-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmulticoil_sensitivity.m
510 lines (459 loc) · 18.8 KB
/
multicoil_sensitivity.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
function [s,llm,llp,ok,ls] = multicoil_sensitivity(varargin)
% Maximum a posteriori sensitivity profiles given a set of observed coil
% images, a mean image and a noise precision (= inverse covariance)
% matrix.
%
% FORMAT [s,...] = multicoil_sensitivity(rho, x, s, ...)
%
% REQUIRED
% --------
% rho - (File)Array [Nx Ny Nz 1 (2)] - (Complex) mean image
% x - (File)Array [Nx Ny Nz Nc (2)] - (Complex) coil images
% s - (File)Array [Nx Ny Nz Nc (2)] - (Complex) log-sensitivity maps
%
% Nc = number of coils
% Images can either be complex or have two real components that are then
% assumed to be the real and imaginary parts.
%
% KEYWORDS
% --------
% Index - Array | Scalar - Indices of coils to update [1:Nc]
% Precision - Array [Nc Nc] - Noise precision matrix [eye(Nc)]
% RegStructure - [Abs Mem Ben] - Regularisation structure [0 0 1]
% RegCoilFactor - Vector [Nc] - Reg modulator / coil [1]
% RegCompFactor - [Mag Phase] - Reg modulator / component [1 1]
% RegBoundary - Scalar | String - Boundary condition ['Neumann']
% VoxelSize - Vector [3] - Voxel size [1 1 1]
% LLPrior - Scalar - Previous prior log-likelihood [NaN]
% CentreFields - Logical - Enforce zeros-centered fields [false]
% SensOptim - [Mag Phase] - Optimise magnitude/phase [true true]
% Parallel - Scalar | Logical - Number of parallel workers [false]
%
% OUTPUT
% ------
% s - Updated (complex) log-sensitivity maps
% llm - Matching part of the log-likelihood (all coils)
% llp - Prior part of the log-likelihood (all coils)
% ok - True if a better value was found
%
% The optimum is found numerically using complex Gauss-Newton optimisation.
% The inverse problem is real and is solved by full multigrid.
%
%__________________________________________________________________________
% Copyright (C) 2018 Wellcome Centre for Human Neuroimaging
%__________________________________________________________________________
% Development notes / Yael / 8 Nov 2018
%
% This file is a bit complicated, as it tries to deal with various
% parameterisations of the sensitivity fields:
% - It is possible to update only one of the (log)-field components, using
% the `SensOptim` option. This also complicates stuff a bit.
%
% Note that I am thinking of adding yet another representation, where
% log-sensitivity fields are directly encoded by their discrete cosine
% components. This might help to deal better with small autocalibration
% regions, where the finite element approximation used in the
% regularization matrix becomes too poor.
%__________________________________________________________________________
% -------------------------------------------------------------------------
% Helper functions to check input arguments
function ok = isarray(X)
ok = isnumeric(X) || isa(X, 'file_array');
end
function ok = isboundary(X)
ok = (isnumeric(X) && isscalar(X) && 0 <= X && X <= 1) || ...
(ischar(X) && any(strcmpi(X, {'c','circulant','n','neumann'})));
end
function ok = isrealarray(X)
function okk = isrealtype(T)
okk = numel(T) > 7 || ~strcmpi(T(1:7),'complex');
end
if isa(X, 'file_array')
ok = all(cellfun(@isrealtype, {X.dtype}));
else
ok = isreal(X);
end
end
% -------------------------------------------------------------------------
% Parse input
p = inputParser;
p.FunctionName = 'multicoil_sensitivity';
p.addRequired('MeanImage', @isarray);
p.addRequired('CoilImages', @isarray);
p.addRequired('SensMaps', @isarray);
p.addParameter('Index', [], @isnumeric);
p.addParameter('Precision', 1, @isnumeric);
p.addParameter('RegStructure', [0 0 1], @(X) isnumeric(X) && numel(X) == 3);
p.addParameter('RegCoilFactor', 1, @isnumeric);
p.addParameter('RegCompFactor', 1, @(X) isnumeric(X) && numel(X) <= 2);
p.addParameter('RegBoundary', 1, @isboundary);
