zhSkSakgCoiItIK9L/xFKzxVjIfXs/Wt/dgtpoZ/dCAcJcljWBhOfy6ILR9TixMT4BoNfDVqsyvxru+kA5npAFQXeJjyz934l1fBIA1Noqkfgkk93OTNsRDygAPdqctjBWLtG4KqCIiIq1E78s6Y4uLYsX8DbQdmUxFbhUxKY5wlyUn4LMKmJMPBjA+Gu5MgNhWHk79lX6yVxewb3kuWZleCjaH+j1P/PMIHAmh4NlhXBuS+rpJ7p9A+ogUYpI1jlQkUiigNmMBA76shrwAJFngVDuot5aIiBxLt3Pb0+H0VEp2V1CRW0UwYBCb5tCH82ZoVRXcmwcBYKQDZrnB1Yp7ou7+JJsNL28nZ20BQV+wznWuTnFUF9bgSLDhSLST8YtuGkcqEqEUUJupxRXwm0LIDXy/L8UCd7thvBbiFhGRY7A5bXh6WSnYVMyeT7LZ+s5uJr44AnuCujU2F19Xwx1eqAEG2eEBDyS2kk91hmFQurucfZle2o5IJr5DLFUFNeRvKmb/yjwAopPsJGe4Sc5wkz4iCU8PF1GOVpzeRZoRk2EYRriLiHQlJSW4XC6Ki4txOp3hLofFFXBPXqg7z6EOfvf9eJJCqoiI/Dh/VYB/TlhEZV41rs5xnP3qKKKT1OU30n1bAzfkQkkQ+tjgV4nQoYUvvVlVWE3Wijz2LfeStdxL2b4KAPpc2YVuP20fOqaohv0rvKQOTiTlVA8Ol75wEYkk9c1UCqj1EEkBNWDA2Vl1W04PZSLUkrogXd19RUTkxxVsKeaDqcupLqohNj2ac14bTVy6vuWMVLt9cF0O5AehuxUeSYTuLTiHlewp5+PbvyB/U3Gdb+ZNUSY8pzjpdGY67U5LITbVgcNjx2TWhx+RSFXfTNVKOoO0HF9WHz2cQui9OycAjxTAadHQ1Qpto7RIt4iIHJmnh4tz3zyNBVcspTyrkncvWsLZr47G1Tku3KXJD2T74abcUDjtEAVzPC0nnBpBg/yNxezL9GKPt3LKzztQmVdNpbeawm2lYICzQyzJGQmhbrujknF1iMNs1ThSkZZGLaj1EEktqAvL4b7847uNFehohW5W6HLgouAqIiKHKs+uZMHlSynbV4HdZWXyK6NI7OkKd1lyQEEg1HK6yw9pFnjIA4Ojw13ViSndW86+ZV6yMkOX6mIfAPEdYhn328G1x+WuLySxp5PEXi6iotW2ItJcqQW1hUqq5/j+vlYoN2CfPzSBwjZf6HKoowXXdlHqHiwi0trEpkVz7j/H8P6VSyn+rox1f9jCuKeHaHbfCFAShFtyQ+E00QyzW0A4ff+KpWSvrvuNe1S0haQ+CST3d2OymohLi8buspHUNyE8RYpIWCigNjOn2kNjTL2BwydJgu/HoL6UFgqZNUHY6oPNNaGAus///UXBVUREDhWdaGfKG2NY/buNdP9pe/K/KSaxt0vj+sKoIgi35cK3PnCaYZYnNISnOfBXB8j9soB9y7x4vy5kwh+GUZVfTU2xD2t8FCaLCXf3eFL6u0nuF+q2G5sareebSCunLr71EEldfOH7WXyhbkg9nll8DwbXTTWw/UBw3euHrAPB9UisQKcDYbXLIf8quIqItDyleyuoLqrBCBgEgwapp3rCXVKrU23ADC+srIIYU2gpmUmx4a7q6IygQf7mYrIyvexb5iVnTT6B6u/XIx372EASusYDUFlQTWybaFwd47DYNI5UpDVQF98WbHxMKIQeaR3Uu+q5DqrNDH3socuhDg2u23yhwHpocN3qC10OdTC4drNC5wPB9eAYVwVXEZHmKb5dDCYLrPjVBnZ/vJ/TfnUq3c/vEO6yWg2/AfflhcKp3QT3uGFiBE6ubBhGbTfwdc9vYe3vt9S53u62kdzPTUp/N67Ocbi6xGGN0cdPETk6vUM0U+Nj4PTo0Ky+eYHQ2NRT7SceCI8WXKuDocCq4Coi0nrEpERjjjJhBGHJfV9SU+6nzxVdwl1Wixc04Jf58Ell6P/SmQlwTixEwnDg6uIa9q/MY19maD3Sgbf1JLGXC39FgOgkBxaHmaTeoXGkqQMTSRvsweG2//iJRUQOUBffeoi0Lr6R5IfB9eD41vp0FT7SrMIKriIikcUIGiyds45v/70bgEG392TAzT3CXFXLZRjwaCG8VQZm4PYEuCw+fP8/BmqCoXGkmV6ylueSt6EI4/teu3SenE7Gdd0BMAIGjiQ7cW00jlREDqcuvtIk7PVscT10jKuPI7e42jjyGFcFVxGR8DGZTYx+ZAC2eCsbXt7Omqc3U13iY+g9fTTD70nwbHEonJqAm1xwSROHU8MwqCn1Y3dagdBSMB9MXVbnmLi2MSRnuEnOSCB9RDIJXeI1jlREGo0CqpwUPxZcNx5lcqZvfaHLoRRcRUTCy2QyMWxWX6xxUXz57BY2vLSdQE2QkXMywl1ai/JSMbxUEtq+2glXOcHaBP/Ple2vJGt5LlmZeezLzCW5n5vBd/Qi6DMwDAN393hi06JJznCTNiyR5D5urLH6CCkiJ4feXaRJHS24VgVDgVXBVUQkcg2c1hNbvJVVv/mG+HYxVBXW4HDbwl1Wi/DPUvh9cWj7kjj4hRNsJ/H/st2fZLP381yyMr0U7yirc513fSGBmiAmkwmLzcxZfxuNPcGqFnMRaRIag1oPGoMaPj8MrnsPGePqO8ptDg2uXQ8Z56rgKiLSOIp3leEr9QMQm+YgOskR5oqat/fLYU5+aPunsaEZ+WMbscdsoCZI4dYSkvok1P783qVLyP/mQCI2g7tr/IFuu6H1SOPaxGDWf5oi0og0BlVaBMcxWly3HbKO694fTM70Yy2uCq4iIg3n6hhH0BekYEsJuV8Vsu3dPYyZP1DLhzTAJxXw4IFwemYM3JFw4uHUMAwKt5aSdWCm3f2r8ghUB5j015HY4kJjS9uOTCG+XSzJGW7ajko6MI7UcmJ3LCLSCPQ/iTRLDjP0tYcuh6o6ZIzrd8cRXDsf0k2464FlcRRcRUSOzmw14z4lnk9mrqZkdzlle5cx+eWR2OKt4S6t2VhZBbPyIACc5oB7EsB5Ahlx/6o8tvxrF1mZXiq91XWuszmtlO+vxNbdSlSMhf43dq8NqyIikURdfOtBXXybv6ojTM5Un67CPwyuXayQruAqIlIrZ20+/71+Bb5yPwld4znr1VFEe7Tu5Y/5qhpuzoUqA4bY4eFESDmOZoOaMh/Zq/JJ7OMiNjUaX4WfDS9vZ+0zmwGw2Mwk9naR3M9NykAPbYYm4vDYNY5URMKmvplKAbUeFFBbroYEV7sJOkUdPjmTgquItFZ5m4pYePVyqot9xLeL4ezXRhObFh3usiLWlhq4IQdKDehng0cSof2PNGYGfUFy1xeStdzLvuVevOsLMQIG/a7rRpfJbQGo8Faxc9F+kjMSaDsqhbh0jSMVkcihgNqIFFBbn6pgaJ3WTQ0Mrj8c46r1ykWkpSveUcb7Vy6lMq+a6GQ75/z9NJwdYsNdVsTZ6YPrcqAwCKdY4deJ0OUYEyGX7qsg8+H17F+Vh78iUOe62DQH3c5tT6cz07G5rMSmOjSOVEQilgJqI1JAlYOOFFz3+mG/gquICGVZFSy4bCnl2ZWkDvRwzuunhbukiJLlD4XTnAB0jIJfJULvQ3pDV+RWsS/TS5TdTOdJbakurqF4ZxkLLluKETCwxUeR1M9NSoabtCGJJPd3axypiDQbCqiNSAFVfszB4Hpwcqb6BtfOUXW7CSu4ikhzV+GtYsmstfS7rjt2p5XEPi6NewTyAqFwuscP6RZ4KBH6Bfzs/yKPrMxQt92iraUAuLrEcfrjg2pvu2dJDs6OsbQZlkR0osaRikjzpIDaiBRQpaGqgqFZgzc1ILgeGlq72kIfaBRcRaS5KPqutLZLanSSvVWPSS0OwPW5oTkPkswwLxGq7l3Fro+zMfyHfAwzgatzHCn93fS6rDMxyQ6ik+yYoxpxUVQRkTDROqgiEcBhhgx76HKoykO6Ch+6HM5+P1QbsNkXuhxKwVVEmpOELvGU7Cnn23/tZsNL2zjj6SF0PCMt3GU1KcMwyP6ujKf/66XjxiK89w7gTrOPHtsrWV0RwPAbxKQ4SO7vJrmfm/QRSbhPcRJl1zhSEWm91IJaD2pBlaZSGYStNbDJd3hwrU+La1fbgW0FVxGJAIZh8N9fZLJvmReTxcTYRwfSdUq7cJd1UlXmVZGVmce+TC/7Mr1U7K+svc7526Gc0SHUkly6rwJrrIWUAR6NIxWRVkFdfBuRAqqE28HgutEHOw4Jrll+8B/lNo5DJ2eyfd/qquAqIk0p6AuyeMYX7F6cDWYYOTeDXpd0DndZJ8X6v2zli99srLMvYDWT3cdD595OTj8jhaTeCTg8No0jFZFWR118RVqQaDNkOEKXQx0aXL/7wXI4VYd2Fa74/jZHCq5drdBGwVVETgKz1cz4Z4by+X1r2fafvSx/cD2+Mj8Zv+ge7tIaJBgwyNtQGJrYaJmX/jd0J6Gbk6r86tquuc5OcXw3KJnlg9Lw9nUzM8XCBS6z3mNFROpBLaj1oBZUaW6OFVx/rMW12yGtrQquItJYDMNgxa++ZuNrOwDof2N3Bt/RO8xV/TjDMCjZVV470+7+lXnUlHw/6KLbT9vR58quAAR8QUxm+GObBN6uMmMBZiTAJfFg0fuoiLRyakEVacWO1eL67Q/GuGYdqcX1EAquItIYTCYTw+/vhy3eyrrnv6W6qIaaUh+2+MgbfxkMGJgPJMqi7aX83zmf1LneGhtFUt8EkjPctBmaiLNjLLZ4K4YBTxfB26VgAm52wUUKpyIix0UBVaQViTZDf0focqgjBdeDkzMdK7genJBJwVVE6sNkMjHo9l6kDk7E7rRSsquc+HYx2BNsYa3LXxUge3V+bStpQuc4Bs3oRU2JD8MwiE62E5viICnDTUp/N+kjU4hJsmP6wZvdX0rgb6GlTLnWCVc4war3QxGR46IuvvWgLr7SWtUG1xr4zl83uB6rq/ChwfXgsjgKriJyKH91gKKtpfgrA+z+NJtBt/fCYmu69T7zNhSxb3ku+5Z7yV1bQKAmWHudPcHKxD+NqJ3IyOaKIi4tBrP16PW9UQqPF4a2L4uHaa7QUmMiIhKiLr4icsJ+tMW1Brb7vx/jerDFdZMvdDnUweDazQadDwTXrlZIU3AVaZWi7BYSusez8Jrl5KwtIO+bIs58YThRjpOzBmhFbhUxKaE3M8MwWHL/lxRuKam93pFoJyXDTXJ/N22GJeLuFk9UdP0+Jr1X9n04PT8WblE4FRFpMLWg1oNaUEXq51jB9cdaXBVcRVqnPZ9ls3j6FwRqgiT3dzPpLyMaZV3QqsIa9q8MddnNWu6lPLuSc944DROhN5Yt/9pF0fZSkjPcpA5KJHWQB4fr+LsaL66Ae/MgCEyMgdlucJ6cjC0i0qxpHdRGpIAqcmIqg7C5JnT5rgHB9dAxrgquIi3P/lV5fHTTCvwVAdynxHPWK6NxuENhMX9zMYk9XfU6T/6mYr77YC9Zy73kbSyGQz7hmKJMjP5lfzw9QueKTXPg8Bw+jvR4LK+EGd7Q+9iYaJjnBrf6pomIHJECaiNSQBU5OQ4G1001sONAaN17ILgGjnIbh6nu2NaD/yq4ijRv3g2FLLw2k5oSH86OsUx8cTjrnv+Wre/sofv57Rk5N6NOl1sjaJC/qZi49BgcbhvBgMFXL2xh7e+31B4T3yGW5H4JoYmNRiXj6hB3zHGkx+PLKrjFC9UGDLXDw4mQrHAqInJUCqiNSAFVpGkpuIq0ToXbSvjgqmVUFdRgtpoxAkGMIJjM4OwYx/AH+lG2r4KsTC9ZmXlUF9Uw4JZT6DiuDQBlWRV8++/dB8aRJpHYy4U1pvFT46YauCEHyg3IsMGvEqFt5K2WIyISURRQG5ECqkhkUHAVafm+/utWVv1mY2gh0eCxj7U4LPT4eQe6n9cBs9VMbJoDewPGkR6P73zwixwoCkIPayicdgnvKjkiIs2CZvEVkRYn2gynOkKXQ1UGQ6F184Hg+sN1XDfWhC51zmWqOylTl0OWwzEpuIqERd6GIlY9vjH0wzG+Pu84IY32p6fRdlQysanRJzSO9Hhk+eGW3FA47RwF8zwKpyIijU0BVUSavWgzDHSELoc6VnCtVHAViTiJfVwk9U0gf2MRxhFaT01mSOydwPjfD61do7SpeP1wUy7kBqBtFMxJhJ72Ji1BRKRVUEAVkRarsYProbMJd7WGgqyCq0jjMZlMDLq9F/+9PvOI1xtBGDSjV5OH06JAaEKkvX5ItsD9bhigcCoiclIooIpIq1Of4PrD5XAqDfimJnSpc64jBNeDY1wVXEWOX9vRyUdsRTWZIbFPAm1HJTdpPWVBmOaF7T5wm0PrnA6PbtISRERaFQVUEZEDjhZcK36wjutef2gsWn2C65EmZ1JwFTm6o7WiGkEYdHvTtp5WBUPrnG6sgTgTzPLA6TFNdvciIq2SZvGtB83iKyJHcqzgerRZhQ8NroeOcVVwFfmeYYTWOK0zUZIJEnu5miyg+gy40wtLq0Kzgd/vgbNi9DoVEWkozeIrInKSxfxIi+umH4xxza5ni6uCq7R2JpOJpN4JYbv/gAEP5IfCqQ24yw2TFU5FRJqEAqqISCM7WnAtD8KWA8H1Ox/sC/x4cI35wRhXBVeRk8sw4NcFsKgCLMDtbvhprNZNFhFpKgqoIiJNJPZHguvGGtjxg+BaYcCGmtDlUDGmw0NrVyukKriKNJhhwG+L4O1yMAG3JsCFcWDRa0pEpMkooIqIhNmxgmvtcji+A7MKBxRcRU6WF0vg76Wh7V844fJ4iNLrRkSkSSmgiohEqFgzDHaELoc6UnDd64ecQP2C68E1XBVcRb739xL4Y3Fo+4p4uMYJVr02RESanAKqiEgz05jBNfYoY1wVXKU1eacMniwKbf8sDm52gcMc1pJERFotBVQRkRaiIcG13ICva0KXOudScJVWYlEFPFIQ2j4rBm5zhdZEFhGR8FBAFRFp4Y4VXDfWhCZo2uE7ZDmcegTXH45xTVFwlWZoWSXcnwdB4IxouCsB4i3hrkpEpHVTQBURaaVizTDEEbocSsFVWoM1VXBXHviB4Q6Y7YYEfSoSEQk7vRWLiEgdPxZcN9fATgVXacY2VsMML1QbMMAOczyQpE9EIiIRQW/HIiJSL0cLrmVHWg6nHsH1h6G1i4KrNIHtNXCrN/Tc7GWDuR5oo09DIiIRQ2/JIiJyQuIaGFzX14QuhzoYXA9dCqerFZIVXKUR7PXDzV4oDoa+EJnrhk7WcFclIiKHUkAVEZGTQsFVIkmuH27KgbwAtIsKtZz2sIe7KhER+SEFVBERaVJHC66lwVBo3XRgjOsPl8P5seB6aHdhBVc5VGEAbs6FrECoG/n9bshQOBURiUgKqCIiEhHijxFcNx0yOVNDguvBfxVcW5/SINyaCzv84DGHZusdFh3uqkRE5GgUUEVEJKLFm2GoI3Q5VOkPugpnKbjKD1QG4XYvbPaB0wyzPDA2JtxViYjIsSigiohIs3Ss4HroOq4Hx7geK7jG/WA5nIMhNknBtdmqMULrnK6rhhgT3OOG8Wo5FRGJeAqoIiLSosSbYZgjdDnUsYJrWT2C66HhVcE1svkNuD8PMqvAboK73DA5Rn8zEZHmQAFVRERaheMJrnsVXJutoAEPF8DiytCHnBkJcG6s/i4iIs2FAqqIiLRqRwuuJQfGuB5vcK3TTdgGXaIUXJuKYcCThfBeOZiAWxPgZ3Fg1u9eRKTZUEAVERE5AmcDg+tXNaHLoY4YXK2QZFZwbUwvFMM/ykLbN7jgsniI0u9XRKRZUUAVERE5DscKrhtr4NsDwXXvD8a4Him4xh/sKnygpVXBteFeLYE/lYS2p8bD1U6w6ncoItLsKKCKiIg0AqcZhjtCl0OVHDLGdecPgmtpPYLrwZZXBdej+3cZ/K4otH1hXKj11K7fk4hIs6SAKiIichIpuJ5cC8vh1wWh7XNiYboLos3hrUlERBpOAVVERCQM6hNcf7gczrGCa1crdGllwXVJJczJB4PQGqd3JkCcJdxViYjIiVBAFRERiSBHC67FgdDkTJtrYKf/8OC6riZ0OdTB4HpwbOvBSZoSW0Bw/aIK7vFCABjpgFlucCmciog0ewqoIiIizYDLAsOjQ5dDtcbg+nU13OGFGmCgHe73QKI+0YiItAh6OxcREWnGjie47vVD7jGCq9P8/WzCXa3QOQKD69YamO6FCgN622CuB9ro04yISIuht3QREZEWqD7BdYcfsg4JriXBowfXQ9dxPdjq2tTBdbcPbskN1dnNCvM80MHadPcvIiInnwKqiIhIK9LQ4PpldehyqJMZXANG6P7yApBkgTYWuDkX8oPQISrUctrddmL3ISIikUcBVURERI4ZXGtnFT5kjGt9guuhobWrFTz1DK6LK+A3haH7OMhCaEKkNAs84Ia+9hN9xCIiEokUUEVEROSoXBYYER26HOpgcP3hGFfvMYKry3x4a+sPg+viCrgnL7R0zKEOZtWzYmHwD2oREZGWIyKXsn7uuefo1KkTDoeDYcOGsWrVqmMe/9Zbb9GzZ08cDgf9+vXjgw8+qHO9YRjMnTuXNm3aEB0dzYQJE9i6devJfAgiIiIt2sHgeo0LfpkIf06FhW3h47bwXDJMd8GU2NAsuykWMAHFB4Lrv8rg8UK4KRd+sg/G7YPrcuBX+fBQ/uHh9FDvl4e6/4qISMsUcQH1zTffZObMmcybN4+1a9fSv39/Jk6cSG5u7hGPX758OZdeeinXXXcdX375Jeeddx7nnXceGzZsqD3m8ccf55lnnuGFF15g5cqVxMbGMnHiRKqqqprqYYmIiLQKRwuui9N/PLj+uzw0w/Cx5AQOb5kVEZGWw2QYRkR9Dzls2DCGDBnCs88+C0AwGKR9+/ZMnz6dWbNmHXb8xRdfTHl5OQsWLKjdN3z4cAYMGMALL7yAYRikp6dz5513ctdddwFQXFxMamoqL7/8MpdccsmP1lRSUoLL5WLFihXExcU10iMVERGR0gBsO9BNeG01bPL9+G1muGB0zMmvTUREGk9ZWRnDhw+nuLgYp9N51OMiagxqTU0Na9asYfbs2bX7zGYzEyZMIDMz84i3yczMZObMmXX2TZw4kXfeeQeAHTt2kJ2dzYQJE2qvd7lcDBs2jMzMzCMG1Orqaqqrv/96tqSkBAgFXxEREQmvm8JdgIiInDQR1cU3Ly+PQCBAampqnf2pqalkZ2cf8TbZ2dnHPP7gv8dzzvnz5+NyuWov7du3b9DjERERERERkfqLqBbUSDF79uw6rbIlJSW0b99eXXxFREROssxKeLLo6NffmXD4jMIiIhL5Dnbx/TERFVCTkpKwWCzk5OTU2Z+Tk0NaWtoRb5OWlnbM4w/+m5OTQ5s2beocM2DAgCOe0263Y7cfvsBar169jtlfWkRERE5MH6DzEdZBTbXAXW4Yr7GnIiLN0sFhkz8morr42mw2Bg0axOLFi2v3BYNBFi9ezIgRI454mxEjRtQ5HmDRokW1x3fu3Jm0tLQ6x5SUlLBy5cqjnlNERETCZ3wMvJ8OL6bArxND/y5IVzgVEWkNIqoFFWDmzJlMnTqVwYMHM3ToUJ566inKy8u55pprALjqqqto27Yt8+fPB+D2229n7NixPPnkk5x99tm88cYbrF69mhdffBEAk8nEjBkzeOSRR+jevTudO3dmzpw5pKenc95554XrYYqIiMgxWEww2BHuKkREpKlFXEC9+OKL8Xq9zJ07l+zsbAYMGMDChQtrJznavXs3ZvP3Db8jR47k9ddf54EHHuC+++6je/fuvPPOO/Tt27f2mHvuuYfy8nJuuOEGioqKGD16NAsXLsTh0P98IiIiIiIikSLi1kGNRAfXQf2xNXtERERERETkcPXNVBE1BlVERERERERaLwVUERERERERiQgKqCIiIiIiIhIRFFBFREREREQkIiigioiIiIiISERQQBUREREREZGIoIAqIiIiIiIiEUEBVURERERERCKCAqqIiIiIiIhEBAVUERERERERiQgKqCIiIiIiIhIRFFBFREREREQkIiigioiIiIiISERQQBUREREREZGIoIAqIiIiIiIiEUEBVURERERERCKCAqqIiIiIiIhEBAVUERERERERiQgKqCIiIiIiIhIRFFBFREREREQkIkSFu4DmwDAMAEpKSsJciYiIiIiISPNzMEsdzFZHo4BaD6WlpQC0b98+zJWIiIiIiIg0X6WlpbhcrqNebzJ+LMIKwWCQrKws4uPjMZlM4S6njpKSEtq3b8+ePXtwOp3hLkdEpFkYMmQIX3zxRbjLEAk7vRakPvQ8aV4i9e9lGAalpaWkp6djNh99pKlaUOvBbDbTrl27cJdxTE6nUwFVRKSeLBaL3jNF0GtB6kfPk+Ylkv9ex2o5PUiTJImISKtz6623hrsEkYig14LUh54nzUtz/3upi28zV1JSgsvlori4OGK/KREREREREakPtaA2c3a7nXnz5mG328NdioiIiIiIyAlRC6qIiIiIiIhEBLWgioiIiIiISERQQBUREREREZGIoIAqIiJyAs4//3zcbjc///nPw12KSFjptSD1peeKHIsCqoiIyAm4/fbb+dvf/hbuMkTCTq8FqS89V+RYFFBFREROwOmnn058fHy4yxAJO70WpL70XJFjUUBtwdR9QkSaq/nz5zNkyBDi4+NJSUnhvPPOY8uWLY16H0uWLGHKlCmkp6djMpl45513jnjcc889R6dOnXA4HAwbNoxVq1Y1ah0ix/L888+TkZGB0+nE6XQyYsQIPvzww0a9D70WWp5HH30Uk8nEjBkzGvW8eq5IU1BAbcHUfUJEmqvPPvuMW2+9lRUrVrBo0SJ8Ph9nnnkm5eXlRzx+2bJl+Hy+w/Zv3LiRnJycI96mvLyc/v3789xzzx21jjfffJOZM2cyb9481q5dS//+/Zk4cSK5ubkNe2Aix6ldu3Y8+uijrFmzhtWrVzNu3Dh++tOf8s033xzxeL0W5IsvvuCPf/wjGRkZxzxOzxWJWIa0aJ988onxs5/9LNxliIickNzcXAMwPvvss8OuCwQCRv/+/Y2f//znht/vr92/efNmIzU11Xjsscd+9PyA8fbbbx+2f+jQocatt95a577S09ON+fPn1zlO77XSlNxut/HnP//5sP16LUhpaanRvXt3Y9GiRcbYsWON22+//YjH6bkikUwtqBGqPl0o1H1CRFqL4uJiADwez2HXmc1mPvjgA7788kuuuuoqgsEg27dvZ9y4cZx33nncc889DbrPmpoa1qxZw4QJE+rc14QJE8jMzGzYAxE5AYFAgDfeeIPy8nJGjBhx2PV6Lcitt97K2WefXedvdSR6rkgkU0CNUD/WhULdJ0SktQgGg8yYMYNRo0bRt2/fIx6Tnp7Oxx9/zNKlS7nssssYN24cEyZM4Pnnn2/w/ebl5REIBEhNTa2zPzU1lezs7NqfJ0yYwIUXXsgHH3xAu3bt9CFMGt3XX39NXFwcdrudm266ibfffpvevXsf8Vi9FlqvN954g7Vr1zJ//vx6Ha/nikSqqHAXIEc2efJkJk+efNTrf/vb33L99ddzzTXXAPDCCy/w/vvv89e//pVZs2Y1VZkiIifdrbfeyoYNG1i6dOkxj+vQoQOvvvoqY8eOpUuXLvzlL3/BZDKd9Pr+97//nfT7kNatR48erFu3juLiYv71r38xdepUPvvss6OGVL0WWp89e/Zw++23s2jRIhwOR71vp+eKRCK1oDZD6j4hIq3FtGnTWLBgAZ988gnt2rU75rE5OTnccMMNTJkyhYqKCu64444Tuu+kpCQsFsthk4Xk5OSQlpZ2QucWOR42m41u3boxaNAg5s+fT//+/Xn66aePerxeC63PmjVryM3NZeDAgURFRREVFcVnn33GM888Q1RUFIFA4Ii303NFIpECajOk7hMi0tIZhsG0adN4++23+fjjj+ncufMxj8/Ly2P8+PH06tWL//u//2Px4sW8+eab3HXXXQ2uwWazMWjQIBYvXly7LxgMsnjx4iOO/xNpKsFgkOrq6iNep9dC6zR+/Hi+/vpr1q1bV3sZPHgwl19+OevWrcNisRx2Gz1XJFKpi28Lpu4TItJc3Xrrrbz++uv85z//IT4+vvbLN5fLRXR0dJ1jg8EgkydPpmPHjrz55ptERUXRu3dvFi1axLhx42jbtu0RWwXKysrYtm1b7c87duxg3bp1eDweOnToAMDMmTOZOnUqgwcPZujQoTz11FOUl5fXDq8QOdlmz57N5MmT6dChA6Wlpbz++ut8+umn/Pe//z3sWL0WWq/4+PjDxujHxsaSmJh4xLH7eq5IRAv3NMLy4/jBNN7V1dWGxWI5bGrvq666yjj33HObtjgRkZMAOOLlpZdeOuLxH330kVFZWXnY/rVr1xp79uw54m0++eSTI97H1KlT6xz3+9//3ujQoYNhs9mMoUOHGitWrDjRhydSb9dee63RsWNHw2azGcnJycb48eONjz766KjH67UgBx1rmRnD0HNFIpfJMAyjKQOxHD+TycTbb7/NeeedV7tv2LBhDB06lN///vdA6JuwDh06MG3aNE2SJCIiIiIizZK6+EaoH+tCoe4TIiIiIiLS0qgFNUJ9+umnnHHGGYftnzp1Ki+//DIAzz77LL/5zW/Izs5mwIABPPPMMwwbNqyJKxUREREREWkcCqgiIiIiIiISEbTMjIiIiIiIiEQEBVQRERERERGJCAqoIiIiIiIiEhEUUEVERERERCQiKKCKiIiIiIhIRFBAFRERERERkYiggCoiIiIiIiIRQQFVREREREREIoICqoiINEs7d+7EZDKxbt26cJdSa/PmzQwfPhyHw8GAAQPCXc5xufrqqznvvPNO2vkNw+CGG27A4/FE3N9NREQihwKqiIg0yNVXX43JZOLRRx+ts/+dd97BZDKFqarwmjdvHrGxsWzZsoXFixeHu5yIsnDhQl5++WUWLFjA/v376du3b7hLolOnTjz11FONes7TTz+dGTNmNOo5RURaEwVUERFpMIfDwWOPPUZhYWG4S2k0NTU1Db7t9u3bGT16NB07diQxMbERq2r+tm/fTps2bRg5ciRpaWlERUUddsyJ/O5FRKRlUEAVEZEGmzBhAmlpacyfP/+oxzz44IOHdXd96qmn6NSpU+3PB7uX/vrXvyY1NZWEhAQeeugh/H4/d999Nx6Ph3bt2vHSSy8ddv7NmzczcuRIHA4Hffv25bPPPqtz/YYNG5g8eTJxcXGkpqZy5ZVXkpeXV3v96aefzrRp05gxYwZJSUlMnDjxiI8jGAzy0EMP0a5dO+x2OwMGDGDhwoW115tMJtasWcNDDz2EyWTiwQcfPOJ5/vWvf9GvXz+io6NJTExkwoQJlJeXA/DFF1/wk5/8hKSkJFwuF2PHjmXt2rV1bm8ymfjjH//IOeecQ0xMDL169SIzM5Nt27Zx+umnExsby8iRI9m+ffthf4M//vGPtG/fnpiYGC666CKKi4uPWOPBxzt//nw6d+5MdHQ0/fv351//+lft9YWFhVx++eUkJycTHR1N9+7dj/j3gdDfd/r06ezevRuTyVT7tz/a7/6zzz5j6NCh2O122rRpw6xZs/D7/bXnO/3005k+fTozZszA7XaTmprKn/70J8rLy7nmmmuIj4+nW7dufPjhh0d9fKeffjq7du3ijjvuwGQy1Wn1X7p0KaeddhrR0dG0b9+e2267rfZvBPCHP/yB7t2743A4SE1N5ec//3nt4/zss894+umna8+5c+fOo9YgIiKHU0AVEZEGs1gs/PrXv+b3v/89e/fuPaFzffzxx2RlZbFkyRJ++9vfMm/ePM455xzcbjcrV67kpptu4sYbbzzsfu6++27uvPNOvvzyS0aMGMGUKVPIz88HoKioiHHjxnHqqaeyevVqFi5cSE5ODhdddFGdc7zyyivYbDaWLVvGCy+8cMT6nn76aZ588kmeeOIJ1q9fz8SJEzn33HPZunUrAPv376dPnz7ceeed7N+/n7vuuuuwc+zfv59LL72Ua6+9lk2bNvHpp59ywQUXYBgGAKWlpUydOpWlS5eyYsUKunfvzllnnUVpaWmd8zz88MNcddVVrFu3jp49e3LZZZdx4403Mnv2bFavXo1hGEybNq3ObbZt28Y///lP3nvvPRYuXMiXX37JLbfcctS/x/z58/nb3/7GCy+8wDfffMMdd9zBFVdcUfsFwJw5c9i4cSMffvghmzZt4vnnnycpKemov7uD4X7//v188cUXR/3d79u3j7POOoshQ4bw1Vdf8fzzz/OXv/yFRx555LC/WVJSEqtWrWL69OncfPPNXHjhhYwcOZK1a9dy5plncuWVV1JRUXHEmv7v//6Pdu3a8dBDD7F//372798PhFp6J02axM9+9jPWr1/Pm2++ydKlS2t/n6tXr+a2227joYceYsuWLSxcuJAxY8bUPs4RI0Zw/fXX156zffv2R/0di4jIERgiIiINMHXqVOOnP/2pYRiGMXz4cOPaa681DMMw3n77bePQ/17mzZtn9O/fv85tf/e73xkdO3asc66OHTsagUCgdl+PHj2M0047rfZnv99vxMbGGv/4xz8MwzCMHTt2GIDx6KOP1h7j8/mMdu3aGY899phhGIbx8MMPG2eeeWad+96zZ48BGFu2bDEMwzDGjh1rnHrqqT/6eNPT041f/epXdfYNGTLEuOWWW2p/7t+/vzFv3ryjnmPNmjUGYOzcufNH788wDCMQCBjx8fHGe++9V7sPMB544IHanzMzMw3A+Mtf/lK77x//+IfhcDhqf543b55hsViMvXv31u778MMPDbPZbOzfv98wjLp/z6qqKiMmJsZYvnx5nXquu+4649JLLzUMwzCmTJliXHPNNfV6HIZx+N/cMI78u7/vvvuMHj16GMFgsHbfc889Z8TFxdU+P8aOHWuMHj269vqDz40rr7yydt/+/fsNwMjMzDxqTR07djR+97vfHfYYb7jhhjr7Pv/8c8NsNhuVlZXGv//9b8PpdBolJSVHPOfYsWON22+//aj3KSIix6YWVBEROWGPPfYYr7zyCps2bWrwOfr06YPZ/P1/S6mpqfTr16/2Z4vFQmJiIrm5uXVuN2LEiNrtqKgoBg8eXFvHV199xSeffEJcXFztpWfPngB1usAOGjTomLWVlJSQlZXFqFGj6uwfNWrUcT3m/v37M378ePr168eFF17In/70pzrjd3Nycrj++uvp3r07LpcLp9NJWVkZu3fvrnOejIyM2u3U1FSAOr+r1NRUqqqqKCkpqd3XoUMH2rZtW/vziBEjCAaDbNmy5bA6t23bRkVFBT/5yU/q/O7+9re/1f7ebr75Zt544w0GDBjAPffcw/Lly+v9ezjUD3/3mzZtYsSIEXW63I4aNYqysrI6reeH/g4OPjd++DsADnu+/JivvvqKl19+uc7jnjhxIsFgkB07dvCTn/yEjh070qVLF6688kr+/ve/H7WVVkREjt/hMxSIiIgcpzFjxjBx4kRmz57N1VdfXec6s9lc24X1IJ/Pd9g5rFZrnZ9NJtMR9wWDwXrXVVZWxpQpU3jssccOu65Nmza127GxsfU+54mwWCwsWrSI5cuX89FHH/H73/+e+++/n5UrV9K5c2emTp1Kfn4+Tz/9NB07dsRutzNixIjDJg869PdyMMgdad/x/K4OVVZWBsD7779fJ9QC2O12ACZPnsyuXbv44IMPWLRoEePHj+fWW2/liSeeOK77aujv/seeLw39HZSVlXHjjTdy2223HXZdhw4dsNlsrF27lk8//ZSPPvqIuXPn8uCDD/LFF1+QkJBw/A9ERETqUAuqiIg0ikcffZT33nuPzMzMOvuTk5PJzs6uE1Ibcw3MFStW1G77/X7WrFlDr169ABg4cCDffPMNnTp1olu3bnUuxxOMnE4n6enpLFu2rM7+ZcuW0bt37+Oq12QyMWrUKH75y1/y5ZdfYrPZePvtt2vPd9ttt3HWWWfRp08f7HZ7nQmdTsTu3bvJysqq/XnFihWYzWZ69Ohx2LG9e/fGbreze/fuw35vh46pTE5OZurUqbz22ms89dRTvPjiiydc58FJnw59vixbtoz4+HjatWt3wuc/lM1mIxAI1Nk3cOBANm7ceNjj7tatGzabDQi11E+YMIHHH3+c9evXs3PnTj7++OOjnlNEROpPLagiItIo+vXrx+WXX84zzzxTZ//pp5+O1+vl8ccf5+c//zkLFy7kww8/xOl0Nsr9Pvfcc3Tv3p1evXrxu9/9jsLCQq699loAbr31Vv70pz9x6aWXcs899+DxeNi2bRtvvPEGf/7zn7FYLPW+n7vvvpt58+bRtWtXBgwYwEsvvcS6dev4+9//Xu9zrFy5ksWLF3PmmWeSkpLCypUr8Xq9tYG6e/fuvPrqqwwePJiSkhLuvvtuoqOjj+8XchQOh4OpU6fyxBNPUFJSwm233cZFF11EWlraYcfGx8dz1113cccddxAMBhk9ejTFxcUsW7YMp9PJ1KlTmTt3LoMGDaJPnz5UV1ezYMGC2sdxIm655Raeeuoppk+fzrRp09iyZQvz5s1j5syZdbqAN4ZOnTqxZMkSLrnkEux2O0lJSdx7770MHz6cadOm8Ytf/ILY2Fg2btzIokWLePbZZ1mwYAHfffcdY8aMwe1288EHHxAMBmuDfqdOnVi5ciU7d+4kLi4Oj8fT6HWLiLRkescUEZFG89BDDx3WpbJXr1784Q9/4LnnnqN///6sWrXqiDPcNtSjjz7Ko48+Sv/+/Vm6dCnvvvtu7WyyB1s9A4EAZ555Jv369WPGjBkkJCQcd2i47bbbmDlzJnfeeSf9+vVj4cKFvPvuu3Tv3r3e53A6nSxZsoSzzjqLU045hQceeIAnn3ySyZMnA/CXv/yFwsJCBg4cyJVXXsltt91GSkrKcdV5NN26deOCCy7grLPO4swzzyQjI4M//OEPRz3+4YcfZs6cOcyfP59evXoxadIk3n//fTp37gyEWgpnz55NRkYGY8aMwWKx8MYbb5xwnW3btuWDDz5g1apV9O/fn5tuuonrrruOBx544ITP/UMPPfQQO3fupGvXriQnJwOhsa2fffYZ3377Laeddhqnnnoqc+fOJT09HYCEhAT+7//+j3HjxtGrVy9eeOEF/vGPf9CnTx8A7rrrLiwWC7179yY5Ofmw8cMiInJsJuOHA4NERESkRXnwwQd55513GrVrtYiIyMmgFlQRERERERGJCAqoIiIiIiIiEhHUxVdEREREREQiglpQRUREREREJCIooIqIiIiIiEhEUEAVERERERGRiKCAKiIiIiIiIhFBAVVEREREREQiggKqiIiIiIiIRAQFVBEREREREYkICqgiIiIiIiISERRQRUREREREJCL8P4V6O7NLGY2GAAAAAElFTkSuQmCC", "text/plain": [ "
      " ] @@ -718,17 +734,17 @@ "id": "77e4b383", "metadata": { "execution": { - "iopub.execute_input": "2023-09-21T15:20:24.445864Z", - "iopub.status.busy": "2023-09-21T15:20:24.445335Z", - "iopub.status.idle": "2023-09-21T15:20:26.691388Z", - "shell.execute_reply": "2023-09-21T15:20:26.690729Z" + "iopub.execute_input": "2023-09-21T18:00:20.653349Z", + "iopub.status.busy": "2023-09-21T18:00:20.652650Z", + "iopub.status.idle": "2023-09-21T18:00:22.903072Z", + "shell.execute_reply": "2023-09-21T18:00:22.902427Z" }, "tags": [] }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABUkAAANHCAYAAAALxtxzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAADA90lEQVR4nOzdd5RU9cHG8edOn1nYpUoTpClWRJBgjQ0FSwQVuyKIsAuaaBAQ2IWlsyAiFoIRJXY0UWOLwURiiRWVgI0YQQREOsLCTp973z8WeUMUBbb8pnw/58w5u8Psne/GHF2evTPXchzHEQAAAAAAAADkKJfpAAAAAAAAAAAwiZEUAAAAAAAAQE5jJAUAAAAAAACQ0xhJAQAAAAAAAOQ0RlIAAAAAAAAAOY2RFAAAAAAAAEBOYyQFAAAAAAAAkNMYSQEAAAAAAADkNI/pgExm27a+/fZb1a1bV5Zlmc4BAAAAAAAAMorjONqxY4eaN28ul8vc+ZyMpFXw7bffqmXLlqYzAAAAAAAAgIy2Zs0aHXzwwcaen5G0CurWrStJWlNWpvxAwHANAFSPrb16mU4AAAAAAOSIHTt2qGPHjrt3NlMYSavg+5fY5wcCyg8GDdcAQPVI5uebTgAAAAAA5BjTb2XJhZsAAAAAAAAA5DRGUgAAAAAAAAA5jZEUAAAAAAAAQE7jPUkBAAAAAACQNRzHkW3bsm1bjuOYzslplmXJ5XLJ5XIZf8/Rn8NICgAAAAAAgKyQTCa1bds2xePxtB/lcoXjOPL5fKpXr548nvSdItO3DAAAAAAAANhHjuNo06ZN8nq9at68uXw+n+kkSIrH49q8ebM2bdqkpk2bpu14zUgKAAAAAACAjJdMJuU4jpo1a6ZgMGg6B7sEAgF5vV6tWrVKyWRSXq/XdNKP4sJNAAAAAAAAyHiO48iyrLQ9UzGXff/PJZ3fI5aRFAAAAAAAAEBOYyQFAAAAAAAAkNMYSQEAAAAAAADkNEZSAAAAAAAAADmNkRQAAAAAAADIQWeddZaGDh1qOiMtMJICAAAAAAAAyGmMpAAAAAAAAMB/++YbWa+/Ln3zjekS1BJGUgAAAAAAAGQnx5EqKvbrZs2ZI3e7dnKffbbc7drJmjNnv48hx9mvzPXr18vr9eruu+/W8ccfrzp16ujYY4/VW2+99aOPnzt3rlq1aiXbtve4/+KLL9YNN9yw+/NXXnlFp512mho1aqQmTZqoV69eWrFixV472rdvr7vuumuP+7p06aIJEybs/ty2bU2bNk2HHnqo6tatq86dO+uZZ57Zr+83HTGSAgAAAAAAIDuFw/LUq7dfN/dvfiNr1/ho2bbcv/nNfh9D4fB+ZS5dulSS9NBDD2nmzJn68MMP1bJlS1133XU/GEIlqU+fPtqyZYtef/313fdt3bpVr7zyiq666qrd91VUVOiWW27Re++9p1deeUUul0t9+vT50WPuq2nTpumxxx7T7NmztXTpUt1888267rrr9Oabbx7wMdOBx3QAAAAAAAAAkMs+/vhjeb1ePfvss2rdurUkafz48TrhhBO0du1atWzZco/H169fXz179tT8+fN15plnSpKeeeYZNWrUSKeffvrux1188cV7fN3cuXPVrFkzff755zr66KP3uzMWi6msrEwLFizQiSeeKElq27at3n77bc2dO1e//OUv9/uY6YKRFAAAAAAAANkpFFJy27Z9f/zatXIfc8zuM0klyXG7lfr4Y6lFi/163v2xdOlSXXTRRbsHUknKz8+XJL322mv6zW9+s/v+l156SaeccoquvPJKFRUV6d5775Xf79f8+fN12WWXyeX6/xeOf/nllxo/frwWLVqkzZs37z6DdM2aNQc0ki5fvlzhcFjnnnvuHvfH43F16tRpv4+XThhJAQAAAAAAkJ0sS8rL2/fHH3aY7Dlz5BoyRFYqJcftlv2730mHHVZzjaocSa+99to97nvvvffUqFEj9erVSyeddNLu+1vsGmsvuOACOY6jl19+Wccff7zeeustzZgxY49jXHTRRWrVqpXuu+8+NWvWTLZtq1OnTorH4z/a4XK55PzP+6kmk8ndH+/cuVOS9MILL6h58+Z7PM7v9+/nd51eGEkBAAAAAACAXZzrr1fqnHNkrVghp1076eCDa/T5IpGIvvzyS6VSqd332batu+++W9dee60KCgpUUFDwg68LBALq3bu35s+frxUrVqhDhw7q3Lnz7j/fsmWLvvjiC91333065ZRTJGmvF4L6XqNGjbR+/frdn5eXl2vlypW7Pz/yyCPl9/u1evXqjH5p/Y9hJAUAAAAAAAD+28EHy6nhcfR7n3zyiSzL0hNPPKHTTz9d9erV0/jx47V9+3aNHj36J7/2qquuUq9evfT555/vccEmqfJ9Sxs2bKi5c+eqadOmWrNmzc8e74wzztAjjzyiCy64QAUFBRo/frzcbvfuP69bt66GDh2qYcOGybZtnXzyydq+fbveeecd5efnq2/fvgf+P4RhjKQAAAAAAACAIUuXLlWHDh00bNgwXX755dq+fbvOOeccLVy4UPXq1fvJrz3jjDPUoEEDffHFF7riiiv2+DOXy6XHH39cv/3tb9WpUycddthhmjVrls4666y9Hu+2227T119/rV69eqmgoEDjxo3b40xSqfKCUo0aNdL06dP11VdfqV69ejruuOM0cuTIA/7fIB1Yzv++0QD2WXl5uQoKCrR91izlB4OmcwCgWmzt08d0AgAAAADst3g8ri1btuiQQw5RIBAwnbPPfv3rX2vbtm169NFHTafUmGg0qlWrVqlhw4by+Xx7/Fl5ebnatGmj7du3775YlQmun38IAAAAAAAAgJqwdOlSHXPMMaYzch4jKQAAAAAAAGCA4zj69NNPGUnTAO9JCgAAAAAAABhgWZa2bt1qOgPKsDNJZ8+erdatWysQCKhbt25atGjRXh87d+5cnXrqqapfv77q16+v7t27/+Dx/fr1k2VZe9x69uxZ098GAAAAAAAAgDSSMSPpU089paFDh6q0tFSLFy/Wscceqx49emjjxo0/+vjXX39dV155pV577TW9++67atmypc455xytXbt2j8f17NlT69at232bP39+bXw7AAAAAAAAANJExoykM2fO1MCBA9W/f38deeSRuu+++xQKhTRv3rwfffzjjz+uIUOGqFOnTjr88MP1wAMPyLZtLVy4cI/H+f1+NW3adPetfv36tfHtAAAAAEC1stauleef/5T1PyeGAACAn5cRI2k8HtdHH32k7t27777P5XKpe/fuevfdd/fpGOFwWIlEQg0aNNjj/tdff10HHXSQOnTooMGDB2vLli17PUYsFlN5efkeNwAAAAAwzffYY6rXqZPye/dWvU6d5HvsMdNJAFDrLMuS4zhyHMd0Cv7H9/9cLMsynbJXGTGSbt68WalUSk2aNNnj/iZNmmj9+vX7dIzbbrtNzZs332No7dmzpx555BEtXLhQ06ZN0xtvvKFzzz1XqVTqR48xdepUFRQU7L61bNnywL8pAAAAAKgG1tq1yvvtb2XZduXntq28oUM5oxRAznG73ZKkSCRiuAT/6/t/Jt//M0pHOXF1+7KyMj355JN6/fXXFQgEdt9/xRVX7P74mGOOUceOHdWuXTu9/vrrOuuss35wnFGjRmno0KG7Py8vL2coBQAAAGCUe8WK3QPp96xUSu6VK5Vs0cJQFQDUPpfLpVAopE2bNkmSgsFgWp+5mAscx1EkEtGmTZsUCoXkcqXv+ZoZMZI2atRIbrdbGzZs2OP+DRs2qGnTpj/5tTNmzFBZWZleffVVdezY8Scf27ZtWzVq1EjLly//0ZHU7/fL7/fv/zcAAAAAADXEtXr1D+5zXC6l2rQxUAMAZhUUFEjS7gt9M5Ka9f1bH4RCod3/bNJVRoykPp9PXbp00cKFC9W7d29J2n0RpptuummvXzd9+nRNnjxZr7zyio4//viffZ5vvvlGW7ZsUbNmzaorHQAAAABqTiym4KxZkiTHsmTt+stoqk0bOZxFCiAHWZalevXqKT8/X6lUivcnNcyyLLnd7rQ+g/R7GTGSStLQoUN13XXX6fjjj9cvfvELzZo1SxUVFerfv78kqW/fvmrRooWmTp0qSZo2bZrGjh2rJ554Qq1bt9793qV16tRRnTp1tHPnTo0fP16XXHKJmjZtqhUrVmjEiBFq3769evToYez7BAAAAIB9FXjgAblXrpTdoIF23H+/3OvXK+/Xv5ZnxQp5FixQsmdP04kAYITL5cqIYQ7pI2NG0ssvv1ybNm3S2LFjtX79enXq1EkLFizYfTGn1atX7/F//jlz5igej6tPnz57HKe0tFTjxo2T2+3Wxx9/rIcffljbtm1T8+bNdc4552jixIm8pB4AAABA2rM2b1bg9tslSdEBA5Q64wylJHn+9S8FHnxQeSUl2n722VIaXyQDAIB0YTmcd3zAysvLVVBQoO2zZik/GDSdAwDVYuv//HIJAACkp9Cttyrw0ENKtW+v8hdflHPQQZIka+tWFXTuLNeOHaoYP16xn3iLMgAATCsvL1ebNm20fft25efnG+vgvGMAAAAAyDDuZcvkf+QRSVLkxht3D6SS5DRooMioUZKk4J13yiovN9IIAEAmYSQFAAAAgEziOAoVF8uybSVOPVXxH3kVSOz665Vq00aubdsULC01EAkAQGZhJAUAAACADOL929/kfeMNOV6vIoWFUij0Iw/yKjxliiTJP3++XMuX13IlAACZhZEUAAAAADJFPK7QmDGSpNgllyh59tl7fWji7LOVOPVUWYmE8oYNq61CAAAyEiMpAAAAAGQI/7x5cq9YIbtePUULCyWPZ+8PtiyFy8rkuFzy/vOf8rz6au2FAgCQYRhJAQAAACADWFu2KDh9uiQpev31sjt2/NmvSR1+uGJ9+0qS8oqLpVSqRhsBAMhUjKQAAAAAkAGC06bJtX27Uu3aKTZgwD5/XWT0aDl16si9fLn8999fg4UAAGQuRlIAAAAASHPuf/9b/ocekiRFBg+W07TpPn+t07ChwrfdJkkK3nGHVF5eE4kAAGQ0RlIAAAAASHPBMWNkpVJKnHKK4pddtt9fH7vhBqUOOUSu775TaPz4GigEACCzMZICAAAAQBrzvvqqfP/4hxyPR9FBg6S8vP0/iM+n8OTJkiT/44/LtWJFNVcCAJDZGEkBAAAAIF0lEgqVlEiS4hdfrESPHgd+qJ49lTj5ZFmJhELDh1dXIQAAWYGRFAAAAADSlP8Pf5D7yy9l16unSFGR5PEc+MEsS+GpU+W4XPK98YY8r71WfaEAAGQ4RlIAAAAASEPWd98pOG2aJCnWr5/sjh2rfMzUUUcpdvXVkqS8UaMk267yMQEAyAaMpAAAAACQhoLTp8u1bZtSbdooOmCAZFnVctxIcbGcvDy5v/xS/gcfrJZjAgCQ6RhJAQAAACDNuL74YveAGRkyRE7z5tV2bKdxY0V2vSdpcPp0aefOajs2AACZipEUAAAAANJMqLRUViqlxEknKX7ZZdV+/OigQUq1bCnX1q0KTZhQ7ccHACDTMJICAAAAQBrx/uMf8v3973I8HkULC6U6dar/Sfx+hSdPrvzwkUfk+vrr6n8OAAAyCCMpAAAAAKSLZFLBkhJJUrx3byV69Kixp0qcd54SJ54oK5FQaNfL7wEAyFWMpAAAAACQJvwPPyzPF1/Izs9XtKhI8npr7sksS+GpU+VYlnz/+Ic8b75Zc88FAECaYyQFAAAAgDRgbdumYFmZJCnWr59SnTrV+HOmjjlGsSuvlCSFRo6UbLvGnxMAgHTESAoAAAAAaSA4Y4ZcW7cqdcghit5wg2RZtfK8kTFj5IRC8nzxhfx/+EOtPCcAAOmGkRQAAAAADHMtXy7/3LmSpOiQIXJatKi153YOOkiRW2+VJAWnTZMqKmrtuQEASBeMpAAAAABgWKi0VFYyqUS3bopdfnmtP3+0qEipFi3k2rJFoYkTa/35AQAwjZEUAAAAAAzyvPaafAsWyHG7Ky/WVLdu7UcEAgpPmiSp8uJRrlWrar8BAACDGEkBAAAAwJRkUqExYyRJ8V69lDj3XGMpiV/9Solf/EJWPK7QiBHGOgAAMIGRFAAAAAAM8T/2mDzLlsmuW1fRwkLJ6zUXY1kKl5XJsSz5Xn1V7rfeMtcCAEAtYyQFAAAAAAOs8nIFp0yRJMWuu06pLl0MF0mpY49V/LLLJEl5I0dKjmO4CACA2sFICgAAAAAGBO64Q64tW5Rq1UrRG26QLMt0kiQpPHasnGBQnmXL5Hv4YdM5AADUCkZSAAAAAKhlrq++UuD3v5dUeWV5p2VLw0X/z2naVJHf/laSFCork8Jhw0UAANQ8RlIAAAAAqGWh0lJZiYQSXbsqdtVVpnN+IDpkiOzmzeXatEnByZNN5wAAUOMYSQEAAACgFnnefFO+l1+W43IpWlQk1a1rOumHgkGFJ06UJAUeekjWmjWGgwAAqFmMpAAAAABQW1IphUpKJEnxCy9U4rzzDAftXbxXLyW7dJEVjSrvtttM5wAAUKMYSQEAAACglvgff1yezz6TU6dO5VmkPp/ppL2zLFVMmyZJ8r3yitzvvms4CACAmsNICgAAAAC1obxcwSlTJEnRvn2VOv54w0E/L3XccYpdeqkkVZ5N6jiGiwAAqBmMpAAAAABQC4J33inXpk1KtWyp6MCBkmWZTton4dJSOYGAPJ99Jt/jj5vOAQCgRjCSAgAAAEANc339tQL33SdJihYWymnVynDRvnOaNVPkllskSaHJk6VIxGwQAAA1gJEUAAAAAGpYaNw4WfG4El26KHbVVaZz9lv0xhtlN20q18aNCpaVmc4BAKDaMZICAAAAQA3yvP22fC++KMflUnTwYKmgwHTS/guFFJ4wQZIUeOABWd9+azgIAIDqxUgKAAAAADUllVKopESSFL/gAiXOP99w0IGLX3yxkp06yYpGlTdihOkcAACqFSMpAAAAANQQ35NPyvPxx3Ly8hQtLJR8PtNJB86yVDFtmiTJ99e/yr1okeEgAACqDyMpAAAAANSEHTsUmjRJkhS99lqlunUzHFR1qeOPV+ziiyVJecOHS45juAgAgOrBSAoAAAAANSA4a5ZcGzcq1aKFooMGSZZlOqlahMeNk+P3y/Ppp/LNn286BwCAasFICgAAAADVzLV6tQJz5kiSokVFcg45xHBR9XFatFDkN7+RJIUmT5aiUcNFAABUHSMpAAAAAFSz4PjxsmIxJY87TvGrrzadU+2iv/617IMOkmv9egWnTzedAwBAlTGSAgAAAEA18rz3nvzPPSfH5VJk8GA5BQWmk6pfXp7C48dLkgL33y9r3TrDQQAAVA0jKQAAAABUF9tWaPRoSVL83HOVuOACw0E1J96nj5IdO8qKRJQ3cqTpHAAAqoSRFAAAAACqie+pp+RZulROKKTo4MGS3286qea4XArveqm99y9/kfvDDw0HAQBw4BhJAQAAAKA67Nyp0MSJkqToNdco1a2b4aCal+zaVbFevWQ5jvJGjJAcx3QSAAAHhJEUAAAAAKpB8O675dqwQalmzRQdNEhy5cZftyITJsjx+eRZulS+P/7RdA4AAAckN/6rDQAAAAA1yLVmjQKzZ0uSokVFctq0MVxUe+yDD1b0ppskqfJM2ljMcBEAAPuPkRQAAAAAqig4YYKsaFTJY49V/JprTOfUusjNN8tu3FiudesU2PU+pQAAZBJGUgAAAACoAs+iRfI/+6wcy1JkyBA59eqZTqp9deooXFoqSQref7+s9esNBwEAsH8YSQEAAADgQNm2QsXFkqREz55K/OpXhoPMiV9+uZJHHy0rHFZo9GjTOQAA7BdGUgAAAAA4QL6nn5Zn8WI5waCiRUWS3286yRyXS+Fp0yRJvhdflHvxYsNBAADsO0ZSAAAAADgQFRUKTZggSYpdfbWSJ51kOMi85AknKHbBBbJsW3nDh0uOYzoJAIB9wkgKAAAAAAcgeO+9cq1bJ7tpU0ULCyUXf72SpMjEiXK8XnmWLJHvmWdM5wAAsE/4rzgAAAAA7CfX2rUK3HOPJCkyaJDstm0NF6UPu1UrRW+8UZIUHD9eisUMFwEA8PMYSQEAAABgPwUnTJAViSh5zDGK9+1rOiftRG65RXbDhnJ/+60CM2eazgEA4GcxkgIAAADAfnB/+KH8Tz8tx7IUGTJETv36ppPST926CpeWSpKCc+bI2rTJcBAAAD+NkRQAAAAA9pXjKK+4WJKU6NFDiQsvNByUvuJXXqnkkUfKqqhQaNQo0zkAAPwkRlIAAAAA2Ee+Z5+V58MP5QQClRdrCgRMJ6Uvl0vhadMkSb7nn5f7448NBwEAsHeMpAAAAACwL8LhygsRSYpddZWSp5xiOCj9JU86SfHzzpNl2wrdeqvkOKaTAAD4UYykAAAAALAPAr/7ndxr18o+6KDKs0hd/HVqX4QnTpTj9cq7eLG8zz1nOgcAgB/Ff9UBAAAA4GdY336r4F13SZKigwbJbt/ecFHmsFu3rhyVJYXGjZPicbNBAAD8CEZSAAAAAPgZoUmTZIXDSh51lGLXXWc6J+NEbr1VdoMGcn/zjQKzZpnOAQDgBxhJAQAAAOAnuBcvlv+ppyRJ0SFD5DRoYLgoA+XnKzJ2rCQpOHu2rM2bDQcBALAnRlIAAAAA2BvHUai4WJIUP/tsxXv3NtuTwWJXXaXk4YfL2rlTodGjTecAALAHRlIAAAAA2Avfc8/Ju2iRnEBA0aIiKRAwnZS53G6Fy8okSb4//1muTz4xHAQAwP9jJAUAAACAHxOJKDh+vCQpdvnlSv7yl4aDMl/y1FMV79FDlm0rb/hw0zkAAOzGSAoAAAAAPyIwZ47ca9bIbty48ixSF399qg7hSZPkeDzyfvCBvC+8YDoHAABJjKQAAAAA8APW+vUK3nmnJCk6cKDsww4zXJQ97LZtFR00SJIUKi2VEgnDRQAAMJICAAAAwA+EJk+WFQ4recQRivXvbzon60SHD5ddv77cq1crcPfdpnMAAGAkBQAAAID/5l6yRL758yVJ0SFD5DRoYLgo+zj5+YoUF0uSAvfcI2vrVsNFAIBcx0gKAAAAAN9zHIVKSmQ5juJnnaX4RReZLspasWuvVfKww+TasUOhXYMpAACmMJICAAAAwC7eF1+U99135fj9lRdrCgZNJ2Uvj0fhsjJJku/pp+X67DPDQQCAXMZICgAAAACSFI1WXkhIUuzyy5U87TTDQdkvedppip99tizbVt7w4aZzAAA5jJEUAAAAACQFfv97uVevlt2oUeVZpG636aScEJ48WY7HI+/778v70kumcwAAOYqRFAAAAEDOszZsUHDmTElS9IYbZHfoYLgod9jt2ik2YIAkKTR2rJRMGi4CAOQiRlIAAAAAOS84daqsnTuV7NBBsf79TefknMiIEbILCuRetUqBe+81nQMAyEGMpAAAAABymvuTT+R/7DFJUvTGG+U0amS4KPc49eopsusK94G77pL13XeGiwAAuYaRFAAAAEDuchyFiotlOY7iZ5yh+EUXmS7KWbHrrlOqXTu5yssVHDPGdA4AIMcwkgIAAADIWd6//EXet9+W4/MpWlgohUKmk3KXx6OKadMkSf4//lGuf//bcBAAIJcwkgIAAADITbGYQqWllR9edpmSZ55pOAjJM85Q/MwzZaVSyhs2zHQOACCHMJICAAAAyEmB+++X++uvZTdsWHkWqdttOgmSwpMny3G75X33XXn++lfTOQCAHMFICgAAACDnWJs2KXDHHZKk6IABso880nARvmcfdphi118vScobM0ZKJg0XAQByASMpAAAAgJwTLCuTa8cOJf9rkEP6iNx2m+z8fLlXrpR/zhzTOQCAHMBICgAAACCnuD/7TP5HHpEkRQcPltO4seEi/C+nfn1FRo2SJAXvvFPW9u2GiwAA2Y6RFAAAAEDucByFSkpk2bbip52meJ8+pouwF7H+/ZVq21au7dsVHDvWdA4AIMsxkgIAAADIGd4FC+R98005Xm/lxZpCIdNJ2BuvV+GpUyVJ/ieflOvLLw0HAQCyGSMpAAAAgNwQjyu064zEWJ8+SnbvbjgIPyfRvbvip50mK5lU3q23ms4BAGQxRlIAAAAAOSHwwANyf/WV7Pr1FS0qktxu00nYB+EpU+S4XPK+/bY8f/ub6RwAQJZiJAUAAACQ9azNmxW4/XZJUnTAANlHH224CPvKPvxwxfr1kyTlFRdLqZTZIABAVmIkBQAAAJD1gmVlcpWXK9W+vWLXX286B/spMmqU7Lp15f7qK/nvu890DgAgCzGSAgAAAMhq7mXL5H/4YUlSZMgQOU2aGC7C/nIaNFDkttskScGZM6XycsNFAIBsw0gKAAAAIHs5jkIlJbJsW4lTT1W8Tx/TRThAsQEDlGrdWq5t2xQqLTWdAwDIMoykAAAAALKW9+9/l/f11+V4vYoOGiTl5ZlOwoHy+RSeMkWS5J8/X67lyw0HAQCyCSMpAAAAgOyUSChUUiJJil98sRLnnGM4CFWVOOccJU45RVYiobzhw03nAACyCCMpAAAAgKzknzdP7hUrZNerp0hRkeTxmE5CVVmWwmVlclwued98U56FC00XAQCyBCMpAAAAgKxjbd2q4LRpkqTo9dfL7tjRcBGqS+qIIxS79lpJUt7o0VIqZbgIAJANGEkBAAAAZJ3gtGlybd+uVNu2ig0YYDoH1SwyerScOnXkXr5c/rlzTecAALIAIykAAACArOL697/l/8MfJEmRIUPkNG1quAjVzWnUSJERIyRJwRkzpB07DBcBADIdIykAAACArBIqLZWVSilx8smKX3aZ6RzUkOjAgUq1aiXXd98pNH686RwAQIZjJAUAAACQNbyvvirfq6/K8XgULSyU8vJMJ6Gm+HwKT54sSfI/9phcK1caDgIAZDJGUgAAAADZIZFQaMwYSVL8oouU6NHDcBBqWuLcc5U46SRZiYRCw4aZzgEAZDBGUgAAAABZwf/QQ3L/5z+yCwoULSqSPB7TSahplqVwWZkcl0u+11+X5/XXTRcBADIUIykAAACAjGd9952C06ZJkmL9+yt17LGGi1BbUkcdpdhVV0mSQqNGSbZtuAgAkIkYSQEAAABkvODtt8v13XdKtWmj6IABkmWZTkItipSUyAmF5PnPf+R/8EHTOQCADMRICgAAACCjuf5rGIsWFclp3txwEWqb07ixIsOHS6oczLVzp+EiAECmYSQFAAAAkNFCpaWykkklTjxRsSuuMJ0DQ6KFhUodfLBcW7YoNHGi6RwAQIZhJAUAAACQsTyvvSbf3/4mx+1WtLBQqlPHdBJM8fsVnjy58sNHHpFr1SrDQQCATMJICgAAACAzJZMKlZRIkuK9eyvRs6fhIJiWOP98Jbp1kxWPK7Tr5fcAAOwLRlIAAAAAGcn/yCPy/PvfsuvWVbSoSPJ6TSfBNMtSuKxMjmXJt3ChPP/8p+kiAECGYCQFAAAAkHGs7dsVnDpVkhTr10+p444zXIR0kerYcfd704ZGjpRs23ARACATMJICAAAAyDiBGTPk2rpVqUMOUXTgQMmyTCchjUTGjJETDMrz73/L//DDpnMAABmAkRQAAABARnEtX67A/fdLkqKDB8tp0cJwEdKN06SJIrfeKkkKlpVJFRWGiwAA6Y6RFAAAAEBGCZWWykomlejWbffLqoH/FR08WKnmzeXavFmhXVe9BwBgbxhJAQAAAGQMz+uvy7dggRyXq/JiTXXrmk5CugoEFN41jvofekiu1asNBwEA0hkjKQAAAIDMkEopNGaMJCneq5cS555rOAjpLvGrXynRtausWEyhESNM5wAA0hgjKQAAAICM4H/sMXk+/1x23bqVZ5F6vaaTkO4sS+GyMjmWJd/f/y7322+bLgIApClGUgAAAABpzyovV3DKFElSrG9fpbp0MVyETJHq1EnxSy+VJOXddpvkOIaLAADpiJEUAAAAQNoLzJwp1+bNSrVsqejAgZJlmU5CBgmPHSsnGJRn2TL5Hn3UdA4AIA0xkgIAAABIa66vvlLgvvskVV6x3GnZ0nARMo3TrJkit9wiSQpNnSqFw2aDAABph5EUAAAAQFoLjRsnK5FQomtXxa64wnQOMlT0xhtlN2sm18aNCk6dajoHAJBmGEkBAAAApC3PP/8p31/+IsflqrxYU0GB6SRkqmBQ4YkTJUmBefNkrV1rOAgAkE4YSQEAAACkp1RKoZISSVL8V79S4rzzDAch08V791ayc2dZ0ajyhg83nQMASCOMpAAAAADSkv+JJ+T59FM5depUnkXq85lOQqazLFVMmyZJ8r3yitzvvWc4CACQLhhJAQAAAKSf8nIFp0yRJEX79lWqa1fDQcgWqc6dFevTR5KUd9ttkuMYLgIApANGUgAAAABpJzhrllwbNyrVooWiAwdKlmU6CVkkXFoqJxCQ59NP5XviCdM5AIA0wEgKAAAAIK24Vq1SYM4cSVK0qEhOq1aGi5BtnObNFbn5ZklSaPJkKRIxXAQAMI2RFAAAAEBaCY0bJyseV6JzZ8Wvvtp0DrJU9KabZDdpIteGDQruep9SAEDuyqiRdPbs2WrdurUCgYC6deumRYsW7fWxc+fO1amnnqr69eurfv366t69+w8e7ziOxo4dq2bNmikYDKp79+768ssva/rbAAAAALAXnnfeke+FF+S4XIoOHiynoMB0ErJVKKTwhAmSpMDcubK+/dZwEADApIwZSZ966ikNHTpUpaWlWrx4sY499lj16NFDGzdu/NHHv/7667ryyiv12muv6d1331XLli11zjnnaO3atbsfM336dN19992677779P777ysvL089evRQNBqtrW8LAAAAwPdSKYWKiyVJ8fPPV+KCCwwHIdvFL7lEyU6dZEWjlRdxAgDkLMtxMuNSft26dVPXrl117733SpJs21bLli3161//WiNHjvzZr0+lUqpfv77uvfde9e3bV47jqHnz5rr11ls1bNgwSdL27dvVpEkTPfTQQ7riiit+9pjl5eUqKCjQ9lmzlB8MVu0bBIA0sXXX1V4BAKhtvscfV53f/EZOXp7Kn3pKqRNPNJ2EHOD+4AMV9Owpx7JU/vLLSv3iF6aTACCnlJeXq02bNtq+fbvy8/ONdWTEmaTxeFwfffSRunfvvvs+l8ul7t276913392nY4TDYSUSCTVo0ECStHLlSq1fv36PYxYUFKhbt257PWYsFlN5efkeNwAAAADVYMeOygvoSIpec41SJ5xgOAi5ItW1q2IXXSTLcZQ3YoSUGecRAQCqWUaMpJs3b1YqlVKTJk32uL9JkyZav379Ph3jtttuU/PmzXePot9/3f4cc+rUqSooKNh9a9my5f5+KwAAAAB+RPCuu+TasEGpFi0ULSyULMt0EnJIZPx4OX6/PJ98It+TT5rOAQAYkBEjaVWVlZXpySef1J///GcFAoEDPs6oUaO0ffv23bc1a9ZUYyUAAACQm1xr1ijwu99JkqKFhXIOOcRwEXKN3aKFojfdJEkKTZokcZ0KAMg5GTGSNmrUSG63Wxs2bNjj/g0bNqhp06Y/+bUzZsxQWVmZ/va3v6ljx4677//+6/bnmH6/X/n5+XvcAAAAAFRNcPx4WbGYkp06KX7NNaZzkKMiN98su3FjudavV/D2203nAABqWUaMpD6fT126dNHChQt332fbthYuXKgTf+LN3KdPn66JEydqwYIFOv744/f4szZt2qhp06Z7HLO8vFzvv//+Tx4TAAAAQPXxvP++/H/+sxzLUmTIEDkFBaaTkKvy8hQeP16SFLj/flnr1hkOAgDUpowYSSVp6NChmjt3rh5++GEtW7ZMgwcPVkVFhfr37y9J6tu3r0aNGrX78dOmTdOYMWM0b948tW7dWuvXr9f69eu1c+dOSZJlWbrllls0adIkvfDCC/rkk0/Ut29fNW/eXL179zbxLQIAAAC5xbYVGj1akpQ47zwlLrjAcBByXfzSS5Xs2FFWOKy8//r7JQAg+3lMB+yryy+/XJs2bdLYsWO1fv16derUSQsWLNh94aXVq1fL5fr/zXfOnDmKx+Pq06fPHscpLS3VuHHjJEkjRoxQRUWFBg0apG3btumUU07RggULqvS+pQAAAAD2je+Pf5RnyRI5oZCiRUWS3286CbnO5VJ42jTln3uuvC+9JPdHHynVpYvpKgBALbAcx3FMR2Sq8vJyFRQUaPusWcoPBk3nAEC12Po/v1wCAKBG7Nypet26ybV+vSIDByoyZYrkypgXuiHL5fXvL/8LLyh57LEqX7hQsizTSQCQtcrLy9WmTRtt377d6PV/+CkEAAAAQK0L3nOPXOvXK9WsmaKFhQykSCuRCRPk+HzyLF0q35/+ZDoHAFAL+EkEAAAAQK1yffONAvfeK0mKFhbKadPGcBGwJ7tlS0VvukmSFJwwQYrFDBcBAGoaIykAAACAWhWcOFFWNKrksccqfu21pnOAHxW5+WbZjRrJvW6dArffbjoHAFDDGEkBAAAA1BrPBx/I//TTcixLkcGD5dSrZzoJ+HF16ihcWipJCt5/v6wNGwwHAQBqEiMpAAAAgNph2woVF0uSEj16KHHhhYaDgJ8Wv+IKJY86SlZFhUKjRpnOAQDUIEZSAAAAALXC98wz8nz0kZxgUNGiIsnvN50E/DSXS+Fp0yRJvhdflHvJErM9AIAaw0gKAAAAoOZVVCg0frwkKXbVVUqefLLhIGDfJE88UbELLpBl28obPlxyHNNJAIAawEgKAAAAoMYFZs+Wa9062U2aKFpYKLn4qwgyR2TCBDlerzyLF8v37LOmcwAANYCfTAAAAADUKGvtWgXvvluSFCkslN2uneEiYP/Yhxyi6JAhkqTg+PFSPG64CABQ3RhJAQAAANSo0MSJsiIRJY8+WvG+fU3nAAck8tvfym7YUO61axW44w7TOQCAasZICgAAAKDGuD/6SP4//UmOZSly441y6tc3nQQcmLp1FS4tlSQF58yRtWmT4SAAQHViJAUAAABQMxxHoeJiSVLinHOUuPBCw0FA1cSvuELJI46QVVGh0KhRpnMAANWIkRQAAABAjfD9+c/yfvCBnEBA0aIiKRAwnQRUjdutcFmZJMn3/PNyf/yx4SAAQHVhJAUAAABQ/SIRBceNkyTFrrxSyVNOMdsDVJPkKacofu65smxboWHDJMcxnQQAqAaMpAAAAACqXWD2bLnXrpV90EGKFhZKLv7qgewRnjhRjtcr70cfyfv886ZzAADVgJ9UAAAAAFQra906Be+6S5IUHThQ9qGHGi4Cqpfdpk3l+C8pVFoqJRKGiwAAVcVICgAAAKBahSZNkhUOK3nkkYr162c6B6gRkVtvld2ggdzffKPAnXeazgEAVBEjKQAAAIBq4/7Xv+R/8klJUvTGG+U0aGC4CKgh+fmKjBkjSQrOni1ryxbDQQCAqmAkBQAAAFA9HEeh4mJJUvzssxXv3dtsD1DDYldfrWSHDrJ27lRo9GjTOQCAKmAkBQAAAFAtvC+8IO/778sJBCrfrzEQMJ0E1Cy3W+Fp0yRJvmeflevTTw0HAQAOFCMpAAAAgKqLRisvYCMpdvnlSp52muEgoHYkTz1V8XPOkWXbyhs+3HQOAOAAMZICAAAAqLLAnDlyr1kju3HjyrNIXfxVA7kjPGmSHI9H3kWL5H3hBdM5AIADwE8uAAAAAKrEWr9ewV1X947ecIPsDh0MFwG1y27XTtGBAyWp8ozqRMJwEQBgfzGSAgAAAKiS0JQpsioqlDziCMX69TOdAxgRHT5cdr16cq9ercDdd5vOAQDsJ0ZSAAAAAAfMvXSpfE88IUmKDhkip1Ejw0WAGU5BgSLFxZKkwD33yNq61XARAGB/MJICAAAAODCOo1BJiSzHUfyssxS/6CLTRYBRsb59lTr0ULl27FCopMR0DgBgPzCSAgAAADgg3hdflPedd+T4/YoWFUnBoOkkwCyPRxVTp0qSfE8/LdfnnxsOAgDsK0ZSAAAAAPsvGlVo3DhJUuyyy5Q87TSzPUCaSJ5xhuLdu8tKpZQ3bJjpHADAPmIkBQAAALDfAvffL/eqVbIbNqw8i9TtNp0EpI3w5Mly3G55339fnpdfNp0DANgHjKQAAAAA9ou1caOCd9whSYrecIPsww83XASkF7t9e8UGDJAk5Y0ZIyWThosAAD+HkRQAAADAfglOnSpr504lO3RQrH9/0zlAWorcdpvs/Hy5v/5a/tmzTecAAH4GIykAAACAfeb+5BP5H31UkhQdMkRO48aGi4D05NSrp0hxsSQpOGuWrG3bzAYBAH4SIykAAACAfeM4CpWUyHIcxU8/XfGLLzZdBKS1WL9+SrVrJ1d5uYJjxpjOAQD8BEZSAAAAAPvE+/LL8r71lhyvt/JiTaGQ6SQgvXk8CpeVSZL8Tz0l17//bTgIALA3jKQAAAAAfl4splBpaeWHl12m5JlnGg4CMkPizDMVP+MMWamU8oYPN50DANgLRlIAAAAAPyswd67cK1fKbtCg8ixSt9t0EpAxwlOmyHG55H3nHXkWLDCdAwD4EYykAAAAAH6StXmzAjNmSJKiAwbIPvJIw0VAZrEPO0yx/v0lSXklJVIqZbgIAPC/GEkBAAAA/KTg1Kly7dih1KGHKjZggOkcICNFRo6UnZ8v98qV8s+ZYzoHAPA/GEkBAAAA7JX788/lf+QRSVJkyBA5jRsbLgIyk9OggSIjR0qSgnfeKWv7dsNFAID/xkgKAAAA4Mc5jkLFxbJsW4lf/lLxPn1MFwEZLXb99Uq1aSPXtm0K7roQGgAgPTCSAgAAAPhR3ldekffNN+V4vYoUFkqhkOkkILN5vQpPnSpJ8s+fL9eXXxoOAgB8j5EUAAAAwA/F4wqNHStJivXpo2T37oaDgOyQ6N5d8V/+UlYyqbxhw0znAAB2YSQFAAAA8AP+Bx+Ue8UK2fXrK1pYKHk8ppOA7GBZikydKsflkvett+T5+99NFwEAxEgKAAAA4H9YW7YoOH26JCl6/fWyjznGcBGQXVKHH67YdddJkvKKi6VUynARAICRFAAAAMAegtOmyVVerlT79ooNGGA6B8hKkVGjZNetK/eKFfL//vemcwAg5zGSAgAAANjN/e9/y//QQ5KkyODBcpo0MRsEZCmnYUNFRoyQJAXvuEMqLzdcBAC5jZEUAAAAQCXHUaikRFYqpcQppyh+6aWmi4CsFrvhBqUOOUSubdsUGj/edA4A5DRGUgAAAACSJO+rr8r72mtyPJ7KizXl5ZlOArKbz6fwlCmSJP/jj8u1YoXhIADIXYykAAAAAKREQqGSEklS/OKLlTjnHMNBQG5I9OihxMkny0oklDdsmOkcAMhZjKQAAAAA5J83T+7ly2XXq6fI4MGSx2M6CcgNlqVwWZkcl0veN9+U5x//MF0EADmJkRQAAADIcdbWrQpOny5JivbvL/uYYwwXAbkldeSRil1zjSQpb9QoKZUyXAQAuYeRFAAAAMhxwenT5dq2Tam2bRW74QbJskwnATknUlwsJy9P7uXL5X/gAdM5AJBzGEkBAACAHOb64gv5582TJEWGDJHTtKnhIiA3OY0aKTJihCQpOGOGtGOH4SIAyC2MpAAAAEAOC5WWykqllDjpJMUvvdR0DpDTogMHKtWypVxbtyo0YYLpHADIKYykAAAAQI7yLlwo39//LsfjUbSwUKpTx3QSkNv8foUnT6788NFH5fr6a7M9AJBDGEkBAACAXJRMKlRSIkmK9+6tRI8ehoMASFLivPOUOPFEWYmEQsOGmc4BgJzBSAoAAADkIP9DD8n9n//Izs9XtKhI8npNJwGQJMtSuKxMjmXJ99pr8rzxhukiAMgJjKQAAABAjrG2bVOwrEySFOvfX6lOncwGAdhD6uijFbvqKklSaNQoybYNFwFA9mMkBQAAAHJM8Pbb5fruO6Vat1Z0wADJskwnAfgfkZISOaGQPF98If+8eaZzACDrMZICAAAAOcT15ZfyP/CAJCk6eLCcFi0MFwH4Mc5BBymy6z1Jg9OnSzt3Gi4CgOzGSAoAAADkkFBpqaxkUokTTlDsiitM5wD4CdGiIqUOPliuLVsUmjTJdA4AZDVGUgAAACBHeF57Tb5XXpHjdlderKlOHdNJAH6K36/wrnHU//DDcq1aZTgIALIXIykAAACQC5JJhcaMkSTFe/VSomdPw0EA9kXigguU6NZNVjyu0PDhpnMAIGsxkgIAAAA5wP/oo/IsWya7bl1FCwslr9d0EoB9YVkKT50qx7LkW7hQnrfeMl0EAFmJkRQAAADIctb27QpOnSpJivXrp1SXLoaLAOyP1LHHKn755ZKk0MiRkm0bLgKA7MNICgAAAGS5wB13yLVli1KtWik6YIBkWaaTAOyn8JgxcoJBeZYtk//hh03nAEDWYSQFAAAAsphrxQoF7r9fkhQdPFhOy5aGiwAcCKdpU0WGDpUkBcvKpIoKw0UAkF0YSQEAAIAsFiotlZVIKPGLXyh25ZWmcwBUQXTIENnNm8u1ebOCU6aYzgGArMJICgAAAGQpzxtvyPfXv8pxuRQtKpLq1jWdBKAqAgFVTJpU+eEf/iBrzRrDQQCQPRhJAQAAgGyUSik0ZowkKd6rlxLnnWc4CEB1SFx4oRLHHy8rFlPeiBGmcwAgazCSAgAAAFnI//jj8nz2mey6dRUtLJS8XtNJAKqDZSlcViZJ8v3tb3K/+67hIADIDoykAAAAQJaxyssVnDxZkhS79lqljj/ecBGA6pQ67jjFLr1UkirPJnUcw0UAkPkYSQEAAIAsE5g5U67Nm5Vq2VLRgQMlyzKdBKCahUtL5QQC8nz+uXyPPWY6BwAyHiMpAAAAkEVcK1cq8PvfS5KiRUVyWrUyXASgJjjNmilyyy2SpNCUKVIkYjYIADIcIykAAACQRULjxsmKx5U4/njFrrzSdA6AGhS96SbZTZvKtXGjglOnms4BgIzGSAoAAABkCc9bb8n30ktyXC5FBw+WCgpMJwGoScGgwhMnSpICDz4o69tvDQcBQOZiJAUAAACyQSqlUEmJJCl+wQVKnHee4SAAtSF+0UVKHnecrGhUecOHm84BgIzFSAoAAABkAd/8+fJ88omcvDxFi4okn890EoDaYFmqmDZNkuRbsEDu9983HAQAmYmRFAAAAMh0O3YoNHmyJCnat69Sv/iF4SAAtSnVpYtiF18sScobMUJyHMNFAJB5GEkBAACADBecNUuujRuVatFC0UGDJMsynQSgloXHjZPj98vz6afyPfGE6RwAyDiMpAAAAEAGc61apcCcOZKkaFGRnFatDBcBMMFp0UKRm2+WpMozy6NRw0UAkFkYSQEAAIAMFhw/XlYspmTnzopffbXpHAAGRX/9a9lNmsi1YYOCu96nFACwbxhJAQAAgAzlefdd+Z9/Xo7LpUhRkZyCAtNJAEwKhRQeP16SFJg7V9a33xoOAoDMwUgKAAAAZCLbVqi4WJIUP+88JX71K8NBANJB/JJLlDz2WFmRiPJGjjSdAwAZg5EUAAAAyEC+J5+UZ+lSOXl5ihYVST6f6SQA6cDlUsWul9p7X35Z7g8+MBwEAJmBkRQAAADINDt3KjRpkiQpes01Sp1wguEgAOkk1bWrYr17y3Ic5Y0YITmO6SQASHuMpAAAAECGCd59t1wbNijVvLmiAwdKlmU6CUCaiUyYIMfvl+fjj+V76inTOQCQ9hhJAQAAgAziWrNGgdmzJUnRwkI5bdoYLgKQjuwWLRS98UZJqjzzPBo1XAQA6Y2RFAAAAMggwQkTZEWjSh57rOLXXGM6B0Aai9x8s+zGjeVat07B2283nQMAaY2RFAAAAMgQnkWL5H/2WTmWpciQIXLq1TOdBCCd1amj8LhxkqTA/ffLWr/ebA8ApDFGUgAAACAT2LZCo0dLkhLnnqvEr35lOAhAJohfdpmSxxwjKxxW3qhRpnMAIG0xkgIAAAAZwPenP8nzr3/JCYUUHTxY8vtNJwHIBC6XwtOmSZK8L74o90cfGQ4CgPTESAoAAACku4oKhSZMkCRFr7pKyRNOMBwEIJMku3VT7Fe/kuU4yhs+XHIc00kAkHYYSQEAAIA0F7znHrnWr5fdrJlihYWSix/jAeyfyMSJcrxeeZYule+ZZ0znAEDa4acrAAAAII251q5V4N57JUmRQYNkt21ruAhAJrJbtlT0ppskScHx46VYzHARAKQXRlIAAAAgjQUnTJAViSjZsaPiffuazgGQwSK33CK7YUO5v/1WgTvuMJ0DAGmFkRQAAABIU+4PPpD/6aflWJYigwfLqVfPdBKATFanjsKlpZKk4H33ydq40XAQAKQPRlIAAAAgHTmO8oqLJUmJHj2U6NXLcBCAbBC/8koljzxSVkWFQqNGmc4BgLTBSAoAAACkId8zz8jz0UdyAgFFi4okv990EoBs4HIpPG2aJMn3wgtyL11qOAgA0gMjKQAAAJBuwuHKC6tIil11lZInn2w4CEA2SZ50kuLnny/LtpU3bJjkOKaTAMA4RlIAAAAgzQRmz5b7229lN2miaGGh5OLHdgDVKzxxohyvV57Fi+X7859N5wCAcfy0BQAAAKQRa+1aBe++W5IUHTRIdvv2hosAZCP7kEMq38pDUnDcOCkeNxsEAIYxkgIAAABpJDRpkqxwWMmjj1bsuutM5wDIYpGhQ2U3bCj32rUK3Hmn6RwAMIqRFAAAAEgT7sWL5f/jHyVJ0SFD5NSvb7gIQFbLz1d47FhJUnD2bFmbNxsOAgBzGEkBAACAdOA4ChUXS5LiZ5+teK9ehoMA5IL4lVcqecQRsioqFBo1ynQOABjDSAoAAACkAd9zz8m7aJGcQEDRwYOlQMB0EoBc4HYrPHWqpMp/D7k/+cRwEACYwUgKAAAAmBaJVF44RVLsiiuUPPVUsz0Ackry1FMV79lTlm0rNGyY5DimkwCg1jGSAgAAAIYFfvc7ub/5RvZBBylaWCi5+DEdQO0KT5okx+OR98MP5X3hBdM5AFDr+OkLAAAAMMhat07BWbMkSdGBA2UfdpjZIAA5yW7TpvKXNJJCpaVSImG4CABqFyMpAAAAYFBo8mRZ4bCSRxyhWL9+pnMA5LDosGGy69eXe80aBe66y3QOANQqRlIAAADAEPeSJfLPny9Jit54o5wGDQwXAchlTn6+IiUlkqTAvffK2rLFcBEA1B5GUgAAAMAEx1GouFiSFO/eXfHevc32AICk2LXXKtmhg1w7duz+dxQA5AJGUgAAAMAA74svyvvee3L8fkWLiqRg0HQSAEhut8JTp0qSfM88I9dnnxkOAoDawUgKAAAA1LZotPLCKJJil1+u5C9/aTgIAP5f8rTTFD/7bFm2rbxhw0znAECtYCQFAAAAalngvvvkXr1adqNGlWeRut2mkwBgD+HJk+V4PPIuWiTviy+azgGAGsdICgAAANQia8MGBWfOlCRFb7hBdocOhosA4Ifsdu0UveEGSVJo7FgpmTRcBAA1i5EUAAAAqEXBKVNkVVQoefjhivXvbzoHAPYqOmKE7IICuVevVuCee0znAECNYiQFAAAAaon744/lf/xxSVJ0yBA5jRoZLgKAvXMKChTZdYX7wF13yfruO8NFAFBzGEkBAACA2uA4CpWUyHIcxc88U/GLLzZdBAA/K3bddUq1by/Xjh0KlpSYzgGAGsNICgAAANQC70svyfv223J8PkULC6Vg0HQSAPw8j0cVZWWSJP+f/iTXsmWGgwCgZjCSAgAAADUtFlNo3LjKDy+7TMkzzjDbAwD7IXnGGYqfeaasVEp5w4aZzgGAGsFICgAAANSwwP33y/3117IbNlS0qEhyu00nAcB+CU+eLMftlve99+T5619N5wBAtWMkBQAAAGqQtXGjgjNmSJKiAwbIPuIIw0UAsP/sww5T7PrrJUl5Y8ZIyaThIgCoXoykAAAAQA0KlpXJ2rlTyf8aGAAgE0Vuu012fr7cK1fK/7vfmc4BgGrFSAoAAADUEPenn8r/6KOSpOiQIXIaNzZcBAAHzqlfX5HRoyVJwVmzZG3bZjYIAKoRIykAAABQExxHoeJiWbat+OmnK37JJaaLAKDKYv36KdW2rVzbtys4dqzpHACoNoykAAAAQA3w/vWv8r71lhyvV9HCQikUMp0EAFXn9SpcViZJ8j/1lFz/+Y/hIACoHoykAAAAQHWLxxUqLZUkxS69VMmzzjIcBADVJ3HWWYqffrqsZFJ5t95qOgcAqgUjKQAAAFDNAg88IPdXX8lu0EDRoiLJ7TadBADVKjxlihyXS9533pHnlVdM5wBAlWXMSDp79my1bt1agUBA3bp106JFi/b62M8++0yXXHKJWrduLcuyNGvWrB88Zty4cbIsa4/b4YcfXoPfAQAAAHKBtXmzArffLkmKDhgg+6ijDBcBQPWzO3RQrF8/SVJeSYmUSpkNAoAqyoiR9KmnntLQoUNVWlqqxYsX69hjj1WPHj20cePGH318OBxW27ZtVVZWpqZNm+71uEcddZTWrVu3+/bWW2/V1LcAAACAHBEsK5OrvFyp9u0Vu/560zkAUGMio0bJrltX7q++kv+++0znAECVZMRIOnPmTA0cOFD9+/fXkUceqfvuu0+hUEjz5s370cd37dpVt99+u6644gr5/f69Htfj8ahp06a7b40aNaqpbwEAAAA5wL1smfwPPyxJigwZIueggwwXAUDNcRo0UGTkSElScOZMWeXlhosA4MCl/Ugaj8f10UcfqXv37rvvc7lc6t69u959990qHfvLL79U8+bN1bZtW1199dVavXp1VXMBAACQqxxHoeJiWbatxKmnKt6nj+kiAKhxsQEDlGrTRq5t2xTcdcE6AMhEaT+Sbt68WalUSk2aNNnj/iZNmmj9+vUHfNxu3brpoYce0oIFCzRnzhytXLlSp556qnbs2LHXr4nFYiovL9/jBgAAAEiS929/k/eNN+R4vYoUFkp5eaaTAKDmeb0KT5kiSfLPny/X8uWGgwDgwKT9SFpTzj33XF166aXq2LGjevTooZdfflnbtm3TH//4x71+zdSpU1VQULD71rJly1osBgAAQNqKxxUaM0aSFLvkEiXPPttwEADUnsTZZytx6qmyEgnlDRtmOgcADkjaj6SNGjWS2+3Whg0b9rh/w4YNP3lRpv1Vr149HXbYYVr+E7/1GjVqlLZv3777tmbNmmp7fgAAAGQu/7x5cq9YIbtePUULCyWPx3QSANQey1K4rEyOyyXvP/8pz6uvmi4CgP2W9iOpz+dTly5dtHDhwt332bathQsX6sQTT6y259m5c6dWrFihZs2a7fUxfr9f+fn5e9wAAACQ26ytWxWcPl2SFL3+etkdOxouAoDalzr8cMX69pUk5RUXS6mU4SIA2D9pP5JK0tChQzV37lw9/PDDWrZsmQYPHqyKigr1799fktS3b1+NGjVq9+Pj8biWLFmiJUuWKB6Pa+3atVqyZMkeZ4kOGzZMb7zxhr7++mu98847uuiii+R2u3XllVfW+vcHAACAzBWcNk2u7duVatdOsQEDTOcAgDGR0aPl1Kkj9/Ll8t9/v+kcANgvGfE6oMsvv1ybNm3S2LFjtX79enXq1EkLFizYfTGn1atXy+X6/73322+/1XHHHbf78xkzZmjGjBk67bTT9Prrr0uSvvnmG1155ZXasmWLGjdurFNOOUXvvfeeGjduXKvfGwAAADKX69//lv8Pf5AkRQYPllONbwcFAJnGadhQkREjFBo7VsE77lDsmmukunVNZwHAPrEcx3FMR2Sq8vJyFRQUaPusWcoPBk3nAEC12Nqnj+kEAMgYdS67TL6FC5U4+WTtmD+fK9oDQDyugm7d5F69WtH+/RWeMcN0EYA0V15erjZt2mj79u1G39oyI15uDwAAAKQb76uvyrdwoRyPp/JiTQykACD5fApPmSJJ8j/2mFwrVhgOAoB9w0gKAAAA7K9EQqGSEklS/OKLlejRw3AQAKSPRM+eSpx8sqxEQqHhw03nAMA+YSQFAAAA9pP/D3+Q+8svZderp0hRkeTJiLf6B4DaYVkKT50qx+WS74035HntNdNFAPCzGEkBAACA/WB9952C06ZJkmL9+snu2NFwEQCkn9RRRyl29dWSpLxRoyTbNlwEAD+NkRQAAADYD8Hp0+Xatk2pNm0UHTBAsizTSQCQliLFxXLy8uT+8kv5H3zQdA4A/CRGUgAAAGAfuf7zH/nnzZMkRYYMkdO8ueEiAEhfTuPGiux6T9Lg9OnSzp2GiwBg7xhJAQAAgH0UKi2VlUwqceKJil92mekcAEh70UGDlGrZUq6tWxWaMMF0DgDsFSMpAAAAsA+8//iHfH/7mxy3W9HCQqlOHdNJAJD+/H6FJ02q/PDRR+X6+muzPQCwF4ykAAAAwM9JJhUsKZEkxXv3VqJnT8NBAJA5Euefr8QJJ8iKxxXa9fJ7AEg3jKQAAADAz/A//LA8X3whOz9f0aIiyes1nQQAmcOyFC4rk2NZ8v3jH/K8+abpIgD4AUZSAAAA4CdY27YpWFYmSYr166fUcccZLgKAzJM65hjFrrxSkhQaOVKybcNFALAnRlIAAADgJwRnzJBr61alDjlE0RtukCzLdBIAZKTImDFyQiF5vvhC/j/8wXQOAOyBkRQAAADYC9fy5fLPnStJig4ZIqdFC8NFAJC5nIMOUuTWWyVJwWnTpIoKw0UA8P8YSQEAAIC9CJWWykomlejWTbHLLzedAwAZL1pUpFSLFnJt2aLQrqveA0A6YCQFAAAAfoTn9dflW7BAjttdebGmunVNJwFA5gsEFN41jvofekiuVasMBwFAJUZSAAAA4H8lkwqVlEiS4hdeqMS55xoOAoDskfjVr5To2lVWPK7QiBGmcwBAEiMpAAAA8AP+xx6TZ9ky2XXrVp5F6vWaTgKA7GFZCpeVybEs+V59Ve633jJdBACMpAAAAMB/s8rLFZwyRZIUu+46pbp0MVwEANkn1amT4pddJknKGzlSchzDRQByHSMpAAAA8F8Cd9wh15YtSrVqpegNN0iWZToJALJSeOxYOcGgPMuWyffww6ZzAOQ4RlIAAABgF9dXXynw+99LqrwCs9OypeEiAMheTtOmivz2t5KkUFmZFA4bLgKQyxhJAQAAgF1CpaWyEgklunZV7KqrTOcAQNaLDhkiu3lzuTZt2v1WJwBgAiMpAAAAIMnzz3/K9/LLclyuyos11a1rOgkAsl8wqPDEiZKkwB/+IOubbwwHAchVjKQAAABAKqVQSYkkKX7hhUqcd57hIADIHfFevZTs0kVWNKq8ESNM5wDIUYykAAAAyHn+J56Q59NP5dSpU3kWqc9nOgkAcodlqaKsTJLke+UVud9913AQgFzESAoAAIDcVl6u4OTJkqRo375KHX+84SAAyD2pzp0V69NHkpR3222S4xguApBrGEkBAACQ04J33inXpk1KHXywogMHSpZlOgkAclK4tFROICDPZ5/J9/jjpnMA5BhGUgAAAOQs19dfK3DffZKkaFGRnFatDBcBQO5ymjdX5JZbJEmhyZOlSMRsEICcwkgKAACAnBUaN05WPK5Ely6KXXWV6RwAyHnRG2+U3bSpXBs3KrjrfUoBoDYwkgIAACAned5+W74XX5Tjcik6eLBUUGA6CQAQCik8YYIkKfDAA7K+/dZwEIBcwUgKAACA3JNKKVRSIkmKX3CBEuefbzgIAPC9+MUXK9mpk6xotPIiTgBQCxhJAQAAkHN8Tz4pz8cfy8nLU7SwUPL5TCcBAL5nWaqYNk2S5Hv5ZbkXLTIcBCAX1NhI+sYbb+iuu+7Sc889J9u2a+ppAAAAgP2zY0flBUEkRa+9Vqlu3QwHAQD+V+r44xW76CJJUt7w4ZLjGC4CkO2qNJI+9NBD6ty5s95666097v/1r3+tM888U0OHDtUll1yinj17KpVKVSkUAAAAqA7Bu+6Sa8MGpVq0UHTQIMmyTCcBAH5EZPx4OX6/PJ9+Kt/8+aZzAGS5Ko2kTz/9tFasWKGuXbvuvu/DDz/U7NmzFQgE1KtXL7Vo0UILFy7Uk08+WeVYAAAAoCpcq1cr8LvfSZKihYVyDjnEcBEAYG/sFi0U/fWvJanyFQDRqOEiANmsSiPpp59+qmOOOUZ+v3/3fU8++aQsy9Kjjz6qZ599VosWLVIgENC8efOqHAsAAABURXD8eFmxmJLHHaf4NdeYzgEA/IzIb34j+6CD5Fq/XsHp003nAMhiVRpJt2zZooMPPniP+958803l5+erd+/ekqSmTZvq1FNP1fLly6vyVAAAAECVeN57T/7nnpPjcikyeLCcggLTSQCAn5OXp/D48ZKkwP33y1q3znAQgGxVpZE0kUjs8V6jsVhMS5cu1UknnSSX6/8P3bhxY23cuLEqTwUAAAAcONtWaPRoSVL83HOVuOACw0EAgH0V79NHyY4dZUUiyhs50nQOgCxVpZG0efPm+uyzz3Z//sYbbyiRSOikk07a43Hl5eUq4Df1AAAAMMT31FPyLF0qJxRSdPBg6b/eLgoAkOZcLoV3vdTe+5e/yP3hh4aDAGSjKo2kp59+ur744guVlZVp6dKlKi0tlWVZ6tmz5x6P+/TTT3/wsnwAAACgVuzcqdDEiZKk6DXXKNWtm+EgAMD+SnbtqlivXrIcR3kjRkiOYzoJQJap0kg6evRo1alTR8XFxercubPef/99de/eXV26dNn9mP/85z9auXKlTjjhhCrHAgAAAPsreM89cm3YoFSzZooOGiS5qvQjMADAkMiECXJ8PnmWLpXvj380nQMgy1TpJ8T27dvrnXfe0XXXXadzzz1X48aN03PPPbfHYxYuXKhjjz1W559/flWeCgAAANhvrm++UeDeeyVJ0cJCOW3aGC4CABwo++CDFb3pJklScOJEKRYzXAQgm1iOwznqB+r791rdPmuW8oNB0zkAUC229uljOgEAqk3eoEHyP/OMksceqx3PPiunXj3TSQCAqti5U/W6dJFr82aFf/tbRUtKTBcBqKLy8nK1adNG27dvV35+vrEOXmsEAACArORZtEj+Z56RY1mKDB7MQAoA2aBOHYXHjZMkBX//e1nr15vtAZA1PPvz4NWrV1fpyVq1alWlrwcAAAD2iW0rVFwsSUr07KnEhRcaDgIAVJf45Zcred998nz6qUKjR6ti3jzTSQCywH6NpK1bt5ZlWQf0RJZlKZlMHtDXAgAAAPvD9/TT8ixeLCcYVLSoSPL7TScBAKqLy6XwtGnKP/98+V58UdHFi5Xq3Nl0FYAMt18jaatWrQ54JAUAAABqRUWFQhMmSJJiV1+t5EknGQ4CAFS35AknKHbBBfK/9JLyhg9X+auvSuwVAKpgv0bSr7/+uoYyAAAAgOoRvPdeudatk920qaKFhZKLt+EHgGwUmThRvldekWfJEvmeeUZxLkAKoAr4iREAAABZw1q7VoF77pEkRQYNkt22reEiAEBNsVu1UvTGGyVJwfHjpVjMcBGATMZICgAAgKwRmjhRViSi5DHHKN63r+kcAEANi9xyi+yGDeX+9lsFZs40nQMggzGSAgAAICu4P/xQ/j/9SY5lKTJkiJz69U0nAQBqWt26CpeWSpKCc+bI2rTJcBCATLVf70m6N+vWrdPzzz+vL774QuXl5XIc5wePsSxLDz74YHU8HQAAALAnx1FecbEkKXHOOUpceKHhIABAbYlfcYWS990nz+efKzRqlCoeeMB0EoAMVOWR9J577tHw4cOVSCR23/f9SGrturKc4ziMpAAAAKgxvmeflefDD+UEAooWFUmBgOkkAEBtcbsVLitT/oUXyvf884r+5jdKdexougpAhqnSy+0XLlyom2++WYFAQCNHjtSJJ54oSfr973+vW2+9Va1bt5Yk3XLLLZo3b16VYwEAAIAfCIcrL9ghKXbVVUqecorhIABAbUuefLLi550ny7YVuvVW6Ude4QoAP6VKI+ldd90ly7L0yiuvaPLkyTr00EMlSQMHDtTtt9+uzz//XNddd53mzZunU089tVqCAQAAgP8W+N3v5F67VvZBBylaWCi5eNt9AMhF4YkT5Xi98i5eLO9zz5nOAZBhqvQT5KJFi9S5c2d169btR//c7/drzpw5CgQCmjBhQlWeCgAAAPgB69tvFbzrLklSdNAg2e3bGy4CAJhit25d+csySaFx46R43GwQgIxSpZH0u+++U7t27XZ/7vV6JUmRSGT3fX6/X6eeeqoWLlxYlacCAAAAfiA0aZKscFjJo45S7LrrTOcAAAyL3Hqr7AYN5P7mGwVmzTKdAyCDVGkkbdCggSoqKnZ/Xr9+fUnS6tWr93hcKpXSli1bqvJUAAAAwB7c//qX/E89JUmKDhkip0EDw0UAAOPy8xUZM0aSFJw9W9bmzYaDAGSKKo2krVq10po1a3Z/fvTRR8txHL300ku779u5c6f++c9/6uCDD67KUwEAAAD/z3EUKi6WJMXPPlvx3r3N9gAA0kbs6quV7NBB1s6dCo0ebToHQIao0kh62mmn6bPPPtOGDRskSeeff77y8vI0evRoDR8+XPfcc49OP/10bd26VT169KiWYAAAAMD3/PPyvv++nECg8v3nAgHTSQCAdOF2KzxtmiTJ9+c/y/XJJ4aDAGSCKo2kl156qU4//XQtWbJEUuXL72fOnKlkMqmZM2fqlltu0eLFi3XIIYdo/Pjx1dELAACAXBeJKDhunCQpdvnlSp52mtkeAEDaSZ56quI9esiybeUNH246B0AG8FTli7t27aq///3ve9w3cOBAdenSRX/605+0detWHXHEEerfv78KCgqqFAoAAABIUmDOHLnXrJHduHHlWaSuKv3eHwCQpcKTJsm7cKG8H3wg7wsvKHHhhaaTAKSxKo2ke9O5c2d17ty5Jg4NAACAHGatX6/gnXdKkqIDB8ru0MFwEQAgXdlt2yo6aJCCv/udQqWl2n7uuZLXazoLQJqq0q/dX3zxRdm2XV0tAAAAwE8KTZ4sKxxW8ogjFOvf33QOACDNRYcPl12/vtyrVytw992mcwCksSqNpL169VLLli112223admyZdXVBAAAAPyAe+lS+ebPlyRFhwyR06CB4SIAQLpz8vMVKS6WJAXuuUfW1q2GiwCkqyqNpJ07d9a6det0++236+ijj9ZJJ52kuXPnqry8vLr6AAAAAMlxFCopkeU4ip91luIXXWS6CACQIWLXXqvkYYfJtWOHQrsGUwD4X1UaST/88EN9/PHHuuWWW9SoUSO99957KioqUrNmzdS3b1/94x//qK5OAAAA5DDviy/K+847cvx+RYuKpGDQdBIAIFN4PApPnSpJ8j39tFyffWY4CEA6qvKlQI8++mjNnDlTa9eu1bPPPqsLLrhAiURCjz32mM4++2y1adNGEyZM0KpVq6qjFwAAALkmGlVo3DhJUuyyy5Q87TSzPQCAjJM8/XTFu3eXZdvKGz7cdA6ANFTlkfR7Ho9HvXv31vPPP6+1a9dqxowZOvLII7Vq1SqNHz9e7du3r66nAgAAQA4J/P73cq9aJbthw8qzSN1u00kAgAwUnjxZjtst7/vvy/vSS6ZzAKSZahtJ/1vjxo01dOhQLVq0SDfffLMcx5Ft2zXxVAAAAMhi1oYNCs6cKUmKDhwo+/DDDRcBADKV3b69YjfcIEkKjR0rJZOGiwCkkxoZSd977z0VFhaqefPmuvvuuyVJDbj6KAAAAPZTcOpUWTt3Ktmhg2L9+5vOAQBkuMiIEbILCuRetUqBe+81nQMgjVTbSLpu3TpNmzZNRxxxhE4++WTNnTtXO3bs0DnnnKMnn3xSa9eura6nAgAAQA5wf/KJ/I89JkmK3nijnEaNDBcBADKdU6+eIruucB+46y5Z331nuAhAuvBU5Yvj8biee+45PfTQQ/r73/8u27blOI7atWunfv36qV+/fmrRokV1tQIAACBXOI5CxcWyHEfxM85Q/KKLTBcBALJE7LrrKt/vesUKBceMUZgzSgGoiiNps2bNtG3bNjmOo1AopD59+uj666/XL3/5y+rqAwAAQA7y/uUv8r79thyfT9HCQikUMp0EAMgWHo8qpk1Tfp8+8v/xj4redBPveQ2gai+3/+6773TCCSdo7ty5Wr9+vR566CEGUgAAAFRNLKbQuHGVH152mZJnnmm2BwCQdZJnnKH4GWfISqWUN2yY6RwAaaBKZ5IuW7ZMHTp0qK4WAAAAQIG5c+VeuVJ2w4aVZ5G63aaTAABZKDxlirwnnyzvu+/Ks2CBkj17mk4CYFCVziRlIAUAAEB1sjZtUmDGDElS9PrrZR95pOEiAEC2sg87TLHrr5ck5ZWUSMmk4SIAJlXb1e2/179/f3k8VTpBFQAAADkqWFYm144dSh16qGIDBpjOAQBkucjIkbLz8+VeuVL+OXNM5wAwqNpHUklyHKcmDgsAAIAs5v7sM/kfeUSSFBkyRE7jxoaLAADZzqlfX5FRoyRJwTvvlLV9u+EiAKbUyEgKAAAA7BfHUaikRJZtK37aaYr36WO6CACQI2L9+yvVtq1c27crOHas6RwAhjCSAgAAwDjvggXyvvmmHK+38mJNoZDpJABArvB6FZ46VZLkf/JJub780nAQABMYSQEAAGBWPK7QrjN3Yn36KNm9u+EgAECuSXTvrvhpp8lKJpV3662mcwAYUO0jacOGDdWqVavqPiwAAACylP/BB+X+6ivZ9esrWlQkud2mkwAAOSg8ZYocl0vet9+W529/M50DoJZV+0g6Y8YMrVy5sroPCwAAgCxkbdmi4PTpkqTo9dfLPvpow0UAgFxlH364YtddJ0nKKy6WUinDRQBqU7WNpNFoVFu2bKmuwwEAACAHBMvK5CovV6p9e8UGDDCdAwDIcZFRo2TXrSv3V1/Jf999pnMA1KIqj6QvvPCCOnfurDp16uiggw6Sz+fT8ccfr7KyMu3YsaM6GgEAAJCF3MuWyf/QQ5KkyODBcpo0MRsEAMh5TsOGitx2myQpOHOmVF5uuAhAbanSSPr888/r4osv1pIlS2Tbttxut5LJpBYvXqzi4mK1b99ezz33XDWlAgAAIGs4jkIlJbJsW4lTT1X80ktNFwEAIEmKDRigVOvWcm3bplBpqekcALWkSiPppEmTZNu2+vTpoy+//FKxWEzhcFgLFy7UNddco61bt6pPnz763e9+V129AAAAyALev/9d3tdfl+P1KjpokJSXZzoJAIBKPp/CU6ZIkvzz58u1fLnhIAC1oUoj6aeffqq2bdtq/vz5ateunSzLUiAQ0BlnnKGHH35Y7733npo0aaKbb75Z//rXv6qrGQAAAJkskVCopESSFL/4YiXOOcdwEAAAe0qcc44Sp5wiK5FQ3vDhpnMA1IIqjaQ+n09dunSR2+3+0T/v0qWLnn/+edm2rem7rloKAACA3OafN0/uFStk16unSFGR5PGYTgIAYE+WpXBZmRyXS94335Rn4ULTRQBqWJVG0kMPPVTr16//ycccf/zxOuGEE/Taa69V5akAAACQBaytWxXc9cvz6PXXy+7Y0XARAAA/LnXEEYpde60kKW/0aCmVMlwEoCZVaSS95JJL9M477+jTTz/9yce1atVK5VwRDgAAIOcFp0+Xa9s2pdq2VWzAANM5AAD8pMjo0XLq1JF7+XL55841nQOgBlVpJL300kvVqVMnXXLJJVqzZs1eH/f555+rTZs2VXkqAAAAZDjXF1/IP2+eJCkyZIicpk0NFwEA8NOcRo0U2fWepMEZM6QdOwwXAagpVRpJO3TooP/85z/68ssvdcwxx2jixIlauXLl7j9PJBIqLi7WJ598oiFDhlQ5FgAAAJkrNHasrFRKiZNOUvyyy0znAACwT6KDBinVqpVc332n0IQJpnMA1JAqjaRNmjTRjl2/RSkvL9e4cePUvn17NW7cWO3atVN+fr7Kyso0cuRI3XjjjdUSDAAAgMzjffVV+V59VY7Ho2hhoZSXZzoJAIB94/MpPHmyJMn/6KNy/dfJYQCyh+U4jlOVA3z77bf68MMP97ht3rx5zyexLLVt21Zdu3bdfevcubNCoVCV4k0rLy9XQUGBts+apfxg0HQOAFSLrX36mE4AkG0SCRX88pdy/+c/il16qSruvZcr2gMAMovjqO6FF8r7zjuKn366dj7zjOkiIGuUl5erTZs22r59u/Lz8411VHkk/TGrVq3aPZh+8MEHWrx4sbZt21b5hJYlSXK73YrH49X91LWKkRRANmIkBVDd/HPnKm/kSNkFBdrx7LNKdepkOgkAgP3m/uwz5Z9+uizbVvkzzyh5+ummk4CskC4jaY38Cv+QQw7RIYccoksuuWT3fcuXL989mn7wwQdasmRJTTw1AAAA0oj13XcKTpsmSYr176/UsccaLgIA4MCkjjpKsauuUuCxxxQaNUrlb78tuar0LoYA0kitvc6pffv2at++va644gpJUg2cwAoAAIA0E7z9drm++06pNm0UHTBA2vWqIgAAMlGkpET+Z5+V5z//kf/BBxUbONB0EoBqYuxXHhY/IAMAAGQ115dfyv/gg5KkaFGRnObNDRcBAFA1TuPGigwbJqnyF4HaudNwEYDqwnnhAAAAqBGh0lJZyaQSJ5yg2K5XEwEAkOmiRUVKHXywXFu2KDRxoukcANWEkRQAAADVzvPaa/K98ooct1vRoiKpTh3TSQAAVA+/X+FJkyo/fOQRuVatMhwEoDowkgIAAKB6JZMKlZRIkuK9eyvRs6fhIAAAqlfigguU6NZNVjyu0PDhpnMAVANGUgAAAFQr/yOPyPPvf8uuW7fyLFKv13QSAADVy7IULiuTY1nyLVwozz//aboIQBUxkgIAAKDaWNu3Kzh1qiQp1q+fUscdZ7gIAICakerYcfd7bodGjpRs23ARgKpgJAUAAEC1CcyYIdfWrUodcoiiAwdKlmU6CQCAGhMZM0ZOMCjPv/8t/8MPm84BUAWMpAAAAKgWrhUrFJg7V5IUHTxYTosWhosAAKhZTpMmitx6qyQpWFYmVVQYLgJwoBhJAQAAUC1CpaWyEgklunXb/fJDAACyXXTwYKWaN5dr82aFJk82nQPgADGSAgAAoMo8b7wh31//KsflqrxYU926ppMAAKgdgYDCkyZJkvwPPSTX6tWGgwAcCEZSAAAAVE0qpVBJiSQp3quXEueeazgIAIDalbjwQiWOP15WLKbQiBGmcwAcAEZSAAAAVIn/scfk+fxz2XXrKlpYKHm9ppMAAKhdlqXwtGlyLEu+v/9d7rffNl0EYD8xkgIAAOCAWeXlCk6ZIkmK9e2r1PHHGy4CAMCMVKdOil96qSQp77bbJMcxXARgfzCSAgAA4IAFZs6Ua/NmpVq2VHTgQMmyTCcBAGBMeOxYOcGgPMuWyffoo6ZzAOwHRlIAAAAcENdXXylw332SKq/s67RsabgIAACznGbNFLnlFklSaOpUKRw2GwRgnzGSAgAA4ICExo2TlUgo0bWrYldcYToHAIC0EL3xRtnNmsm1caOCU6eazgGwjxhJAQAAsN88//ynfH/5ixyXS9GiIqmgwHQSAADpIRhUeOJESVJg3jxZa9caDgKwLxhJAQAAsH9SKYXGjJEkxX/1KyXOO89wEAAA6SXeu7eSnTvLikaVN2KE6RwA+4CRFAAAAPvFN3++PJ98Iicvr/IsUp/PdBIAAOnFslRRViZJ8i1YIPd77xkOAvBzGEkBAACw78rLFZo8WZIU7dtXqa5dDQcBAJCeUl26KHbJJZKkvNtukxzHcBGAn8JICgAAgH0WnDVLro0blWrRQtFBgyTLMp0EAEDaCpeWygkE5Pn0U/meeMJ0DoCfwEgKAACAfeJatUqBOXMkSdGiIjmtWhkuAgAgvTktWihy882SVPlKjEjEcBGAvWEkBQAAwD4JjRsnKx5XonNnxa++2nQOAAAZIXrTTbKbNJFrwwYFp00znQNgLxhJAQAA8LM877wj3wsvyHG5FB08WE5BgekkAAAyQyik8IQJkqTA3Lmyvv3WcBCAH8NICgAAgJ9m2wqVlEiS4uefr8QFFxgOAgAgs8QvuUTJTp1kRaOVF3ECkHYYSQEAAPCTfE8+Kc/SpXLy8hQtLJR8PtNJAABkFstSRVmZJMn717/K/cEHhoMA/C9GUgAAAOzdzp0KTZokSYpec41SJ5xgOAgAgMyU6tpVsd69ZTmO8oYPlxzHdBKA/8JICgAAgL0K3nWXXBs2KNW8uaKDBkmWZToJAICMFZkwQY7fL88nn8j35JOmcwD8F0ZSAAAA/CjXmjUKzJ4tSYoWFspp3dpsEAAAGc5u0ULRm26SJIUmT5aiUcNFAL7HSAoAAIAfFRw/XlYspmSnTopfe63pHAAAskLk5ptlN24s17p1Ct5+u+kcALswkgIAAOAHPO+/L/+f/yzHshQZMkROQYHpJAAAskNensLjx0uSAvffL2vdOsNBACRGUgAAAPwv21Zo9GhJUuK885S44ALDQQAAZJf4pZcq2bGjrHBYeaNGmc4BoAwaSWfPnq3WrVsrEAioW7duWrRo0V4f+9lnn+mSSy5R69atZVmWZs2aVeVjAgAA5ArfH/8oz5IlckIhRYuKJL/fdBIAANnF5VJ42jRJkvell+T+6CPDQQAyYiR96qmnNHToUJWWlmrx4sU69thj1aNHD23cuPFHHx8Oh9W2bVuVlZWpadOm1XJMAACAnFBRodDEiZKk6NVXK3nCCYaDAADITslf/EKxXr1kOY7yhg+XHMd0EpDTMmIknTlzpgYOHKj+/fvryCOP1H333adQKKR58+b96OO7du2q22+/XVdccYX8eznzYX+PCQAAkAuC99wj1/r1SjVrpmhhoeTKiB8XAQDISJHx4+X4fPIsXSrfn/5kOgfIaWn/U288HtdHH32k7t27777P5XKpe/fuevfdd2v1mLFYTOXl5XvcAAAAsoXrm28UuOceSVJ00CA5bdoYLgIAILvZLVsqeuONkqTghAlSLGa4CMhdaT+Sbt68WalUSk2aNNnj/iZNmmj9+vW1esypU6eqoKBg961ly5YH9PwAAADpKDhxoqxoVMmOHRXv29d0DgAAOSFyyy2yGzaUe906BW6/3XQOkLPSfiRNJ6NGjdL27dt339asWWM6CQAAoFp4PvhA/qeflmNZigweLKdePdNJAADkhjp1FB43TpIUvP9+WRs2mO0BclTaj6SNGjWS2+3Whv/5l8SGDRv2elGmmjqm3+9Xfn7+HjcAAICMZ9sKFRdLkhI9eijRq5fhIAAAckv8iiuUPOooWRUVCo0aZToHyElpP5L6fD516dJFCxcu3H2fbdtauHChTjzxxLQ5JgAAQKbyPfOMPB99JCcYVLSoSNrLhS8BAEANcbkUnjZNkuR78UW5lywx2wPkoLQfSSVp6NChmjt3rh5++GEtW7ZMgwcPVkVFhfr37y9J6tu3r0b9129a4vG4lixZoiVLligej2vt2rVasmSJli9fvs/HBAAAyAkVFQqNHy9Jil11lZInn2w4CACA3JQ88UTFLrhAlm0rb/hwyXFMJwE5xWM6YF9cfvnl2rRpk8aOHav169erU6dOWrBgwe4LL61evVou1//vvd9++62OO+643Z/PmDFDM2bM0GmnnabXX399n44JAACQCwKzZ8u1bp3sJk0ULSyUXBnxO3QAALJSZMIE+V55RZ7Fi+V79lnFL7nEdBKQMyzH4VcTB6q8vFwFBQXaPmuW8oNB0zkAUC229uljOgFALbHWrlW9E06QFQ6rYuxYxW6+2XQSAAA5Lzh+vIJ3361Uixba/uGHks9nOgmoUeXl5WrTpo22b99u9Po/nCoAAACQo0KTJskKh5U8+mjF+/Y1nQMAACRFfvtb2Q0byr12rQJ33GE6B8gZjKQAAAA5yP3RR/L/8Y+SpOiQIXLq1zdcBAAAJEn5+QqPHStJCs6ZI2vTJsNBQG5gJAUAAMg1jqNQcbEkKX7OOYr36mU4CAAA/Lf4lVcqecQRsioqFBo92nQOkBMYSQEAAHKM789/lveDD+QEAooOHiwFAqaTAADAf3O7FS4rkyT5nntO7o8/NhwEZD9GUgAAgFwSiSg4bpwkKXbllUqecorZHgAA8KOSp5yi+LnnyrJthYYNk7juNlCjGEkBAABySGD2bLnXrpV90EGKFhZKLn4cBAAgXYUnTpTj9cr70UfyPv+86Rwgq/FTMQAAQI6w1q1T8K67JEnRgQNlH3qo4SIAAPBT7DZtKn+pKSlUWiolEoaLgOzFSAoAAJAjQpMnywqHlTzySMX69TOdAwAA9kHk1ltlN2gg9zffKDBrlukcIGsxkgIAAOQA95Il8s+fL0mK3nijnAYNDBcBAIB9kp+vSEmJJCl4772ytmwxHARkJ0ZSAACAbOc4ChUXS5Li3bsr3ru32R4AALBfYtdco2SHDrJ27lRo9GjTOUBWYiQFAADIct4XXpD3vffk+P2KFhVJgYDpJAAAsD/cboXLyiRJvmefleuzzwwHAdmHkRQAACCbRaOVF3qQFLviCiV/+UvDQQAA4EAkf/lLxc85R5ZtK2/YMNM5QNZhJAUAAMhigTlz5F6zRnbjxpVXx3W7TScBAIADFJ40SY7HI++iRfK+8ILpHCCrMJICAABkKWv9egXvvFOSFL3hBtkdOhguAgAAVWG3a6fowIGSVPlKkUTCcBGQPRhJAQAAslRoyhRZFRVKHnGEYv36mc4BAADVIDp8uOx69eRevVqBe+4xnQNkDUZSAACALOReulS+J56QJEWHDJHTqJHhIgAAUB2cggJFioslSYG775a1davhIiA7MJICAABkG8dRaMwYWY6j+FlnKX7RRaaLAABANYr17atU+/Zy7dihUEmJ6RwgKzCSAgAAZBnvSy/J+/bbcny+yos1BYOmkwAAQHXyeFRRViZJ8j39tFyff244CMh8jKQAAADZJBarvJCDpNhllyl5+ulmewAAQI1InnGG4medJSuVUt6wYaZzgIzHSAoAAJBFAr//vdyrVslu2FDRoiLJ7TadBAAAakh48mQ5bre8778vz8svm84BMhojKQAAQJawNm5U8I47JEnRG26QfcQRhosAAEBNsg89VLEBAyRJeWPGSMmk4SIgczGSAgAAZIng1Kmydu5UskMHxfr3N50DAABqQeS222Tn58v99dfyz55tOgfIWIykAAAAWcD9ySfyP/qoJCk6ZIicxo0NFwEAgNrg1KunSHGxJCk4a5asbdvMBgEZipEUAAAg0zmOQiUlshxH8dNPV/zii00XAQCAWhTr10+pdu3kKi9XcMwY0zlARmIkBQAAyHDev/5V3rfekuP1Vl6sKRQynQQAAGqTx6Pw1KmSJP9TT8n1xReGg4DMw0gKAACQyWIxhcaOrfzwssuUPPNMw0EAAMCExFlnKX766bJSKeUNG2Y6B8g4jKQAAAAZLPDAA3KvXCm7QYPKs0jdbtNJAADAkPCUKXJcLnnfeUeeBQtM5wAZhZEUAAAgQ1mbNytw++2SpOiAAbKPPNJwEQAAMMnu0EGx/v0lSXklJVIqZbgIyByMpAAAABkqOHWqXDt2KNW+vWLXX286BwAApIHIyJGy8/PlXrlS/jlzTOcAGYORFAAAIAO5P/9c/kcekSRFbrxRzkEHGS4CAADpwGnQQJGRIyVJwf9r787jm6gTN44/kzTN0Yuj3EIpooCKoMihqICi4M0KK6KugCgUENcfAgqU+0ZRPJd1d1VW1vvAdVdxEQEvVDxAUURREBEKylVom3t+fxQipS200HaS5vN+vfoiTb6ZPlNm0vTpzHceeEDGvn0WJwJiAyUpAABArDFNecaPlxEOK3DhhfL36WN1IgAAEEV8t9yiUGambHv3yj1pktVxgJhASQoAABBjHG+9Jce778p0OFQwZIjk8VgdCQAARBOHQ/mzZkmSnM8+K9v331scCIh+lKQAAACxxO+XZ+JESZKvTx8Fu3e3OBAAAIhGge7d5b/wQhnBoJJGjbI6DhD1KEkBAABiiPOJJ2T/4QeFa9aUd8gQKSHB6kgAACAaGYYKZs2SabPJ8f77Sli61OpEQFSjJAUAAIgRxq5dcs+dK0nyDhyocOvWFicCAADRLNSypXw33yxJSho/XgqFLE4ERC9KUgAAgBjhnjNHtn37FDr5ZPkGDbI6DgAAiAEF48bJTE6W/Ycf5PzrX62OA0QtSlIAAIAYYP/2WzmfekqSVDB0qMz69a0NBAAAYoJZu7by775bkuS+/34pN9fiREB0oiQFAACIdqYpT3a2jFBIgfPPl/+666xOBAAAYojv1lsVysiQbc8eeaZMsToOEJUoSQEAAKKc4+235Vi+XGZCQuHFmpKSrI4EAABiSWKi8mfOlCQ5//Uv2X74weJAQPShJAUAAIhmgYA82dmSJP+11ypw6aUWBwIAALEo0KOHAp07ywgElDR6tNVxgKhDSQoAABDFnE88IfvGjQrXqKGCoUOlhASrIwEAgFhkGMqfPVumzSbHypVKeOcdqxMBUYWSFAAAIEoZe/bIPXeuJMk7cKDCrVtbnAgAAMSy0GmnyXfjjZKkpLFjpVDI4kRA9KAkBQAAiFLuuXNl27tXocxM+W69VTIMqyMBAIAYVzB+vMykJNk3bpTzH/+wOg4QNShJAQAAopBtw4bILy4Fw4bJrF/f4kQAAKA6MOvUUcHBOUnd994r7d9vcSIgOlCSAgAARCHPpEkyQiEFzjtP/uuuszoOAACoRryDByvUuLFsu3fLM22a1XGAqEBJCgAAEGUcy5YpcelSmQkJ8g4ZIiUnWx0JAABUJ06n8mfMKLz5z3/KtnmztXmAKEBJCgAAEE2CQXmysyVJ/l69FOjRw+JAAACgOgpcfrkC554rIxCQZ9Qoq+MAlqMkBQAAiCLOp56S/bvvFE5NlTcrS3I4rI4EAACqI8NQ/uzZMg1DicuXK2HlSqsTAZaiJAUAAIgSxt69cs+eLUnyDRyoUNu21gYCAADVWuiMM+S74QZJkmfsWCkctjgRYB1KUgAAgCjhvu8+2fbsUahpU3kHDZIMw+pIAACgmivIzpbp8ShhwwY5n3jC6jiAZShJAQAAooBt40Y5//Y3SZJ36FCZjRpZnAgAAMQDs25dFdx1lyTJPXeudOCAxYkAa1CSAgAARAHPpEkygkEFOnaU7/rrrY4DAADiiDcrS6FGjWTbtUue6dOtjgNYgpIUAADAYgnLlytxyRKZdnvhxZqSk62OBAAA4onLpfyD5ahz4ULZfvrJ4kBA1aMkBQAAsFIwKM+ECZIk/zXXKHDZZRYHAgAA8Shw1VUKdOggw++XZ8wYq+MAVY6SFAAAwELOp59Wwvr1CqekyDtkiORwWB0JAADEI8NQ/uzZMg1DiW+/rYT337c6EVClKEkBAAAsYuzbJ/esWZIk34ABCrVrZ3EiAAAQz0Jt2sjft68kyXPPPVI4bHEioOpQkgIAAFjENW+ebLt2KdSkibyDBkmGYXUkAAAQ5/InTJDpdith/Xo5Fy60Og5QZShJAQAALGD74Qe5Hn9ckuQdOlRm48YWJwIAAJDM+vVVMHKkJMk9e7aUl2dxIqBqUJICAABYwDN5soxAQIEOHeTr18/qOAAAABHeYcMUbthQtt9+k3vmTKvjAFWCkhQAAKCKJbz7rhLfeEOmzSZvVpaUkmJ1JAAAgN+5XMqfNq3w5pNPyvj5Z4sDAZWPkhQAAKAqhULyZGdLkvxXX63A5ZdbHAgAAKA4/zXXKNiunQyfT0ljxlgdB6h0lKQAAABVyPmvfynh669lJicXHkXqcFgdCQAAoDjDUN6cOZKkxP/9T/ZVqywOBFQuSlIAAIAqYuTmyj1jhiTJe/PNCp1zjsWJAAAAShc66yz5/vhHSSo8mtQ0LU4EVB5KUgAAgCriuv9+2X77TaHGjeW97TbJMKyOBAAAcFT5kybJdLmU8M03Sly0yOo4QKWhJAUAAKgCtk2b5PrrXyVJ3qwsmU2aWJwIAADg2MwGDVRw552SJM/MmVJBgbWBgEpCSQoAAFAFPJMny/D7FTjnHPn69bM6DgAAQJl5b79d4fr1Zdu5U+5Zs6yOA1QKSlIAAIBKlvDBB0r8z39k2mzyDh0qpaVZHQkAAKDs3G7lT50qSXL94x8ytm2zOBBQ8ShJAQAAKlMoJE92tiTJf+WVClx+ucWBAAAAys9/7bUKtm0rw+tV0ujRVscBKhwlKQAAQCVKfO45JXz5pcykJHmzsqTERKsjAQAAlJ9hKG/OHElS4pIlsn/8scWBgIpFSQoAAFBZ9u+XZ/p0SZL3T39SqEMHiwMBAAAcv9A558h37bWSpKQxYyTTtDgRUHEoSQEAACqJe/582XbuVKhRI3kHD5YMw+pIAAAAJyR/8mSZTqcS1q1T4rPPWh0HqDCUpAAAAJXA9tNPcv3lL5Ikb1aWzIwMixMBAACcOLNRIxX8+c+SVHjGjNdrcSKgYlCSAgAAVAL3lCkyfD4Fzz5b/htvtDoOAABAhfGOGKFwvXqy7dgh98F5SoFYR0kKAABQwRJWrZLztddk2mwqyMqSmZZmdSQAAICK4/Eof8oUSZLrb3+TsW2bxYGAE0dJCgAAUJHCYXnGj5ck+S+/XIGrrrI4EAAAQMXz9+6tYJs2MgoKlHTPPVbHAU4YJSkAAEAFSnz+eSWsXSszKUnerCwpMdHqSAAAABXPZlP+wVPtHW+8Ifvq1RYHAk4MJSkAAEBFOXBAnmnTJEneG29UqFMniwMBAABUnmD79vJdc40M01TSmDGSaVodCThulKQAAAAVxP3QQ7Lt2KFQgwbyDh4sGYbVkQAAACpVwdSpMhMTlfDll0p8/nmr4wDHjZIUAACgAth+/lmuRx+VJHmzsmRmZlqcCAAAoPKFTzpJ3ttvlyR5pk+XfD6LEwHHh5IUAACgArinTpXh9SrYpo38N91kdRwAAIAqU/DnPytcp45s27fLPXeu1XGA40JJCgAAcIISPvlEzldekWkYKhg2TGaNGlZHAgAAqDrJycqfPFmS5Hr8cRk5OdbmAY4DJSkAAMCJCIflGTdOkhS47DIFrrrK4kAAAABVz3/ddQq2bi0jP1+esWOtjgOUGyUpAADACUh88UUlfPGFTI9H3qFDJafT6kgAAABVz2ZT/pw5kqTE11+X/bPPLA4ElA8lKQAAwPHKy5Nn2jRJkveGGxTs1MniQAAAANYJduwo35VXyjBNJY0eLZmm1ZGAMqMkBQAAOE7uRx6Rbft2hRs0kG/IEMnGWysAABDfCqZNk+lwKGHtWiW+/LLVcYAy4508AADAcbD98otcDz8sSSq47TaFmzWzOBEAAID1wk2ayDt8uCTJPWWK5PNZnAgoG0pSAACA4+CeOlVGQYGCrVvL37+/1XEAAACiRsGddypcu7bs27bJNW+e1XGAMqEkBQAAKCf76tVyvvSSTMNQwbBhMmvUsDoSAABA9EhJUf6kSZIk94IFMn791eJAwLFRkgIAAJSHaSpp/HhJUqBHDwWuvtriQAAAANHH36+fgqedJiMvT5577rE6DnBMlKQAAADlkPjyy0r47DOZLpe8WVmSy2V1JAAAgOhjsyl/zhxJUuK//y372rUWBwKOjpIUAACgrPLzCy9AIMl3ww0Kdu5scSAAAIDoFTzvPPmvuEJGOKykUaMk07Q6ElAqSlIAAIAycj36qOzbtilcr568Q4ZINt5KAQAAHE3+tGkyHQ4lfP65HK++anUcoFS8swcAACgDY9s2uR96SJLkHTxY4ebNLU4EAAAQ/cIZGYV/XJbkmTxZ8vutDQSUgpIUAACgDDzTp8vIz1fwjDPk69/f6jgAAAAxo+CuuxSuVUv2X36R64EHrI4DlIiSFAAA4Bjsn38u5/PPS5K8Q4fKrFnT4kQAAAAxJDVVBRMnSpLcjz4q47ffLA4EFEdJCgAAcDSmKc/48ZIk/yWXyN+rl7V5AAAAYpDvhhsUbNlSRl6ePOPGWR0HKIaSFAAA4CgSFy+W45NPZLpc8mZlSS6X1ZEAAABij92u/NmzJUmJr74q+1dfWRwIKIqSFAAAoDQFBXJPnixJ8l1/vYIXXmhtHgAAgBgWvOAC+Xv2lBEOyzNqlGSaVkcCIihJAQAASuF67DHZt25VuG7dwquy2njrBAAAcCLyp0+XmZAgx6efyvHvf1sdB4jgnT4AAEAJjO3b5Z4/X5Lkve02hU891dpAAAAA1UA4M7Pwj8+SPJMmSYGAxYmAQpSkAAAAJfDMnCkjP1/BVq3kGzDA6jgAAADVhnfUKIVr1pT955/levBBq+MAkihJAQAAirGvWaPEZ5+VJHmHD5dZq5bFiQAAAKoPMzVVBdnZkiTXI4/I2LXL4kQAJSkAAEBRpilPdrYM05T/4ovl79XL6kQAAADVju+mmxQ89VTZ9u+XZ/x4q+MAlKQAAACHc7z+uhyrVsl0OuXNypLcbqsjAQAAVD8JCcqfPVuSlPjyy7J9/bXFgRDvKEkBAAAO8XoLLyAgyde3r4JdulgcCAAAoPoKduki/yWXyAiHlTR6tNVxEOcoSQEAAA5yLVgg+5YtCqenFx5FardbHQkAAKBay58xQ2ZCghwffyzH669bHQdxjJIUAABAkrFjh9z33y9J8t56q8ItWlicCAAAoPoLn3yyvLfeKknyTJwoBYMWJ0K8oiQFAACQ5J45U0ZenoItW8o3cKDVcQAAAOKGd8wYhdPSZN+yRa6HH7Y6DuIUJSkAAIh79q++kvNf/5IkeYcNk5mebnEiAACA+GGmpang4BXuXQ8+KGPPHosTIR5RkgIAgPhmmvKMHy/DNOW/6CL5r73W6kQAAABxx9e/v0Innyzb/v1yZ2dbHQdxiJIUAADENcd//yvHBx/ITEyUd8gQye22OhIAAED8SUhQ3pw5kiTniy/Ktn69xYEQbyhJAQBA/PL55Jk0qfDmddcp2K2bxYEAAADiV7BbN/kvukhGKKSkUaOsjoM4Q0kKAADiluvxx2XfvFnh2rULjyK1262OBAAAENfyZ8yQabfL8dFHSnjzTavjII5QkgIAgLhk7Nwp9333SZK8gwYpfNppFicCAABA+NRT5bvlFklS0oQJUjBocSLEC0pSAAAQl9yzZ8s4cEDBw96IAwAAwHoFd9+tcGqq7Js2yfnYY1bHQZygJAUAAHHHvm6dnE8/LUnyDhsms04dixMBAADgELNmTRWMGydJcs+fL2PvXmsDIS5QkgIAgPhimvJkZ8sIh+Xv2lX+3r2tTgQAAIAj+AYMUKhZM9n27ZN74kSr4yAOUJICAIC44liyRI733pPpcBRerMnjsToSAAAAjuRwKH/WLEmS8/nnZfvuO4sDobqjJAUAAPHD75fn4JEIvj59FLz4YosDAQAAoDSB7t3l79JFRjCopLvusjoOqjlKUgAAEDdcf/+77D/+qHDNmvJmZUl2u9WRAAAAcBT5M2fKtNnk+PBDJbz1ltVxUI1RkgIAgLhg/PabXPfeK0nyDhqk8BlnWJwIAAAAxxJu2VK+AQMkSUnZ2VIoZG0gVFuUpAAAIC64Z8+WLTdXoebN5bvlFqvjAAAAoIwKxo5VOCVF9h9/lHPBAqvjoJqiJAUAANWeff16ORculCQVDBsms149ixMBAACgrMxatVRwzz2SJPf998vIzbU4EaojSlIAAFC9maY848fLCIcVuOAC+fv0sToRAAAAysk3aJBCmZmy7d0r96RJVsdBNURJCgAAqjXH//4nx8qVMh0OFQwZIiUlWR0JAAAA5eVwKH/mTEmS89lnZdu40eJAqG4oSQEAQPUVCMgzYYIkyde7t4KXXGJxIAAAAByvwCWXKHD++TICASWNGmV1HFQzlKQAAKDacj7xhOw//KBwjRryDhkiJSRYHQkAAADHyzCUP3u2TJtNjvfeU8Lbb1udCNUIJSkAAKiWjN275Z4zR5LkveUWhc880+JEAAAAOFGhVq3k+9OfJElJ48dLoZDFiVBdUJICAIBqyT1njmz79inUrJl8gwZZHQcAAAAVpGDcOJnJybJv3Cjn449bHQfVBCUpAACodmzffivnk09KkgqGDZNZv77FiQAAAFBRzPR0FYwZI0lyz5sn7d9vcSJUBzFVkj766KNq2rSpXC6XOnbsqE8++eSo41988UW1bNlSLpdLrVu31htvvFHk8QEDBsgwjCIfPXv2rMxVAAAAVcAzcaKMUEiBzp3lv+46q+MAAACggnlvu02hJk1k27NHnilTrI6DaiBmStLnn39eI0eO1KRJk/T555+rTZs26tGjh3bu3Fni+A8//FD9+vXToEGD9MUXX6hXr17q1auX1q1bV2Rcz549tX379sjHs88+WxWrAwAAKonj7beVuGyZzISEwos1JSVZHQkAAAAVLTFR+TNnSpKcixbJ9uOPFgdCrIuZkvT+++/XbbfdpoEDB+q0007TggUL5PF49MQTT5Q4/sEHH1TPnj01evRotWrVStOmTdPZZ5+tRx55pMg4p9Op+vXrRz5q1qxZFasDAAAqQyAgT3a2JMl/7bUK9OhhcSAAAABUlkDPngp07iwjEJBn1Cir4yDGxURJ6vf79dlnn6l79+6R+2w2m7p3765Vq1aV+JxVq1YVGS9JPXr0KDZ+xYoVqlu3rlq0aKGhQ4dq165dpebw+XzKzc0t8gEAAKKH88knZf/+e4Vr1FBBVpaUkGB1JAAAAFQWw1D+rFkybTYlrlyphOXLrU6EGBYTJelvv/2mUCikevXqFbm/Xr16ysnJKfE5OTk5xxzfs2dP/fOf/9SyZcs0Z84crVy5UpdddplCoVCJy5w1a5bS0tIiH40bNz7BNQMAABXF2LNH7rlzJUm+AQMUPvNMixMBAACgsoVOP12+G26QJCWNHSuFwxYnQqyKiZK0slx//fW6+uqr1bp1a/Xq1Uv/+c9/tHr1aq1YsaLE8WPHjtW+ffsiHz///HPVBgYAAKVy33uvbHv2KJSZKe+gQZJhWB0JAAAAVaAgO1umxyP799/L+Y9/WB0HMSomStL09HTZ7Xbt2LGjyP07duxQ/fr1S3xO/fr1yzVekpo1a6b09HRt3LixxMedTqdSU1OLfAAAAOvZvvsu8obYm5Uls2FDixMBAACgqph16qhg9GhJKjyz6MABixMhFsVESZqYmKh27dpp2bJlkfvC4bCWLVumc889t8TnnHvuuUXGS9LSpUtLHS9JW7du1a5du9SgQYOKCQ4AAKqEZ9IkGcGgAueeK9/111sdBwAAAFXMO2SIQiedJNvu3fJMnWp1HMSgmChJJWnkyJH629/+poULF2r9+vUaOnSo8vLyNHDgQEnSzTffrLFjx0bG//nPf9aSJUs0b948ffvtt5o8ebI+/fRT3X777ZKkAwcOaPTo0froo4+0efNmLVu2TNdcc42aN2+uHlwJFwCAmOF45x0l/u9/Mu12eYcMkZKTrY4EAACAquZ0Kn/GjMKbTz8t2+bN1uZBzImZkrRv37667777NHHiRLVt21Zr1qzRkiVLIhdn2rJli7Zv3x4Zf9555+mZZ57R448/rjZt2uill17S4sWLdcYZZ0iS7Ha7vvzyS1199dU69dRTNWjQILVr107vvfeenE6nJesIAADKKRiUOztbkuTv1UuBnj0tDgQAAACrBK64QoFOnWT4/fIcPP0eKCvDNE3T6hCxKjc3V2lpado3f75S3W6r4wBAhdjdp4/VEYAyc/7jH0oaM0bh1FTtf/llhc4+2+pIAAAAsJD9q6+U2q2bDNNU7uLFCl5wgdWRcAy5ubnKzMzUvn37LL3+T8wcSQoAAHA4Y+9euWfPliT5BgxQ6KyzLE4EAAAAq4Vat5avXz9Jkufuu6Vw2OJEiBWUpAAAICa55s2TbfduhTIy5L31VskwrI4EAACAKFCQnS3T7VbChg1yPvWU1XEQIyhJAQBAzLFt3CjX449LkrzDhsls1MjiRAAAAIgWZr16KrjrLkkqPPMoL8/iRIgFlKQAACDmeCZNkhEMKtCxo3x9+1odBwAAAFHGO3SoQg0byrZrlzzTp1sdBzGAkhQAAMSUhBUrlLhkiUybTd6sLCklxepIAAAAiDYul/JnzJAkORculG3LFosDIdpRkgIAgNgRDMqTnS1J8l9zjQKXXWZxIAAAAESrwFVXKdC+vQyfT54xY6yOgyhHSQoAAGKGc9EiJaxfr3BKSuFRpA6H1ZEAAAAQrQxD+bNnyzQMJS5dKvv771udCFGMkhQAAMQEIzdX7pkzJUm+/v0VatfO4kQAAACIdqG2beW/7jpJUtI990imaXEiRCtKUgAAEBNc8+bJtmuXQk2ayHvrrZJhWB0JAAAAMSB/4kSZbrcS1q9X4j//aXUcRClKUgAAEPVsP/4o11//KknyZmXJbNzY4kQAAACIFWb9+iq4805JkmfWLCk/39pAiEqUpAAAIOp5Jk+WEQgo0L69fDfcYHUcAAAAxBjv8OEKN2gg26+/RqZwAg5HSQoAAKJawnvvKfG//5VpsxVerCklxepIAAAAiDVut/KnTZMkuZ58UsbWrRYHQrShJAUAANErFJInO1uS5L/qKgUuv9ziQAAAAIhV/l69FDz7bBler5LGjLE6DqIMJSkAAIhazmeeUcK6dTKTkwuPIk1MtDoSAAAAYpVhKG/OHElS4ltvyb5qlcWBEE0oSQEAQHTKzZV7xgxJkvfmmxVq397iQAAAAIh1obPPlq9PH0lS0t13S6ZpcSJEC0pSAAAQldwPPCDbr78qdNJJ8t52m2QYVkcCAABANZA/aZJMl0sJX3+txH/9y+o4iBKUpAAAIOrYNm+Wa8ECSZI3K0tmkyYWJwIAAEB1YTZsqII775QkeWbMkAoKrA2EqEBJCgAAoo5n8mQZfr8C7drJd8MNVscBAABANeMdPlzh+vVl27lT7tmzrY6DKEBJCgAAokrChx8q8fXXZdps8g4dKqWlWR0JAAAA1Y3Ho/wpUyRJrr//Xca2bRYHgtUoSQEAQPQIheQZP16S5L/iCgWuuMLiQAAAAKiu/L17K9i2rQyvt/AiTohrlKQAACBqJD73nBK+/FJmUpK8WVlSYqLVkQAAAFBdGYbyDp5qn/jGG7J/8onFgWAlSlIAABAd9u8vnDhfkvemmxTq2NHiQAAAAKjuQu3by/eHP0iSkkaPlkzT4kSwCiUpAACICu4HH5Rtxw6FGjWSd8gQyTCsjgQAAIA4UDBlikynUwnr1inxueesjgOLUJICAADL2bZskeuxxyRJ3iFDZGZkWJwIAAAA8SLcqJG8I0ZIkjzTp0ter8WJYAVKUgAAYDn3lCkyfD4FzzpL/ptusjoOAAAA4kzBHXcoXLeubDk5cs+da3UcWICSFAAAWCrho4/kXLxYps2mgqFDZaalWR0JAAAA8SYpSflTpkiSXI8/LmP7dosDoapRkgIAAOuEw/KMHy9J8l92mQJXXmlxIAAAAMQrf58+Cp55poyCAiXdc4/VcVDFKEkBAIBlEl94QQlr1sj0eOQdOlRyOq2OBAAAgHhlsyl/zhxJkuO//5X9008tDoSqREkKAACsceCAPNOmSZK8N96oUMeOFgcCAABAvAt26CDfNdfIME0ljRkjmabVkVBFKEkBAIAl3A8/LFtOjkINGsg7ZIhk420JAAAArFcwZYrMxEQlrF2rxBdesDoOqgi/jQAAgCpn27pVrkcekSR5hwyRmZlpcSIAAACgULhxY3lvv12S5J42TfL5LE6EqkBJCgAAqpx76lQZXq+CbdrI/6c/WR0HAAAAKKLgz39WOD1d9u3b5br3XqvjoApQkgIAgCqV8Mkncr78skzDUMHQoTJr1LA6EgAAAFBUcrLyJ0+WJLn/+lcZOTnW5kGloyQFAABVJxyWZ/x4SVKgZ08Frr7a4kAAAABAyfx9+yp4xhky8vPlGTfO6jioZJSkAACgyiS+9JISPv9cptstb1aW5HRaHQkAAAAomc2m/DlzJEmJr78u+xdfWBwIlYmSFAAAVI28PHmmTpUk+W68UcHzzrM4EAAAAHB0wU6d5LvyShnhsJJGjZJM0+pIqCSUpAAAoEq4Hn1Utu3bFa5fX94hQyQbb0MAAAAQ/QqmTpXpcChhzRolvvyy1XFQSfjtBAAAVDrjl1/kfughSVLB4MEKN2tmcSIAAACgbMIZGfIOGyZJck+ZIvl8FidCZaAkBQAAlc4zbZqMggIFzzhD/ptvtjoOAAAAUC4F//d/CteuLfu2bXLdf7/VcVAJKEkBAEClsn/6qZwvvijTMFQwfLjMmjWtjgQAAACUT0qK8idNkiS5//IXGb/+anEgVDRKUgAAUHlMU0njx0uSApdeqsDVV1scCAAAADg+/uuvV/C002Tk5ckzdqzVcVDBKEkBAEClSXzlFSV8+qlMl0verCzJ5bI6EgAAAHB87Hblz54tSUp87TXZv/zS4kCoSJSkAACgcuTnF05sL8l3ww0Knn++xYEAAACAExPs3Fn+yy+XEQ7Lc9ddkmlaHQkVhJIUAABUCtdjj8n+yy8K160r75Ahko23HQAAAIh9+dOmyXQ45Pj8czkWL7Y6DioIv60AAIAKZ2zfLveDD0qSvIMHK9y8ucWJAAAAgIoRbtq08CAASZ7JkyW/39pAqBCUpAAAoMJ5pk+XkZ+v4Omny9e/v9VxAAAAgApVcNddCteqJfvWrXLNn291HFQASlIAAFCh7F98Iedzz0mSvMOGyaxVy+JEAAAAQAVLTVXBhAmSJPejj8rYtcviQDhRlKQAAKDimKY848dLkvyXXCJ/r17W5gEAAAAqie/GGxVs0ULGgQPyjBtndRycIEpSAABQYRJfe02Ojz+W6XIVztPkclkdCQAAAKgcdrvy58yRJCW+8ops69ZZHAgngpIUAABUjIICuSdPliT5+vZVsEsXa/MAAAAAlSx4wQXy9+ghIxxW0qhRVsfBCaAkBQAAFcL1l7/I/vPPCtepU3gUqY23GQAAAKj+8qdPl5mQIMfq1XL8+99Wx8Fx4rcXAABwwoycHLkfeECS5L3tNoVbtLA4EQAAAFA1ws2ayTt4sCTJM2mSFAhYnAjHg5IUAACcMM/MmTLy8xVs1Uq+gQOtjgMAAABUKe/o0QrXqCH7li1yPfSQ1XFwHChJAQDACbGvXavEZ56RJHmHDZNZq5bFiQAAAICqZaamqmD8eEmS6+GHZezebXEilBclKQAAOH6mKU92tgzTlP/ii+X/wx+sTgQAAABYwnfzzQqdcops+/fLc7AwReygJAUAAMfN8frrcnz4oUynU96sLMnttjoSAAAAYI2EBOXNmiVJSnzpJdm++cbiQCgPSlIAAHB8vF55Jk+WJPmuu07BLl2szQMAAABYLNitm/zdu8sIh5U0apTVcVAOlKQAAOC4uP76V9l/+knh2rULjyK1262OBAAAAFguf8YMmXa7HB9/LMd//mN1HJQRJSkAACg3Y8cOue+/X5Lkve02hVu2tDgRAAAAEB3CzZvLd+utkiTPxIlSMGhxIpQFJSkAACg396xZMg4cULBFC/kGDrQ6DgAAABBVCsaMUTgtTfaffpLrkUesjoMyoCQFAADlYv/qKzkXLZIkeYcPl5mebnEiAAAAILqYNWqoYNw4SZLrwQdl7NljcSIcCyUpAAAoO9OUJztbhmnK362b/H/4g9WJAAAAgKjkGzBAoZNPli03V+4JE6yOg2OgJAUAAGXmeOMNOd5/X2ZiorxDhkgej9WRAAAAgOiUkKD82bMlSc4XXpDt228tDoSjoSQFAABl4/PJM2lS4c0//lHBiy6yOBAAAAAQ3QIXXSR/t24yQiEljRpldRwcBSUpAAAoE9ff/ib7pk0K16olb1aWZLdbHQkAAACIevkzZ8q02eRYtUoJS5ZYHQeloCQFAADHZPz6q1z33SdJ8g4apPBpp1mcCAAAAIgN4VNPle+WWyRJSdnZUjBocSKUhJIUAAAck3v2bNn271folFPkGzTI6jgAAABATCm45x6FU1Nl37RJzr/8xeo4KAElKQAAOCr7N9/I+c9/SpIKhg2TWaeOxYkAAACA2GLWrKmCsWMlSe4HHpCxb5/FiXAkSlIAAFA605Rn/HgZ4bD8XbrI36eP1YkAAACAmOQbOFChZs1k27dP7okTrY6DI1CSAgCAUjneekuOd9+V6XDIO2SI5PFYHQkAAACITQ6H8mfOlCQ5n3tOtu+/tzgQDkdJCgAASub3y3PwL9y+Pn0U7N7d4kAAAABAbAt07y7/hRfKCAaVdNddVsfBYShJAQBAiZz/+IfsP/ygcM2ahUeR2u1WRwIAAABim2GoYNYsmTabHB98oIT//c/qRDiIkhQAABRj7Nol99y5kiTvLbco3Lq1xYkAAACA6iHUsqV8/ftLkpLGj5dCIYsTQaIkBQAAJXDPni1bbq5CzZvLN2iQ1XEAAACAaqVg7FiFU1Jk//FHOf/6V6vjQJSkAADgCPb16+V86ilJUsHQoTLr1bM2EAAAAFDNmLVrq+DuuyVJ7nnzpNxcixOBkhQAAPzONOXJzpYRDitwwQXy//GPVicCAAAAqiXfoEEKNW0q29698kyebHWcuEdJCgAAIhxLl8qxYoVMh0PewYOlpCSrIwEAAADVU2Ki8mfOlCQ5n3lGto0bLQ4U3yhJAQBAoUBAngkTJEn+a69V4NJLLQ4EAAAAVG+BSy9VoHNnGYGAkkaPtjpOXKMkBQAAkiTnE0/IvnGjwjVqqCArS0pIsDoSAAAAUL0ZhvJnz5Zps8nx7rtKWLbM6kRxi5IUAADI2L1b7rlzJUnegQMVPvNMixMBAAAA8SF02mny3XSTJClp3DgpFLI4UXyiJAUAAHLPnSvb3r0KNWsm3623Wh0HAAAAiCsF48fLTEqSfeNGOf/2N6vjxCVKUgAA4pxtwwY5n3hCklQwbJjM+vUtTgQAAADEFzM9XQVjxkiS3PPmSfv3W5wo/lCSAgAQ5zwTJ8oIhRQ47zz5//hHq+MAAAAAcck7eLBCTZrItnu3PFOnWh0n7lCSAgAQxxxvv63Et9+WmZAg75AhUnKy1ZEAAACA+JSYqPwZMyRJzqeflm3TJosDxRdKUgAA4lUgIM+ECZIk/x/+oEDPnhYHAgAAAOJb4LLLFDjvPBmBgDyjR1sdJ65QkgIAEKecCxfK/t13CqelyZuVJSUkWB0JAAAAiG+GofxZs2QahhKXL1fCihVWJ4oblKQAAMQhY+9euWfPliT5Bg5UqE0bixMBAAAAkKTQGWfId8MNkiTP2LFSOGxxovhASQoAQJwxfvlFSXfeKduePQo1bSrvoEGSYVgdCwAAAMBBBdnZMj0eJXz3nVz336+E996T8csvVseq1ihJAQCII4mLFqlG27ZKfP11SVKwXTuZDRtanAoAAADA4cy6dVUwapQkyT1rllJ79Sp8H79okcXJqi/DNE3T6hCxKjc3V2lpado3f75S3W6r4wBAhdjdp4/VEXCiQiEZO3bItm2bbNu3//7vDz8o8Y03dPgxo6bdrr1ffCGzUSPL4gIAAAAozti0STXOOafav3/Pzc1VZmam9u3bp9TUVMtycIUGAABiidcrW05O0QL0iNvGzp0yQqEyLc4IhWTftEnBavQmCwAAAKgO7Fu36shJsXj/XnkoSQEAiBb79xcvPbdvL1qG7tpVpkWZNpvM9HSF09MVrlOn8LbLJdczz8g47CQS025XKDOzstYIAAAAwHEKNWsm02aTcdiFm3j/XnkoSQEAqGymKWP37hKP+ixyBOiBA2VbnNOpcHp6YfFZp07h7YP/hhs1UjgjQ+GTTpKZkiK5XEUuyhTq0EFJI0fKCIVk2u3Ku//+anWqDgAAAFBdmI0aKe+BB3j/XkUoSQEAOBHBoIydO4uWnocfBXrwX8PnK9PizOTkokd/Hrpdp45CJ52kcNOmMhs0kJmUJCUmljuu/6abFOjWTfZNmxTKzOQNFgAAABDFeP9edShJAQAozeHzf5ZyBKixY0eR01+OJlyzZtGjPw/drldP4caNFcrIkFmnjuTxSAmV9yPabNSIOYwAAACAGMH796pBSQoAiE+5uaXP/Xno37LO/2m3y6xdu9gRoGadOgo3aKBwkyYKNWkis0aNwgLUZqvcdQMAAAAAlAslKQCgejFNGbt2HXXuT9v27cc//+fhp8EfY/5PAAAAAEBsoCQFAMSOYFDGjh2lH/m5bZtsOTnlm//zyFPfDx4BGmrcWOGMjBOa/xMAAAAAEBsoSQEA0cHrLbn0PPzq7zt3lmv+z2KnvqenK1y//u/zf6anV/r8nwAAAACA6MdvhQCAylfS/J9HlqG7d5dpUZH5P484AtRMT1e4QQOFMjIUPjT/p9vN/J8AAAAAgGOiJAUAHL/D5/882hGgeXllW9yh+T8PHfV55PyfTZsWzv+ZnMz8nwAAAACACkNJCgAoWWnzfx5xJKjh95dpceGUlOKnvh8+/2fTpjLr12f+TwAAAABAlaMkBYB45PdLe/cWfuzZU/hx8HbqX/9arvk/TcOQWbNm8VPf69RRuF69ovN/JiVJdntlrx0AAAAAAOVCSQoA1YlpSl5vkdKzyO1D/x7l9PfDfzAUmf+zTp3IbbNOHYUbNiw8ApT5PwEAAAAAMY6SFABiRTgsHThQvPA8sgz1+cq2vIQEKTVVSkkp8pF3/vkKN2z4+/yfKSmF838CAAAAAFBNUZICQDQIhaR9+4qXn4cXoPv2ScFg2Zbncv1efKamSsnJhf+mpkq1aknp6VJaWuG4hKI/Cnx9+lT02gEAAAAAENUoSQGgsh2a/7Okoz4PfZ6bW3iqfFkkJZV4BKjS0grLz/T0wlLU6eT0dwAAAAAAyoCSFACO1+Hzfx6tAD3K/J9F2GzFi89DR4HWrFlYftauLXk8ksNBAQoAAAAAQAWhJAWAkpQ2/+eRp8OXdf5Ph6N4+Xno9qHT32vWLLz4kcNReesFAAAAAACKoSQFEH9Km//zyKNAQ6GyLe/Q/J9HngJ/aP7POnV+n//Tbq+89QIAAAAAAMeFkhRA9eL3l1x+Hv7vic7/eegCSMz/CQAAAABAtUBJCiA2mKZUUHD0uT/37j3x+T9TUqQaNYrO/5mYKBlGpa0aAAAAAACwFiUpAOsdmv/zaHN/Hu/8n0ceBcr8nwAAAAAA4AiUpAAqV0nzf5ZUgJZ1/k+3u/D09pJOga9du7AAZf5PAAAAAABQDpSkAI7fseb/3LNH2r+/7PN/JieXfAo8838CAAAAAIBKREkKoDjTlPLzSy4/Dy9A8/PLtrwj5/88/ChQ5v8EAAAAAAAWoyQF4k04XHh059EufrRnT+FRomXB/J8AAAAAACDGUZIC1UkoVPxozyOPAi3v/J9Hnv5+qAw9dPQn838CAAAAAIAYR0kKxAqfr/QC9NDtE5n/89BRoGlpvxegKSmFp78z/ycAAAAAAKjGKEkBqx1t/s/DC9CKnv8zKanw9Hfm/wQAAAAAAHGOkhSoTIfm/zzaxY/27i3//J9Hzv15aP7POnUKi1Dm/wQAAAAAACgzSlLgeAWD0r59JR/1eXghGg6XbXklzf95qAxNTy/8SE1l/k8AAAAAAIAKRkkKlOTQ/J8lFaCVMf9nenrhGOb/BAAAAAAAqHKUpIgvR87/WVoJWlBQtuXZbIWFZ3Jy8VPgD83/mZ4ueTzM/wkAAAAAABClKElRfZQ2/+eRBWggULblORwlz/2Zmlo4/2d6OvN/AgAAAAAAVAOUpIgNwWDxuT5LuhjSic7/mZpaeOV35v8EAAAAAACIG5SksJ7Pd+yLH+Xmln15h8//efiRoDVq/F6AMv8nAAAAAAAADqIkReU5NP/n0S5+VJ75P+32wrKzpPk/a9X6/RR45v8EAAAAAABAOVCSonR79kg7d0p160o1axZ9rKT5P0sqQMs6/2diYsmnvx8qQNPTCzO4XMz/CQAAAAAAgAoVUyXpo48+qnvvvVc5OTlq06aNHn74YXXo0KHU8S+++KImTJigzZs365RTTtGcOXN0+eWXRx43TVOTJk3S3/72N+3du1edO3fWX/7yF51yyilVsTrR7f33pUWLCo8GlaRWrQqP0DxUhu7bV/75P4+8Cvzh83+mpUlOJ/N/AgAAAAAAoMrFTEn6/PPPa+TIkVqwYIE6duyo+fPnq0ePHtqwYYPq1q1bbPyHH36ofv36adasWbryyiv1zDPPqFevXvr88891xhlnSJLmzp2rhx56SAsXLlRmZqYmTJigHj166JtvvpHL5arqVYwee/YULUglaf364uMMQ0pKKn7qe2pqYenJ/J8AAAAAAACIAYZpHt6ERa+OHTuqffv2euSRRyRJ4XBYjRs31ogRI3TPPfcUG9+3b1/l5eXpP//5T+S+Tp06qW3btlqwYIFM01TDhg111113adSoUZKkffv2qV69enrqqad0/fXXHzNTbm6u0tLStG/+fKW63RW0plFgwwbp/vuL33/22VLTpoWnvdeuXfjB/J9AtbO7Tx+rIwAAAAAA4kRubq4yMzO1b98+paamWpYjJo4k9fv9+uyzzzR27NjIfTabTd27d9eqVatKfM6qVas0cuTIIvf16NFDixcvliRt2rRJOTk56t69e+TxtLQ0dezYUatWrSpTSXqILxSSLxQqdr/NMOQ47OjJksYcYhiGEo9zrD8cVmld93GNrVtXMgz5bTaZh8pPm03q06fwCvEHOQ87Nf5oyz1ybCAcVriCxibabDIOZqzIsQ6bTbaDY4PhsEIWjw2ZpoJHmd4gwWaTPYrGhk1TgaOMtRuGEg5ul1aNPXz/NE1T/koYKx19X47W1wi/31/qshMTEyO3A4HAUff7aBjrcDgi+30wGFT4KP935RmbkJAg28HvWzSMDYVCCh1lm7Db7bIffG2NhrHhcFjBYLDUsTabTQkJCVEz1jRNBY4yx3Z5xhqGIcdhc2sfbX+LhrFS0X2uPGN5jeA1gteI8o+Nhv2e14jf8RpRiNeIExvLawSvEeUdG4+vEUfb7qtSTJSkv/32m0KhkOrVq1fk/nr16unbb78t8Tk5OTkljs/JyYk8fui+0sYcyefzyefzRT7Pzc2VJI395psiO9Ihp6emanizZpHP7/7661LLlVOSkvR/h82FOuGbb3SglA2ridute1q0iHw+df167S5lg2rgcmlCy5aRz+d89522e70ljq3lcGj66acXHil60026Pz9fWw6fyuDnnws/JCXb7ZrbunXkoUd/+EHf5+WVuNxEm03zzzwz8vnjmzfr64Pfu5I81rZt5PZTP/2kL/btK3XsA61bR0rVZ3/+WR/t2VPq2DlnnKGUgz98Xt62Te/+9lupY6e1aqXaTqck6d/bt+vtX38tdWx2ixZqePBI4iU7duiNHTtKHTvm1FPV1OORJC3/7Te9um1bqWPvPPlknZqSIkl6/7ff9Pwvv5Q6dmhmplqnpUmSPtm9W08f/H8qya1Nm+rsg2X32n379PfNm0sd+6fGjXVu7dqSpG9yc/WXTZtKHdu3USN1qVNHkrTxwAHN/+GHUsf+oWFDXXJw29pSUKC5331X6tjL69XTlQ0aSJJyvF5N37Ch1LHd69TRtY0aSZL2+P2aUNI0EQddmJ6u6086SZJ0IBTS3evWlTq2U82aujkjQ1Jhifh/X31V6tiz0tJ0W2Zm5POjjY3a14ipU0scW6NGjciR95L097//Xb+Usl16PB6NGzcu8vnChQu1uZRtzeFwaNKkSZHPn332WX13lG1i+vTpkdsvvfSSvv7661LHTpw4MfL6/Nprr+mLL74odezYsWOVlJQkSXrzzTf18ccflzr2rrvuUs2DF7R7++239f7775c6dsSIEZGfNStXrtTy5ctLHZuVlaWTDm6Xq1at0ltvvVXq2FtuuUXNDm4/q1evLnLmxJH+9Kc/qcXBbWLt2rV65ZVXSh17/fXXR6alWb9+vZ577rlSx1577bU6++yzJUkbN27U008/XerYK6+8Up06dZIkbd68WU888USpY3v06KELLrhAkrRt2zYtWLCg1LHdunXTxRdfLEn69ddf9fDDD5c69vzzz1fPnj0lFZ49Mm/evFLHduzYUVdddZUkKT8/X7NmzSp17FlnnaXevXtLKnyDN7WUfUiSTj/9dPXr1y/y+dHGnnrqqbr55psjn8+aNavUN5BNmzbVrbfeGvn8vvvuU35+foljGzVqpKFDh0Y+f+ihh7R3794Sx9atW1d33HFH5PMFCxZo586dJY7lNeJ3vEYU4jWiEK8RhXiN+B2vEYV4jSjEa0QhXiN+F4+vEccq0KsKk0SWw6xZs5SWlhb5aNy4sdWRKs/550sHdx4AAAAAAACgOouJOUn9fr88Ho9eeukl9erVK3J///79tXfvXr322mvFntOkSRONHDlSd955Z+S+SZMmafHixVq7dq1+/PFHnXzyyfriiy/U9rAjF7t06aK2bdvqwQcfLLbMko4kbdy4sXbOm1finKTReiptRYyVON2+KsdGwyn0nG4fP6fb7z7sdfZI0XBaC6fAFB8bDae+cZocp8kdOZbXCF4jeI0o/9ho2O95jfgdrxGFeI04sbG8RvAaUd6x8fgasX//fp166qmWz0kaEyWpVHi4eocOHSKHv4fDYTVp0kS33357qRduys/P1+uvvx6577zzztOZZ55Z5MJNo0aN0l133SWpsPSsW7cuF24CENe4cBMAAAAAoKpw4aZyGjlypPr3769zzjlHHTp00Pz585WXl6eBAwdKkm6++WY1atQoMtfHn//8Z3Xp0kXz5s3TFVdcoeeee06ffvqpHn/8cUmFf/248847NX36dJ1yyinKzMzUhAkT1LBhwyJHqwIAAAAAAACo3mKmJO3bt69+/fVXTZw4UTk5OWrbtq2WLFkSmaB2y5YtkUOBpcKjRp955hllZ2dr3LhxOuWUU7R48eLIBLGSNGbMGOXl5Wnw4MHau3evzj//fC1ZskQul6vK1w8AAAAAAACANWLmdPtoxOn2AKojTrcHAAAAAFSVaDndnqvbAwAAAAAAAIhrlKQAAAAAAAAA4holKQAAAAAAAIC4RkkKAAAAAAAAIK5RkgIAAAAAAACIa5SkAAAAAAAAAOIaJSkAAAAAAACAuEZJCgAAAAAAACCuUZICAAAAAAAAiGuUpAAAAAAAAADiGiUpAAAAAAAAgLhGSQoAAAAAAAAgrlGSAgAAAAAAAIhrlKQAAAAAAAAA4holKQAAAAAAAIC4RkkKAAAAAAAAIK5RkgIAAAAAAACIa5SkAAAAAAAAAOIaJSkAAAAAAACAuEZJCgAAAAAAACCuUZICAAAAAAAAiGuUpAAAAAAAAADiGiUpAAAAAAAAgLhGSQoAAAAAAAAgrlGSAgAAAAAAAIhrCVYHiGWmaUqScr1ei5MAQMXJzc21OgIAAAAAIE7s379f0u89m1UM0+oEMWzr1q1q3Lix1TEAAAAAAACAmPbzzz/rpJNOsuzrU5KegHA4rG3btiklJUWGYVgdB6h2cnNz1bhxY/38889KTU21Og5QqdjegcrBvoV4wvYORA/2R8STE93eTdPU/v371bBhQ9ls1s0Myun2J8Bms1nacAPxIjU1lTcWiBts70DlYN9CPGF7B6IH+yPiyYls72lpaRWcpvy4cBMAAAAAAACAuEZJCgAAAAAAACCuUZICiFpOp1OTJk2S0+m0OgpQ6djegcrBvoV4wvYORA/2R8ST6rK9c+EmAAAAAAAAAHGNI0kBAAAAAAAAxDVKUgAAAAAAAABxjZIUAAAAAAAAQFyjJAUAAAAAAAAQ1yhJAWjWrFlq3769UlJSVLduXfXq1UsbNmwoMsbr9Wr48OGqXbu2kpOT1bt3b+3YsaPImDvuuEPt2rWT0+lU27ZtS/xaL7zwgtq2bSuPx6OMjAzde++9x8z39ddfq3fv3mratKkMw9D8+fOLjXn33Xd11VVXqWHDhjIMQ4sXLy7TulfUeiF2xPP2/vjjj6tr165KTU2VYRjau3dvsTGHvu7hH7Nnzy7T8hHfqsO+VZZ1KMnu3bt14403KjU1VTVq1NCgQYN04MCBIus9YMAAtW7dWgkJCerVq9cxl4noFs/b+4wZM3TeeefJ4/GoRo0aJY458ueIYRh67rnnjrls4HhUxP64du1a9evXT40bN5bb7VarVq304IMPFvtaK1as0Nlnny2n06nmzZvrqaeeOmY+0zQ1ceJENWjQQG63W927d9f3339fZExZ9quSfPnll7rgggvkcrnUuHFjzZ07t8jjZXktQGyJ1+29LO+lVqxYUeLPn5ycnDJ9DYmSFICklStXavjw4froo4+0dOlSBQIBXXrppcrLy4uM+b//+z+9/vrrevHFF7Vy5Upt27ZN1157bbFl3XLLLerbt2+JX+fNN9/UjTfeqKysLK1bt06PPfaYHnjgAT3yyCNHzZefn69mzZpp9uzZql+/folj8vLy1KZNGz366KPlWPOKWS/Elnje3vPz89WzZ0+NGzfuqOOmTp2q7du3Rz5GjBhRrq+D+FQd9q2yrENJbrzxRn399ddaunSp/vOf/+jdd9/V4MGDI4+HQiG53W7dcccd6t69+1GXhdgQz9u73+/XH//4Rw0dOvSo45588skiP0v44wAqS0Xsj5999pnq1q2rRYsW6euvv9b48eM1duzYIvvapk2bdMUVV6hbt25as2aN7rzzTt1666166623jppv7ty5euihh7RgwQJ9/PHHSkpKUo8ePeT1eiNjyrpfHS43N1eXXnqpMjIy9Nlnn+nee+/V5MmT9fjjj0fGlOW1ALElXrf38ryX2rBhQ5GfP3Xr1i3z15EJAEfYuXOnKclcuXKlaZqmuXfvXtPhcJgvvvhiZMz69etNSeaqVauKPX/SpElmmzZtit3fr18/s0+fPkXue+ihh8yTTjrJDIfDZcqWkZFhPvDAA0cdI8l89dVXj7msilovxLZ42d4Pt3z5clOSuWfPnuP6mkBZxPq+VdI6lOSbb74xJZmrV6+O3Pfmm2+ahmGYv/zyS7Hx/fv3N6+55poy5UTsiJft/XBPPvmkmZaWVuJjx/OzCagoJ7o/HjJs2DCzW7dukc/HjBljnn766UXG9O3b1+zRo0epywiHw2b9+vXNe++9N3Lf3r17TafTaT777LPFxh9tvzrSY489ZtasWdP0+XyR++6++26zRYsWJY7nPV71FC/b++FKey91tN9xyoojSQEUs2/fPklSrVq1JBX+pSkQCBT5i03Lli3VpEkTrVq1qszL9fl8crlcRe5zu93aunWrfvrppwpIXj4VtV6IbfGyvZfH7NmzVbt2bZ111lm69957FQwGrY6EGFQd9q0j16Ekq1atUo0aNXTOOedE7uvevbtsNps+/vjjCs2D6BUv23t5DB8+XOnp6erQoYOeeOIJmaZZIcsFjqWi9sd9+/YV2R9WrVpV7Ai2Hj16HHUZmzZtUk5OTpHnpaWlqWPHjif8+8aqVat04YUXKjExsUieDRs2aM+ePSe0bMSOeNney6Nt27Zq0KCBLrnkEn3wwQflei4lKYAiwuGw7rzzTnXu3FlnnHGGJCknJ0eJiYnF5gupV69eueb36NGjh1555RUtW7ZM4XBY3333nebNmydJ2r59e4WtQ1lV1HohdsXT9l5Wd9xxh5577jktX75cQ4YM0cyZMzVmzBirYyHGVId9q6R1KElOTk6x07gSEhJUq1YtfpbEiXja3stq6tSpeuGFF7R06VL17t1bw4YN08MPP1wBSYGjq6j98cMPP9Tzzz9fZOqUnJwc1atXr9gycnNzVVBQUOJyDi2/pOed6M+I0vIc/nVRvcXT9l4WDRo00IIFC/Tyyy/r5ZdfVuPGjdW1a1d9/vnnZV4GJSmAIoYPH65169ZVyuT6t912m26//XZdeeWVSkxMVKdOnXT99ddLkmw2m7Zs2aLk5OTIx8yZMyvsa8+cObPIsrds2VJhy0bsYnsvbuTIkeratavOPPNMZWVlad68eXr44Yfl8/kqLB+qv+qwb5W0DllZWUWWDUhs7yWZMGGCOnfurLPOOkt33323xowZU6YLTgEnqiL2x3Xr1umaa67RpEmTdOmll5b5ef/617+K7DPvvffecWc40umnnx5Z7mWXXVZhy0VsY3svqkWLFhoyZIjatWun8847T0888YTOO+88PfDAA2VeRsLxBAZQPd1+++2RC06cdNJJkfvr168vv9+vvXv3FvmL1I4dO8o1AbhhGJozZ45mzpypnJwc1alTR8uWLZMkNWvWTDVr1tSaNWsi4yvqdC+p8I3+ddddF/m8YcOGFbZeiE3xtr0fr44dOyoYDGrz5s1q0aJFRcRDNVcd9q3S1mHq1KkaNWpUkbH169fXzp07i9wXDAa1e/dufpbEgXjb3o9Xx44dNW3aNPl8PjmdzgpZJnCkitgfv/nmG1188cUaPHiwsrOzizxWv379IlcIP7SM1NRUud1uXX311erYsWPksUaNGkWO+N6xY4caNGhQ5Hlt27Yt87q98cYbCgQCkgqn3DhankOPoXqLt+39eHXo0EHvv/9+mcdTkgKQaZoaMWKEXn31Va1YsUKZmZlFHm/Xrp0cDoeWLVum3r17Syq8YtyWLVt07rnnlvvr2e12NWrUSJL07LPP6txzz1WdOnUkSc2bNz/BtSlZrVq1iv3iUNHrhdgQr9v78VqzZo1sNlv5rgqJuFQd9q1jrUPdunWL7Qvnnnuu9u7dq88++0zt2rWTJL3zzjsKh8NFfnlA9RKv2/vxWrNmjWrWrElBikpRUfvj119/rYsuukj9+/fXjBkzin2dc889V2+88UaR+5YuXRpZRkpKilJSUoo8npmZqfr162vZsmWRkig3N1cff/xxua7snZGRUWKe8ePHKxAIyOFwRPK0aNFCNWvWLPOyEVvidXs/XmvWrClS2B4LJSkADR8+XM8884xee+01paSkROYLSUtLk9vtVlpamgYNGqSRI0eqVq1aSk1N1YgRI3TuueeqU6dOkeVs3LhRBw4cUE5OjgoKCiJHNpx22mlKTEzUb7/9ppdeekldu3aV1+vVk08+qRdffFErV648aj6/369vvvkmcvuXX37RmjVrlJycHPnF4MCBA9q4cWPkOZs2bdKaNWtUq1YtNWnSpMTlVtR6IbbE6/YuFc4TlJOTE3nuV199pZSUFDVp0kS1atXSqlWr9PHHH6tbt25KSUnRqlWr9H//93+66aabeLONY6oO+9ax1qEkrVq1Us+ePXXbbbdpwYIFCgQCuv3223X99dcXOYr7m2++kd/v1+7du7V///7IepXnyApEj3jd3iVpy5Yt2r17t7Zs2aJQKBTJ3Lx5cyUnJ+v111/Xjh071KlTJ7lcLi1dulQzZ86ssKNSgSNVxP64bt06XXTRRerRo4dGjhwZWYbdbo/8QSIrK0uPPPKIxowZo1tuuUXvvPOOXnjhBf33v/8tNZthGLrzzjs1ffp0nXLKKcrMzNSECRPUsGFD9erVKzLuWPtVSW644QZNmTJFgwYN0t13361169bpwQcfLHJqcVleCxBb4nV7l479Xmr+/PnKzMzU6aefLq/Xq7///e9655139L///a/s3+DSL3wPIF5IKvHjySefjIwpKCgwhw0bZtasWdP0eDzmH/7wB3P79u1FltOlS5cSl7Np0ybTNE3z119/NTt16mQmJSWZHo/HvPjii82PPvromPk2bdpU4nK7dOkSGbN8+fISx/Tv3/+oy66I9UJsieftfdKkSUdd988++8zs2LGjmZaWZrpcLrNVq1bmzJkzTa/XW5ZvLeJcddi3yrIOJdm1a5fZr18/Mzk52UxNTTUHDhxo7t+/v8iYjIyMEpeN2BTP23v//v1LfN7y5ctN0zTNN99802zbtq2ZnJxsJiUlmW3atDEXLFhghkKhsnxrgXKriP2xtPdIGRkZRb7W8uXLzbZt25qJiYlms2bNjrm/mKZphsNhc8KECWa9evVMp9NpXnzxxeaGDRuKjDnWflWatWvXmueff77pdDrNRo0ambNnzy7yeFleCxBb4nl7P9Z7qTlz5pgnn3yy6XK5zFq1apldu3Y133nnnWNmPpxhmqYpAAAAAAAAAIhTXN0eAAAAAAAAQFyjJAUAAAAAAAAQ1yhJAQAAAAAAAMQ1SlIAAAAAAAAAcY2SFAAAAAAAAEBcoyQFAAAAAAAAENcoSQEAAAAAAADENUpSAACAOLd582YZhqGmTZtaHQUAAACwBCUpAABAHGjatKkMw9DmzZutjlJlDMOQYRhWxwAAAEAMSLA6AAAAAKzVqFEjrV+/Xg6Hw+ooAAAAgCUoSQEAAOKcw+FQy5YtrY4BAAAAWIbT7QEAAKqxp556SoZh6KeffpIkZWZmRk5DNwxDK1asOOqcpIefsr5o0SJ16NBBycnJqlOnjvr166ctW7ZIkkzT1COPPKK2bdsqKSlJ6enpGjBggHbu3Flqtu+++05DhgzRySefLJfLpbS0NF144YVatGhRieP37dun7OxstW7dWklJSXI6nWrYsKE6d+6siRMnKhAISJImT55c5DT7w9f38CkHAoGAFi1apBtvvFEtW7ZUamqq3G63WrRooTvuuEPbtm0rMUfXrl0j37uPPvpIV1xxhWrXrq2UlBR16dJF7733XmTskiVLdPHFF6tmzZpKTk7WJZdcos8//7zYMg//PwgGg5o7d65OP/10ud1upaen67rrrtO3335bYp7vv/9et9xyizIzM+V0OpWcnKyMjAxdccUVevLJJ0v9/gMAAOB3hmmaptUhAAAAUDnef/99/f3vf9dLL72kvLw89e7dW8nJyZHH77nnHrlcLmVmZiojI6PYnKWHysZ77rlH9913ny688ELVqlVLn3zyibZs2aLGjRtr7dq1ysrK0r///W917dpVbrdbH3zwgXbu3KkzzzxTq1evVmJiYpHlvvjii7r55pvl9XrVsmVLtWrVSvv27dPHH3+svLw8DRw4UE888URkfH5+vjp27Kh169apTp066tSpk5KSkpSTk6Nvv/1WOTk52rNnj2rUqKHFixdr8eLFWrhwoSSpf//+Rb72fffdp/T0dG3dulWNGzdWWlqaWrVqpcaNGysvL09r1qzRtm3bVKdOHX344Ydq3rx5ked37dpVK1eu1KhRozR//ny1bt1ap556qjZs2KA1a9bI6XTqnXfe0RdffKE77rhDnTp10kknnaQ1a9bou+++U3Jysr744osiy928eXPk/6Bdu3Z6/fXX1aVLF6Wnp+uTTz7Rjz/+qOTkZP3vf//TueeeG3neunXr1LlzZ+Xm5qpFixY6/fTTZbfbtXXrVn311Vc6+eSTtWbNmvJvOAAAAPHGBAAAQLWXkZFhSjI3bdpU7LFNmzaZksyMjIxij0kyJZm1a9c216xZE7k/Pz/fPP/8801JZuvWrc2TTz7Z3Lx5c+TxX3/91WzevLkpyVy0aFGRZX755Zem0+k0XS6X+fLLLxd5bPPmzWbr1q1NSebChQsj9y9cuNCUZF522WWm3+8v8pxQKGSuWLHC9Pl8JWYvTW5urvnaa68Ve57f7zfHjh1rSjIvv/zyYs/r0qWLKck0DMN8+umnizw2cuRIU5LZokULMzk52Xz77bcjjwWDQbN3796mJPPWW28t8rxD/weSzPT0dHPt2rVFnjdixIjI/5HX6408NnDgQFOSOX369GI58/PzzZUrV5a6/gAAAPgdp9sDAADgmKZOnao2bdpEPne73Ro5cqQk6auvvtJDDz2kjIyMyOPp6ekaOnSoJGnZsmVFljVjxgz5fD5Nnz5d1157bZHHMjIy9I9//EOS9NBDD0Xu37FjhyTpkksuKXaBKZvNpi5duhQ7WvVYUlJSdPXVVxd7nsPh0MyZM9WwYUMtWbJE+/fvL/H5ffr00U033VTkvvHjx0uSNmzYoKFDh+riiy+OPGa32zVu3DhJxb8nh8vOztaZZ55Z5Hn33nuvGjVqpJ9++kkvv/xy5LFD35fLL7+82HLcbrcuvPDCUr8OAAAAfkdJCgAAgGMqqYQ75ZRTJEkJCQm69NJLS3388Lk9w+Gw3nzzTUlS3759S/xa55xzTuSUdK/XK0lq3769JGnu3Ln65z//qd27d5/A2hS1du1a3X///RoxYoRuueUWDRgwQAMGDFAwGFQ4HNbGjRtLfF5J35NatWqpdu3apT5e0vfkSEdODyBJTqcz8v1asWJF5P4OHTpIkoYOHaq33nor8v0CAABA+XB1ewAAABxTkyZNit13aG7TBg0aKCGh+NvKlJQUSSpS3O3atUu5ubmSpMaNGx/z6+7atUuNGjVS165ddffdd+vee+9V//79ZRiGTjnlFHXu3FnXXHONrrrqKtls5fv7f15env70pz/p1VdfPeq4Q3mPVNL3RCr8vuzatavExw99T3w+X4nPrVGjhmrUqFHiY5mZmZKkrVu3Ru4bPXq03n//fb399tvq2bOnHA6H2rRpowsvvFDXX399pFwGAADA0VGSAgAA4JiOVkCWp5wMh8OR2yUdMXkkp9MZuT179mxlZWXp9ddf1/vvv68PPvhATz75pJ588km1b99ey5cvV1JSUpmzjB07Vq+++qpatmyp2bNnq3379kpPT4+cfn/eeedp1apVMku5zumx1ru8pW1ZHZ7H4/Fo6dKlWr16tZYsWaIPP/xQH374oT799FPdf//9GjZsmB599NFKyQEAAFCdUJICAACgyqSnp8vtdqugoCBylfnyaNq0qUaMGKERI0ZIklavXq2bbrpJq1ev1ty5czVlypQyL+uFF16QJD3//PNF5gA95Pvvvy9Xtoqwd+9e7d27t8SjSTdv3ixJOumkk4o91r59+8hRo8FgUIsXL9bNN9+sxx57TH369FG3bt0qMzYAAEDMY05SAACAOHDo6MhgMGhpDrvdrksuuUTS7yXliWjfvr2GDRsmSVqzZk2Rxw5d4Km0dT40r+nhF5w65K233tJvv/12wvmOx9NPP13sPr/fr+eff16S1LVr16M+PyEhQX369FGPHj0kFf++AAAAoDhKUgAAgDhw6OjDr7/+2uIk0qRJk5SYmKjRo0dr4cKFRU7BP2TdunV65ZVXIp+/+uqrevfdd4uNDQQCWrJkiaTiZeex1rlVq1aSpIcffrjI/Rs2bFBWVlY516riTJs2TevWrYt8Hg6Hdffdd2vr1q1q3LixevfuHXnsscce04YNG4otIycnR59++qmkkktgAAAAFMXp9gAAAHGgd+/eWr58uW666SZdeumlqlmzpqTCC/8cPu9nVTj77LO1aNGiyFXks7Ozddppp6lOnTravXu3vvrqK23dulV9+/bVtddeK0lauXKlHnzwQaWnp+uss85S3bp1tX//fn300UfauXOnGjVqpDFjxhRb5/vuu0/du3fXRRddFLlo0pw5c1S7dm1NmjRJffr00YQJE/TCCy/o9NNP186dO/Xee+/pggsuUMOGDfXhhx9W6femSZMmateunc4++2x17dpVtWvX1urVq/XDDz8oKSlJzzzzjFwuV2T8448/ruHDhyszM1NnnHGGUlNT9euvv+q9995TQUGBLrroIl199dVVug4AAACxiJIUAAAgDgwdOlT79+/XokWL9MYbb0SuOH/TTTepadOmVZ7nj3/8o9q3b6+HHnpIS5cu1QcffKBQKKR69eqpefPmuv3229WnT5/I+AEDBsjtduv999/XN998o5UrVyotLU1NmjTRnXfeqcGDB6t27dpFvsa0adNks9n0yiuvaPHixfL7/ZKk7Oxs1a5dW9dee61WrlypKVOmaO3atfrhhx/UrFkzTZ48WaNGjdKll15apd8TSTIMQy+88ILmzp2rp59+Wu+++66SkpLUu3dvTZ06VaeddlqR8TNmzNB///tfffTRR/roo4+0b98+1a1bVx07dtTAgQPVr18/JSTwlh8AAOBYDLO0y3UCAAAAqBKbN29WZmamMjIyIhdoAgAAQNVhTlIAAAAAAAAAcY2SFAAAAAAAAEBcoyQFAAAAAAAAENeYkxQAAAAAAABAXONIUgAAAAAAAABxjZIUAAAAAAAAQFyjJAUAAAAAAAAQ1yhJAQAAAAAAAMQ1SlIAAAAAAAAAcY2SFAAAAAAAAEBcoyQFAAAAAAAAENcoSQEAAAAAAADENUpSAAAAAAAAAHHt/wFhBd1FOXBLNAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABUkAAANHCAYAAAALxtxzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACilElEQVR4nOzdd3zU9eHH8ff3Vi65DARkCgIO0DJFEkABGQoVqzgRfy5KZcmQMHNxoG1F21Kto1qpW1Fra621FhuiqAiKgKI4UBFFUbYkkLvc/P7+iAajoEDG58br+Xjk8Sj3vSTv1P3iOyzbtm0BAAAAAAAAQJpymB4AAAAAAAAAACYRSQEAAAAAAACkNSIpAAAAAAAAgLRGJAUAAAAAAACQ1oikAAAAAAAAANIakRQAAAAAAABAWiOSAgAAAAAAAEhrRFIAAAAAAAAAac1lekAyi8fj+vLLL5WTkyPLskzPAQAAAAAAAJKKbdvavXu3WrVqJYfD3PmcRNJa+PLLL9WmTRvTMwAAAAAAAICk9vnnn+uII44w9v2JpLWQk5MjSXr77ber/zcAAAAAAACAA7N792517drVeFsjktbCt5fY5+TkKDc31/AaAAAAAAAAIDmZvpUlD24CAAAAAAAAkNaIpAAAAAAAAADSGpEUAAAAAAAAQFrjnqT1zLZtxeNxxeNx2bZtek5asyxLDodDDofD+H0uAAAAAAAAkDiIpPUoGo1q165dCofDRLkEYdu2PB6PGjVqJJeLP/0BAAAAAABAJK03tm1r27ZtcrvdatWqlTwej+lJkBQOh7V9+3Zt27ZNLVq0IF4DAAAAAACASFpfotGobNtWy5YtlZmZaXoOvuH1euV2u/XZZ58pGo3K7XabngQAAAAAAADDeHBTPbFtW5ZlcaZiAvr2jwv3iAUAAAAAAIBEJAUAAAAAAACQ5oikAAAAAAAAANIakRQAAAAAAABAWiOSAgAAAAAAAEhrRFIkjMGDB6uwsND0DAAAAAAAAKQZIikAAAAAAACAtEYkTQZffCFryRLpiy9MLwEAAAAAAABSDpG0Idm2VFFxUB/WXXfJedRRcp56qpxHHSXrrrsO+mvItg9q5ubNm+V2u3XbbbfpxBNPVHZ2trp166alS5fu8/0LFixQ27ZtFY/Ha7x+zjnn6Fe/+lX1r59//nkNGDBATZs2VfPmzXXWWWdp/fr1+91x9NFH609/+lON13r27Kkbbrih+tfxeFw333yzjjnmGOXk5OiEE07QP/7xj4P6eQEAAAAAAJDeiKQNKRCQq1Gjg/pwTpki65v4aMXjck6ZctBfQ4HAQc1cs2aNJOmBBx7QH//4R61cuVJt2rTRZZdd9oMQKknnnXeeduzYoSVLllS/tnPnTj3//PO66KKLql+rqKjQVVddpddee03PP/+8HA6HzjvvvH1+zQN1880365FHHtGdd96pNWvWaOrUqbrsssv08ssvH/LXBAAAAAAAQHpxmR6AxPP222/L7XbrqaeeUrt27SRJ119/vXr37q1NmzapTZs2Nd5/2GGHadiwYXrsscc0aNAgSdI//vEPNW3aVKecckr1+84555wan7dgwQK1bNlS7733njp37nzQO0OhkG666SYtWrRIffr0kSR16NBBr776qhYsWKD+/fsf9NcEAAAAAABA+iGSNqSsLEV37Trw92/aJGeXLtVnkkqS7XQq9vbbUuvWB/V9D8aaNWt09tlnVwdSScrNzZUkvfjii5oyZUr1688++6xOPvlkjRo1SuPHj9cdd9yhjIwMPfbYY7rgggvkcOw9Wfmjjz7S9ddfrxUrVmj79u3VZ5B+/vnnhxRJP/74YwUCAf385z+v8Xo4HFb37t0P+usBAAAAAAAgPRFJG5JlST7fgb//2GMVv+suOSZOlBWLyXY6Ff/zn6Vjj62/jaqKpJdcckmN11577TU1bdpUZ511lvr27Vv9eutvYu0ZZ5wh27b13HPP6cQTT9TSpUv1hz/8ocbXOPvss9W2bVvdfffdatmypeLxuLp3765wOLzPHQ6HQ/b37qcajUar//eePXskSc8884xatWpV430ZGRkH+VMDAAAAAAAgXRFJE5z9y18qdtppstavl33UUdIRR9Tr9wsGg/roo48Ui8WqX4vH47rtttt0ySWXKC8vT3l5eT/4PK/XqxEjRuixxx7T+vXr1bFjR51wwgnVx3fs2KF169bp7rvv1sknnyxJ+30Q1LeaNm2qzZs3V/+6vLxcGzZsqP718ccfr4yMDG3cuJFL6wEAAAAAAHDIiKTJ4IgjZNdzHP3WO++8I8uytHDhQp1yyilq1KiRrr/+epWVlcnv9//o51500UU666yz9N5779V4YJNUdd/SJk2aaMGCBWrRooU+//zzn/x6AwcO1EMPPaQzzjhDeXl5uv766+V0OquP5+TkqLCwUDNmzFA8HtdJJ52ksrIyLVu2TLm5ubr00ksP/f8IAAAAAAAApA0iKWpYs2aNOnbsqBkzZmjkyJEqKyvTaaedptLSUjVq1OhHP3fgwIFq3Lix1q1bpwsvvLDGMYfDoUcffVTTpk1T9+7ddeyxx+rWW2/V4MGD9/v1Zs+erU8//VRnnXWW8vLyNHfu3BpnkkpVD5Rq2rSpfve73+mTTz5Ro0aN1KNHD82ZM+eQ/z8AAAAAAABAerHs79/0EQesvLxceXl52rBhQ/WDjb4VDoe1Y8cOHXnkkfJ6vYYWHrzJkydr165devjhh01PqTeVlZX67LPP1KRJE3k8HtNzAAAAAAAA0lZ5ebnat2+vsrKyH/S1huT46bcgnaxZs0ZdunQxPQMAAAAAAABoMERSVLNtW2vXriWSAgAAAAAAIK1wT1JUsyxLO3fuND0DAAAAAAAAaFCcSQoAAAAAAAAgrRFJAQAAAAAAAKQ1IikAAAAAAACQoKxNm+R65RVZmzaZnpLSiKT1xLIs2bYt27ZNT8H3fPvHxbIs01MAAAAAAAD2y/PQQ2rUrZtyR4xQo+7d5XnkEdOTUhaRtJ44nU5JUjAYNLwE3/ftH5Nv/xgBAAAAAAAkGmvTJvkKC2V9cwKeFY9X/ZozSusFT7evJw6HQ1lZWdq2bZskKTMzkzMXDbNtW8FgUNu2bVNWVpYcDn6PAAAAAAAAJCb3//5XHUi/ZcVicm7YoGjr1oZWpS4iaT3Ky8uTJG3dulWSiKSGfXvrg6ysrOo/NgAAAAAAAAmnokKZd9zxg5dtp1Ox9u0NDEp9RNJ6ZFmWGjVqpNzcXMViMe5PaphlWXI6nZxBCgAAAAAAElrWtdfK+emnivt8soJBWfG4bKdTFX/8o2zOIq0XRNIG4HA4CHMAAAAAAAD4Se7nnpP3gQdkW5YCc+cqMnSonBs2KNa+PYG0HhFJAQAAAAAAgARgffWVfFOnSpLC55+v8EUXSV4v9yBtAJzeCAAAAAAAAJgWjyt70iQ5du5U7OijFZg9W/J6Ta9KG0RSAAAAAAAAwLCMv/xF7iVLZGdkKOD3y27XzvSktEIkBQAAAAAAAAxyrl2rrBtukCRVTpigyBlnGF6UfoikAAAAAAAAgCnBoHxjx8oKhxXp00eVkyZJTqfpVWmHSAoAAAAAAAAYkjV3rlzr1ineuLECxcWyDzvM9KS0RCQFAAAAAAAADHD/73/y/vWvkqTgrFmK9eljeFH6IpICAAAAAAAADczaulW+yZMlSaFzz1Xo4osNL0pvRFIAAAAAAACgIdm2fJMny7F9u2Lt2ys4Z46UmWl6VVojkgIAAAAAAAANKOOvf5Vn8WLZbrcCxcWKd+hgelLaI5ICAAAAAAAADcT5wQfKuu46SVLluHGKnHmm4UWQiKQAAAAAAABAw6islO+KK2SFQork56ty6lTJ6TS9CiKSAgAAAAAAAA0i69e/luu99xRv1EjBq6+W3bix6Un4BpEUAAAAAAAAqGfuF16Q9+67JUnBmTMVPekkw4vwXURSAAAAAAAAoB5Z27fLN2mSJCl01lkKXXqp4UX4PiIpAAAAAAAAUF9sW76pU+XYskWxtm0VLCqSsrJMr8L3EEkBAAAAAACAepLx4IPyLFok2+1W4OqrFT/mGNOTsA9EUgAAAAAAAKAeONatU9bVV0uSKn/1K0XOOsvwIuwPkRQAAAAAAACoa6GQsseNkxUMKtKzpyqvukpyuUyvwn4QSQEAAAAAAIA6ljlvnlzvvKN4bq6CxcWymzY1PQk/gkgKAAAAAAAA1CHXSy8p8/bbJUnB6dMV7d/f8CL8FCIpAAAAAAAAUEesnTuVfeWVkqTQ8OEKjR4tWZbhVfgpRFIAAAAAAACgLti2fIWFcnz1lWJt2ihYXCz5fKZX4QAQSQEAAAAAAIA64Hn0UXn+/W/ZLpcCfr/iHTuanoQDlDSR9M4771S7du3k9XpVUFCgFStW/Oj7n3zySXXq1Eler1ddunTRc88994P3vP/++zrzzDOVl5cnn8+nXr16aePGjfX1IwAAAAAAACBFOT7+WL6iIklS5ejRipxzjuFFOBhJEUmfeOIJFRYW6rrrrtPq1avVrVs3DR06VFu3bt3n+5ctW6ZRo0ZpzJgxevPNNzVixAiNGDFCa9eurX7P+vXrdfLJJ6tTp05asmSJ3n77bV1zzTXyer0N9WMBAAAAAAAgFUQiyh43TlYgoGj37qosLJRcLtOrcBAs27Zt0yN+SkFBgXr16qU77rhDkhSPx9WmTRtNnjxZc+bM+cH7R44cqYqKCj377LPVr/Xu3Vvdu3fX3XffLUm68MIL5Xa79fDDDx/yrvLycuXl5WnDhg3Kzc095K8DAAAAAACA5JX5m98o85ZbFM/J0Z5771V08GDTk5JGeXm52rdvr7KyMqN9LeHPJA2Hw1q1apWGDBlS/ZrD4dCQIUO0fPnyfX7O8uXLa7xfkoYOHVr9/ng8rv/85z869thjNXToUDVr1kwFBQV6+umnf3RLKBRSeXl5jQ8AAAAAAACkL9eyZfLeeqskKThtmqKDBpkdhEOS8JF0+/btisViat68eY3Xmzdvrs2bN+/zczZv3vyj79+6dav27Nmjm266ScOGDdP//vc/nX322TrnnHP00ksv7XfLvHnzlJeXV/3Rpk2bWv50AAAAAAAASFbWrl3yjR8vy7YVHjZMoTFjJMsyPQuHIOEjaX2Ix+OSpLPOOkvTpk1T9+7dNWfOHJ1xxhnVl+PvS1FRkcrKyqo/Pv/884aaDAAAAAAAgERi28qaPl3OTZsUa91ageJiKTvb9CocooS/g2zTpk3ldDq1ZcuWGq9v2bJFLVq02OfntGjR4kff37RpU7lcLh1//PE13nPcccdp6dKl+92SkZGhjIyMQ/kxAAAAAAAAkEI8TzyhjKeflu1wKOj3K/69zoTkkvBnkno8HvXs2VOlpaXVr8XjcZWWlqpPnz77/Jw+ffrUeL8klZSUVL/f4/GoV69eWrduXY33fPjhhzryyCPr+CcAAAAAAABAKnFs2CDfrFmSpNDllyt87rmGF6G2Ev5MUkkqLCzUZZddphNPPFH5+fm69dZbVVFRodGjR0uSLr30UrVu3Vrz5s2TJE2dOlUDBgzQ/PnzNXz4cD3++ONauXKl7rnnnuqvOXPmTI0cOVL9+/fXwIEDtWjRIv373//WkiVLTPyIAAAAAAAASAbRqLLHj5dVUaFo584KTp8uud2mV6GWkiKSjhw5Utu2bdO1116rzZs3q3v37lq0aFH1w5k2btwoh2PvSbF9+/bVwoULdfXVV8vv9+uYY47R008/rc6dO1e/5+yzz9bdd9+tefPmacqUKerYsaP+8Y9/6OSTT27wnw8AAAAAAADJIXP+fLlWrpTt8yng98vez+0gkVws27Zt0yOSVXl5ufLy8rRhwwbl5uaangMAAAAAAIB65Hr9deWccYaseFyB4mJVTpvG0+xrqby8XO3bt1dZWZnRvpbw9yQFAAAAAAAATLPKy+UbP15WPK7wqaeq8oorCKQphEgKAAAAAAAA/ISsWbPk3LhR8ZYtFfD7pZwc05NQh4ikAAAAAAAAwI/w/P3vynjySdkOhwJFRYp37Wp6EuoYkRQAAAAAAADYD8fGjcqaMUOSFLr4YoXPP9/wItQHIikAAAAAAACwL7GYfBMmyLF7t6LHH6/gjBmSx2N6FeoBkRQAAAAAAADYB+8tt8j92muys7IUKCqS3bq16UmoJ0RSAAAAAAAA4HucK1cq83e/kyQFp0xRdNgww4tQn4ikAAAAAAAAwHft3q3s8eNlxWIKDxyoyrFjJQcZLZXxRxcAAAAAAAD4Dp/fL+eGDYo3a6ZgcbGUl2d6EuoZkRQAAAAAAAD4hvtf/1LGwoWyLUuBoiLFevQwPQkNgEgKAAAAAAAASHJs2iTftGmSpNCoUQqPHGl4ERoKkRQAAAAAAACIxeSbOFGOsjJFO3ZUcNYsKSPD9Co0ECIpAAAAAAAA0p73jjvkXrpUtteroN8vu00b05PQgIikAAAAAAAASGvOt95S5o03SpKCkyYpcvrphhehoRFJAQAAAAAAkL4qKpQ9dqysaFSRfv0UmjhRcpDM0g1/xAEAAAAAAJC2sq65Rs716xVv2lSB4mLZeXmmJ8EAIikAAAAAAADSkvvZZ+V98EHZlqXAnDmK9eplehIMIZICAAAAAAAg7VhffSXfVVdJksIXXKDwqFFmB8EoIikAAAAAAADSSzyu7CuvlOPrrxU75hgFZs+WvF7Tq2AQkRQAAAAAAABpxXv33XK/9JLsjAwF/H7ZRx5pehIMI5ICAAAAAAAgbTjfeUeZv/61JKlywgRFhg83vAiJgEgKAAAAAACA9BAIKHvsWFnhsCJ9+6py8mTJ6TS9CgmASAoAAAAAAIC0kHXddXJ++KHijRsrUFwsu1Ej05OQIIikAAAAAAAASHnu55+X9777JEnB2bMV693b8CIkEiIpAAAAAAAAUpq1ZYt8U6ZIkkLnnqvQxRcbXoREQyQFAAAAAABA6rJt+SZPlmP7dsU6dFBwzhzJ6zW9CgmGSAoAAAAAAICUlbFggTylpbI9HgWKixXv0MH0JCQgIikAAAAAAABSkvP995U1d64kqXLcOEV+8Quzg5CwiKQAAAAAAABIPZWV8l1xhaxQSJGCAlVOmSI5naZXIUERSQEAAAAAAJBysm64Qa7331e8USMFi4tlN25sehISGJEUAAAAAAAAKcVdWirvX/4iSQrOmqXoSScZXoRERyQFAAAAAABAyrC2b5dv0iRJUmjECIUuvdTwIiQDIikAAAAAAABSg23LN3WqHFu3KtaunYJFRVJmpulVSAJEUgAAAAAAAKSEjPvvl2fRItlutwJ+v+JHH216EpIEkRQAAAAAAABJz7FunbKuuUaSVHnFFYqcdZbhRUgmRFIAAAAAAAAkt1BI2ePGyaqsVOTEE1U5darkcplehSRCJAUAAAAAAEBSy7zxRrneeUfx3FwF/X7ZTZuanoQkQyQFAAAAAABA0nItWaLMO+6QJAVnzFC0f3/Di5CMiKQAAAAAAABIStbOncq+8kpJUuiMMxQaPVqyLMOrkIyIpAAAAAAAAEg+ti3fVVfJsXmzYm3aKOj3S1lZplchSRFJAQAAAAAAkHQyHnlEnv/8R7bLpYDfr3jHjqYnIYkRSQEAAAAAAJBUHB9/rCy/X5JU+ctfKnLOOYYXIdkRSQEAAAAAAJA8wmFljx0rKxBQtEcPVRYWSi6X6VVIckRSAAAAAAAAJI3Mm2+Wa80axXNyFCgqkn344aYnIQUQSQEAAAAAAJAUXK++Ku+f/iRJChYWKjpokOFFSBVEUgAAAAAAACQ8a9cu+caPl2XbCv/85wqNGSNZlulZSBFEUgAAAAAAACQ221ZWYaGcX36pWOvWCvj9ks9nehVSCJEUAAAAAAAACc3z+OPK+Ne/ZDudCvr9ih9/vOlJSDFEUgAAAAAAACQsx4YN8s2eLUkKXXaZwueea3gRUhGRFAAAAAAAAIkpElH2uHGyKioU7dpVwenTJbfb9CqkICIpAAAAAAAAElLm/PlyrVol2+dToKhIdosWpichRRFJAQAAAAAAkHBcr70m7/z5kqTgtGmKnnqq4UVIZURSAAAAAAAAJBSrvFy+8eNlxeMKn3qqKq+4QrIs07OQwoikAAAAAAAASChZM2fK+fnnirdsqYDfL2Vnm56EFEckBQAAAAAAQMLwPPmkMv7+d9kOhwJFRYp37Wp6EtIAkRQAAAAAAAAJwbFxo7JmzpQkhS65ROHzzze8COmCSAoAAAAAAADzolH5xo+XY/duRX/2MwVnzJA8HtOrkCaIpAAAAAAAADDOe+utcr/+uuysLAWKimS3amV6EtIIkRQAAAAAAABGOd94Q5m/+50kKThliqJDhxpehHRDJAUAAAAAAIA5u3cre/x4WbGYwoMGqXLsWMlBskLD4s84AAAAAAAAGOMrKpLz008Vb9ZMQb9fysszPQlpiEgKAAAAAAAAIzxPP62Mxx6T7XAoUFSkWI8epichTRFJAQAAAAAA0OAcX3yhrMJCSVLooosUHjnS8CKkMyIpAAAAAAAAGlYsJt/EiXKUlSnaqZOCM2ZIGRmmVyGNEUkBAAAAAADQoLy33y73q6/K9noV9Ptlt2ljehLSHJEUAAAAAAAADcb55pvKnDdPkhScPFmRn//c8CKASAoAAAAAAICGUlGh7HHjZEWjivTvr9CECZKDPAXz+LMQAAAAAAAADSLr6qvlXL9e8cMPV8Dvl52XZ3oSIIlICgAAAAAAgAbgfvZZeR96SLZlKTB7tmK9epmeBFQjkgIAAAAAAKBeWV9+Kd9VV0mSQiNHKnzRRWYHAd9DJAUAAAAAAED9iceVfeWVcnz9tWLHHKPg7NlSRobpVUANRFIAAAAAAADUG+9dd8n98suyMzIUKC6W3bat6UnADxBJAQAAAAAAUC+c77yjzF//WpIUnDhRkdNPN7wI2DciKQAAAAAAAOpeIKDssWNlRSKKnHSSQpMmSU6n6VXAPhFJAQAAAAAAUOeyrr1Wzg8/VLxJk6rL7Bs1Mj0J2C8iKQAAAAAAAOqUe9Eiee+/X5IUnDVLsYICw4uAH0ckBQAAAAAAQJ2xtmyRb8oUSVLovPMUuvhiw4uAn0YkBQAAAAAAQN2Ix+WbNEmOHTsU69BBgTlzJK/X9CrgJxFJAQAAAAAAUCcyFiyQ54UXZHs8Vfchbd/e9CTggBBJAQAAAAAAUGvO995T1vXXS5Iqx49X5Be/MLwIOHBEUgAAAAAAANROMCjf2LGyQiFFCgpUOWWK5HSaXgUcMCIpAAAAAAAAaiXrhhvkev99xRs1UvCaa2QfdpjpScBBIZICAAAAAADgkLkXL5b3nnskScFZsxTt08fwIuDgEUkBAAAAAABwSKxt2+SbPFmSFDr7bIUuvdTwIuDQEEkBAAAAAABw8GxbvqlT5di6VbH27RWcM0fKzDS9CjgkRFIAAAAAAAActIz77pPn+edlu90K+P2KH3206UnAISOSAgAAAAAA4KA4PvhAWddeK0mqvOIKRc480/AioHaIpAAAAAAAADhwoZCyx42TVVmpSK9eqpw6VXK5TK8CaoVICgAAAAAAgAOW+dvfyrV2reJ5eQr6/bKbNjU9Cag1IikAAAAAAAAOiGvJEmXeeackKThjhqL9+hleBNQNIikAAAAAAAB+krVzp7InTpQkhc48U6HLL5csy+wooI4QSQEAAAAAAPDjbFu+qVPl2LJFsbZtFZwzR8rKMr0KqDNEUgAAAAAAAPyojIcflue552S7XAr4/Yp37Gh6ElCniKQAAAAAAADYL8dHHymruFiSVDlmjCJnn214EVD3iKQAAAAAAADYt3BY2ePGyQoEFO3RQ5XTpkkul+lVQJ0jkgIAAAAAAGCfMm+6Sa41axTPyVGguFj24YebngTUCyIpAAAAAAAAfsD1yivy3nabJCk4Y4aip5xidhBQj4ikAAAAAAAAqMH6+mtlT5ggy7YVPv10hUaPlizL9Cyg3hBJAQAAAAAAsJdty1dYKMdXXynWurUCfr/k85leBdQrIikAAAAAAACqeR57TJ5nnpHtdCro9yt+3HGmJwH1Lqki6Z133ql27drJ6/WqoKBAK1as+NH3P/nkk+rUqZO8Xq+6dOmi5557rsbxyy+/XJZl1fgYNmxYff4IAAAAAAAACcvxySfyzZkjSQpdfrnC555reBHQMJImkj7xxBMqLCzUddddp9WrV6tbt24aOnSotm7dus/3L1u2TKNGjdKYMWP05ptvasSIERoxYoTWrl1b433Dhg3TV199Vf3x2GOPNcSPAwAAAAAAkFgiEWWPHy+rokLRbt0ULCyU3G7Tq4AGYdm2bZsecSAKCgrUq1cv3XHHHZKkeDyuNm3aaPLkyZrzze9wfNfIkSNVUVGhZ599tvq13r17q3v37rr77rslVZ1JumvXLj399NOHtKm8vFx5eXnasGGDcnNzD+lrAAAAAAAAJILMG29U5vz5srOztfveexUdMsT0JKSB8vJytW/fXmVlZUb7WlKcSRoOh7Vq1SoN+c5fnA6HQ0OGDNHy5cv3+TnLly+v8X5JGjp06A/ev2TJEjVr1kwdO3bUhAkTtGPHjrr/AQAAAAAAABKYa/lyeW+5RZIUnDZN0cGDDS8CGpbL9IADsX37dsViMTVv3rzG682bN9cHH3ywz8/ZvHnzPt+/efPm6l8PGzZM55xzjtq3b6/169fL7/fr5z//uZYvXy6n0/mDrxkKhRQKhap/XV5eXpsfCwAAAAAAwDirrEy+8eNlxeMKn3aaKn/1K8myTM8CGlRSRNL6cuGFF1b/7y5duqhr16466qijtGTJEg3ex++YzJs3T9dff31DTgQAAAAAAKhXWbNmyfnFF4q1bKmA3y9lZ5ueBDS4pLjcvmnTpnI6ndqyZUuN17ds2aIWLVrs83NatGhxUO+XpA4dOqhp06b6+OOP93m8qKhIZWVl1R+ff/75Qf4kAAAAAAAAicPz5JPK+PvfZTscCvr9infpYnoSYERSRFKPx6OePXuqtLS0+rV4PK7S0lL16dNnn5/Tp0+fGu+XpJKSkv2+X5K++OIL7dixQy1bttzn8YyMDOXm5tb4AAAAAAAASEaOzz5T1syZkqTQpZcqfN55hhcB5iRFJJWkwsJCLViwQA8++KDef/99TZgwQRUVFRo9erQk6dJLL1VRUVH1+6dOnapFixZp/vz5+uCDDzR37lytXLlSkyZNkiTt2bNHM2fO1GuvvaZPP/1UpaWlOuuss3T00Udr6NChRn5GAAAAAACABhGNyjd+vBy7dyvaubOC06dLHo/pVYAxSXNP0pEjR2rbtm269tprtXnzZnXv3l2LFi2qfjjTxo0b5XDsbb59+/bVwoULdfXVV8vv9+uYY47R008/rc6dO0uSnE6n3n77bT344IPatWuXWrVqpdNOO02//vWvlZGRYeRnBAAAAAAAaAjeW26Re8UK2T6fAkVFslu1Mj0JMMqybds2PSJZlZeXKy8vTxs2bODSewAAAAAAkBRcb7yhnOHDZcViChQVqbKwUHIkzcXGSDHl5eVq3769ysrKjPY1/goAAAAAAABIF+Xl8o0bJysWU3jwYFWOG0cgBUQkBQAAAAAASBu+oiI5P/tM8ebNFSgulnJyTE8CEgKRFAAAAAAAIA14/vlPZTz+uGyHQ4GiIsW7dTM9CUgYRFIAAAAAAIAU5/jiC2UVFkqSQhddpPDIkYYXAYmFSAoAAAAAAJDKYjH5JkyQo7xc0eOOU3DmTMnjMb0KSChEUgAAAAAAgBTmve02uZctk52ZqaDfL/uII0xPAhIOkRQAAAAAACBFOVevVuZNN0mSgpMmKTJsmOFFQGIikgIAAAAAAKSiPXuUPX68rGhU4QEDFJowQXKQgoB94a8MAAAAAACAFJRVXCzn+vWKH364gsXFsvPyTE8CEhaRFAAAAAAAIMW4n3lG3kcekW1ZCsyZo1jPnqYnAQmNSAoAAAAAAJBCrE2b5Js2TZIUuvBChUeNMrwISHxEUgAAAAAAgFQRjyv7yivl2LVL0WOPVXDWLCkjw/QqIOERSQEAAAAAAFKE989/lvuVV2R7vQr6/bLbtjU9CUgKRFIAAAAAAIAU4Hz7bWX+5jeSpODEiYoMH254EZA8iKQAAAAAAADJLhBQ9tixsiIRRU4+WaErr5QcZB/gQPFXCwAAAAAAQJLLuuYaOT/6SPEmTRQoLpbdqJHpSUBSIZICAAAAAAAkMfd//yvvAw9IkgKzZyuWn292EJCEiKQAAAAAAABJytq8Wb6pUyVJofPPV/j//s/wIiA5EUkBAAAAAACSUTyu7EmT5NixQ7Gjj1Zg9mzJ6zW9CkhKRFIAAAAAAIAklLFggdwvvijb41HA75fdvr3pSUDSIpICAAAAAAAkGee77ypr7lxJUuWECYqccYbZQUCSI5ICAAAAAAAkk2BQvrFjZYXDivTurcrJkyWn0/QqIKkRSQEAAAAAAJJI1vXXy/XBB4ofdpiCV18t+7DDTE8Ckh6RFAAAAAAAIEm4S0rkXbBAkhScNUvRPn0MLwJSA5EUAAAAAAAgCVjbtsk3ebIkKXT22QpdconhRUDqIJICAAAAAAAkOtuWb8oUObZtU6x9ewWLiqTMTNOrgJRBJAUAAAAAAEhwGffeK8///ifb7VbA71f8qKNMTwJSCpEUAAAAAAAggTk/+EBZ110nSaocO1aRs84yvAhIPURSAAAAAACARBUKyTd2rKzKSkV69VLlVVdJTqfpVUDKIZICAAAAAAAkqMzf/Eaud99VvFEjBYuLZTdubHoSkJKIpAAAAAAAAAnI9eKLyvzznyVJwRkzFD35ZMOLgNRFJAUAAAAAAEgw1o4dyr7ySklS6MwzFbrsMsmyDK8CUheRFAAAAAAAIJHYtnxTp8qxZYtibdsqWFQkZWWZXgWkNCIpAAAAAABAAsl46CF5/vtf2S6XAsXFih97rOlJQMojkgIAAAAAACQIx4cfKqu4WJJUOWaMIiNGmB0EpAkiKQAAAAAAQCIIh5U9frysYFCRE05Q5bRpkstlehWQFoikAAAAAAAACSBz3jy51qxRPCdHweJi2YcfbnoSkDaIpAAAAAAAAIa5XnlF3ttvlyQFZ8xQdMAAw4uA9EIkBQAAAAAAMMj6+mtlT5ggy7YVHj5codGjJcsyPQtIK0RSAAAAAAAAU2xbvmnT5PjqK8WOOEIBv1/y+UyvAtIOkRQAAAAAAMAQz8KF8vz737KdTgX9fsU7dTI9CUhLRFIAAAAAAAADHJ98It+cOZKk0OjRCp9zjuFFQPoikgIAAAAAADS0SETZ48bJCgQU7dZNwcJCye02vQpIW0RSAAAAAACABpb5u9/JtXq17OxsBfx+2c2bm54EpDUiKQAAAAAAQANyLVsm7y23SJIChYWKDh5seBEAIikAAAAAAEADscrK5JswQZZtKzx0qEJjxkiWZXoWkPaIpAAAAAAAAA3BtpU1Y4acX3yhWKtWCvj9Una26VUARCQFAAAAAABoEJ4nn1TGU0/JdjgU9PsV79zZ9CQA3yCSAgAAAAAA1DPHp5/KN3OmJCl02WUKn3ee4UUAvotICgAAAAAAUJ+iUfnGj5e1Z4+inTsrOH265HabXgXgO4ikAAAAAAAA9cj7xz/K/cYbsn0+Bfx+2S1bmp4E4HuIpAAAAAAAAPXEtWKFMn//e0lScOpURU87zfAiAPtCJAUAAAAAAKgP5eVVl9nH4woPHqzKsWMlyzK9CsA+EEkBAAAAAADqgW/OHDk/+0zxFi0UKC6WcnJMTwKwH0RSAAAAAACAOuZ56illPPGEbIdDgaIixbt1Mz0JwI8gkgIAAAAAANQhx+efK2v6dElS6P/+T+ELLjC8CMBPIZICAAAAAADUlVhMvgkT5CgvV/S44xScOVPyeEyvAvATiKQAAAAAAAB1xPunP8m9fLnszEwF/X7ZrVubngTgABBJAQAAAAAA6oBz1Spl3nyzJCk4ebIiw4YZXgTgQBFJAQAAAAAAamvPHmWPHy8rGlX4lFNUOX685CC7AMmCv1oBAAAAAABqyef3y/nJJ4o3a6ag3y/l5ZmeBOAgEEkBAAAAAABqwf3MM8p49FHZlqXAnDmK9expehKAg0QkBQAAAAAAOETWpk3yTZsmSQpdeKHCF15oeBGAQ0EkBQAAAAAAOBTxuLInTpRj1y5FO3ZUcNYsKSPD9CoAh4BICgAAAAAAcAi8d94p99Klsr1eBf1+2W3bmp4E4BARSQEAAAAAAA6Sc80aZf72t5Kk4JVXKnL66YYXAagNIikAAAAAAMDBqKhQ9tixsiIRRfr1U2jiRMlBYgGSGX8FAwAAAAAAHISsa6+V8+OPFW/SRIHiYtmNGpmeBKCWiKQAAAAAAAAHyP3cc/I+8IAkKTBnjmK9epkdBKBOEEkBAAAAAAAOgLV5s3xTp0qSQhdcoPBFFxleBKCuEEkBAAAAAAB+Sjyu7EmT5Ni5U7Gjj1Zg1izJ6zW9CkAdIZICAAAAAAD8hIy//EXuF1+UnZGhgN8vu31705MA1CEiKQAAAAAAwI9wrl2rrBtukCRVTpigyBlnGF4EoK4RSQEAAAAAAPYnGJRv7FhZ4bAiffqoctIkyek0vQpAHSOSAgAAAAAA7EfW3LlyrVun+GGHKVBcLPuww0xPAlAPiKQAAAAAAAD74C4pkfevf5UkBWfPVqxPH8OLANQXIikAAAAAAMD3WFu3yjd5siQpdO65Cl18seFFAOoTkRQAAAAAAOC7bFu+KVPk2LZNsfbtFZwzR8rMNL0KQD0ikgIAAAAAAHxHxl//Kk9JiWy3W4HiYsU7dDA9CUA9I5ICAAAAAAB8w/nBB8q67jpJUuW4cYqceabhRQAaApEUAAAAAABAkior5Rs7VlYopEivXqqcOlVyOk2vAtAAiKQAAAAAAACSsn7zG7nefVfxRo0UvOYa2Y0bm54EoIEQSQEAAAAAQNpzvfiivHfdJUkKzpypaN++hhcBaEhEUgAAAAAAkNas7duVfeWVkqTQWWcpdOmlkmUZXgWgIRFJAQAAAABA+rJt+aZOlWPLFsXatlWwqEjKyjK9CkADI5ICAAAAAIC0lfHgg/IsWiTb7VaguFjxY44xPQmAAURSAAAAAACQlhwffqisq6+WJFWOGaPIiBFmBwEwhkgKAAAAAADSTzis7HHjZAWDivTsqcqrrpJcLtOrABhCJAUAAAAAAGkn88Yb5Xr7bcVzcxUsLpZ9+OGmJwEwiEgKAAAAAADSiuull5R5++2SpOD06Yr27294EQDTiKQAAAAAACBtWDt3KvvKKyVJoeHDFRo9WrIsw6sAmEYkBQAAAAAA6cG25SsslOOrrxQ74ggFi4sln8/0KgAJgEgKAAAAAADSgmfhQnn+/W/ZLpcCxcWKd+xoehKABEEkBQAAAAAAKc+xfr18c+ZIkipHj1bk7LMNLwKQSIikAAAAAAAgtUUiyh43TlYgoGj37qosLJTcbtOrACQQIikAAAAAAEhpmTffLNebbyqek6OA3y+7WTPTkwAkGCIpAAAAAABIWa5ly+S99VZJUnDaNEUHDTI7CEBCIpICAAAAAICUZJWVyTd+vCzbVnjYMIXGjJEsy/QsAAmISAoAAAAAAFKPbStr+nQ5N21SrFUrBfx+KTvb9CoACYpICgAAAAAAUo7nb39Txj//KdvhULC4WPGf/cz0JAAJjEgKAAAAAABSiuPTT+WbNUuSFLr8coXPPdfwIgCJLqki6Z133ql27drJ6/WqoKBAK1as+NH3P/nkk+rUqZO8Xq+6dOmi5557br/vHT9+vCzL0q3f3MwZAAAAAAAkoWhU2ePGydqzR9HOnRWcPl1yu02vApDgkiaSPvHEEyosLNR1112n1atXq1u3bho6dKi2bt26z/cvW7ZMo0aN0pgxY/Tmm29qxIgRGjFihNauXfuD9/7zn//Ua6+9platWtX3jwEAAAAAAOpR5vz5cq1cKdvnU8Dvl92ihelJAJJA0kTSP/7xj7riiis0evRoHX/88br77ruVlZWl++67b5/v/9Of/qRhw4Zp5syZOu644/TrX/9aJ5xwgu64444a79u0aZMmT56sRx99VG5+ZwkAAAAAgKTlWrFC3j/8QZIUvOoqRU87zfAiAMkiKSJpOBzWqlWrNGTIkOrXHA6HhgwZouXLl+/zc5YvX17j/ZI0dOjQGu+Px+O65JJLNHPmTP3sAG7gHAqFVF5eXuMDAAAAAAAkgPJy+caNkxWPK3zqqaq84grJskyvApAkkiKSbt++XbFYTM2bN6/xevPmzbV58+Z9fs7mzZt/8v0333yzXC6XpkyZckA75s2bp7y8vOqPNm3aHORPAgAAAAAA6oNv9mw5N25UvGVLBfx+KSfH9CQASSQpIml9WLVqlf70pz/pgQcekHWAv7NUVFSksrKy6o/PP/+8nlcCAAAAAICf4vnHP5Txt7/JdjgUKCpSvGtX05MAJJmkiKRNmzaV0+nUli1bary+ZcsWtdjPDZhbtGjxo+9/5ZVXtHXrVrVt21Yul0sul0ufffaZpk+frnbt2u3za2ZkZCg3N7fGBwAAAAAAMMexcaOypk+XJIUuvljh8883vAhAMkqKSOrxeNSzZ0+VlpZWvxaPx1VaWqo+ffrs83P69OlT4/2SVFJSUv3+Sy65RG+//bbeeuut6o9WrVpp5syZev755+vvhwEAAAAAAHUjFpNvwgQ5du9W9LjjFJwxQ/J4TK8CkIRcpgccqMLCQl122WU68cQTlZ+fr1tvvVUVFRUaPXq0JOnSSy9V69atNW/ePEnS1KlTNWDAAM2fP1/Dhw/X448/rpUrV+qee+6RJDVp0kRNmjSp8T3cbrdatGihjh07NuwPBwAAAAAADpr31lvlfu012VlZCvj9slu3Nj0JQJJKmkg6cuRIbdu2Tddee602b96s7t27a9GiRdUPZ9q4caMcjr0nxvbt21cLFy7U1VdfLb/fr2OOOUZPP/20OnfubOpHAAAAAAAAdcS5apUyb75ZkhScMkXRYcMMLwKQzCzbtm3TI5JVeXm58vLytGHDBu5PCgAAAABAQ9m9W3kDB8q5YYPCAwdqz733Snl5plcBOATl5eVq3769ysrKjPa1pLgnKQAAAAAAwLd8fr+cGzYo3qyZgsXFBFIAtUYkBQAAAAAAScP9r38pY+FC2ZalQFGRYj16mJ4EIAUQSQEAAAAAQFJwbNok37RpkqTQqFEKjxxpeBGAVEEkBQAAAAAAiS8Wk2/iRDnKyhTt2FHBWbOkjAzTqwCkCCIpAAAAAABIeN4775R76VLZXq+Cfr/sNm1MTwKQQoikAAAAAAAgoTnfekuZv/2tJCk4aZIip59ueBGAVEMkBQAAAAAAiauiQtljx8qKRhXp10+hiRMlBzkDQN3i7yoAAAAAACBhZV1zjZzr1yvetKkCxcWy8/JMTwKQgoikAAAAAAAgIbn/8x95H3xQtmUpMGeOYr16mZ4EIEURSQEAAAAAQMKxvvpKvquukiSFL7hA4VGjzA4CkNKIpAAAAAAAILHE48qeNEmOnTsVO+YYBWbPlrxe06sApDAiKQAAAAAASCjeu++We8kS2RkZCvj9so880vQkACmOSAoAAAAAABKG8513lPnrX0uSKidMUGT4cMOLAKQDIikAAAAAAEgMgYCyx46VFQ4r0revKidPlpxO06sApAEiKQAAAAAASAhZc+fK+eGHijduXHWZfaNGpicBSBNEUgAAAAAAYJz7+eflvfdeSVJw9mzF+vQxvAhAOiGSAgAAAAAAo6ytW+WbMkWSFDr3XIX+7/8MLwKQboikAAAAAADAHNuWb/JkObZvV6xDBwXnzJEyM02vApBmiKQAAAAAAMCYjAUL5Fm8WLbHo0BxseIdOpieBCANEUkBAAAAAIARzvffV9bcuZKkynHjFPnFL8wOApC2iKQAAAAAAKDhVVbKN3asrFBIkYICVU6ZIjmdplcBSFNEUgAAAAAA0OCyfv1rud57T/FGjRQsLpbduLHpSQDSGJEUAAAAAAA0KHdpqbx33y1JCs6apehJJxleBCDdEUkBAAAAAECDsbZvl2/SJElSaMQIhS65xPAiACCSAgAAAACAhmLb8k2dKsfWrYodeaSCRUVSVpbpVQBAJAUAAAAAAA0j44EH5Fm0SLbbrUBxseJHH216EgBIIpICAAAAAIAG4Fi3TlnXXCNJqrziCkXOOsvwIgDYi0gKAAAAAADqVyik7HHjZAWDipx4oiqnTpVcLtOrAKAakRQAAAAAANSrzBtvlOuddxTPzVXQ75fdtKnpSQBQA5EUAAAAAADUG9eSJcq84w5JUnDGDEX79ze8CAB+iEgKAAAAAADqhbVzp7KvvFKSFDrjDIVGj5Ysy/AqAPghIikAAAAAAKh7ti3fVVfJsXmzYm3aKOj3S1lZplcBwD4RSQEAAAAAQJ3zPPqoPP/5j2yXSwG/X/GOHU1PAoD9IpICAAAAAIA65fj4Y/mKiiRJlb/8pSLnnGN4EQD8OCIpAAAAAACoO+GwsseNkxUIKNqjhyqnTZNcLtOrAOBHEUkBAAAAAECdybz5ZrneekvxnBwFiopkN2tmehIA/CQiKQAAAAAAqBOuV1+V909/kiQFCwsVHTTI8CIAODBEUgAAAAAAUGvWrl3yTZggy7YVHjZMoTFjJMsyPQsADgiRFAAAAAAA1I5tK2v6dDk3bVKsdWsFiosln8/0KgA4YERSAAAAAABQK57HH1fG00/LdjoV9PsVP/5405MA4KAQSQEAAAAAwCFzbNgg3+zZkqTQZZcpfO65hhcBwMEjkgIAAAAAgEMTiSh73DhZFRWKdumi4PTpktttehUAHDQiKQAAAAAAOCSZ8+fLtWqVbJ9PAb9fdosWpicBwCEhkgIAAAAAgIPmev11eefPlyQFp01T9NRTDS8CgENHJAUAAAAAAAfFKi+Xb/x4WfG4wqeeqspf/UqyLNOzAOCQEUkBAAAAAMBByZo5U86NGxVv2VIBv1/KyTE9CQBqhUgKAAAAAAAOmOfJJ5Xx97/LdjgUKCpSvGtX05MAoNaIpAAAAAAA4IA4Nm5U1syZkqTQJZcofP75hhcBQN0gkgIAAAAAgJ8Wjco3frwcu3cr+rOfKThjhuTxmF4FAHWCSAoAAAAAAH6S99Zb5X79ddlZWQoUFclu1cr0JACoM0RSAAAAAADwo5wrVyrzd7+TJAWnTFF06FDDiwCgbhFJAQAAAADA/u3erexx42TFYgoPGqTKsWMlBzkBQGrh72oAAAAAAGC/fEVFcn76qeLNmino90t5eaYnAUCdI5ICAAAAAIB98jz9tDIee0y2w6FAUZFiPXqYngQA9YJICgAAAAAAfsCxaZOyCgslSaFRoxQeOdLwIgCoP0RSAAAAAABQUywm34QJcpSVKdqpk4IzZ0oZGaZXAUC9cdXXF37ppZf01ltv6cgjj9SZZ54pBzd1BgAAAAAgKXjvuEPuV1+V7fUq6PfLbtPG9CQAqFe1KpcPPPCATjjhBC1durTG65MnT9agQYNUWFioc889V8OGDVMsFqvVUAAAAAAAUP+cb76pzBtvlCQFJ09W5Oc/N7wIAOpfrSLp3//+d61fv169evWqfm3lypW688475fV6ddZZZ6l169YqLS3V448/XuuxAAAAAACgHlVUKHvcOFnRqCL9+ys0YYLElaEA0kCt/k63du1adenSRRnfuS/J448/Lsuy9PDDD+upp57SihUr5PV6dd9999V6LAAAAAAAqD9ZV18t5/r1ih9+uAJ+v+y8PNOTAKBB1CqS7tixQ0cccUSN115++WXl5uZqxIgRkqQWLVqoX79++vjjj2vzrQAAAAAAQD1yP/usvA89JNuyFJg9W7HvXDUKAKmuVpE0EonUuNdoKBTSmjVr1Ldv3xoPajr88MO1devW2nwrAAAAAABQT6yvvpLvqqskSaGRIxW+6CKzgwCggdUqkrZq1Urvvvtu9a9feuklRSIR9e3bt8b7ysvLlccp+gAAAAAAJJ54XNkTJ8rx9deKHXOMgrNmSd+5rR4ApINaRdJTTjlF69at00033aQ1a9bouuuuk2VZGjZsWI33rV279geX5QMAAAAAAPO8d90l98svy87IUKC4WPaRR5qeBAANrlaR1O/3Kzs7W8XFxTrhhBP0+uuva8iQIerZs2f1ez788ENt2LBBvXv3rvVYAAAAAABQd5zvvKPMX/9akhScOFGR0083vAgAzHDV5pOPPvpoLVu2TPPnz9fWrVuVn5+vmTNn1nhPaWmpunXrpuHDh9dqKAAAAAAAqEOBgLLHjpUViSjSt69CkyZJTqfpVQBghGXbtm16RLL69l6rGzZsUG5uruk5AAAAAAAcsKyZM+W97z7FmzTR7oceUowrQAEYUF5ervbt26usrMxoX6vV5fYAAAAAACD5uJ9/Xt777pMkBWfNIpACSHsHdbn9xo0ba/XN2rZtW6vPBwAAAAAAtWNt2SLf5MmSpNB55yl08cWGFwGAeQcVSdu1ayfLsg7pG1mWpWg0ekifCwAAAAAA6kA8Lt+kSXLs2KFYhw4KzJkjeb2mVwGAcQcVSdu2bXvIkRQAAAAAAJiVsWCBPC+8INvjUaC4WHb79qYnAUBCOKhI+umnn9bTDAAAAAAAUJ+c772nrOuvlyRVjhunyC9+YXgRACQOHtwEAAAAAECqq6yUb+xYWaGQIgUFqpwyRXI6Ta8CgIRBJAUAAAAAIMVl3XCDXO+/r3ijRgpefbXsxo1NTwKAhEIkBQAAAAAghblLS+X9y18kScFZsxTt29fwIgBIPAd1T9L9+eqrr/Svf/1L69atU3l5uWzb/sF7LMvSvffeWxffDgAA1IK1aZOcn3yiWIcOslu3Nj0HAADUI2vbNvkmTZIkhc4+W6FLLzW8CAASU60j6e23366ZM2cqEolUv/ZtJLUsq/rXRFIAAMzzPPKIfNOmyYrHZTscqrjlFoUvvtj0LAAAUB9sW76pU+XYulWxdu0UnDNHysw0vQoAElKtLrcvLS3V1KlT5fV6NWfOHPXp00eS9Je//EXTp09Xu3btJElXXXWV7rvvvlqPBQAAh8bauVMZf/2rfFOnyorHq16Lx6uC6aZNhtcBAID6kHH//fI8/7xst1sBv1/xo482PQkAEpZl7+va+AN05pln6j//+Y+WLVumgoICjR49Wg899JBisZgkKRQKacKECXrqqae0evVqdejQoc6GJ4Ly8nLl5eVpw4YNys3NNT0HAIC94nE533lH7pISuUtL5Vq5sjqOfl/ovPMUuOkm2Ycd1sAjAQBAfXGsW6e8QYNkVVYqOHGigtddJ7nq5I57AFCnysvL1b59e5WVlRnta7U6k3TFihU64YQTVFBQsM/jGRkZuuuuu+T1enXDDTfU5lsBAICfYJWXy/3MM/JNnqxGnTsrb9AgZc2bJ/eKFbLiccXatNG+fmc04+9/V6OuXZX5m9/I+vrrBt8NAADqWCik7HHjZFVWKtKrlyqnTiWQAsBPqNXfJb/++mudcsop1b92u92SpGAwqMxv7nOSkZGhfv36qbS0tDbfCgAAfJ9ty/nBB1Vniy5eLNfrr8uKRvce9noV7dlTkfx8RQYMUOyEE+T55z/lKyyUFYvJdjoVGjVK7tdek/Pjj5V5yy3y/uUvqhw3TpUTJ8pu3NjgDwcAAA5V5m9/K9c77yiel6eg3y+7aVPTkwAg4dUqkjZu3FgVFRXVvz7sm8v0Nm7cqI4dO1a/HovFtGPHjtp8KwAAIEl79sj9yityL14sd0mJnN+7n2isbVtF8/MVKShQZPBg2W3aSI69F46EL75YkYED5dywQbH27auebm/b8jz5pDLnzyeWAgCQ5FxLlijzzjslScEZMxTt18/wIgBIDrWKpG3bttXnn39e/evOnTvLtm09++yz1ZF0z549euWVV3TEEUfUbikAAOnItuX4+GO5Fy+Wp6REruXLZYXDew97PIr26FEVRvv1UzQ/X8rJ+fEv2bq1oq1b733BshS+4AKFzz+fWAoAQBKzdu5U9sSJkqTQL36h0OWXS5ZldhQAJIlaRdIBAwbolltu0ZYtW9S8eXMNHz5cPp9Pfr9fmzdvVtu2bfXggw9q586duvDCC+tqMwAAqS0YlPvVV6svo3d++mmNw7GWLRUtKFA0P1/hIUNkt2snOZ21/77EUgAAkpdty3fVVXJs2aJY27YKFhVJWVmmVwFA0qjV0+3feOMN+f1+zZgxQ0OHDpUkLViwQOPHj69+j23bateunVauXKnGKfYfVTzdHgBQVxyfflp1Cf3ixXK/8oqsysrqY7bbrWjXrlVh9OSTFe3dW3ZeXv2P+t5l+JJkZ2WpcuxYVV55JbEUAIAEkvHww/JddZVsl0t77rhDkfPPNz0JAA5IojzdvlaRdH9Wr16tJ598Ujt37tRxxx2n0aNHK68h/mOugRFJAQCHLBSSa/lyeb4Jo86PPqpxON6smSL5+Yp+c2/R+FFHmXsqLbEUAICE5vjoI+UNGiQrEFBw3DgFb7iBp9kDSBopHUnTBZEUAHAwHJs2VT9wyf3SS7ICgepjtsOhWJcuVWH0pJMUPflk2d88EDFhEEsBAEg84bByhw2Ta80aRXv00O7HHpN9+OGmVwHAAUuJSPrvf/9bw4cPl+M7T81NJ0RSAMCPikTkeuON6nuLut57r8bheOPGVQ9cys+vOlv02GMlj8fQ2INALAUAIGFk3nCDMv/0J8VzcrTn/vsVHTjQ9CQAOCgpEUkdDodatmypiy++WJdffrmOO+64utyW8IikAIDvs7Zskbu0tOqM0RdflKO8vPqY7XAodtxxVZfQ9+6t6IABsps2Nbi2loilAAAY5Vq6VDkjRsiybVXMnavQpEk8zR5A0kmJSHriiSdq9erVVV/IslRQUKDRo0dr5MiRaRENiaQAAMVicq1evfds0TVrahyO5+Up2qtXVRgdOFCx44+XMjIMja0nxFIAABqctWuXcvv1k/PLLxU+/XTtuftuyeczPQsADlpKRFJJWrt2re677z49+uij2rZtmyzLktfr1bnnnqvLL79cgwYNqqutCYdICgDpydqxQ+4XXqg6W7S0VI6vv65xPNqxo6LfPnRp0CDZzZqlx1kdti3P3/+uzD/8gVgKAEB9sm35xoxRxr/+pVjr1tr9+OOKH3+86VUAcEhSJpJ+KxqN6tlnn9X999+v//73v4pGo7IsS23bttXo0aN12WWX6cgjj6yLb5UwiKQAkCbicTnfflvuxYvlKSmRc9UqWd/5x6edna3IiSdW3V904EDFunSRMjMNDjZsf7H0iiuqYmmTJoYHAgCQ3DwLFyp78mTZTqcqbrtN4QsvND0JAA5ZykXS79q2bZsefvhh3X///Xr33XdlWZYcDocikUhdfyujiKQAkLqssjK5X3yx6jL6F16QY+vWGsdjRx1V9ST6b88WbdUqPc4WPRjEUgAA6pzjk0+Ud8opsioqVDlmjAK//a3kdpueBQCHLKUj6beCwaD8fr/+9Kc/ybIsxWKx+vpWRhBJASCF2Lac7723996iK1bI+s4/t+zMTEV79qx6Ev0ppyjWvTv3/TpQxFIAAOpGJKLc4cPlWrVK0a5dtfuxx2S3aGF6FQDUSkpH0tdee03333+//va3v6m8vFy2batJkybatm1bXX8ro4ikAJDkdu+W++WXqy+jd3z1VY3DsSOPrLqEvqBAkcGDZR9xhORwGBqbAoilAADUSua8ecr8wx9kZ2dr91//quipp5qeBAC1lnKR9KuvvtJDDz2kBx54QB9++KFs25bD4dCpp56q0aNHa8SIEfJ4PHXxrRIGkRQAkoxty/HRR/IsXix3SYlcy5fL+s6tYOyMDEV79Ki6hL5fP0V79ZKysw0OTlHEUgAADprrtdeU84tfyIrHFbjmGlVOncqtfgCkhJSIpOFwWE8//bQeeOABlZSUKB6Py7ZtHXXUUbr88st1+eWXq3Xr1nW5N6EQSQEgCQQCci9dWn0ZvXPjxhqHY61aKVpQoGhBgcKDB8s+8kjJ6TQ0Ns0QSwEAOCBWebly+/eX8/PPFT7tNO1ZsIDfyAWQMlIikjZp0kS7du2SbdvKysrSeeedp1/+8pfq379/XW5MWERSAEhMjg0bqqOoe+lSWaFQ9THb7Va0WzdF8/MV7ddPkd69Jf4ebpZty/OPf1TF0o8+qnqJWAoAQDXfuHHK+PvfFWvZUrsfe0zxLl1MTwKAOpMSkdThcKhPnz765S9/qZEjRyo7zX4ni0gKAAkiFJJr2bLqy+id69fXOBxv1kyRgoKq+4sOGaJ4hw6Sy2VoLPZrX7E0M7Mqlk6aRCwFAKQlz5NPKnv8eNkOhypuvVXh//s/05MAoE6lRCRdt26dOnbsWJd7kgqRFADMcXzxxd6zRV9+WVYgUH3MdjoV69KlKoyedJKiJ50ku1Ejc2NxcIilAABIkhyffabcAQPk2L1blZddpsBNN0kp9qwPAEiUSFqrR/Q2dCC988471a5dO3m9XhUUFGjFihU/+v4nn3xSnTp1ktfrVZcuXfTcc8/VOD537lx16tRJPp9Phx12mIYMGaLXX3+9Pn8EAMChikTkWrpUmXPnKvekk9SoWzf5ZsyQZ9EiWYGA4k2aKPzzn6ti7lyVLVmi8kWLFLzxRkWGDyeQJhvLUvi881S2fLn23HOPYsccIysYVOZtt6lRt27KvP56WTt2mF4JAED9ikblmzBBjt27Fe3cWcEZMwikAFCPahVJ92X06NFy1cMljE888YQKCwt13XXXafXq1erWrZuGDh2qrVu37vP9y5Yt06hRozRmzBi9+eabGjFihEaMGKG1a9dWv+fYY4/VHXfcoXfeeUdLly5Vu3btdNppp2nbtm11vh8AcPCsr76S59FHlX355Wp0zDHKPessZd5+u1wffCDb4VC0c2dV/vKX2r1ggcpee017HnlEocmTFT/+eMntNj0ftWVZCp97LrEUAJCWvLfeKvfrr8v2+RQoKpLdqpXpSQCQ0mp1uf2+jB49Wg899JBisVhdflkVFBSoV69euuOOOyRJ8Xhcbdq00eTJkzVnzpwfvH/kyJGqqKjQs88+W/1a79691b17d9199937/B7fXj6/ePFiDR48+Cc3cbk9ANSxaFSuVauqLqFfvFiut9+ucTjeqJGivXopWlCgyKBBinXqJGVkGBqLBmfb8jz1lDJ//3suwwcApDTXG28oZ/hwWbGYAkVFqiwslBx1fo4TACSERLncPimeWhEOh7Vq1SoVFRVVv+ZwODRkyBAtX758n5+zfPlyFRYW1nht6NChevrpp/f7Pe655x7l5eWpW7du+3xPKBRS6DtPSC4vLz/InwQA8H3W9u1yl5ZWhdEXXpBj167qY7ZlKdaxo6IFBVVhdOBA2YcfLlmWucEw55szS8PnnFMjlmbedpu8CxYQSwEAqaG8XL5x42TFYgoPHqzKsWMJpADQAJIikm7fvl2xWEzNmzev8Xrz5s31wQcf7PNzNm/evM/3b968ucZrzz77rC688EIFAgG1bNlSJSUlatq06T6/5rx583T99dfX4icBACgel/Ott+RevFiekhI533xT1ncuaojn5Ch64onVUTTWubPk9RocjITz3Vj6z3/K+/vfy/Xhh8RSAEBK8BUVyfnZZ4o3b66g3y9x1SIANIikiKT1aeDAgXrrrbe0fft2LViwQBdccIFef/11NWvW7AfvLSoqqnF2anl5udq0adOQcwEgKVm7dsn94otVT6MvLZVj+/Yax2NHH61Ifn71ZfR2y5acLYqfZlkKn3OOwmefve9Y+qtfVcXS/fzmJwAAicbzz38q4/HHZTscChQVKda9u+lJAJA26jySNmnSRG3btq3Tr9m0aVM5nU5t2bKlxutbtmxRixYt9vk5LVq0OKD3+3w+HX300Tr66KPVu3dvHXPMMbr33ntrXNr/rYyMDGVw7zsA+Gm2LefatXvvLbpihax4fO/hrCxFe/ZUpKBAkQEDqv4DICvL3F4kt/3F0ttvl/evfyWWAgCSguOLL5Q1fbokKXTRRQqPHGl4EQCklzq/sckf/vAHbdiwoU6/psfjUc+ePVVaWlr9WjweV2lpqfr06bPPz+nTp0+N90tSSUnJft//3a/73fuOAgAOUHm53P/+t7KmTlWjzp2Vd8opyvrNb+R+7TVZ8bhi7dopdMEF2jN/vna9+qp2P/WUKouKFOvbl0CKuvFNLC1ftkx7FixQ9NhjZQWDyrz9djXq3l2Zc+fK+t5ZzAAAJIRYTL6JE+UoK1P0uOMUnDFD8nhMrwKAtFJnZ5JWVlaqoqJCTerp/l+FhYW67LLLdOKJJyo/P1+33nqrKioqNHr0aEnSpZdeqtatW2vevHmSpKlTp2rAgAGaP3++hg8frscff1wrV67UPffcI0mqqKjQb3/7W5155plq2bKltm/frjvvvFObNm3S+eefXy8/AwCkFNuWY906eRYvlrukRK7XXpMVje497PUq2qOHogUFCvfrp9iJJ0rZ2QYHI21wZikAIMl4b7tN7ldflZ2ZqaDfL5vbugFAg6t1JH3mmWc0d+5cvf3227JtW06nU127dtV5552nK6+8Ujk5OXWxUyNHjtS2bdt07bXXavPmzerevbsWLVpU/XCmjRs3yvGdJ/717dtXCxcu1NVXXy2/369jjjlGTz/9tDp37ixJcjqd+uCDD/Tggw9q+/btatKkiXr16qVXXnlFP/vZz+pkMwCknIoKuZcurbq36OLFcn7+eY3DsSOOqHoSfX6+woMHy27bVnI6DY1F2iOWAgCSgHP1amXedJMkKThpkiLDhhleBADpybLt7zxS+CD961//0rnnnqv4N/eZc7lcin5zFpFlWWratKn+8pe/aMSIEXUyNtGUl5crLy9PGzZsUC5PHASQohzr11c/id61bJms79ySxHa7Fe3evSqM9uunSH4+T2BF4rLtGrFUkuzMTGIpAMCcPXuUN2iQnOvXKzxggCruv192Xp7pVQDQoMrLy9W+fXuVlZUZ7Wu1iqS9evXSqlWrdN5552nevHnq0KGDQqGQli9frgceeEALFy6Ubdu67bbbNHHixLrcnRCIpABSUmWl3MuW7T1b9JNPahyOt2ix90n0Q4Yo3q6d5Krz5wAC9YdYCgBIEFlXXSXvww8rfvjh2v3oo4r17Gl6EgA0uJSIpJmZmWrdurXWrVsn5z4up1y1apXOPPNMbd26VStWrFCPHj1qNTbREEkBpArHxo3VT6J3v/yyrGCw+pjtcinWtasivXopevLJivbtK7tRI3Njgbpi23I//bQyf/97udatq3qJWAoAaCDuf/9bOZdfLtuyVPGHPyh8+eWmJwGAESkRSfPy8jRs2DA98cQT+33PypUrVVBQoAsuuECPPfbYoX6rhEQkBZC0wmG5XntN7tLSqocufROIvhVv2rTqTNH8fEUGD1b86KMlt9vQWKCeEUsBAA3M+vJL5fXvL8fXX6ty1CgF5s+XMjJMzwIAI1Iikp544ony+Xx66aWXfvR9J510ktavX6/Nmzcf6rdKSERSAMnE+vJLeb6Jou4lS2RVVFQfsx0OxX72s6ow2revov36yW7c2OBawIB9xVKvV5VXXEEsBQDUnXhcOeeeK/fLLyt67LHa/cQTVQ+7BIA0lSiRtFY3kTv33HN17bXXau3atdVPjd+Xtm3b6s0336zNtwIAHKxoVK6VK6vvLepau7bG4XijRop+e2/RQYMU69RJ8ngMjQUSgGUpcvbZiowYUSOWZt5+u7wLFhBLAQB1wvvnP8v98suyvV4F/X4CKQAkiFqdSfrxxx9r1KhRKi8v1+LFi9WmTZt9vq9bt26KRqN69913D3loIuJMUgCJxtq2reoS+sWL5X7hBTnKyqqP2ZalWKdOVU+iLyhQZODAqthjWQYXAwmMM0sBAHXM+fbbyj3tNFmRiAKFhaosKpIcDtOzAMColDiTtGPHjsrOztbu3bvVpUsXTZ8+XRdffLHat28vSYpEIpo7d67eeecd3X777XUyGADwHbGYnG++Kc/ixVX3Fn3rrRqH4zk5VWeL5ucrMnCgYj/7meT1mtkKJBvOLAUA1KVAQNljx8qKRBQ5+WSFrrySQAoACaRWZ5K2atWqxn1GrW/ORmrcuLFyc3P15ZdfKhwOa/bs2brxxhtrvzbBcCYpABOsnTvlfvHFqsvoX3hBjh07ahyPHXOMIgUFVWF08GDZzZtztihQFzizFABQC1kzZsh7//2KN2mi3Y88olh+vulJAJAQEuVM0lpFUkn68ssvtXLlyhof27dvr/lNLEsdOnRQr169qj9OOOEEZWVl1Wq8aURSAA3CtuV855299xZduVJWPL73sM+naM+eihQUKHLKKYp16yZlZhocDKQ4YikA4CC5Fy1Szv/9nyRpz+9+p/CYMYYXAUDiSJlIui+fffZZdTB94403tHr1au3atavqG35zNpPT6VQ4HK7rb92giKQA6otVXi7XkiXylJTIXVoqx5YtNY7H2revOlv0m4cu2a1acbkW0ND2F0t/9auqWHr44YYHAgASgbV5s/L695djxw6Fzj9fFbfeyu2PAOA7UjqS7svHH39cHU3feOMNvfXWWyovL2+Ib11viKQA6oxty/nBB3vPFn39dVnR6N7DXq+iJ5xQdbbogAGKnXCC5PMZHAygGrEUALA/8bhyLrhA7hdfVOyoo1T+xBOyv3mGBwCgStpF0u+zbbv6rNJkRSQFUCt79sj9yitVT6IvKZFz06Yah2Nt2lTdV7SgQJEhQ2S3acPZokAiI5YCAL4n4y9/kc/vl+3xaM9ddykyYoTpSQCQcNI+kqYCIimAg2LbcqxfL/fixfKUlMi1bJms79x2xPZ4FO3RoyqM9uunaH6+lJNjcDCAQ2Lbcv/rX8r83e+IpQCQxpzvvqvcIUNkhcMKTp2qYHGx5HSangUACYdImgKIpAB+UjAo96uvVl1GX1oq54YNNQ7HW7bc+yT6IUMUb9eOf3kGUgWxFADSVzCo3FNPlev99xXp3Vt7HnlE9mGHmV4FAAmJSJoCiKQA9sXx2WfV9xZ1v/KKrMrK6mO2y6Vo166KFhQo2q+for17y87LM7gWQL3bXywdM0aVkycTSwEgBWXNmSPvggWKH3aY9jz8sKJ9+pieBAAJi0iaAoikACRJoZBcr71WfRm986OPahyOH364Ivn5VU+iHzJE8Q4dJLfb0FgAxti23M88UxVLP/ig6iViKQCkHHdJiXIuvFCSVDFvnkJjxxpeBACJjUiaAoikQPpybNpUdabo4sVyv/SSrIqK6mO2w6FYly5VYbRPH0X79+fyKgB77S+W/vKXqpwyhVgKAEnM2rZNef36ybFtm0Jnn62K22+XMjNNzwKAhEYkTQFEUiCNRCJyvfFG9WX0rvfeq3E4fthhVWeK5ucrOniwYsceK3k8hsYCSArEUgBILbat7Isukud//1OsfXvtfuIJxY86yvQqAEh4RNIUQCQFUpu1ZYvcpaVVZ4u++KIc5eXVx2zLUuy446rCaO/eip5yiuymTQ2uBZC0iKUAkBIy7r1XvlmzZLvd2vPnPytyzjmmJwFAUiCSpgAiKZBiYjG5Vq+uiqIlJXKtWVPjcDw3V9H8/Kon0Q8apNjxx0sZGYbGAkg5xFIASFqODz5Q3uDBsiorFbzySgWvvVZyuUzPAoCkQCRNAURSIPlZO3bI/cILVWH0hRfk2LmzxvFox45VYbSgQJGBA2U3by5ZlqG1ANICsRQAkksopNzTTpNr7VpFevXSnoULZTdubHoVACQNImkKIJICSSgel/Ptt/c+iX7VKlnf+dug7fMp0qtX1dmiAwcq1qULN9sHYMa+YmlGhirHjCGWAkACybzmGmX++c+K5+Vpz4MPKtqvn+lJAJBUiKQpgEgKJAerrEyuJUvkKSmRu7RUjq1baxyPdeigSEFBVRgdPFh2q1acLQogcRBLASBhuV58UbnnnSdJqvjNbxQaP55/jwSAg0QkTQFEUiBB2bac772390n0K1bIisX2Hs7MVLRnT0Xy8xUZMECxHj0kn8/gYAA4ALYt97//XRVL33+/6qWMjL2X4TdrZnggAKQXa8cO5fXrJ8eWLQqdeaYq7rxTysoyPQsAkg6RNAUQSYEEsnu33C+/XH0ZveOrr2ocjrVtW3Vf0YKCqrNFjzhCcjgMjQWAWiCWAoB5tq3sSy6R57//VaxtW+1+4gnFjz3W9CoASEpE0hRAJAUMsm05PvpInm+fRL98uaxIZO/hjAxFu3evCqP9+imany9lZxscDAB1jFgKAMZkPPSQfNOmyXa5tOfOOxX55pJ7AMDBI5KmACIp0MACAblffbX6MnrnZ5/VOBxr1UrRb+4tGh48WHa7dpLTaWYrADQUYikANCjHRx8pb9AgWYGAguPGKXjDDZLLZXoWACQtImkKIJIC9c+xYUN1FHW/+qqsysrqY7bbrWi3borm5yvar5+ivXvL5q9FAOmKWAoA9S8cVu6wYXKtWaPoCSdo98KFPEAPAGqJSJoCiKRAPQiF5Fq2rPoyeuf69TUOx5s12/sk+iFDFO/Qgd+5B4DvIpYCQL3JvP56Zd52m+I5Odpz//2KDhxoehIAJD0iaQogkgJ1w/HFF1VnipaUyP3yy7ICgepjttOpWOfOVWH0pJMUPflk2Y0amRsLAMmCWAoAdcr1yivKOftsWbatiuuvV+jKKyXLMj0LAJIekTQFEEmBQxSJyPX661VhdPHi6v94/1a8SRNFe/WqfhJ9/NhjJbfb0FgASHK2Lfezzyrz5ptrxtLRo6tiafPmhgcCQOKzvv5aef36yfHVVwoPH649d90l+XymZwFASiCSpgAiKXDgrM2b5S4tlaekRK4lS+TYvbv6mO1wKHb88VWX0Pfpo+iAAbKbNDG4FgBSELEUAA6NbSv7l7+U55lnFDviCO1+4gnFO3UyvQoAUgaRNAUQSYEfEYvJtWpV9UOXXG+/XeNwPC+v6oFL+fmKDB6sWKdOUkaGobEAkEaIpQBwUDyPPqrsKVNkO52quP12hUeOND0JAFIKkTQFEEmBmqzt2+V+4YWqy+hfeEGOr7+uPmZblmLHHqtoQYGiBQWKDBpU9SRQ7uMEAGYQSwHgJzk++UR5AwbICgRU+atfKfCb33AbKACoY0TSFEAkRdqLx+V86y25Fy+Wp6REzjfflPWdv6XY2dmK9OpVFUVPOUWxLl0kr9fgYADADxBLAWDfIhHlnn66XKtXK9qtm3Y/9hh/TwSAekAkTQFEUqQja9cuuV98seoy+tJSObZvr3E8dvTRiuTn7z1btGVLzhYFgGRALAWAGjJvvFGZ8+fLzs7W7nvvVXTIENOTACAlEUlTAJEUacG25Xz33b33Fl2xQlY8vvdwVpaiPXsqkp+vyIABivXoIWVlGRwMAKgVYikAyLV8uXLOPFNWPK6Ka69VaMoUfuMfAOoJkTQFEEmRssrL5X7pparL6BcvlmPz5hqHY0ceWXWm6DcPXbKPOEJyOAyNBQDUC9uW+z//UeZNNxFLAaQVq6xMuf37y/nFFwoPHao999wjZWebngUAKYtImgKIpEgZti3HunXyLF4sd0mJXK+9Jisa3XvY61W0Rw9FCwoU7tdPsRNP5F8UASBd7CuWejwKjR6t4NSpxFIAqcW25Rs7VhlPPaVYy5ba/fjjinfubHoVAKQ0ImkKIJIiqVVUyL10afVl9M7PP69xONa6dfWT6MODB8tu21ZyOg2NBQAYRywFkAY8f/ubsidMkO1wqOK22xQeNcr0JABIeUTSFEAkRbJxfPJJdRR1v/qqrFCo+pjtdivavbui+fmK9uunSEGBxJ/XAIDvI5YCSFGOzz5TXv/+svbsUeXo0QrMmye53aZnAUDKI5KmACIpEl5lpdzLllU/id65fn2Nw/HmzRUpKFD0m3uLxjt0kFwuQ2MBAEnl21h6881yvfde1UvEUgDJKhpVzi9+IfeKFYp27qzdjz8uu2VL06sAIC0QSVMAkRSJyLFxY9WZoosXy/3KK7ICgepjttOpWNeuiuTnK3ryyYr27Su7USNzYwEAyY9YCiAFeH//e2XddJNsn0+777lH0WHDTE8CgLRBJE0BRFIkhHBYrtdfr4qiJSVyrVtX43C8SZOqJ9EXFCgyaJDixxzDZUMAgLpHLAWQpFxvvKGc4cNlxWIK+P2qnDZNcjhMzwKAtEEkTQFEUphiffmlPKWlVWF0yRJZe/ZUH7MdDsWOP74qjPbpo+iAAbIbNza4FgCQVoilAJJJebnyTjlFzs8+U3jwYO25914pJ8f0KgBIK0TSFEAkRYOJRuVaubL6oUuutWtrHI43alT1wKVvzhaNdeokeTyGxgIAoKpY+txzVQ94+n4snTJFdosWhgcCgOSbOFEZTzyheIsWKl+4UPFu3UxPAoC0QyRNAURS1Cdr2za5vz1b9IUX5Cgrqz5mW5ZinTpVhdHevRUZOFB206aSZRlcDADAPhBLASQoz1NPKfuKK2Q7HKq45RaFL77Y9CQASEtE0hRAJEWdisXkfPPNqsvoS0rkevPNGofjOTmK9upV9ST6QYMU+9nPJK/X0FgAAA4SsRRAAnF88YVy+/WTo7xclZdcosDvfseVWABgCJE0BRBJUVvW11/L/cILVZfRv/CCHDt21DgeO/poRQoKqi6jHzy46j5unC0KAEhmxFIApsViyhkxQu5lyxQ97jjtfuIJ2a1bm14FAGmLSJoCiKQ4aLYt5zvv7L236MqVsuLxvYd9PkV79qx6Ev0ppyjWrZuUmWlwMAAA9eTbWHrzzXK9+27VS8RSAA3A+8c/Kuu3v5Wdmak999yjyOmnm54EAGmNSJoCiKQ4EFZ5uVxLlsizeLHcixfLsWVLjeOx9u2rLqH/9mzRVq0kh8PQWgAAGhixFEADcq5apdzTT5cVjSowa5YqZ87k370BwDAiaQogkmKfbFvODz7Ye7bo66/Likb3HvZ6FT3hBEXz8xUeMECxnj0ln8/gYAAAEgCxFEB927NHeQMHyvnJJwqfcor23HeflJdnehUApD0iaQogkqLanj1yv/JK1ZPoS0rk3LSpxuFYmzZVT6LPz1d4yBDZbdpITqehsQAAJDDblvu//626Z+l3Y+nllys4dSqxFMAhy5o6Vd5HHlG8WTPtfuSRqpMVAADGEUlTAJE0jdm2HOvXy714sTwlJXItWyYrHN572ONRtHv3qgcunXyyogUFUk6OwcEAACQZYimAOuR+5hnljB4t27JUMX++wpddZnoSAOAbRNIUQCRNM8Gg3MuWVV9G79ywocbheIsWNZ5EH2/fnrNFAQCoLWIpgFqyNm1SXv/+cuzapcpRoxSYP1/KyDA9CwDwDSJpCiCSpj7HZ59VR1H30qWygsHqY7bLpWjXrlWX0Z98sqJ9+8rmnkYAANQPYimAQxGPK+fss+VeulTRjh21+/HHZbdta3oVAOA7iKQpgEiagsJhuZYvr76M3vnRRzUOxw8/XJH8/L1nix51lOR2GxoLAEAa+jaW3nyzXGvXVr1ELAWwH97bb1fW3LmyvV7tuftuRX7xC9OTAADfQyRNAUTS1GBt2iRPaWnVGaMvvSSroqL6mO1wKNa5c1UY7dtX0f79ZR92mMG1AABAErEUwE9yrlmj3KFDZUUiCkyfrso5cySHw/QsAMD3EElTAJE0SUWjcr3xRvVl9N9esvet+GGHKZqfX3V/0cGDFTv2WMnjMTQWAAD8KGIpgH0JBJQ3cKCcH3+sSL9+2vPAA7IbNTK9CgCwD0TSFEAkTR7Wli1yl5ZW3Vv0xRflKC+vPmZblmLHHVcVRnv3VvSUU2QffrjBtQAA4KDZtlz//a+yvh9LL7usKpa2bGl4IICGlDV9urwPPKB4kyba/cgjiuXnm54EANgPImkKIJImsFhMztWr5Vm8WO6SErnWrKlxOJ6bq2ivXlX3Fh00SLHjj+cJlwAApALblmvRImXddBOxFEhT7ueeU84ll0iS9vz+9wr/8peGFwEAfgyRNAUQSROLtXOn3C+8UHUZ/QsvyLFzZ43j0WOPrXoS/Tdh1G7eXLIsQ2sBAEC9IpYCacnavFl5/frJsXOnQhdcoIpbbpG8XtOzAAA/gkiaAoikhsXjcr799t4n0a9aJes7fzrbPp8iJ55YdRn9wIGKde0qZWYaHAwAABocsRRIH/G4ci64QO4XX1Ts6KNV/vjjstu3N70KAPATiKQpgEja8KyyMrmWLJGnpETu0lI5tm6tcTzWoUPVA5fy86vOFm3ViidYAgAAYimQBjLuvlu+4mLZGRnac9ddipx1lulJAIADQCRNAUTSBmDbcr7//t4n0b/+uqxYbO9hr1fRnj0VKShQZMAAxXr0kHw+g4MBAEBCI5YCKcn57rvKHTJEVjis4FVXKej3S06n6VkAgANAJE0BRNJ6snu33C+/XPUk+sWL5fzyyxqHY23bVp0pWlCgyODBstu04WxRAABwcIilQOoIBpU7ZIhcH3ygSJ8+2vPww7IPO8z0KgDAASKSpgAiaR2xbTk++mjvk+iXL5cView9nJGhaPfuVWG0Xz9F8/OlnByDgwEAQMrYXyy95BIFr7qq6tY9ABJa1uzZ8v71r4ofdpj2PPywon36mJ4EADgIRNIUQCSthUBA7ldfrb6M3vnZZzUOx1q2VLR3b0Xz8xUePFh2u3ZcLgMAAOqPbcv1/PPKmjePWAokEXdJiXIuvFCSVDFvnkJjxxpeBAA4WETSFEAkPTiODRuqL6F3L10qq7Ky+pjtdivatauiBQWKnnyyor17y87LM7gWAACkJWIpkDSsrVuV17+/HNu2KXTOOaq47TYpM9P0LADAQSKSpgAi6U8IheRatqz6Mnrn+vU1DsebNVMkP1/RggJFhgxRvEMHyeUyNBYAAOA7iKVAYrNtZY8aJU9JiWLt22v33/5W9d8TAICkQyRNAUTSH3J88UXVmaIlJXK//LKsQKD6mO10Kta5syIFBYqedJKiJ53EDdUBAEBiI5YCCSnjr3+Vb/Zs2W639tx1lyJnn216EgDgEBFJUwCRVFIkIteKFdX3FnW9/36Nw/HGjWs8iT5+7LGS221oLAAAwCH6NpbedJNc77xT9RKxFDDC+cEHyh08WFZlpYKTJil47bU8vwAAkhiRNAWkeiS1Nm2S85NPFOvQQXbr1ntf37xZ7tJSeRYvluvFF+XYvbv6mO1wKHbccVWX0Pfpo2j//rKbNjUxHwAAoO4RSwGzKiuVe9ppcr37riK9emnPwoWyGzc2vQoAUAtE0hSQypHU88gj8k2bJisel+1wqHLKFMnhqDpb9O23a7w3npenaK9eVWF04EDFjj9eysgwtBwAAKABEEsBI7Kuvlreu+5SvFEj7XnwQUVPPtn0JABALRFJU0CqRlJr0yY16t5dVjy+3/dEO3asehL9N2HUbtZMsqwGXAkAAJAAbFuu//2v6p6l342lF1+s4LRpxFKgDrlefFG5550nSar4zW8UGj+e/wYBgBSQKJGUR4njB5yffLLPQBrp1k2RYcMUOeUUxbp2lbxeA+sAAAASiGUpOnSoyk87rUYs9d53nzIefrjqzFJiKVBr1o4dyr7ySklS6KyzFLrsMgIpAKBOcSZpLaTTmaS2w6Fdb71V496kAAAA+J59nVnqdhNLgdqwbWVfcok8//2vYm3bavff/qb4MceYXgUAqCOJciapw9h3RsKyW7dWxS23yP7mCZG201n1awIpAADAj/v2zNIXX1T5woWKdukiKxKR97771OiEE5Q1c6asL780vRJIKhkPPijPf/8r2+1WoLiYQAoAqBecSVoLqXom6besTZvk3LBBsfbtCaQAAACH4tszS2+6qfrhl5xZChw4x4cfKm/QIFnBoILjxyt4/fWSi7vGAUAq4UxSJDy7dWtFTz6ZQAoAAHCovj2z9IUXqs4s7dqVM0uBAxUOK3vcOFnBoCI9e6ryqqsIpACAekMkBQAAAOobsRQ4aJk33ijX228rnpurYHGx7MMPNz0JAJDCiKQAAABAQzmQWLppk+mVgHGul1+W9447JEnB6dMV7d/f8CIAQKojkgIAAAAN7bsPeHrssZqxtGdPYinSmvX118qeOFGWbSs0fLhCo0dLlmV6FgAgxRFJAQAAAIOip51GLAW+ZdvyTZsmx1dfKXbEEQr6/ZLPZ3oVACANEEkBAACABEAsBSTPwoXy/Pvfsp1OBYqLFe/UyfQkAECaIJICAAAACaRGLO3WjViKtOFYv16+OXMkSZWjRyty9tmGFwEA0gmRFAAAAEhA0dNOq3rAE7EU6SASUfa4cbICAUW7d1fl9OmS2216FQAgjRBJAQAAgARGLEU6yPzd7+R6803Fc3IU8PtlN2tmehIAIM0QSQEAAIAk8KOxdMYMOYilSFKuZcvkveUWSVJw2jRFBw0yvAgAkI6IpAAAAEAS2Wcsvf9+5RFLkYSssjL5JkyQZdsKDxum0JgxkmWZngUASENEUgAAACAJEUuR9GxbWdOny/nFF4q1aqWA3y9lZ5teBQBIU0RSAAAAIIkRS5GsPH/7mzL++U/ZDoeCfr/iP/uZ6UkAgDRGJAUAAABSALEUycTx6afyzZolSQpdfrnC551neBEAIN0RSQEAAIAUQixFwotG5Rs/XtaePYp27qxgYaHkdpteBQBIc0RSAAAAIAURS5GoMufPl/uNN2T7fAr4/bJbtjQ9CQAAIikAAACQyn40lk6fTixFg3KtWCHvH/4gSQpedZWip51meBEAAFWIpAAAAEAaqI6ljz+uaPfuVbH0gQeUd8IJxFI0jPJy+caNkxWPKzxkiCqvuEKyLNOrAACQRCQFAAAA0kr01FNVXlq6N5ZGo8RSNAjf7NlybtyoeMuWChQXSzk5picBAFCNSAoAAACkIWIpGpLnH/9Qxt/+JtvhUKCoSPGuXU1PAgCgBiIpAAAAkMaIpahvjs8/V9aMGZKk0MUXK3z++YYXAQDwQ0kVSe+88061a9dOXq9XBQUFWrFixY++/8knn1SnTp3k9XrVpUsXPffcc9XHIpGIZs+erS5dusjn86lVq1a69NJL9eWXX9b3jwEAAAAkHGIp6kUsJt+ECXKUlyt63HEKzpgheTymVwEA8ANJE0mfeOIJFRYW6rrrrtPq1avVrVs3DR06VFu3bt3n+5ctW6ZRo0ZpzJgxevPNNzVixAiNGDFCa9eulSQFAgGtXr1a11xzjVavXq2nnnpK69at05lnntmQPxYAAACQUIilqEveW2+Ve/ly2ZmZCvj9slu3Nj0JAIB9smzbtk2POBAFBQXq1auX7rjjDklSPB5XmzZtNHnyZM2ZM+cH7x85cqQqKir07LPPVr/Wu3dvde/eXXffffc+v8cbb7yh/Px8ffbZZ2rbtu1PbiovL1deXp42bNig3NzcQ/zJAAAAgMTlKilR1k03yfXWW5Ik2+VS6P/+T5WFhYofcYTZcUhozlWrlPvzn8uKxRSYPVuVM2ZIjqQ5TwcA0EDKy8vVvn17lZWVGe1rSfFPqHA4rFWrVmnIkCHVrzkcDg0ZMkTLly/f5+csX768xvslaejQoft9vySVlZXJsiw1atRon8dDoZDKy8trfAAAAACpbJ9nlj74oPJ69lRWYaEcX3xheiIS0Z49yh43TlYspvDAgaocN45ACgBIaEnxT6nt27crFoupefPmNV5v3ry5Nm/evM/P2bx580G9v7KyUrNnz9aoUaP2W63nzZunvLy86o82bdocwk8DAAAAJJ/qWPrEE4r26EEsxY/y+f1ybtigeLNmChYXS3l5picBAPCjkiKS1rdIJKILLrhAtm3rrrvu2u/7ioqKVFZWVv3x+eefN+BKAAAAwLzokCEqX7yYWIr9cj/zjDIefVS2ZSlQVKRYjx6mJwEA8JOSIpI2bdpUTqdTW7ZsqfH6li1b1KJFi31+TosWLQ7o/d8G0s8++0wlJSU/eu+DjIwM5ebm1vgAAAAA0hGxFPvi2LRJvmnTJEmhUaMUHjnS8CIAAA5MUkRSj8ejnj17qrS0tPq1eDyu0tJS9enTZ5+f06dPnxrvl6SSkpIa7/82kH700UdavHixmjRpUj8/AAAAAJCiiKWoFovJN3GiHLt2Kdqxo4KzZkkZGaZXAQBwQJIikkpSYWGhFixYoAcffFDvv/++JkyYoIqKCo0ePVqSdOmll6qoqKj6/VOnTtWiRYs0f/58ffDBB5o7d65WrlypSZMmSaoKpOedd55WrlypRx99VLFYTJs3b9bmzZsVDoeN/IwAAABAsiKWwnvnnXIvXSrb61XQ75fNMxwAAEkkaSLpyJEj9Yc//EHXXnutunfvrrfeekuLFi2qfjjTxo0b9dVXX1W/v2/fvlq4cKHuuecedevWTX//+9/19NNPq3PnzpKkTZs26ZlnntEXX3yh7t27q2XLltUfy5YtM/IzAgAAAMmuOpb+7W/E0jTifOstZd54oyQpOGmSIqefbngRAAAHx7Jt2zY9IlmVl5crLy9PGzZs4P6kAAAAwD64SkuVNW+eXG++KUmyXS6FLrpIlYWFinOmYWqoqFDeoEFyfvyxIv36ac+DD8rmafYAgANUXl6u9u3bq6yszGhfS5ozSQEAAAAkn+jgwVVnlj75pKInnFB1ZulDDynvxBOVNW2aHJ9/bnoiainr2mvl/PhjxZs2VaC4mEAKAEhKRNL/b+/e46yq6/3xv4bbcEcBBUFETFMzFUME1BQVxXPs4lcs9WheS/GCGXm84IU0826Zmg++PjqpRzMvqXQqLxEqpaCpiUe0MM8X4pgNagZD3GHW7w9+7BwZbnIZhvV8Ph7zgL3We639XnvW+sye16y9FgAAsMEtOfjg1I4bJyzdzLT85S/T+q67UlRVZd5FF2Vp//6N3RIAfCxCUgAAYKMRlm4+qv7617Q777wkyaIvfSmLjjuucRsCgHUgJAUAADY6YWkTV1eX9ueck2YffJClO+2UeRddlLRu3dhdAcDHJiQFAAAajbC0aar+v/83LZ95JkV1deaNGpWid+/GbgkA1omQFAAAaHTC0qaj+ZQpaXvllUmSBWeemcVHHNHIHQHAuhOSAgAAm4xVhqXnnScsbWzz56fd6aenatGiLN533yw455ykefPG7goA1pmQFAAA2ORUwtKf/jSLl4el99wjLG1kbUePToupU1PXufOyj9lvuWVjtwQA64WQFAAA2GQtOeigzBGWbhJaPvlkWv/HfyRJ5l94YZYOGtTIHQHA+iMkBQAANnnC0sZV9e67aXfuuUmShcOGZeHxxzdyRwCwfglJAQCAJmOlYWm/fsLSDaUo0m7EiDR7//0s3WGHzL/ooqRNm8buCgDWKyEpAADQ5KwQli5dKizdQKp/+MO0+vWvU7RqlXmXXJK6HXZo7JYAYL0TkgIAAE2WsHTDav6HP6Tt6NFJkgVnnJHFn/98I3cEABuGkBQAAGjyVhmWfv3raTZjRmO32PQsWJB2p5+eqoULs3jAgCw499ykefPG7goANgghKQAAsNloMCy9995lN3gSlq6Vtt/+dlq88Ubqttgi8y+5JEXnzo3dEgBsMEJSAABgs1MvLO3XT1i6llo+9VRajxmTJJl/wQVZst9+jdwRAGxYQlIAAGCzteSggzLnV78Slq6FqvffT7tzzkmSLDzyyCz8ylcauSMA2PCEpAAAwGZPWLqGiiLtvv71NJs5M0t79878iy5K2rZt7K4AYIMTkgIAAKUhLF216rvuSqsnnkjRsmXmXXJJ6nbaqbFbAoCNQkgKAACUjrB0Rc2mTk3byy5Lkiz46lez+ItfbOSOAGDjEZICAACltcqw9Nxz0+zPf27sFjeOhQvT/owzUjV/fhbvvXcWnHde0qJFY3cFABuNkBQAACi9BsPSH/84nfr3L0VY2uaaa9LitddS17Fj5o8alaJr18ZuCQA2KiEpAADA/68Slj78cBbvvXcpwtIWEyakza23Jknmn39+lhxwQCN3BAAbn5AUAADgI5YMHpw5Tz652YelVR98kPZnnZUkWfi5z2XhyScnVVWN2xQANAIhKQAAwEpUwtJHHtn8wtKiSLvzzkuzmpos7dUr80eNStq1a+yuAKBRCEkBAABWY8mBB252YWmrH/84rX75yxQtWmTeqFGp23nnxm4JABqNkBQAAGANbS5habO33kq7iy9Okiw49dQsPuqoRu4IABqXkBQAAGAtNemwdPHitD/jjFTNm5cle+2VBd/4RtKiRWN3BQCNSkgKAADwMa0yLB0xYpMMS9tcd11aTJ6cug4dMu/ii1NsvXVjtwQAjU5ICgAAsI4qYemjj2Zx//7LwtL77tvkwtIWzz2X1jffnCSZP3Jklhx8cOM2BACbCCEpAADAerLkgAMy54knNsmwtGrWrLQ788xUFUUWHX54Fp52WlJV1Wj9AMCmREgKAACwnq02LJ0+feM2VBRp+81vpvlf/pKlPXtm3iWXJO3abdweAGATJiQFAADYQFYalu6zz0YNS1s98ECqx45N0bx55o8albpPfWqjPC8ANBVCUgAAgA2sMcPSZtOmpd0FFyRJFp50UhYNG7bBngsAmiohKQAAwEay0cPSJUvSfvjwVM2dmyW775753/xm0rLl+n0OANgMCEkBAAA2slVds7TdOeest7C0zY03psVLL6Vo1y7zLr44Rffu62W9ALC5EZICAAA0khXC0rq6VP/kJ+slLG3xwgtpfdNNSZL5552XJYcdtp66BoDNj5AUAACgkS0PS2ePHbtewtKq2tq0Gz48VXV1WXTooVnwta8lVVUbpnkA2AwISQEAADYRSz/72fUSlra94II0nzEjddtsk3mjRiUdOmzYxgGgiROSAgAAbGLWJSxt9dOfpvqhh1I0a5Z5F1+cuj322HiNA0ATJSQFAADYRK1tWNpsxoy0Pf/8JMnCr3wli770pUboGgCaHiEpAADAJm5NwtKqGTPS/t/+Lc3mzMmST30q87/5zaRVq8ZuHQCaBCEpAABAE7HSsHTvvbPFXnulxR/+kCLJ4n33TdGzZ2O3CwBNhpAUAACgiakXlu65Z6qKIsvvXV+VpPWdd6bqL39pzBYBoEkRkgIAADRRSz/72cy/4ooVplctXZrm06Y1QkcA0DQJSQEAAJqwpTvskKJZ/V/tiubNs7RPn0bqCACaHiEpAABAE1b07Jm53/teiubNlz1u3jxzv/td1yQFgLXQorEbAAAAYN0sOuGELD7ooDSfNi1L+/QRkALAWhKSAgAAbAaKnj2zRDgKAB+Lj9sDAAAAAKUmJAUAAAAASk1ICgAAAACUmpAUAAAAACg1ISkAAAAAUGpCUgAAAACg1ISkAAAAAECpCUkBAAAAgFITkgIAAAAApSYkBQAAAABKTUgKAAAAAJSakBQAAAAAKDUhKQAAAABQakJSAAAAAKDUhKQAAAAAQKkJSQEAAACAUhOSAgAAAAClJiQFAAAAAEpNSAoAAAAAlJqQFAAAAAAoNSEpAAAAAFBqQlIAAAAAoNSEpAAAAABAqQlJAQAAAIBSE5ICAAAAAKUmJAUAAAAASk1ICgAAAACUmpAUAAAAACg1ISkAAAAAUGpCUgAAAACg1ISkAAAAAECpCUkBAAAAgFITkgIAAAAApSYkBQAAAABKTUgKAAAAAJSakBQAAAAAKDUhKQAAAABQakJSAAAAAKDUhKQAAAAAQKkJSQEAAACAUhOSAgAAAAClJiQFAAAAAEpNSAoAAAAAlJqQFAAAAAAoNSEpAAAAAFBqQlIAAAAAoNSEpAAAAABAqQlJAQAAAIBSE5ICAAAAAKUmJAUAAAAASk1ICgAAAACUWpMJSX/wgx9k++23T+vWrTNgwID87ne/W2X9Qw89lF122SWtW7fO7rvvnscee6ze/EceeSSHHXZYunTpkqqqqkyePHkDdg8AAAAAbKqaREj6wAMPZOTIkRk9enR+//vfZ88998zQoUPz7rvvNlg/ceLEHHfccTnttNPyyiuv5Mgjj8yRRx6ZKVOmVGrmzp2b/fffP9ddd93G2gwAAAAAYBNUVRRF0dhNrM6AAQPSv3//3HbbbUmSurq69OrVKyNGjMhFF120Qv0xxxyTuXPn5he/+EVl2sCBA9O3b9+MGTOmXu306dPTp0+fvPLKK+nbt+9a9VVbW5tOnTpl2rRp6dix49pvGAAAAACUWG1tbfr06ZPZs2c3ar62yZ9JumjRorz88ssZMmRIZVqzZs0yZMiQTJo0qcFlJk2aVK8+SYYOHbrSegAAAACgvFo0dgOr8/7772fp0qXp1q1bvendunXLH//4xwaXqampabC+pqZmnXpZuHBhFi5cWHlcW1u7TusDAAAAABrfJn8m6abkmmuuSadOnSpfvXr1auyWAAAAAIB1tMmHpF27dk3z5s0zc+bMetNnzpyZ7t27N7hM9+7d16p+TV188cWZPXt25et///d/12l9AAAAAEDj2+RD0latWqVfv34ZP358ZVpdXV3Gjx+fQYMGNbjMoEGD6tUnybhx41Zav6aqq6vTsWPHel8AAAAAQNO2yV+TNElGjhyZk046KXvvvXf22Wef3HzzzZk7d25OOeWUJMmJJ56Ynj175pprrkmSfP3rX8+BBx6Ym266KUcccUTuv//+vPTSS7njjjsq6/zggw8yY8aMvPPOO0mSqVOnJll2Fuq6nnEKAAAAADQdTSIkPeaYY/Lee+/l8ssvT01NTfr27ZsnnniicnOmGTNmpFmzf54Uu+++++a+++7LpZdemlGjRmWnnXbK2LFj8+lPf7pS81//9V+VkDVJjj322CTJ6NGj861vfWvjbBgAAAAA0OiqiqIoGruJpqq2tjadOnXKtGnTfPQeAAAAANZSbW1t+vTpk9mzZzdqvrbJX5MUAAAAAGBDEpICAAAAAKUmJAUAAAAASk1ICgAAAACUmpAUAAAAACg1ISkAAAAAUGpCUgAAAACg1ISkAAAAAECpCUkBAAAAgFITkgIAAAAApSYkBQAAAABKTUgKAAAAAJSakBQAAAAAKDUhKQAAAABQakJSAAAAAKDUhKQAAAAAQKkJSQEAAACAUhOSAgAAAAClJiQFAAAAAEpNSAoAAAAAlJqQFAAAAAAoNSEpAAAAAFBqQlIAAAAAoNSEpAAAAABAqQlJAQAAAIBSE5ICAAAAAKUmJAUAAAAASk1ICgAAAACUmpAUAAAAACg1ISkAAAAAUGpCUgAAAACg1ISkAAAAAECpCUkBAAAAgFITkgIAAAAApSYkBQAAAABKTUgKAAAAAJSakBQAAAAAKDUhKQAAAABQakJSAAAAAKDUhKQAAAAAQKkJSQEAAACAUhOSAgAAAAClJiQFAAAAAEpNSAoAAAAAlJqQFAAAAAAoNSEpAAAAAFBqQlIAAAAAoNSEpAAAAABAqQlJAQAAAIBSE5ICAAAAAKUmJAUAAAAASk1ICgAAAACUmpAUAAAAACg1ISkAAAAAUGpCUgAAAACg1ISkAAAAAECpCUkBAAAAgFITkgIAAAAApSYkBQAAAABKTUgKAAAAAJSakBQAAAAAKDUhKQAAAABQakJSAAAAAKDUhKQAAAAAQKkJSQEAAACAUhOSAgAAAAClJiQFAAAAAEpNSAoAAAAAlJqQFAAAAAAoNSEpAAAAAFBqQlIAAAAAoNSEpAAAAABAqQlJAQAAAIBSE5ICAAAAAKUmJAUAAAAASk1ICgAAAACUmpAUAAAAACg1ISkAAAAAUGpCUgAAAACg1ISkAAAAAECpCUkBAAAAgFITkgIAAAAApSYkBQAAAABKTUgKAAAAAJSakBQAAAAAKDUhKQAAAABQakJSAAAAAKDUhKQAAAAAQKkJSQEAAACAUhOSAgAAAAClJiQFAAAAAEpNSAoAAAAAlJqQFAAAAAAoNSEpAAAAAFBqQlIAAAAAoNSEpAAAAABAqQlJAQAAAIBSE5ICAAAAAKUmJAUAAAAASk1ICgAAAACUmpAUAAAAACi1JhWS/uAHP8j222+f1q1bZ8CAAfnd7363yvqHHnoou+yyS1q3bp3dd989jz32WL35RVHk8ssvzzbbbJM2bdpkyJAh+dOf/rQhNwEAAAAA2MQ0mZD0gQceyMiRIzN69Oj8/ve/z5577pmhQ4fm3XffbbB+4sSJOe6443LaaafllVdeyZFHHpkjjzwyU6ZMqdRcf/31ueWWWzJmzJi88MILadeuXYYOHZoFCxZsrM0CAAAAABpZVVEURWM3sSYGDBiQ/v3757bbbkuS1NXVpVevXhkxYkQuuuiiFeqPOeaYzJ07N7/4xS8q0wYOHJi+fftmzJgxKYoiPXr0yDe/+c2cf/75SZLZs2enW7duueuuu3Lssceutqfa2tp06tQpb775Zjp06LDC/KqqqrRs2bLyeNGiRStd14aqTZJWrVp9rNrFixdnVbvHplDbsmXLVFVVJUmWLFmSurq69VLbokWLNGvWbJOpXbp0aZYuXbrS2ubNm6d58+abTG1dXV2WLFmy0tpmzZqlRYsWm0xtURRZvHjxeqndFI57Y8Q/GSOWMUasW60xwhixtrXGiHWr3RSOe2OEMSIxRixnjFi3WmOEMWJta8s4RsyZMyef/OQnM3v27HTs2HGly29oLRrtmdfCokWL8vLLL+fiiy+uTGvWrFmGDBmSSZMmNbjMpEmTMnLkyHrThg4dmrFjxyZJpk2blpqamgwZMqQyv1OnThkwYEAmTZrUYEi6cOHCLFy4sPK4trY2SXLdddfVO5CW++QnP5kTTzyx8viaa65Z6YC3/fbb56tf/Wrl8Y033ph58+Y1WNuzZ8+ceeaZlce33HJLZs2a1WDt1ltvnXPPPbfyeMyYMSs9+3aLLbaoBMZJ8sMf/jB/+ctfGqxt27ZtRo0aVXl89913Z/r06Q3WtmzZMqNHj648/slPfpI333yzwdokueqqqyr//+lPf5rXX399pbWXX3555bX/2c9+lldeeWWltRdffHHatWuXJHn88cfzwgsvrLT2m9/8Zrbccsskya9//es8++yzK60dMWJEunXrliSZMGFCnn766ZXWDh8+PNtuu22SZfvok08+udLaU089NTvssEOS5MUXX6wX+H/UV77yley8885JkldffTWPPPLISmuPPfbYfPrTn06S/OEPf8j999+/0tqjjjoqn/nMZ5Ikb731Vu65556V1n7uc5/LwIEDkyTTp0/Pj370o5XWDh06NJ/97GeTJO+8807GjBmz0tqDDjoohxxySJLkvffey6233rrS2v333z+HH354kmV/9LjppptWWjtgwIB8/vOfT5LMmzcv11xzzUpr99prrwwbNizJsh+UV1555Uprd9tttxx33HGVx6uqNUYsY4z4J2PEMsaIZYwRyxgj/skYsYwxYhljxDLGiH8yRixjjFjGGLGMMeKfNuUxYnUB+sbSJD5u//7772fp0qWVb/xy3bp1S01NTYPL1NTUrLJ++b9rs85rrrkmnTp1qnz16tXrY20PAAAAALDpaBIft3/nnXfSs2fPTJw4MYMGDapMv+CCCzJhwoQGE/hWrVrl7rvvrvdXlttvvz1XXHFFZs6cmYkTJ2a//fbLO++8k2222aZS8+UvfzlVVVV54IEHVlhnQ2eS9urVy8ftG7HW6e3L+AjMutX6CIwxYm1rjRHrVrspHPfGCGNEYoxYzhixbrXGCGPE2tYaI9atdlM47o0RxojEGLGcj9tvZF27dk3z5s0zc+bMetNnzpyZ7t27N7hM9+7dV1m//N+ZM2fWC0lnzpyZvn37NrjO6urqVFdXrzC9ZcuWDX7c/qPWpGZTqv3wwNcUapf/YNkcaz88kDSF2mbNmq3xvrYp1FZVVW2Q2mTTOJaNEctsCseyMWKZTeG4N0Zs+NpN4bg3RiyzKRz3xoi1r002jWPZGLHMpnAsGyOW2RSOe2PEhq/dFI57Y8QyG+O4X5vXekNqEh+3b9WqVfr165fx48dXptXV1WX8+PH1ziz9sEGDBtWrT5Jx48ZV6vv06ZPu3bvXq6mtrc0LL7yw0nUCAAAAAJufJnEmaZKMHDkyJ510Uvbee+/ss88+ufnmmzN37tyccsopSZITTzwxPXv2rFwQ+etf/3oOPPDA3HTTTTniiCNy//3356WXXsodd9yRZNlfaM4777xcddVV2WmnndKnT59cdtll6dGjR4488sjG2kwAAAAAYCNrMiHpMccck/feey+XX355ampq0rdv3zzxxBOVGy/NmDGjcr2EJNl3331z33335dJLL82oUaOy0047ZezYsZW7aCXLrmk6d+7cnH766Zk1a1b233//PPHEE2nduvVG3z4AAAAAoHE0iRs3bapqa2vTqVOnTJs2rVEvLAsAAAAATVFtbW369OnT6DduahLXJAUAAAAA2FCEpAAAAABAqQlJAQAAAIBSE5ICAAAAAKUmJAUAAAAASk1ICgAAAACUmpAUAAAAACg1ISkAAAAAUGpCUgAAAACg1ISkAAAAAECpCUkBAAAAgFITkgIAAAAApSYkBQAAAABKTUgKAAAAAJSakBQAAAAAKDUhKQAAAABQakJSAAAAAKDUhKQAAAAAQKkJSQEAAACAUhOSAgAAAAClJiQFAAAAAEpNSAoAAAAAlJqQFAAAAAAoNSEpAAAAAFBqQlIAAAAAoNSEpAAAAABAqQlJAQAAAIBSa9HYDTRlRVEkSebMmdPInQAAAABA07M8V1ueszUWIek6WP5N3GOPPRq5EwAAAABouubMmZNOnTo12vNXFY0d0zZhdXV1eeedd9KhQ4dUVVU1djuw2amtrU2vXr3yv//7v+nYsWNjtwMblP0dNgzHFmVif4dNh+ORMlnX/b0oisyZMyc9evRIs2aNd2VQZ5Kug2bNmmXbbbdt7DZgs9exY0dvLCgN+ztsGI4tysT+DpsOxyNlsi77e2OeQbqcGzcBAAAAAKUmJAUAAAAASk1ICmyyqqurM3r06FRXVzd2K7DB2d9hw3BsUSb2d9h0OB4pk81lf3fjJgAAAACg1JxJCgAAAACUmpAUAAAAACg1ISkAAAAAUGpCUgAAAACg1ISkQK655pr0798/HTp0yNZbb50jjzwyU6dOrVezYMGCnH322enSpUvat2+fYcOGZebMmfVqzj333PTr1y/V1dXp27dvg8/14IMPpm/fvmnbtm169+6dG264YbX9vf766xk2bFi23377VFVV5eabb16h5je/+U0+//nPp0ePHqmqqsrYsWPXaNvX13bRdJR5f7/jjjsyePDgdOzYMVVVVZk1a9YKNcuf98Nf11577Rqtn3LbHI6tNdmGhnzwwQc5/vjj07Fjx2yxxRY57bTT8o9//KPedp988snZfffd06JFixx55JGrXSebtjLv79/5zney7777pm3bttliiy0arPnoz5Gqqqrcf//9q103fBzr43h89dVXc9xxx6VXr15p06ZNdt1113z/+99f4bmeeeaZfOYzn0l1dXV23HHH3HXXXavtryiKXH755dlmm23Spk2bDBkyJH/605/q1azJcdWQ//7v/85nP/vZtG7dOr169cr1119fb/6ajAU0LWXd39fkvdQzzzzT4M+fmpqaNXqOREgKJJkwYULOPvvsPP/88xk3blwWL16cww47LHPnzq3UfOMb38jPf/7zPPTQQ5kwYULeeeedHHXUUSus69RTT80xxxzT4PM8/vjjOf744zN8+PBMmTIlt99+e773ve/ltttuW2V/8+bNyw477JBrr7023bt3b7Bm7ty52XPPPfODH/xgLbZ8/WwXTUuZ9/d58+bl8MMPz6hRo1ZZd+WVV+avf/1r5WvEiBFr9TyU0+ZwbK3JNjTk+OOPz+uvv55x48blF7/4RX7zm9/k9NNPr8xfunRp2rRpk3PPPTdDhgxZ5bpoGsq8vy9atChf+tKXcuaZZ66y7s4776z3s8QfB9hQ1sfx+PLLL2frrbfOvffem9dffz2XXHJJLr744nrH2rRp03LEEUfkoIMOyuTJk3Peeeflq1/9ap588slV9nf99dfnlltuyZgxY/LCCy+kXbt2GTp0aBYsWFCpWdPj6sNqa2tz2GGHpXfv3nn55Zdzww035Fvf+lbuuOOOSs2ajAU0LWXd39fmvdTUqVPr/fzZeuut1/h5UgB8xLvvvlskKSZMmFAURVHMmjWraNmyZfHQQw9Vav7whz8USYpJkyatsPzo0aOLPffcc4Xpxx13XHH00UfXm3bLLbcU2267bVFXV7dGvfXu3bv43ve+t8qaJMWjjz662nWtr+2iaSvL/v5hTz/9dJGk+Pvf//6xnhPWRFM/thrahoa88cYbRZLixRdfrEx7/PHHi6qqquIvf/nLCvUnnXRS8cUvfnGN+qTpKMv+/mF33nln0alTpwbnfZyfTbC+rOvxuNxZZ51VHHTQQZXHF1xwQbHbbrvVqznmmGOKoUOHrnQddXV1Rffu3YsbbrihMm3WrFlFdXV18ZOf/GSF+lUdVx91++23F1tuuWWxcOHCyrQLL7yw2HnnnRus9x5v81SW/f3DVvZealW/46wpZ5ICK5g9e3aSpHPnzkmW/aVp8eLF9f5is8suu2S77bbLpEmT1ni9CxcuTOvWretNa9OmTd5+++38+c9/Xg+dr531tV00bWXZ39fGtddemy5dumSvvfbKDTfckCVLljR2SzRBm8Ox9dFtaMikSZOyxRZbZO+9965MGzJkSJo1a5YXXnhhvfbDpqss+/vaOPvss9O1a9fss88++dGPfpSiKNbLemF11tfxOHv27HrHw6RJk1Y4g23o0KGrXMe0adNSU1NTb7lOnTplwIAB6/z7xqRJk3LAAQekVatW9fqZOnVq/v73v6/Tumk6yrK/r42+fftmm222yaGHHprnnnturZYVkgL11NXV5bzzzst+++2XT3/600mSmpqatGrVaoXrhXTr1m2tru8xdOjQPPLIIxk/fnzq6ury5ptv5qabbkqS/PWvf11v27Cm1td20XSVaX9fU+eee27uv//+PP300znjjDNy9dVX54ILLmjstmhiNodjq6FtaEhNTc0KH+Nq0aJFOnfu7GdJSZRpf19TV155ZR588MGMGzcuw4YNy1lnnZVbb711PXQKq7a+jseJEyfmgQceqHfplJqamnTr1m2FddTW1mb+/PkNrmf5+htabl1/Rqysnw8/L5u3Mu3va2KbbbbJmDFj8vDDD+fhhx9Or169Mnjw4Pz+979f43UISYF6zj777EyZMmWDXFz/a1/7Ws4555x87nOfS6tWrTJw4MAce+yxSZJmzZplxowZad++feXr6quvXm/PffXVV9db94wZM9bbumm67O8rGjlyZAYPHpw99tgjw4cPz0033ZRbb701CxcuXG/9sfnbHI6thrZh+PDh9dYNif29IZdddln222+/7LXXXrnwwgtzwQUXrNENp2BdrY/jccqUKfniF7+Y0aNH57DDDlvj5X784x/XO2Z++9vffuwePmq33XarrPdf/uVf1tt6adrs7/XtvPPOOeOMM9KvX7/su++++dGPfpR999033/ve99Z4HS0+TsPA5umcc86p3HBi2223rUzv3r17Fi1alFmzZtX7i9TMmTPX6gLgVVVVue6663L11VenpqYmW221VcaPH58k2WGHHbLllltm8uTJlfr19XGvZNkb/S9/+cuVxz169Fhv20XTVLb9/eMaMGBAlixZkunTp2fnnXdeH+2xmdscjq2VbcOVV16Z888/v15t9+7d8+6779abtmTJknzwwQd+lpRA2fb3j2vAgAH59re/nYULF6a6unq9rBM+an0cj2+88UYOOeSQnH766bn00kvrzevevXu9O4QvX0fHjh3Tpk2bfOELX8iAAQMq83r27Fk543vmzJnZZptt6i3Xt2/fNd62xx57LIsXL06y7JIbq+pn+Tw2b2Xb3z+uffbZJ88+++wa1wtJgRRFkREjRuTRRx/NM888kz59+tSb369fv7Rs2TLjx4/PsGHDkiy7Y9yMGTMyaNCgtX6+5s2bp2fPnkmSn/zkJxk0aFC22mqrJMmOO+64jlvTsM6dO6/wi8P63i6ahrLu7x/X5MmT06xZs7W7KySltDkcW6vbhq233nqFY2HQoEGZNWtWXn755fTr1y9J8tRTT6Wurq7eLw9sXsq6v39ckydPzpZbbikgZYNYX8fj66+/noMPPjgnnXRSvvOd76zwPIMGDcpjjz1Wb9q4ceMq6+jQoUM6dOhQb36fPn3SvXv3jB8/vhIS1dbW5oUXXlirO3v37t27wX4uueSSLF68OC1btqz0s/POO2fLLbdc43XTtJR1f/+4Jk+eXC+wXR0hKZCzzz479913X372s5+lQ4cOleuFdOrUKW3atEmnTp1y2mmnZeTIkencuXM6duyYESNGZNCgQRk4cGBlPW+99Vb+8Y9/pKamJvPnz6+c2fCpT30qrVq1yvvvv5+f/vSnGTx4cBYsWJA777wzDz30UCZMmLDK/hYtWpQ33nij8v+//OUvmTx5ctq3b1/5xeAf//hH3nrrrcoy06ZNy+TJk9O5c+dst912Da53fW0XTUtZ9/dk2XWCampqKsu+9tpr6dChQ7bbbrt07tw5kyZNygsvvJCDDjooHTp0yKRJk/KNb3wjJ5xwgjfbrNbmcGytbhsasuuuu+bwww/P1772tYwZMyaLFy/OOeeck2OPPbbeWdxvvPFGFi1alA8++CBz5sypbNfanFnBpqOs+3uSzJgxIx988EFmzJiRpUuXVnrecccd0759+/z85z/PzJkzM3DgwLRu3Trjxo3L1Vdfvd7OSoWPWh/H45QpU3LwwQdn6NChGTlyZGUdzZs3r/xBYvjw4bnttttywQUX5NRTT81TTz2VBx98ML/85S9X2ltVVVXOO++8XHXVVdlpp53Sp0+fXHbZZenRo0eOPPLISt3qjquG/Nu//VuuuOKKnHbaabnwwgszZcqUfP/736/30eI1GQtoWsq6vyerfy918803p0+fPtltt92yYMGC/PCHP8xTTz2VX/3qV2v+Aq/8xvdAWSRp8OvOO++s1MyfP78466yzii233LJo27Zt8X/+z/8p/vrXv9Zbz4EHHtjgeqZNm1YURVG89957xcCBA4t27doVbdu2LQ455JDi+eefX21/06ZNa3C9Bx54YKXm6aefbrDmpJNOWuW618d20bSUeX8fPXr0Krf95ZdfLgYMGFB06tSpaN26dbHrrrsWV199dbFgwYI1eWkpuc3h2FqTbWjI3/72t+K4444r2rdvX3Ts2LE45ZRTijlz5tSr6d27d4Prpmkq8/5+0kknNbjc008/XRRFUTz++ONF3759i/bt2xft2rUr9txzz2LMmDHF0qVL1+SlhbW2Po7Hlb1H6t27d73nevrpp4u+ffsWrVq1KnbYYYfVHi9FURR1dXXFZZddVnTr1q2orq4uDjnkkGLq1Kn1alZ3XK3Mq6++Wuy///5FdXV10bNnz+Laa6+tN39NxgKaljLv76t7L3XdddcVn/jEJ4rWrVsXnTt3LgYPHlw89dRTq+35w6qKoigCAAAAAFBS7m4PAAAAAJSakBQAAAAAKDUhKQAAAABQakJSAAAAAKDUhKQAAAAAQKkJSQEAAACAUhOSAgAAAAClJiQFACi56dOnp6qqKttvv31jtwIAAI1CSAoAUALbb799qqqqMn369MZuZaOpqqpKVVVVY7cBAEAT0KKxGwAAoHH17Nkzf/jDH9KyZcvGbgUAABqFkBQAoORatmyZXXbZpbHbAACARuPj9gAAm7G77rorVVVV+fOf/5wk6dOnT+Vj6FVVVXnmmWdWeU3SD39k/d57780+++yT9u3bZ6uttspxxx2XGTNmJEmKoshtt92Wvn37pl27dunatWtOPvnkvPvuuyvt7c0338wZZ5yRT3ziE2ndunU6deqUAw44IPfee2+D9bNnz86ll16a3XffPe3atUt1dXV69OiR/fbbL5dffnkWL16cJPnWt75V72P2H97eD19yYPHixbn33ntz/PHHZ5dddknHjh3Tpk2b7Lzzzjn33HPzzjvvNNjH4MGDK6/d888/nyOOOCJdunRJhw4dcuCBB+a3v/1tpfaJJ57IIYccki233DLt27fPoYcemt///vcrrPPD34MlS5bk+uuvz2677ZY2bdqka9eu+fKXv5w//vGPDfbzpz/9Kaeeemr69OmT6urqtG/fPr17984RRxyRO++8c6WvPwAA/1RVFEXR2E0AALBhPPvss/nhD3+Yn/70p5k7d26GDRuW9u3bV+ZfdNFFad26dfr06ZPevXuvcM3S5WHjRRddlBtvvDEHHHBAOnfunN/97neZMWNGevXqlVdffTXDhw/Pf/3Xf2Xw4MFp06ZNnnvuubz77rvZY4898uKLL6ZVq1b11vvQQw/lxBNPzIIFC7LLLrtk1113zezZs/PCCy9k7ty5OeWUU/KjH/2oUj9v3rwMGDAgU6ZMyVZbbZWBAwemXbt2qampyR//+MfU1NTk73//e7bYYouMHTs2Y8eOzd13350kOemkk+o994033piuXbvm7bffTq9evdKpU6fsuuuu6dWrV+bOnZvJkyfnnXfeyVZbbZWJEydmxx13rLf84MGDM2HChJx//vm5+eabs/vuu+eTn/xkpk6dmsmTJ6e6ujpPPfVUXnnllZx77rkZOHBgtt1220yePDlvvvlm2rdvn1deeaXeeqdPn175HvTr1y8///nPc+CBB6Zr16753e9+l//3//5f2rdvn1/96lcZNGhQZbkpU6Zkv/32S21tbXbeeefstttuad68ed5+++289tpr+cQnPpHJkyev/Y4DAFA2BQAAm73evXsXSYpp06atMG/atGlFkqJ3794rzEtSJCm6dOlSTJ48uTJ93rx5xf77718kKXbffffiE5/4RDF9+vTK/Pfee6/YcccdiyTFvffeW2+d//3f/11UV1cXrVu3Lh5++OF686ZPn17svvvuRZLi7rvvrky/++67iyTFv/zLvxSLFi2qt8zSpUuLZ555pli4cGGDva9MbW1t8bOf/WyF5RYtWlRcfPHFRZLiX//1X1dY7sADDyySFFVVVcU999xTb97IkSOLJMXOO+9ctG/fvvj1r39dmbdkyZJi2LBhRZLiq1/9ar3lln8PkhRdu3YtXn311XrLjRgxovI9WrBgQWXeKaecUiQprrrqqhX6nDdvXjFhwoSVbj8AAP/k4/YAAKzWlVdemT333LPyuE2bNhk5cmSS5LXXXsstt9yS3r17V+Z37do1Z555ZpJk/Pjx9db1ne98JwsXLsxVV12Vo446qt683r175z/+4z+SJLfccktl+syZM5Mkhx566Ao3mGrWrFkOPPDAFc5WXZ0OHTrkC1/4wgrLtWzZMldffXV69OiRJ554InPmzGlw+aOPPjonnHBCvWmXXHJJkmTq1Kk588wzc8ghh1TmNW/ePKNGjUqy4mvyYZdeemn22GOPesvdcMMN6dmzZ/785z/n4Ycfrsxb/rr867/+6wrradOmTQ444ICVPg8AAP8kJAUAYLUaCuF22mmnJEmLFi1y2GGHrXT+h6/tWVdXl8cffzxJcswxxzT4XHvvvXflI+kLFixIkvTv3z9Jcv311+c///M/88EHH6zD1tT36quv5rvf/W5GjBiRU089NSeffHJOPvnkLFmyJHV1dXnrrbcaXK6h16Rz587p0qXLSuc39Jp81EcvD5Ak1dXVldfrmWeeqUzfZ599kiRnnnlmnnzyycrrBQDA2nF3ewAAVmu77bZbYdrya5tus802adFixbeVHTp0SJJ6wd3f/va31NbWJkl69eq12uf929/+lp49e2bw4MG58MILc8MNN+Skk05KVVVVdtppp+y333754he/mM9//vNp1mzt/v4/d+7cfOUrX8mjjz66yrrl/X5UQ69Jsux1+dvf/tbg/OWvycKFCxtcdosttsgWW2zR4Lw+ffokSd5+++3KtH//93/Ps88+m1//+tc5/PDD07Jly+y555454IADcuyxx1bCZQAAVk1ICgDAaq0qgFybcLKurq7y/4bOmPyo6urqyv+vvfbaDB8+PD//+c/z7LPP5rnnnsudd96ZO++8M/3798/TTz+ddu3arXEvF198cR599NHssssuufbaa9O/f/907dq18vH7fffdN5MmTUqxkvucrm671za0XVMf7qdt27YZN25cXnzxxTzxxBOZOHFiJk6cmJdeeinf/e53c9ZZZ+UHP/jBBukDAGBzIiQFAGCj6dq1a9q0aZP58+dX7jK/NrbffvuMGDEiI0aMSJK8+OKLOeGEE/Liiy/m+uuvzxVXXLHG63rwwQeTJA888EC9a4Au96c//WmtelsfZs2alVmzZjV4Nun06dOTJNtuu+0K8/r37185a3TJkiUZO3ZsTjzxxNx+++05+uijc9BBB23ItgEAmjzXJAUAKIHlZ0cuWbKkUfto3rx5Dj300CT/DCnXRf/+/XPWWWclSSZPnlxv3vIbPK1sm5df1/TDN5xa7sknn8z777+/zv19HPfcc88K0xYtWpQHHnggSTJ48OBVLt+iRYscffTRGTp0aJIVXxcAAFYkJAUAKIHlZx++/vrrjdxJMnr06LRq1Sr//u//nrvvvrveR/CXmzJlSh555JHK40cffTS/+c1vVqhdvHhxnnjiiSQrhp2r2+Zdd901SXLrrbfWmz516tQMHz58Lbdq/fn2t7+dKVOmVB7X1dXlwgsvzNtvv51evXpl2LBhlXm33357pk6dusI6ampq8tJLLyVpOAQGAKA+H7cHACiBYcOG5emnn84JJ5yQww47LFtuuWWSZTf++fB1PzeGz3zmM7n33nsrd5G/9NJL86lPfSpbbbVVPvjgg7z22mt5++23c8wxx+Soo45KkkyYMCHf//7307Vr1+y1117ZeuutM2fOnDz//PN5991307Nnz1xwwQUrbPONN96YIUOG5OCDD67cNOm6665Lly5dMnr06Bx99NG57LLL8uCDD2a33XbLu+++m9/+9rf57Gc/mx49emTixIkb9bXZbrvt0q9fv3zmM5/J4MGD06VLl7z44ov5n//5n7Rr1y733XdfWrduXam/4447cvbZZ6dPnz759Kc/nY4dO+a9997Lb3/728yfPz8HH3xwvvCFL2zUbQAAaIqEpAAAJXDmmWdmzpw5uffee/PYY49V7jh/wgknZPvtt9/o/XzpS19K//79c8stt2TcuHF57rnnsnTp0nTr1i077rhjzjnnnBx99NGV+pNPPjlt2rTJs88+mzfeeCMTJkxIp06dst122+W8887L6aefni5dutR7jm9/+9tp1qxZHnnkkYwdOzaLFi1Kklx66aXp0qVLjjrqqEyYMCFXXHFFXn311fzP//xPdthhh3zrW9/K+eefn8MOO2yjviZJUlVVlQcffDDXX3997rnnnvzmN79Ju3btMmzYsFx55ZX51Kc+Va/+O9/5Tn75y1/m+eefz/PPP5/Zs2dn6623zoABA3LKKafkuOOOS4sW3vIDAKxOVbGy23UCAAAbxfTp09OnT5/07t27coMmAAA2HtckBQAAAABKTUgKAAAAAJSakBQAAAAAKDXXJAUAAAAASs2ZpAAAAABAqQlJAQAAAIBSE5ICAAAAAKUmJAUAAAAASk1ICgAAAACUmpAUAAAAACg1ISkAAAAAUGpCUgAAAACg1ISkAAAAAECp/X+7MFKSAMPcAgAAAABJRU5ErkJggg==", "text/plain": [ "
      " ] diff --git a/api/tutorials/omop/query_api.html b/api/tutorials/omop/query_api.html index 46e741409..244c5a616 100644 --- a/api/tutorials/omop/query_api.html +++ b/api/tutorials/omop/query_api.html @@ -492,9 +492,9 @@

