Skip to content

Latest commit

 

History

History
72 lines (54 loc) · 3 KB

README.md

File metadata and controls

72 lines (54 loc) · 3 KB

NER实验及模型部署

本NER项目包含多个中文数据集,模型采用BiLSTM+CRF、BERT+Softmax、BERT+Cascade、BERT+WOL等,其中BiLSTM+CRF部分采用的字符向量为BERT字向量,最后在CLUE_NER数据集上进行实验对比,并采用TFServing进行模型部署进行线上推理和线下推理。

详细请见知乎:
NER实战:从实验到BERT模型部署服务

运行环境
python 3.6
tensorflow 1.14

如何运行?以运行BERT+CRF模型为例

  • step1:模型训练
    python run_bert_crf.py
  • step2:模型验证测试
    python predict_bert_crf.py
  • step3:模型推理预测
    python infer_online.py

模型评价方式 对于NER模型,评判模型是否好坏的方法有2种

  • 标签评价法:对模型预测的标签进行评价,计算预测标签和原始标签的p,r,f1值
    tag_evaluating.py 其中可以设置是否不把O标签考虑在内
  • 实体评价法:对预测的实体进行评价,计算预测实体的f1值等等
    entity_evaluating.py

模型推理模模式

一、基于checkpoints进行online,offline推理预测
1.dev_offline 预测标签与真实标签评价结果+预测实体与真实实体评价结果+写入评测文件
2.predict_online 识别即时输入句子的实体
3.predict_offline 预测结果写入文件,提交比赛结果,本项目对应于clue的ner预测标准文件格式

二、基于tfserving + pb文件进行online,offline推理预测

模型推理部分,分为本地载入模型推理或者tensorflow serving grpc 推理,具体详见 infer_online.py 和 infer_offline.py

实验结果

model precision recall f1 entity_f1 epoch predict_time
clue_ner lstm_crf 0.926 0.865 0.890 0.671 20
bert_crf 0.871 0.820 0.840 0.741 3
bert_wol 0.900 0.851 0.874 0.800 3
casecade_lstm_crf 0.942 0.891 0.916 0.783 20
casecade_bert_crf 0.892 0.842 0.866 0.800 3

TODO
1.加上ALBERT,ROBERTA等预训练语言模型
2.在模型中融合入词向量等特征信息

Cite
如果你在研究中使用了NER-FunTool,请按如下格式引用:

@software{NER-FunTool,
  author = {ZhengWen Xie},
  title = {NER-FunTool: A Fun Tool for Chinese NER},
  year = {2021},
  url = {https://github.com/WenRichard/NER-FunTool},
}

Reference
1.NER
2.CLUE_NER
3.NerAdapter

欢迎Fork和Star!也欢迎提交PR!
留言请在Issues或者email richardxie1205@gmail.com