难度: Hard
原题连接
内容描述
Given two strings S and T, each of which represents a non-negative rational number, return True if and only if they represent the same number. The strings may use parentheses to denote the repeating part of the rational number.
In general a rational number can be represented using up to three parts: an integer part, a non-repeating part, and a repeating part. The number will be represented in one of the following three ways:
<IntegerPart> (e.g. 0, 12, 123)
<IntegerPart><.><NonRepeatingPart> (e.g. 0.5, 1., 2.12, 2.0001)
<IntegerPart><.><NonRepeatingPart><(><RepeatingPart><)> (e.g. 0.1(6), 0.9(9), 0.00(1212))
The repeating portion of a decimal expansion is conventionally denoted within a pair of round brackets. For example:
1 / 6 = 0.16666666... = 0.1(6) = 0.1666(6) = 0.166(66)
Both 0.1(6) or 0.1666(6) or 0.166(66) are correct representations of 1 / 6.
Example 1:
Input: S = "0.(52)", T = "0.5(25)"
Output: true
Explanation:
Because "0.(52)" represents 0.52525252..., and "0.5(25)" represents 0.52525252525..... , the strings represent the same number.
Example 2:
Input: S = "0.1666(6)", T = "0.166(66)"
Output: true
Example 3:
Input: S = "0.9(9)", T = "1."
Output: true
Explanation:
"0.9(9)" represents 0.999999999... repeated forever, which equals 1. [See this link for an explanation.]
"1." represents the number 1, which is formed correctly: (IntegerPart) = "1" and (NonRepeatingPart) = "".
Note:
Each part consists only of digits.
The <IntegerPart> will not begin with 2 or more zeros. (There is no other restriction on the digits of each part.)
1 <= <IntegerPart>.length <= 4
0 <= <NonRepeatingPart>.length <= 4
1 <= <RepeatingPart>.length <= 4
思路 1 - 时间复杂度: O(len(S) + len(T))- 空间复杂度: O(1)******
float 的有效位数大约是 6 到 7 个十进制数,例如 0.1234567,1234.567 都是有效的。但超出有效位数的浮点数,在赋值给浮点类型时,会四舍五入。 因此 0.999999999999 就成了 1 了。
来自彭东锋
solution来自[C++/Python] Easy Cheat
class Solution:
def isRationalEqual(self, S, T):
"""
:type S: str
:type T: str
:rtype: bool
"""
def helper(s):
i = s.find('(')
if i >= 0:
s = s[:i] + s[i + 1:-1] * 20
return float(s[:20])
return helper(S) == helper(T)
其实比较人性化是写成这样
class Solution:
def isRationalEqual(self, S, T):
"""
:type S: str
:type T: str
:rtype: bool
"""
def helper(s):
i = s.find('(')
if i >= 0:
s = s[:i] + s[i + 1:-1] * 20
return float(s[:20])
return abs(helper(S) - helper(T)) < 10 ** (-8)
思路 2 - O(len(S) + len(T))- 空间复杂度: O(1)******
no cheat,完全靠模拟算
参考solution
from fractions import Fraction
class Solution(object):
def isRationalEqual(self, S, T):
"""
:type S: str
:type T: str
:rtype: bool
"""
def convert(s):
idx = s.find('.')
if idx == -1:
return Fraction(int(s), 1)
res = Fraction(int(s[:idx]), 1)
s = s[idx+1:]
idx = s.find('(')
if idx == -1:
if len(s) > 0: # 保证int函数的input字符串非空
res += Fraction(int(s), 10 ** len(s))
return res
if idx > 0: # 保证int函数的input字符串非空
res += Fraction(int(s[:idx]), 10 ** idx)
s = s[idx+1:-1]
# r = 1 / 10 ** len(s)
# (1 - r) / r = (1 - 1 / 10 ** len(s)) / (1 / 10 ** len(s))
# 因为Fraction 里面都要放rational numbers,所以我们化简一下, 得:
# (1 - r) / r = 10 ** len(s) - 1
# 记住 repeat 部分前面可能已经还有多余的小数,也要除掉,即 10 ** idx 部分
res += Fraction(int(s), 10 ** idx * (10 ** len(s) - 1))
return res
return convert(S) == convert(T)