      Imports and instantiate
      -/home/amritk/.cache/pypoetry/virtualenvs/pycyclops-wIzUAwxh-py3.9/lib/python3.9/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html
      +/home/amritk/.cache/pypoetry/virtualenvs/pycyclops-mhx6UJW0-py3.9/lib/python3.9/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html
         from .autonotebook import tqdm as notebook_tqdm
      -2023-09-21 11:20:32,084 INFO cyclops.query.orm - Database setup, ready to run queries!
      +2023-09-21 14:00:29,101 INFO cyclops.query.orm - Database setup, ready to run queries!
       

      @@ -673,7 +673,7 @@

      Imports and instantiate
      -2023-09-21 11:20:39,668 INFO cyclops.query.orm - Database setup, ready to run queries!
      +2023-09-21 14:00:37,437 INFO cyclops.query.orm - Database setup, ready to run queries!
       

      @@ -713,8 +713,8 @@

      Example 1. Get all patient visits that ended in a mortality outcome in or af

      -2023-09-21 11:20:47,657 INFO cyclops.query.orm - Query returned successfully!
      -2023-09-21 11:20:47,658 INFO cyclops.utils.profile - Finished executing function run_query in 0.982651 s
      +2023-09-21 14:00:45,407 INFO cyclops.query.orm - Query returned successfully!
      +2023-09-21 14:00:45,408 INFO cyclops.utils.profile - Finished executing function run_query in 1.023836 s
       
      @@ -770,8 +770,8 @@

      Example 2. Get all measurements for female patient visits with
      -2023-09-21 11:21:03,713 INFO cyclops.query.orm - Query returned successfully!
      -2023-09-21 11:21:03,714 INFO cyclops.utils.profile - Finished executing function run_query in 15.987421 s
      +2023-09-21 14:01:01,902 INFO cyclops.query.orm - Query returned successfully!
      +2023-09-21 14:01:01,904 INFO cyclops.utils.profile - Finished executing function run_query in 16.425851 s
       

      diff --git a/api/tutorials/omop/query_api.ipynb b/api/tutorials/omop/query_api.ipynb index 284848849..e8c5daa1d 100644 --- a/api/tutorials/omop/query_api.ipynb +++ b/api/tutorials/omop/query_api.ipynb @@ -45,10 +45,10 @@ "id": "53009e6b", "metadata": { "execution": { - "iopub.execute_input": "2023-09-21T15:20:29.968455Z", - "iopub.status.busy": "2023-09-21T15:20:29.967832Z", - "iopub.status.idle": "2023-09-21T15:20:32.670741Z", - "shell.execute_reply": "2023-09-21T15:20:32.669483Z" + "iopub.execute_input": "2023-09-21T18:00:26.191031Z", + "iopub.status.busy": "2023-09-21T18:00:26.190524Z", + "iopub.status.idle": "2023-09-21T18:00:30.497727Z", + "shell.execute_reply": "2023-09-21T18:00:30.496385Z" } }, "outputs": [ @@ -56,7 +56,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/home/amritk/.cache/pypoetry/virtualenvs/pycyclops-wIzUAwxh-py3.9/lib/python3.9/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", + "/home/amritk/.cache/pypoetry/virtualenvs/pycyclops-mhx6UJW0-py3.9/lib/python3.9/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", " from .autonotebook import tqdm as notebook_tqdm\n" ] }, @@ -64,7 +64,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "2023-09-21 11:20:32,084 \u001b[1;37mINFO\u001b[0m cyclops.query.orm - Database setup, ready to run queries!\n" + "2023-09-21 14:00:29,101 \u001b[1;37mINFO\u001b[0m cyclops.query.orm - Database setup, ready to run queries!\n" ] }, { @@ -158,10 +158,10 @@ "id": "3a3d9cb9-fe40-45b8-ba2f-8de52a3b7f4f", "metadata": { "execution": { - "iopub.execute_input": "2023-09-21T15:20:32.675784Z", - "iopub.status.busy": "2023-09-21T15:20:32.675350Z", - "iopub.status.idle": "2023-09-21T15:20:32.780285Z", - "shell.execute_reply": "2023-09-21T15:20:32.778884Z" + "iopub.execute_input": "2023-09-21T18:00:30.504207Z", + "iopub.status.busy": "2023-09-21T18:00:30.503480Z", + "iopub.status.idle": "2023-09-21T18:00:30.619969Z", + "shell.execute_reply": "2023-09-21T18:00:30.618613Z" } }, "outputs": [ @@ -169,14 +169,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "2023-09-21 11:20:32,762 \u001b[1;37mINFO\u001b[0m cyclops.query.orm - Query returned successfully!\n" + "2023-09-21 14:00:30,605 \u001b[1;37mINFO\u001b[0m cyclops.query.orm - Query returned successfully!\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2023-09-21 11:20:32,764 \u001b[1;37mINFO\u001b[0m cyclops.utils.profile - Finished executing function run_query in 0.073394 s\n" + "2023-09-21 14:00:30,607 \u001b[1;37mINFO\u001b[0m cyclops.utils.profile - Finished executing function run_query in 0.077730 s\n" ] }, { @@ -233,10 +233,10 @@ "id": "030e2491-a7cc-42f3-a1ca-618212b3524c", "metadata": { "execution": { - "iopub.execute_input": "2023-09-21T15:20:32.787408Z", - "iopub.status.busy": "2023-09-21T15:20:32.787048Z", - "iopub.status.idle": "2023-09-21T15:20:32.883542Z", - "shell.execute_reply": "2023-09-21T15:20:32.882113Z" + "iopub.execute_input": "2023-09-21T18:00:30.626169Z", + "iopub.status.busy": "2023-09-21T18:00:30.625674Z", + "iopub.status.idle": "2023-09-21T18:00:30.740094Z", + "shell.execute_reply": "2023-09-21T18:00:30.738934Z" } }, "outputs": [ @@ -244,14 +244,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "2023-09-21 11:20:32,876 \u001b[1;37mINFO\u001b[0m cyclops.query.orm - Query returned successfully!\n" + "2023-09-21 14:00:30,733 \u001b[1;37mINFO\u001b[0m cyclops.query.orm - Query returned successfully!\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2023-09-21 11:20:32,877 \u001b[1;37mINFO\u001b[0m cyclops.utils.profile - Finished executing function run_query in 0.060985 s\n" + "2023-09-21 14:00:30,734 \u001b[1;37mINFO\u001b[0m cyclops.utils.profile - Finished executing function run_query in 0.066410 s\n" ] }, { @@ -309,10 +309,10 @@ "id": "0622b3df-2864-4f32-bd98-806019f59c50", "metadata": { "execution": { - "iopub.execute_input": "2023-09-21T15:20:32.887960Z", - "iopub.status.busy": "2023-09-21T15:20:32.887658Z", - "iopub.status.idle": "2023-09-21T15:20:46.636115Z", - "shell.execute_reply": "2023-09-21T15:20:46.634435Z" + "iopub.execute_input": "2023-09-21T18:00:30.749217Z", + "iopub.status.busy": "2023-09-21T18:00:30.748713Z", + "iopub.status.idle": "2023-09-21T18:00:44.345207Z", + "shell.execute_reply": "2023-09-21T18:00:44.343636Z" }, "tags": [] }, @@ -321,7 +321,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "2023-09-21 11:20:39,668 \u001b[1;37mINFO\u001b[0m cyclops.query.orm - Database setup, ready to run queries!\n" + "2023-09-21 14:00:37,437 \u001b[1;37mINFO\u001b[0m cyclops.query.orm - Database setup, ready to run queries!\n" ] }, { @@ -363,10 +363,10 @@ "id": "40ff2e83-75e4-4119-aa33-26f95e63ddaa", "metadata": { "execution": { - "iopub.execute_input": "2023-09-21T15:20:46.643291Z", - "iopub.status.busy": "2023-09-21T15:20:46.642703Z", - "iopub.status.idle": "2023-09-21T15:20:47.661643Z", - "shell.execute_reply": "2023-09-21T15:20:47.661030Z" + "iopub.execute_input": "2023-09-21T18:00:44.352021Z", + "iopub.status.busy": "2023-09-21T18:00:44.351427Z", + "iopub.status.idle": "2023-09-21T18:00:45.411512Z", + "shell.execute_reply": "2023-09-21T18:00:45.410904Z" }, "tags": [] }, @@ -375,14 +375,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "2023-09-21 11:20:47,657 \u001b[1;37mINFO\u001b[0m cyclops.query.orm - Query returned successfully!\n" + "2023-09-21 14:00:45,407 \u001b[1;37mINFO\u001b[0m cyclops.query.orm - Query returned successfully!\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2023-09-21 11:20:47,658 \u001b[1;37mINFO\u001b[0m cyclops.utils.profile - Finished executing function run_query in 0.982651 s\n" + "2023-09-21 14:00:45,408 \u001b[1;37mINFO\u001b[0m cyclops.utils.profile - Finished executing function run_query in 1.023836 s\n" ] }, { @@ -425,10 +425,10 @@ "id": "46fd771c-5da7-4bce-aec7-08a5210a069b", "metadata": { "execution": { - "iopub.execute_input": "2023-09-21T15:20:47.668887Z", - "iopub.status.busy": "2023-09-21T15:20:47.668641Z", - "iopub.status.idle": "2023-09-21T15:21:03.719854Z", - "shell.execute_reply": "2023-09-21T15:21:03.718648Z" + "iopub.execute_input": "2023-09-21T18:00:45.418735Z", + "iopub.status.busy": "2023-09-21T18:00:45.418495Z", + "iopub.status.idle": "2023-09-21T18:01:01.909212Z", + "shell.execute_reply": "2023-09-21T18:01:01.908113Z" }, "tags": [] }, @@ -437,14 +437,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "2023-09-21 11:21:03,713 \u001b[1;37mINFO\u001b[0m cyclops.query.orm - Query returned successfully!\n" + "2023-09-21 14:01:01,902 \u001b[1;37mINFO\u001b[0m cyclops.query.orm - Query returned successfully!\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "2023-09-21 11:21:03,714 \u001b[1;37mINFO\u001b[0m cyclops.utils.profile - Finished executing function run_query in 15.987421 s\n" + "2023-09-21 14:01:01,904 \u001b[1;37mINFO\u001b[0m cyclops.utils.profile - Finished executing function run_query in 16.425851 s\n" ] }, { @@ -494,10 +494,10 @@ "id": "d20a2581-f613-4ab8-9feb-3e84b8835db1", "metadata": { "execution": { - "iopub.execute_input": "2023-09-21T15:21:03.726216Z", - "iopub.status.busy": "2023-09-21T15:21:03.725634Z", - "iopub.status.idle": "2023-09-21T15:21:03.736676Z", - "shell.execute_reply": "2023-09-21T15:21:03.735134Z" + "iopub.execute_input": "2023-09-21T18:01:01.914610Z", + "iopub.status.busy": "2023-09-21T18:01:01.914179Z", + "iopub.status.idle": "2023-09-21T18:01:01.923687Z", + "shell.execute_reply": "2023-09-21T18:01:01.922384Z" }, "tags": [] }, diff --git a/api/tutorials/synthea/los_prediction.html b/api/tutorials/synthea/los_prediction.html index 13de9722c..a2782712f 100644 --- a/api/tutorials/synthea/los_prediction.html +++ b/api/tutorials/synthea/los_prediction.html @@ -492,7 +492,7 @@

      Import Libraries
      -/home/amritk/.cache/pypoetry/virtualenvs/pycyclops-wIzUAwxh-py3.9/lib/python3.9/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html
      +/home/amritk/.cache/pypoetry/virtualenvs/pycyclops-mhx6UJW0-py3.9/lib/python3.9/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html
         from .autonotebook import tqdm as notebook_tqdm
       

      @@ -676,17 +676,17 @@

      Compute length of stay (labels)
      -2023-09-21 11:21:11,813 INFO cyclops.query.orm - Database setup, ready to run queries!
      -2023-09-21 11:21:16,638 INFO cyclops.query.orm - Query returned successfully!
      -2023-09-21 11:21:16,638 INFO cyclops.utils.profile - Finished executing function run_query in 3.832714 s
      -2023-09-21 11:21:18,455 INFO cyclops.query.orm - Query returned successfully!
      -2023-09-21 11:21:18,456 INFO cyclops.utils.profile - Finished executing function run_query in 1.816797 s
      -2023-09-21 11:21:20,032 INFO cyclops.query.orm - Query returned successfully!
      -2023-09-21 11:21:20,034 INFO cyclops.utils.profile - Finished executing function run_query in 0.385914 s
      -2023-09-21 11:21:20,526 INFO cyclops.query.orm - Query returned successfully!
      -2023-09-21 11:21:20,528 INFO cyclops.utils.profile - Finished executing function run_query in 0.488658 s
      -2023-09-21 11:21:20,627 INFO cyclops.query.orm - Query returned successfully!
      -2023-09-21 11:21:20,628 INFO cyclops.utils.profile - Finished executing function run_query in 0.098377 s
      +2023-09-21 14:01:10,509 INFO cyclops.query.orm - Database setup, ready to run queries!
      +2023-09-21 14:01:15,563 INFO cyclops.query.orm - Query returned successfully!
      +2023-09-21 14:01:15,564 INFO cyclops.utils.profile - Finished executing function run_query in 3.709101 s
      +2023-09-21 14:01:17,366 INFO cyclops.query.orm - Query returned successfully!
      +2023-09-21 14:01:17,367 INFO cyclops.utils.profile - Finished executing function run_query in 1.802094 s
      +2023-09-21 14:01:18,935 INFO cyclops.query.orm - Query returned successfully!
      +2023-09-21 14:01:18,936 INFO cyclops.utils.profile - Finished executing function run_query in 0.389443 s
      +2023-09-21 14:01:19,432 INFO cyclops.query.orm - Query returned successfully!
      +2023-09-21 14:01:19,434 INFO cyclops.utils.profile - Finished executing function run_query in 0.492748 s
      +2023-09-21 14:01:19,537 INFO cyclops.query.orm - Query returned successfully!
      +2023-09-21 14:01:19,538 INFO cyclops.utils.profile - Finished executing function run_query in 0.102891 s
       
      @@ -773,9 +773,9 @@

      Drop NaNs based on the
      -
      +
      @@ -695,7 +695,7 @@

      Performance Over Time

      -
      +
      @@ -952,10 +952,6 @@

      Model Parameters

      -
      -

      Objective

      - binary:logistic -
      @@ -991,20 +987,24 @@

      Objective

      +
      +

      Max_depth

      + 2 +
      +
      +

      Missing

      + nan +
      -
      -

      Enable_categorical

      - False -
      @@ -1020,10 +1020,6 @@

      Enable_categorical

      -
      -

      N_estimators

      - 500 -
      @@ -1035,8 +1031,8 @@

      N_estimators

      -

      Learning_rate

      - 0.01 +

      Reg_lambda

      + 1
      @@ -1048,6 +1044,10 @@

      Learning_rate

      +
      +

      Seed

      + 123 +
      @@ -1059,59 +1059,63 @@

      Learning_rate

      -

      Max_depth

      - 5 +

      N_estimators

      + 250
      +
      +

      Gamma

      + 1 +
      -
      -

      Min_child_weight

      - 3 -
      -

      Colsample_bytree

      - 0.8 +

      Eval_metric

      + logloss
      +
      +

      Enable_categorical

      + False +
      +
      +

      Colsample_bytree

      + 0.7 +
      -
      -

      Seed

      - 123 -
      -

      Reg_lambda

      - 1 +

      Learning_rate

      + 0.1
      @@ -1139,8 +1143,8 @@

      Reg_lambda

      -

      Random_state

      - 123 +

      Min_child_weight

      + 3
      @@ -1152,10 +1156,6 @@

      Random_state

      -
      -

      Gamma

      - 2 -
      @@ -1167,8 +1167,8 @@

      Gamma

      -

      Eval_metric

      - logloss +

      Random_state

      + 123
      @@ -1186,8 +1186,8 @@

      Eval_metric

      -

      Missing

      - nan +

      Objective

      + binary:logistic
      @@ -1220,7 +1220,7 @@

      Graphics

      -
      +
      @@ -1228,7 +1228,7 @@

      Graphics

      -
      +
      @@ -1236,7 +1236,7 @@

      Graphics

      -
      +
      @@ -1244,7 +1244,7 @@

      Graphics

      -
      +
      @@ -1252,7 +1252,7 @@

      Graphics

      -
      +
      @@ -1496,7 +1496,7 @@

      Quantitative Analysis

      BinaryAccuracy age:[20 - 50) - 0.89 + 0.86 0.6 Passed @@ -1506,7 +1506,7 @@

      Quantitative Analysis

      BinaryPrecision age:[20 - 50) - 0.89 + 0.94 0.6 Passed @@ -1516,7 +1516,7 @@

      Quantitative Analysis

      BinaryRecall age:[20 - 50) - 0.93 + 0.84 0.6 Passed @@ -1526,7 +1526,7 @@

      Quantitative Analysis

      BinaryF1Score age:[20 - 50) - 0.91 + 0.89 0.6 Passed @@ -1546,7 +1546,7 @@

      Quantitative Analysis

      BinaryAccuracy age:[50 - 80) - 0.89 + 0.72 0.6 Passed @@ -1556,7 +1556,7 @@

      Quantitative Analysis

      BinaryPrecision age:[50 - 80) - 0.89 + 0.7 0.6 Passed @@ -1566,7 +1566,7 @@

      Quantitative Analysis

      BinaryRecall age:[50 - 80) - 0.89 + 0.73 0.6 Passed @@ -1576,7 +1576,7 @@

      Quantitative Analysis

      BinaryF1Score age:[50 - 80) - 0.89 + 0.72 0.6 Passed @@ -1586,7 +1586,7 @@

      Quantitative Analysis

      BinaryAUROC age:[50 - 80) - 0.97 + 0.88 0.8 Passed @@ -1596,7 +1596,7 @@

      Quantitative Analysis

      BinaryAccuracy gender:M - 0.91 + 0.85 0.6 Passed @@ -1616,7 +1616,7 @@

      Quantitative Analysis

      BinaryRecall gender:M - 0.94 + 0.84 0.6 Passed @@ -1626,7 +1626,7 @@

      Quantitative Analysis

      BinaryF1Score gender:M - 0.93 + 0.88 0.6 Passed @@ -1636,7 +1636,7 @@

      Quantitative Analysis

      BinaryAUROC gender:M - 0.98 + 0.95 0.8 Passed @@ -1646,7 +1646,7 @@

      Quantitative Analysis

      BinaryAccuracy gender:F - 0.9 + 0.85 0.6 Passed @@ -1656,7 +1656,7 @@

      Quantitative Analysis

      BinaryPrecision gender:F - 0.92 + 0.88 0.6 Passed @@ -1666,7 +1666,7 @@

      Quantitative Analysis

      BinaryRecall gender:F - 0.92 + 0.88 0.6 Passed @@ -1676,7 +1676,7 @@

      Quantitative Analysis

      BinaryF1Score gender:F - 0.92 + 0.88 0.6 Passed @@ -1686,7 +1686,7 @@

      Quantitative Analysis

      BinaryAUROC gender:F - 0.97 + 0.95 0.8 Passed @@ -1696,7 +1696,7 @@

      Quantitative Analysis

      BinaryAccuracy overall - 0.91 + 0.85 0.6 Passed @@ -1706,7 +1706,7 @@

      Quantitative Analysis

      BinaryPrecision overall - 0.92 + 0.91 0.6 Passed @@ -1716,7 +1716,7 @@

      Quantitative Analysis

      BinaryRecall overall - 0.93 + 0.86 0.6 Passed @@ -1726,7 +1726,7 @@

      Quantitative Analysis

      BinaryF1Score overall - 0.93 + 0.88 0.6 Passed @@ -1736,7 +1736,7 @@

      Quantitative Analysis

      BinaryAUROC overall - 0.97 + 0.95 0.8 Passed @@ -1766,7 +1766,7 @@

      Graphics

      -
      +
      @@ -1774,7 +1774,7 @@

      Graphics

      -
      +
      @@ -1782,7 +1782,7 @@

      Graphics

      -
      +
      @@ -1790,7 +1790,7 @@

      Graphics

      -
      +
      @@ -1841,7 +1841,7 @@

      Graphics

      -
      +
      diff --git a/assets/js/d098a0ec.101bc726.js b/assets/js/1cd7c442.f735fc16.js similarity index 64% rename from assets/js/d098a0ec.101bc726.js rename to assets/js/1cd7c442.f735fc16.js index b9be944a8..a79b9f9ce 100644 --- a/assets/js/d098a0ec.101bc726.js +++ b/assets/js/1cd7c442.f735fc16.js @@ -1 +1 @@ -"use strict";(self.webpackChunkdocusaurus=self.webpackChunkdocusaurus||[]).push([[963],{3769:u=>{u.exports=JSON.parse('{"name":"docusaurus-plugin-content-docs","id":"default"}')}}]); \ No newline at end of file +"use strict";(self.webpackChunkdocusaurus=self.webpackChunkdocusaurus||[]).push([[305],{3769:u=>{u.exports=JSON.parse('{"name":"docusaurus-plugin-content-docs","id":"default"}')}}]); \ No newline at end of file diff --git a/assets/js/72bee0c1.b6c646b2.js b/assets/js/9f179204.8d399381.js similarity index 64% rename from assets/js/72bee0c1.b6c646b2.js rename to assets/js/9f179204.8d399381.js index a8f1716b1..ece834407 100644 --- a/assets/js/72bee0c1.b6c646b2.js +++ b/assets/js/9f179204.8d399381.js @@ -1 +1 @@ -"use strict";(self.webpackChunkdocusaurus=self.webpackChunkdocusaurus||[]).push([[810],{4469:u=>{u.exports=JSON.parse('{"name":"docusaurus-plugin-content-blog","id":"default"}')}}]); \ No newline at end of file +"use strict";(self.webpackChunkdocusaurus=self.webpackChunkdocusaurus||[]).push([[419],{4469:u=>{u.exports=JSON.parse('{"name":"docusaurus-plugin-content-blog","id":"default"}')}}]); \ No newline at end of file diff --git a/assets/js/3e9d370c.29f4916b.js b/assets/js/b91d99ed.37214bf2.js similarity index 65% rename from assets/js/3e9d370c.29f4916b.js rename to assets/js/b91d99ed.37214bf2.js index f6c10e496..be9a86ac1 100644 --- a/assets/js/3e9d370c.29f4916b.js +++ b/assets/js/b91d99ed.37214bf2.js @@ -1 +1 @@ -"use strict";(self.webpackChunkdocusaurus=self.webpackChunkdocusaurus||[]).push([[301],{5745:u=>{u.exports=JSON.parse('{"name":"docusaurus-plugin-content-pages","id":"default"}')}}]); \ No newline at end of file +"use strict";(self.webpackChunkdocusaurus=self.webpackChunkdocusaurus||[]).push([[349],{5745:u=>{u.exports=JSON.parse('{"name":"docusaurus-plugin-content-pages","id":"default"}')}}]); \ No newline at end of file diff --git a/assets/js/main.d39f8eb6.js b/assets/js/main.d39f8eb6.js new file mode 100644 index 000000000..bcb558b52 --- /dev/null +++ b/assets/js/main.d39f8eb6.js @@ -0,0 +1,2 @@ +/*! For license information please see main.d39f8eb6.js.LICENSE.txt */ +(self.webpackChunkdocusaurus=self.webpackChunkdocusaurus||[]).push([[179],{723:(e,t,n)=>{"use strict";n.d(t,{Z:()=>p});var r=n(7294),a=n(7462),o=n(8356),i=n.n(o),l=n(6887);const s={"01a85c17":[()=>Promise.all([n.e(532),n.e(592),n.e(13)]).then(n.bind(n,1223)),"@theme/BlogTagsListPage",1223],"0e384e19":[()=>Promise.all([n.e(592),n.e(671)]).then(n.bind(n,9881)),"@site/docs/intro.md",9881],17896441:[()=>Promise.all([n.e(532),n.e(592),n.e(918)]).then(n.bind(n,9055)),"@theme/DocItem",9055],"1be78505":[()=>Promise.all([n.e(532),n.e(514)]).then(n.bind(n,9963)),"@theme/DocPage",9963],"1cd7c442":[()=>n.e(305).then(n.t.bind(n,3769,19)),"/mnt/data/actions-runner2/_work/cyclops/cyclops/docs/cyclops-webpage/.docusaurus/docusaurus-plugin-content-docs/default/plugin-route-context-module-100.json",3769],"1f391b9e":[()=>Promise.all([n.e(532),n.e(592),n.e(85)]).then(n.bind(n,4247)),"@theme/MDXPage",4247],"28a653eb":[()=>n.e(934).then(n.t.bind(n,2702,19)),"~blog/default/cyclops-blog-tags-alpha-036-list.json",2702],"393be207":[()=>Promise.all([n.e(592),n.e(414)]).then(n.bind(n,3123)),"@site/src/pages/markdown-page.md",3123],"59d1d05d":[()=>Promise.all([n.e(592),n.e(374)]).then(n.bind(n,4664)),"@site/blog/2023-03-03-alpha-release.md?truncated=true",4664],"5e9f5e1a":[()=>Promise.resolve().then(n.bind(n,6809)),"@generated/docusaurus.config",6809],"6875c492":[()=>Promise.all([n.e(532),n.e(592),n.e(529),n.e(610)]).then(n.bind(n,1714)),"@theme/BlogTagsPostsPage",1714],"814f3328":[()=>n.e(535).then(n.t.bind(n,5641,19)),"~blog/default/blog-post-list-prop-default.json",5641],"91ff21cd":[()=>n.e(76).then(n.t.bind(n,2820,19)),"~blog/default/cyclops-blog-archive-b12.json",2820],"935f2afb":[()=>n.e(53).then(n.t.bind(n,1109,19)),"~docs/default/version-current-metadata-prop-751.json",1109],"9e4087bc":[()=>n.e(608).then(n.bind(n,3169)),"@theme/BlogArchivePage",3169],"9f179204":[()=>n.e(419).then(n.t.bind(n,4469,19)),"/mnt/data/actions-runner2/_work/cyclops/cyclops/docs/cyclops-webpage/.docusaurus/docusaurus-plugin-content-blog/default/plugin-route-context-module-100.json",4469],a6aa9e1f:[()=>Promise.all([n.e(532),n.e(592),n.e(529),n.e(89)]).then(n.bind(n,46)),"@theme/BlogListPage",46],ac95b056:[()=>n.e(664).then(n.t.bind(n,3895,19)),"~blog/default/cyclops-blog-tags-alpha-036.json",3895],b1dc3a25:[()=>n.e(544).then(n.t.bind(n,2379,19)),"~blog/default/cyclops-blog-tags-tags-e77.json",2379],b91d99ed:[()=>n.e(349).then(n.t.bind(n,5745,19)),"/mnt/data/actions-runner2/_work/cyclops/cyclops/docs/cyclops-webpage/.docusaurus/docusaurus-plugin-content-pages/default/plugin-route-context-module-100.json",5745],c26b02f3:[()=>n.e(329).then(n.t.bind(n,2309,19)),"~blog/default/cyclops-blog-658.json",2309],c4f5d8e4:[()=>Promise.all([n.e(532),n.e(195)]).then(n.bind(n,3261)),"@site/src/pages/index.js",3261],ccc49370:[()=>Promise.all([n.e(532),n.e(592),n.e(529),n.e(103)]).then(n.bind(n,5203)),"@theme/BlogPostPage",5203],d207b03a:[()=>Promise.all([n.e(592),n.e(510)]).then(n.bind(n,726)),"@site/blog/2023-03-03-alpha-release.md",726]};function u(e){let{error:t,retry:n,pastDelay:a}=e;return t?r.createElement("div",{style:{textAlign:"center",color:"#fff",backgroundColor:"#fa383e",borderColor:"#fa383e",borderStyle:"solid",borderRadius:"0.25rem",borderWidth:"1px",boxSizing:"border-box",display:"block",padding:"1rem",flex:"0 0 50%",marginLeft:"25%",marginRight:"25%",marginTop:"5rem",maxWidth:"50%",width:"100%"}},r.createElement("p",null,String(t)),r.createElement("div",null,r.createElement("button",{type:"button",onClick:n},"Retry"))):a?r.createElement("div",{style:{display:"flex",justifyContent:"center",alignItems:"center",height:"100vh"}},r.createElement("svg",{id:"loader",style:{width:128,height:110,position:"absolute",top:"calc(100vh - 64%)"},viewBox:"0 0 45 45",xmlns:"http://www.w3.org/2000/svg",stroke:"#61dafb"},r.createElement("g",{fill:"none",fillRule:"evenodd",transform:"translate(1 1)",strokeWidth:"2"},r.createElement("circle",{cx:"22",cy:"22",r:"6",strokeOpacity:"0"},r.createElement("animate",{attributeName:"r",begin:"1.5s",dur:"3s",values:"6;22",calcMode:"linear",repeatCount:"indefinite"}),r.createElement("animate",{attributeName:"stroke-opacity",begin:"1.5s",dur:"3s",values:"1;0",calcMode:"linear",repeatCount:"indefinite"}),r.createElement("animate",{attributeName:"stroke-width",begin:"1.5s",dur:"3s",values:"2;0",calcMode:"linear",repeatCount:"indefinite"})),r.createElement("circle",{cx:"22",cy:"22",r:"6",strokeOpacity:"0"},r.createElement("animate",{attributeName:"r",begin:"3s",dur:"3s",values:"6;22",calcMode:"linear",repeatCount:"indefinite"}),r.createElement("animate",{attributeName:"stroke-opacity",begin:"3s",dur:"3s",values:"1;0",calcMode:"linear",repeatCount:"indefinite"}),r.createElement("animate",{attributeName:"stroke-width",begin:"3s",dur:"3s",values:"2;0",calcMode:"linear",repeatCount:"indefinite"})),r.createElement("circle",{cx:"22",cy:"22",r:"8"},r.createElement("animate",{attributeName:"r",begin:"0s",dur:"1.5s",values:"6;1;2;3;4;5;6",calcMode:"linear",repeatCount:"indefinite"}))))):null}var c=n(9670),d=n(226);function f(e,t){if("*"===e)return i()({loading:u,loader:()=>n.e(972).then(n.bind(n,4972)),modules:["@theme/NotFound"],webpack:()=>[4972],render(e,t){const n=e.default;return r.createElement(d.z,{value:{plugin:{name:"native",id:"default"}}},r.createElement(n,t))}});const o=l[`${e}-${t}`],f={},p=[],m=[],g=(0,c.Z)(o);return Object.entries(g).forEach((e=>{let[t,n]=e;const r=s[n];r&&(f[t]=r[0],p.push(r[1]),m.push(r[2]))})),i().Map({loading:u,loader:f,modules:p,webpack:()=>m,render(t,n){const i=JSON.parse(JSON.stringify(o));Object.entries(t).forEach((t=>{let[n,r]=t;const a=r.default;if(!a)throw new Error(`The page component at ${e} doesn't have a default export. This makes it impossible to render anything. Consider default-exporting a React component.`);"object"!=typeof a&&"function"!=typeof a||Object.keys(r).filter((e=>"default"!==e)).forEach((e=>{a[e]=r[e]}));let o=i;const l=n.split(".");l.slice(0,-1).forEach((e=>{o=o[e]})),o[l[l.length-1]]=a}));const l=i.__comp;delete i.__comp;const s=i.__context;return delete i.__context,r.createElement(d.z,{value:s},r.createElement(l,(0,a.Z)({},i,n)))}})}const p=[{path:"/cyclops/blog",component:f("/cyclops/blog","3f1"),exact:!0},{path:"/cyclops/blog/archive",component:f("/cyclops/blog/archive","e95"),exact:!0},{path:"/cyclops/blog/cyclops-alpha-release",component:f("/cyclops/blog/cyclops-alpha-release","fe3"),exact:!0},{path:"/cyclops/blog/tags",component:f("/cyclops/blog/tags","87a"),exact:!0},{path:"/cyclops/blog/tags/alpha",component:f("/cyclops/blog/tags/alpha","f73"),exact:!0},{path:"/cyclops/markdown-page",component:f("/cyclops/markdown-page","86a"),exact:!0},{path:"/cyclops/docs",component:f("/cyclops/docs","363"),routes:[{path:"/cyclops/docs/intro",component:f("/cyclops/docs/intro","7a7"),exact:!0,sidebar:"tutorialSidebar"}]},{path:"/cyclops/",component:f("/cyclops/","200"),exact:!0},{path:"*",component:f("*")}]},8934:(e,t,n)=>{"use strict";n.d(t,{_:()=>a,t:()=>o});var r=n(7294);const a=r.createContext(!1);function o(e){let{children:t}=e;const[n,o]=(0,r.useState)(!1);return(0,r.useEffect)((()=>{o(!0)}),[]),r.createElement(a.Provider,{value:n},t)}},9383:(e,t,n)=>{"use strict";var r=n(7294),a=n(3935),o=n(3727),i=n(405),l=n(412);const s=[n(2497),n(3310),n(8320),n(2295)];var u=n(723),c=n(6550),d=n(8790);function f(e){let{children:t}=e;return r.createElement(r.Fragment,null,t)}var p=n(7462),m=n(5742),g=n(2263),h=n(4996),v=n(6668),b=n(1944),y=n(4711),w=n(9727),k=n(3320),E=n(197);function S(){const{i18n:{defaultLocale:e,localeConfigs:t}}=(0,g.Z)(),n=(0,y.l)();return r.createElement(m.Z,null,Object.entries(t).map((e=>{let[t,{htmlLang:a}]=e;return r.createElement("link",{key:t,rel:"alternate",href:n.createUrl({locale:t,fullyQualified:!0}),hrefLang:a})})),r.createElement("link",{rel:"alternate",href:n.createUrl({locale:e,fullyQualified:!0}),hrefLang:"x-default"}))}function x(e){let{permalink:t}=e;const{siteConfig:{url:n}}=(0,g.Z)(),a=function(){const{siteConfig:{url:e}}=(0,g.Z)(),{pathname:t}=(0,c.TH)();return e+(0,h.Z)(t)}(),o=t?`${n}${t}`:a;return r.createElement(m.Z,null,r.createElement("meta",{property:"og:url",content:o}),r.createElement("link",{rel:"canonical",href:o}))}function C(){const{i18n:{currentLocale:e}}=(0,g.Z)(),{metadata:t,image:n}=(0,v.L)();return r.createElement(r.Fragment,null,r.createElement(m.Z,null,r.createElement("meta",{name:"twitter:card",content:"summary_large_image"}),r.createElement("body",{className:w.h})),n&&r.createElement(b.d,{image:n}),r.createElement(x,null),r.createElement(S,null),r.createElement(E.Z,{tag:k.HX,locale:e}),r.createElement(m.Z,null,t.map(((e,t)=>r.createElement("meta",(0,p.Z)({key:t},e))))))}const T=new Map;function _(e){if(T.has(e.pathname))return{...e,pathname:T.get(e.pathname)};if((0,d.f)(u.Z,e.pathname).some((e=>{let{route:t}=e;return!0===t.exact})))return T.set(e.pathname,e.pathname),e;const t=e.pathname.trim().replace(/(?:\/index)?\.html$/,"")||"/";return T.set(e.pathname,t),{...e,pathname:t}}var A=n(8934),L=n(8940);function R(e){for(var t=arguments.length,n=new Array(t>1?t-1:0),r=1;r{var r;const a=(null==(r=t.default)?void 0:r[e])??t[e];return null==a?void 0:a(...n)}));return()=>a.forEach((e=>null==e?void 0:e()))}const P=function(e){let{children:t,location:n,previousLocation:a}=e;return(0,r.useLayoutEffect)((()=>{a!==n&&(a&&function(e){const{hash:t}=e;if(t){const e=decodeURIComponent(t.substring(1)),n=document.getElementById(e);null==n||n.scrollIntoView()}else window.scrollTo(0,0)}(n),R("onRouteDidUpdate",{previousLocation:a,location:n}))}),[a,n]),t};function N(e){const t=Array.from(new Set([e,decodeURI(e)])).map((e=>(0,d.f)(u.Z,e))).flat();return Promise.all(t.map((e=>null==e.route.component.preload?void 0:e.route.component.preload())))}class O extends r.Component{constructor(e){super(e),this.previousLocation=void 0,this.routeUpdateCleanupCb=void 0,this.previousLocation=null,this.routeUpdateCleanupCb=l.Z.canUseDOM?R("onRouteUpdate",{previousLocation:null,location:this.props.location}):()=>{},this.state={nextRouteHasLoaded:!0}}shouldComponentUpdate(e,t){if(e.location===this.props.location)return t.nextRouteHasLoaded;const n=e.location;return this.previousLocation=this.props.location,this.setState({nextRouteHasLoaded:!1}),this.routeUpdateCleanupCb=R("onRouteUpdate",{previousLocation:this.previousLocation,location:n}),N(n.pathname).then((()=>{this.routeUpdateCleanupCb(),this.setState({nextRouteHasLoaded:!0})})).catch((e=>{console.warn(e),window.location.reload()})),!1}render(){const{children:e,location:t}=this.props;return r.createElement(P,{previousLocation:this.previousLocation,location:t},r.createElement(c.AW,{location:t,render:()=>e}))}}const I=O,D="docusaurus-base-url-issue-banner-container",M="docusaurus-base-url-issue-banner-suggestion-container",F="__DOCUSAURUS_INSERT_BASEURL_BANNER";function B(e){return`\nwindow['${F}'] = true;\n\ndocument.addEventListener('DOMContentLoaded', maybeInsertBanner);\n\nfunction maybeInsertBanner() {\n var shouldInsert = window['${F}'];\n shouldInsert && insertBanner();\n}\n\nfunction insertBanner() {\n var bannerContainer = document.getElementById('${D}');\n if (!bannerContainer) {\n return;\n }\n var bannerHtml = ${JSON.stringify(function(e){return`\n
      \n

      Your Docusaurus site did not load properly.

