-
Notifications
You must be signed in to change notification settings - Fork 0
/
ex9.cpp
621 lines (561 loc) · 18.4 KB
/
ex9.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
// MFEM Example 9
//
// Compile with: make ex9
//
// Sample runs:
// ex9 -m ../data/periodic-segment.mesh -p 0 -r 2 -dt 0.005
// ex9 -m ../data/periodic-square.mesh -p 0 -r 2 -dt 0.01 -tf 10
// ex9 -m ../data/periodic-hexagon.mesh -p 0 -r 2 -dt 0.01 -tf 10
// ex9 -m ../data/periodic-square.mesh -p 1 -r 2 -dt 0.005 -tf 9
// ex9 -m ../data/periodic-hexagon.mesh -p 1 -r 2 -dt 0.005 -tf 9
// ex9 -m ../data/amr-quad.mesh -p 1 -r 2 -dt 0.002 -tf 9
// ex9 -m ../data/amr-quad.mesh -p 1 -r 2 -dt 0.02 -s 13 -tf 9
// ex9 -m ../data/star-q3.mesh -p 1 -r 2 -dt 0.005 -tf 9
// ex9 -m ../data/star-mixed.mesh -p 1 -r 2 -dt 0.005 -tf 9
// ex9 -m ../data/disc-nurbs.mesh -p 1 -r 3 -dt 0.005 -tf 9
// ex9 -m ../data/disc-nurbs.mesh -p 2 -r 3 -dt 0.005 -tf 9
// ex9 -m ../data/periodic-square.mesh -p 3 -r 4 -dt 0.0025 -tf 9 -vs 20
// ex9 -m ../data/periodic-cube.mesh -p 0 -r 2 -o 2 -dt 0.02 -tf 8
// ex9 -m ../data/periodic-square.msh -p 0 -r 2 -dt 0.005 -tf 2
// ex9 -m ../data/periodic-cube.msh -p 0 -r 1 -o 2 -tf 2
//
// Device sample runs:
// ex9 -pa
// ex9 -ea
// ex9 -fa
// ex9 -pa -m ../data/periodic-cube.mesh
// ex9 -pa -m ../data/periodic-cube.mesh -d cuda
// ex9 -ea -m ../data/periodic-cube.mesh -d cuda
// ex9 -fa -m ../data/periodic-cube.mesh -d cuda
// ex9 -pa -m ../data/amr-quad.mesh -p 1 -r 2 -dt 0.002 -tf 9 -d cuda
//
// Description: This example code solves the time-dependent advection equation
// du/dt + v.grad(u) = 0, where v is a given fluid velocity, and
// u0(x)=u(0,x) is a given initial condition.
//
// The example demonstrates the use of Discontinuous Galerkin (DG)
// bilinear forms in MFEM (face integrators), the use of implicit
// and explicit ODE time integrators, the definition of periodic
// boundary conditions through periodic meshes, as well as the use
// of GLVis for persistent visualization of a time-evolving
// solution. The saving of time-dependent data files for external
// visualization with VisIt (visit.llnl.gov) and ParaView
// (paraview.org) is also illustrated.
#include "mfem.hpp"
#include <fstream>
#include <iostream>
#include <algorithm>
using namespace std;
using namespace mfem;
// Choice for the problem setup. The fluid velocity, initial condition and
// inflow boundary condition are chosen based on this parameter.
