-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrainingMonitor.py
106 lines (88 loc) · 3.69 KB
/
trainingMonitor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import json
import os
from functools import singledispatch
import cv2
import matplotlib.pyplot as plot
import numpy as np
from tensorflow.keras.callbacks import BaseLogger
@singledispatch
def to_serializable(self):
"""Used by default."""
return str(self)
@to_serializable.register(np.float32)
def ts_float32(self):
"""Used if *val* is an instance of numpy.float32."""
return np.float64(self)
class TrainingMonitor(BaseLogger):
def __init__(self, figPath, jsonPath=None, startAt=0):
super(TrainingMonitor, self).__init__()
self.figPath = figPath
self.jsonPath = jsonPath
self.startAt = startAt
def on_train_begin(self, logs={}):
self.H = {}
if self.jsonPath is not None:
if os.path.exists(self.jsonPath):
self.H = json.loads(open(self.jsonPath).read())
if self.startAt > 0:
for k in self.H.keys():
self.H[k] = self.H[k][:self.startAt]
def on_epoch_end(self, epoch, logs={}):
for (k, v) in logs.items():
l = self.H.get(k, [])
l.append(v)
self.H[k] = l
if self.jsonPath is not None:
f = open(self.jsonPath, "w")
f.write(json.dumps(self.H, default=to_serializable))
f.close()
if len(self.H["loss"]) > 1:
N = np.arange(0, len(self.H["loss"]))
plot.style.use("ggplot")
plot.figure()
plot.plot(N, self.H["loss"], label="train_loss")
plot.plot(N, self.H["val_loss"], label="val_loss")
plot.plot(N, self.H["accuracy"], label="train_acc")
plot.plot(N, self.H["val_accuracy"], label="val_acc")
plot.title("Training Loss and Accuracy [Epoch {}]".format(
len(self.H["loss"])))
plot.xlabel("Epoch #")
plot.ylabel("Loss/Accuracy")
plot.legend(loc="lower left")
test = self.figPath.split('.')[1] + "total.png"
plot.savefig("." + self.figPath.split('.')[1] + "total.png")
plot.close()
N = np.arange(0, len(self.H["accuracy"]))
plot.style.use("ggplot")
plot.figure()
plot.plot(N, self.H["accuracy"], label="train_acc")
plot.plot(N, self.H["val_accuracy"], label="val_acc")
plot.title("Training Accuracy [Epoch {}]".format(
len(self.H["accuracy"])))
plot.xlabel("Epoch #")
plot.ylabel("Accuracy")
plot.legend()
plot.savefig("." + self.figPath.split('.')[1] + "acc.png")
plot.close()
N = np.arange(0, len(self.H["loss"]))
plot.style.use("ggplot")
plot.figure()
plot.plot(N, self.H["loss"], label="train_loss")
plot.plot(N, self.H["val_loss"], label="val_loss")
plot.title("Training Loss [Epoch {}]".format(
len(self.H["loss"])))
plot.xlabel("Epoch #")
plot.ylabel("Loss")
plot.legend()
plot.savefig("." + self.figPath.split('.')[1] + "loss.png")
plot.close()
data_path = os.path.join("." + self.figPath.split('.')[1] + "total.png")
image = cv2.imread(data_path, cv2.IMREAD_UNCHANGED)
cv2.imshow("total", image)
data_path = os.path.join("." + self.figPath.split('.')[1] + "acc.png")
image = cv2.imread(data_path, cv2.IMREAD_UNCHANGED)
cv2.imshow("acc", image)
data_path = os.path.join("." + self.figPath.split('.')[1] + "loss.png")
image = cv2.imread(data_path, cv2.IMREAD_UNCHANGED)
cv2.imshow("loss", image)
cv2.waitKey(1)