Skip to content

Latest commit

 

History

History
38 lines (27 loc) · 2.01 KB

README.md

File metadata and controls

38 lines (27 loc) · 2.01 KB

UMLS-EDA :octocat:

🎉 A light-weighted UMLS-based data augmentation for biomedical NLP tasks including Named Entity Recognition and sentence classification 🎉

User Guide

0. Before start

  1. Install 'UMLS' and 'QuickUMLS' locally
  2. Get your UMLS SOAP API Key from the UTS ‘My Profile’ area after signing in UMLS Terminology service
  3. Add your API Key and QuickUMLS directory to the config.py.
  4. Costomzie other variables in the config.py

1. Named Entity Recognition

  • Input: CoNLL format file
  • Usage:
    python augment4ner.py [-h] --input INPUT [--output OUTPUT] [--num_aug NUM_AUG] [--alpha ALPHA]

2. Sentence Classification

  • Input: "|" seperated file (index|label|sentence text)
  • Usage:
    python augment4class.py [-h] --input INPUT [--output OUTPUT] [--num_aug NUM_AUG] [--alpha ALPHA]

See examples/example4ner.conll and example/example4class.txt

Reference