int problem;
// Velocity coefficient
void velocity_function(const Vector &x, Vector &v);
// Initial condition
double u0_function(const Vector &x);
// Inflow boundary condition
double inflow_function(const Vector &x);
// Mesh bounding box
Vector bb_min, bb_max;
class DG_Solver : public Solver
{
private:
SparseMatrix &M, &K, A;
GMRESSolver linear_solver;
BlockILU prec;
double dt;
public:
DG_Solver(SparseMatrix &M_, SparseMatrix &K_, const FiniteElementSpace &fes)
: M(M_),
K(K_),
prec(fes.GetFE(0)->GetDof(),
BlockILU::Reordering::MINIMUM_DISCARDED_FILL),
dt(-1.0)
{
linear_solver.iterative_mode = false;
linear_solver.SetRelTol(1e-9);
linear_solver.SetAbsTol(0.0);
linear_solver.SetMaxIter(100);
linear_solver.SetPrintLevel(0);
linear_solver.SetPreconditioner(prec);
}
void SetTimeStep(double dt_)
{
if (dt_ != dt)
{
dt = dt_;
// Form operator A = M - dt*K
A = K;
A *= -dt;
A += M;
// this will also call SetOperator on the preconditioner
linear_solver.SetOperator(A);
}
}
void SetOperator(const Operator &op)
{
linear_solver.SetOperator(op);
}
virtual void Mult(const Vector &x, Vector &y) const
{
linear_solver.Mult(x, y);
}
};
/** A time-dependent operator for the right-hand side of the ODE. The DG weak
form of du/dt = -v.grad(u) is M du/dt = K u + b, where M and K are the mass
and advection matrices, and b describes the flow on the boundary. This can
be written as a general ODE, du/dt = M^{-1} (K u + b), and this class is
used to evaluate the right-hand side. */
class FE_Evolution : public TimeDependentOperator
{
private:
BilinearForm &M, &K;
const Vector &b;
Solver *M_prec;
CGSolver M_solver;
DG_Solver *dg_solver;
mutable Vector z;
public:
FE_Evolution(BilinearForm &M_, BilinearForm &K_, const Vector &b_);
virtual void Mult(const Vector &x, Vector &y) const;
virtual void ImplicitSolve(const double dt, const Vector &x, Vector &k);
virtual ~FE_Evolution();
};
int main(int argc, char *argv[])
{
// 1. Parse command-line options.
problem = 0;
const char *mesh_file = "../data/periodic-hexagon.mesh";
int ref_levels = 2;
int order = 3;
bool pa = false;
bool ea = false;
bool fa = false;
const char *device_config = "cpu";
int ode_solver_type = 4;
double t_final = 10.0;
double dt = 0.01;
bool visualization = true;
bool visit = false;
bool paraview = false;
bool binary = false;
int vis_steps = 5;
int precision = 8;
cout.precision(precision);
OptionsParser args(argc, argv);
args.AddOption(&mesh_file, "-m", "--mesh",
"Mesh file to use.");
args.AddOption(&problem, "-p", "--problem",
"Problem setup to use. See options in velocity_function().");
args.AddOption(&ref_levels, "-r", "--refine",
"Number of times to refine the mesh uniformly.");
args.AddOption(&order, "-o", "--order",
"Order (degree) of the finite elements.");
args.AddOption(&pa, "-pa", "--partial-assembly", "-no-pa",
"--no-partial-assembly", "Enable Partial Assembly.");
args.AddOption(&ea, "-ea", "--element-assembly", "-no-ea",
"--no-element-assembly", "Enable Element Assembly.");
args.AddOption(&fa, "-fa", "--full-assembly", "-no-fa",
"--no-full-assembly", "Enable Full Assembly.");
args.AddOption(&device_config, "-d", "--device",
"Device configuration string, see Device::Configure().");
args.AddOption(&ode_solver_type, "-s", "--ode-solver",
"ODE solver: 1 - Forward Euler,\n\t"
" 2 - RK2 SSP, 3 - RK3 SSP, 4 - RK4, 6 - RK6,\n\t"
" 11 - Backward Euler,\n\t"
" 12 - SDIRK23 (L-stable), 13 - SDIRK33,\n\t"
" 22 - Implicit Midpoint Method,\n\t"
" 23 - SDIRK23 (A-stable), 24 - SDIRK34");
args.AddOption(&t_final, "-tf", "--t-final",
"Final time; start time is 0.");
args.AddOption(&dt, "-dt", "--time-step",
"Time step.");
args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
"--no-visualization",
"Enable or disable GLVis visualization.");
args.AddOption(&visit, "-visit", "--visit-datafiles", "-no-visit",
"--no-visit-datafiles",
"Save data files for VisIt (visit.llnl.gov) visualization.");
args.AddOption(¶view, "-paraview", "--paraview-datafiles", "-no-paraview",
"--no-paraview-datafiles",
"Save data files for ParaView (paraview.org) visualization.");
args.AddOption(&binary, "-binary", "--binary-datafiles", "-ascii",
"--ascii-datafiles",
"Use binary (Sidre) or ascii format for VisIt data files.");
args.AddOption(&vis_steps, "-vs", "--visualization-steps",
"Visualize every n-th timestep.");
args.Parse();
if (!args.Good())
{
args.PrintUsage(cout);
return 1;
}
args.PrintOptions(cout);
Device device(device_config);
device.Print();
// 2. Read the mesh from the given mesh file. We can handle geometrically
// periodic meshes in this code.
