-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathex15.cpp
454 lines (396 loc) · 15.6 KB
/
ex15.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
// MFEM Example 15
//
// Compile with: make ex15
//
// Sample runs: ex15
// ex15 -o 1 -y 0.4
// ex15 -o 4 -y 0.1
// ex15 -n 5
// ex15 -p 1 -n 3
//
// Other meshes:
//
// ex15 -m ../data/square-disc-nurbs.mesh
// ex15 -m ../data/disc-nurbs.mesh
// ex15 -m ../data/fichera.mesh -tf 0.3
// ex15 -m ../data/ball-nurbs.mesh -tf 0.3
// ex15 -m ../data/mobius-strip.mesh
// ex15 -m ../data/amr-quad.mesh
// ex15 -m ../data/square-disc.mesh
// ex15 -m ../data/escher.mesh -r 2 -tf 0.3
//
// Kelly estimator:
//
// ex15 -est 1 -e 0.0001
// ex15 -est 1 -o 1 -y 0.4
// ex15 -est 1 -o 4 -y 0.1
// ex15 -est 1 -n 5
// ex15 -est 1 -p 1 -n 3
//
// Description: Building on Example 6, this example demonstrates dynamic AMR.
// The mesh is adapted to a time-dependent solution by refinement
// as well as by derefinement. For simplicity, the solution is
// prescribed and no time integration is done. However, the error
// estimation and refinement/derefinement decisions are realistic.
//
// At each outer iteration the right hand side function is changed
// to mimic a time dependent problem. Within each inner iteration
// the problem is solved on a sequence of meshes which are locally
// refined according to a simple ZZ or Kelly error estimator. At
// the end of the inner iteration the error estimates are also
// used to identify any elements which may be over-refined and a
// single derefinement step is performed.
//
// The example demonstrates MFEM's capability to refine and
// derefine nonconforming meshes, in 2D and 3D, and on linear,
// curved and surface meshes. Interpolation of functions between
// coarse and fine meshes, persistent GLVis visualization, and
// saving of time-dependent fields for external visualization with
// VisIt (visit.llnl.gov) are also illustrated.
//
// We recommend viewing Examples 1, 6 and 9 before viewing this
// example.
#include "mfem.hpp"
#include <fstream>
#include <iostream>
using namespace std;
using namespace mfem;
// Choices for the problem setup. Affect bdr_func and rhs_func.
int problem;
int nfeatures;
// Prescribed time-dependent boundary and right-hand side functions.
double bdr_func(const Vector &pt, double t);
double rhs_func(const Vector &pt, double t);
// Update the finite element space, interpolate the solution and perform
// parallel load balancing.
void UpdateProblem(Mesh &mesh, FiniteElementSpace &fespace,
GridFunction &x, BilinearForm &a, LinearForm &b);
int main(int argc, char *argv[])
{
// 1. Parse command-line options.
problem = 0;
nfeatures = 1;
const char *mesh_file = "../data/star-hilbert.mesh";
int order = 2;
double t_final = 1.0;
double max_elem_error = 5.0e-3;
double hysteresis = 0.15; // derefinement safety coefficient
int ref_levels = 0;
int nc_limit = 3; // maximum level of hanging nodes
bool visualization = true;
bool visit = false;
int which_estimator = 0;
OptionsParser args(argc, argv);
args.AddOption(&mesh_file, "-m", "--mesh",
"Mesh file to use.");
args.AddOption(&problem, "-p", "--problem",
"Problem setup to use: 0 = spherical front, 1 = ball.");
args.AddOption(&nfeatures, "-n", "--nfeatures",
"Number of solution features (fronts/balls).");
args.AddOption(&order, "-o", "--order",
"Finite element order (polynomial degree).");
args.AddOption(&max_elem_error, "-e", "--max-err",
"Maximum element error");
args.AddOption(&hysteresis, "-y", "--hysteresis",
"Derefinement safety coefficient.");
args.AddOption(&ref_levels, "-r", "--ref-levels",
"Number of initial uniform refinement levels.");
args.AddOption(&nc_limit, "-l", "--nc-limit",
"Maximum level of hanging nodes.");
args.AddOption(&t_final, "-tf", "--t-final",
"Final time; start time is 0.");
args.AddOption(&which_estimator, "-est", "--estimator",
"Which estimator to use: "
"0 = ZZ, 1 = Kelly. Defaults to ZZ.");
args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
"--no-visualization",
"Enable or disable GLVis visualization.");
args.AddOption(&visit, "-visit", "--visit-datafiles", "-no-visit",
"--no-visit-datafiles",
"Save data files for VisIt (visit.llnl.gov) visualization.");
args.Parse();
if (!args.Good())
{
args.PrintUsage(cout);
return 1;
}
args.PrintOptions(cout);
// 2. Read the mesh from the given mesh file on all processors. We can handle
// triangular, quadrilateral, tetrahedral, hexahedral, surface and volume
// meshes with the same code.
