forked from lrse/whycon
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlocalization_system.cpp
368 lines (317 loc) · 11.5 KB
/
localization_system.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
#include <limits>
#include <fstream>
#include <sstream>
#include <iostream>
#include <stdexcept>
#include <sstream>
#include <iomanip>
#include <limits>
#include "circle_detector.h"
#include "sysmat.h"
#include "localization_system.h"
using std::cout;
using std::endl;
using std::numeric_limits;
cv::LocalizationSystem::LocalizationSystem(int _targets, int _width, int _height, const cv::Mat& _K, const cv::Mat& _dist_coeff,
float _outer_diameter, float _inner_diameter) :
xscale(1), yscale(1), detector(_targets, _width, _height, _inner_diameter / _outer_diameter),
targets(_targets), width(_width), height(_height), axis_set(false), circle_diameter(_outer_diameter)
{
_K.copyTo(K);
_dist_coeff.copyTo(dist_coeff);
fc[0] = K.at<double>(0,0);
fc[1] = K.at<double>(1,1);
cc[0] = K.at<double>(0,2);
cc[1] = K.at<double>(1,2);
cout.precision(30);
cout << "fc " << fc[0] << " " << fc[1] << endl;
cout << "cc " << cc[0] << " " << cc[1] << endl;
kc[0] = 1;
cout << "kc " << kc[0] << " ";
for (int i = 0; i < 5; i++) {
kc[i + 1] = dist_coeff.at<double>(i);
cout << kc[i + 1] << " ";
}
cout << endl;
coordinates_transform = cv::Matx33f(1, 0, 0, 0, 1, 0, 0, 0, 1);
precompute_undistort_map();
}
bool cv::LocalizationSystem::localize(const cv::Mat& image, bool reset, int attempts, int max_refine) {
return detector.detect(image, reset, attempts, max_refine);
}
/* TODO: use cv::eigen */
cv::Vec3f cv::LocalizationSystem::eigen(double data[]) const
{
double d[3];
double V[3][3];
double dat[3][3];
for (int i = 0;i<9;i++)dat[i/3][i%3] = data[i];
eigen_decomposition(dat,V,d);
//eigenvalues
float L1 = d[1];
float L2 = d[2];
float L3 = d[0];
//eigenvectors
int V2=2;
int V3=0;
//detected pattern position
float z = circle_diameter/sqrt(-L2*L3)/2.0;
float c0 = sqrt((L2-L1)/(L2-L3));
float c0x = c0*V[2][V2];
float c0y = c0*V[1][V2];
float c0z = c0*V[2][V2];
float c1 = sqrt((L1-L3)/(L2-L3));
float c1x = c1*V[0][V3];
float c1y = c1*V[1][V3];
float c1z = c1*V[2][V3];
float z0 = -L3*c0x+L2*c1x;
float z1 = -L3*c0y+L2*c1y;
float z2 = -L3*c0z+L2*c1z;
float s1,s2;
s1=s2=1;
float n0 = +s1*c0x+s2*c1x;
float n1 = +s1*c0y+s2*c1y;
float n2 = +s1*c0z+s2*c1z;
if (z2*z < 0){
z2 = -z2;
z1 = -z1;
z0 = -z0;
}
//cv::Vec3f result(-z0*z, -z1*z, z2*z); // NOTE: ZXY ordering XYZ
cv::Vec3f result(z0*z, z1*z, z2*z); // NOTE: ZXY ordering XYZ
return result;
}
cv::LocalizationSystem::Pose cv::LocalizationSystem::get_pose(const cv::CircleDetector::Circle& circle) const {
Pose result;
float x,y,x1,x2,y1,y2,sx1,sx2,sy1,sy2,major,minor,v0,v1;
//transform the center
transform(circle.x,circle.y, x, y);
//calculate the major axis
//endpoints in image coords
sx1 = circle.x + circle.v0 * circle.m0 * 2;
sx2 = circle.x - circle.v0 * circle.m0 * 2;
sy1 = circle.y + circle.v1 * circle.m0 * 2;
sy2 = circle.y - circle.v1 * circle.m0 * 2;
//endpoints in camera coords
transform(sx1, sy1, x1, y1);
transform(sx2, sy2, x2, y2);
//semiaxis length
major = sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2))/2.0;
v0 = (x2-x1)/major/2.0;
v1 = (y2-y1)/major/2.0;
//calculate the minor axis
