-
Notifications
You must be signed in to change notification settings - Fork 0
/
ex19.cpp
591 lines (486 loc) · 18 KB
/
ex19.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
// MFEM Example 19
//
// Compile with: make ex19
//
// Sample runs:
// ex19 -m ../data/beam-quad.mesh
// ex19 -m ../data/beam-tri.mesh
// ex19 -m ../data/beam-hex.mesh
// ex19 -m ../data/beam-tet.mesh
// ex19 -m ../data/beam-wedge.mesh
// ex19 -m ../data/beam-quad-amr.mesh
//
// Description: This examples solves a quasi-static incompressible nonlinear
// elasticity problem of the form 0 = H(x), where H is an
// incompressible hyperelastic model and x is a block state vector
// containing displacement and pressure variables. The geometry of
// the domain is assumed to be as follows:
//
// +---------------------+
// boundary --->| |<--- boundary
// attribute 1 | | attribute 2
// (fixed) +---------------------+ (fixed, nonzero)
//
// The example demonstrates the use of block nonlinear operators
// (the class RubberOperator defining H(x)) as well as a nonlinear
// Newton solver for the quasi-static problem. Each Newton step
// requires the inversion of a Jacobian matrix, which is done
// through a (preconditioned) inner solver. The specialized block
// preconditioner is implemented as a user-defined solver.
//
// We recommend viewing examples 2, 5, and 10 before viewing this
// example.
#include "mfem.hpp"
#include <memory>
#include <iostream>
#include <fstream>
using namespace std;
using namespace mfem;
class GeneralResidualMonitor : public IterativeSolverMonitor
{
public:
GeneralResidualMonitor(const std::string& prefix_, int print_lvl)
: prefix(prefix_)
{
print_level = print_lvl;
}
virtual void MonitorResidual(int it, double norm, const Vector &r, bool final);
private:
const std::string prefix;
int print_level;
mutable double norm0;
};
void GeneralResidualMonitor::MonitorResidual(int it, double norm,
const Vector &r, bool final)
{
if (print_level == 1 || (print_level == 3 && (final || it == 0)))
{
mfem::out << prefix << " iteration " << setw(2) << it
<< " : ||r|| = " << norm;
if (it > 0)
{
mfem::out << ", ||r||/||r_0|| = " << norm/norm0;
}
else
{
norm0 = norm;
}
mfem::out << '\n';
}
}
// Custom block preconditioner for the Jacobian of the incompressible nonlinear
// elasticity operator. It has the form
//
// P^-1 = [ K^-1 0 ][ I -B^T ][ I 0 ]
// [ 0 I ][ 0 I ][ 0 -\gamma S^-1 ]
//
// where the original Jacobian has the form
//
// J = [ K B^T ]
// [ B 0 ]
//
// and K^-1 is an approximation of the inverse of the displacement part of the
// Jacobian and S^-1 is an approximation of the inverse of the Schur
// complement S = B K^-1 B^T. The Schur complement is approximated using
// a mass matrix of the pressure variables.
class JacobianPreconditioner : public Solver
{
protected:
// Finite element spaces for setting up preconditioner blocks
Array<FiniteElementSpace *> spaces;
// Offsets for extracting block vector segments
Array<int> &block_trueOffsets;
// Jacobian for block access
BlockOperator *jacobian;
// Scaling factor for the pressure mass matrix in the block preconditioner
double gamma;
// Objects for the block preconditioner application
SparseMatrix *pressure_mass;
Solver *mass_pcg;
Solver *mass_prec;
Solver *stiff_pcg;
Solver *stiff_prec;
public:
JacobianPreconditioner(Array<FiniteElementSpace *> &fes,
SparseMatrix &mass, Array<int> &offsets);
virtual void Mult(const Vector &k, Vector &y) const;
virtual void SetOperator(const Operator &op);
virtual ~JacobianPreconditioner();
};
// After spatial discretization, the rubber model can be written as:
// 0 = H(x)
// where x is the block vector representing the deformation and pressure and
// H(x) is the nonlinear incompressible neo-Hookean operator.
