Skip to content

Latest commit

 

History

History
163 lines (119 loc) · 3.72 KB

0053._maximum_subarray.md

File metadata and controls

163 lines (119 loc) · 3.72 KB

53. Maximum Subarray

难度: Easy

刷题内容

原题连接

内容描述


Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.

Example:

Input: [-2,1,-3,4,-1,2,1,-5,4],
Output: 6
Explanation: [4,-1,2,1] has the largest sum = 6.
Follow up:

If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.

解题方案

思路 1 - 时间复杂度: O(N^2)- 空间复杂度: O(1)******

从i开始,计算i到n,存比较大的sum,会超时

class Solution(object):
    def maxSubArray(self, nums):
        """
        :type nums: List[int]
        :rtype: int
        """
        n = len(nums)
        m = float('-inf')
        for i in range(n):
            s = 0
            for j in range(i, n):
                s = s + nums[j]
                m = max(m, s)
        return m 

思路 2 - 时间复杂度: O(NlgN)- 空间复杂度: O(N)******

参见clrs 第71页,用divide and conquer,有伪码

最大的subarray sum有三个可能,左半段或者右半段,或者跨越左右半段,

速度比较慢,AC代码,复杂度O(NlogN)

class Solution(object):
	def maxSubArray(self, nums):
		"""
		:type nums: List[int]
		:rtype: int
		"""
		def find_max_crossing_subarray(nums, low, mid, high):
			left_sum = float('-inf')
			sum = 0
			for i in xrange(mid,low-1,-1):
				sum = sum + nums[i]
				if sum > left_sum:
					left_sum = sum

			right_sum = float('-inf')
			sum = 0
			for j in range(mid+1,high+1):
				sum = sum + nums[j]
				if sum > right_sum:
					right_sum = sum

			return left_sum + right_sum

		def find_max_subarray(nums,low,high):
			if low == high: 
				return nums[low]
			else:
				mid = (low + high) / 2
				left_sum = find_max_subarray(nums, low, mid)
				right_sum = find_max_subarray(nums,mid+1,high)
				cross_sum = find_max_crossing_subarray(nums,low,mid,high)
				# print left_sum, right_sum, cross_sum
				# print mid, low, high
				return max(left_sum, right_sum, cross_sum)

		return find_max_subarray(nums, 0, len(nums)-1)

思路 3 - 时间复杂度: O(N)- 空间复杂度: O(N)******

  • 动态规划(只关注:当然值 和 当前值+过去的状态,是变好还是变坏,一定是回看容易理解)
  • ms(i) = max(ms[i-1]+ a[i],a[i])
  • 到i处的最大值两个可能,一个是加上a[i], 另一个从a[i]起头,重新开始。可以AC
class Solution(object):
    def maxSubArray(self, nums):
        """
        :type nums: List[int]
        :rtype: int
        """
        n = len(nums)
        maxSum = [nums[0] for i in range(n)]
        for i in range(1, n):
            maxSum[i] = max(maxSum[i - 1] + nums[i], nums[i])
        return max(maxSum)

思路 4 - 时间复杂度: O(N)- 空间复杂度: O(1)******

Kadane’s Algorithm wikipedia可以查到,然后一般的是负的可以还回0,这里需要稍作修改,参考

http://algorithms.tutorialhorizon.com/kadanes-algorithm-maximum-subarray-problem/

start:
    max_so_far = a[0]
    max_ending_here = a[0]

loop i= 1 to n
  (i) max_end_here = Max(arrA[i], max_end_here+a[i]);
  (ii) max_so_far = Max(max_so_far,max_end_here);

return max_so_far

AC代码:

class Solution(object):
    def maxSubArray(self, nums):
        """
        :type nums: List[int]
        :rtype: int
        """
        max_sum, max_end = nums[0], nums[0]
        for i in range(1, len(nums)):
            max_end = max(max_end + nums[i], nums[i])
            max_sum = max(max_sum, max_end)
        return max_sum