-
Notifications
You must be signed in to change notification settings - Fork 2
/
detect.py
83 lines (67 loc) · 2.89 KB
/
detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import time
from absl import app, flags, logging
from absl.flags import FLAGS
import cv2
import numpy as np
import tensorflow as tf
from playertracking.models import (
YoloV3, YoloV3Tiny,setmethod
)
from playertracking.dataset import transform_images, load_tfrecord_dataset
from playertracking.utils import draw_outputs
flags.DEFINE_string('classes', './data/soccerv2.names', 'path to classes file')
flags.DEFINE_string('weights', './checkpoints/yolov3_train_24.tf',
'path to weights file')
flags.DEFINE_boolean('tiny', False, 'yolov3 or yolov3-tiny')
flags.DEFINE_integer('size', 416, 'resize images to')
flags.DEFINE_string('image', './data/socgirl.jpg', 'path to input image')
flags.DEFINE_string('tfrecord', None, 'tfrecord instead of image')
flags.DEFINE_string('output', './output.jpg', 'path to output image')
flags.DEFINE_integer('num_classes', 10, 'number of classes in the model')
def main(_argv):
print("Num GPUs Available: ", len(tf.config.experimental.list_physical_devices('GPU')))
yolo_player_classes='./data/coco.names'
yolo_player= YoloV3(classes=80)
yolo_player.load_weights('./checkpoints/yolov3.tf')
if FLAGS.tiny:
yolo = YoloV3Tiny(classes=FLAGS.num_classes)
else:
yolo = YoloV3(classes=FLAGS.num_classes)
yolo.load_weights(FLAGS.weights).expect_partial()
logging.info('weights loaded')
yolo_player_class_names=[c.strip() for c in open(yolo_player_classes).readlines()]
class_names = [c.strip() for c in open(FLAGS.classes).readlines()]
logging.info('classes loaded')
if FLAGS.tfrecord:
dataset = load_tfrecord_dataset(
FLAGS.tfrecord, FLAGS.classes, FLAGS.size)
dataset = dataset.shuffle(512)
img_raw, _label = next(iter(dataset.take(1)))
else:
img_raw = tf.image.decode_image(
open(FLAGS.image, 'rb').read(), channels=3)
img = tf.expand_dims(img_raw, 0)
img = transform_images(img, FLAGS.size)
t1 = time.time()
setmethod(1)
p_boxes, p_scores, p_classes, p_nums = yolo_player.predict(img)
setmethod(0)
boxes, scores, classes, nums = yolo.predict(img)
t2 = time.time()
logging.info('time: {}'.format(t2 - t1))
logging.info('detections:')
for i in range(nums[0]):
logging.info('\t{}, {}, {}'.format(class_names[int(classes[0][i])],
np.array(scores[0][i]),
np.array(boxes[0][i])))
img = cv2.cvtColor(img_raw.numpy(), cv2.COLOR_RGB2BGR)
img = draw_outputs(img, (boxes, scores, classes, nums), class_names)
img= draw_outputs(img,( p_boxes, p_scores, p_classes, p_nums),yolo_player_class_names)
cv2.imwrite(FLAGS.output, img)
cv2.imshow("op",img)
logging.info('output saved to: {}'.format(FLAGS.output))
if __name__ == '__main__':
try:
app.run(main)
except SystemExit:
pass