Mesh mesh(mesh_file, 1, 1);
int dim = mesh.Dimension();
int sdim = mesh.SpaceDimension();
// 3. Project a NURBS mesh to a piecewise-quadratic curved mesh. Make sure
// that the mesh is non-conforming if it has quads or hexes and refine it.
if (mesh.NURBSext)
{
mesh.UniformRefinement();
if (ref_levels > 0) { ref_levels--; }
mesh.SetCurvature(2);
}
mesh.EnsureNCMesh(true);
for (int l = 0; l < ref_levels; l++)
{
mesh.UniformRefinement();
}
// Make sure tet-only meshes are marked for local refinement.
mesh.Finalize(true);
// 4. All boundary attributes will be used for essential (Dirichlet) BC.
MFEM_VERIFY(mesh.bdr_attributes.Size() > 0,
"Boundary attributes required in the mesh.");
Array<int> ess_bdr(mesh.bdr_attributes.Max());
ess_bdr = 1;
// 5. Define a finite element space on the mesh. The polynomial order is one
// (linear) by default, but this can be changed on the command line.
H1_FECollection fec(order, dim);
FiniteElementSpace fespace(&mesh, &fec);
// 6. As in Example 1p, we set up bilinear and linear forms corresponding to
// the Laplace problem -\Delta u = 1. We don't assemble the discrete
// problem yet, this will be done in the inner loop.
BilinearForm a(&fespace);
LinearForm b(&fespace);
ConstantCoefficient one(1.0);
FunctionCoefficient bdr(bdr_func);
FunctionCoefficient rhs(rhs_func);
BilinearFormIntegrator *integ = new DiffusionIntegrator(one);
a.AddDomainIntegrator(integ);
b.AddDomainIntegrator(new DomainLFIntegrator(rhs));
// 7. The solution vector x and the associated finite element grid function
// will be maintained over the AMR iterations.
GridFunction x(&fespace);
// 8. Connect to GLVis. Prepare for VisIt output.
char vishost[] = "localhost";
int visport = 19916;
socketstream sout;
if (visualization)
{
sout.open(vishost, visport);
if (!sout)
{
cout << "Unable to connect to GLVis server at "
<< vishost << ':' << visport << endl;
cout << "GLVis visualization disabled.\n";
visualization = false;
}
sout.precision(8);
}
VisItDataCollection visit_dc("Example15", &mesh);
visit_dc.RegisterField("solution", &x);
int vis_cycle = 0;
// 9. As in Example 6, we set up an estimator that will be used to obtain
// element error indicators. The integrator needs to provide the method
// ComputeElementFlux. The smoothed flux space is a vector valued H1 (ZZ)
// or L2 (Kelly) space here.