Mesh mesh(mesh_file, 1, 1);
int dim = mesh.Dimension();
// 3. Define the ODE solver used for time integration. Several explicit
// Runge-Kutta methods are available.
ODESolver *ode_solver = NULL;
switch (ode_solver_type)
{
// Explicit methods
case 1: ode_solver = new ForwardEulerSolver; break;
case 2: ode_solver = new RK2Solver(1.0); break;
case 3: ode_solver = new RK3SSPSolver; break;
case 4: ode_solver = new RK4Solver; break;
case 6: ode_solver = new RK6Solver; break;
// Implicit (L-stable) methods
case 11: ode_solver = new BackwardEulerSolver; break;
case 12: ode_solver = new SDIRK23Solver(2); break;
case 13: ode_solver = new SDIRK33Solver; break;
// Implicit A-stable methods (not L-stable)
case 22: ode_solver = new ImplicitMidpointSolver; break;
case 23: ode_solver = new SDIRK23Solver; break;
case 24: ode_solver = new SDIRK34Solver; break;
default:
cout << "Unknown ODE solver type: " << ode_solver_type << '\n';
return 3;
}
// 4. Refine the mesh to increase the resolution. In this example we do
// 'ref_levels' of uniform refinement, where 'ref_levels' is a
// command-line parameter. If the mesh is of NURBS type, we convert it to
// a (piecewise-polynomial) high-order mesh.
for (int lev = 0; lev < ref_levels; lev++)
{
mesh.UniformRefinement();
}
if (mesh.NURBSext)
{
mesh.SetCurvature(max(order, 1));
}
mesh.GetBoundingBox(bb_min, bb_max, max(order, 1));
// 5. Define the discontinuous DG finite element space of the given
// polynomial order on the refined mesh.
DG_FECollection fec(order, dim, BasisType::GaussLobatto);
FiniteElementSpace fes(&mesh, &fec);
cout << "Number of unknowns: " << fes.GetVSize() << endl;
// 6. Set up and assemble the bilinear and linear forms corresponding to the
// DG discretization. The DGTraceIntegrator involves integrals over mesh
// interior faces.
VectorFunctionCoefficient velocity(dim, velocity_function);
FunctionCoefficient inflow(inflow_function);
FunctionCoefficient u0(u0_function);
BilinearForm m(&fes);
BilinearForm k(&fes);
if (pa)
{
m.SetAssemblyLevel(AssemblyLevel::PARTIAL);
k.SetAssemblyLevel(AssemblyLevel::PARTIAL);
}
else if (ea)
{
m.SetAssemblyLevel(AssemblyLevel::ELEMENT);
k.SetAssemblyLevel(AssemblyLevel::ELEMENT);
}
else if (fa)
{
m.SetAssemblyLevel(AssemblyLevel::FULL);
k.SetAssemblyLevel(AssemblyLevel::FULL);
}
m.AddDomainIntegrator(new MassIntegrator);
constexpr double alpha = -1.0;
k.AddDomainIntegrator(new ConvectionIntegrator(velocity, alpha));
k.AddInteriorFaceIntegrator(
new NonconservativeDGTraceIntegrator(velocity, alpha));
k.AddBdrFaceIntegrator(
new NonconservativeDGTraceIntegrator(velocity, alpha));
LinearForm b(&fes);
b.AddBdrFaceIntegrator(
new BoundaryFlowIntegrator(inflow, velocity, alpha));
m.Assemble();
int skip_zeros = 0;
k.Assemble(skip_zeros);
b.Assemble();
m.Finalize();
k.Finalize(skip_zeros);
// 7. Define the initial conditions, save the corresponding grid function to
// a file and (optionally) save data in the VisIt format and initialize
// GLVis visualization.
