-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmain.py
324 lines (265 loc) · 10.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
import argparse
import os
from random import shuffle
import time
from logging import getLogger
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torch.optim
from utils import (
initialize_exp,
fix_random_seeds,
AverageMeter
)
from model import Backbone, RegLog
from dataset import COCODataset, VOCDataset
from metrics import compute_AP
logger = getLogger()
parser = argparse.ArgumentParser(description="Evaluate models: Multi-label classification")
#########################
#### main parameters ####
#########################
parser.add_argument("--task", default="linear", type=str, choices=["linear", "semisup"],
help="which downstream task to evaluate")
parser.add_argument("--dataset", default="coco", type=str, choices=["coco", "voc"],
help="on which dataset to evaluate the model")
parser.add_argument("--dump_path", type=str, default=".",
help="experiment dump path for checkpoints and log")
parser.add_argument("--seed", type=int, default=777, help="seed")
parser.add_argument("--data_path", type=str, default="/path/to/dataset",
help="path to dataset repository")
parser.add_argument("--workers", default=10, type=int,
help="number of data loading workers")
parser.add_argument("--labels_perc", type=str, default="10", choices=["1", "10"],
help="fine-tune on either 1% or 10% of labels. "
"used only in downstream semi-supervised training task")
#########################
#### model parameters ###
#########################
parser.add_argument("--pretrained", default="", type=str, help="path to pretrained model's checkpoint")
#########################
#### optim parameters ###
#########################
parser.add_argument("--epochs", default=100, type=int,
help="number of total epochs to run")
parser.add_argument("--batch_size", default=32, type=int,
help="batch size per gpu, i.e. how many unique instances per gpu")
parser.add_argument("--lr", default=0.001, type=float, help="initial learning rate")
parser.add_argument("--lr_last_layer", default=0.02, type=float,
help="initial learning rate of the last fc layer. "
"used only in downstream semi-supervised training task")
parser.add_argument("--wd", default=1e-6, type=float, help="weight decay")
parser.add_argument("--nesterov", action="store_true", help="nesterov momentum")
parser.add_argument("--scheduler_type", default="cosine", type=str, choices=["step", "cosine"])
# for multi-step learning rate decay
parser.add_argument("--decay_epochs", type=int, nargs="+", default=[60, 80],
help="Epochs at which to decay learning rate.")
parser.add_argument("--gamma", type=float, default=0.1, help="decay factor")
# for cosine learning rate schedule
parser.add_argument("--final_lr", type=float, default=0, help="final learning rate")
def main():
args = parser.parse_args()
fix_random_seeds(args.seed)
logger, training_stats = initialize_exp(
args, "epoch", "loss", "loss_val", "mAP_val"
)
# build data
dataset = COCODataset if args.dataset == 'coco' else VOCDataset
train_dataset = dataset(args.data_path, is_train=True)
val_dataset = dataset(args.data_path, is_train=False)
if args.task == 'semisup':
indices = torch.load(f"indices_{args.labels_perc}perc.pth")
train_sampler = torch.utils.data.SubsetRandomSampler(indices)
shuffle = False
elif args.task == 'linear':
train_sampler = None
shuffle = True
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=args.batch_size,
num_workers=args.workers,
sampler=train_sampler,
shuffle=shuffle
)
val_loader = torch.utils.data.DataLoader(
val_dataset,
batch_size=args.batch_size,
num_workers=args.workers
)
logger.info("Building data done")
# build model
model = Backbone(args.pretrained)
num_labels = 80 if args.dataset == 'coco' else 20
linear_classifier = RegLog(num_labels)
# model to gpu
model = model.cuda()
linear_classifier = linear_classifier.cuda()
# set optimizer
if args.task == 'semisup':
optimizer = torch.optim.SGD(
[{'params': model.parameters()},
{'params': linear_classifier.parameters(), 'lr': args.lr_last_layer}],
lr=args.lr,
momentum=0.9,
weight_decay=args.wd,
)
elif args.task == 'linear':
optimizer = torch.optim.SGD(
linear_classifier.parameters(),
lr=args.lr,
nesterov=args.nesterov,
momentum=0.9,
weight_decay=args.wd,
)
# set scheduler
if args.scheduler_type == "step":
scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer, args.decay_epochs, gamma=args.gamma
)
elif args.scheduler_type == "cosine":
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
optimizer, args.epochs, eta_min=args.final_lr
)
# Optionally resume from a checkpoint
start_epoch = 0
global best_mAP
best_mAP = 0.