p.addParameter('VoxelSize', [1 1 1], @(X) isnumeric(X) && numel(X) <= 3);
p.addParameter('LLPrior', NaN, @(X) isnumeric(X) && isscalar(X));
p.addParameter('SensOptim', [true true], @(X) (isnumeric(X) || islogical(X)) && numel(X) == 2);
p.addParameter('Parallel', 0, @(X) (isnumeric(X) || islogical(X)) && isscalar(X));
p.addParameter('Encoding', 'frequency', @ischar);
p.addParameter('NbBasis', [10 10 10], @(X) isnumeric(X) && numel(X) <= 3);
p.addParameter('RegMatrix', [], @(X) isnumeric(X));
p.parse(varargin{:});
rho = p.Results.MeanImage;
x = p.Results.CoilImages;
s = p.Results.SensMaps;
all_n = p.Results.Index;
A = p.Results.Precision;
prm = p.Results.RegStructure;
alpha = p.Results.RegCoilFactor;
gamma = p.Results.RegCompFactor;
bnd = p.Results.RegBoundary;
vs = p.Results.VoxelSize;
llp = p.Results.LLPrior;
optim = p.Results.SensOptim;
Nw = p.Results.Parallel;
encoding = p.Results.Encoding;
nbasis = p.Results.NbBasis;
regmatrix = p.Results.RegMatrix;
% -------------------------------------------------------------------------
% Post-process input
N = size(x,4);
lat = [size(x,1) size(x,2) size(x,3)];
% Coils to process: default = all + ensure row-vector
if isempty(all_n)
all_n = 1:N;
end
all_n = all_n(:).';
% Precision: default = identity
if numel(A) == 1
A = A * eye(N);
end
% Reg components: just change reg structure
gamma = padarray(gamma(:)', [0 max(0,2-numel(gamma))], 'replicate', 'post');
% Reg factor: ensure zero sum -> propagate their sum to reg components
alpha = padarray(alpha(:), [max(0,N-numel(alpha)) 0], 'replicate', 'post');
gamma = gamma * sum(alpha);
alpha = alpha/sum(alpha);
% Boundary: convert to scalar representation
switch bnd
case {0, 'c', 'circulant'}
bnd = 0;
case {1, 'n', 'neumann'}
bnd = 1;
otherwise
warning('Unknown boundary condition %s. Using Neumann instead', num2str(bnd))
bnd = 1;
end
% Nb basis: ensure row vector + complete
nbasis = padarray(nbasis(:)', [0 max(0,3-numel(nbasis))], 'replicate', 'post');
% Voxel size: ensure row vector + complete
vs = padarray(vs(:)', [0 max(0,3-numel(vs))], 'replicate', 'post');
% Create regularisation matrix
if isempty(regmatrix)
regmatrix = spm_bias_lib('regulariser', prm, lat, nbasis, vs);
end
% Create basis functions (B)
[B1,B2,B3] = spm_bias_lib('dcbasis', lat, nbasis);
% Optimisation: if observed images are real, optim = [true false]
if isrealarray(x)
optim(2) = false;
end
optim = logical(optim);
if all(~optim)
warning('Nothing to update')
return
end
% Parallel: convert to number of workers
if islogical(Nw)
if Nw, Nw = inf;
else, Nw = 0;
end
end
% if Nw > 0
% warning('Parallel processing not implemented. Running sequential instead.')
% Nw = 0;
% end
% -------------------------------------------------------------------------
% Boundary condition (usually Neumann = null derivative)
spm_field('boundary', bnd);
% -------------------------------------------------------------------------
% Prepare stuff to save time in the loop
% --- GPU
gpu_on = isa(A, 'gpuArray');
if gpu_on, loadarray = @loadarray_gpu;
else, loadarray = @loadarray_cpu; end
% --- Log-likelihood
function llm = computellm(n,ds)
llm = 0;
% ---------------------------------------------------------------------
% Compute gradient slice-wise to save memory
parfor(z=1:lat(3) , Nw) % < Uncomment for parallel processing
% for z=1:lat(3) % < Uncomment for sequential processing
% -----------------------------------------------------------------
% Enforce boundary condition -> needed with parfor
spm_field('boundary', bnd);
% -----------------------------------------------------------------
% Load one slice of the complete coil dataset
xz = loadarray(x(:,:,z,:), @single);
xz = reshape(xz, [], N);
% -----------------------------------------------------------------
% Load one slice of the mean
rhoz = loadarray(rho(:,:,z,:), @single);
rhoz = reshape(rhoz, [], 1);
% -----------------------------------------------------------------