GridFunction u(&fes);
u.ProjectCoefficient(u0);
{
ofstream omesh("ex9.mesh");
omesh.precision(precision);
mesh.Print(omesh);
ofstream osol("ex9-init.gf");
osol.precision(precision);
u.Save(osol);
}
// Create data collection for solution output: either VisItDataCollection for
// ascii data files, or SidreDataCollection for binary data files.
DataCollection *dc = NULL;
if (visit)
{
if (binary)
{
#ifdef MFEM_USE_SIDRE
dc = new SidreDataCollection("Example9", &mesh);
#else
MFEM_ABORT("Must build with MFEM_USE_SIDRE=YES for binary output.");
#endif
}
else
{
dc = new VisItDataCollection("Example9", &mesh);
dc->SetPrecision(precision);
}
dc->RegisterField("solution", &u);
dc->SetCycle(0);
dc->SetTime(0.0);
dc->Save();
}
ParaViewDataCollection *pd = NULL;
if (paraview)
{
pd = new ParaViewDataCollection("Example9", &mesh);
pd->SetPrefixPath("ParaView");
pd->RegisterField("solution", &u);
pd->SetLevelsOfDetail(order);
pd->SetDataFormat(VTKFormat::BINARY);
pd->SetHighOrderOutput(true);
pd->SetCycle(0);
pd->SetTime(0.0);
pd->Save();
}
socketstream sout;
if (visualization)
{
char vishost[] = "localhost";
int visport = 19916;
sout.open(vishost, visport);
if (!sout)
{
cout << "Unable to connect to GLVis server at "
<< vishost << ':' << visport << endl;
visualization = false;
cout << "GLVis visualization disabled.\n";
}
else
{
sout.precision(precision);
sout << "solution\n" << mesh << u;
sout << "pause\n";
sout << flush;
cout << "GLVis visualization paused."
<< " Press space (in the GLVis window) to resume it.\n";
}
}
// 8. Define the time-dependent evolution operator describing the ODE
// right-hand side, and perform time-integration (looping over the time
// iterations, ti, with a time-step dt).
FE_Evolution adv(m, k, b);
double t = 0.0;
adv.SetTime(t);
ode_solver->Init(adv);
bool done = false;
for (int ti = 0; !done; )
{
double dt_real = min(dt, t_final - t);
ode_solver->Step(u, t, dt_real);
ti++;
done = (t >= t_final - 1e-8*dt);
if (done || ti % vis_steps == 0)
{
cout << "time step: " << ti << ", time: " << t << endl;
if (visualization)
{
sout << "solution\n" << mesh << u << flush;
}
if (visit)
{
dc->SetCycle(ti);
dc->SetTime(t);
dc->Save();
}
if (paraview)
{
pd->SetCycle(ti);
pd->SetTime(t);
pd->Save();
}
}
}
// 9. Save the final solution. This output can be viewed later using GLVis:
// "glvis -m ex9.mesh -g ex9-final.gf".
{
ofstream osol("ex9-final.gf");
osol.precision(precision);
u.Save(osol);
}
// 10. Free the used memory.