L2_FECollection flux_fec(order, dim);
ErrorEstimator* estimator{nullptr};
switch (which_estimator)
{
case 1:
{
auto flux_fes = new FiniteElementSpace(&mesh, &flux_fec, sdim);
estimator = new KellyErrorEstimator(*integ, x, flux_fes);
break;
}
default:
std::cout << "Unknown estimator. Falling back to ZZ." << std::endl;
case 0:
{
auto flux_fes = new FiniteElementSpace(&mesh, &fec, sdim);
estimator = new ZienkiewiczZhuEstimator(*integ, x, flux_fes);
break;
}
}
// 10. As in Example 6, we also need a refiner. This time the refinement
// strategy is based on a fixed threshold that is applied locally to each
// element. The global threshold is turned off by setting the total error
// fraction to zero. We also enforce a maximum refinement ratio between
// adjacent elements.
ThresholdRefiner refiner(*estimator);
refiner.SetTotalErrorFraction(0.0); // use purely local threshold
refiner.SetLocalErrorGoal(max_elem_error);
refiner.PreferConformingRefinement();
refiner.SetNCLimit(nc_limit);
// 11. A derefiner selects groups of elements that can be coarsened to form
// a larger element. A conservative enough threshold needs to be set to
// prevent derefining elements that would immediately be refined again.
ThresholdDerefiner derefiner(*estimator);
derefiner.SetThreshold(hysteresis * max_elem_error);
derefiner.SetNCLimit(nc_limit);
// 12. The outer time loop. In each iteration we update the right hand side,
// solve the problem on the current mesh, visualize the solution and
// refine the mesh as many times as necessary. Then we derefine any
// elements which have very small errors.
x = 0.0;
for (double time = 0.0; time < t_final + 1e-10; time += 0.01)
{
cout << "\nTime " << time << "\n\nRefinement:" << endl;
// Set the current time in the coefficients.
bdr.SetTime(time);
rhs.SetTime(time);
// Make sure errors will be recomputed in the following.
refiner.Reset();
derefiner.Reset();
// 13. The inner refinement loop. At the end we want to have the current
// time step resolved to the prescribed tolerance in each element.
for (int ref_it = 1; ; ref_it++)
{
cout << "Iteration: " << ref_it << ", number of unknowns: "
<< fespace.GetVSize() << endl;
// 14. Recompute the field on the current mesh: assemble the stiffness
// matrix and the right-hand side.
a.Assemble();
b.Assemble();
// 15. Project the exact solution to the essential boundary DOFs.
x.ProjectBdrCoefficient(bdr, ess_bdr);
// 16. Create and solve the linear system.
Array<int> ess_tdof_list;
fespace.GetEssentialTrueDofs(ess_bdr, ess_tdof_list);
SparseMatrix A;
Vector B, X;
a.FormLinearSystem(ess_tdof_list, x, b, A, X, B);
#ifndef MFEM_USE_SUITESPARSE
GSSmoother M(A);
PCG(A, M, B, X, 0, 500, 1e-12, 0.0);
#else
UMFPackSolver umf_solver;
umf_solver.Control[UMFPACK_ORDERING] = UMFPACK_ORDERING_METIS;
umf_solver.SetOperator(A);
umf_solver.Mult(B, X);
#endif
// 17. Extract the local solution on each processor.
a.RecoverFEMSolution(X, b, x);
// 18. Send the solution by socket to a GLVis server and optionally
// save it in VisIt format.
if (visualization)
{
sout.precision(8);
sout << "solution\n" << mesh << x << flush;
}
if (visit)
{
visit_dc.SetCycle(vis_cycle++);
visit_dc.SetTime(time);
visit_dc.Save();
}
// 19. Apply the refiner on the mesh. The refiner calls the error
// estimator to obtain element errors, then it selects elements to
// be refined and finally it modifies the mesh. The Stop() method
// determines if all elements satisfy the local threshold.
refiner.Apply(mesh);
if (refiner.Stop())
{
break;
}
// 20. Update the space and interpolate the solution.
