forked from andabi/deep-voice-conversion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
94 lines (73 loc) · 3.12 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
# -*- coding: utf-8 -*-
#!/usr/bin/env python
import glob
import itertools
import os
import re
from textwrap import wrap
import matplotlib
import numpy as np
import tfplot
from sklearn.metrics import confusion_matrix
def split_path(path):
'''
'a/b/c.wav' => ('a/b', 'c', 'wav')
:param path: filepath = 'a/b/c.wav'
:return: basename, filename, and extension = ('a/b', 'c', 'wav')
'''
basepath, filename = os.path.split(path)
filename, extension = os.path.splitext(filename)
return basepath, filename, extension
def remove_all_files(path):
files = glob.glob('{}/*'.format(path))
for f in files:
os.remove(f)
def normalize_0_1(values, max, min):
normalized = np.clip((values - min) / (max - min), 0, 1)
return normalized
def denormalize_0_1(normalized, max, min):
values = np.clip(normalized, 0, 1) * (max - min) + min
return values
def plot_confusion_matrix(correct_labels, predict_labels, labels, tensor_name='confusion_matrix', normalize=False):
'''
Parameters:
correct_labels : These are your true classification categories.
predict_labels : These are you predicted classification categories
labels : This is a list of labels which will be used to display the axix labels
title='Confusion matrix' : Title for your matrix
tensor_name = 'MyFigure/image' : Name for the output summay tensor
Returns:
summary: TensorFlow summary
Other itema to note:
- Depending on the number of category and the data , you may have to modify the figzie, font sizes etc.
- Currently, some of the ticks dont line up due to rotations.
'''
cm = confusion_matrix(correct_labels, predict_labels, labels=labels)
if normalize:
cm = cm.astype('float') * 10 / cm.sum(axis=1)[:, np.newaxis]
cm = np.nan_to_num(cm, copy=True)
cm = cm.astype('int')
np.set_printoptions(precision=2)
###fig, ax = matplotlib.figure.Figure()
fig = matplotlib.figure.Figure(figsize=(7, 7), dpi=320, facecolor='w', edgecolor='k')
ax = fig.add_subplot(1, 1, 1)
im = ax.imshow(cm, cmap='Oranges')
classes = [re.sub(r'([a-z](?=[A-Z])|[A-Z](?=[A-Z][a-z]))', r'\1 ', x) for x in labels]
classes = ['\n'.join(wrap(l, 40)) for l in classes]
tick_marks = np.arange(len(classes))
ax.set_xlabel('Predicted', fontsize=7)
ax.set_xticks(tick_marks)
c = ax.set_xticklabels(classes, fontsize=4, rotation=-90, ha='center')
ax.xaxis.set_label_position('bottom')
ax.xaxis.tick_bottom()
ax.set_ylabel('True Label', fontsize=7)
ax.set_yticks(tick_marks)
ax.set_yticklabels(classes, fontsize=4, va='center')
ax.yaxis.set_label_position('left')
ax.yaxis.tick_left()
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
ax.text(j, i, format(cm[i, j], 'd') if cm[i, j] != 0 else '.', horizontalalignment="center", fontsize=6,
verticalalignment='center', color="black")
fig.set_tight_layout(True)
summary = tfplot.figure.to_summary(fig, tag=tensor_name)
return summary