class RubberOperator : public Operator
{
protected:
// Finite element spaces
Array<FiniteElementSpace *> spaces;
// Block nonlinear form
BlockNonlinearForm *Hform;
// Pressure mass matrix for the preconditioner
SparseMatrix *pressure_mass;
// Newton solver for the hyperelastic operator
NewtonSolver newton_solver;
GeneralResidualMonitor newton_monitor;
// Solver for the Jacobian solve in the Newton method
Solver *j_solver;
GeneralResidualMonitor j_monitor;
// Preconditioner for the Jacobian
Solver *j_prec;
// Shear modulus coefficient
Coefficient μ
// Block offsets for variable access
Array<int> &block_trueOffsets;
public:
RubberOperator(Array<FiniteElementSpace *> &fes, Array<Array<int> *>&ess_bdr,
Array<int> &block_trueOffsets, double rel_tol, double abs_tol,
int iter, Coefficient &mu);
// Required to use the native newton solver
virtual Operator &GetGradient(const Vector &xp) const;
virtual void Mult(const Vector &k, Vector &y) const;
// Driver for the newton solver
void Solve(Vector &xp) const;
virtual ~RubberOperator();
};
// Visualization driver
void visualize(ostream &os, Mesh *mesh, GridFunction *deformed_nodes,
GridFunction *field, const char *field_name = NULL,
bool init_vis = false);
// Configuration definition functions
void ReferenceConfiguration(const Vector &x, Vector &y);
void InitialDeformation(const Vector &x, Vector &y);
int main(int argc, char *argv[])
{
// 1. Parse command-line options
const char *mesh_file = "../data/beam-tet.mesh";
int ref_levels = 0;
int order = 2;
bool visualization = true;
double newton_rel_tol = 1e-4;
double newton_abs_tol = 1e-6;
int newton_iter = 500;
double mu = 1.0;
OptionsParser args(argc, argv);
args.AddOption(&mesh_file, "-m", "--mesh",
"Mesh file to use.");
args.AddOption(&ref_levels, "-r", "--refine",
"Number of times to refine the mesh uniformly.");
args.AddOption(&order, "-o", "--order",
"Order (degree) of the finite elements.");
args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
"--no-visualization",
"Enable or disable GLVis visualization.");
args.AddOption(&newton_rel_tol, "-rel", "--relative-tolerance",
"Relative tolerance for the Newton solve.");
args.AddOption(&newton_abs_tol, "-abs", "--absolute-tolerance",
"Absolute tolerance for the Newton solve.");
args.AddOption(&newton_iter, "-it", "--newton-iterations",
"Maximum iterations for the Newton solve.");
args.AddOption(&mu, "-mu", "--shear-modulus",
"Shear modulus for the neo-Hookean material.");
args.Parse();
if (!args.Good())
{
args.PrintUsage(cout);
return 1;
}
args.PrintOptions(cout);
// 2. Read the mesh from the given mesh file. We can handle triangular,
// quadrilateral, tetrahedral and hexahedral meshes with the same code.
Mesh *mesh = new Mesh(mesh_file, 1, 1);
int dim = mesh->Dimension();
// 3. Refine the mesh to increase the resolution. In this example we do
// 'ref_levels' of uniform refinement, where 'ref_levels' is a
// command-line parameter.
for (int lev = 0; lev < ref_levels; lev++)
{
mesh->UniformRefinement();
}
// 4. Define the shear modulus for the incompressible Neo-Hookean material
ConstantCoefficient c_mu(mu);
// 5. Define the finite element spaces for displacement and pressure
// (Taylor-Hood elements). By default, the displacement (u/x) is a second
// order vector field, while the pressure (p) is a linear scalar function.
