-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcostFunction.m
53 lines (34 loc) · 1.12 KB
/
costFunction.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
function [J, grad] = costFunction(theta, X, y)
%COSTFUNCTION Compute cost and gradient for logistic regression
% J = COSTFUNCTION(theta, X, y) computes the cost of using theta as the
% parameter for logistic regression and the gradient of the cost
% w.r.t. to the parameters.
% Initialize some useful values
m = length(y); % number of training examples
% You need to return the following variables correctly
J = 0;
grad = zeros(size(theta));
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta.
% You should set J to the cost.
% Compute the partial derivatives and set grad to the partial
% derivatives of the cost w.r.t. each parameter in theta
%
% Note: grad should have the same dimensions as theta
%
z=X*theta;
g=e.^(-z);
g=1.+g;
g=1./g;
for i=1:m
J= J + (y(i)*log(g(i))+(1-y(i))*log(1-g(i)));
endfor
J = (-1/m)*J;
for i=1:size(theta,1),
for j=1:m,
grad(i)= grad(i)+(g(j)-y(j))*X(j,i);
endfor
endfor
grad =grad./m;
% =============================================================
end