Skip to content

Latest commit

 

History

History
56 lines (43 loc) · 2.29 KB

README.md

File metadata and controls

56 lines (43 loc) · 2.29 KB

Deep Learning for Multivariate Time Series Forecasting

Mainly referenced paper

Modeling Long- and Short-Term Temporal Patterns with Deep Neural Networks.(https://arxiv.org/abs/1703.07015)

Environment

  • Python 3.6+
  • Pytorch 1.0+
  • numpy

Example

  1. Exchange Rate dataset: stock.sh
  2. Traffic dataset: traffic.sh
  3. Solar-Energy dataset:solar.sh
  4. Electricity usage dataset: ele.sh

Instruction

main.py

  • --data DATA location of the data file
  • -h --help show this help message and exit
  • --model DATA select the model: LSTNet, CNN, RNN or MHA_Net
  • --window WINDOW window size (history size)
  • --horizon HORIZON forecasting horizon(step)
  • --hidRNN HIDRNN number of RNN hidden units each layer
  • --rnn_layers RNN_LAYERS number of RNN hidden layers
  • --hidCNN HIDCNN number of CNN hidden units (channels)
  • --CNN_kernel CNN_KERNEL the kernel size of the CNN layers
  • --highway_window HIGHWAY_WINDOW The window size of the highway component
  • -n_head N_HEAD num of self attention heads
  • -d_k D_K self attention key dimension
  • -d_v D_V self attention value dimension
  • --clip CLIP gradient clipping limit
  • --epochs EPOCHS upper epoch limit
  • --batch_size N batch_size
  • --dropout DROPOUT dropout applied to layers (0 = no dropout)
  • --seed SEED random seed
  • --log_interval N report interval
  • --save SAVE path to save the final model'
  • --cuda CUDA whether to use cuda device
  • --optim OPTIM optimizer method ,default 'adam'
  • --amsgrad AMSGRAD whether to use amsgrad
  • --lr LR learning rate
  • --skip SKIP autoregression window size
  • --hidSkip HIDSKIP skiphidden states dimension
  • --L1Loss L1LOSS whether to use l1 loss function
  • --normalize NORMALIZE whether to normalize the data
  • --output_fun OUTPUT_FUN relu, tanh or sigmoid