Skip to content

Latest commit

 

History

History
executable file
·
72 lines (54 loc) · 1.53 KB

RUN.md

File metadata and controls

executable file
·
72 lines (54 loc) · 1.53 KB

Run the code

In bash files, there is --config option for choosing the Open3DIS configuration

1) Extract 2D masks and first stage feature from RGB-D sequences:

sh scripts/grounding_2d.sh <config>

2) Generate 3D instances from 2D masks:

sh scripts/generate_3d_inst.sh <config>

3) Refine second stage feature from 3D instances:

sh scripts/refine_grounding_feat.sh <config>

After refine grounded features, re-run step 2 to finalize the 3D output masks

4) Run interactive visualization (required Pyviz3D):

sh scripts/vis.sh

5) Run evaluation:

We provided custom evaluation script

sh scripts/eval.sh

6) Misc:

Promptable Segmentation

sh scripts/text_query.sh <config> <text_query>

Maskwise feature computation memory efficient

sh scripts/maskwise_vocab.sh

Class-agnostic evaluation

sh scripts/eval_classagnostic.sh

Reproduce OpenSUN3D challenge 3D instance retrieval

# Generating results
sh scripts/opensun3d.sh
# Submit results
python tools/submit_opensun3d.py 

Submit ScanNet++ 3D instance segmentation benchmark

# Step 1-4 with 'configs/scannetpp_benchmark_instance_test.yaml'
# Submit results
sh scripts/submit_scannetpp_benchmark.sh configs/scannetpp_benchmark_instance_test.yaml

OpenYOLO3D achieves remarkable results, we provide a reproducible version of OpenYOLO3D based on Open3DIS codebase

sh scripts/reproduce_openyolo3d.sh <config>