-
Notifications
You must be signed in to change notification settings - Fork 0
/
requirements.lock
144 lines (143 loc) · 2.68 KB
/
requirements.lock
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# generated by rye
# use `rye lock` or `rye sync` to update this lockfile
#
# last locked with the following flags:
# pre: false
# features: ["replication"]
# all-features: false
# with-sources: false
-e file:.
click==8.1.7
# via typer
cliffs-delta==1.0.0
# via neurojit
contourpy==1.2.1
# via matplotlib
cycler==0.12.1
# via matplotlib
fonttools==4.53.1
# via matplotlib
gitdb==4.0.11
# via gitpython
gitpython==3.1.43
# via pydriller
imageio==2.35.1
# via scikit-image
imbalanced-learn==0.12.3
# via imblearn
imblearn==0.0
# via neurojit
javalang==0.13.0
# via neurojit
joblib==1.4.2
# via imbalanced-learn
# via scikit-learn
kiwisolver==1.4.5
# via matplotlib
lazy-loader==0.4
# via scikit-image
lime==0.2.0.1
# via neurojit
lizard==1.17.10
# via pydriller
markdown-it-py==3.0.0
# via rich
matplotlib==3.9.2
# via lime
# via neurojit
# via seaborn
mdurl==0.1.2
# via markdown-it-py
networkx==3.3
# via scikit-image
numpy==1.26.4
# via contourpy
# via imageio
# via imbalanced-learn
# via lime
# via matplotlib
# via neurojit
# via pandas
# via patsy
# via scikit-image
# via scikit-learn
# via scipy
# via seaborn
# via statsmodels
# via tifffile
# via xgboost
packaging==24.1
# via lazy-loader
# via matplotlib
# via scikit-image
# via statsmodels
pandas==2.2.1
# via neurojit
# via seaborn
# via statsmodels
patsy==0.5.6
# via statsmodels
pillow==10.4.0
# via imageio
# via matplotlib
# via scikit-image
pydriller==2.6
# via neurojit
pygments==2.18.0
# via rich
pyparsing==3.1.2
# via matplotlib
python-dateutil==2.9.0.post0
# via matplotlib
# via pandas
pytz==2024.1
# via pandas
# via pydriller
rich==13.7.1
# via neurojit
# via typer
scikit-image==0.24.0
# via lime
scikit-learn==1.5.1
# via imbalanced-learn
# via lime
# via neurojit
scipy==1.14.1
# via imbalanced-learn
# via lime
# via neurojit
# via scikit-image
# via scikit-learn
# via statsmodels
# via xgboost
seaborn==0.13.2
# via neurojit
shellingham==1.5.4
# via typer
six==1.16.0
# via javalang
# via patsy
# via python-dateutil
smmap==5.0.1
# via gitdb
statsmodels==0.14.2
# via neurojit
tabulate==0.9.0
# via neurojit
threadpoolctl==3.5.0
# via imbalanced-learn
# via scikit-learn
tifffile==2024.8.10
# via scikit-image
tqdm==4.66.5
# via lime
typer==0.12.4
# via neurojit
types-pytz==2024.1.0.20240203
# via pydriller
typing-extensions==4.12.2
# via typer
tzdata==2024.1
# via pandas
xgboost==2.1.1
# via neurojit