delete ode_solver;
delete pd;
delete dc;
return 0;
}
// Implementation of class FE_Evolution
FE_Evolution::FE_Evolution(BilinearForm &M_, BilinearForm &K_, const Vector &b_)
: TimeDependentOperator(M_.Height()), M(M_), K(K_), b(b_), z(M_.Height())
{
Array<int> ess_tdof_list;
if (M.GetAssemblyLevel() == AssemblyLevel::LEGACY)
{
M_prec = new DSmoother(M.SpMat());
M_solver.SetOperator(M.SpMat());
dg_solver = new DG_Solver(M.SpMat(), K.SpMat(), *M.FESpace());
}
else
{
M_prec = new OperatorJacobiSmoother(M, ess_tdof_list);
M_solver.SetOperator(M);
dg_solver = NULL;
}
M_solver.SetPreconditioner(*M_prec);
M_solver.iterative_mode = false;
M_solver.SetRelTol(1e-9);
M_solver.SetAbsTol(0.0);
M_solver.SetMaxIter(100);
M_solver.SetPrintLevel(0);
}
void FE_Evolution::Mult(const Vector &x, Vector &y) const
{
// y = M^{-1} (K x + b)
K.Mult(x, z);
z += b;
M_solver.Mult(z, y);
}
void FE_Evolution::ImplicitSolve(const double dt, const Vector &x, Vector &k)
{
MFEM_VERIFY(dg_solver != NULL,
"Implicit time integration is not supported with partial assembly");
K.Mult(x, z);
z += b;
dg_solver->SetTimeStep(dt);
dg_solver->Mult(z, k);
}
FE_Evolution::~FE_Evolution()
{
delete M_prec;
delete dg_solver;
}
// Velocity coefficient
void velocity_function(const Vector &x, Vector &v)
{
int dim = x.Size();
// map to the reference [-1,1] domain
Vector X(dim);
for (int i = 0; i < dim; i++)
{
double center = (bb_min[i] + bb_max[i]) * 0.5;
X(i) = 2 * (x(i) - center) / (bb_max[i] - bb_min[i]);
}
switch (problem)
{
case 0:
{
// Translations in 1D, 2D, and 3D
switch (dim)
{
case 1: v(0) = 1.0; break;
case 2: v(0) = sqrt(2./3.); v(1) = sqrt(1./3.); break;
case 3: v(0) = sqrt(3./6.); v(1) = sqrt(2./6.); v(2) = sqrt(1./6.);
break;
}
break;
}
case 1:
case 2:
{
// Clockwise rotation in 2D around the origin
const double w = M_PI/2;
switch (dim)
{
case 1: v(0) = 1.0; break;
case 2: v(0) = w*X(1); v(1) = -w*X(0); break;
case 3: v(0) = w*X(1); v(1) = -w*X(0); v(2) = 0.0; break;
}
break;
}
case 3:
{
// Clockwise twisting rotation in 2D around the origin
const double w = M_PI/2;
double d = max((X(0)+1.)*(1.-X(0)),0.) * max((X(1)+1.)*(1.-X(1)),0.);
d = d*d;
switch (dim)
{
case 1: v(0) = 1.0; break;
case 2: v(0) = d*w*X(1); v(1) = -d*w*X(0); break;
case 3: v(0) = d*w*X(1); v(1) = -d*w*X(0); v(2) = 0.0; break;
}
break;
}
}
}
// Initial condition
double u0_function(const Vector &x)
{
int dim = x.Size();
// map to the reference [-1,1] domain
Vector X(dim);
for (int i = 0; i < dim; i++)
{
double center = (bb_min[i] + bb_max[i]) * 0.5;
X(i) = 2 * (x(i) - center) / (bb_max[i] - bb_min[i]);
}
switch (problem)
{
case 0:
case 1:
{
switch (dim)
{
case 1:
return exp(-40.*pow(X(0)-0.5,2));
case 2:
case 3:
{
double rx = 0.45, ry = 0.25, cx = 0., cy = -0.2, w = 10.;
if (dim == 3)
{
const double s = (1. + 0.25*cos(2*M_PI*X(2)));
rx *= s;
ry *= s;
}
return ( erfc(w*(X(0)-cx-rx))*erfc(-w*(X(0)-cx+rx)) *
erfc(w*(X(1)-cy-ry))*erfc(-w*(X(1)-cy+ry)) )/16;
}
}
}
case 2:
{
double x_ = X(0), y_ = X(1), rho, phi;
rho = hypot(x_, y_);
phi = atan2(y_, x_);
return pow(sin(M_PI*rho),2)*sin(3*phi);
}
case 3:
{
const double f = M_PI;
return sin(f*X(0))*sin(f*X(1));
}
}
return 0.0;
}
// Inflow boundary condition (zero for the problems considered in this example)
double inflow_function(const Vector &x)
{
switch (problem)
{
case 0:
case 1:
case 2:
case 3: return 0.0;
}
return 0.0;
}