-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathtrain_cmil.lua
244 lines (225 loc) · 6.74 KB
/
train_cmil.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
-- settings for path and models
dofile('settings.lua')
dofile('preprocess.lua')
dofile('util.lua')
dofile('dataset.lua')
dofile('layers/util.lua')
require 'optim'
dofile('fbnn_Optim.lua')
torch.manualSeed(opts.SEED)
cutorch.manualSeedAll(opts.SEED)
example_loader_options_preset = {
training = {
numRoisPerImage = 8192,
subset = SETTINGS.SUBSET,
hflips = true,
numScales = 5,
},
evaluate = {
numRoisPerImage = 8192,
subset = SETTINGS.SUBSET,
hflips = true,
numScales = 1,
}
}
opts.PATHS.MODEL = SETTINGS.model_path
if paths.extname(opts.PATHS.MODEL) == 'lua' then
loaded = model_load(opts.PATHS.MODEL, opts)
meta = {
model_path = loaded.model_path,
opts = opts,
example_loader_options = example_loader_options_preset
}
log = {{meta = meta}}
else --resume
opts.PATHS.MODEL = 'output/VOC2007/VGGF/CMIL-SSW/model_epoch16.h5'
loaded = model_load(opts.PATHS.MODEL)
meta = loaded.meta
log = loaded.log
previous_epoch = loaded.epoch
end
print('load model done.')
batch_loader = ParallelBatchLoader(
ExampleLoader(
dataset,
base_model.normalization_params,
opts.IMAGE_SCALES,
meta.example_loader_options
)
):setBatchSize({training = 1, evaluate = 1})
print(meta)
print(model)
assert(model):cuda()
assert(criterion):cuda()
collectgarbage()
model:apply(function (x) x.for_each = x.apply end)
optimizer = nn.Optim(model, optimState)
optimalg = optim.sgd
log_details = {}
tic_start = torch.tic()
for epoch = (previous_epoch or 0) + 1, opts.NUM_EPOCHS do
epoch_id = epoch
if epoch > optimState_annealed.epoch then
optimizer:setParameters(optimState_annealed)
end
batch_loader:training()
model:training()
batchIdx_global = nil
tic = torch.tic()
for batchIdx = 1, batch_loader:getNumBatches() -1 do
if SETTINGS.ifContinuation then
local nImg = batch_loader:getNumBatches()
SETTINGS.lambda = getlambda(epoch-1+batchIdx/nImg, SETTINGS.NUM_EPOCHS, SETTINGS.ContinuationFunc)
end
batchIdx_global = batchIdx
scale_batches = batch_loader:forward()[1]
scale0_rois = scale_batches[1][2]:clone()
batch_images, batch_rois, batch_labels = unpack(scale_batches[2])
batch_images_gpu = torch.CudaTensor(#batch_images):copy(batch_images)
batch_labels_gpu = torch.CudaTensor(#batch_labels):copy(batch_labels)
batch_box_labels_gpu = torch.CudaTensor()
cost = optimizer:optimize(
optimalg,
{batch_images_gpu, batch_rois},
{batch_labels_gpu, batch_box_labels_gpu},
criterion
)
collectgarbage()
local output_string = string.format(
"epoch %02d batch %04d lambda %.2f cost %.5f speed %.2fs/img TotalTime: %.1fmin",
epoch,
batchIdx,
SETTINGS.lambda,
cost,
torch.toc(tic)/batchIdx,
torch.toc(tic_start)/60
)
if batchIdx % 20 == 0 then
print(output_string)
end
end
if epoch % 4 == 0 or epoch == opts.NUM_EPOCHS or epoch == 1 then
batch_loader:evaluate()
model:evaluate()
scores, labels, rois, costs, outputs, corlocs, corlocs_all = {},{},{},{},{},{},{}
tic_val = torch.tic()
for batchIdx = 1, batch_loader:getNumBatches() - 1 do
scale_batches = batch_loader:forward()[1]
scale0_rois = scale_batches[1][2]:clone()
scale_outputs, scale_scores, scale_costs = {}, {}, {}
for i = 2, #scale_batches do