//endpoints in image coords
sx1 = circle.x + circle.v1 * circle.m1 * 2;
sx2 = circle.x - circle.v1 * circle.m1 * 2;
sy1 = circle.y - circle.v0 * circle.m1 * 2;
sy2 = circle.y + circle.v0 * circle.m1 * 2;
//endpoints in camera coords
transform(sx1, sy1, x1, y1);
transform(sx2, sy2, x2, y2);
//semiaxis length
minor = sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2))/2.0;
//construct the conic
float a,b,c,d,e,f;
a = v0*v0/(major*major)+v1*v1/(minor*minor);
b = v0*v1*(1/(major*major)-1/(minor*minor));
c = v0*v0/(minor*minor)+v1*v1/(major*major);
d = (-x*a-b*y);
e = (-y*c-b*x);
f = (a*x*x+c*y*y+2*b*x*y-1);
double data[] ={a,b,d,b,c,e,d,e,f};
result.pos = eigen(data);
result.rot(0) = acos(circle.m1/circle.m0)/M_PI*180.0;
result.rot(1) = atan2(circle.v1,circle.v0)/M_PI*180.0;
result.rot(2) = circle.v1/circle.v0;
return result;
}
const cv::CircleDetector::Circle& cv::LocalizationSystem::get_circle(int id)
{
return detector.circles[id];
}
cv::LocalizationSystem::Pose cv::LocalizationSystem::get_pose(int id) const
{
return get_pose(detector.circles[id]);
}
cv::LocalizationSystem::Pose cv::LocalizationSystem::get_transformed_pose(int id) const {
return get_transformed_pose(detector.circles[id]);
}
cv::LocalizationSystem::Pose cv::LocalizationSystem::get_transformed_pose(const cv::CircleDetector::Circle& circle) const
{
Pose pose;
pose.pos = coordinates_transform * get_pose(circle).pos;
pose.pos(0) /= pose.pos(2);
pose.pos(1) /= pose.pos(2);
pose.pos(2) = 0;
return pose;
}
// TODO: allow user to choose calibration circles, now the circles are read in the order of detection
bool cv::LocalizationSystem::set_axis(const cv::Mat& image, int max_attempts, int refine_steps, const std::string& file)
{
ManyCircleDetector axis_detector(4, width, height);
if (!axis_detector.detect(image, true, max_attempts, refine_steps)) return false;
// get poses of each calibration circle
/*float minx, miny;
minx = miny = numeric_limits<float>::max();
int zero_i;*/
Pose circle_poses[4];
for (int i = 0; i < 4; i++) {
origin_circles[i] = axis_detector.circles[i];
circle_poses[i] = get_pose(axis_detector.circles[i]);
/*float x = circle_poses[i].pos(0);
float y = circle_poses[i].pos(1);
if (x < minx) { zero_i = i; x = minx; }
if (y < miny) { zero_i = i; y = miny; }*/
}
// set (0,0) of circle at top, left
/*std::swap(origin_circles[zero_i], origin_circles[0]);
std::swap(circle_poses[zero_i], circle_poses[0]);*/
cv::Vec3f vecs[3];
for (int i = 0; i < 3; i++) {
vecs[i] = circle_poses[i + 1].pos - circle_poses[0].pos;
cout << "vec " << i+1 << "->0 " << vecs[i] << endl;
}
int min_prod_i = 0;
float min_prod = numeric_limits<float>::max();
for (int i = 0; i < 3; i++) {
float prod = fabsf(vecs[(i + 2) % 3].dot(vecs[i]));
cout << "prod: " << ((i + 2) % 3 + 1) << " " << i + 1 << " " << vecs[(i + 2) % 3] << " " << vecs[i] << " " << prod << endl;
if (prod < min_prod) { min_prod = prod; min_prod_i = i; }
}
int axis1_i = (((min_prod_i + 2) % 3) + 1);
int axis2_i = (min_prod_i + 1);
if (fabsf(circle_poses[axis1_i].pos(0)) < fabsf(circle_poses[axis2_i].pos(0))) std::swap(axis1_i, axis2_i);
int xy_i = 0;
for (int i = 1; i <= 3; i++) if (i != axis1_i && i != axis2_i) { xy_i = i; break; }
cout << "axis ids: " << axis1_i << " " << axis2_i << " " << xy_i << endl;
