-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathprepare.py
168 lines (138 loc) · 5.49 KB
/
prepare.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import argparse
import functools
import random
from multiprocessing import Pool
from pathlib import Path
import numpy as np
import torch
from tqdm.auto import tqdm
from transformers import AutoTokenizer, PretrainedConfig
def process_prompt_data(index, batch_start, prompt_embed, output_path):
np.save(output_path / f"{batch_start+index}.npy", prompt_embed)
return index
def wrapper_process_prompt_data(args):
return process_prompt_data(*args)
def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str):
text_encoder_config = PretrainedConfig.from_pretrained(
pretrained_model_name_or_path, subfolder="text_encoder", revision=revision
)
model_class = text_encoder_config.architectures[0]
if model_class == "CLIPTextModel":
from transformers import CLIPTextModel
return CLIPTextModel
elif model_class == "CLIPTextModelWithProjection":
from transformers import CLIPTextModelWithProjection
return CLIPTextModelWithProjection
else:
raise ValueError(f"{model_class} is not supported.")
# Adapted from pipelines.StableDiffusionPipeline.encode_prompt
def encode_prompt(prompts, text_encoder, tokenizer, is_train=True):
captions = []
for caption in prompts:
if isinstance(caption, str):
captions.append(caption)
elif isinstance(caption, (list, np.ndarray)):
# take a random caption if there are multiple
captions.append(random.choice(caption) if is_train else caption[0])
with torch.no_grad():
text_inputs = tokenizer(
captions,
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
prompt_embeds = text_encoder(
text_input_ids.to(text_encoder.device),
)[0]
return {"prompt_embeds": prompt_embeds.detach().cpu().numpy()}
def main(args):
batch_size = args.batch_size
num_processes = args.num_processes
# Load the tokenizers
tokenizer = AutoTokenizer.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="tokenizer",
revision=None,
use_fast=False,
)
# import correct text encoder class
text_encoder_cls = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path, None)
text_encoder = text_encoder_cls.from_pretrained(
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=None
)
text_encoder.requires_grad_(False)
text_encoder.to("cuda", dtype=torch.float32)
# Let's first compute all the embeddings so that we can free up the text encoders
compute_embeddings_fn = functools.partial(
encode_prompt,
text_encoder=text_encoder,
tokenizer=tokenizer,
)
with open(args.prompt_list) as f:
prompts = f.read().splitlines()
op = Path(args.prompt_list[:-4])
op.mkdir(exist_ok=True, parents=True)
if num_processes <= 1:
for i in tqdm(range(len(prompts) // batch_size)):
prompt_dicts = compute_embeddings_fn(prompts=prompts[batch_size * i : batch_size * i + batch_size])
prompt_dicts = {key: value for key, value in prompt_dicts.items()}
for j, prompt_embed in enumerate(prompt_dicts["prompt_embeds"]):
np.save(op / f"{batch_size*i+j}.npy", prompt_embed)
else:
with Pool(num_processes) as pool:
for i in tqdm(range(len(prompts) // batch_size), desc="Batch Progress"):
prompt_dicts = compute_embeddings_fn(prompts=prompts[batch_size * i : batch_size * i + batch_size])
prompt_dicts = {key: value for key, value in prompt_dicts.items()}
batch_start = batch_size * i
prompt_embeds = prompt_dicts["prompt_embeds"]
_ = list(
tqdm(
pool.imap_unordered(
wrapper_process_prompt_data,
[
(
j,
batch_start,
prompt_embeds[j],
op,
)
for j in range(len(prompt_embeds))
],
),
total=len(prompt_embeds),
desc="Processing Prompts",
leave=False,
)
)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Simple example of a data preparation script.")
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default="stabilityai/stable-diffusion-2-1-base",
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--prompt_list",
type=str,
default=None,
required=True,
help="A .txt file containing all prompts used for training.",
)
parser.add_argument(
"--batch_size",
type=int,
default=16,
help="Batch size for encoding the text embedding.",
)
parser.add_argument(
"--num_processes",
type=int,
default=16,
help="Number of processes for encoding the text embedding.",
)
args = parser.parse_args()
main(args)