batch_images, batch_rois, batch_labels = unpack(scale_batches[i])
batch_images_gpu = torch.CudaTensor(#batch_images):copy(batch_images)
batch_labels_gpu = torch.CudaTensor(#batch_labels):copy(batch_labels)
batch_all_scores = model:forward({batch_images_gpu, batch_rois})
batch_scores=batch_all_scores[1]
cost = HingeCriterion():setFactor(1 / numClasses):cuda():forward(batch_scores,batch_labels_gpu)
table.insert(
scale_scores,
(type(batch_scores) == 'table' and batch_scores[1] or batch_scores):float()
)
table.insert(scale_costs, cost)
local batch_all_scores3 = makeContiguous(batch_all_scores[3]):clone()
local batch_all_scores4 = makeContiguous(batch_all_scores[4]):clone()
scale_outputs['output_prod_cls'] = scale_outputs['output_prod_cls'] or {}
table.insert(
scale_outputs['output_prod_cls'],
batch_all_scores[2]:view(1,-1,20):transpose(2, 3):float()
)
scale_outputs['output_prod_det'] = scale_outputs['output_prod_det'] or {}
table.insert(
scale_outputs['output_prod_det'],
batch_all_scores3:view(1,-1,20):transpose(2, 3):float()
)
scale_outputs['output_prod_det2'] = scale_outputs['output_prod_det2'] or {}
table.insert(
scale_outputs['output_prod_det2'],
batch_all_scores4:view(1,-1,20):transpose(2, 3):float()
)
end
for output_field, output in pairs(scale_outputs) do
outputs[output_field] = outputs[output_field] or {}
table.insert(outputs[output_field], torch.cat(output, 1):mean(1)[1])
end
table.insert(costs, torch.FloatTensor(scale_costs):mean())
table.insert(scores, torch.cat(scale_scores, 1):mean(1))
table.insert(labels, batch_labels:clone())
table.insert(rois, scale0_rois:narrow(scale0_rois:dim(), 1, 4):clone()[1])
local output_string = string.format(
"val epoch %02d batch %04d cost %.5f speed %.2fs/img TotalTime: %.1fmin",
epoch,
batchIdx,
costs[#costs],
torch.toc(tic_val)/batchIdx,
torch.toc(tic_start)/60
)
if batchIdx % 20 == 0 then
print(output_string)
end
end
local classLabels = {
'aeroplane',
'bicycle',
'bird',
'boat',
'bottle',
'bus',
'car',
'cat',
'chair',
'cow',
'diningtable',
'dog',
'horse',
'motorbike',
'person',
'pottedplant',
'sheep',
'sofa',
'train',
'tvmonitor'
}
for output_field, output in pairs(outputs) do
corloc_i = corloc(
dataset[batch_loader.example_loader:getSubset(batch_loader.train)],
{output, rois}
)
corlocs[output_field]={}
for i=1,20 do
corlocs[output_field][classLabels[i]] = corloc_i[i]
end
corlocs_all[output_field]=corloc_i:mean()
end
local APtable = {}
local AP = dataset_tools.meanAP(torch.cat(scores, 1), torch.cat(labels, 1))
for i=1,20 do
APtable[classLabels[i]] = AP[i]
end
table.insert(log, {
training = false,
epoch = epoch,
mAP = AP:mean(),
corlocs_all = corlocs_all,
valCost = torch.FloatTensor(costs):mean(),
})
table.insert(log_details, {
training = false,
epoch = epoch,
mAP = AP:mean(),
AP = APtable,
corlocs = corlocs,
corlocs_all = corlocs_all,
valCost = torch.FloatTensor(costs):mean(),
})
print(log_details)
end
if epoch % 2 == 0 or epoch == opts.NUM_EPOCHS then
model:clearState()
model_save(opts.PATHS.CHECKPOINT_PATTERN:format(epoch), model, meta, epoch, log)
end
json_save(opts.PATHS.LOG, log)
io.stderr:write('log in "', opts.PATHS.LOG, '"\n')
end
table.insert(log, log_details)
json_save(opts.PATHS.LOG, log)
io.stderr:write('details log in "', opts.PATHS.LOG, '"\n')