% Load one slice of the delta sensitivity
dsz = loadarray(ds(:,:,z,:), @single);
dsz = reshape(dsz, [], size(ds,4));
if all(optim)
dsz = dsz(:,1) + 1i * dsz(:,2);
elseif optim(2)
dsz = 1i * dsz(:,2);
end
% -----------------------------------------------------------------
% Load one slice of the complete sensitivity dataset + correct
sz = loadarray(s(:,:,z,:), @single);
sz = reshape(sz, [], N);
sz(:,n) = sz(:,n) - dsz;
dsz = [];
sz = single(exp(double(sz)));
rhoz = bsxfun(@times, rhoz, sz);
sz = []; % clear
% -----------------------------------------------------------------
% Compute log-likelihood
tmp = (rhoz - xz) * A;
llm = llm - 0.5 * sum(double(real(dot(tmp, rhoz - xz, 2))));
rhoz = [];
xz = [];
end % < loop z
end % < function computellm
% -------------------------------------------------------------------------
% Compute log-likelihood (prior)
if isnan(llp)
llp = multicoil_ll_prior(s, prm, gamma, alpha, bnd, optim, vs);
end
% -------------------------------------------------------------------------
% For each coil
for n=all_n
% ---------------------------------------------------------------------
% Allocate conjugate gradient and Hessian
switch lower(encoding)
case 'image'
g = zeros([lat sum(optim)], 'single');
H = zeros(lat, 'single');
case 'frequency'
g = zeros([nbasis sum(optim)], 'single');
H = zeros([nbasis nbasis], 'single');
end
llm = 0;
% ---------------------------------------------------------------------
% Compute gradient slice-wise to save memory
% parfor(z=1:lat(3) , Nw) % < Uncomment for parallel processing
for z=1:lat(3) % < Uncomment for sequential processing
% -----------------------------------------------------------------
% Enforce boundary condition -> needed with parfor
spm_field('boundary', bnd);
% -----------------------------------------------------------------
% Load one slice of the complete coil dataset
xz = loadarray(x(:,:,z,:), @double);
xz = reshape(xz, [], N);
% -----------------------------------------------------------------
% Load one slice of the mean
rhoz = loadarray(rho(:,:,z,:), @double);
rhoz = reshape(rhoz, [], 1);
% -----------------------------------------------------------------
% Load one slice of the complete sensitivity dataset + correct
sz = loadarray(s(:,:,z,:), @double);
sz = reshape(sz, [], N);
sz = single(exp(double(sz)));
rhoz = bsxfun(@times, rhoz, sz);
sz = []; % clear
% -----------------------------------------------------------------
% Compute gradient
tmp = (rhoz - xz) * A;
llm = llm - 0.5 * sum(real(dot(tmp, rhoz - xz, 2)));
tmp = rhoz(:,n) .* conj(tmp(:,n));
gz = zeros([size(tmp,1) sum(optim)], 'like', real(tmp(1)));
i = 1;
if optim(1) % If optimise sensitivity magnitude
gz(:,i) = real(tmp);
i = i+1;
end
if optim(2) % If optimise sensitivity phase
gz(:,i) = -imag(tmp);
end
Hz = A(n,n) * real(conj(rhoz(:,n)) .* rhoz(:,n));
switch lower(encoding)
case 'image'
g(:,:,z,:) = reshape(gz, lat(1), lat(2), 1, []);
gz = []; % clear
H(:,:,z) = reshape(Hz, lat(1), lat(2));
Hz = []; % clear
case 'frequency'
b3z = B3(z,:);
gz = reshape(gz, lat(1), lat(2), 1, []);
gz = dct(gz, [], 1);
gz = gz(1:nbasis(1),:,:,:);
gz = dct(gz, [], 2);
gz = gz(:,1:nbasis(2),:,:);
gz = bsxfun(@times, gz, reshape(b3z, 1, 1, []));
g = g + gz;
gz = []; % clear
Hz = reshape(Hz, lat(1), lat(2));
Hz = kron(b3z'*b3z,spm_krutil(double(Hz),B1,B2,1));
H = H + reshape(Hz, [nbasis nbasis]);
Hz = []; % clear
end
tmp = []; % clear
xz = []; % clear
rhoz = []; % clear
end % < loop z
switch lower(encoding)
case 'image'
% -------------------------------------------------------------
% Gather gradient & Hessian (if on GPU)
g = gather(g);
H = gather(H);
% -------------------------------------------------------------
% Gradient: add prior term
if all(optim)
s0 = zeros([lat 2], 'single');
s1 = single(s(:,:,:,n));
s0(:,:,:,1) = real(s1);
s0(:,:,:,2) = imag(s1);
clear s1
elseif optim(1)
s0 = real(single(s(:,:,:,n)));
elseif optim(2)
