|
| 1 | +from tensorflow.keras import backend as K |
| 2 | + |
| 3 | +smooth = 1. |
| 4 | + |
| 5 | +def dice_coefficient(y_true, y_pred): |
| 6 | + y_true_f = K.flatten(y_true) |
| 7 | + y_pred_f = K.flatten(y_pred) |
| 8 | + intersection = K.sum(y_true_f * y_pred_f) |
| 9 | + score = (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth) |
| 10 | + return score |
| 11 | + |
| 12 | + |
| 13 | +def confusion(y_true, y_pred): |
| 14 | + y_pred_pos = K.clip(y_pred, 0, 1) |
| 15 | + y_pred_neg = 1 - y_pred_pos |
| 16 | + y_pos = K.clip(y_true, 0, 1) |
| 17 | + y_neg = 1 - y_pos |
| 18 | + tp = K.sum(y_pos * y_pred_pos) |
| 19 | + fp = K.sum(y_neg * y_pred_pos) |
| 20 | + fn = K.sum(y_pos * y_pred_neg) |
| 21 | + prec = (tp + smooth)/(tp+fp+smooth) |
| 22 | + rec = (tp+smooth)/(tp+fn+smooth) |
| 23 | + return prec, rec |
| 24 | + |
| 25 | + |
| 26 | +def recall(y_true, y_pred): |
| 27 | + y_pred_pos = K.clip(y_pred, 0, 1) |
| 28 | + y_pred_neg = 1 - y_pred_pos |
| 29 | + y_pos = K.clip(y_true, 0, 1) |
| 30 | + y_neg = 1 - y_pos |
| 31 | + tp = K.sum(y_pos * y_pred_pos) |
| 32 | + fp = K.sum(y_neg * y_pred_pos) |
| 33 | + fn = K.sum(y_pos * y_pred_neg) |
| 34 | + rec = (tp+smooth)/(tp+fn+smooth) |
| 35 | + return rec |
| 36 | + |
| 37 | + |
| 38 | +def precision(y_true, y_pred): |
| 39 | + y_pred_pos = K.clip(y_pred, 0, 1) |
| 40 | + y_pred_neg = 1 - y_pred_pos |
| 41 | + y_pos = K.clip(y_true, 0, 1) |
| 42 | + y_neg = 1 - y_pos |
| 43 | + tp = K.sum(y_pos * y_pred_pos) |
| 44 | + fp = K.sum(y_neg * y_pred_pos) |
| 45 | + fn = K.sum(y_pos * y_pred_neg) |
| 46 | + prec = (tp + smooth)/(tp+fp+smooth) |
| 47 | + return prec |
| 48 | + |
| 49 | + |
| 50 | +def tversky(y_true, y_pred, alpha=0.7): |
| 51 | + y_true_pos = K.flatten(y_true) |
| 52 | + y_pred_pos = K.flatten(y_pred) |
| 53 | + true_pos = K.sum(y_true_pos * y_pred_pos) |
| 54 | + false_neg = K.sum(y_true_pos * (1-y_pred_pos)) |
| 55 | + false_pos = K.sum((1-y_true_pos)*y_pred_pos) |
| 56 | + return (true_pos + smooth)/(true_pos + alpha*false_neg + (1-alpha)*false_pos + smooth) |
0 commit comments