1) ScanNetV2 dataset
Pretrain the 3D Unet backbone from scratch
python3 tools/train.py configs/scannetv2/isbnet_backbone_scannetv2.yaml --only_backbone --exp_name pretrain_backbone
We also provided the pre-trained 3D backbone models of ScanNetV2 val, ScanNetV2-200 val, S3DIS val Area 5, and STPLS3D val. Alternatively, we can also finetune other pre-trained backbones from SoftGroup or SSTNet with fewer epoches by set the pretrain path in the config file to the corresponding pre-trained weights.
Train our ISBNet
python3 tools/train.py configs/scannetv2/isbnet_scannetv2.yaml --trainall --exp_name default
By default, we set batch_size=12
on a single V100 GPU.
2) S3DIS dataset
# Pretrain step
python3 tools/train.py configs/s3dis/isbnet_backbone_s3dis_area5.yaml --only_backbone --exp_name default
# Train entire model
python3 tools/train.py configs/s3dis/isbnet_s3dis_area5.yaml --trainall --exp_name default
3) STPLS3D dataset
# Pretrain step
python3 tools/train.py configs/stpls3d/isbnet_backbone_stpls3d.yaml --only_backbone --exp_name default
# Train entire model
python3 tools/train.py configs/stpls3d/isbnet_stpls3d.yaml --trainall --exp_name default
1) For evaluation (on ScanNetV2 val, S3DIS, and STPLS3D)
python3 tools/test.py configs/<config_file> <checkpoint_file>
2) For exporting predictions (i.e., to submit results to ScanNetV2 hidden benchmark)
python3 tools/test.py configs/<config_file> <checkpoint_file> --out <output_dir>