H1_FECollection quad_coll(order, dim);
H1_FECollection lin_coll(order-1, dim);
FiniteElementSpace R_space(mesh, &quad_coll, dim, Ordering::byVDIM);
FiniteElementSpace W_space(mesh, &lin_coll);
Array<FiniteElementSpace *> spaces(2);
spaces[0] = &R_space;
spaces[1] = &W_space;
int R_size = R_space.GetTrueVSize();
int W_size = W_space.GetTrueVSize();
// 6. Define the Dirichlet conditions (set to boundary attribute 1 and 2)
Array<Array<int> *> ess_bdr(2);
Array<int> ess_bdr_u(R_space.GetMesh()->bdr_attributes.Max());
Array<int> ess_bdr_p(W_space.GetMesh()->bdr_attributes.Max());
ess_bdr_p = 0;
ess_bdr_u = 0;
ess_bdr_u[0] = 1;
ess_bdr_u[1] = 1;
ess_bdr[0] = &ess_bdr_u;
ess_bdr[1] = &ess_bdr_p;
// 7. Print the mesh statistics
std::cout << "***********************************************************\n";
std::cout << "dim(u) = " << R_size << "\n";
std::cout << "dim(p) = " << W_size << "\n";
std::cout << "dim(u+p) = " << R_size + W_size << "\n";
std::cout << "***********************************************************\n";
// 8. Define the block structure of the solution vector (u then p)
Array<int> block_trueOffsets(3);
block_trueOffsets[0] = 0;
block_trueOffsets[1] = R_space.GetTrueVSize();
block_trueOffsets[2] = W_space.GetTrueVSize();
block_trueOffsets.PartialSum();
BlockVector xp(block_trueOffsets);
// 9. Define grid functions for the current configuration, reference
// configuration, final deformation, and pressure
GridFunction x_gf(&R_space);
GridFunction x_ref(&R_space);
GridFunction x_def(&R_space);
GridFunction p_gf(&W_space);
x_gf.MakeTRef(&R_space, xp.GetBlock(0), 0);
p_gf.MakeTRef(&W_space, xp.GetBlock(1), 0);
VectorFunctionCoefficient deform(dim, InitialDeformation);
VectorFunctionCoefficient refconfig(dim, ReferenceConfiguration);
x_gf.ProjectCoefficient(deform);
x_ref.ProjectCoefficient(refconfig);
p_gf = 0.0;
x_gf.SetTrueVector();
p_gf.SetTrueVector();
// 10. Initialize the incompressible neo-Hookean operator
RubberOperator oper(spaces, ess_bdr, block_trueOffsets,
newton_rel_tol, newton_abs_tol, newton_iter, c_mu);
// 11. Solve the Newton system
oper.Solve(xp);
// 12. Compute the final deformation
x_gf.SetFromTrueVector();
p_gf.SetFromTrueVector();
subtract(x_gf, x_ref, x_def);
// 13. Visualize the results if requested
socketstream vis_u, vis_p;
if (visualization)
{
char vishost[] = "localhost";
int visport = 19916;
vis_u.open(vishost, visport);
vis_u.precision(8);
visualize(vis_u, mesh, &x_gf, &x_def, "Deformation", true);
vis_p.open(vishost, visport);
vis_p.precision(8);
visualize(vis_p, mesh, &x_gf, &p_gf, "Pressure", true);
}
// 14. Save the displaced mesh, the final deformation, and the pressure
{
GridFunction *nodes = &x_gf;
int owns_nodes = 0;
mesh->SwapNodes(nodes, owns_nodes);
ofstream mesh_ofs("deformed.mesh");
mesh_ofs.precision(8);
mesh->Print(mesh_ofs);
ofstream pressure_ofs("pressure.sol");
pressure_ofs.precision(8);
p_gf.Save(pressure_ofs);
ofstream deformation_ofs("deformation.sol");
deformation_ofs.precision(8);
x_def.Save(deformation_ofs);
}