UpdateProblem(mesh, fespace, x, a, b);
}
// 21. Use error estimates from the last inner iteration to check for
// possible derefinements. The derefiner works similarly as the
// refiner. The errors are not recomputed because the mesh did not
// change (and also the estimator was not Reset() at this time).
if (derefiner.Apply(mesh))
{
cout << "\nDerefined elements." << endl;
// 22. Update the space and interpolate the solution.
UpdateProblem(mesh, fespace, x, a, b);
}
a.Update();
b.Update();
}
delete estimator;
return 0;
}
void UpdateProblem(Mesh &mesh, FiniteElementSpace &fespace,
GridFunction &x, BilinearForm &a, LinearForm &b)
{
// Update the space: recalculate the number of DOFs and construct a matrix
// that will adjust any GridFunctions to the new mesh state.
fespace.Update();
// Interpolate the solution on the new mesh by applying the transformation
// matrix computed in the finite element space. Multiple GridFunctions could
// be updated here.
x.Update();
// Free any transformation matrices to save memory.
fespace.UpdatesFinished();
// Inform the linear and bilinear forms that the space has changed.
a.Update();
b.Update();
}
const double alpha = 0.02;
// Spherical front with a Gaussian cross section and radius t
double front(double x, double y, double z, double t, int)
{
double r = sqrt(x*x + y*y + z*z);
return exp(-0.5*pow((r - t)/alpha, 2));
}
double front_laplace(double x, double y, double z, double t, int dim)
{
double x2 = x*x, y2 = y*y, z2 = z*z, t2 = t*t;
double r = sqrt(x2 + y2 + z2);
double a2 = alpha*alpha, a4 = a2*a2;
return -exp(-0.5*pow((r - t)/alpha, 2)) / a4 *
(-2*t*(x2 + y2 + z2 - (dim-1)*a2/2)/r + x2 + y2 + z2 + t2 - dim*a2);
}
// Smooth spherical step function with radius t
double ball(double x, double y, double z, double t, int)
{
double r = sqrt(x*x + y*y + z*z);
return -atan(2*(r - t)/alpha);
}
double ball_laplace(double x, double y, double z, double t, int dim)
{
double x2 = x*x, y2 = y*y, z2 = z*z, t2 = 4*t*t;
double r = sqrt(x2 + y2 + z2);
double a2 = alpha*alpha;
double den = pow(-a2 - 4*(x2 + y2 + z2 - 2*r*t) - t2, 2.0);
return (dim == 2) ? 2*alpha*(a2 + t2 - 4*x2 - 4*y2)/r/den
/* */ : 4*alpha*(a2 + t2 - 4*r*t)/r/den;
}
// Composes several features into one function
template<typename F0, typename F1>
double composite_func(const Vector &pt, double t, F0 f0, F1 f1)
{
int dim = pt.Size();
double x = pt(0), y = pt(1), z = 0.0;
if (dim == 3) { z = pt(2); }
if (problem == 0)
{
if (nfeatures <= 1)
{
return f0(x, y, z, t, dim);
}
else
{
double sum = 0.0;
for (int i = 0; i < nfeatures; i++)
{
double x0 = 0.5*cos(2*M_PI * i / nfeatures);
double y0 = 0.5*sin(2*M_PI * i / nfeatures);
sum += f0(x - x0, y - y0, z, t, dim);
}
return sum;
}
}
else
{
double sum = 0.0;
for (int i = 0; i < nfeatures; i++)
{
double x0 = 0.5*cos(2*M_PI * i / nfeatures + M_PI*t);
double y0 = 0.5*sin(2*M_PI * i / nfeatures + M_PI*t);
sum += f1(x - x0, y - y0, z, 0.25, dim);
}
return sum;
}
}
// Exact solution, used for the Dirichlet BC.
double bdr_func(const Vector &pt, double t)
{
return composite_func(pt, t, front, ball);
}
// Laplace of the exact solution, used for the right hand side.
double rhs_func(const Vector &pt, double t)
{
return composite_func(pt, t, front_laplace, ball_laplace);
}