难度: Hard
原题连接
内容描述
Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and put.
get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.
put(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.
Follow up:
Could you do both operations in O(1) time complexity?
Example:
LRUCache cache = new LRUCache( 2 /* capacity */ );
cache.put(1, 1);
cache.put(2, 2);
cache.get(1); // returns 1
cache.put(3, 3); // evicts key 2
cache.get(2); // returns -1 (not found)
cache.put(4, 4); // evicts key 1
cache.get(1); // returns -1 (not found)
cache.get(3); // returns 3
cache.get(4); // returns 4
思路 1 - 时间复杂度: O(1)- 空间复杂度: O(N)******
LRU cache 相当于要维护一个跟时间顺序相关的数据结构
那么能找到最早更新元素的数据结构有 queue,heap和LinkedList这几种
- 首先,我们需要能够快速的访问到指点的元素,这一点LinkedList要用O(n)遍历,但是我们可以通过一个字典来对应key和node的信息,这样就是O(1)了
- 其次,由于要随时插入和删除找到的node,双向链表 doubly LinkedList 显然更好一些
然后我们可以开始想接下来的逻辑了
- LRU Cache里面维护一个cache字典对应key和node的信息,一个cap表示最大容量,一个双向链表,其中head.next是most recently的node, tail.prev是least recently的node(即容量满了被删除的那个node)
- 对于get方法
-
- 如果key在cache字典中,说明node在链表中
- 根据key从cache字典中拿到对应的node,删除这个node,再重新插入这个node(插入逻辑包含了更新到最新的位置)
-
- 如果不在直接返回 -1
- 对于put方法
-
- 如果key在cache字典中,说明node在链表中
- 根据key从cache字典中拿到对应的node,删除这个node,再重新插入这个node(插入逻辑包含了更新到最新的位置)
-
- 如果key不在cache字典中,说明是一个新的node
- 如果此时容量还没满的话:
- 生成新node,插入链表中,放入cache中
- 如果此时容量满了的话:
- 从链表中删除tail.prev,即least recently的node
- 从cache中删除这个node的信息
- 生成新node,插入链表中,放入cache中
下面是AC代码,其中逻辑3中如果key不在cache字典中的代码可以优化,生成新node,插入链表中,放入cache中这一步是重复的
beats 95.66%
class Node(object):
def __init__(self, key, val):
self.key = key
self.val = val
self.next = None
self.prev = None
class LRUCache(object):
def __init__(self, capacity):
"""
:type capacity: int
"""
self.cache = {}
self.cap = capacity
self.head = Node(None, None)
self.tail = Node(None, None)
self.head.next = self.tail
self.tail.prev = self.head
def remove(self, node):
n = node.next
p = node.prev
p.next = n
n.prev = p
node.next = None
node.prev = None
def insert(self, node):
n = self.head.next
self.head.next = node
node.next = n
n.prev = node
node.prev = self.head
def get(self, key):
"""
:type key: int
:rtype: int
"""
if key in self.cache:
node = self.cache[key]
self.remove(node)
self.insert(node)
return node.val
else:
return -1
def put(self, key, value):
"""
:type key: int
:type value: int
:rtype: void
"""
if key in self.cache:
node = self.cache[key]
node.val = value
self.remove(node)
self.insert(node)
else:
if len(self.cache) == self.cap:
delete_node = self.tail.prev
del self.cache[delete_node.key]
self.remove(delete_node)
node = Node(key, value)
self.insert(node)
self.cache[key] = node
# Your LRUCache object will be instantiated and called as such:
# obj = LRUCache(capacity)
# param_1 = obj.get(key)
# obj.put(key,value)