ckpt_path = os.path.join(args.dump_path, "checkpoint.pth.tar")
if os.path.isfile(ckpt_path):
logger.info("Found checkpoint at {}".format(ckpt_path))
checkpoint = torch.load(ckpt_path)
linear_classifier.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
scheduler.load_state_dict(checkpoint['scheduler'])
start_epoch = checkpoint["epoch"]
best_mAP = checkpoint["best_mAP"]
cudnn.benchmark = True
for epoch in range(start_epoch, args.epochs):
# train the network for one epoch
logger.info("============ Starting epoch %i ... ============" % epoch)
scores = train(model, linear_classifier, optimizer, train_loader, epoch, args.task)
scores_val = validate_network(val_loader, model, linear_classifier)
training_stats.update(scores + scores_val)
scheduler.step()
# save checkpoint
save_dict = {
"epoch": epoch + 1,
"state_dict": linear_classifier.state_dict(),
"optimizer": optimizer.state_dict(),
"scheduler": scheduler.state_dict(),
"best_mAP": best_mAP,
}
torch.save(save_dict, os.path.join(args.dump_path, "checkpoint.pth.tar"))
logger.info("Training of the supervised linear classifier on frozen features completed.\n"
"Test mAP: {mAP:.2f}".format(mAP=best_mAP))
def train(model, reglog, optimizer, loader, epoch, task):
"""
Train the models on the dataset.
"""
# running statistics
batch_time = AverageMeter()
data_time = AverageMeter()
# training statistics
losses = AverageMeter()
end = time.perf_counter()
if task == 'linear':
model.eval()
elif task == 'semisup':
model.train()
reglog.train()
criterion = nn.BCEWithLogitsLoss(reduction='none').cuda()
for iter_epoch, (inp, target) in enumerate(loader):
# measure data loading time
data_time.update(time.perf_counter() - end)
# move to gpu
inp = inp.cuda()
target = target.cuda()
# forward
with torch.no_grad():
output = model(inp)
output = reglog(output)
# compute bce loss
mask = (target == 255)
loss = torch.sum(criterion(output, target).masked_fill_(mask, 0)) / target.size(0)
# compute the gradients
optimizer.zero_grad()
loss.backward()
# clip gradients
torch.nn.utils.clip_grad_norm_(model.parameters(), 10)
torch.nn.utils.clip_grad_norm_(reglog.parameters(), 10)
# step
optimizer.step()
# update stats
losses.update(loss.item(), inp.size(0))
batch_time.update(time.perf_counter() - end)
end = time.perf_counter()
# verbose
if iter_epoch % 100 == 0:
logger.info(
"Epoch[{0}] - Iter: [{1}/{2}]\t"
"Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t"
"Data {data_time.val:.3f} ({data_time.avg:.3f})\t"
"Loss {loss.val:.4f} ({loss.avg:.4f})\t"
"LR {lr}".format(
epoch,
iter_epoch,
len(loader),
batch_time=batch_time,
data_time=data_time,
loss=losses,
lr=optimizer.param_groups[0]["lr"],
)
)
return epoch, losses.avg
def validate_network(val_loader, model, linear_classifier):
batch_time = AverageMeter()
losses = AverageMeter()
global best_mAP
# switch to evaluate mode
model.eval()
linear_classifier.eval()
criterion = nn.BCEWithLogitsLoss(reduction='none').cuda()
meta_predictions = None
predictions = []
labels = []
with torch.no_grad():
end = time.perf_counter()
for i, (inp, target) in enumerate(val_loader):
# move to gpu
inp = inp.cuda()
target = target.cuda()
# compute output
output = linear_classifier(model(inp))
mask = (target == 255)
loss = torch.sum(criterion(output, target).masked_fill_(mask, 0)) / target.size(0)
losses.update(loss.item(), inp.size(0))
predictions.append(output.cpu().numpy())
labels.append(target.cpu().numpy())
# measure elapsed time
batch_time.update(time.perf_counter() - end)
end = time.perf_counter()
# compute mAP
predictions = np.concatenate(predictions, axis=0)
labels = np.concatenate(labels, axis=0)
APs, mAP = compute_AP(predictions, labels)
if mAP > best_mAP:
best_mAP = mAP
logger.info(
"Test:\t"
"Time {batch_time.avg:.3f}\t"
"Loss {loss.avg:.4f}\t"
"mAP {mAP:.3f}\t"
"Best mAP so far {best_mAP:.3f}".format(
batch_time=batch_time, loss=losses, mAP=mAP, best_mAP=best_mAP))
return losses.avg, mAP
if __name__ == "__main__":
main()