      \n

      A very common reason is a wrong site baseUrl configuration.

      \n

      Current configured baseUrl = ${e} ${"/"===e?" (default value)":""}

      \n

      We suggest trying baseUrl =

      \n
      \n`}(e)).replace(/{window[F]=!1}),[]),r.createElement(r.Fragment,null,!l.Z.canUseDOM&&r.createElement(m.Z,null,r.createElement("script",null,B(e))),r.createElement("div",{id:D}))}function z(){const{siteConfig:{baseUrl:e,baseUrlIssueBanner:t}}=(0,g.Z)(),{pathname:n}=(0,c.TH)();return t&&n===e?r.createElement(j,null):null}function U(){const{siteConfig:{favicon:e,title:t,noIndex:n},i18n:{currentLocale:a,localeConfigs:o}}=(0,g.Z)(),i=(0,h.Z)(e),{htmlLang:l,direction:s}=o[a];return r.createElement(m.Z,null,r.createElement("html",{lang:l,dir:s}),r.createElement("title",null,t),r.createElement("meta",{property:"og:title",content:t}),r.createElement("meta",{name:"viewport",content:"width=device-width, initial-scale=1.0"}),n&&r.createElement("meta",{name:"robots",content:"noindex, nofollow"}),e&&r.createElement("link",{rel:"icon",href:i}))}var $=n(4763);function q(){const e=(0,d.H)(u.Z),t=(0,c.TH)();return r.createElement($.Z,null,r.createElement(L.M,null,r.createElement(A.t,null,r.createElement(f,null,r.createElement(U,null),r.createElement(C,null),r.createElement(z,null),r.createElement(I,{location:_(t)},e)))))}var H=n(6887);const G=function(e){try{return document.createElement("link").relList.supports(e)}catch{return!1}}("prefetch")?function(e){return new Promise(((t,n)=>{var r;if("undefined"==typeof document)return void n();const a=document.createElement("link");a.setAttribute("rel","prefetch"),a.setAttribute("href",e),a.onload=()=>t(),a.onerror=()=>n();const o=document.getElementsByTagName("head")[0]??(null==(r=document.getElementsByName("script")[0])?void 0:r.parentNode);null==o||o.appendChild(a)}))}:function(e){return new Promise(((t,n)=>{const r=new XMLHttpRequest;r.open("GET",e,!0),r.withCredentials=!0,r.onload=()=>{200===r.status?t():n()},r.send(null)}))};var Z=n(9670);const V=new Set,W=new Set,Y=()=>{var e,t;return(null==(e=navigator.connection)?void 0:e.effectiveType.includes("2g"))||(null==(t=navigator.connection)?void 0:t.saveData)},K={prefetch(e){if(!(e=>!Y()&&!W.has(e)&&!V.has(e))(e))return!1;V.add(e);const t=(0,d.f)(u.Z,e).flatMap((e=>{return t=e.route.path,Object.entries(H).filter((e=>{let[n]=e;return n.replace(/-[^-]+$/,"")===t})).flatMap((e=>{let[,t]=e;return Object.values((0,Z.Z)(t))}));var t}));return Promise.all(t.map((e=>{const t=n.gca(e);return t&&!t.includes("undefined")?G(t).catch((()=>{})):Promise.resolve()})))},preload:e=>!!(e=>!Y()&&!W.has(e))(e)&&(W.add(e),N(e))},Q=Object.freeze(K);if(l.Z.canUseDOM){window.docusaurus=Q;const e=a.hydrate;N(window.location.pathname).then((()=>{e(r.createElement(i.B6,null,r.createElement(o.VK,null,r.createElement(q,null))),document.getElementById("__docusaurus"))}))}},8940:(e,t,n)=>{"use strict";n.d(t,{_:()=>c,M:()=>d});var r=n(7294),a=n(6809);const o=JSON.parse('{"docusaurus-plugin-content-docs":{"default":{"path":"/cyclops/docs","versions":[{"name":"current","label":"Next","isLast":true,"path":"/cyclops/docs","mainDocId":"intro","docs":[{"id":"intro","path":"/cyclops/docs/intro","sidebar":"tutorialSidebar"}],"draftIds":[],"sidebars":{"tutorialSidebar":{"link":{"path":"/cyclops/docs/intro","label":"intro"}}}}],"breadcrumbs":true}}}'),i=JSON.parse('{"defaultLocale":"en","locales":["en"],"path":"i18n","currentLocale":"en","localeConfigs":{"en":{"label":"English","direction":"ltr","htmlLang":"en","calendar":"gregory","path":"en"}}}');var l=n(7529);const s=JSON.parse('{"docusaurusVersion":"2.2.0","siteVersion":"0.0.0","pluginVersions":{"docusaurus-plugin-content-docs":{"type":"package","name":"@docusaurus/plugin-content-docs","version":"2.2.0"},"docusaurus-plugin-content-blog":{"type":"package","name":"@docusaurus/plugin-content-blog","version":"2.2.0"},"docusaurus-plugin-content-pages":{"type":"package","name":"@docusaurus/plugin-content-pages","version":"2.2.0"},"docusaurus-plugin-sitemap":{"type":"package","name":"@docusaurus/plugin-sitemap","version":"2.2.0"},"docusaurus-theme-classic":{"type":"package","name":"@docusaurus/theme-classic","version":"2.2.0"}}}'),u={siteConfig:a.default,siteMetadata:s,globalData:o,i18n:i,codeTranslations:l},c=r.createContext(u);function d(e){let{children:t}=e;return r.createElement(c.Provider,{value:u},t)}},4763:(e,t,n)=>{"use strict";n.d(t,{Z:()=>c});var r=n(7294),a=n(412),o=n(5742),i=n(3285);function l(e){let{error:t,tryAgain:n}=e;return r.createElement("div",{style:{display:"flex",flexDirection:"column",justifyContent:"center",alignItems:"center",height:"50vh",width:"100%",fontSize:"20px"}},r.createElement("h1",null,"This page crashed."),r.createElement("p",null,t.message),r.createElement("button",{type:"button",onClick:n},"Try again"))}function s(e){let{error:t,tryAgain:n}=e;return r.createElement(c,{fallback:()=>r.createElement(l,{error:t,tryAgain:n})},r.createElement(o.Z,null,r.createElement("title",null,"Page Error")),r.createElement(i.Z,null,r.createElement(l,{error:t,tryAgain:n})))}const u=e=>r.createElement(s,e);class c extends r.Component{constructor(e){super(e),this.state={error:null}}componentDidCatch(e){a.Z.canUseDOM&&this.setState({error:e})}render(){const{children:e}=this.props,{error:t}=this.state;if(t){const e={error:t,tryAgain:()=>this.setState({error:null})};return(this.props.fallback??u)(e)}return e??null}}},412:(e,t,n)=>{"use strict";n.d(t,{Z:()=>a});const r="undefined"!=typeof window&&"document"in window&&"createElement"in window.document,a={canUseDOM:r,canUseEventListeners:r&&("addEventListener"in window||"attachEvent"in window),canUseIntersectionObserver:r&&"IntersectionObserver"in window,canUseViewport:r&&"screen"in window}},5742:(e,t,n)=>{"use strict";n.d(t,{Z:()=>o});var r=n(7294),a=n(405);function o(e){return r.createElement(a.ql,e)}},9960:(e,t,n)=>{"use strict";n.d(t,{Z:()=>p});var r=n(7462),a=n(7294),o=n(3727),i=n(8780),l=n(2263),s=n(3919),u=n(412);const c=a.createContext({collectLink:()=>{}});var d=n(4996);function f(e,t){var n;let{isNavLink:f,to:p,href:m,activeClassName:g,isActive:h,"data-noBrokenLinkCheck":v,autoAddBaseUrl:b=!0,...y}=e;const{siteConfig:{trailingSlash:w,baseUrl:k}}=(0,l.Z)(),{withBaseUrl:E}=(0,d.C)(),S=(0,a.useContext)(c),x=(0,a.useRef)(null);(0,a.useImperativeHandle)(t,(()=>x.current));const C=p||m;const T=(0,s.Z)(C),_=null==C?void 0:C.replace("pathname://","");let A=void 0!==_?(L=_,b&&(e=>e.startsWith("/"))(L)?E(L):L):void 0;var L;A&&T&&(A=(0,i.applyTrailingSlash)(A,{trailingSlash:w,baseUrl:k}));const R=(0,a.useRef)(!1),P=f?o.OL:o.rU,N=u.Z.canUseIntersectionObserver,O=(0,a.useRef)(),I=()=>{R.current||null==A||(window.docusaurus.preload(A),R.current=!0)};(0,a.useEffect)((()=>(!N&&T&&null!=A&&window.docusaurus.prefetch(A),()=>{N&&O.current&&O.current.disconnect()})),[O,A,N,T]);const D=(null==(n=A)?void 0:n.startsWith("#"))??!1,M=!A||!T||D;return M||v||S.collectLink(A),M?a.createElement("a",(0,r.Z)({ref:x,href:A},C&&!T&&{target:"_blank",rel:"noopener noreferrer"},y)):a.createElement(P,(0,r.Z)({},y,{onMouseEnter:I,onTouchStart:I,innerRef:e=>{x.current=e,N&&e&&T&&(O.current=new window.IntersectionObserver((t=>{t.forEach((t=>{e===t.target&&(t.isIntersecting||t.intersectionRatio>0)&&(O.current.unobserve(e),O.current.disconnect(),null!=A&&window.docusaurus.prefetch(A))}))})),O.current.observe(e))},to:A},f&&{isActive:h,activeClassName:g}))}const p=a.forwardRef(f)},1875:(e,t,n)=>{"use strict";n.d(t,{Z:()=>r});const r=()=>null},5999:(e,t,n)=>{"use strict";n.d(t,{Z:()=>s,I:()=>l});var r=n(7294);function a(e,t){const n=e.split(/(\{\w+\})/).map(((e,n)=>{if(n%2==1){const n=null==t?void 0:t[e.slice(1,-1)];if(void 0!==n)return n}return e}));return n.some((e=>(0,r.isValidElement)(e)))?n.map(((e,t)=>(0,r.isValidElement)(e)?r.cloneElement(e,{key:t}):e)).filter((e=>""!==e)):n.join("")}var o=n(7529);function i(e){let{id:t,message:n}=e;if(void 0===t&&void 0===n)throw new Error("Docusaurus translation declarations must have at least a translation id or a default translation message");return o[t??n]??n??t}function l(e,t){let{message:n,id:r}=e;return a(i({message:n,id:r}),t)}function s(e){let{children:t,id:n,values:o}=e;if(t&&"string"!=typeof t)throw console.warn("Illegal children",t),new Error("The Docusaurus component only accept simple string values");const l=i({message:t,id:n});return r.createElement(r.Fragment,null,a(l,o))}},9935:(e,t,n)=>{"use strict";n.d(t,{m:()=>r});const r="default"},3919:(e,t,n)=>{"use strict";function r(e){return/^(?:\w*:|\/\/)/.test(e)}function a(e){return void 0!==e&&!r(e)}n.d(t,{Z:()=>a,b:()=>r})},4996:(e,t,n)=>{"use strict";n.d(t,{C:()=>o,Z:()=>i});var r=n(2263),a=n(3919);function o(){const{siteConfig:{baseUrl:e,url:t}}=(0,r.Z)();return{withBaseUrl:(n,r)=>function(e,t,n,r){let{forcePrependBaseUrl:o=!1,absolute:i=!1}=void 0===r?{}:r;if(!n||n.startsWith("#")||(0,a.b)(n))return n;if(o)return t+n.replace(/^\//,"");if(n===t.replace(/\/$/,""))return t;const l=n.startsWith(t)?n:t+n.replace(/^\//,"");return i?e+l:l}(t,e,n,r)}}function i(e,t){void 0===t&&(t={});const{withBaseUrl:n}=o();return n(e,t)}},2263:(e,t,n)=>{"use strict";n.d(t,{Z:()=>o});var r=n(7294),a=n(8940);function o(){return(0,r.useContext)(a._)}},2389:(e,t,n)=>{"use strict";n.d(t,{Z:()=>o});var r=n(7294),a=n(8934);function o(){return(0,r.useContext)(a._)}},9670:(e,t,n)=>{"use strict";n.d(t,{Z:()=>r});function r(e){const t={};return function e(n,r){Object.entries(n).forEach((n=>{let[a,o]=n;const i=r?`${r}.${a}`:a;var l;"object"==typeof(l=o)&&l&&Object.keys(l).length>0?e(o,i):t[i]=o}))}(e),t}},226:(e,t,n)=>{"use strict";n.d(t,{_:()=>a,z:()=>o});var r=n(7294);const a=r.createContext(null);function o(e){let{children:t,value:n}=e;const o=r.useContext(a),i=(0,r.useMemo)((()=>function(e){let{parent:t,value:n}=e;if(!t){if(!n)throw new Error("Unexpected: no Docusaurus route context found");if(!("plugin"in n))throw new Error("Unexpected: Docusaurus topmost route context has no `plugin` attribute");return n}const r={...t.data,...null==n?void 0:n.data};return{plugin:t.plugin,data:r}}({parent:o,value:n})),[o,n]);return r.createElement(a.Provider,{value:i},t)}},143:(e,t,n)=>{"use strict";n.d(t,{Iw:()=>g,gA:()=>f,_r:()=>c,Jo:()=>h,zh:()=>d,yW:()=>m,gB:()=>p});var r=n(6550),a=n(2263),o=n(9935);function i(e,t){void 0===t&&(t={});const n=function(){const{globalData:e}=(0,a.Z)();return e}()[e];if(!n&&t.failfast)throw new Error(`Docusaurus plugin global data not found for "${e}" plugin.`);return n}const l=e=>e.versions.find((e=>e.isLast));function s(e,t){const n=function(e,t){const n=l(e);return[...e.versions.filter((e=>e!==n)),n].find((e=>!!(0,r.LX)(t,{path:e.path,exact:!1,strict:!1})))}(e,t),a=null==n?void 0:n.docs.find((e=>!!(0,r.LX)(t,{path:e.path,exact:!0,strict:!1})));return{activeVersion:n,activeDoc:a,alternateDocVersions:a?function(t){const n={};return e.versions.forEach((e=>{e.docs.forEach((r=>{r.id===t&&(n[e.name]=r)}))})),n}(a.id):{}}}const u={},c=()=>i("docusaurus-plugin-content-docs")??u,d=e=>function(e,t,n){void 0===t&&(t=o.m),void 0===n&&(n={});const r=i(e),a=null==r?void 0:r[t];if(!a&&n.failfast)throw new Error(`Docusaurus plugin global data not found for "${e}" plugin with id "${t}".`);return a}("docusaurus-plugin-content-docs",e,{failfast:!0});function f(e){void 0===e&&(e={});const t=c(),{pathname:n}=(0,r.TH)();return function(e,t,n){void 0===n&&(n={});const a=Object.entries(e).sort(((e,t)=>t[1].path.localeCompare(e[1].path))).find((e=>{let[,n]=e;return!!(0,r.LX)(t,{path:n.path,exact:!1,strict:!1})})),o=a?{pluginId:a[0],pluginData:a[1]}:void 0;if(!o&&n.failfast)throw new Error(`Can't find active docs plugin for "${t}" pathname, while it was expected to be found. Maybe you tried to use a docs feature that can only be used on a docs-related page? Existing docs plugin paths are: ${Object.values(e).map((e=>e.path)).join(", ")}`);return o}(t,n,e)}function p(e){return d(e).versions}function m(e){const t=d(e);return l(t)}function g(e){const t=d(e),{pathname:n}=(0,r.TH)();return s(t,n)}function h(e){const t=d(e),{pathname:n}=(0,r.TH)();return function(e,t){const n=l(e);return{latestDocSuggestion:s(e,t).alternateDocVersions[n.name],latestVersionSuggestion:n}}(t,n)}},8320:(e,t,n)=>{"use strict";n.r(t),n.d(t,{default:()=>o});var r=n(4865),a=n.n(r);a().configure({showSpinner:!1});const o={onRouteUpdate(e){let{location:t,previousLocation:n}=e;if(n&&t.pathname!==n.pathname){const e=window.setTimeout((()=>{a().start()}),200);return()=>window.clearTimeout(e)}},onRouteDidUpdate(){a().done()}}},3310:(e,t,n)=>{"use strict";n.r(t);var r=n(7410),a=n(6809);!function(e){const{themeConfig:{prism:t}}=a.default,{additionalLanguages:r}=t;globalThis.Prism=e,r.forEach((e=>{n(6726)(`./prism-${e}`)})),delete globalThis.Prism}(r.Z)},9471:(e,t,n)=>{"use strict";n.d(t,{Z:()=>o});var r=n(7294);const a="iconExternalLink_nPIU";function o(e){let{width:t=13.5,height:n=13.5}=e;return r.createElement("svg",{width:t,height:n,"aria-hidden":"true",viewBox:"0 0 24 24",className:a},r.createElement("path",{fill:"currentColor",d:"M21 13v10h-21v-19h12v2h-10v15h17v-8h2zm3-12h-10.988l4.035 4-6.977 7.07 2.828 2.828 6.977-7.07 4.125 4.172v-11z"}))}},3285:(e,t,n)=>{"use strict";n.d(t,{Z:()=>dt});var r=n(7294),a=n(6010),o=n(4763),i=n(1944),l=n(7462),s=n(6550),u=n(5999),c=n(5936);const d="docusaurus_skipToContent_fallback";function f(e){e.setAttribute("tabindex","-1"),e.focus(),e.removeAttribute("tabindex")}function p(){const e=(0,r.useRef)(null),{action:t}=(0,s.k6)(),n=(0,r.useCallback)((e=>{e.preventDefault();const t=document.querySelector("main:first-of-type")??document.getElementById(d);t&&f(t)}),[]);return(0,c.S)((n=>{let{location:r}=n;e.current&&!r.hash&&"PUSH"===t&&f(e.current)})),{containerRef:e,onClick:n}}const m=(0,u.I)({id:"theme.common.skipToMainContent",description:"The skip to content label used for accessibility, allowing to rapidly navigate to main content with keyboard tab/enter navigation",message:"Skip to main content"});function g(e){const t=e.children??m,{containerRef:n,onClick:a}=p();return r.createElement("div",{ref:n,role:"region","aria-label":m},r.createElement("a",(0,l.Z)({},e,{href:`#${d}`,onClick:a}),t))}var h=n(5281),v=n(9727);const b="skipToContent_fXgn";function y(){return r.createElement(g,{className:b})}var w=n(6668),k=n(9689);function E(e){let{width:t=21,height:n=21,color:a="currentColor",strokeWidth:o=1.2,className:i,...s}=e;return r.createElement("svg",(0,l.Z)({viewBox:"0 0 15 15",width:t,height:n},s),r.createElement("g",{stroke:a,strokeWidth:o},r.createElement("path",{d:"M.75.75l13.5 13.5M14.25.75L.75 14.25"})))}const S="closeButton_CVFx";function x(e){return r.createElement("button",(0,l.Z)({type:"button","aria-label":(0,u.I)({id:"theme.AnnouncementBar.closeButtonAriaLabel",message:"Close",description:"The ARIA label for close button of announcement bar"})},e,{className:(0,a.Z)("clean-btn close",S,e.className)}),r.createElement(E,{width:14,height:14,strokeWidth:3.1}))}const C="content_knG7";function T(e){const{announcementBar:t}=(0,w.L)(),{content:n}=t;return r.createElement("div",(0,l.Z)({},e,{className:(0,a.Z)(C,e.className),dangerouslySetInnerHTML:{__html:n}}))}const _="announcementBar_mb4j",A="announcementBarPlaceholder_vyr4",L="announcementBarClose_gvF7",R="announcementBarContent_xLdY";function P(){const{announcementBar:e}=(0,w.L)(),{isActive:t,close:n}=(0,k.nT)();if(!t)return null;const{backgroundColor:a,textColor:o,isCloseable:i}=e;return r.createElement("div",{className:_,style:{backgroundColor:a,color:o},role:"banner"},i&&r.createElement("div",{className:A}),r.createElement(T,{className:R}),i&&r.createElement(x,{onClick:n,className:L}))}var N=n(2961),O=n(2466);var I=n(902),D=n(3102);const M=r.createContext(null);function F(e){let{children:t}=e;const n=function(){const e=(0,N.e)(),t=(0,D.HY)(),[n,a]=(0,r.useState)(!1),o=null!==t.component,i=(0,I.D9)(o);return(0,r.useEffect)((()=>{o&&!i&&a(!0)}),[o,i]),(0,r.useEffect)((()=>{o?e.shown||a(!0):a(!1)}),[e.shown,o]),(0,r.useMemo)((()=>[n,a]),[n])}();return r.createElement(M.Provider,{value:n},t)}function B(e){if(e.component){const t=e.component;return r.createElement(t,e.props)}}function j(){const e=(0,r.useContext)(M);if(!e)throw new I.i6("NavbarSecondaryMenuDisplayProvider");const[t,n]=e,a=(0,r.useCallback)((()=>n(!1)),[n]),o=(0,D.HY)();return(0,r.useMemo)((()=>({shown:t,hide:a,content:B(o)})),[a,o,t])}function z(e){let{header:t,primaryMenu:n,secondaryMenu:o}=e;const{shown:i}=j();return r.createElement("div",{className:"navbar-sidebar"},t,r.createElement("div",{className:(0,a.Z)("navbar-sidebar__items",{"navbar-sidebar__items--show-secondary":i})},r.createElement("div",{className:"navbar-sidebar__item menu"},n),r.createElement("div",{className:"navbar-sidebar__item menu"},o)))}var U=n(2949),$=n(2389);function q(e){return r.createElement("svg",(0,l.Z)({viewBox:"0 0 24 24",width:24,height:24},e),r.createElement("path",{fill:"currentColor",d:"M12,9c1.65,0,3,1.35,3,3s-1.35,3-3,3s-3-1.35-3-3S10.35,9,12,9 M12,7c-2.76,0-5,2.24-5,5s2.24,5,5,5s5-2.24,5-5 S14.76,7,12,7L12,7z M2,13l2,0c0.55,0,1-0.45,1-1s-0.45-1-1-1l-2,0c-0.55,0-1,0.45-1,1S1.45,13,2,13z M20,13l2,0c0.55,0,1-0.45,1-1 s-0.45-1-1-1l-2,0c-0.55,0-1,0.45-1,1S19.45,13,20,13z M11,2v2c0,0.55,0.45,1,1,1s1-0.45,1-1V2c0-0.55-0.45-1-1-1S11,1.45,11,2z M11,20v2c0,0.55,0.45,1,1,1s1-0.45,1-1v-2c0-0.55-0.45-1-1-1C11.45,19,11,19.45,11,20z M5.99,4.58c-0.39-0.39-1.03-0.39-1.41,0 c-0.39,0.39-0.39,1.03,0,1.41l1.06,1.06c0.39,0.39,1.03,0.39,1.41,0s0.39-1.03,0-1.41L5.99,4.58z M18.36,16.95 c-0.39-0.39-1.03-0.39-1.41,0c-0.39,0.39-0.39,1.03,0,1.41l1.06,1.06c0.39,0.39,1.03,0.39,1.41,0c0.39-0.39,0.39-1.03,0-1.41 L18.36,16.95z M19.42,5.99c0.39-0.39,0.39-1.03,0-1.41c-0.39-0.39-1.03-0.39-1.41,0l-1.06,1.06c-0.39,0.39-0.39,1.03,0,1.41 s1.03,0.39,1.41,0L19.42,5.99z M7.05,18.36c0.39-0.39,0.39-1.03,0-1.41c-0.39-0.39-1.03-0.39-1.41,0l-1.06,1.06 c-0.39,0.39-0.39,1.03,0,1.41s1.03,0.39,1.41,0L7.05,18.36z"}))}function H(e){return r.createElement("svg",(0,l.Z)({viewBox:"0 0 24 24",width:24,height:24},e),r.createElement("path",{fill:"currentColor",d:"M9.37,5.51C9.19,6.15,9.1,6.82,9.1,7.5c0,4.08,3.32,7.4,7.4,7.4c0.68,0,1.35-0.09,1.99-0.27C17.45,17.19,14.93,19,12,19 c-3.86,0-7-3.14-7-7C5,9.07,6.81,6.55,9.37,5.51z M12,3c-4.97,0-9,4.03-9,9s4.03,9,9,9s9-4.03,9-9c0-0.46-0.04-0.92-0.1-1.36 c-0.98,1.37-2.58,2.26-4.4,2.26c-2.98,0-5.4-2.42-5.4-5.4c0-1.81,0.89-3.42,2.26-4.4C12.92,3.04,12.46,3,12,3L12,3z"}))}const G={toggle:"toggle_vylO",toggleButton:"toggleButton_gllP",darkToggleIcon:"darkToggleIcon_wfgR",lightToggleIcon:"lightToggleIcon_pyhR",toggleButtonDisabled:"toggleButtonDisabled_aARS"};function Z(e){let{className:t,value:n,onChange:o}=e;const i=(0,$.Z)(),l=(0,u.I)({message:"Switch between dark and light mode (currently {mode})",id:"theme.colorToggle.ariaLabel",description:"The ARIA label for the navbar color mode toggle"},{mode:"dark"===n?(0,u.I)({message:"dark mode",id:"theme.colorToggle.ariaLabel.mode.dark",description:"The name for the dark color mode"}):(0,u.I)({message:"light mode",id:"theme.colorToggle.ariaLabel.mode.light",description:"The name for the light color mode"})});return r.createElement("div",{className:(0,a.Z)(G.toggle,t)},r.createElement("button",{className:(0,a.Z)("clean-btn",G.toggleButton,!i&&G.toggleButtonDisabled),type:"button",onClick:()=>o("dark"===n?"light":"dark"),disabled:!i,title:l,"aria-label":l,"aria-live":"polite"},r.createElement(q,{className:(0,a.Z)(G.toggleIcon,G.lightToggleIcon)}),r.createElement(H,{className:(0,a.Z)(G.toggleIcon,G.darkToggleIcon)})))}const V=r.memo(Z);function W(e){let{className:t}=e;const n=(0,w.L)().colorMode.disableSwitch,{colorMode:a,setColorMode:o}=(0,U.I)();return n?null:r.createElement(V,{className:t,value:a,onChange:o})}var Y=n(1327);function K(){return r.createElement(Y.Z,{className:"navbar__brand",imageClassName:"navbar__logo",titleClassName:"navbar__title text--truncate"})}function Q(){const e=(0,N.e)();return r.createElement("button",{type:"button","aria-label":(0,u.I)({id:"theme.docs.sidebar.closeSidebarButtonAriaLabel",message:"Close navigation bar",description:"The ARIA label for close button of mobile sidebar"}),className:"clean-btn navbar-sidebar__close",onClick:()=>e.toggle()},r.createElement(E,{color:"var(--ifm-color-emphasis-600)"}))}function X(){return r.createElement("div",{className:"navbar-sidebar__brand"},r.createElement(K,null),r.createElement(W,{className:"margin-right--md"}),r.createElement(Q,null))}var J=n(9960),ee=n(4996),te=n(3919);function ne(e,t){return void 0!==e&&void 0!==t&&new RegExp(e,"gi").test(t)}var re=n(9471);function ae(e){let{activeBasePath:t,activeBaseRegex:n,to:a,href:o,label:i,html:s,isDropdownLink:u,prependBaseUrlToHref:c,...d}=e;const f=(0,ee.Z)(a),p=(0,ee.Z)(t),m=(0,ee.Z)(o,{forcePrependBaseUrl:!0}),g=i&&o&&!(0,te.Z)(o),h=s?{dangerouslySetInnerHTML:{__html:s}}:{children:r.createElement(r.Fragment,null,i,g&&r.createElement(re.Z,u&&{width:12,height:12}))};return o?r.createElement(J.Z,(0,l.Z)({href:c?m:o},d,h)):r.createElement(J.Z,(0,l.Z)({to:f,isNavLink:!0},(t||n)&&{isActive:(e,t)=>n?ne(n,t.pathname):t.pathname.startsWith(p)},d,h))}function oe(e){let{className:t,isDropdownItem:n=!1,...o}=e;const i=r.createElement(ae,(0,l.Z)({className:(0,a.Z)(n?"dropdown__link":"navbar__item navbar__link",t),isDropdownLink:n},o));return n?r.createElement("li",null,i):i}function ie(e){let{className:t,isDropdownItem:n,...o}=e;return r.createElement("li",{className:"menu__list-item"},r.createElement(ae,(0,l.Z)({className:(0,a.Z)("menu__link",t)},o)))}function le(e){let{mobile:t=!1,position:n,...a}=e;const o=t?ie:oe;return r.createElement(o,(0,l.Z)({},a,{activeClassName:a.activeClassName??(t?"menu__link--active":"navbar__link--active")}))}var se=n(6043),ue=n(8596),ce=n(2263);function de(e,t){return e.some((e=>function(e,t){return!!(0,ue.Mg)(e.to,t)||!!ne(e.activeBaseRegex,t)||!(!e.activeBasePath||!t.startsWith(e.activeBasePath))}(e,t)))}function fe(e){let{items:t,position:n,className:o,onClick:i,...s}=e;const u=(0,r.useRef)(null),[c,d]=(0,r.useState)(!1);return(0,r.useEffect)((()=>{const e=e=>{u.current&&!u.current.contains(e.target)&&d(!1)};return document.addEventListener("mousedown",e),document.addEventListener("touchstart",e),()=>{document.removeEventListener("mousedown",e),document.removeEventListener("touchstart",e)}}),[u]),r.createElement("div",{ref:u,className:(0,a.Z)("navbar__item","dropdown","dropdown--hoverable",{"dropdown--right":"right"===n,"dropdown--show":c})},r.createElement(ae,(0,l.Z)({"aria-haspopup":"true","aria-expanded":c,role:"button",href:s.to?void 0:"#",className:(0,a.Z)("navbar__link",o)},s,{onClick:s.to?void 0:e=>e.preventDefault(),onKeyDown:e=>{"Enter"===e.key&&(e.preventDefault(),d(!c))}}),s.children??s.label),r.createElement("ul",{className:"dropdown__menu"},t.map(((e,n)=>r.createElement(Te,(0,l.Z)({isDropdownItem:!0,onKeyDown:e=>{if(n===t.length-1&&"Tab"===e.key){e.preventDefault(),d(!1);const t=u.current.nextElementSibling;if(t){(t instanceof HTMLAnchorElement?t:t.querySelector("a")).focus()}}},activeClassName:"dropdown__link--active"},e,{key:n}))))))}function pe(e){let{items:t,className:n,position:o,onClick:i,...u}=e;const c=function(){const{siteConfig:{baseUrl:e}}=(0,ce.Z)(),{pathname:t}=(0,s.TH)();return t.replace(e,"/")}(),d=de(t,c),{collapsed:f,toggleCollapsed:p,setCollapsed:m}=(0,se.u)({initialState:()=>!d});return(0,r.useEffect)((()=>{d&&m(!d)}),[c,d,m]),r.createElement("li",{className:(0,a.Z)("menu__list-item",{"menu__list-item--collapsed":f})},r.createElement(ae,(0,l.Z)({role:"button",className:(0,a.Z)("menu__link menu__link--sublist menu__link--sublist-caret",n)},u,{onClick:e=>{e.preventDefault(),p()}}),u.children??u.label),r.createElement(se.z,{lazy:!0,as:"ul",className:"menu__list",collapsed:f},t.map(((e,t)=>r.createElement(Te,(0,l.Z)({mobile:!0,isDropdownItem:!0,onClick:i,activeClassName:"menu__link--active"},e,{key:t}))))))}function me(e){let{mobile:t=!1,...n}=e;const a=t?pe:fe;return r.createElement(a,n)}var ge=n(4711);function he(e){let{width:t=20,height:n=20,...a}=e;return r.createElement("svg",(0,l.Z)({viewBox:"0 0 24 24",width:t,height:n,"aria-hidden":!0},a),r.createElement("path",{fill:"currentColor",d:"M12.87 15.07l-2.54-2.51.03-.03c1.74-1.94 2.98-4.17 3.71-6.53H17V4h-7V2H8v2H1v1.99h11.17C11.5 7.92 10.44 9.75 9 11.35 8.07 10.32 7.3 9.19 6.69 8h-2c.73 1.63 1.73 3.17 2.98 4.56l-5.09 5.02L4 19l5-5 3.11 3.11.76-2.04zM18.5 10h-2L12 22h2l1.12-3h4.75L21 22h2l-4.5-12zm-2.62 7l1.62-4.33L19.12 17h-3.24z"}))}const ve="iconLanguage_nlXk";var be=n(1875);const ye="searchBox_ZlJk";function we(e){let{children:t,className:n}=e;return r.createElement("div",{className:(0,a.Z)(n,ye)},t)}var ke=n(143),Ee=n(2802);var Se=n(373);const xe=e=>e.docs.find((t=>t.id===e.mainDocId));const Ce={default:le,localeDropdown:function(e){let{mobile:t,dropdownItemsBefore:n,dropdownItemsAfter:a,...o}=e;const{i18n:{currentLocale:i,locales:c,localeConfigs:d}}=(0,ce.Z)(),f=(0,ge.l)(),{search:p,hash:m}=(0,s.TH)(),g=[...n,...c.map((e=>{const n=`${`pathname://${f.createUrl({locale:e,fullyQualified:!1})}`}${p}${m}`;return{label:d[e].label,lang:d[e].htmlLang,to:n,target:"_self",autoAddBaseUrl:!1,className:e===i?t?"menu__link--active":"dropdown__link--active":""}})),...a],h=t?(0,u.I)({message:"Languages",id:"theme.navbar.mobileLanguageDropdown.label",description:"The label for the mobile language switcher dropdown"}):d[i].label;return r.createElement(me,(0,l.Z)({},o,{mobile:t,label:r.createElement(r.Fragment,null,r.createElement(he,{className:ve}),h),items:g}))},search:function(e){let{mobile:t,className:n}=e;return t?null:r.createElement(we,{className:n},r.createElement(be.Z,null))},dropdown:me,html:function(e){let{value:t,className:n,mobile:o=!1,isDropdownItem:i=!1}=e;const l=i?"li":"div";return r.createElement(l,{className:(0,a.Z)({navbar__item:!o&&!i,"menu__list-item":o},n),dangerouslySetInnerHTML:{__html:t}})},doc:function(e){let{docId:t,label:n,docsPluginId:a,...o}=e;const{activeDoc:i}=(0,ke.Iw)(a),s=(0,Ee.vY)(t,a);return null===s?null:r.createElement(le,(0,l.Z)({exact:!0},o,{isActive:()=>(null==i?void 0:i.path)===s.path||!(null==i||!i.sidebar)&&i.sidebar===s.sidebar,label:n??s.id,to:s.path}))},docSidebar:function(e){let{sidebarId:t,label:n,docsPluginId:a,...o}=e;const{activeDoc:i}=(0,ke.Iw)(a),s=(0,Ee.oz)(t,a).link;if(!s)throw new Error(`DocSidebarNavbarItem: Sidebar with ID "${t}" doesn't have anything to be linked to.`);return r.createElement(le,(0,l.Z)({exact:!0},o,{isActive:()=>(null==i?void 0:i.sidebar)===t,label:n??s.label,to:s.path}))},docsVersion:function(e){let{label:t,to:n,docsPluginId:a,...o}=e;const i=(0,Ee.lO)(a)[0],s=t??i.label,u=n??(e=>e.docs.find((t=>t.id===e.mainDocId)))(i).path;return r.createElement(le,(0,l.Z)({},o,{label:s,to:u}))},docsVersionDropdown:function(e){let{mobile:t,docsPluginId:n,dropdownActiveClassDisabled:a,dropdownItemsBefore:o,dropdownItemsAfter:i,...c}=e;const{search:d,hash:f}=(0,s.TH)(),p=(0,ke.Iw)(n),m=(0,ke.gB)(n),{savePreferredVersionName:g}=(0,Se.J)(n),h=[...o,...m.map((e=>{const t=p.alternateDocVersions[e.name]??xe(e);return{label:e.label,to:`${t.path}${d}${f}`,isActive:()=>e===p.activeVersion,onClick:()=>g(e.name)}})),...i],v=(0,Ee.lO)(n)[0],b=t&&h.length>1?(0,u.I)({id:"theme.navbar.mobileVersionsDropdown.label",message:"Versions",description:"The label for the navbar versions dropdown on mobile view"}):v.label,y=t&&h.length>1?void 0:xe(v).path;return h.length<=1?r.createElement(le,(0,l.Z)({},c,{mobile:t,label:b,to:y,isActive:a?()=>!1:void 0})):r.createElement(me,(0,l.Z)({},c,{mobile:t,label:b,to:y,items:h,isActive:a?()=>!1:void 0}))}};function Te(e){let{type:t,...n}=e;const a=function(e,t){return e&&"default"!==e?e:"items"in t?"dropdown":"default"}(t,n),o=Ce[a];if(!o)throw new Error(`No NavbarItem component found for type "${t}".`);return r.createElement(o,n)}function _e(){const e=(0,N.e)(),t=(0,w.L)().navbar.items;return r.createElement("ul",{className:"menu__list"},t.map(((t,n)=>r.createElement(Te,(0,l.Z)({mobile:!0},t,{onClick:()=>e.toggle(),key:n})))))}function Ae(e){return r.createElement("button",(0,l.Z)({},e,{type:"button",className:"clean-btn navbar-sidebar__back"}),r.createElement(u.Z,{id:"theme.navbar.mobileSidebarSecondaryMenu.backButtonLabel",description:"The label of the back button to return to main menu, inside the mobile navbar sidebar secondary menu (notably used to display the docs sidebar)"},"\u2190 Back to main menu"))}function Le(){const e=0===(0,w.L)().navbar.items.length,t=j();return r.createElement(r.Fragment,null,!e&&r.createElement(Ae,{onClick:()=>t.hide()}),t.content)}function Re(){const e=(0,N.e)();var t;return void 0===(t=e.shown)&&(t=!0),(0,r.useEffect)((()=>(document.body.style.overflow=t?"hidden":"visible",()=>{document.body.style.overflow="visible"})),[t]),e.shouldRender?r.createElement(z,{header:r.createElement(X,null),primaryMenu:r.createElement(_e,null),secondaryMenu:r.createElement(Le,null)}):null}const Pe="navbarHideable_m1mJ",Ne="navbarHidden_jGov";function Oe(e){return r.createElement("div",(0,l.Z)({role:"presentation"},e,{className:(0,a.Z)("navbar-sidebar__backdrop",e.className)}))}function Ie(e){let{children:t}=e;const{navbar:{hideOnScroll:n,style:o}}=(0,w.L)(),i=(0,N.e)(),{navbarRef:l,isNavbarVisible:s}=function(e){const[t,n]=(0,r.useState)(e),a=(0,r.useRef)(!1),o=(0,r.useRef)(0),i=(0,r.useCallback)((e=>{null!==e&&(o.current=e.getBoundingClientRect().height)}),[]);return(0,O.RF)(((t,r)=>{let{scrollY:i}=t;if(!e)return;if(i=l?n(!1):i+u{if(!e)return;const r=t.location.hash;if(r?document.getElementById(r.substring(1)):void 0)return a.current=!0,void n(!1);n(!0)})),{navbarRef:i,isNavbarVisible:t}}(n);return r.createElement("nav",{ref:l,className:(0,a.Z)("navbar","navbar--fixed-top",n&&[Pe,!s&&Ne],{"navbar--dark":"dark"===o,"navbar--primary":"primary"===o,"navbar-sidebar--show":i.shown})},t,r.createElement(Oe,{onClick:i.toggle}),r.createElement(Re,null))}function De(e){let{width:t=30,height:n=30,className:a,...o}=e;return r.createElement("svg",(0,l.Z)({className:a,width:t,height:n,viewBox:"0 0 30 30","aria-hidden":"true"},o),r.createElement("path",{stroke:"currentColor",strokeLinecap:"round",strokeMiterlimit:"10",strokeWidth:"2",d:"M4 7h22M4 15h22M4 23h22"}))}function Me(){const{toggle:e,shown:t}=(0,N.e)();return r.createElement("button",{onClick:e,"aria-label":(0,u.I)({id:"theme.docs.sidebar.toggleSidebarButtonAriaLabel",message:"Toggle navigation bar",description:"The ARIA label for hamburger menu button of mobile navigation"}),"aria-expanded":t,className:"navbar__toggle clean-btn",type:"button"},r.createElement(De,null))}const Fe="colorModeToggle_DEke";function Be(e){let{items:t}=e;return r.createElement(r.Fragment,null,t.map(((e,t)=>r.createElement(Te,(0,l.Z)({},e,{key:t})))))}function je(e){let{left:t,right:n}=e;return r.createElement("div",{className:"navbar__inner"},r.createElement("div",{className:"navbar__items"},t),r.createElement("div",{className:"navbar__items navbar__items--right"},n))}function ze(){const e=(0,N.e)(),t=(0,w.L)().navbar.items,[n,a]=function(e){function t(e){return"left"===(e.position??"right")}return[e.filter(t),e.filter((e=>!t(e)))]}(t),o=t.find((e=>"search"===e.type));return r.createElement(je,{left:r.createElement(r.Fragment,null,!e.disabled&&r.createElement(Me,null),r.createElement(K,null),r.createElement(Be,{items:n})),right:r.createElement(r.Fragment,null,r.createElement(Be,{items:a}),r.createElement(W,{className:Fe}),!o&&r.createElement(we,null,r.createElement(be.Z,null)))})}function Ue(){return r.createElement(Ie,null,r.createElement(ze,null))}function $e(e){let{item:t}=e;const{to:n,href:a,label:o,prependBaseUrlToHref:i,...s}=t,u=(0,ee.Z)(n),c=(0,ee.Z)(a,{forcePrependBaseUrl:!0});return r.createElement(J.Z,(0,l.Z)({className:"footer__link-item"},a?{href:i?c:a}:{to:u},s),o,a&&!(0,te.Z)(a)&&r.createElement(re.Z,null))}function qe(e){let{item:t}=e;return t.html?r.createElement("li",{className:"footer__item",dangerouslySetInnerHTML:{__html:t.html}}):r.createElement("li",{key:t.href??t.to,className:"footer__item"},r.createElement($e,{item:t}))}function He(e){let{column:t}=e;return r.createElement("div",{className:"col footer__col"},r.createElement("div",{className:"footer__title"},t.title),r.createElement("ul",{className:"footer__items clean-list"},t.items.map(((e,t)=>r.createElement(qe,{key:t,item:e})))))}function Ge(e){let{columns:t}=e;return r.createElement("div",{className:"row footer__links"},t.map(((e,t)=>r.createElement(He,{key:t,column:e}))))}function Ze(){return r.createElement("span",{className:"footer__link-separator"},"\xb7")}function Ve(e){let{item:t}=e;return t.html?r.createElement("span",{className:"footer__link-item",dangerouslySetInnerHTML:{__html:t.html}}):r.createElement($e,{item:t})}function We(e){let{links:t}=e;return r.createElement("div",{className:"footer__links text--center"},r.createElement("div",{className:"footer__links"},t.map(((e,n)=>r.createElement(r.Fragment,{key:n},r.createElement(Ve,{item:e}),t.length!==n+1&&r.createElement(Ze,null))))))}function Ye(e){let{links:t}=e;return function(e){return"title"in e[0]}(t)?r.createElement(Ge,{columns:t}):r.createElement(We,{links:t})}var Ke=n(941);const Qe="footerLogoLink_BH7S";function Xe(e){let{logo:t}=e;const{withBaseUrl:n}=(0,ee.C)(),o={light:n(t.src),dark:n(t.srcDark??t.src)};return r.createElement(Ke.Z,{className:(0,a.Z)("footer__logo",t.className),alt:t.alt,sources:o,width:t.width,height:t.height,style:t.style})}function Je(e){let{logo:t}=e;return t.href?r.createElement(J.Z,{href:t.href,className:Qe,target:t.target},r.createElement(Xe,{logo:t})):r.createElement(Xe,{logo:t})}function et(e){let{copyright:t}=e;return r.createElement("div",{className:"footer__copyright",dangerouslySetInnerHTML:{__html:t}})}function tt(e){let{style:t,links:n,logo:o,copyright:i}=e;return r.createElement("footer",{className:(0,a.Z)("footer",{"footer--dark":"dark"===t})},r.createElement("div",{className:"container container-fluid"},n,(o||i)&&r.createElement("div",{className:"footer__bottom text--center"},o&&r.createElement("div",{className:"margin-bottom--sm"},o),i)))}function nt(){const{footer:e}=(0,w.L)();if(!e)return null;const{copyright:t,links:n,logo:a,style:o}=e;return r.createElement(tt,{style:o,links:n&&n.length>0&&r.createElement(Ye,{links:n}),logo:a&&r.createElement(Je,{logo:a}),copyright:t&&r.createElement(et,{copyright:t})})}const rt=r.memo(nt);var at=n(12);const ot="docusaurus.tab.",it=r.createContext(void 0);const lt=(0,I.Qc)([U.S,k.pl,function(e){let{children:t}=e;const n=function(){const[e,t]=(0,r.useState)({}),n=(0,r.useCallback)(((e,t)=>{(0,at.W)(`docusaurus.tab.${e}`).set(t)}),[]);(0,r.useEffect)((()=>{try{const e={};(0,at._)().forEach((t=>{if(t.startsWith(ot)){const n=t.substring(ot.length);e[n]=(0,at.W)(t).get()}})),t(e)}catch(e){console.error(e)}}),[]);const a=(0,r.useCallback)(((e,r)=>{t((t=>({...t,[e]:r}))),n(e,r)}),[n]);return(0,r.useMemo)((()=>({tabGroupChoices:e,setTabGroupChoices:a})),[e,a])}();return r.createElement(it.Provider,{value:n},t)},O.OC,Se.L5,i.VC,function(e){let{children:t}=e;return r.createElement(D.n2,null,r.createElement(N.M,null,r.createElement(F,null,t)))}]);function st(e){let{children:t}=e;return r.createElement(lt,null,t)}function ut(e){let{error:t,tryAgain:n}=e;return r.createElement("main",{className:"container margin-vert--xl"},r.createElement("div",{className:"row"},r.createElement("div",{className:"col col--6 col--offset-3"},r.createElement("h1",{className:"hero__title"},r.createElement(u.Z,{id:"theme.ErrorPageContent.title",description:"The title of the fallback page when the page crashed"},"This page crashed.")),r.createElement("p",null,t.message),r.createElement("div",null,r.createElement("button",{type:"button",onClick:n},r.createElement(u.Z,{id:"theme.ErrorPageContent.tryAgain",description:"The label of the button to try again when the page crashed"},"Try again"))))))}const ct="mainWrapper_z2l0";function dt(e){const{children:t,noFooter:n,wrapperClassName:l,title:s,description:u}=e;return(0,v.t)(),r.createElement(st,null,r.createElement(i.d,{title:s,description:u}),r.createElement(y,null),r.createElement(P,null),r.createElement(Ue,null),r.createElement("div",{id:d,className:(0,a.Z)(h.k.wrapper.main,ct,l)},r.createElement(o.Z,{fallback:e=>r.createElement(ut,e)},t)),!n&&r.createElement(rt,null))}},1327:(e,t,n)=>{"use strict";n.d(t,{Z:()=>d});var r=n(7462),a=n(7294),o=n(9960),i=n(4996),l=n(2263),s=n(6668),u=n(941);function c(e){let{logo:t,alt:n,imageClassName:r}=e;const o={light:(0,i.Z)(t.src),dark:(0,i.Z)(t.srcDark||t.src)},l=a.createElement(u.Z,{className:t.className,sources:o,height:t.height,width:t.width,alt:n,style:t.style});return r?a.createElement("div",{className:r},l):l}function d(e){const{siteConfig:{title:t}}=(0,l.Z)(),{navbar:{title:n,logo:u}}=(0,s.L)(),{imageClassName:d,titleClassName:f,...p}=e,m=(0,i.Z)((null==u?void 0:u.href)||"/"),g=n?"":t,h=(null==u?void 0:u.alt)??g;return a.createElement(o.Z,(0,r.Z)({to:m},p,(null==u?void 0:u.target)&&{target:u.target}),u&&a.createElement(c,{logo:u,alt:h,imageClassName:d}),null!=n&&a.createElement("b",{className:f},n))}},197:(e,t,n)=>{"use strict";n.d(t,{Z:()=>o});var r=n(7294),a=n(5742);function o(e){let{locale:t,version:n,tag:o}=e;const i=t;return r.createElement(a.Z,null,t&&r.createElement("meta",{name:"docusaurus_locale",content:t}),n&&r.createElement("meta",{name:"docusaurus_version",content:n}),o&&r.createElement("meta",{name:"docusaurus_tag",content:o}),i&&r.createElement("meta",{name:"docsearch:language",content:i}),n&&r.createElement("meta",{name:"docsearch:version",content:n}),o&&r.createElement("meta",{name:"docsearch:docusaurus_tag",content:o}))}},941:(e,t,n)=>{"use strict";n.d(t,{Z:()=>u});var r=n(7462),a=n(7294),o=n(6010),i=n(2389),l=n(2949);const s={themedImage:"themedImage_ToTc","themedImage--light":"themedImage--light_HNdA","themedImage--dark":"themedImage--dark_i4oU"};function u(e){const t=(0,i.Z)(),{colorMode:n}=(0,l.I)(),{sources:u,className:c,alt:d,...f}=e,p=t?"dark"===n?["dark"]:["light"]:["light","dark"];return a.createElement(a.Fragment,null,p.map((e=>a.createElement("img",(0,r.Z)({key:e,src:u[e],alt:d,className:(0,o.Z)(s.themedImage,s[`themedImage--${e}`],c)},f)))))}},6043:(e,t,n)=>{"use strict";n.d(t,{u:()=>i,z:()=>m});var r=n(7462),a=n(7294),o=n(412);function i(e){let{initialState:t}=e;const[n,r]=(0,a.useState)(t??!1),o=(0,a.useCallback)((()=>{r((e=>!e))}),[]);return{collapsed:n,setCollapsed:r,toggleCollapsed:o}}const l={display:"none",overflow:"hidden",height:"0px"},s={display:"block",overflow:"visible",height:"auto"};function u(e,t){const n=t?l:s;e.style.display=n.display,e.style.overflow=n.overflow,e.style.height=n.height}function c(e){let{collapsibleRef:t,collapsed:n,animation:r}=e;const o=(0,a.useRef)(!1);(0,a.useEffect)((()=>{const e=t.current;function a(){const t=e.scrollHeight,n=(null==r?void 0:r.duration)??function(e){const t=e/36;return Math.round(10*(4+15*t**.25+t/5))}(t);return{transition:`height ${n}ms ${(null==r?void 0:r.easing)??"ease-in-out"}`,height:`${t}px`}}function i(){const t=a();e.style.transition=t.transition,e.style.height=t.height}if(!o.current)return u(e,n),void(o.current=!0);return e.style.willChange="height",function(){const t=requestAnimationFrame((()=>{n?(i(),requestAnimationFrame((()=>{e.style.height=l.height,e.style.overflow=l.overflow}))):(e.style.display="block",requestAnimationFrame((()=>{i()})))}));return()=>cancelAnimationFrame(t)}()}),[t,n,r])}function d(e){if(!o.Z.canUseDOM)return e?l:s}function f(e){let{as:t="div",collapsed:n,children:r,animation:o,onCollapseTransitionEnd:i,className:l,disableSSRStyle:s}=e;const f=(0,a.useRef)(null);return c({collapsibleRef:f,collapsed:n,animation:o}),a.createElement(t,{ref:f,style:s?void 0:d(n),onTransitionEnd:e=>{"height"===e.propertyName&&(u(f.current,n),null==i||i(n))},className:l},r)}function p(e){let{collapsed:t,...n}=e;const[o,i]=(0,a.useState)(!t),[l,s]=(0,a.useState)(t);return(0,a.useLayoutEffect)((()=>{t||i(!0)}),[t]),(0,a.useLayoutEffect)((()=>{o&&s(t)}),[o,t]),o?a.createElement(f,(0,r.Z)({},n,{collapsed:l})):null}function m(e){let{lazy:t,...n}=e;const r=t?p:f;return a.createElement(r,n)}},9689:(e,t,n)=>{"use strict";n.d(t,{nT:()=>m,pl:()=>p});var r=n(7294),a=n(2389),o=n(12),i=n(902),l=n(6668);const s=(0,o.W)("docusaurus.announcement.dismiss"),u=(0,o.W)("docusaurus.announcement.id"),c=()=>"true"===s.get(),d=e=>s.set(String(e)),f=r.createContext(null);function p(e){let{children:t}=e;const n=function(){const{announcementBar:e}=(0,l.L)(),t=(0,a.Z)(),[n,o]=(0,r.useState)((()=>!!t&&c()));(0,r.useEffect)((()=>{o(c())}),[]);const i=(0,r.useCallback)((()=>{d(!0),o(!0)}),[]);return(0,r.useEffect)((()=>{if(!e)return;const{id:t}=e;let n=u.get();"annoucement-bar"===n&&(n="announcement-bar");const r=t!==n;u.set(t),r&&d(!1),!r&&c()||o(!1)}),[e]),(0,r.useMemo)((()=>({isActive:!!e&&!n,close:i})),[e,n,i])}();return r.createElement(f.Provider,{value:n},t)}function m(){const e=(0,r.useContext)(f);if(!e)throw new i.i6("AnnouncementBarProvider");return e}},2949:(e,t,n)=>{"use strict";n.d(t,{I:()=>h,S:()=>g});var r=n(7294),a=n(412),o=n(902),i=n(12),l=n(6668);const s=r.createContext(void 0),u="theme",c=(0,i.W)(u),d="light",f="dark",p=e=>e===f?f:d;function m(){const{colorMode:{defaultMode:e,disableSwitch:t,respectPrefersColorScheme:n}}=(0,l.L)(),[o,i]=(0,r.useState)((e=>a.Z.canUseDOM?p(document.documentElement.getAttribute("data-theme")):p(e))(e));(0,r.useEffect)((()=>{t&&c.del()}),[t]);const s=(0,r.useCallback)((function(t,r){void 0===r&&(r={});const{persist:a=!0}=r;t?(i(t),a&&(e=>{c.set(p(e))})(t)):(i(n?window.matchMedia("(prefers-color-scheme: dark)").matches?f:d:e),c.del())}),[n,e]);(0,r.useEffect)((()=>{document.documentElement.setAttribute("data-theme",p(o))}),[o]),(0,r.useEffect)((()=>{if(t)return;const e=e=>{if(e.key!==u)return;const t=c.get();null!==t&&s(p(t))};return window.addEventListener("storage",e),()=>window.removeEventListener("storage",e)}),[t,s]);const m=(0,r.useRef)(!1);return(0,r.useEffect)((()=>{if(t&&!n)return;const e=window.matchMedia("(prefers-color-scheme: dark)"),r=()=>{window.matchMedia("print").matches||m.current?m.current=window.matchMedia("print").matches:s(null)};return e.addListener(r),()=>e.removeListener(r)}),[s,t,n]),(0,r.useMemo)((()=>({colorMode:o,setColorMode:s,get isDarkTheme(){return o===f},setLightTheme(){s(d)},setDarkTheme(){s(f)}})),[o,s])}function g(e){let{children:t}=e;const n=m();return r.createElement(s.Provider,{value:n},t)}function h(){const e=(0,r.useContext)(s);if(null==e)throw new o.i6("ColorModeProvider","Please see https://docusaurus.io/docs/api/themes/configuration#use-color-mode.");return e}},373:(e,t,n)=>{"use strict";n.d(t,{J:()=>y,L5:()=>v});var r=n(7294),a=n(143),o=n(9935),i=n(6668),l=n(2802),s=n(902),u=n(12);const c=e=>`docs-preferred-version-${e}`,d=(e,t,n)=>{(0,u.W)(c(e),{persistence:t}).set(n)},f=(e,t)=>(0,u.W)(c(e),{persistence:t}).get(),p=(e,t)=>{(0,u.W)(c(e),{persistence:t}).del()};const m=r.createContext(null);function g(){const e=(0,a._r)(),t=(0,i.L)().docs.versionPersistence,n=(0,r.useMemo)((()=>Object.keys(e)),[e]),[o,l]=(0,r.useState)((()=>(e=>Object.fromEntries(e.map((e=>[e,{preferredVersionName:null}]))))(n)));(0,r.useEffect)((()=>{l(function(e){let{pluginIds:t,versionPersistence:n,allDocsData:r}=e;function a(e){const t=f(e,n);return r[e].versions.some((e=>e.name===t))?{preferredVersionName:t}:(p(e,n),{preferredVersionName:null})}return Object.fromEntries(t.map((e=>[e,a(e)])))}({allDocsData:e,versionPersistence:t,pluginIds:n}))}),[e,t,n]);return[o,(0,r.useMemo)((()=>({savePreferredVersion:function(e,n){d(e,t,n),l((t=>({...t,[e]:{preferredVersionName:n}})))}})),[t])]}function h(e){let{children:t}=e;const n=g();return r.createElement(m.Provider,{value:n},t)}function v(e){let{children:t}=e;return l.cE?r.createElement(h,null,t):r.createElement(r.Fragment,null,t)}function b(){const e=(0,r.useContext)(m);if(!e)throw new s.i6("DocsPreferredVersionContextProvider");return e}function y(e){void 0===e&&(e=o.m);const t=(0,a.zh)(e),[n,i]=b(),{preferredVersionName:l}=n[e];return{preferredVersion:t.versions.find((e=>e.name===l))??null,savePreferredVersionName:(0,r.useCallback)((t=>{i.savePreferredVersion(e,t)}),[i,e])}}},1116:(e,t,n)=>{"use strict";n.d(t,{V:()=>s,b:()=>l});var r=n(7294),a=n(902);const o=Symbol("EmptyContext"),i=r.createContext(o);function l(e){let{children:t,name:n,items:a}=e;const o=(0,r.useMemo)((()=>n&&a?{name:n,items:a}:null),[n,a]);return r.createElement(i.Provider,{value:o},t)}function s(){const e=(0,r.useContext)(i);if(e===o)throw new a.i6("DocsSidebarProvider");return e}},2961:(e,t,n)=>{"use strict";n.d(t,{M:()=>f,e:()=>p});var r=n(7294),a=n(3102),o=n(7524),i=n(6550),l=n(902);function s(e){!function(e){const t=(0,i.k6)(),n=(0,l.zX)(e);(0,r.useEffect)((()=>t.block(((e,t)=>n(e,t)))),[t,n])}(((t,n)=>{if("POP"===n)return e(t,n)}))}var u=n(6668);const c=r.createContext(void 0);function d(){const e=function(){const e=(0,a.HY)(),{items:t}=(0,u.L)().navbar;return 0===t.length&&!e.component}(),t=(0,o.i)(),n=!e&&"mobile"===t,[i,l]=(0,r.useState)(!1);s((()=>{if(i)return l(!1),!1}));const c=(0,r.useCallback)((()=>{l((e=>!e))}),[]);return(0,r.useEffect)((()=>{"desktop"===t&&l(!1)}),[t]),(0,r.useMemo)((()=>({disabled:e,shouldRender:n,toggle:c,shown:i})),[e,n,c,i])}function f(e){let{children:t}=e;const n=d();return r.createElement(c.Provider,{value:n},t)}function p(){const e=r.useContext(c);if(void 0===e)throw new l.i6("NavbarMobileSidebarProvider");return e}},3102:(e,t,n)=>{"use strict";n.d(t,{HY:()=>l,Zo:()=>s,n2:()=>i});var r=n(7294),a=n(902);const o=r.createContext(null);function i(e){let{children:t}=e;const n=(0,r.useState)({component:null,props:null});return r.createElement(o.Provider,{value:n},t)}function l(){const e=(0,r.useContext)(o);if(!e)throw new a.i6("NavbarSecondaryMenuContentProvider");return e[0]}function s(e){let{component:t,props:n}=e;const i=(0,r.useContext)(o);if(!i)throw new a.i6("NavbarSecondaryMenuContentProvider");const[,l]=i,s=(0,a.Ql)(n);return(0,r.useEffect)((()=>{l({component:t,props:s})}),[l,t,s]),(0,r.useEffect)((()=>()=>l({component:null,props:null})),[l]),null}},9727:(e,t,n)=>{"use strict";n.d(t,{h:()=>a,t:()=>o});var r=n(7294);const a="navigation-with-keyboard";function o(){(0,r.useEffect)((()=>{function e(e){"keydown"===e.type&&"Tab"===e.key&&document.body.classList.add(a),"mousedown"===e.type&&document.body.classList.remove(a)}return document.addEventListener("keydown",e),document.addEventListener("mousedown",e),()=>{document.body.classList.remove(a),document.removeEventListener("keydown",e),document.removeEventListener("mousedown",e)}}),[])}},7524:(e,t,n)=>{"use strict";n.d(t,{i:()=>u});var r=n(7294),a=n(412);const o="desktop",i="mobile",l="ssr";function s(){return a.Z.canUseDOM?window.innerWidth>996?o:i:l}function u(){const[e,t]=(0,r.useState)((()=>s()));return(0,r.useEffect)((()=>{function e(){t(s())}return window.addEventListener("resize",e),()=>{window.removeEventListener("resize",e),clearTimeout(undefined)}}),[]),e}},5281:(e,t,n)=>{"use strict";n.d(t,{k:()=>r});const r={page:{blogListPage:"blog-list-page",blogPostPage:"blog-post-page",blogTagsListPage:"blog-tags-list-page",blogTagPostListPage:"blog-tags-post-list-page",docsDocPage:"docs-doc-page",docsTagsListPage:"docs-tags-list-page",docsTagDocListPage:"docs-tags-doc-list-page",mdxPage:"mdx-page"},wrapper:{main:"main-wrapper",blogPages:"blog-wrapper",docsPages:"docs-wrapper",mdxPages:"mdx-wrapper"},common:{editThisPage:"theme-edit-this-page",lastUpdated:"theme-last-updated",backToTopButton:"theme-back-to-top-button",codeBlock:"theme-code-block",admonition:"theme-admonition",admonitionType:e=>`theme-admonition-${e}`},layout:{},docs:{docVersionBanner:"theme-doc-version-banner",docVersionBadge:"theme-doc-version-badge",docBreadcrumbs:"theme-doc-breadcrumbs",docMarkdown:"theme-doc-markdown",docTocMobile:"theme-doc-toc-mobile",docTocDesktop:"theme-doc-toc-desktop",docFooter:"theme-doc-footer",docFooterTagsRow:"theme-doc-footer-tags-row",docFooterEditMetaRow:"theme-doc-footer-edit-meta-row",docSidebarContainer:"theme-doc-sidebar-container",docSidebarMenu:"theme-doc-sidebar-menu",docSidebarItemCategory:"theme-doc-sidebar-item-category",docSidebarItemLink:"theme-doc-sidebar-item-link",docSidebarItemCategoryLevel:e=>`theme-doc-sidebar-item-category-level-${e}`,docSidebarItemLinkLevel:e=>`theme-doc-sidebar-item-link-level-${e}`},blog:{}}},2802:(e,t,n)=>{"use strict";n.d(t,{Wl:()=>f,_F:()=>m,cE:()=>d,hI:()=>w,lO:()=>v,vY:()=>y,oz:()=>b,s1:()=>h});var r=n(7294),a=n(6550),o=n(8790),i=n(143),l=n(373),s=n(1116);function u(e){return Array.from(new Set(e))}var c=n(8596);const d=!!i._r;function f(e){if(e.href)return e.href;for(const t of e.items){if("link"===t.type)return t.href;if("category"===t.type){const e=f(t);if(e)return e}}}const p=(e,t)=>void 0!==e&&(0,c.Mg)(e,t);function m(e,t){return"link"===e.type?p(e.href,t):"category"===e.type&&(p(e.href,t)||((e,t)=>e.some((e=>m(e,t))))(e.items,t))}function g(e){let{sidebarItems:t,pathname:n,onlyCategories:r=!1}=e;const a=[];return function e(t){for(const o of t)if("category"===o.type&&((0,c.Mg)(o.href,n)||e(o.items))||"link"===o.type&&(0,c.Mg)(o.href,n)){return r&&"category"!==o.type||a.unshift(o),!0}return!1}(t),a}function h(){var e;const t=(0,s.V)(),{pathname:n}=(0,a.TH)();return!1!==(null==(e=(0,i.gA)())?void 0:e.pluginData.breadcrumbs)&&t?g({sidebarItems:t.items,pathname:n}):null}function v(e){const{activeVersion:t}=(0,i.Iw)(e),{preferredVersion:n}=(0,l.J)(e),a=(0,i.yW)(e);return(0,r.useMemo)((()=>u([t,n,a].filter(Boolean))),[t,n,a])}function b(e,t){const n=v(t);return(0,r.useMemo)((()=>{const t=n.flatMap((e=>e.sidebars?Object.entries(e.sidebars):[])),r=t.find((t=>t[0]===e));if(!r)throw new Error(`Can't find any sidebar with id "${e}" in version${n.length>1?"s":""} ${n.map((e=>e.name)).join(", ")}".\n Available sidebar ids are:\n - ${Object.keys(t).join("\n- ")}`);return r[1]}),[e,n])}function y(e,t){const n=v(t);return(0,r.useMemo)((()=>{const t=n.flatMap((e=>e.docs)),r=t.find((t=>t.id===e));if(!r){if(n.flatMap((e=>e.draftIds)).includes(e))return null;throw new Error(`DocNavbarItem: couldn't find any doc with id "${e}" in version${n.length>1?"s":""} ${n.map((e=>e.name)).join(", ")}".