Skip to content

Latest commit

 

History

History
52 lines (40 loc) · 1.64 KB

README.md

File metadata and controls

52 lines (40 loc) · 1.64 KB

Visualization guide

1) Install PyViz3D (more lightweight than other tools such as Mayavi or Open3D).

pip3 install pyviz3d

2) Export the predictions of the trained-model. For example:

python3 tools/test.py configs/scannetv2/isbnet_scannetv2.yaml head_isbnet_scannetv2 --out results/isbnet_scannetv2_val

3) The results folder is structured as follows.

ISBNet
├── results
│   ├── isbnet_scannetv2_val
│   │   ├── pred_instance
│   │   │   ├── predicted_masks
│   │   │   │   ├── scene0011_00_001.txt
│   │   │   │   ├── scene0011_00_002.txt
│   │   │   │   ├── ...
│   │   │   │   ├── scene0011_00_100.txt
│   │   │   │   ├── scene0011_01_001.txt
│   │   │   │   ├── scene0011_01_002.txt
│   │   │   │   ├── ...
│   │   │   ├── scene0011_00.txt
│   │   │   ├── scene0011_01.txt
│   │   │   ├── ...
│   │   │   ├── scene0704_01.txt

4) Visualize the result:

python3 visualization/vis_scannetv2.py --data_root dataset/scannetv2 --scene_name scene0011_00 --prediction_path results/isbnet_scannetv2_val --task inst_pred

5) Follow the instructions on the terminal:

# open a new terminal and type:
cd ISBNet/visualization/pyviz3d; python -m http.server 6008

# open on your browser to see the result:
http://0.0.0.0:6008

6) You can also follow the instructions from SoftGroup to visualize the results using Open3D (visualization.py).