Skip to content

Latest commit

 

History

History
74 lines (55 loc) · 2.46 KB

0051._n-queens.md

File metadata and controls

74 lines (55 loc) · 2.46 KB

51. N-Queens

难度: Hard

刷题内容

原题连接

内容描述

The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other.

Given an integer n, return all distinct solutions to the n-queens puzzle.

Each solution contains a distinct board configuration of the n-queens' placement, where 'Q' and '.' both indicate a queen and an empty space respectively.

Example:

Input: 4
Output: [
 [".Q..",  // Solution 1
  "...Q",
  "Q...",
  "..Q."],

 ["..Q.",  // Solution 2
  "Q...",
  "...Q",
  ".Q.."]
]
Explanation: There exist two distinct solutions to the 4-queens puzzle as shown above.

解题方案

思路 1 - 时间复杂度: O(N^2)- 空间复杂度: O(N)******

八皇后问题是一个以国际象棋为背景的问题:如何能够在8×8的国际象棋棋盘上放置八个皇后,使得任何一个皇后都无法直接吃掉其他的皇后?为了达到此目的,任两个皇后都不能处于同一条横行、纵行或斜线上。八皇后问题可以推广为更一般的n皇后摆放问题:这时棋盘的大小变为n×n,而皇后个数也变成n。当且仅当n = 1或n ≥ 4时问题有解[1]。

对于任意(x,y),如果要让新的点和它不能处于同一条横行、纵行或斜线上,则新点(p,q)必须要满足p+q != x+y 和p-q!= x-y, 前者针对左下右上斜线,后者针对左上右下斜线,两者同时都保证了不在同一条横行和纵行上。

代码中变量的含义:

  • cols_lst: 每一行皇后的column位置组成的列表
  • cur_row:目前正在判断的row的index
  • xy_diff:所有x-y组成的列表
  • xy_sum:所有x+y组成的列表
class Solution(object):
    def solveNQueens(self, n):
        """
        :type n: int
        :rtype: List[List[str]]
        """
        def dfs(cols_lst, xy_diff, xy_sum):
            cur_row = len(cols_lst)
            if cur_row == n:
                ress.append(cols_lst)
            for col in range(n):
                if col not in cols_lst and cur_row - col not in xy_diff and cur_row + col not in xy_sum:
                    dfs(cols_lst+[col], xy_diff+[cur_row-col], xy_sum+[cur_row+col])
        ress = []
        dfs([], [], [])
        return [['.' * i + 'Q' + '.' * (n-i-1) for i in res] for res in ress]