s0 = imag(single(s(:,:,:,n)));
end
g = g + spm_field('vel2mom', s0, [vs alpha(n)*prm], gamma(optim));
% -------------------------------------------------------------
% Gauss-Newton
ds = zeros(size(s0), 'single');
i = 1;
if optim(1)
ds(:,:,:,i) = spm_field(H, g(:,:,:,i), [vs alpha(n)*prm 2 2], gamma(1));
i = i + 1;
end
if optim(2)
ds(:,:,:,i) = spm_field(H, g(:,:,:,i), [vs alpha(n)*prm 2 2], gamma(2));
end
clear g H
% -------------------------------------------------------------
% Parts for log-likelihood (prior)
Lds = spm_field('vel2mom', ds, [vs alpha(n)*prm], gamma(optim));
llp_part1 = alpha(n) * double(reshape(s0, 1, [])) * double(reshape(Lds, [], 1));
llp_part2 = alpha(n) * double(reshape(ds, 1, [])) * double(reshape(Lds, [], 1));
clear s0 Lds
case 'frequency'
% -------------------------------------------------------------
% Convert to vector/matrix
g = reshape(g, [], sum(optim));
g = double(g);
H = reshape(H, prod(nbasis), prod(nbasis));
H = double(H);
H = H + 1e-7 * max(diag(H)) * eye(size(H));
% -------------------------------------------------------------
% Gradient: add prior term
if all(optim)
s0 = zeros([lat 2], 'single');
s1 = single(s(:,:,:,n));
s0(:,:,:,1) = real(s1);
s0(:,:,:,2) = imag(s1);
clear s1
elseif optim(1)
s0 = real(single(s(:,:,:,n)));
elseif optim(2)
s0 = imag(single(s(:,:,:,n)));
end
s0 = dct(s0,[],1);
s0 = s0(1:nbasis(1),:,:,:);
s0 = dct(s0,[],2);
s0 = s0(:,1:nbasis(2),:,:);
s0 = dct(s0,[],3);
s0 = s0(:,:,1:nbasis(3),:);
s0 = reshape(s0, [], sum(optim));
s0 = double(s0);
i = 1;
if optim(1)
g(:,i) = g(:,i) + alpha(n) * gamma(1) * regmatrix * s0(:,i);
i = i + 1;
end
if optim(2)
g(:,i) = g(:,i) + alpha(n) * gamma(2) * regmatrix * s0(:,i);
end
% -------------------------------------------------------------
% Gauss-Newton
ds = zeros(size(s0), 'double');
i = 1;
if optim(1)
ds(:,i) = (H + alpha(n) * gamma(1) * regmatrix)\g(:,i);
i = i + 1;
end
if optim(2)
ds(:,i) = (H + alpha(n) * gamma(2) * regmatrix)\g(:,i);
end
clear g H
ds = reshape(ds, [nbasis sum(optim)]);
% -------------------------------------------------------------
% Parts for log-likelihood (prior)
llp_part1 = 0;
llp_part2 = 0;
i = 1;
if optim(1)
Lds = alpha(n) * gamma(1) * regmatrix * reshape(ds(:,:,:,i), [], 1);
llp_part1 = llp_part1 + s0(:,i)' * Lds;
llp_part2 = llp_part2 + Lds' * Lds;
i = i + 1;
end
if optim(2)
Lds = alpha(n) * gamma(2) * regmatrix * reshape(ds(:,:,:,i), [], 1);
llp_part1 = llp_part1 + s0(:,i)' * Lds;
llp_part2 = llp_part2 + Lds' * Lds;
end
clear s0 Lds
% -------------------------------------------------------------
% Convert to image representation
ds = single(ds);
% ds = idct(idct(idct(ds,lat(1),1),lat(2),2),lat(3),3);
ds = reshape(B1 * reshape(ds, nbasis(1), []), lat(1), nbasis(2), nbasis(3), []);
ds = permute(ds, [2 3 1 4]);
ds = reshape(B2 * reshape(ds, nbasis(2), []), lat(2), nbasis(3), lat(1), []);
ds = permute(ds, [2 3 1 4]);
ds = reshape(B2 * reshape(ds, nbasis(3), []), lat(3), lat(1), lat(2), []);
ds = permute(ds, [2 3 1 4]);
end
% ---------------------------------------------------------------------
% Line-Search
llm0 = llm;
llp0 = llp;
ok = false;
armijo = 1;
for ls=1:6
% -----------------------------------------------------------------
% Compute log-likelihood (prior)
llp = -0.5 * (armijo^2 * llp_part2 - 2 * armijo * llp_part1);
llp = llp0 + llp;
% -----------------------------------------------------------------
% Compute log-likelihood (conditional)
llm = computellm(n, armijo*ds);
% -----------------------------------------------------------------
% Check progress
if (llm+llp) > (llm0+llp0)
ok = true;
break
else
armijo = armijo/2;
end
end % < loop ls
% ---------------------------------------------------------------------
% Save
if ok
if all(optim)
ds = ds(:,:,:,1) + 1i * ds(:,:,:,2);
elseif optim(2)
ds = 1i * ds;
end
s(:,:,:,n) = s(:,:,:,n) - armijo * ds;
else
llm = llm0;
llp = llp0;
end
end % < loop n
end % < function multicoil_sensitivity