\nAvailable doc ids are:\n- ${u(t.map((e=>e.id))).join("\n- ")}`)}return r}),[e,n])}function w(e){let{route:t,versionMetadata:n}=e;const r=(0,a.TH)(),i=t.routes,l=i.find((e=>(0,a.LX)(r.pathname,e)));if(!l)return null;const s=l.sidebar,u=s?n.docsSidebars[s]:void 0;return{docElement:(0,o.H)(i),sidebarName:s,sidebarItems:u}}},1944:(e,t,n)=>{"use strict";n.d(t,{FG:()=>f,d:()=>c,VC:()=>p});var r=n(7294),a=n(6010),o=n(5742),i=n(226);function l(){const e=r.useContext(i._);if(!e)throw new Error("Unexpected: no Docusaurus route context found");return e}var s=n(4996),u=n(2263);function c(e){let{title:t,description:n,keywords:a,image:i,children:l}=e;const c=function(e){const{siteConfig:t}=(0,u.Z)(),{title:n,titleDelimiter:r}=t;return null!=e&&e.trim().length?`${e.trim()} ${r} ${n}`:n}(t),{withBaseUrl:d}=(0,s.C)(),f=i?d(i,{absolute:!0}):void 0;return r.createElement(o.Z,null,t&&r.createElement("title",null,c),t&&r.createElement("meta",{property:"og:title",content:c}),n&&r.createElement("meta",{name:"description",content:n}),n&&r.createElement("meta",{property:"og:description",content:n}),a&&r.createElement("meta",{name:"keywords",content:Array.isArray(a)?a.join(","):a}),f&&r.createElement("meta",{property:"og:image",content:f}),f&&r.createElement("meta",{name:"twitter:image",content:f}),l)}const d=r.createContext(void 0);function f(e){let{className:t,children:n}=e;const i=r.useContext(d),l=(0,a.Z)(i,t);return r.createElement(d.Provider,{value:l},r.createElement(o.Z,null,r.createElement("html",{className:l})),n)}function p(e){let{children:t}=e;const n=l(),o=`plugin-${n.plugin.name.replace(/docusaurus-(?:plugin|theme)-(?:content-)?/gi,"")}`;const i=`plugin-id-${n.plugin.id}`;return r.createElement(f,{className:(0,a.Z)(o,i)},t)}},902:(e,t,n)=>{"use strict";n.d(t,{D9:()=>i,Qc:()=>u,Ql:()=>s,i6:()=>l,zX:()=>o});var r=n(7294);const a=n(412).Z.canUseDOM?r.useLayoutEffect:r.useEffect;function o(e){const t=(0,r.useRef)(e);return a((()=>{t.current=e}),[e]),(0,r.useCallback)((function(){return t.current(...arguments)}),[])}function i(e){const t=(0,r.useRef)();return a((()=>{t.current=e})),t.current}class l extends Error{constructor(e,t){var n,r,a;super(),this.name="ReactContextError",this.message=`Hook ${(null==(n=this.stack)||null==(r=n.split("\n")[1])||null==(a=r.match(/at (?:\w+\.)?(?\w+)/))?void 0:a.groups.name)??""} is called outside the <${e}>. ${t??""}`}}function s(e){const t=Object.entries(e);return t.sort(((e,t)=>e[0].localeCompare(t[0]))),(0,r.useMemo)((()=>e),t.flat())}function u(e){return t=>{let{children:n}=t;return r.createElement(r.Fragment,null,e.reduceRight(((e,t)=>r.createElement(t,null,e)),n))}}},8596:(e,t,n)=>{"use strict";n.d(t,{Mg:()=>i,Ns:()=>l});var r=n(7294),a=n(723),o=n(2263);function i(e,t){const n=e=>{var t;return null==(t=!e||e.endsWith("/")?e:`${e}/`)?void 0:t.toLowerCase()};return n(e)===n(t)}function l(){const{baseUrl:e}=(0,o.Z)().siteConfig;return(0,r.useMemo)((()=>function(e){let{baseUrl:t,routes:n}=e;function r(e){return e.path===t&&!0===e.exact}function a(e){return e.path===t&&!e.exact}return function e(t){if(0===t.length)return;return t.find(r)||e(t.filter(a).flatMap((e=>e.routes??[])))}(n)}({routes:a.Z,baseUrl:e})),[e])}},2466:(e,t,n)=>{"use strict";n.d(t,{Ct:()=>f,OC:()=>s,RF:()=>d});var r=n(7294),a=n(412),o=n(2389),i=n(902);const l=r.createContext(void 0);function s(e){let{children:t}=e;const n=function(){const e=(0,r.useRef)(!0);return(0,r.useMemo)((()=>({scrollEventsEnabledRef:e,enableScrollEvents:()=>{e.current=!0},disableScrollEvents:()=>{e.current=!1}})),[])}();return r.createElement(l.Provider,{value:n},t)}function u(){const e=(0,r.useContext)(l);if(null==e)throw new i.i6("ScrollControllerProvider");return e}const c=()=>a.Z.canUseDOM?{scrollX:window.pageXOffset,scrollY:window.pageYOffset}:null;function d(e,t){void 0===t&&(t=[]);const{scrollEventsEnabledRef:n}=u(),a=(0,r.useRef)(c()),o=(0,i.zX)(e);(0,r.useEffect)((()=>{const e=()=>{if(!n.current)return;const e=c();o(e,a.current),a.current=e},t={passive:!0};return e(),window.addEventListener("scroll",e,t),()=>window.removeEventListener("scroll",e,t)}),[o,n,...t])}function f(){const e=(0,r.useRef)(null),t=(0,o.Z)()&&"smooth"===getComputedStyle(document.documentElement).scrollBehavior;return{startScroll:n=>{e.current=t?function(e){return window.scrollTo({top:e,behavior:"smooth"}),()=>{}}(n):function(e){let t=null;const n=document.documentElement.scrollTop>e;return function r(){const a=document.documentElement.scrollTop;(n&&a>e||!n&&at&&cancelAnimationFrame(t)}(n)},cancelScroll:()=>null==e.current?void 0:e.current()}}},3320:(e,t,n)=>{"use strict";n.d(t,{HX:()=>r,os:()=>a});n(2263);const r="default";function a(e,t){return`docs-${e}-${t}`}},12:(e,t,n)=>{"use strict";n.d(t,{W:()=>l,_:()=>s});const r="localStorage";function a(e){if(void 0===e&&(e=r),"undefined"==typeof window)throw new Error("Browser storage is not available on Node.js/Docusaurus SSR process.");if("none"===e)return null;try{return window[e]}catch(n){return t=n,o||(console.warn("Docusaurus browser storage is not available.\nPossible reasons: running Docusaurus in an iframe, in an incognito browser session, or using too strict browser privacy settings.",t),o=!0),null}var t}let o=!1;const i={get:()=>null,set:()=>{},del:()=>{}};function l(e,t){if("undefined"==typeof window)return function(e){function t(){throw new Error(`Illegal storage API usage for storage key "${e}".\nDocusaurus storage APIs are not supposed to be called on the server-rendering process.\nPlease only call storage APIs in effects and event handlers.`)}return{get:t,set:t,del:t}}(e);const n=a(null==t?void 0:t.persistence);return null===n?i:{get:()=>{try{return n.getItem(e)}catch(t){return console.error(`Docusaurus storage error, can't get key=${e}`,t),null}},set:t=>{try{n.setItem(e,t)}catch(r){console.error(`Docusaurus storage error, can't set ${e}=${t}`,r)}},del:()=>{try{n.removeItem(e)}catch(t){console.error(`Docusaurus storage error, can't delete key=${e}`,t)}}}}function s(e){void 0===e&&(e=r);const t=a(e);if(!t)return[];const n=[];for(let r=0;r{"use strict";n.d(t,{l:()=>o});var r=n(2263),a=n(6550);function o(){const{siteConfig:{baseUrl:e,url:t},i18n:{defaultLocale:n,currentLocale:o}}=(0,r.Z)(),{pathname:i}=(0,a.TH)(),l=o===n?e:e.replace(`/${o}/`,"/"),s=i.replace(e,"");return{createUrl:function(e){let{locale:r,fullyQualified:a}=e;return`${a?t:""}${function(e){return e===n?`${l}`:`${l}${e}/`}(r)}${s}`}}}},5936:(e,t,n)=>{"use strict";n.d(t,{S:()=>i});var r=n(7294),a=n(6550),o=n(902);function i(e){const t=(0,a.TH)(),n=(0,o.D9)(t),i=(0,o.zX)(e);(0,r.useEffect)((()=>{n&&t!==n&&i({location:t,previousLocation:n})}),[i,t,n])}},6668:(e,t,n)=>{"use strict";n.d(t,{L:()=>a});var r=n(2263);function a(){return(0,r.Z)().siteConfig.themeConfig}},8802:(e,t)=>{"use strict";Object.defineProperty(t,"__esModule",{value:!0}),t.default=function(e,t){const{trailingSlash:n,baseUrl:r}=t;if(e.startsWith("#"))return e;if(void 0===n)return e;const[a]=e.split(/[#?]/),o="/"===a||a===r?a:(i=a,n?function(e){return e.endsWith("/")?e:`${e}/`}(i):function(e){return e.endsWith("/")?e.slice(0,-1):e}(i));var i;return e.replace(a,o)}},8780:function(e,t,n){"use strict";var r=this&&this.__importDefault||function(e){return e&&e.__esModule?e:{default:e}};Object.defineProperty(t,"__esModule",{value:!0}),t.applyTrailingSlash=t.blogPostContainerID=void 0,t.blogPostContainerID="post-content";var a=n(8802);Object.defineProperty(t,"applyTrailingSlash",{enumerable:!0,get:function(){return r(a).default}})},6010:(e,t,n)=>{"use strict";function r(e){var t,n,a="";if("string"==typeof e||"number"==typeof e)a+=e;else if("object"==typeof e)if(Array.isArray(e))for(t=0;ta});const a=function(){for(var e,t,n=0,a="";n{"use strict";n.d(t,{lX:()=>w,q_:()=>T,ob:()=>p,PP:()=>A,Ep:()=>f});var r=n(7462);function a(e){return"/"===e.charAt(0)}function o(e,t){for(var n=t,r=n+1,a=e.length;r=0;f--){var p=i[f];"."===p?o(i,f):".."===p?(o(i,f),d++):d&&(o(i,f),d--)}if(!u)for(;d--;d)i.unshift("..");!u||""===i[0]||i[0]&&a(i[0])||i.unshift("");var m=i.join("/");return n&&"/"!==m.substr(-1)&&(m+="/"),m};var l=n(8776);function s(e){return"/"===e.charAt(0)?e:"/"+e}function u(e){return"/"===e.charAt(0)?e.substr(1):e}function c(e,t){return function(e,t){return 0===e.toLowerCase().indexOf(t.toLowerCase())&&-1!=="/?#".indexOf(e.charAt(t.length))}(e,t)?e.substr(t.length):e}function d(e){return"/"===e.charAt(e.length-1)?e.slice(0,-1):e}function f(e){var t=e.pathname,n=e.search,r=e.hash,a=t||"/";return n&&"?"!==n&&(a+="?"===n.charAt(0)?n:"?"+n),r&&"#"!==r&&(a+="#"===r.charAt(0)?r:"#"+r),a}function p(e,t,n,a){var o;"string"==typeof e?(o=function(e){var t=e||"/",n="",r="",a=t.indexOf("#");-1!==a&&(r=t.substr(a),t=t.substr(0,a));var o=t.indexOf("?");return-1!==o&&(n=t.substr(o),t=t.substr(0,o)),{pathname:t,search:"?"===n?"":n,hash:"#"===r?"":r}}(e),o.state=t):(void 0===(o=(0,r.Z)({},e)).pathname&&(o.pathname=""),o.search?"?"!==o.search.charAt(0)&&(o.search="?"+o.search):o.search="",o.hash?"#"!==o.hash.charAt(0)&&(o.hash="#"+o.hash):o.hash="",void 0!==t&&void 0===o.state&&(o.state=t));try{o.pathname=decodeURI(o.pathname)}catch(l){throw l instanceof URIError?new URIError('Pathname "'+o.pathname+'" could not be decoded. This is likely caused by an invalid percent-encoding.'):l}return n&&(o.key=n),a?o.pathname?"/"!==o.pathname.charAt(0)&&(o.pathname=i(o.pathname,a.pathname)):o.pathname=a.pathname:o.pathname||(o.pathname="/"),o}function m(){var e=null;var t=[];return{setPrompt:function(t){return e=t,function(){e===t&&(e=null)}},confirmTransitionTo:function(t,n,r,a){if(null!=e){var o="function"==typeof e?e(t,n):e;"string"==typeof o?"function"==typeof r?r(o,a):a(!0):a(!1!==o)}else a(!0)},appendListener:function(e){var n=!0;function r(){n&&e.apply(void 0,arguments)}return t.push(r),function(){n=!1,t=t.filter((function(e){return e!==r}))}},notifyListeners:function(){for(var e=arguments.length,n=new Array(e),r=0;rt?n.splice(t,n.length-t,a):n.push(a),d({action:r,location:a,index:t,entries:n})}}))},replace:function(e,t){var r="REPLACE",a=p(e,t,g(),w.location);c.confirmTransitionTo(a,r,n,(function(e){e&&(w.entries[w.index]=a,d({action:r,location:a}))}))},go:y,goBack:function(){y(-1)},goForward:function(){y(1)},canGo:function(e){var t=w.index+e;return t>=0&&t{"use strict";var r=n(9864),a={childContextTypes:!0,contextType:!0,contextTypes:!0,defaultProps:!0,displayName:!0,getDefaultProps:!0,getDerivedStateFromError:!0,getDerivedStateFromProps:!0,mixins:!0,propTypes:!0,type:!0},o={name:!0,length:!0,prototype:!0,caller:!0,callee:!0,arguments:!0,arity:!0},i={$$typeof:!0,compare:!0,defaultProps:!0,displayName:!0,propTypes:!0,type:!0},l={};function s(e){return r.isMemo(e)?i:l[e.$$typeof]||a}l[r.ForwardRef]={$$typeof:!0,render:!0,defaultProps:!0,displayName:!0,propTypes:!0},l[r.Memo]=i;var u=Object.defineProperty,c=Object.getOwnPropertyNames,d=Object.getOwnPropertySymbols,f=Object.getOwnPropertyDescriptor,p=Object.getPrototypeOf,m=Object.prototype;e.exports=function e(t,n,r){if("string"!=typeof n){if(m){var a=p(n);a&&a!==m&&e(t,a,r)}var i=c(n);d&&(i=i.concat(d(n)));for(var l=s(t),g=s(n),h=0;h{"use strict";e.exports=function(e,t,n,r,a,o,i,l){if(!e){var s;if(void 0===t)s=new Error("Minified exception occurred; use the non-minified dev environment for the full error message and additional helpful warnings.");else{var u=[n,r,a,o,i,l],c=0;(s=new Error(t.replace(/%s/g,(function(){return u[c++]})))).name="Invariant Violation"}throw s.framesToPop=1,s}}},5826:e=>{e.exports=Array.isArray||function(e){return"[object Array]"==Object.prototype.toString.call(e)}},2497:(e,t,n)=>{"use strict";n.r(t)},2295:(e,t,n)=>{"use strict";n.r(t)},4865:function(e,t,n){var r,a;r=function(){var e,t,n={version:"0.2.0"},r=n.settings={minimum:.08,easing:"ease",positionUsing:"",speed:200,trickle:!0,trickleRate:.02,trickleSpeed:800,showSpinner:!0,barSelector:'[role="bar"]',spinnerSelector:'[role="spinner"]',parent:"body",template:'
      '};function a(e,t,n){return en?n:e}function o(e){return 100*(-1+e)}function i(e,t,n){var a;return(a="translate3d"===r.positionUsing?{transform:"translate3d("+o(e)+"%,0,0)"}:"translate"===r.positionUsing?{transform:"translate("+o(e)+"%,0)"}:{"margin-left":o(e)+"%"}).transition="all "+t+"ms "+n,a}n.configure=function(e){var t,n;for(t in e)void 0!==(n=e[t])&&e.hasOwnProperty(t)&&(r[t]=n);return this},n.status=null,n.set=function(e){var t=n.isStarted();e=a(e,r.minimum,1),n.status=1===e?null:e;var o=n.render(!t),u=o.querySelector(r.barSelector),c=r.speed,d=r.easing;return o.offsetWidth,l((function(t){""===r.positionUsing&&(r.positionUsing=n.getPositioningCSS()),s(u,i(e,c,d)),1===e?(s(o,{transition:"none",opacity:1}),o.offsetWidth,setTimeout((function(){s(o,{transition:"all "+c+"ms linear",opacity:0}),setTimeout((function(){n.remove(),t()}),c)}),c)):setTimeout(t,c)})),this},n.isStarted=function(){return"number"==typeof n.status},n.start=function(){n.status||n.set(0);var e=function(){setTimeout((function(){n.status&&(n.trickle(),e())}),r.trickleSpeed)};return r.trickle&&e(),this},n.done=function(e){return e||n.status?n.inc(.3+.5*Math.random()).set(1):this},n.inc=function(e){var t=n.status;return t?("number"!=typeof e&&(e=(1-t)*a(Math.random()*t,.1,.95)),t=a(t+e,0,.994),n.set(t)):n.start()},n.trickle=function(){return n.inc(Math.random()*r.trickleRate)},e=0,t=0,n.promise=function(r){return r&&"resolved"!==r.state()?(0===t&&n.start(),e++,t++,r.always((function(){0==--t?(e=0,n.done()):n.set((e-t)/e)})),this):this},n.render=function(e){if(n.isRendered())return document.getElementById("nprogress");c(document.documentElement,"nprogress-busy");var t=document.createElement("div");t.id="nprogress",t.innerHTML=r.template;var a,i=t.querySelector(r.barSelector),l=e?"-100":o(n.status||0),u=document.querySelector(r.parent);return s(i,{transition:"all 0 linear",transform:"translate3d("+l+"%,0,0)"}),r.showSpinner||(a=t.querySelector(r.spinnerSelector))&&p(a),u!=document.body&&c(u,"nprogress-custom-parent"),u.appendChild(t),t},n.remove=function(){d(document.documentElement,"nprogress-busy"),d(document.querySelector(r.parent),"nprogress-custom-parent");var e=document.getElementById("nprogress");e&&p(e)},n.isRendered=function(){return!!document.getElementById("nprogress")},n.getPositioningCSS=function(){var e=document.body.style,t="WebkitTransform"in e?"Webkit":"MozTransform"in e?"Moz":"msTransform"in e?"ms":"OTransform"in e?"O":"";return t+"Perspective"in e?"translate3d":t+"Transform"in e?"translate":"margin"};var l=function(){var e=[];function t(){var n=e.shift();n&&n(t)}return function(n){e.push(n),1==e.length&&t()}}(),s=function(){var e=["Webkit","O","Moz","ms"],t={};function n(e){return e.replace(/^-ms-/,"ms-").replace(/-([\da-z])/gi,(function(e,t){return t.toUpperCase()}))}function r(t){var n=document.body.style;if(t in n)return t;for(var r,a=e.length,o=t.charAt(0).toUpperCase()+t.slice(1);a--;)if((r=e[a]+o)in n)return r;return t}function a(e){return e=n(e),t[e]||(t[e]=r(e))}function o(e,t,n){t=a(t),e.style[t]=n}return function(e,t){var n,r,a=arguments;if(2==a.length)for(n in t)void 0!==(r=t[n])&&t.hasOwnProperty(n)&&o(e,n,r);else o(e,a[1],a[2])}}();function u(e,t){return("string"==typeof e?e:f(e)).indexOf(" "+t+" ")>=0}function c(e,t){var n=f(e),r=n+t;u(n,t)||(e.className=r.substring(1))}function d(e,t){var n,r=f(e);u(e,t)&&(n=r.replace(" "+t+" "," "),e.className=n.substring(1,n.length-1))}function f(e){return(" "+(e.className||"")+" ").replace(/\s+/gi," ")}function p(e){e&&e.parentNode&&e.parentNode.removeChild(e)}return n},void 0===(a="function"==typeof r?r.call(t,n,t,e):r)||(e.exports=a)},7418:e=>{"use strict";var t=Object.getOwnPropertySymbols,n=Object.prototype.hasOwnProperty,r=Object.prototype.propertyIsEnumerable;function a(e){if(null==e)throw new TypeError("Object.assign cannot be called with null or undefined");return Object(e)}e.exports=function(){try{if(!Object.assign)return!1;var e=new String("abc");if(e[5]="de","5"===Object.getOwnPropertyNames(e)[0])return!1;for(var t={},n=0;n<10;n++)t["_"+String.fromCharCode(n)]=n;if("0123456789"!==Object.getOwnPropertyNames(t).map((function(e){return t[e]})).join(""))return!1;var r={};return"abcdefghijklmnopqrst".split("").forEach((function(e){r[e]=e})),"abcdefghijklmnopqrst"===Object.keys(Object.assign({},r)).join("")}catch(a){return!1}}()?Object.assign:function(e,o){for(var i,l,s=a(e),u=1;u{"use strict";n.d(t,{Z:()=>o});var r=function(){var e=/(?:^|\s)lang(?:uage)?-([\w-]+)(?=\s|$)/i,t=0,n={},r={util:{encode:function e(t){return t instanceof a?new a(t.type,e(t.content),t.alias):Array.isArray(t)?t.map(e):t.replace(/&/g,"&").replace(/=d.reach);S+=E.value.length,E=E.next){var x=E.value;if(t.length>e.length)return;if(!(x instanceof a)){var C,T=1;if(b){if(!(C=o(k,S,e,v))||C.index>=e.length)break;var _=C.index,A=C.index+C[0].length,L=S;for(L+=E.value.length;_>=L;)L+=(E=E.next).value.length;if(S=L-=E.value.length,E.value instanceof a)continue;for(var R=E;R!==t.tail&&(Ld.reach&&(d.reach=I);var D=E.prev;if(N&&(D=s(t,D,N),S+=N.length),u(t,D,T),E=s(t,D,new a(f,h?r.tokenize(P,h):P,y,P)),O&&s(t,E,O),T>1){var M={cause:f+","+m,reach:I};i(e,t,n,E.prev,S,M),d&&M.reach>d.reach&&(d.reach=M.reach)}}}}}}function l(){var e={value:null,prev:null,next:null},t={value:null,prev:e,next:null};e.next=t,this.head=e,this.tail=t,this.length=0}function s(e,t,n){var r=t.next,a={value:n,prev:t,next:r};return t.next=a,r.prev=a,e.length++,a}function u(e,t,n){for(var r=t.next,a=0;a"+o.content+""},r}(),a=r;r.default=r,a.languages.markup={comment:{pattern://,greedy:!0},prolog:{pattern:/<\?[\s\S]+?\?>/,greedy:!0},doctype:{pattern:/"'[\]]|"[^"]*"|'[^']*')+(?:\[(?:[^<"'\]]|"[^"]*"|'[^']*'|<(?!!--)|)*\]\s*)?>/i,greedy:!0,inside:{"internal-subset":{pattern:/(^[^\[]*\[)[\s\S]+(?=\]>$)/,lookbehind:!0,greedy:!0,inside:null},string:{pattern:/"[^"]*"|'[^']*'/,greedy:!0},punctuation:/^$|[[\]]/,"doctype-tag":/^DOCTYPE/i,name:/[^\s<>'"]+/}},cdata:{pattern://i,greedy:!0},tag:{pattern:/<\/?(?!\d)[^\s>\/=$<%]+(?:\s(?:\s*[^\s>\/=]+(?:\s*=\s*(?:"[^"]*"|'[^']*'|[^\s'">=]+(?=[\s>]))|(?=[\s/>])))+)?\s*\/?>/,greedy:!0,inside:{tag:{pattern:/^<\/?[^\s>\/]+/,inside:{punctuation:/^<\/?/,namespace:/^[^\s>\/:]+:/}},"special-attr":[],"attr-value":{pattern:/=\s*(?:"[^"]*"|'[^']*'|[^\s'">=]+)/,inside:{punctuation:[{pattern:/^=/,alias:"attr-equals"},/"|'/]}},punctuation:/\/?>/,"attr-name":{pattern:/[^\s>\/]+/,inside:{namespace:/^[^\s>\/:]+:/}}}},entity:[{pattern:/&[\da-z]{1,8};/i,alias:"named-entity"},/&#x?[\da-f]{1,8};/i]},a.languages.markup.tag.inside["attr-value"].inside.entity=a.languages.markup.entity,a.languages.markup.doctype.inside["internal-subset"].inside=a.languages.markup,a.hooks.add("wrap",(function(e){"entity"===e.type&&(e.attributes.title=e.content.replace(/&/,"&"))})),Object.defineProperty(a.languages.markup.tag,"addInlined",{value:function(e,t){var n={};n["language-"+t]={pattern:/(^$)/i,lookbehind:!0,inside:a.languages[t]},n.cdata=/^$/i;var r={"included-cdata":{pattern://i,inside:n}};r["language-"+t]={pattern:/[\s\S]+/,inside:a.languages[t]};var o={};o[e]={pattern:RegExp(/(<__[^>]*>)(?:))*\]\]>|(?!)/.source.replace(/__/g,(function(){return e})),"i"),lookbehind:!0,greedy:!0,inside:r},a.languages.insertBefore("markup","cdata",o)}}),Object.defineProperty(a.languages.markup.tag,"addAttribute",{value:function(e,t){a.languages.markup.tag.inside["special-attr"].push({pattern:RegExp(/(^|["'\s])/.source+"(?:"+e+")"+/\s*=\s*(?:"[^"]*"|'[^']*'|[^\s'">=]+(?=[\s>]))/.source,"i"),lookbehind:!0,inside:{"attr-name":/^[^\s=]+/,"attr-value":{pattern:/=[\s\S]+/,inside:{value:{pattern:/(^=\s*(["']|(?!["'])))\S[\s\S]*(?=\2$)/,lookbehind:!0,alias:[t,"language-"+t],inside:a.languages[t]},punctuation:[{pattern:/^=/,alias:"attr-equals"},/"|'/]}}}})}}),a.languages.html=a.languages.markup,a.languages.mathml=a.languages.markup,a.languages.svg=a.languages.markup,a.languages.xml=a.languages.extend("markup",{}),a.languages.ssml=a.languages.xml,a.languages.atom=a.languages.xml,a.languages.rss=a.languages.xml,function(e){var t="\\b(?:BASH|BASHOPTS|BASH_ALIASES|BASH_ARGC|BASH_ARGV|BASH_CMDS|BASH_COMPLETION_COMPAT_DIR|BASH_LINENO|BASH_REMATCH|BASH_SOURCE|BASH_VERSINFO|BASH_VERSION|COLORTERM|COLUMNS|COMP_WORDBREAKS|DBUS_SESSION_BUS_ADDRESS|DEFAULTS_PATH|DESKTOP_SESSION|DIRSTACK|DISPLAY|EUID|GDMSESSION|GDM_LANG|GNOME_KEYRING_CONTROL|GNOME_KEYRING_PID|GPG_AGENT_INFO|GROUPS|HISTCONTROL|HISTFILE|HISTFILESIZE|HISTSIZE|HOME|HOSTNAME|HOSTTYPE|IFS|INSTANCE|JOB|LANG|LANGUAGE|LC_ADDRESS|LC_ALL|LC_IDENTIFICATION|LC_MEASUREMENT|LC_MONETARY|LC_NAME|LC_NUMERIC|LC_PAPER|LC_TELEPHONE|LC_TIME|LESSCLOSE|LESSOPEN|LINES|LOGNAME|LS_COLORS|MACHTYPE|MAILCHECK|MANDATORY_PATH|NO_AT_BRIDGE|OLDPWD|OPTERR|OPTIND|ORBIT_SOCKETDIR|OSTYPE|PAPERSIZE|PATH|PIPESTATUS|PPID|PS1|PS2|PS3|PS4|PWD|RANDOM|REPLY|SECONDS|SELINUX_INIT|SESSION|SESSIONTYPE|SESSION_MANAGER|SHELL|SHELLOPTS|SHLVL|SSH_AUTH_SOCK|TERM|UID|UPSTART_EVENTS|UPSTART_INSTANCE|UPSTART_JOB|UPSTART_SESSION|USER|WINDOWID|XAUTHORITY|XDG_CONFIG_DIRS|XDG_CURRENT_DESKTOP|XDG_DATA_DIRS|XDG_GREETER_DATA_DIR|XDG_MENU_PREFIX|XDG_RUNTIME_DIR|XDG_SEAT|XDG_SEAT_PATH|XDG_SESSION_DESKTOP|XDG_SESSION_ID|XDG_SESSION_PATH|XDG_SESSION_TYPE|XDG_VTNR|XMODIFIERS)\\b",n={pattern:/(^(["']?)\w+\2)[ \t]+\S.*/,lookbehind:!0,alias:"punctuation",inside:null},r={bash:n,environment:{pattern:RegExp("\\$"+t),alias:"constant"},variable:[{pattern:/\$?\(\([\s\S]+?\)\)/,greedy:!0,inside:{variable:[{pattern:/(^\$\(\([\s\S]+)\)\)/,lookbehind:!0},/^\$\(\(/],number:/\b0x[\dA-Fa-f]+\b|(?:\b\d+(?:\.\d*)?|\B\.\d+)(?:[Ee]-?\d+)?/,operator:/--|\+\+|\*\*=?|<<=?|>>=?|&&|\|\||[=!+\-*/%<>^&|]=?|[?~:]/,punctuation:/\(\(?|\)\)?|,|;/}},{pattern:/\$\((?:\([^)]+\)|[^()])+\)|`[^`]+`/,greedy:!0,inside:{variable:/^\$\(|^`|\)$|`$/}},{pattern:/\$\{[^}]+\}/,greedy:!0,inside:{operator:/:[-=?+]?|[!\/]|##?|%%?|\^\^?|,,?/,punctuation:/[\[\]]/,environment:{pattern:RegExp("(\\{)"+t),lookbehind:!0,alias:"constant"}}},/\$(?:\w+|[#?*!@$])/],entity:/\\(?:[abceEfnrtv\\"]|O?[0-7]{1,3}|U[0-9a-fA-F]{8}|u[0-9a-fA-F]{4}|x[0-9a-fA-F]{1,2})/};e.languages.bash={shebang:{pattern:/^#!\s*\/.*/,alias:"important"},comment:{pattern:/(^|[^"{\\$])#.*/,lookbehind:!0},"function-name":[{pattern:/(\bfunction\s+)[\w-]+(?=(?:\s*\(?:\s*\))?\s*\{)/,lookbehind:!0,alias:"function"},{pattern:/\b[\w-]+(?=\s*\(\s*\)\s*\{)/,alias:"function"}],"for-or-select":{pattern:/(\b(?:for|select)\s+)\w+(?=\s+in\s)/,alias:"variable",lookbehind:!0},"assign-left":{pattern:/(^|[\s;|&]|[<>]\()\w+(?=\+?=)/,inside:{environment:{pattern:RegExp("(^|[\\s;|&]|[<>]\\()"+t),lookbehind:!0,alias:"constant"}},alias:"variable",lookbehind:!0},string:[{pattern:/((?:^|[^<])<<-?\s*)(\w+)\s[\s\S]*?(?:\r?\n|\r)\2/,lookbehind:!0,greedy:!0,inside:r},{pattern:/((?:^|[^<])<<-?\s*)(["'])(\w+)\2\s[\s\S]*?(?:\r?\n|\r)\3/,lookbehind:!0,greedy:!0,inside:{bash:n}},{pattern:/(^|[^\\](?:\\\\)*)"(?:\\[\s\S]|\$\([^)]+\)|\$(?!\()|`[^`]+`|[^"\\`$])*"/,lookbehind:!0,greedy:!0,inside:r},{pattern:/(^|[^$\\])'[^']*'/,lookbehind:!0,greedy:!0},{pattern:/\$'(?:[^'\\]|\\[\s\S])*'/,greedy:!0,inside:{entity:r.entity}}],environment:{pattern:RegExp("\\$?"+t),alias:"constant"},variable:r.variable,function:{pattern:/(^|[\s;|&]|[<>]\()(?:add|apropos|apt|apt-cache|apt-get|aptitude|aspell|automysqlbackup|awk|basename|bash|bc|bconsole|bg|bzip2|cal|cat|cfdisk|chgrp|chkconfig|chmod|chown|chroot|cksum|clear|cmp|column|comm|composer|cp|cron|crontab|csplit|curl|cut|date|dc|dd|ddrescue|debootstrap|df|diff|diff3|dig|dir|dircolors|dirname|dirs|dmesg|docker|docker-compose|du|egrep|eject|env|ethtool|expand|expect|expr|fdformat|fdisk|fg|fgrep|file|find|fmt|fold|format|free|fsck|ftp|fuser|gawk|git|gparted|grep|groupadd|groupdel|groupmod|groups|grub-mkconfig|gzip|halt|head|hg|history|host|hostname|htop|iconv|id|ifconfig|ifdown|ifup|import|install|ip|jobs|join|kill|killall|less|link|ln|locate|logname|logrotate|look|lpc|lpr|lprint|lprintd|lprintq|lprm|ls|lsof|lynx|make|man|mc|mdadm|mkconfig|mkdir|mke2fs|mkfifo|mkfs|mkisofs|mknod|mkswap|mmv|more|most|mount|mtools|mtr|mutt|mv|nano|nc|netstat|nice|nl|node|nohup|notify-send|npm|nslookup|op|open|parted|passwd|paste|pathchk|ping|pkill|pnpm|podman|podman-compose|popd|pr|printcap|printenv|ps|pushd|pv|quota|quotacheck|quotactl|ram|rar|rcp|reboot|remsync|rename|renice|rev|rm|rmdir|rpm|rsync|scp|screen|sdiff|sed|sendmail|seq|service|sftp|sh|shellcheck|shuf|shutdown|sleep|slocate|sort|split|ssh|stat|strace|su|sudo|sum|suspend|swapon|sync|tac|tail|tar|tee|time|timeout|top|touch|tr|traceroute|tsort|tty|umount|uname|unexpand|uniq|units|unrar|unshar|unzip|update-grub|uptime|useradd|userdel|usermod|users|uudecode|uuencode|v|vcpkg|vdir|vi|vim|virsh|vmstat|wait|watch|wc|wget|whereis|which|who|whoami|write|xargs|xdg-open|yarn|yes|zenity|zip|zsh|zypper)(?=$|[)\s;|&])/,lookbehind:!0},keyword:{pattern:/(^|[\s;|&]|[<>]\()(?:case|do|done|elif|else|esac|fi|for|function|if|in|select|then|until|while)(?=$|[)\s;|&])/,lookbehind:!0},builtin:{pattern:/(^|[\s;|&]|[<>]\()(?:\.|:|alias|bind|break|builtin|caller|cd|command|continue|declare|echo|enable|eval|exec|exit|export|getopts|hash|help|let|local|logout|mapfile|printf|pwd|read|readarray|readonly|return|set|shift|shopt|source|test|times|trap|type|typeset|ulimit|umask|unalias|unset)(?=$|[)\s;|&])/,lookbehind:!0,alias:"class-name"},boolean:{pattern:/(^|[\s;|&]|[<>]\()(?:false|true)(?=$|[)\s;|&])/,lookbehind:!0},"file-descriptor":{pattern:/\B&\d\b/,alias:"important"},operator:{pattern:/\d?<>|>\||\+=|=[=~]?|!=?|<<[<-]?|[&\d]?>>|\d[<>]&?|[<>][&=]?|&[>&]?|\|[&|]?/,inside:{"file-descriptor":{pattern:/^\d/,alias:"important"}}},punctuation:/\$?\(\(?|\)\)?|\.\.|[{}[\];\\]/,number:{pattern:/(^|\s)(?:[1-9]\d*|0)(?:[.,]\d+)?\b/,lookbehind:!0}},n.inside=e.languages.bash;for(var a=["comment","function-name","for-or-select","assign-left","string","environment","function","keyword","builtin","boolean","file-descriptor","operator","punctuation","number"],o=r.variable[1].inside,i=0;i]=?|[!=]=?=?|--?|\+\+?|&&?|\|\|?|[?*/~^%]/,punctuation:/[{}[\];(),.:]/},a.languages.c=a.languages.extend("clike",{comment:{pattern:/\/\/(?:[^\r\n\\]|\\(?:\r\n?|\n|(?![\r\n])))*|\/\*[\s\S]*?(?:\*\/|$)/,greedy:!0},string:{pattern:/"(?:\\(?:\r\n|[\s\S])|[^"\\\r\n])*"/,greedy:!0},"class-name":{pattern:/(\b(?:enum|struct)\s+(?:__attribute__\s*\(\([\s\S]*?\)\)\s*)?)\w+|\b[a-z]\w*_t\b/,lookbehind:!0},keyword:/\b(?:_Alignas|_Alignof|_Atomic|_Bool|_Complex|_Generic|_Imaginary|_Noreturn|_Static_assert|_Thread_local|__attribute__|asm|auto|break|case|char|const|continue|default|do|double|else|enum|extern|float|for|goto|if|inline|int|long|register|return|short|signed|sizeof|static|struct|switch|typedef|typeof|union|unsigned|void|volatile|while)\b/,function:/\b[a-z_]\w*(?=\s*\()/i,number:/(?:\b0x(?:[\da-f]+(?:\.[\da-f]*)?|\.[\da-f]+)(?:p[+-]?\d+)?|(?:\b\d+(?:\.\d*)?|\B\.\d+)(?:e[+-]?\d+)?)[ful]{0,4}/i,operator:/>>=?|<<=?|->|([-+&|:])\1|[?:~]|[-+*/%&|^!=<>]=?/}),a.languages.insertBefore("c","string",{char:{pattern:/'(?:\\(?:\r\n|[\s\S])|[^'\\\r\n]){0,32}'/,greedy:!0}}),a.languages.insertBefore("c","string",{macro:{pattern:/(^[\t ]*)#\s*[a-z](?:[^\r\n\\/]|\/(?!\*)|\/\*(?:[^*]|\*(?!\/))*\*\/|\\(?:\r\n|[\s\S]))*/im,lookbehind:!0,greedy:!0,alias:"property",inside:{string:[{pattern:/^(#\s*include\s*)<[^>]+>/,lookbehind:!0},a.languages.c.string],char:a.languages.c.char,comment:a.languages.c.comment,"macro-name":[{pattern:/(^#\s*define\s+)\w+\b(?!\()/i,lookbehind:!0},{pattern:/(^#\s*define\s+)\w+\b(?=\()/i,lookbehind:!0,alias:"function"}],directive:{pattern:/^(#\s*)[a-z]+/,lookbehind:!0,alias:"keyword"},"directive-hash":/^#/,punctuation:/##|\\(?=[\r\n])/,expression:{pattern:/\S[\s\S]*/,inside:a.languages.c}}}}),a.languages.insertBefore("c","function",{constant:/\b(?:EOF|NULL|SEEK_CUR|SEEK_END|SEEK_SET|__DATE__|__FILE__|__LINE__|__TIMESTAMP__|__TIME__|__func__|stderr|stdin|stdout)\b/}),delete a.languages.c.boolean,function(e){var t=/\b(?:alignas|alignof|asm|auto|bool|break|case|catch|char|char16_t|char32_t|char8_t|class|co_await|co_return|co_yield|compl|concept|const|const_cast|consteval|constexpr|constinit|continue|decltype|default|delete|do|double|dynamic_cast|else|enum|explicit|export|extern|final|float|for|friend|goto|if|import|inline|int|int16_t|int32_t|int64_t|int8_t|long|module|mutable|namespace|new|noexcept|nullptr|operator|override|private|protected|public|register|reinterpret_cast|requires|return|short|signed|sizeof|static|static_assert|static_cast|struct|switch|template|this|thread_local|throw|try|typedef|typeid|typename|uint16_t|uint32_t|uint64_t|uint8_t|union|unsigned|using|virtual|void|volatile|wchar_t|while)\b/,n=/\b(?!)\w+(?:\s*\.\s*\w+)*\b/.source.replace(//g,(function(){return t.source}));e.languages.cpp=e.languages.extend("c",{"class-name":[{pattern:RegExp(/(\b(?:class|concept|enum|struct|typename)\s+)(?!)\w+/.source.replace(//g,(function(){return t.source}))),lookbehind:!0},/\b[A-Z]\w*(?=\s*::\s*\w+\s*\()/,/\b[A-Z_]\w*(?=\s*::\s*~\w+\s*\()/i,/\b\w+(?=\s*<(?:[^<>]|<(?:[^<>]|<[^<>]*>)*>)*>\s*::\s*\w+\s*\()/],keyword:t,number:{pattern:/(?:\b0b[01']+|\b0x(?:[\da-f']+(?:\.[\da-f']*)?|\.[\da-f']+)(?:p[+-]?[\d']+)?|(?:\b[\d']+(?:\.[\d']*)?|\B\.[\d']+)(?:e[+-]?[\d']+)?)[ful]{0,4}/i,greedy:!0},operator:/>>=?|<<=?|->|--|\+\+|&&|\|\||[?:~]|<=>|[-+*/%&|^!=<>]=?|\b(?:and|and_eq|bitand|bitor|not|not_eq|or|or_eq|xor|xor_eq)\b/,boolean:/\b(?:false|true)\b/}),e.languages.insertBefore("cpp","string",{module:{pattern:RegExp(/(\b(?:import|module)\s+)/.source+"(?:"+/"(?:\\(?:\r\n|[\s\S])|[^"\\\r\n])*"|<[^<>\r\n]*>/.source+"|"+/(?:\s*:\s*)?|:\s*/.source.replace(//g,(function(){return n}))+")"),lookbehind:!0,greedy:!0,inside:{string:/^[<"][\s\S]+/,operator:/:/,punctuation:/\./}},"raw-string":{pattern:/R"([^()\\ ]{0,16})\([\s\S]*?\)\1"/,alias:"string",greedy:!0}}),e.languages.insertBefore("cpp","keyword",{"generic-function":{pattern:/\b(?!operator\b)[a-z_]\w*\s*<(?:[^<>]|<[^<>]*>)*>(?=\s*\()/i,inside:{function:/^\w+/,generic:{pattern:/<[\s\S]+/,alias:"class-name",inside:e.languages.cpp}}}}),e.languages.insertBefore("cpp","operator",{"double-colon":{pattern:/::/,alias:"punctuation"}}),e.languages.insertBefore("cpp","class-name",{"base-clause":{pattern:/(\b(?:class|struct)\s+\w+\s*:\s*)[^;{}"'\s]+(?:\s+[^;{}"'\s]+)*(?=\s*[;{])/,lookbehind:!0,greedy:!0,inside:e.languages.extend("cpp",{})}}),e.languages.insertBefore("inside","double-colon",{"class-name":/\b[a-z_]\w*\b(?!\s*::)/i},e.languages.cpp["base-clause"])}(a),function(e){var t=/(?:"(?:\\(?:\r\n|[\s\S])|[^"\\\r\n])*"|'(?:\\(?:\r\n|[\s\S])|[^'\\\r\n])*')/;e.languages.css={comment:/\/\*[\s\S]*?\*\//,atrule:{pattern:/@[\w-](?:[^;{\s]|\s+(?![\s{]))*(?:;|(?=\s*\{))/,inside:{rule:/^@[\w-]+/,"selector-function-argument":{pattern:/(\bselector\s*\(\s*(?![\s)]))(?:[^()\s]|\s+(?![\s)])|\((?:[^()]|\([^()]*\))*\))+(?=\s*\))/,lookbehind:!0,alias:"selector"},keyword:{pattern:/(^|[^\w-])(?:and|not|only|or)(?![\w-])/,lookbehind:!0}}},url:{pattern:RegExp("\\burl\\((?:"+t.source+"|"+/(?:[^\\\r\n()"']|\\[\s\S])*/.source+")\\)","i"),greedy:!0,inside:{function:/^url/i,punctuation:/^\(|\)$/,string:{pattern:RegExp("^"+t.source+"$"),alias:"url"}}},selector:{pattern:RegExp("(^|[{}\\s])[^{}\\s](?:[^{};\"'\\s]|\\s+(?![\\s{])|"+t.source+")*(?=\\s*\\{)"),lookbehind:!0},string:{pattern:t,greedy:!0},property:{pattern:/(^|[^-\w\xA0-\uFFFF])(?!\s)[-_a-z\xA0-\uFFFF](?:(?!\s)[-\w\xA0-\uFFFF])*(?=\s*:)/i,lookbehind:!0},important:/!important\b/i,function:{pattern:/(^|[^-a-z0-9])[-a-z0-9]+(?=\()/i,lookbehind:!0},punctuation:/[(){};:,]/},e.languages.css.atrule.inside.rest=e.languages.css;var n=e.languages.markup;n&&(n.tag.addInlined("style","css"),n.tag.addAttribute("style","css"))}(a),function(e){var t,n=/("|')(?:\\(?:\r\n|[\s\S])|(?!\1)[^\\\r\n])*\1/;e.languages.css.selector={pattern:e.languages.css.selector.pattern,lookbehind:!0,inside:t={"pseudo-element":/:(?:after|before|first-letter|first-line|selection)|::[-\w]+/,"pseudo-class":/:[-\w]+/,class:/\.[-\w]+/,id:/#[-\w]+/,attribute:{pattern:RegExp("\\[(?:[^[\\]\"']|"+n.source+")*\\]"),greedy:!0,inside:{punctuation:/^\[|\]$/,"case-sensitivity":{pattern:/(\s)[si]$/i,lookbehind:!0,alias:"keyword"},namespace:{pattern:/^(\s*)(?:(?!\s)[-*\w\xA0-\uFFFF])*\|(?!=)/,lookbehind:!0,inside:{punctuation:/\|$/}},"attr-name":{pattern:/^(\s*)(?:(?!\s)[-\w\xA0-\uFFFF])+/,lookbehind:!0},"attr-value":[n,{pattern:/(=\s*)(?:(?!\s)[-\w\xA0-\uFFFF])+(?=\s*$)/,lookbehind:!0}],operator:/[|~*^$]?=/}},"n-th":[{pattern:/(\(\s*)[+-]?\d*[\dn](?:\s*[+-]\s*\d+)?(?=\s*\))/,lookbehind:!0,inside:{number:/[\dn]+/,operator:/[+-]/}},{pattern:/(\(\s*)(?:even|odd)(?=\s*\))/i,lookbehind:!0}],combinator:/>|\+|~|\|\|/,punctuation:/[(),]/}},e.languages.css.atrule.inside["selector-function-argument"].inside=t,e.languages.insertBefore("css","property",{variable:{pattern:/(^|[^-\w\xA0-\uFFFF])--(?!\s)[-_a-z\xA0-\uFFFF](?:(?!\s)[-\w\xA0-\uFFFF])*/i,lookbehind:!0}});var r={pattern:/(\b\d+)(?:%|[a-z]+(?![\w-]))/,lookbehind:!0},a={pattern:/(^|[^\w.-])-?(?:\d+(?:\.\d+)?|\.\d+)/,lookbehind:!0};e.languages.insertBefore("css","function",{operator:{pattern:/(\s)[+\-*\/](?=\s)/,lookbehind:!0},hexcode:{pattern:/\B#[\da-f]{3,8}\b/i,alias:"color"},color:[{pattern:/(^|[^\w-])(?:AliceBlue|AntiqueWhite|Aqua|Aquamarine|Azure|Beige|Bisque|Black|BlanchedAlmond|Blue|BlueViolet|Brown|BurlyWood|CadetBlue|Chartreuse|Chocolate|Coral|CornflowerBlue|Cornsilk|Crimson|Cyan|DarkBlue|DarkCyan|DarkGoldenRod|DarkGr[ae]y|DarkGreen|DarkKhaki|DarkMagenta|DarkOliveGreen|DarkOrange|DarkOrchid|DarkRed|DarkSalmon|DarkSeaGreen|DarkSlateBlue|DarkSlateGr[ae]y|DarkTurquoise|DarkViolet|DeepPink|DeepSkyBlue|DimGr[ae]y|DodgerBlue|FireBrick|FloralWhite|ForestGreen|Fuchsia|Gainsboro|GhostWhite|Gold|GoldenRod|Gr[ae]y|Green|GreenYellow|HoneyDew|HotPink|IndianRed|Indigo|Ivory|Khaki|Lavender|LavenderBlush|LawnGreen|LemonChiffon|LightBlue|LightCoral|LightCyan|LightGoldenRodYellow|LightGr[ae]y|LightGreen|LightPink|LightSalmon|LightSeaGreen|LightSkyBlue|LightSlateGr[ae]y|LightSteelBlue|LightYellow|Lime|LimeGreen|Linen|Magenta|Maroon|MediumAquaMarine|MediumBlue|MediumOrchid|MediumPurple|MediumSeaGreen|MediumSlateBlue|MediumSpringGreen|MediumTurquoise|MediumVioletRed|MidnightBlue|MintCream|MistyRose|Moccasin|NavajoWhite|Navy|OldLace|Olive|OliveDrab|Orange|OrangeRed|Orchid|PaleGoldenRod|PaleGreen|PaleTurquoise|PaleVioletRed|PapayaWhip|PeachPuff|Peru|Pink|Plum|PowderBlue|Purple|Red|RosyBrown|RoyalBlue|SaddleBrown|Salmon|SandyBrown|SeaGreen|SeaShell|Sienna|Silver|SkyBlue|SlateBlue|SlateGr[ae]y|Snow|SpringGreen|SteelBlue|Tan|Teal|Thistle|Tomato|Transparent|Turquoise|Violet|Wheat|White|WhiteSmoke|Yellow|YellowGreen)(?![\w-])/i,lookbehind:!0},{pattern:/\b(?:hsl|rgb)\(\s*\d{1,3}\s*,\s*\d{1,3}%?\s*,\s*\d{1,3}%?\s*\)\B|\b(?:hsl|rgb)a\(\s*\d{1,3}\s*,\s*\d{1,3}%?\s*,\s*\d{1,3}%?\s*,\s*(?:0|0?\.\d+|1)\s*\)\B/i,inside:{unit:r,number:a,function:/[\w-]+(?=\()/,punctuation:/[(),]/}}],entity:/\\[\da-f]{1,8}/i,unit:r,number:a})}(a),a.languages.javascript=a.languages.extend("clike",{"class-name":[a.languages.clike["class-name"],{pattern:/(^|[^$\w\xA0-\uFFFF])(?!\s)[_$A-Z\xA0-\uFFFF](?:(?!\s)[$\w\xA0-\uFFFF])*(?=\.(?:constructor|prototype))/,lookbehind:!0}],keyword:[{pattern:/((?:^|\})\s*)catch\b/,lookbehind:!0},{pattern:/(^|[^.]|\.\.\.\s*)\b(?:as|assert(?=\s*\{)|async(?=\s*(?:function\b|\(|[$\w\xA0-\uFFFF]|$))|await|break|case|class|const|continue|debugger|default|delete|do|else|enum|export|extends|finally(?=\s*(?:\{|$))|for|from(?=\s*(?:['"]|$))|function|(?:get|set)(?=\s*(?:[#\[$\w\xA0-\uFFFF]|$))|if|implements|import|in|instanceof|interface|let|new|null|of|package|private|protected|public|return|static|super|switch|this|throw|try|typeof|undefined|var|void|while|with|yield)\b/,lookbehind:!0}],function:/#?(?!\s)[_$a-zA-Z\xA0-\uFFFF](?:(?!\s)[$\w\xA0-\uFFFF])*(?=\s*(?:\.\s*(?:apply|bind|call)\s*)?\()/,number:{pattern:RegExp(/(^|[^\w$])/.source+"(?:"+/NaN|Infinity/.source+"|"+/0[bB][01]+(?:_[01]+)*n?/.source+"|"+/0[oO][0-7]+(?:_[0-7]+)*n?/.source+"|"+/0[xX][\dA-Fa-f]+(?:_[\dA-Fa-f]+)*n?/.source+"|"+/\d+(?:_\d+)*n/.source+"|"+/(?:\d+(?:_\d+)*(?:\.(?:\d+(?:_\d+)*)?)?|\.\d+(?:_\d+)*)(?:[Ee][+-]?\d+(?:_\d+)*)?/.source+")"+/(?![\w$])/.source),lookbehind:!0},operator:/--|\+\+|\*\*=?|=>|&&=?|\|\|=?|[!=]==|<<=?|>>>?=?|[-+*/%&|^!=<>]=?|\.{3}|\?\?=?|\?\.?|[~:]/}),a.languages.javascript["class-name"][0].pattern=/(\b(?:class|extends|implements|instanceof|interface|new)\s+)[\w.\\]+/,a.languages.insertBefore("javascript","keyword",{regex:{pattern:/((?:^|[^$\w\xA0-\uFFFF."'\])\s]|\b(?:return|yield))\s*)\/(?:\[(?:[^\]\\\r\n]|\\.)*\]|\\.|[^/\\\[\r\n])+\/[dgimyus]{0,7}(?=(?:\s|\/\*(?:[^*]|\*(?!\/))*\*\/)*(?:$|[\r\n,.;:})\]]|\/\/))/,lookbehind:!0,greedy:!0,inside:{"regex-source":{pattern:/^(\/)[\s\S]+(?=\/[a-z]*$)/,lookbehind:!0,alias:"language-regex",inside:a.languages.regex},"regex-delimiter":/^\/|\/$/,"regex-flags":/^[a-z]+$/}},"function-variable":{pattern:/#?(?!\s)[_$a-zA-Z\xA0-\uFFFF](?:(?!\s)[$\w\xA0-\uFFFF])*(?=\s*[=:]\s*(?:async\s*)?(?:\bfunction\b|(?:\((?:[^()]|\([^()]*\))*\)|(?!\s)[_$a-zA-Z\xA0-\uFFFF](?:(?!\s)[$\w\xA0-\uFFFF])*)\s*=>))/,alias:"function"},parameter:[{pattern:/(function(?:\s+(?!\s)[_$a-zA-Z\xA0-\uFFFF](?:(?!\s)[$\w\xA0-\uFFFF])*)?\s*\(\s*)(?!\s)(?:[^()\s]|\s+(?![\s)])|\([^()]*\))+(?=\s*\))/,lookbehind:!0,inside:a.languages.javascript},{pattern:/(^|[^$\w\xA0-\uFFFF])(?!\s)[_$a-z\xA0-\uFFFF](?:(?!\s)[$\w\xA0-\uFFFF])*(?=\s*=>)/i,lookbehind:!0,inside:a.languages.javascript},{pattern:/(\(\s*)(?!\s)(?:[^()\s]|\s+(?![\s)])|\([^()]*\))+(?=\s*\)\s*=>)/,lookbehind:!0,inside:a.languages.javascript},{pattern:/((?:\b|\s|^)(?!(?:as|async|await|break|case|catch|class|const|continue|debugger|default|delete|do|else|enum|export|extends|finally|for|from|function|get|if|implements|import|in|instanceof|interface|let|new|null|of|package|private|protected|public|return|set|static|super|switch|this|throw|try|typeof|undefined|var|void|while|with|yield)(?![$\w\xA0-\uFFFF]))(?:(?!\s)[_$a-zA-Z\xA0-\uFFFF](?:(?!\s)[$\w\xA0-\uFFFF])*\s*)\(\s*|\]\s*\(\s*)(?!\s)(?:[^()\s]|\s+(?![\s)])|\([^()]*\))+(?=\s*\)\s*\{)/,lookbehind:!0,inside:a.languages.javascript}],constant:/\b[A-Z](?:[A-Z_]|\dx?)*\b/}),a.languages.insertBefore("javascript","string",{hashbang:{pattern:/^#!.*/,greedy:!0,alias:"comment"},"template-string":{pattern:/`(?:\\[\s\S]|\$\{(?:[^{}]|\{(?:[^{}]|\{[^}]*\})*\})+\}|(?!\$\{)[^\\`])*`/,greedy:!0,inside:{"template-punctuation":{pattern:/^`|`$/,alias:"string"},interpolation:{pattern:/((?:^|[^\\])(?:\\{2})*)\$\{(?:[^{}]|\{(?:[^{}]|\{[^}]*\})*\})+\}/,lookbehind:!0,inside:{"interpolation-punctuation":{pattern:/^\$\{|\}$/,alias:"punctuation"},rest:a.languages.javascript}},string:/[\s\S]+/}},"string-property":{pattern:/((?:^|[,{])[ \t]*)(["'])(?:\\(?:\r\n|[\s\S])|(?!\2)[^\\\r\n])*\2(?=\s*:)/m,lookbehind:!0,greedy:!0,alias:"property"}}),a.languages.insertBefore("javascript","operator",{"literal-property":{pattern:/((?:^|[,{])[ \t]*)(?!\s)[_$a-zA-Z\xA0-\uFFFF](?:(?!\s)[$\w\xA0-\uFFFF])*(?=\s*:)/m,lookbehind:!0,alias:"property"}}),a.languages.markup&&(a.languages.markup.tag.addInlined("script","javascript"),a.languages.markup.tag.addAttribute(/on(?:abort|blur|change|click|composition(?:end|start|update)|dblclick|error|focus(?:in|out)?|key(?:down|up)|load|mouse(?:down|enter|leave|move|out|over|up)|reset|resize|scroll|select|slotchange|submit|unload|wheel)/.source,"javascript")),a.languages.js=a.languages.javascript,function(e){var t=/#(?!\{).+/,n={pattern:/#\{[^}]+\}/,alias:"variable"};e.languages.coffeescript=e.languages.extend("javascript",{comment:t,string:[{pattern:/'(?:\\[\s\S]|[^\\'])*'/,greedy:!0},{pattern:/"(?:\\[\s\S]|[^\\"])*"/,greedy:!0,inside:{interpolation:n}}],keyword:/\b(?:and|break|by|catch|class|continue|debugger|delete|do|each|else|extend|extends|false|finally|for|if|in|instanceof|is|isnt|let|loop|namespace|new|no|not|null|of|off|on|or|own|return|super|switch|then|this|throw|true|try|typeof|undefined|unless|until|when|while|window|with|yes|yield)\b/,"class-member":{pattern:/@(?!\d)\w+/,alias:"variable"}}),e.languages.insertBefore("coffeescript","comment",{"multiline-comment":{pattern:/###[\s\S]+?###/,alias:"comment"},"block-regex":{pattern:/\/{3}[\s\S]*?\/{3}/,alias:"regex",inside:{comment:t,interpolation:n}}}),e.languages.insertBefore("coffeescript","string",{"inline-javascript":{pattern:/`(?:\\[\s\S]|[^\\`])*`/,inside:{delimiter:{pattern:/^`|`$/,alias:"punctuation"},script:{pattern:/[\s\S]+/,alias:"language-javascript",inside:e.languages.javascript}}},"multiline-string":[{pattern:/'''[\s\S]*?'''/,greedy:!0,alias:"string"},{pattern:/"""[\s\S]*?"""/,greedy:!0,alias:"string",inside:{interpolation:n}}]}),e.languages.insertBefore("coffeescript","keyword",{property:/(?!\d)\w+(?=\s*:(?!:))/}),delete e.languages.coffeescript["template-string"],e.languages.coffee=e.languages.coffeescript}(a),function(e){var t=/[*&][^\s[\]{},]+/,n=/!(?:<[\w\-%#;/?:@&=+$,.!~*'()[\]]+>|(?:[a-zA-Z\d-]*!)?[\w\-%#;/?:@&=+$.~*'()]+)?/,r="(?:"+n.source+"(?:[ \t]+"+t.source+")?|"+t.source+"(?:[ \t]+"+n.source+")?)",a=/(?:[^\s\x00-\x08\x0e-\x1f!"#%&'*,\-:>?@[\]`{|}\x7f-\x84\x86-\x9f\ud800-\udfff\ufffe\uffff]|[?:-])(?:[ \t]*(?:(?![#:])|:))*/.source.replace(//g,(function(){return/[^\s\x00-\x08\x0e-\x1f,[\]{}\x7f-\x84\x86-\x9f\ud800-\udfff\ufffe\uffff]/.source})),o=/"(?:[^"\\\r\n]|\\.)*"|'(?:[^'\\\r\n]|\\.)*'/.source;function i(e,t){t=(t||"").replace(/m/g,"")+"m";var n=/([:\-,[{]\s*(?:\s<>[ \t]+)?)(?:<>)(?=[ \t]*(?:$|,|\]|\}|(?:[\r\n]\s*)?#))/.source.replace(/<>/g,(function(){return r})).replace(/<>/g,(function(){return e}));return RegExp(n,t)}e.languages.yaml={scalar:{pattern:RegExp(/([\-:]\s*(?:\s<>[ \t]+)?[|>])[ \t]*(?:((?:\r?\n|\r)[ \t]+)\S[^\r\n]*(?:\2[^\r\n]+)*)/.source.replace(/<>/g,(function(){return r}))),lookbehind:!0,alias:"string"},comment:/#.*/,key:{pattern:RegExp(/((?:^|[:\-,[{\r\n?])[ \t]*(?:<>[ \t]+)?)<>(?=\s*:\s)/.source.replace(/<>/g,(function(){return r})).replace(/<>/g,(function(){return"(?:"+a+"|"+o+")"}))),lookbehind:!0,greedy:!0,alias:"atrule"},directive:{pattern:/(^[ \t]*)%.+/m,lookbehind:!0,alias:"important"},datetime:{pattern:i(/\d{4}-\d\d?-\d\d?(?:[tT]|[ \t]+)\d\d?:\d{2}:\d{2}(?:\.\d*)?(?:[ \t]*(?:Z|[-+]\d\d?(?::\d{2})?))?|\d{4}-\d{2}-\d{2}|\d\d?:\d{2}(?::\d{2}(?:\.\d*)?)?/.source),lookbehind:!0,alias:"number"},boolean:{pattern:i(/false|true/.source,"i"),lookbehind:!0,alias:"important"},null:{pattern:i(/null|~/.source,"i"),lookbehind:!0,alias:"important"},string:{pattern:i(o),lookbehind:!0,greedy:!0},number:{pattern:i(/[+-]?(?:0x[\da-f]+|0o[0-7]+|(?:\d+(?:\.\d*)?|\.\d+)(?:e[+-]?\d+)?|\.inf|\.nan)/.source,"i"),lookbehind:!0},tag:n,important:t,punctuation:/---|[:[\]{}\-,|>?]|\.\.\./},e.languages.yml=e.languages.yaml}(a),function(e){var t=/(?:\\.|[^\\\n\r]|(?:\n|\r\n?)(?![\r\n]))/.source;function n(e){return e=e.replace(//g,(function(){return t})),RegExp(/((?:^|[^\\])(?:\\{2})*)/.source+"(?:"+e+")")}var r=/(?:\\.|``(?:[^`\r\n]|`(?!`))+``|`[^`\r\n]+`|[^\\|\r\n`])+/.source,a=/\|?__(?:\|__)+\|?(?:(?:\n|\r\n?)|(?![\s\S]))/.source.replace(/__/g,(function(){return r})),o=/\|?[ \t]*:?-{3,}:?[ \t]*(?:\|[ \t]*:?-{3,}:?[ \t]*)+\|?(?:\n|\r\n?)/.source;e.languages.markdown=e.languages.extend("markup",{}),e.languages.insertBefore("markdown","prolog",{"front-matter-block":{pattern:/(^(?:\s*[\r\n])?)---(?!.)[\s\S]*?[\r\n]---(?!.)/,lookbehind:!0,greedy:!0,inside:{punctuation:/^---|---$/,"front-matter":{pattern:/\S+(?:\s+\S+)*/,alias:["yaml","language-yaml"],inside:e.languages.yaml}}},blockquote:{pattern:/^>(?:[\t ]*>)*/m,alias:"punctuation"},table:{pattern:RegExp("^"+a+o+"(?:"+a+")*","m"),inside:{"table-data-rows":{pattern:RegExp("^("+a+o+")(?:"+a+")*$"),lookbehind:!0,inside:{"table-data":{pattern:RegExp(r),inside:e.languages.markdown},punctuation:/\|/}},"table-line":{pattern:RegExp("^("+a+")"+o+"$"),lookbehind:!0,inside:{punctuation:/\||:?-{3,}:?/}},"table-header-row":{pattern:RegExp("^"+a+"$"),inside:{"table-header":{pattern:RegExp(r),alias:"important",inside:e.languages.markdown},punctuation:/\|/}}}},code:[{pattern:/((?:^|\n)[ \t]*\n|(?:^|\r\n?)[ \t]*\r\n?)(?: {4}|\t).+(?:(?:\n|\r\n?)(?: {4}|\t).+)*/,lookbehind:!0,alias:"keyword"},{pattern:/^```[\s\S]*?^```$/m,greedy:!0,inside:{"code-block":{pattern:/^(```.*(?:\n|\r\n?))[\s\S]+?(?=(?:\n|\r\n?)^```$)/m,lookbehind:!0},"code-language":{pattern:/^(```).+/,lookbehind:!0},punctuation:/```/}}],title:[{pattern:/\S.*(?:\n|\r\n?)(?:==+|--+)(?=[ \t]*$)/m,alias:"important",inside:{punctuation:/==+$|--+$/}},{pattern:/(^\s*)#.+/m,lookbehind:!0,alias:"important",inside:{punctuation:/^#+|#+$/}}],hr:{pattern:/(^\s*)([*-])(?:[\t ]*\2){2,}(?=\s*$)/m,lookbehind:!0,alias:"punctuation"},list:{pattern:/(^\s*)(?:[*+-]|\d+\.)(?=[\t ].)/m,lookbehind:!0,alias:"punctuation"},"url-reference":{pattern:/!?\[[^\]]+\]:[\t ]+(?:\S+|<(?:\\.|[^>\\])+>)(?:[\t ]+(?:"(?:\\.|[^"\\])*"|'(?:\\.|[^'\\])*'|\((?:\\.|[^)\\])*\)))?/,inside:{variable:{pattern:/^(!?\[)[^\]]+/,lookbehind:!0},string:/(?:"(?:\\.|[^"\\])*"|'(?:\\.|[^'\\])*'|\((?:\\.|[^)\\])*\))$/,punctuation:/^[\[\]!:]|[<>]/},alias:"url"},bold:{pattern:n(/\b__(?:(?!_)|_(?:(?!_))+_)+__\b|\*\*(?:(?!\*)|\*(?:(?!\*))+\*)+\*\*/.source),lookbehind:!0,greedy:!0,inside:{content:{pattern:/(^..)[\s\S]+(?=..$)/,lookbehind:!0,inside:{}},punctuation:/\*\*|__/}},italic:{pattern:n(/\b_(?:(?!_)|__(?:(?!_))+__)+_\b|\*(?:(?!\*)|\*\*(?:(?!\*))+\*\*)+\*/.source),lookbehind:!0,greedy:!0,inside:{content:{pattern:/(^.)[\s\S]+(?=.$)/,lookbehind:!0,inside:{}},punctuation:/[*_]/}},strike:{pattern:n(/(~~?)(?:(?!~))+\2/.source),lookbehind:!0,greedy:!0,inside:{content:{pattern:/(^~~?)[\s\S]+(?=\1$)/,lookbehind:!0,inside:{}},punctuation:/~~?/}},"code-snippet":{pattern:/(^|[^\\`])(?:``[^`\r\n]+(?:`[^`\r\n]+)*``(?!`)|`[^`\r\n]+`(?!`))/,lookbehind:!0,greedy:!0,alias:["code","keyword"]},url:{pattern:n(/!?\[(?:(?!\]))+\](?:\([^\s)]+(?:[\t ]+"(?:\\.|[^"\\])*")?\)|[ \t]?\[(?:(?!\]))+\])/.source),lookbehind:!0,greedy:!0,inside:{operator:/^!/,content:{pattern:/(^\[)[^\]]+(?=\])/,lookbehind:!0,inside:{}},variable:{pattern:/(^\][ \t]?\[)[^\]]+(?=\]$)/,lookbehind:!0},url:{pattern:/(^\]\()[^\s)]+/,lookbehind:!0},string:{pattern:/(^[ \t]+)"(?:\\.|[^"\\])*"(?=\)$)/,lookbehind:!0}}}}),["url","bold","italic","strike"].forEach((function(t){["url","bold","italic","strike","code-snippet"].forEach((function(n){t!==n&&(e.languages.markdown[t].inside.content.inside[n]=e.languages.markdown[n])}))})),e.hooks.add("after-tokenize",(function(e){"markdown"!==e.language&&"md"!==e.language||function e(t){if(t&&"string"!=typeof t)for(var n=0,r=t.length;n",quot:'"'},s=String.fromCodePoint||String.fromCharCode;e.languages.md=e.languages.markdown}(a),a.languages.graphql={comment:/#.*/,description:{pattern:/(?:"""(?:[^"]|(?!""")")*"""|"(?:\\.|[^\\"\r\n])*")(?=\s*[a-z_])/i,greedy:!0,alias:"string",inside:{"language-markdown":{pattern:/(^"(?:"")?)(?!\1)[\s\S]+(?=\1$)/,lookbehind:!0,inside:a.languages.markdown}}},string:{pattern:/"""(?:[^"]|(?!""")")*"""|"(?:\\.|[^\\"\r\n])*"/,greedy:!0},number:/(?:\B-|\b)\d+(?:\.\d+)?(?:e[+-]?\d+)?\b/i,boolean:/\b(?:false|true)\b/,variable:/\$[a-z_]\w*/i,directive:{pattern:/@[a-z_]\w*/i,alias:"function"},"attr-name":{pattern:/\b[a-z_]\w*(?=\s*(?:\((?:[^()"]|"(?:\\.|[^\\"\r\n])*")*\))?:)/i,greedy:!0},"atom-input":{pattern:/\b[A-Z]\w*Input\b/,alias:"class-name"},scalar:/\b(?:Boolean|Float|ID|Int|String)\b/,constant:/\b[A-Z][A-Z_\d]*\b/,"class-name":{pattern:/(\b(?:enum|implements|interface|on|scalar|type|union)\s+|&\s*|:\s*|\[)[A-Z_]\w*/,lookbehind:!0},fragment:{pattern:/(\bfragment\s+|\.{3}\s*(?!on\b))[a-zA-Z_]\w*/,lookbehind:!0,alias:"function"},"definition-mutation":{pattern:/(\bmutation\s+)[a-zA-Z_]\w*/,lookbehind:!0,alias:"function"},"definition-query":{pattern:/(\bquery\s+)[a-zA-Z_]\w*/,lookbehind:!0,alias:"function"},keyword:/\b(?:directive|enum|extend|fragment|implements|input|interface|mutation|on|query|repeatable|scalar|schema|subscription|type|union)\b/,operator:/[!=|&]|\.{3}/,"property-query":/\w+(?=\s*\()/,object:/\w+(?=\s*\{)/,punctuation:/[!(){}\[\]:=,]/,property:/\w+/},a.hooks.add("after-tokenize",(function(e){if("graphql"===e.language)for(var t=e.tokens.filter((function(e){return"string"!=typeof e&&"comment"!==e.type&&"scalar"!==e.type})),n=0;n0)){var l=f(/^\{$/,/^\}$/);if(-1===l)continue;for(var s=n;s=0&&p(u,"variable-input")}}}}function c(e){return t[n+e]}function d(e,t){t=t||0;for(var n=0;n?|<|>)?|>[>=]?|\b(?:AND|BETWEEN|DIV|ILIKE|IN|IS|LIKE|NOT|OR|REGEXP|RLIKE|SOUNDS LIKE|XOR)\b/i,punctuation:/[;[\]()`,.]/},function(e){var t=e.languages.javascript["template-string"],n=t.pattern.source,r=t.inside.interpolation,a=r.inside["interpolation-punctuation"],o=r.pattern.source;function i(t,r){if(e.languages[t])return{pattern:RegExp("((?:"+r+")\\s*)"+n),lookbehind:!0,greedy:!0,inside:{"template-punctuation":{pattern:/^`|`$/,alias:"string"},"embedded-code":{pattern:/[\s\S]+/,alias:t}}}}function l(e,t){return"___"+t.toUpperCase()+"_"+e+"___"}function s(t,n,r){var a={code:t,grammar:n,language:r};return e.hooks.run("before-tokenize",a),a.tokens=e.tokenize(a.code,a.grammar),e.hooks.run("after-tokenize",a),a.tokens}function u(t){var n={};n["interpolation-punctuation"]=a;var o=e.tokenize(t,n);if(3===o.length){var i=[1,1];i.push.apply(i,s(o[1],e.languages.javascript,"javascript")),o.splice.apply(o,i)}return new e.Token("interpolation",o,r.alias,t)}function c(t,n,r){var a=e.tokenize(t,{interpolation:{pattern:RegExp(o),lookbehind:!0}}),i=0,c={},d=s(a.map((function(e){if("string"==typeof e)return e;for(var n,a=e.content;-1!==t.indexOf(n=l(i++,r)););return c[n]=a,n})).join(""),n,r),f=Object.keys(c);return i=0,function e(t){for(var n=0;n=f.length)return;var r=t[n];if("string"==typeof r||"string"==typeof r.content){var a=f[i],o="string"==typeof r?r:r.content,l=o.indexOf(a);if(-1!==l){++i;var s=o.substring(0,l),d=u(c[a]),p=o.substring(l+a.length),m=[];if(s&&m.push(s),m.push(d),p){var g=[p];e(g),m.push.apply(m,g)}"string"==typeof r?(t.splice.apply(t,[n,1].concat(m)),n+=m.length-1):r.content=m}}else{var h=r.content;Array.isArray(h)?e(h):e([h])}}}(d),new e.Token(r,d,"language-"+r,t)}e.languages.javascript["template-string"]=[i("css",/\b(?:styled(?:\([^)]*\))?(?:\s*\.\s*\w+(?:\([^)]*\))*)*|css(?:\s*\.\s*(?:global|resolve))?|createGlobalStyle|keyframes)/.source),i("html",/\bhtml|\.\s*(?:inner|outer)HTML\s*\+?=/.source),i("svg",/\bsvg/.source),i("markdown",/\b(?:markdown|md)/.source),i("graphql",/\b(?:gql|graphql(?:\s*\.\s*experimental)?)/.source),i("sql",/\bsql/.source),t].filter(Boolean);var d={javascript:!0,js:!0,typescript:!0,ts:!0,jsx:!0,tsx:!0};function f(e){return"string"==typeof e?e:Array.isArray(e)?e.map(f).join(""):f(e.content)}e.hooks.add("after-tokenize",(function(t){t.language in d&&function t(n){for(var r=0,a=n.length;r]|<(?:[^<>]|<[^<>]*>)*>)*>)?