Skip to content

Latest commit

 

History

History
104 lines (74 loc) · 2.96 KB

0084._Largest_Rectangle_in_Histogram.md

File metadata and controls

104 lines (74 loc) · 2.96 KB

84. Largest Rectangle in Histogram

难度: Hard

刷题内容

原题连接

内容描述

Given n non-negative integers representing the histogram's bar height where the width of each bar is 1, find the area of largest rectangle in the histogram.

Above is a histogram where width of each bar is 1, given height = [2,1,5,6,2,3].

The largest rectangle is shown in the shaded area, which has area = 10 unit.

Example:

Input: [2,1,5,6,2,3]
Output: 10

解题方案

思路 1 - 时间复杂度: O(N)- 空间复杂度: O(N)******

参考大神learnjava的解法

All these problems share the same pattern: how to find the next greater/smaller element in an array.

Problem 84:
For bar i in the heights array, if we can find the first smaller bar with index l on the left 
and the first smaller bar with index r on the right, then the current max area with h(i) 
as the height is h(i)*(r-l-1). So we just need to compare all these current max areas. 
To find l for each bar, we can use one stack (see problem 496, 503 and 739); 
similarly we can use another stack for r.

beats 69.90%

class Solution(object):
    def largestRectangleArea(self, heights):
        """
        :type heights: List[int]
        :rtype: int
        """
        left_stack, right_stack = [], []
        left_indexes, right_indexes = [-1] * len(heights), [len(heights)] * len(heights)
        
        for i in range(len(heights)):
            while left_stack and heights[i] < heights[left_stack[-1]]:
                right_indexes[left_stack.pop()] = i 
            left_stack.append(i)
        
        for i in range(len(heights)-1, -1, -1):
            while right_stack and heights[i] < heights[right_stack[-1]]:
                left_indexes[right_stack.pop()] = i
            right_stack.append(i)

        res = 0
        for i in range(len(heights)):
            res = max(res, heights[i]*(right_indexes[i]-left_indexes[i]-1))
        return res

思路 2 - 时间复杂度: O(N^2)- 空间复杂度: O(1)******

刚才是two-pass,现在优化成one-pass,beats 95%

class Solution(object):
    def largestRectangleArea(self, heights):
        """
        :type heights: List[int]
        :rtype: int
        """
        heights.append(0)
        area, stack = 0, [-1]
        
        for idx, height in enumerate(heights):
            while height < heights[stack[-1]]:
                h = heights[stack.pop()]
                w = idx - stack[-1] - 1
                area = max(w*h, area)
            stack.append(idx)
            
        return area