-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathevaluation.py
157 lines (117 loc) · 4.67 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# Inspired by KorQuad 1.0 evaluation script.
# https://korquad.github.io/KorQuad%201.0/
import re
import sys
import json
import string
import os.path as p
from collections import Counter
from datasets import load_from_disk, load_dataset
def get_gt_json(args):
"""Get the json file that contain ground truth of validation datasets.
If not exists, generate the json file.
Arguments:
args: user arguments
Return:
gt_json
"""
gt_json = None
save_path = p.join(args.path.train_data_dir, "eval_gt.json")
if p.isfile(save_path):
with open(save_path, "r", encoding="utf-8") as f:
gt_json = json.load(f)
else:
eval_datasets = None
if args.data.dataset_name == "train_dataset":
eval_datasets = load_from_disk(p.join(args.path.train_data_dir, args.data.dataset_name))["validation"]
elif args.data.dataset_name == "squad_kor_v1":
eval_datasets = load_dataset(args.data.dataset_name)["validation"]
assert eval_datasets is not None, f"{args.data.dataset_name}이 존재하지 않습니다."
gt_json = []
for data in eval_datasets:
result = {"id": data["id"], "answer": data["answers"]["text"]}
gt_json.append(result)
with open(save_path, "w", encoding="utf-8") as save_file:
json.dump(gt_json, save_file, indent=4, ensure_ascii=False)
return gt_json
def evaluation(args, prefix=""):
"""Calculate MRC metrics.
Arguments:
args: args
"""
pred_path = p.join(args.train.output_dir, f"{prefix}predictions_valid.json")
save_path = p.join(args.train.output_dir, f"{prefix}valid_results.json")
gt = get_gt_json(args)
with open(pred_path) as pred_file:
preds = json.load(pred_file)
f1 = exact_match = total = 0
for qa in gt:
total += 1
if qa["id"] not in preds:
message = "Unanswered question " + qa["id"] + " will receive score 0."
print(message, file=sys.stderr)
continue
ground_truths = qa["answer"]
prediction = preds[qa["id"]]
exact_match += metric_max_over_ground_truths(exact_match_score, prediction, ground_truths)
f1 += metric_max_over_ground_truths(f1_score, prediction, ground_truths)
exact_match = exact_match / total
f1 = f1 / total
results = {}
results["EM"] = {"value": f"{exact_match:.2%}", "rank": True, "decs": True}
results["F1"] = {"value": f"{f1:.2%}", "rank": False, "decs": True}
with open(save_path, "w", encoding="utf-8") as save_file:
json.dump(results, save_file, indent=4, ensure_ascii=False)
return results
def normalize_answer(s):
def remove_(text):
""" 불필요한 기호 제거 """
text = re.sub("'", " ", text)
text = re.sub('"', " ", text)
text = re.sub("《", " ", text)
text = re.sub("》", " ", text)
text = re.sub("<", " ", text)
text = re.sub(">", " ", text)
text = re.sub("〈", " ", text)
text = re.sub("〉", " ", text)
text = re.sub("\(", " ", text)
text = re.sub("\)", " ", text)
text = re.sub("‘", " ", text)
text = re.sub("’", " ", text)
return text
def white_space_fix(text):
return " ".join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return "".join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
return white_space_fix(remove_punc(lower(remove_(s))))
def f1_score(prediction, ground_truth):
prediction_tokens = normalize_answer(prediction).split()
ground_truth_tokens = normalize_answer(ground_truth).split()
# F1 by character
prediction_Char = []
for tok in prediction_tokens:
now = [a for a in tok]
prediction_Char.extend(now)
ground_truth_Char = []
for tok in ground_truth_tokens:
now = [a for a in tok]
ground_truth_Char.extend(now)
common = Counter(prediction_Char) & Counter(ground_truth_Char)
num_same = sum(common.values())
if num_same == 0:
return 0
precision = 1.0 * num_same / len(prediction_Char)
recall = 1.0 * num_same / len(ground_truth_Char)
f1 = (2 * precision * recall) / (precision + recall)
return f1
def exact_match_score(prediction, ground_truth):
return normalize_answer(prediction) == normalize_answer(ground_truth)
def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
scores_for_ground_truths = []
for ground_truth in ground_truths:
score = metric_fn(prediction, ground_truth)
scores_for_ground_truths.append(score)
return max(scores_for_ground_truths)