/,lookbehind:!0,greedy:!0,inside:null},builtin:/\b(?:Array|Function|Promise|any|boolean|console|never|number|string|symbol|unknown)\b/}),e.languages.typescript.keyword.push(/\b(?:abstract|declare|is|keyof|readonly|require)\b/,/\b(?:asserts|infer|interface|module|namespace|type)\b(?=\s*(?:[{_$a-zA-Z\xA0-\uFFFF]|$))/,/\btype\b(?=\s*(?:[\{*]|$))/),delete e.languages.typescript.parameter,delete e.languages.typescript["literal-property"];var t=e.languages.extend("typescript",{});delete t["class-name"],e.languages.typescript["class-name"].inside=t,e.languages.insertBefore("typescript","function",{decorator:{pattern:/@[$\w\xA0-\uFFFF]+/,inside:{at:{pattern:/^@/,alias:"operator"},function:/^[\s\S]+/}},"generic-function":{pattern:/#?(?!\s)[_$a-zA-Z\xA0-\uFFFF](?:(?!\s)[$\w\xA0-\uFFFF])*\s*<(?:[^<>]|<(?:[^<>]|<[^<>]*>)*>)*>(?=\s*\()/,greedy:!0,inside:{function:/^#?(?!\s)[_$a-zA-Z\xA0-\uFFFF](?:(?!\s)[$\w\xA0-\uFFFF])*/,generic:{pattern:/<[\s\S]+/,alias:"class-name",inside:t}}}}),e.languages.ts=e.languages.typescript}(a),function(e){function t(e,t){return RegExp(e.replace(//g,(function(){return/(?!\s)[_$a-zA-Z\xA0-\uFFFF](?:(?!\s)[$\w\xA0-\uFFFF])*/.source})),t)}e.languages.insertBefore("javascript","function-variable",{"method-variable":{pattern:RegExp("(\\.\\s*)"+e.languages.javascript["function-variable"].pattern.source),lookbehind:!0,alias:["function-variable","method","function","property-access"]}}),e.languages.insertBefore("javascript","function",{method:{pattern:RegExp("(\\.\\s*)"+e.languages.javascript.function.source),lookbehind:!0,alias:["function","property-access"]}}),e.languages.insertBefore("javascript","constant",{"known-class-name":[{pattern:/\b(?:(?:Float(?:32|64)|(?:Int|Uint)(?:8|16|32)|Uint8Clamped)?Array|ArrayBuffer|BigInt|Boolean|DataView|Date|Error|Function|Intl|JSON|(?:Weak)?(?:Map|Set)|Math|Number|Object|Promise|Proxy|Reflect|RegExp|String|Symbol|WebAssembly)\b/,alias:"class-name"},{pattern:/\b(?:[A-Z]\w*)Error\b/,alias:"class-name"}]}),e.languages.insertBefore("javascript","keyword",{imports:{pattern:t(/(\bimport\b\s*)(?:(?:\s*,\s*(?:\*\s*as\s+|\{[^{}]*\}))?|\*\s*as\s+|\{[^{}]*\})(?=\s*\bfrom\b)/.source),lookbehind:!0,inside:e.languages.javascript},exports:{pattern:t(/(\bexport\b\s*)(?:\*(?:\s*as\s+)?(?=\s*\bfrom\b)|\{[^{}]*\})/.source),lookbehind:!0,inside:e.languages.javascript}}),e.languages.javascript.keyword.unshift({pattern:/\b(?:as|default|export|from|import)\b/,alias:"module"},{pattern:/\b(?:await|break|catch|continue|do|else|finally|for|if|return|switch|throw|try|while|yield)\b/,alias:"control-flow"},{pattern:/\bnull\b/,alias:["null","nil"]},{pattern:/\bundefined\b/,alias:"nil"}),e.languages.insertBefore("javascript","operator",{spread:{pattern:/\.{3}/,alias:"operator"},arrow:{pattern:/=>/,alias:"operator"}}),e.languages.insertBefore("javascript","punctuation",{"property-access":{pattern:t(/(\.\s*)#?/.source),lookbehind:!0},"maybe-class-name":{pattern:/(^|[^$\w\xA0-\uFFFF])[A-Z][$\w\xA0-\uFFFF]+/,lookbehind:!0},dom:{pattern:/\b(?:document|(?:local|session)Storage|location|navigator|performance|window)\b/,alias:"variable"},console:{pattern:/\bconsole(?=\s*\.)/,alias:"class-name"}});for(var n=["function","function-variable","method","method-variable","property-access"],r=0;r*\.{3}(?:[^{}]|)*\})/.source;function o(e,t){return e=e.replace(//g,(function(){return n})).replace(//g,(function(){return r})).replace(//g,(function(){return a})),RegExp(e,t)}a=o(a).source,e.languages.jsx=e.languages.extend("markup",t),e.languages.jsx.tag.pattern=o(/<\/?(?:[\w.:-]+(?:+(?:[\w.:$-]+(?:=(?:"(?:\\[\s\S]|[^\\"])*"|'(?:\\[\s\S]|[^\\'])*'|[^\s{'"/>=]+|))?|))**\/?)?>/.source),e.languages.jsx.tag.inside.tag.pattern=/^<\/?[^\s>\/]*/,e.languages.jsx.tag.inside["attr-value"].pattern=/=(?!\{)(?:"(?:\\[\s\S]|[^\\"])*"|'(?:\\[\s\S]|[^\\'])*'|[^\s'">]+)/,e.languages.jsx.tag.inside.tag.inside["class-name"]=/^[A-Z]\w*(?:\.[A-Z]\w*)*$/,e.languages.jsx.tag.inside.comment=t.comment,e.languages.insertBefore("inside","attr-name",{spread:{pattern:o(//.source),inside:e.languages.jsx}},e.languages.jsx.tag),e.languages.insertBefore("inside","special-attr",{script:{pattern:o(/=/.source),alias:"language-javascript",inside:{"script-punctuation":{pattern:/^=(?=\{)/,alias:"punctuation"},rest:e.languages.jsx}}},e.languages.jsx.tag);var i=function(e){return e?"string"==typeof e?e:"string"==typeof e.content?e.content:e.content.map(i).join(""):""},l=function(t){for(var n=[],r=0;r0&&n[n.length-1].tagName===i(a.content[0].content[1])&&n.pop():"/>"===a.content[a.content.length-1].content||n.push({tagName:i(a.content[0].content[1]),openedBraces:0}):n.length>0&&"punctuation"===a.type&&"{"===a.content?n[n.length-1].openedBraces++:n.length>0&&n[n.length-1].openedBraces>0&&"punctuation"===a.type&&"}"===a.content?n[n.length-1].openedBraces--:o=!0),(o||"string"==typeof a)&&n.length>0&&0===n[n.length-1].openedBraces){var s=i(a);r0&&("string"==typeof t[r-1]||"plain-text"===t[r-1].type)&&(s=i(t[r-1])+s,t.splice(r-1,1),r--),t[r]=new e.Token("plain-text",s,null,s)}a.content&&"string"!=typeof a.content&&l(a.content)}};e.hooks.add("after-tokenize",(function(e){"jsx"!==e.language&&"tsx"!==e.language||l(e.tokens)}))}(a),function(e){e.languages.diff={coord:[/^(?:\*{3}|-{3}|\+{3}).*$/m,/^@@.*@@$/m,/^\d.*$/m]};var t={"deleted-sign":"-","deleted-arrow":"<","inserted-sign":"+","inserted-arrow":">",unchanged:" ",diff:"!"};Object.keys(t).forEach((function(n){var r=t[n],a=[];/^\w+$/.test(n)||a.push(/\w+/.exec(n)[0]),"diff"===n&&a.push("bold"),e.languages.diff[n]={pattern:RegExp("^(?:["+r+"].*(?:\r\n?|\n|(?![\\s\\S])))+","m"),alias:a,inside:{line:{pattern:/(.)(?=[\s\S]).*(?:\r\n?|\n)?/,lookbehind:!0},prefix:{pattern:/[\s\S]/,alias:/\w+/.exec(n)[0]}}}})),Object.defineProperty(e.languages.diff,"PREFIXES",{value:t})}(a),a.languages.git={comment:/^#.*/m,deleted:/^[-\u2013].*/m,inserted:/^\+.*/m,string:/("|')(?:\\.|(?!\1)[^\\\r\n])*\1/,command:{pattern:/^.*\$ git .*$/m,inside:{parameter:/\s--?\w+/}},coord:/^@@.*@@$/m,"commit-sha1":/^commit \w{40}$/m},a.languages.go=a.languages.extend("clike",{string:{pattern:/(^|[^\\])"(?:\\.|[^"\\\r\n])*"|`[^`]*`/,lookbehind:!0,greedy:!0},keyword:/\b(?:break|case|chan|const|continue|default|defer|else|fallthrough|for|func|go(?:to)?|if|import|interface|map|package|range|return|select|struct|switch|type|var)\b/,boolean:/\b(?:_|false|iota|nil|true)\b/,number:[/\b0(?:b[01_]+|o[0-7_]+)i?\b/i,/\b0x(?:[a-f\d_]+(?:\.[a-f\d_]*)?|\.[a-f\d_]+)(?:p[+-]?\d+(?:_\d+)*)?i?(?!\w)/i,/(?:\b\d[\d_]*(?:\.[\d_]*)?|\B\.\d[\d_]*)(?:e[+-]?[\d_]+)?i?(?!\w)/i],operator:/[*\/%^!=]=?|\+[=+]?|-[=-]?|\|[=|]?|&(?:=|&|\^=?)?|>(?:>=?|=)?|<(?:<=?|=|-)?|:=|\.\.\./,builtin:/\b(?:append|bool|byte|cap|close|complex|complex(?:64|128)|copy|delete|error|float(?:32|64)|u?int(?:8|16|32|64)?|imag|len|make|new|panic|print(?:ln)?|real|recover|rune|string|uintptr)\b/}),a.languages.insertBefore("go","string",{char:{pattern:/'(?:\\.|[^'\\\r\n]){0,10}'/,greedy:!0}}),delete a.languages.go["class-name"],function(e){function t(e,t){return"___"+e.toUpperCase()+t+"___"}Object.defineProperties(e.languages["markup-templating"]={},{buildPlaceholders:{value:function(n,r,a,o){if(n.language===r){var i=n.tokenStack=[];n.code=n.code.replace(a,(function(e){if("function"==typeof o&&!o(e))return e;for(var a,l=i.length;-1!==n.code.indexOf(a=t(r,l));)++l;return i[l]=e,a})),n.grammar=e.languages.markup}}},tokenizePlaceholders:{value:function(n,r){if(n.language===r&&n.tokenStack){n.grammar=e.languages[r];var a=0,o=Object.keys(n.tokenStack);!function i(l){for(var s=0;s=o.length);s++){var u=l[s];if("string"==typeof u||u.content&&"string"==typeof u.content){var c=o[a],d=n.tokenStack[c],f="string"==typeof u?u:u.content,p=t(r,c),m=f.indexOf(p);if(m>-1){++a;var g=f.substring(0,m),h=new e.Token(r,e.tokenize(d,n.grammar),"language-"+r,d),v=f.substring(m+p.length),b=[];g&&b.push.apply(b,i([g])),b.push(h),v&&b.push.apply(b,i([v])),"string"==typeof u?l.splice.apply(l,[s,1].concat(b)):u.content=b}}else u.content&&i(u.content)}return l}(n.tokens)}}}})}(a),function(e){e.languages.handlebars={comment:/\{\{![\s\S]*?\}\}/,delimiter:{pattern:/^\{\{\{?|\}\}\}?$/,alias:"punctuation"},string:/(["'])(?:\\.|(?!\1)[^\\\r\n])*\1/,number:/\b0x[\dA-Fa-f]+\b|(?:\b\d+(?:\.\d*)?|\B\.\d+)(?:[Ee][+-]?\d+)?/,boolean:/\b(?:false|true)\b/,block:{pattern:/^(\s*(?:~\s*)?)[#\/]\S+?(?=\s*(?:~\s*)?$|\s)/,lookbehind:!0,alias:"keyword"},brackets:{pattern:/\[[^\]]+\]/,inside:{punctuation:/\[|\]/,variable:/[\s\S]+/}},punctuation:/[!"#%&':()*+,.\/;<=>@\[\\\]^`{|}~]/,variable:/[^!"#%&'()*+,\/;<=>@\[\\\]^`{|}~\s]+/},e.hooks.add("before-tokenize",(function(t){e.languages["markup-templating"].buildPlaceholders(t,"handlebars",/\{\{\{[\s\S]+?\}\}\}|\{\{[\s\S]+?\}\}/g)})),e.hooks.add("after-tokenize",(function(t){e.languages["markup-templating"].tokenizePlaceholders(t,"handlebars")})),e.languages.hbs=e.languages.handlebars}(a),a.languages.json={property:{pattern:/(^|[^\\])"(?:\\.|[^\\"\r\n])*"(?=\s*:)/,lookbehind:!0,greedy:!0},string:{pattern:/(^|[^\\])"(?:\\.|[^\\"\r\n])*"(?!\s*:)/,lookbehind:!0,greedy:!0},comment:{pattern:/\/\/.*|\/\*[\s\S]*?(?:\*\/|$)/,greedy:!0},number:/-?\b\d+(?:\.\d+)?(?:e[+-]?\d+)?\b/i,punctuation:/[{}[\],]/,operator:/:/,boolean:/\b(?:false|true)\b/,null:{pattern:/\bnull\b/,alias:"keyword"}},a.languages.webmanifest=a.languages.json,a.languages.less=a.languages.extend("css",{comment:[/\/\*[\s\S]*?\*\//,{pattern:/(^|[^\\])\/\/.*/,lookbehind:!0}],atrule:{pattern:/@[\w-](?:\((?:[^(){}]|\([^(){}]*\))*\)|[^(){};\s]|\s+(?!\s))*?(?=\s*\{)/,inside:{punctuation:/[:()]/}},selector:{pattern:/(?:@\{[\w-]+\}|[^{};\s@])(?:@\{[\w-]+\}|\((?:[^(){}]|\([^(){}]*\))*\)|[^(){};@\s]|\s+(?!\s))*?(?=\s*\{)/,inside:{variable:/@+[\w-]+/}},property:/(?:@\{[\w-]+\}|[\w-])+(?:\+_?)?(?=\s*:)/,operator:/[+\-*\/]/}),a.languages.insertBefore("less","property",{variable:[{pattern:/@[\w-]+\s*:/,inside:{punctuation:/:/}},/@@?[\w-]+/],"mixin-usage":{pattern:/([{;]\s*)[.#](?!\d)[\w-].*?(?=[(;])/,lookbehind:!0,alias:"function"}}),a.languages.makefile={comment:{pattern:/(^|[^\\])#(?:\\(?:\r\n|[\s\S])|[^\\\r\n])*/,lookbehind:!0},string:{pattern:/(["'])(?:\\(?:\r\n|[\s\S])|(?!\1)[^\\\r\n])*\1/,greedy:!0},"builtin-target":{pattern:/\.[A-Z][^:#=\s]+(?=\s*:(?!=))/,alias:"builtin"},target:{pattern:/^(?:[^:=\s]|[ \t]+(?![\s:]))+(?=\s*:(?!=))/m,alias:"symbol",inside:{variable:/\$+(?:(?!\$)[^(){}:#=\s]+|(?=[({]))/}},variable:/\$+(?:(?!\$)[^(){}:#=\s]+|\([@*%<^+?][DF]\)|(?=[({]))/,keyword:/-include\b|\b(?:define|else|endef|endif|export|ifn?def|ifn?eq|include|override|private|sinclude|undefine|unexport|vpath)\b/,function:{pattern:/(\()(?:abspath|addsuffix|and|basename|call|dir|error|eval|file|filter(?:-out)?|findstring|firstword|flavor|foreach|guile|if|info|join|lastword|load|notdir|or|origin|patsubst|realpath|shell|sort|strip|subst|suffix|value|warning|wildcard|word(?:list|s)?)(?=[ \t])/,lookbehind:!0},operator:/(?:::|[?:+!])?=|[|@]/,punctuation:/[:;(){}]/},a.languages.objectivec=a.languages.extend("c",{string:{pattern:/@?"(?:\\(?:\r\n|[\s\S])|[^"\\\r\n])*"/,greedy:!0},keyword:/\b(?:asm|auto|break|case|char|const|continue|default|do|double|else|enum|extern|float|for|goto|if|in|inline|int|long|register|return|self|short|signed|sizeof|static|struct|super|switch|typedef|typeof|union|unsigned|void|volatile|while)\b|(?:@interface|@end|@implementation|@protocol|@class|@public|@protected|@private|@property|@try|@catch|@finally|@throw|@synthesize|@dynamic|@selector)\b/,operator:/-[->]?|\+\+?|!=?|<>?=?|==?|&&?|\|\|?|[~^%?*\/@]/}),delete a.languages.objectivec["class-name"],a.languages.objc=a.languages.objectivec,a.languages.ocaml={comment:{pattern:/\(\*[\s\S]*?\*\)/,greedy:!0},char:{pattern:/'(?:[^\\\r\n']|\\(?:.|[ox]?[0-9a-f]{1,3}))'/i,greedy:!0},string:[{pattern:/"(?:\\(?:[\s\S]|\r\n)|[^\\\r\n"])*"/,greedy:!0},{pattern:/\{([a-z_]*)\|[\s\S]*?\|\1\}/,greedy:!0}],number:[/\b(?:0b[01][01_]*|0o[0-7][0-7_]*)\b/i,/\b0x[a-f0-9][a-f0-9_]*(?:\.[a-f0-9_]*)?(?:p[+-]?\d[\d_]*)?(?!\w)/i,/\b\d[\d_]*(?:\.[\d_]*)?(?:e[+-]?\d[\d_]*)?(?!\w)/i],directive:{pattern:/\B#\w+/,alias:"property"},label:{pattern:/\B~\w+/,alias:"property"},"type-variable":{pattern:/\B'\w+/,alias:"function"},variant:{pattern:/`\w+/,alias:"symbol"},keyword:/\b(?:as|assert|begin|class|constraint|do|done|downto|else|end|exception|external|for|fun|function|functor|if|in|include|inherit|initializer|lazy|let|match|method|module|mutable|new|nonrec|object|of|open|private|rec|sig|struct|then|to|try|type|val|value|virtual|when|where|while|with)\b/,boolean:/\b(?:false|true)\b/,"operator-like-punctuation":{pattern:/\[[<>|]|[>|]\]|\{<|>\}/,alias:"punctuation"},operator:/\.[.~]|:[=>]|[=<>@^|&+\-*\/$%!?~][!$%&*+\-.\/:<=>?@^|~]*|\b(?:and|asr|land|lor|lsl|lsr|lxor|mod|or)\b/,punctuation:/;;|::|[(){}\[\].,:;#]|\b_\b/},a.languages.python={comment:{pattern:/(^|[^\\])#.*/,lookbehind:!0,greedy:!0},"string-interpolation":{pattern:/(?:f|fr|rf)(?:("""|''')[\s\S]*?\1|("|')(?:\\.|(?!\2)[^\\\r\n])*\2)/i,greedy:!0,inside:{interpolation:{pattern:/((?:^|[^{])(?:\{\{)*)\{(?!\{)(?:[^{}]|\{(?!\{)(?:[^{}]|\{(?!\{)(?:[^{}])+\})+\})+\}/,lookbehind:!0,inside:{"format-spec":{pattern:/(:)[^:(){}]+(?=\}$)/,lookbehind:!0},"conversion-option":{pattern:/![sra](?=[:}]$)/,alias:"punctuation"},rest:null}},string:/[\s\S]+/}},"triple-quoted-string":{pattern:/(?:[rub]|br|rb)?("""|''')[\s\S]*?\1/i,greedy:!0,alias:"string"},string:{pattern:/(?:[rub]|br|rb)?("|')(?:\\.|(?!\1)[^\\\r\n])*\1/i,greedy:!0},function:{pattern:/((?:^|\s)def[ \t]+)[a-zA-Z_]\w*(?=\s*\()/g,lookbehind:!0},"class-name":{pattern:/(\bclass\s+)\w+/i,lookbehind:!0},decorator:{pattern:/(^[\t ]*)@\w+(?:\.\w+)*/m,lookbehind:!0,alias:["annotation","punctuation"],inside:{punctuation:/\./}},keyword:/\b(?:_(?=\s*:)|and|as|assert|async|await|break|case|class|continue|def|del|elif|else|except|exec|finally|for|from|global|if|import|in|is|lambda|match|nonlocal|not|or|pass|print|raise|return|try|while|with|yield)\b/,builtin:/\b(?:__import__|abs|all|any|apply|ascii|basestring|bin|bool|buffer|bytearray|bytes|callable|chr|classmethod|cmp|coerce|compile|complex|delattr|dict|dir|divmod|enumerate|eval|execfile|file|filter|float|format|frozenset|getattr|globals|hasattr|hash|help|hex|id|input|int|intern|isinstance|issubclass|iter|len|list|locals|long|map|max|memoryview|min|next|object|oct|open|ord|pow|property|range|raw_input|reduce|reload|repr|reversed|round|set|setattr|slice|sorted|staticmethod|str|sum|super|tuple|type|unichr|unicode|vars|xrange|zip)\b/,boolean:/\b(?:False|None|True)\b/,number:/\b0(?:b(?:_?[01])+|o(?:_?[0-7])+|x(?:_?[a-f0-9])+)\b|(?:\b\d+(?:_\d+)*(?:\.(?:\d+(?:_\d+)*)?)?|\B\.\d+(?:_\d+)*)(?:e[+-]?\d+(?:_\d+)*)?j?(?!\w)/i,operator:/[-+%=]=?|!=|:=|\*\*?=?|\/\/?=?|<[<=>]?|>[=>]?|[&|^~]/,punctuation:/[{}[\];(),.:]/},a.languages.python["string-interpolation"].inside.interpolation.inside.rest=a.languages.python,a.languages.py=a.languages.python,a.languages.reason=a.languages.extend("clike",{string:{pattern:/"(?:\\(?:\r\n|[\s\S])|[^\\\r\n"])*"/,greedy:!0},"class-name":/\b[A-Z]\w*/,keyword:/\b(?:and|as|assert|begin|class|constraint|do|done|downto|else|end|exception|external|for|fun|function|functor|if|in|include|inherit|initializer|lazy|let|method|module|mutable|new|nonrec|object|of|open|or|private|rec|sig|struct|switch|then|to|try|type|val|virtual|when|while|with)\b/,operator:/\.{3}|:[:=]|\|>|->|=(?:==?|>)?|<=?|>=?|[|^?'#!~`]|[+\-*\/]\.?|\b(?:asr|land|lor|lsl|lsr|lxor|mod)\b/}),a.languages.insertBefore("reason","class-name",{char:{pattern:/'(?:\\x[\da-f]{2}|\\o[0-3][0-7][0-7]|\\\d{3}|\\.|[^'\\\r\n])'/,greedy:!0},constructor:/\b[A-Z]\w*\b(?!\s*\.)/,label:{pattern:/\b[a-z]\w*(?=::)/,alias:"symbol"}}),delete a.languages.reason.function,function(e){e.languages.sass=e.languages.extend("css",{comment:{pattern:/^([ \t]*)\/[\/*].*(?:(?:\r?\n|\r)\1[ \t].+)*/m,lookbehind:!0,greedy:!0}}),e.languages.insertBefore("sass","atrule",{"atrule-line":{pattern:/^(?:[ \t]*)[@+=].+/m,greedy:!0,inside:{atrule:/(?:@[\w-]+|[+=])/}}}),delete e.languages.sass.atrule;var t=/\$[-\w]+|#\{\$[-\w]+\}/,n=[/[+*\/%]|[=!]=|<=?|>=?|\b(?:and|not|or)\b/,{pattern:/(\s)-(?=\s)/,lookbehind:!0}];e.languages.insertBefore("sass","property",{"variable-line":{pattern:/^[ \t]*\$.+/m,greedy:!0,inside:{punctuation:/:/,variable:t,operator:n}},"property-line":{pattern:/^[ \t]*(?:[^:\s]+ *:.*|:[^:\s].*)/m,greedy:!0,inside:{property:[/[^:\s]+(?=\s*:)/,{pattern:/(:)[^:\s]+/,lookbehind:!0}],punctuation:/:/,variable:t,operator:n,important:e.languages.sass.important}}}),delete e.languages.sass.property,delete e.languages.sass.important,e.languages.insertBefore("sass","punctuation",{selector:{pattern:/^([ \t]*)\S(?:,[^,\r\n]+|[^,\r\n]*)(?:,[^,\r\n]+)*(?:,(?:\r?\n|\r)\1[ \t]+\S(?:,[^,\r\n]+|[^,\r\n]*)(?:,[^,\r\n]+)*)*/m,lookbehind:!0,greedy:!0}})}(a),a.languages.scss=a.languages.extend("css",{comment:{pattern:/(^|[^\\])(?:\/\*[\s\S]*?\*\/|\/\/.*)/,lookbehind:!0},atrule:{pattern:/@[\w-](?:\([^()]+\)|[^()\s]|\s+(?!\s))*?(?=\s+[{;])/,inside:{rule:/@[\w-]+/}},url:/(?:[-a-z]+-)?url(?=\()/i,selector:{pattern:/(?=\S)[^@;{}()]?(?:[^@;{}()\s]|\s+(?!\s)|#\{\$[-\w]+\})+(?=\s*\{(?:\}|\s|[^}][^:{}]*[:{][^}]))/,inside:{parent:{pattern:/&/,alias:"important"},placeholder:/%[-\w]+/,variable:/\$[-\w]+|#\{\$[-\w]+\}/}},property:{pattern:/(?:[-\w]|\$[-\w]|#\{\$[-\w]+\})+(?=\s*:)/,inside:{variable:/\$[-\w]+|#\{\$[-\w]+\}/}}}),a.languages.insertBefore("scss","atrule",{keyword:[/@(?:content|debug|each|else(?: if)?|extend|for|forward|function|if|import|include|mixin|return|use|warn|while)\b/i,{pattern:/( )(?:from|through)(?= )/,lookbehind:!0}]}),a.languages.insertBefore("scss","important",{variable:/\$[-\w]+|#\{\$[-\w]+\}/}),a.languages.insertBefore("scss","function",{"module-modifier":{pattern:/\b(?:as|hide|show|with)\b/i,alias:"keyword"},placeholder:{pattern:/%[-\w]+/,alias:"selector"},statement:{pattern:/\B!(?:default|optional)\b/i,alias:"keyword"},boolean:/\b(?:false|true)\b/,null:{pattern:/\bnull\b/,alias:"keyword"},operator:{pattern:/(\s)(?:[-+*\/%]|[=!]=|<=?|>=?|and|not|or)(?=\s)/,lookbehind:!0}}),a.languages.scss.atrule.inside.rest=a.languages.scss,function(e){var t={pattern:/(\b\d+)(?:%|[a-z]+)/,lookbehind:!0},n={pattern:/(^|[^\w.-])-?(?:\d+(?:\.\d+)?|\.\d+)/,lookbehind:!0},r={comment:{pattern:/(^|[^\\])(?:\/\*[\s\S]*?\*\/|\/\/.*)/,lookbehind:!0},url:{pattern:/\burl\((["']?).*?\1\)/i,greedy:!0},string:{pattern:/("|')(?:(?!\1)[^\\\r\n]|\\(?:\r\n|[\s\S]))*\1/,greedy:!0},interpolation:null,func:null,important:/\B!(?:important|optional)\b/i,keyword:{pattern:/(^|\s+)(?:(?:else|for|if|return|unless)(?=\s|$)|@[\w-]+)/,lookbehind:!0},hexcode:/#[\da-f]{3,6}/i,color:[/\b(?:AliceBlue|AntiqueWhite|Aqua|Aquamarine|Azure|Beige|Bisque|Black|BlanchedAlmond|Blue|BlueViolet|Brown|BurlyWood|CadetBlue|Chartreuse|Chocolate|Coral|CornflowerBlue|Cornsilk|Crimson|Cyan|DarkBlue|DarkCyan|DarkGoldenRod|DarkGr[ae]y|DarkGreen|DarkKhaki|DarkMagenta|DarkOliveGreen|DarkOrange|DarkOrchid|DarkRed|DarkSalmon|DarkSeaGreen|DarkSlateBlue|DarkSlateGr[ae]y|DarkTurquoise|DarkViolet|DeepPink|DeepSkyBlue|DimGr[ae]y|DodgerBlue|FireBrick|FloralWhite|ForestGreen|Fuchsia|Gainsboro|GhostWhite|Gold|GoldenRod|Gr[ae]y|Green|GreenYellow|HoneyDew|HotPink|IndianRed|Indigo|Ivory|Khaki|Lavender|LavenderBlush|LawnGreen|LemonChiffon|LightBlue|LightCoral|LightCyan|LightGoldenRodYellow|LightGr[ae]y|LightGreen|LightPink|LightSalmon|LightSeaGreen|LightSkyBlue|LightSlateGr[ae]y|LightSteelBlue|LightYellow|Lime|LimeGreen|Linen|Magenta|Maroon|MediumAquaMarine|MediumBlue|MediumOrchid|MediumPurple|MediumSeaGreen|MediumSlateBlue|MediumSpringGreen|MediumTurquoise|MediumVioletRed|MidnightBlue|MintCream|MistyRose|Moccasin|NavajoWhite|Navy|OldLace|Olive|OliveDrab|Orange|OrangeRed|Orchid|PaleGoldenRod|PaleGreen|PaleTurquoise|PaleVioletRed|PapayaWhip|PeachPuff|Peru|Pink|Plum|PowderBlue|Purple|Red|RosyBrown|RoyalBlue|SaddleBrown|Salmon|SandyBrown|SeaGreen|SeaShell|Sienna|Silver|SkyBlue|SlateBlue|SlateGr[ae]y|Snow|SpringGreen|SteelBlue|Tan|Teal|Thistle|Tomato|Transparent|Turquoise|Violet|Wheat|White|WhiteSmoke|Yellow|YellowGreen)\b/i,{pattern:/\b(?:hsl|rgb)\(\s*\d{1,3}\s*,\s*\d{1,3}%?\s*,\s*\d{1,3}%?\s*\)\B|\b(?:hsl|rgb)a\(\s*\d{1,3}\s*,\s*\d{1,3}%?\s*,\s*\d{1,3}%?\s*,\s*(?:0|0?\.\d+|1)\s*\)\B/i,inside:{unit:t,number:n,function:/[\w-]+(?=\()/,punctuation:/[(),]/}}],entity:/\\[\da-f]{1,8}/i,unit:t,boolean:/\b(?:false|true)\b/,operator:[/~|[+!\/%<>?=]=?|[-:]=|\*[*=]?|\.{2,3}|&&|\|\||\B-\B|\b(?:and|in|is(?: a| defined| not|nt)?|not|or)\b/],number:n,punctuation:/[{}()\[\];:,]/};r.interpolation={pattern:/\{[^\r\n}:]+\}/,alias:"variable",inside:{delimiter:{pattern:/^\{|\}$/,alias:"punctuation"},rest:r}},r.func={pattern:/[\w-]+\([^)]*\).*/,inside:{function:/^[^(]+/,rest:r}},e.languages.stylus={"atrule-declaration":{pattern:/(^[ \t]*)@.+/m,lookbehind:!0,inside:{atrule:/^@[\w-]+/,rest:r}},"variable-declaration":{pattern:/(^[ \t]*)[\w$-]+\s*.?=[ \t]*(?:\{[^{}]*\}|\S.*|$)/m,lookbehind:!0,inside:{variable:/^\S+/,rest:r}},statement:{pattern:/(^[ \t]*)(?:else|for|if|return|unless)[ \t].+/m,lookbehind:!0,inside:{keyword:/^\S+/,rest:r}},"property-declaration":{pattern:/((?:^|\{)([ \t]*))(?:[\w-]|\{[^}\r\n]+\})+(?:\s*:\s*|[ \t]+)(?!\s)[^{\r\n]*(?:;|[^{\r\n,]$(?!(?:\r?\n|\r)(?:\{|\2[ \t])))/m,lookbehind:!0,inside:{property:{pattern:/^[^\s:]+/,inside:{interpolation:r.interpolation}},rest:r}},selector:{pattern:/(^[ \t]*)(?:(?=\S)(?:[^{}\r\n:()]|::?[\w-]+(?:\([^)\r\n]*\)|(?![\w-]))|\{[^}\r\n]+\})+)(?:(?:\r?\n|\r)(?:\1(?:(?=\S)(?:[^{}\r\n:()]|::?[\w-]+(?:\([^)\r\n]*\)|(?![\w-]))|\{[^}\r\n]+\})+)))*(?:,$|\{|(?=(?:\r?\n|\r)(?:\{|\1[ \t])))/m,lookbehind:!0,inside:{interpolation:r.interpolation,comment:r.comment,punctuation:/[{},]/}},func:r.func,string:r.string,comment:{pattern:/(^|[^\\])(?:\/\*[\s\S]*?\*\/|\/\/.*)/,lookbehind:!0,greedy:!0},interpolation:r.interpolation,punctuation:/[{}()\[\];:.]/}}(a),function(e){var t=e.util.clone(e.languages.typescript);e.languages.tsx=e.languages.extend("jsx",t),delete e.languages.tsx.parameter,delete e.languages.tsx["literal-property"];var n=e.languages.tsx.tag;n.pattern=RegExp(/(^|[^\w$]|(?=<\/))/.source+"(?:"+n.pattern.source+")",n.pattern.flags),n.lookbehind=!0}(a),a.languages.wasm={comment:[/\(;[\s\S]*?;\)/,{pattern:/;;.*/,greedy:!0}],string:{pattern:/"(?:\\[\s\S]|[^"\\])*"/,greedy:!0},keyword:[{pattern:/\b(?:align|offset)=/,inside:{operator:/=/}},{pattern:/\b(?:(?:f32|f64|i32|i64)(?:\.(?:abs|add|and|ceil|clz|const|convert_[su]\/i(?:32|64)|copysign|ctz|demote\/f64|div(?:_[su])?|eqz?|extend_[su]\/i32|floor|ge(?:_[su])?|gt(?:_[su])?|le(?:_[su])?|load(?:(?:8|16|32)_[su])?|lt(?:_[su])?|max|min|mul|neg?|nearest|or|popcnt|promote\/f32|reinterpret\/[fi](?:32|64)|rem_[su]|rot[lr]|shl|shr_[su]|sqrt|store(?:8|16|32)?|sub|trunc(?:_[su]\/f(?:32|64))?|wrap\/i64|xor))?|memory\.(?:grow|size))\b/,inside:{punctuation:/\./}},/\b(?:anyfunc|block|br(?:_if|_table)?|call(?:_indirect)?|data|drop|elem|else|end|export|func|get_(?:global|local)|global|if|import|local|loop|memory|module|mut|nop|offset|param|result|return|select|set_(?:global|local)|start|table|tee_local|then|type|unreachable)\b/],variable:/\$[\w!#$%&'*+\-./:<=>?@\\^`|~]+/,number:/[+-]?\b(?:\d(?:_?\d)*(?:\.\d(?:_?\d)*)?(?:[eE][+-]?\d(?:_?\d)*)?|0x[\da-fA-F](?:_?[\da-fA-F])*(?:\.[\da-fA-F](?:_?[\da-fA-D])*)?(?:[pP][+-]?\d(?:_?\d)*)?)\b|\binf\b|\bnan(?::0x[\da-fA-F](?:_?[\da-fA-D])*)?\b/,punctuation:/[()]/};const o=a},9901:e=>{e.exports&&(e.exports={core:{meta:{path:"components/prism-core.js",option:"mandatory"},core:"Core"},themes:{meta:{path:"themes/{id}.css",link:"index.html?theme={id}",exclusive:!0},prism:{title:"Default",option:"default"},"prism-dark":"Dark","prism-funky":"Funky","prism-okaidia":{title:"Okaidia",owner:"ocodia"},"prism-twilight":{title:"Twilight",owner:"remybach"},"prism-coy":{title:"Coy",owner:"tshedor"},"prism-solarizedlight":{title:"Solarized Light",owner:"hectormatos2011 "},"prism-tomorrow":{title:"Tomorrow Night",owner:"Rosey"}},languages:{meta:{path:"components/prism-{id}",noCSS:!0,examplesPath:"examples/prism-{id}",addCheckAll:!0},markup:{title:"Markup",alias:["html","xml","svg","mathml","ssml","atom","rss"],aliasTitles:{html:"HTML",xml:"XML",svg:"SVG",mathml:"MathML",ssml:"SSML",atom:"Atom",rss:"RSS"},option:"default"},css:{title:"CSS",option:"default",modify:"markup"},clike:{title:"C-like",option:"default"},javascript:{title:"JavaScript",require:"clike",modify:"markup",optional:"regex",alias:"js",option:"default"},abap:{title:"ABAP",owner:"dellagustin"},abnf:{title:"ABNF",owner:"RunDevelopment"},actionscript:{title:"ActionScript",require:"javascript",modify:"markup",owner:"Golmote"},ada:{title:"Ada",owner:"Lucretia"},agda:{title:"Agda",owner:"xy-ren"},al:{title:"AL",owner:"RunDevelopment"},antlr4:{title:"ANTLR4",alias:"g4",owner:"RunDevelopment"},apacheconf:{title:"Apache Configuration",owner:"GuiTeK"},apex:{title:"Apex",require:["clike","sql"],owner:"RunDevelopment"},apl:{title:"APL",owner:"ngn"},applescript:{title:"AppleScript",owner:"Golmote"},aql:{title:"AQL",owner:"RunDevelopment"},arduino:{title:"Arduino",require:"cpp",alias:"ino",owner:"dkern"},arff:{title:"ARFF",owner:"Golmote"},armasm:{title:"ARM Assembly",alias:"arm-asm",owner:"RunDevelopment"},arturo:{title:"Arturo",alias:"art",optional:["bash","css","javascript","markup","markdown","sql"],owner:"drkameleon"},asciidoc:{alias:"adoc",title:"AsciiDoc",owner:"Golmote"},aspnet:{title:"ASP.NET (C#)",require:["markup","csharp"],owner:"nauzilus"},asm6502:{title:"6502 Assembly",owner:"kzurawel"},asmatmel:{title:"Atmel AVR Assembly",owner:"cerkit"},autohotkey:{title:"AutoHotkey",owner:"aviaryan"},autoit:{title:"AutoIt",owner:"Golmote"},avisynth:{title:"AviSynth",alias:"avs",owner:"Zinfidel"},"avro-idl":{title:"Avro IDL",alias:"avdl",owner:"RunDevelopment"},awk:{title:"AWK",alias:"gawk",aliasTitles:{gawk:"GAWK"},owner:"RunDevelopment"},bash:{title:"Bash",alias:["sh","shell"],aliasTitles:{sh:"Shell",shell:"Shell"},owner:"zeitgeist87"},basic:{title:"BASIC",owner:"Golmote"},batch:{title:"Batch",owner:"Golmote"},bbcode:{title:"BBcode",alias:"shortcode",aliasTitles:{shortcode:"Shortcode"},owner:"RunDevelopment"},bbj:{title:"BBj",owner:"hyyan"},bicep:{title:"Bicep",owner:"johnnyreilly"},birb:{title:"Birb",require:"clike",owner:"Calamity210"},bison:{title:"Bison",require:"c",owner:"Golmote"},bnf:{title:"BNF",alias:"rbnf",aliasTitles:{rbnf:"RBNF"},owner:"RunDevelopment"},bqn:{title:"BQN",owner:"yewscion"},brainfuck:{title:"Brainfuck",owner:"Golmote"},brightscript:{title:"BrightScript",owner:"RunDevelopment"},bro:{title:"Bro",owner:"wayward710"},bsl:{title:"BSL (1C:Enterprise)",alias:"oscript",aliasTitles:{oscript:"OneScript"},owner:"Diversus23"},c:{title:"C",require:"clike",owner:"zeitgeist87"},csharp:{title:"C#",require:"clike",alias:["cs","dotnet"],owner:"mvalipour"},cpp:{title:"C++",require:"c",owner:"zeitgeist87"},cfscript:{title:"CFScript",require:"clike",alias:"cfc",owner:"mjclemente"},chaiscript:{title:"ChaiScript",require:["clike","cpp"],owner:"RunDevelopment"},cil:{title:"CIL",owner:"sbrl"},cilkc:{title:"Cilk/C",require:"c",alias:"cilk-c",owner:"OpenCilk"},cilkcpp:{title:"Cilk/C++",require:"cpp",alias:["cilk-cpp","cilk"],owner:"OpenCilk"},clojure:{title:"Clojure",owner:"troglotit"},cmake:{title:"CMake",owner:"mjrogozinski"},cobol:{title:"COBOL",owner:"RunDevelopment"},coffeescript:{title:"CoffeeScript",require:"javascript",alias:"coffee",owner:"R-osey"},concurnas:{title:"Concurnas",alias:"conc",owner:"jasontatton"},csp:{title:"Content-Security-Policy",owner:"ScottHelme"},cooklang:{title:"Cooklang",owner:"ahue"},coq:{title:"Coq",owner:"RunDevelopment"},crystal:{title:"Crystal",require:"ruby",owner:"MakeNowJust"},"css-extras":{title:"CSS Extras",require:"css",modify:"css",owner:"milesj"},csv:{title:"CSV",owner:"RunDevelopment"},cue:{title:"CUE",owner:"RunDevelopment"},cypher:{title:"Cypher",owner:"RunDevelopment"},d:{title:"D",require:"clike",owner:"Golmote"},dart:{title:"Dart",require:"clike",owner:"Golmote"},dataweave:{title:"DataWeave",owner:"machaval"},dax:{title:"DAX",owner:"peterbud"},dhall:{title:"Dhall",owner:"RunDevelopment"},diff:{title:"Diff",owner:"uranusjr"},django:{title:"Django/Jinja2",require:"markup-templating",alias:"jinja2",owner:"romanvm"},"dns-zone-file":{title:"DNS zone file",owner:"RunDevelopment",alias:"dns-zone"},docker:{title:"Docker",alias:"dockerfile",owner:"JustinBeckwith"},dot:{title:"DOT (Graphviz)",alias:"gv",optional:"markup",owner:"RunDevelopment"},ebnf:{title:"EBNF",owner:"RunDevelopment"},editorconfig:{title:"EditorConfig",owner:"osipxd"},eiffel:{title:"Eiffel",owner:"Conaclos"},ejs:{title:"EJS",require:["javascript","markup-templating"],owner:"RunDevelopment",alias:"eta",aliasTitles:{eta:"Eta"}},elixir:{title:"Elixir",owner:"Golmote"},elm:{title:"Elm",owner:"zwilias"},etlua:{title:"Embedded Lua templating",require:["lua","markup-templating"],owner:"RunDevelopment"},erb:{title:"ERB",require:["ruby","markup-templating"],owner:"Golmote"},erlang:{title:"Erlang",owner:"Golmote"},"excel-formula":{title:"Excel Formula",alias:["xlsx","xls"],owner:"RunDevelopment"},fsharp:{title:"F#",require:"clike",owner:"simonreynolds7"},factor:{title:"Factor",owner:"catb0t"},false:{title:"False",owner:"edukisto"},"firestore-security-rules":{title:"Firestore security rules",require:"clike",owner:"RunDevelopment"},flow:{title:"Flow",require:"javascript",owner:"Golmote"},fortran:{title:"Fortran",owner:"Golmote"},ftl:{title:"FreeMarker Template Language",require:"markup-templating",owner:"RunDevelopment"},gml:{title:"GameMaker Language",alias:"gamemakerlanguage",require:"clike",owner:"LiarOnce"},gap:{title:"GAP (CAS)",owner:"RunDevelopment"},gcode:{title:"G-code",owner:"RunDevelopment"},gdscript:{title:"GDScript",owner:"RunDevelopment"},gedcom:{title:"GEDCOM",owner:"Golmote"},gettext:{title:"gettext",alias:"po",owner:"RunDevelopment"},gherkin:{title:"Gherkin",owner:"hason"},git:{title:"Git",owner:"lgiraudel"},glsl:{title:"GLSL",require:"c",owner:"Golmote"},gn:{title:"GN",alias:"gni",owner:"RunDevelopment"},"linker-script":{title:"GNU Linker Script",alias:"ld",owner:"RunDevelopment"},go:{title:"Go",require:"clike",owner:"arnehormann"},"go-module":{title:"Go module",alias:"go-mod",owner:"RunDevelopment"},gradle:{title:"Gradle",require:"clike",owner:"zeabdelkhalek-badido18"},graphql:{title:"GraphQL",optional:"markdown",owner:"Golmote"},groovy:{title:"Groovy",require:"clike",owner:"robfletcher"},haml:{title:"Haml",require:"ruby",optional:["css","css-extras","coffeescript","erb","javascript","less","markdown","scss","textile"],owner:"Golmote"},handlebars:{title:"Handlebars",require:"markup-templating",alias:["hbs","mustache"],aliasTitles:{mustache:"Mustache"},owner:"Golmote"},haskell:{title:"Haskell",alias:"hs",owner:"bholst"},haxe:{title:"Haxe",require:"clike",optional:"regex",owner:"Golmote"},hcl:{title:"HCL",owner:"outsideris"},hlsl:{title:"HLSL",require:"c",owner:"RunDevelopment"},hoon:{title:"Hoon",owner:"matildepark"},http:{title:"HTTP",optional:["csp","css","hpkp","hsts","javascript","json","markup","uri"],owner:"danielgtaylor"},hpkp:{title:"HTTP Public-Key-Pins",owner:"ScottHelme"},hsts:{title:"HTTP Strict-Transport-Security",owner:"ScottHelme"},ichigojam:{title:"IchigoJam",owner:"BlueCocoa"},icon:{title:"Icon",owner:"Golmote"},"icu-message-format":{title:"ICU Message Format",owner:"RunDevelopment"},idris:{title:"Idris",alias:"idr",owner:"KeenS",require:"haskell"},ignore:{title:".ignore",owner:"osipxd",alias:["gitignore","hgignore","npmignore"],aliasTitles:{gitignore:".gitignore",hgignore:".hgignore",npmignore:".npmignore"}},inform7:{title:"Inform 7",owner:"Golmote"},ini:{title:"Ini",owner:"aviaryan"},io:{title:"Io",owner:"AlesTsurko"},j:{title:"J",owner:"Golmote"},java:{title:"Java",require:"clike",owner:"sherblot"},javadoc:{title:"JavaDoc",require:["markup","java","javadoclike"],modify:"java",optional:"scala",owner:"RunDevelopment"},javadoclike:{title:"JavaDoc-like",modify:["java","javascript","php"],owner:"RunDevelopment"},javastacktrace:{title:"Java stack trace",owner:"RunDevelopment"},jexl:{title:"Jexl",owner:"czosel"},jolie:{title:"Jolie",require:"clike",owner:"thesave"},jq:{title:"JQ",owner:"RunDevelopment"},jsdoc:{title:"JSDoc",require:["javascript","javadoclike","typescript"],modify:"javascript",optional:["actionscript","coffeescript"],owner:"RunDevelopment"},"js-extras":{title:"JS Extras",require:"javascript",modify:"javascript",optional:["actionscript","coffeescript","flow","n4js","typescript"],owner:"RunDevelopment"},json:{title:"JSON",alias:"webmanifest",aliasTitles:{webmanifest:"Web App Manifest"},owner:"CupOfTea696"},json5:{title:"JSON5",require:"json",owner:"RunDevelopment"},jsonp:{title:"JSONP",require:"json",owner:"RunDevelopment"},jsstacktrace:{title:"JS stack trace",owner:"sbrl"},"js-templates":{title:"JS Templates",require:"javascript",modify:"javascript",optional:["css","css-extras","graphql","markdown","markup","sql"],owner:"RunDevelopment"},julia:{title:"Julia",owner:"cdagnino"},keepalived:{title:"Keepalived Configure",owner:"dev-itsheng"},keyman:{title:"Keyman",owner:"mcdurdin"},kotlin:{title:"Kotlin",alias:["kt","kts"],aliasTitles:{kts:"Kotlin Script"},require:"clike",owner:"Golmote"},kumir:{title:"KuMir (\u041a\u0443\u041c\u0438\u0440)",alias:"kum",owner:"edukisto"},kusto:{title:"Kusto",owner:"RunDevelopment"},latex:{title:"LaTeX",alias:["tex","context"],aliasTitles:{tex:"TeX",context:"ConTeXt"},owner:"japborst"},latte:{title:"Latte",require:["clike","markup-templating","php"],owner:"nette"},less:{title:"Less",require:"css",optional:"css-extras",owner:"Golmote"},lilypond:{title:"LilyPond",require:"scheme",alias:"ly",owner:"RunDevelopment"},liquid:{title:"Liquid",require:"markup-templating",owner:"cinhtau"},lisp:{title:"Lisp",alias:["emacs","elisp","emacs-lisp"],owner:"JuanCaicedo"},livescript:{title:"LiveScript",owner:"Golmote"},llvm:{title:"LLVM IR",owner:"porglezomp"},log:{title:"Log file",optional:"javastacktrace",owner:"RunDevelopment"},lolcode:{title:"LOLCODE",owner:"Golmote"},lua:{title:"Lua",owner:"Golmote"},magma:{title:"Magma (CAS)",owner:"RunDevelopment"},makefile:{title:"Makefile",owner:"Golmote"},markdown:{title:"Markdown",require:"markup",optional:"yaml",alias:"md",owner:"Golmote"},"markup-templating":{title:"Markup templating",require:"markup",owner:"Golmote"},mata:{title:"Mata",owner:"RunDevelopment"},matlab:{title:"MATLAB",owner:"Golmote"},maxscript:{title:"MAXScript",owner:"RunDevelopment"},mel:{title:"MEL",owner:"Golmote"},mermaid:{title:"Mermaid",owner:"RunDevelopment"},metafont:{title:"METAFONT",owner:"LaeriExNihilo"},mizar:{title:"Mizar",owner:"Golmote"},mongodb:{title:"MongoDB",owner:"airs0urce",require:"javascript"},monkey:{title:"Monkey",owner:"Golmote"},moonscript:{title:"MoonScript",alias:"moon",owner:"RunDevelopment"},n1ql:{title:"N1QL",owner:"TMWilds"},n4js:{title:"N4JS",require:"javascript",optional:"jsdoc",alias:"n4jsd",owner:"bsmith-n4"},"nand2tetris-hdl":{title:"Nand To Tetris HDL",owner:"stephanmax"},naniscript:{title:"Naninovel Script",owner:"Elringus",alias:"nani"},nasm:{title:"NASM",owner:"rbmj"},neon:{title:"NEON",owner:"nette"},nevod:{title:"Nevod",owner:"nezaboodka"},nginx:{title:"nginx",owner:"volado"},nim:{title:"Nim",owner:"Golmote"},nix:{title:"Nix",owner:"Golmote"},nsis:{title:"NSIS",owner:"idleberg"},objectivec:{title:"Objective-C",require:"c",alias:"objc",owner:"uranusjr"},ocaml:{title:"OCaml",owner:"Golmote"},odin:{title:"Odin",owner:"edukisto"},opencl:{title:"OpenCL",require:"c",modify:["c","cpp"],owner:"Milania1"},openqasm:{title:"OpenQasm",alias:"qasm",owner:"RunDevelopment"},oz:{title:"Oz",owner:"Golmote"},parigp:{title:"PARI/GP",owner:"Golmote"},parser:{title:"Parser",require:"markup",owner:"Golmote"},pascal:{title:"Pascal",alias:"objectpascal",aliasTitles:{objectpascal:"Object Pascal"},owner:"Golmote"},pascaligo:{title:"Pascaligo",owner:"DefinitelyNotAGoat"},psl:{title:"PATROL Scripting Language",owner:"bertysentry"},pcaxis:{title:"PC-Axis",alias:"px",owner:"RunDevelopment"},peoplecode:{title:"PeopleCode",alias:"pcode",owner:"RunDevelopment"},perl:{title:"Perl",owner:"Golmote"},php:{title:"PHP",require:"markup-templating",owner:"milesj"},phpdoc:{title:"PHPDoc",require:["php","javadoclike"],modify:"php",owner:"RunDevelopment"},"php-extras":{title:"PHP Extras",require:"php",modify:"php",owner:"milesj"},"plant-uml":{title:"PlantUML",alias:"plantuml",owner:"RunDevelopment"},plsql:{title:"PL/SQL",require:"sql",owner:"Golmote"},powerquery:{title:"PowerQuery",alias:["pq","mscript"],owner:"peterbud"},powershell:{title:"PowerShell",owner:"nauzilus"},processing:{title:"Processing",require:"clike",owner:"Golmote"},prolog:{title:"Prolog",owner:"Golmote"},promql:{title:"PromQL",owner:"arendjr"},properties:{title:".properties",owner:"Golmote"},protobuf:{title:"Protocol Buffers",require:"clike",owner:"just-boris"},pug:{title:"Pug",require:["markup","javascript"],optional:["coffeescript","ejs","handlebars","less","livescript","markdown","scss","stylus","twig"],owner:"Golmote"},puppet:{title:"Puppet",owner:"Golmote"},pure:{title:"Pure",optional:["c","cpp","fortran"],owner:"Golmote"},purebasic:{title:"PureBasic",require:"clike",alias:"pbfasm",owner:"HeX0R101"},purescript:{title:"PureScript",require:"haskell",alias:"purs",owner:"sriharshachilakapati"},python:{title:"Python",alias:"py",owner:"multipetros"},qsharp:{title:"Q#",require:"clike",alias:"qs",owner:"fedonman"},q:{title:"Q (kdb+ database)",owner:"Golmote"},qml:{title:"QML",require:"javascript",owner:"RunDevelopment"},qore:{title:"Qore",require:"clike",owner:"temnroegg"},r:{title:"R",owner:"Golmote"},racket:{title:"Racket",require:"scheme",alias:"rkt",owner:"RunDevelopment"},cshtml:{title:"Razor C#",alias:"razor",require:["markup","csharp"],optional:["css","css-extras","javascript","js-extras"],owner:"RunDevelopment"},jsx:{title:"React JSX",require:["markup","javascript"],optional:["jsdoc","js-extras","js-templates"],owner:"vkbansal"},tsx:{title:"React TSX",require:["jsx","typescript"]},reason:{title:"Reason",require:"clike",owner:"Golmote"},regex:{title:"Regex",owner:"RunDevelopment"},rego:{title:"Rego",owner:"JordanSh"},renpy:{title:"Ren'py",alias:"rpy",owner:"HyuchiaDiego"},rescript:{title:"ReScript",alias:"res",owner:"vmarcosp"},rest:{title:"reST (reStructuredText)",owner:"Golmote"},rip:{title:"Rip",owner:"ravinggenius"},roboconf:{title:"Roboconf",owner:"Golmote"},robotframework:{title:"Robot Framework",alias:"robot",owner:"RunDevelopment"},ruby:{title:"Ruby",require:"clike",alias:"rb",owner:"samflores"},rust:{title:"Rust",owner:"Golmote"},sas:{title:"SAS",optional:["groovy","lua","sql"],owner:"Golmote"},sass:{title:"Sass (Sass)",require:"css",optional:"css-extras",owner:"Golmote"},scss:{title:"Sass (SCSS)",require:"css",optional:"css-extras",owner:"MoOx"},scala:{title:"Scala",require:"java",owner:"jozic"},scheme:{title:"Scheme",owner:"bacchus123"},"shell-session":{title:"Shell session",require:"bash",alias:["sh-session","shellsession"],owner:"RunDevelopment"},smali:{title:"Smali",owner:"RunDevelopment"},smalltalk:{title:"Smalltalk",owner:"Golmote"},smarty:{title:"Smarty",require:"markup-templating",optional:"php",owner:"Golmote"},sml:{title:"SML",alias:"smlnj",aliasTitles:{smlnj:"SML/NJ"},owner:"RunDevelopment"},solidity:{title:"Solidity (Ethereum)",alias:"sol",require:"clike",owner:"glachaud"},"solution-file":{title:"Solution file",alias:"sln",owner:"RunDevelopment"},soy:{title:"Soy (Closure Template)",require:"markup-templating",owner:"Golmote"},sparql:{title:"SPARQL",require:"turtle",owner:"Triply-Dev",alias:"rq"},"splunk-spl":{title:"Splunk SPL",owner:"RunDevelopment"},sqf:{title:"SQF: Status Quo Function (Arma 3)",require:"clike",owner:"RunDevelopment"},sql:{title:"SQL",owner:"multipetros"},squirrel:{title:"Squirrel",require:"clike",owner:"RunDevelopment"},stan:{title:"Stan",owner:"RunDevelopment"},stata:{title:"Stata Ado",require:["mata","java","python"],owner:"RunDevelopment"},iecst:{title:"Structured Text (IEC 61131-3)",owner:"serhioromano"},stylus:{title:"Stylus",owner:"vkbansal"},supercollider:{title:"SuperCollider",alias:"sclang",owner:"RunDevelopment"},swift:{title:"Swift",owner:"chrischares"},systemd:{title:"Systemd configuration file",owner:"RunDevelopment"},"t4-templating":{title:"T4 templating",owner:"RunDevelopment"},"t4-cs":{title:"T4 Text Templates (C#)",require:["t4-templating","csharp"],alias:"t4",owner:"RunDevelopment"},"t4-vb":{title:"T4 Text Templates (VB)",require:["t4-templating","vbnet"],owner:"RunDevelopment"},tap:{title:"TAP",owner:"isaacs",require:"yaml"},tcl:{title:"Tcl",owner:"PeterChaplin"},tt2:{title:"Template Toolkit 2",require:["clike","markup-templating"],owner:"gflohr"},textile:{title:"Textile",require:"markup",optional:"css",owner:"Golmote"},toml:{title:"TOML",owner:"RunDevelopment"},tremor:{title:"Tremor",alias:["trickle","troy"],owner:"darach",aliasTitles:{trickle:"trickle",troy:"troy"}},turtle:{title:"Turtle",alias:"trig",aliasTitles:{trig:"TriG"},owner:"jakubklimek"},twig:{title:"Twig",require:"markup-templating",owner:"brandonkelly"},typescript:{title:"TypeScript",require:"javascript",optional:"js-templates",alias:"ts",owner:"vkbansal"},typoscript:{title:"TypoScript",alias:"tsconfig",aliasTitles:{tsconfig:"TSConfig"},owner:"dkern"},unrealscript:{title:"UnrealScript",alias:["uscript","uc"],owner:"RunDevelopment"},uorazor:{title:"UO Razor Script",owner:"jaseowns"},uri:{title:"URI",alias:"url",aliasTitles:{url:"URL"},owner:"RunDevelopment"},v:{title:"V",require:"clike",owner:"taggon"},vala:{title:"Vala",require:"clike",optional:"regex",owner:"TemplarVolk"},vbnet:{title:"VB.Net",require:"basic",owner:"Bigsby"},velocity:{title:"Velocity",require:"markup",owner:"Golmote"},verilog:{title:"Verilog",owner:"a-rey"},vhdl:{title:"VHDL",owner:"a-rey"},vim:{title:"vim",owner:"westonganger"},"visual-basic":{title:"Visual Basic",alias:["vb","vba"],aliasTitles:{vba:"VBA"},owner:"Golmote"},warpscript:{title:"WarpScript",owner:"RunDevelopment"},wasm:{title:"WebAssembly",owner:"Golmote"},"web-idl":{title:"Web IDL",alias:"webidl",owner:"RunDevelopment"},wgsl:{title:"WGSL",owner:"Dr4gonthree"},wiki:{title:"Wiki markup",require:"markup",owner:"Golmote"},wolfram:{title:"Wolfram language",alias:["mathematica","nb","wl"],aliasTitles:{mathematica:"Mathematica",nb:"Mathematica Notebook"},owner:"msollami"},wren:{title:"Wren",owner:"clsource"},xeora:{title:"Xeora",require:"markup",alias:"xeoracube",aliasTitles:{xeoracube:"XeoraCube"},owner:"freakmaxi"},"xml-doc":{title:"XML doc (.net)",require:"markup",modify:["csharp","fsharp","vbnet"],owner:"RunDevelopment"},xojo:{title:"Xojo (REALbasic)",owner:"Golmote"},xquery:{title:"XQuery",require:"markup",owner:"Golmote"},yaml:{title:"YAML",alias:"yml",owner:"hason"},yang:{title:"YANG",owner:"RunDevelopment"},zig:{title:"Zig",owner:"RunDevelopment"}},plugins:{meta:{path:"plugins/{id}/prism-{id}",link:"plugins/{id}/"},"line-highlight":{title:"Line Highlight",description:"Highlights specific lines and/or line ranges."},"line-numbers":{title:"Line Numbers",description:"Line number at the beginning of code lines.",owner:"kuba-kubula"},"show-invisibles":{title:"Show Invisibles",description:"Show hidden characters such as tabs and line breaks.",optional:["autolinker","data-uri-highlight"]},autolinker:{title:"Autolinker",description:"Converts URLs and emails in code to clickable links. Parses Markdown links in comments."},wpd:{title:"WebPlatform Docs",description:'Makes tokens link to WebPlatform.org documentation. The links open in a new tab.'},"custom-class":{title:"Custom Class",description:"This plugin allows you to prefix Prism's default classes (.comment can become .namespace--comment) or replace them with your defined ones (like .editor__comment). You can even add new classes.",owner:"dvkndn",noCSS:!0},"file-highlight":{title:"File Highlight",description:"Fetch external files and highlight them with Prism. Used on the Prism website itself.",noCSS:!0},"show-language":{title:"Show Language",description:"Display the highlighted language in code blocks (inline code does not show the label).",owner:"nauzilus",noCSS:!0,require:"toolbar"},"jsonp-highlight":{title:"JSONP Highlight",description:"Fetch content with JSONP and highlight some interesting content (e.g. GitHub/Gists or Bitbucket API).",noCSS:!0,owner:"nauzilus"},"highlight-keywords":{title:"Highlight Keywords",description:"Adds special CSS classes for each keyword for fine-grained highlighting.",owner:"vkbansal",noCSS:!0},"remove-initial-line-feed":{title:"Remove initial line feed",description:"Removes the initial line feed in code blocks.",owner:"Golmote",noCSS:!0},"inline-color":{title:"Inline color",description:"Adds a small inline preview for colors in style sheets.",require:"css-extras",owner:"RunDevelopment"},previewers:{title:"Previewers",description:"Previewers for angles, colors, gradients, easing and time.",require:"css-extras",owner:"Golmote"},autoloader:{title:"Autoloader",description:"Automatically loads the needed languages to highlight the code blocks.",owner:"Golmote",noCSS:!0},"keep-markup":{title:"Keep Markup",description:"Prevents custom markup from being dropped out during highlighting.",owner:"Golmote",optional:"normalize-whitespace",noCSS:!0},"command-line":{title:"Command Line",description:"Display a command line with a prompt and, optionally, the output/response from the commands.",owner:"chriswells0"},"unescaped-markup":{title:"Unescaped Markup",description:"Write markup without having to escape anything."},"normalize-whitespace":{title:"Normalize Whitespace",description:"Supports multiple operations to normalize whitespace in code blocks.",owner:"zeitgeist87",optional:"unescaped-markup",noCSS:!0},"data-uri-highlight":{title:"Data-URI Highlight",description:"Highlights data-URI contents.",owner:"Golmote",noCSS:!0},toolbar:{title:"Toolbar",description:"Attach a toolbar for plugins to easily register buttons on the top of a code block.",owner:"mAAdhaTTah"},"copy-to-clipboard":{title:"Copy to Clipboard Button",description:"Add a button that copies the code block to the clipboard when clicked.",owner:"mAAdhaTTah",require:"toolbar",noCSS:!0},"download-button":{title:"Download Button",description:"A button in the toolbar of a code block adding a convenient way to download a code file.",owner:"Golmote",require:"toolbar",noCSS:!0},"match-braces":{title:"Match braces",description:"Highlights matching braces.",owner:"RunDevelopment"},"diff-highlight":{title:"Diff Highlight",description:"Highlights the code inside diff blocks.",owner:"RunDevelopment",require:"diff"},"filter-highlight-all":{title:"Filter highlightAll",description:"Filters the elements the highlightAll and highlightAllUnder methods actually highlight.",owner:"RunDevelopment",noCSS:!0},treeview:{title:"Treeview",description:"A language with special styles to highlight file system tree structures.",owner:"Golmote"}}})},2885:(e,t,n)=>{const r=n(9901),a=n(9642),o=new Set;function i(e){void 0===e?e=Object.keys(r.languages).filter((e=>"meta"!=e)):Array.isArray(e)||(e=[e]);const t=[...o,...Object.keys(Prism.languages)];a(r,e,t).load((e=>{if(!(e in r.languages))return void(i.silent||console.warn("Language does not exist: "+e));const t="./prism-"+e;delete n.c[n(6500).resolve(t)],delete Prism.languages[e],n(6500)(t),o.add(e)}))}i.silent=!1,e.exports=i},6726:(e,t,n)=>{var r={"./":2885};function a(e){var t=o(e);return n(t)}function o(e){if(!n.o(r,e)){var t=new Error("Cannot find module '"+e+"'");throw t.code="MODULE_NOT_FOUND",t}return r[e]}a.keys=function(){return Object.keys(r)},a.resolve=o,e.exports=a,a.id=6726},6500:(e,t,n)=>{var r={"./":2885};function a(e){var t=o(e);return n(t)}function o(e){if(!n.o(r,e)){var t=new Error("Cannot find module '"+e+"'");throw t.code="MODULE_NOT_FOUND",t}return r[e]}a.keys=function(){return Object.keys(r)},a.resolve=o,e.exports=a,a.id=6500},9642:e=>{"use strict";var t=function(){var e=function(){};function t(e,t){Array.isArray(e)?e.forEach(t):null!=e&&t(e,0)}function n(e){for(var t={},n=0,r=e.length;n "));var l={},s=e[r];if(s){function u(t){if(!(t in e))throw new Error(r+" depends on an unknown component "+t);if(!(t in l))for(var i in a(t,o),l[t]=!0,n[t])l[i]=!0}t(s.require,u),t(s.optional,u),t(s.modify,u)}n[r]=l,o.pop()}}return function(e){var t=n[e];return t||(a(e,r),t=n[e]),t}}function a(e){for(var t in e)return!0;return!1}return function(o,i,l){var s=function(e){var t={};for(var n in e){var r=e[n];for(var a in r)if("meta"!=a){var o=r[a];t[a]="string"==typeof o?{title:o}:o}}return t}(o),u=function(e){var n;return function(r){if(r in e)return r;if(!n)for(var a in n={},e){var o=e[a];t(o&&o.alias,(function(t){if(t in n)throw new Error(t+" cannot be alias for both "+a+" and "+n[t]);if(t in e)throw new Error(t+" cannot be alias of "+a+" because it is a component.");n[t]=a}))}return n[r]||r}}(s);i=i.map(u),l=(l||[]).map(u);var c=n(i),d=n(l);i.forEach((function e(n){var r=s[n];t(r&&r.require,(function(t){t in d||(c[t]=!0,e(t))}))}));for(var f,p=r(s),m=c;a(m);){for(var g in f={},m){var h=s[g];t(h&&h.modify,(function(e){e in d&&(f[e]=!0)}))}for(var v in d)if(!(v in c))for(var b in p(v))if(b in c){f[v]=!0;break}for(var y in m=f)c[y]=!0}var w={getIds:function(){var e=[];return w.load((function(t){e.push(t)})),e},load:function(t,n){return function(t,n,r,a){var o=a?a.series:void 0,i=a?a.parallel:e,l={},s={};function u(e){if(e in l)return l[e];s[e]=!0;var a,c=[];for(var d in t(e))d in n&&c.push(d);if(0===c.length)a=r(e);else{var f=i(c.map((function(e){var t=u(e);return delete s[e],t})));o?a=o(f,(function(){return r(e)})):r(e)}return l[e]=a}for(var c in n)u(c);var d=[];for(var f in s)d.push(l[f]);return i(d)}(p,c,t,n)}};return w}}();e.exports=t},2703:(e,t,n)=>{"use strict";var r=n(414);function a(){}function o(){}o.resetWarningCache=a,e.exports=function(){function e(e,t,n,a,o,i){if(i!==r){var l=new Error("Calling PropTypes validators directly is not supported by the `prop-types` package. Use PropTypes.checkPropTypes() to call them. Read more at http://fb.me/use-check-prop-types");throw l.name="Invariant Violation",l}}function t(){return e}e.isRequired=e;var n={array:e,bigint:e,bool:e,func:e,number:e,object:e,string:e,symbol:e,any:e,arrayOf:t,element:e,elementType:e,instanceOf:t,node:e,objectOf:t,oneOf:t,oneOfType:t,shape:t,exact:t,checkPropTypes:o,resetWarningCache:a};return n.PropTypes=n,n}},5697:(e,t,n)=>{e.exports=n(2703)()},414:e=>{"use strict";e.exports="SECRET_DO_NOT_PASS_THIS_OR_YOU_WILL_BE_FIRED"},4448:(e,t,n)=>{"use strict";var r=n(7294),a=n(7418),o=n(3840);function i(e){for(var t="https://reactjs.org/docs/error-decoder.html?invariant="+e,n=1;n