// 15. Free the used memory
delete mesh;
return 0;
}
JacobianPreconditioner::JacobianPreconditioner(Array<FiniteElementSpace *> &fes,
SparseMatrix &mass,
Array<int> &offsets)
: Solver(offsets[2]), block_trueOffsets(offsets), pressure_mass(&mass)
{
fes.Copy(spaces);
gamma = 0.00001;
// The mass matrix and preconditioner do not change every Newton cycle, so we
// only need to define them once
GSSmoother *mass_prec_gs = new GSSmoother(*pressure_mass);
mass_prec = mass_prec_gs;
CGSolver *mass_pcg_iter = new CGSolver();
mass_pcg_iter->SetRelTol(1e-12);
mass_pcg_iter->SetAbsTol(1e-12);
mass_pcg_iter->SetMaxIter(200);
mass_pcg_iter->SetPrintLevel(0);
mass_pcg_iter->SetPreconditioner(*mass_prec);
mass_pcg_iter->SetOperator(*pressure_mass);
mass_pcg_iter->iterative_mode = false;
mass_pcg = mass_pcg_iter;
// The stiffness matrix does change every Newton cycle, so we will define it
// during SetOperator
stiff_pcg = NULL;
stiff_prec = NULL;
}
void JacobianPreconditioner::Mult(const Vector &k, Vector &y) const
{
// Extract the blocks from the input and output vectors
Vector disp_in(k.GetData() + block_trueOffsets[0],
block_trueOffsets[1]-block_trueOffsets[0]);
Vector pres_in(k.GetData() + block_trueOffsets[1],
block_trueOffsets[2]-block_trueOffsets[1]);
Vector disp_out(y.GetData() + block_trueOffsets[0],
block_trueOffsets[1]-block_trueOffsets[0]);
Vector pres_out(y.GetData() + block_trueOffsets[1],
block_trueOffsets[2]-block_trueOffsets[1]);
Vector temp(block_trueOffsets[1]-block_trueOffsets[0]);
Vector temp2(block_trueOffsets[1]-block_trueOffsets[0]);
// Perform the block elimination for the preconditioner
mass_pcg->Mult(pres_in, pres_out);
pres_out *= -gamma;
jacobian->GetBlock(0,1).Mult(pres_out, temp);
subtract(disp_in, temp, temp2);
stiff_pcg->Mult(temp2, disp_out);
}
void JacobianPreconditioner::SetOperator(const Operator &op)
{
jacobian = (BlockOperator *) &op;
// Initialize the stiffness preconditioner and solver
if (stiff_prec == NULL)
{
GSSmoother *stiff_prec_gs = new GSSmoother();
stiff_prec = stiff_prec_gs;
GMRESSolver *stiff_pcg_iter = new GMRESSolver();
stiff_pcg_iter->SetRelTol(1e-8);
stiff_pcg_iter->SetAbsTol(1e-8);
stiff_pcg_iter->SetMaxIter(200);
stiff_pcg_iter->SetPrintLevel(0);
stiff_pcg_iter->SetPreconditioner(*stiff_prec);
stiff_pcg_iter->iterative_mode = false;
stiff_pcg = stiff_pcg_iter;
}
// At each Newton cycle, compute the new stiffness preconditioner by updating
// the iterative solver which, in turn, updates its preconditioner
stiff_pcg->SetOperator(jacobian->GetBlock(0,0));
}
JacobianPreconditioner::~JacobianPreconditioner()
{
delete mass_pcg;
delete mass_prec;
delete stiff_prec;
delete stiff_pcg;
}
RubberOperator::RubberOperator(Array<FiniteElementSpace *> &fes,
Array<Array<int> *> &ess_bdr,
Array<int> &offsets,
double rel_tol,
double abs_tol,
int iter,
Coefficient &c_mu)
: Operator(fes[0]->GetTrueVSize() + fes[1]->GetTrueVSize()),
newton_solver(), newton_monitor("Newton", 1),
j_monitor(" GMRES", 3), mu(c_mu), block_trueOffsets(offsets)
{
Array<Vector *> rhs(2);
rhs = NULL; // Set all entries in the array
fes.Copy(spaces);
// Define the block nonlinear form
Hform = new BlockNonlinearForm(spaces);
// Add the incompressible neo-Hookean integrator
Hform->AddDomainIntegrator(new IncompressibleNeoHookeanIntegrator(mu));
// Set the essential boundary conditions
Hform->SetEssentialBC(ess_bdr, rhs);
// Compute the pressure mass stiffness matrix
BilinearForm *a = new BilinearForm(spaces[1]);
ConstantCoefficient one(1.0);
a->AddDomainIntegrator(new MassIntegrator(one));
a->Assemble();
a->Finalize();
OperatorPtr op;
Array<int> p_ess_tdofs;
a->FormSystemMatrix(p_ess_tdofs, op);
pressure_mass = a->LoseMat();
delete a;
// Initialize the Jacobian preconditioner
JacobianPreconditioner *jac_prec =
new JacobianPreconditioner(fes, *pressure_mass, block_trueOffsets);
j_prec = jac_prec;
// Set up the Jacobian solver
GMRESSolver *j_gmres = new GMRESSolver();
j_gmres->iterative_mode = false;
j_gmres->SetRelTol(1e-12);
j_gmres->SetAbsTol(1e-12);
j_gmres->SetMaxIter(300);
j_gmres->SetPrintLevel(-1);
j_gmres->SetMonitor(j_monitor);
j_gmres->SetPreconditioner(*j_prec);
j_solver = j_gmres;
// Set the newton solve parameters
newton_solver.iterative_mode = true;
newton_solver.SetSolver(*j_solver);
newton_solver.SetOperator(*this);
newton_solver.SetPrintLevel(-1);
newton_solver.SetMonitor(newton_monitor);
newton_solver.SetRelTol(rel_tol);
newton_solver.SetAbsTol(abs_tol);
newton_solver.SetMaxIter(iter);
}
// Solve the Newton system
void RubberOperator::Solve(Vector &xp) const
{
Vector zero;
newton_solver.Mult(zero, xp);
MFEM_VERIFY(newton_solver.GetConverged(),
"Newton Solver did not converge.");
}
// compute: y = H(x,p)
void RubberOperator::Mult(const Vector &k, Vector &y) const
{
Hform->Mult(k, y);
}
// Compute the Jacobian from the nonlinear form
Operator &RubberOperator::GetGradient(const Vector &xp) const
{
return Hform->GetGradient(xp);
}
RubberOperator::~RubberOperator()
{
delete Hform;
delete pressure_mass;
delete j_solver;
delete j_prec;
}
// Inline visualization
void visualize(ostream &os, Mesh *mesh, GridFunction *deformed_nodes,
GridFunction *field, const char *field_name, bool init_vis)
{
if (!os)
{
return;
}
GridFunction *nodes = deformed_nodes;
int owns_nodes = 0;
mesh->SwapNodes(nodes, owns_nodes);
os << "solution\n" << *mesh << *field;
mesh->SwapNodes(nodes, owns_nodes);
if (init_vis)
{
os << "window_size 800 800\n";
os << "window_title '" << field_name << "'\n";
if (mesh->SpaceDimension() == 2)
{
os << "view 0 0\n"; // view from top
// turn off perspective and light, +anti-aliasing
os << "keys jlA\n";
}
os << "keys cmA\n"; // show colorbar and mesh, +anti-aliasing
// update value-range; keep mesh-extents fixed
os << "autoscale value\n";
}
os << flush;
}
void ReferenceConfiguration(const Vector &x, Vector &y)
{
// Set the reference, stress free, configuration
y = x;
}
void InitialDeformation(const Vector &x, Vector &y)
{
// Set the initial configuration. Having this different from the reference
// configuration can help convergence
y = x;
y[1] = x[1] + 0.25*x[0];
}