CircleDetector::Circle origin_circles_reordered[4];
origin_circles_reordered[0] = origin_circles[0];
origin_circles_reordered[1] = origin_circles[axis1_i];
origin_circles_reordered[2] = origin_circles[axis2_i];
origin_circles_reordered[3] = origin_circles[xy_i];
for (int i = 0; i < 4; i++) {
origin_circles[i] = origin_circles_reordered[i];
circle_poses[i] = get_pose(origin_circles[i]);
cout << "original poses: " << circle_poses[i].pos << endl;
}
float dim_x = 1.0;
float dim_y = 1.0;
cv::Vec2f targets[4] = { cv::Vec2f(0,0), cv::Vec2f(dim_x, 0), cv::Vec2f(0, dim_y), cv::Vec2f(dim_x, dim_y) };
// build matrix of coefficients and independent term for linear eq. system
cv::Mat A(8, 8, CV_64FC1), b(8, 1, CV_64FC1), x(8, 1, CV_64FC1);
cv::Vec2f tmp[4];
for (int i = 0; i < 4; i++) tmp[i] = cv::Vec2f(circle_poses[i].pos(0), circle_poses[i].pos(1)) / circle_poses[i].pos(2);
for (int i = 0; i < 4; i++) {
cv::Mat r_even = (cv::Mat_<double>(1, 8) << -tmp[i](0), -tmp[i](1), -1, 0, 0, 0, targets[i](0) * tmp[i](0), targets[i](0) * tmp[i](1));
cv::Mat r_odd = (cv::Mat_<double>(1, 8) << 0, 0, 0, -tmp[i](0), -tmp[i](1), -1, targets[i](1) * tmp[i](0), targets[i](1) * tmp[i](1));
r_even.copyTo(A.row(2 * i));
r_odd.copyTo(A.row(2 * i + 1));
b.at<double>(2 * i) = -targets[i](0);
b.at<double>(2 * i + 1) = -targets[i](1);
}
// solve linear system and obtain transformation
cv::solve(A, b, x);
x.push_back(1.0);
coordinates_transform = x.reshape(1, 3);
cout << "H " << coordinates_transform << endl;
// TODO: compare H obtained by OpenCV with the hand approach
std::vector<cv::Vec2f> src(4), dsts(4);
for (int i = 0; i < 4; i++) {
src[i] = tmp[i];
dsts[i] = targets[i];
cout << tmp[i] << " -> " << targets[i] << endl;
}
cv::Matx33f H = cv::findHomography(src, dsts, CV_LMEDS);
cout << "OpenCV H " << H << endl;
if (!file.empty()) {
cv::FileStorage fs(file, cv::FileStorage::WRITE);
fs << "H" << cv::Mat(cv::Matx33d(coordinates_transform)); // store as double to get more decimals
fs << "c0"; origin_circles[0].write(fs);
fs << "c1"; origin_circles[1].write(fs);
fs << "c2"; origin_circles[2].write(fs);
fs << "c3"; origin_circles[3].write(fs);
}
axis_set = true;
return true;
}
void cv::LocalizationSystem::read_axis(const std::string& file) {
cv::FileStorage fs(file, cv::FileStorage::READ);
cv::Mat m;
fs["H"] >> m;
coordinates_transform = cv::Matx33f(m);
origin_circles[0].read(fs["c0"]);
origin_circles[1].read(fs["c1"]);
origin_circles[2].read(fs["c2"]);
origin_circles[3].read(fs["c3"]);
axis_set = true;
cout << "transformation: " << coordinates_transform << endl;
}
void cv::LocalizationSystem::draw_axis(cv::Mat& image)
{
static string names[4] = { "0,0", "1,0", "0,1", "1,1" };
for (int i = 0; i < 4; i++) {
std::ostringstream ostr;
//ostr << std::fixed << std::setprecision(5) << names[i] << endl << get_pose(origin_circles[i]).pos;
origin_circles[i].draw(image, /*ostr.str()*/names[i], cv::Vec3b((i == 0 || i == 3 ? 255 : 0), (i == 1 ? 255 : 0), (i == 2 || i == 3 ? 255 : 0)));
}
}
/* normalize coordinates: move from image to canonical and remove distortion */
void cv::LocalizationSystem::transform(float x_in, float y_in, float& x_out, float& y_out) const
{
#if defined(ENABLE_FULL_UNDISTORT)
x = (x-cc[0])/fc[0];
y = (y-cc[1])/fc[1];
#else
vector<cv::Vec2f> src(1, cv::Vec2f(x_in, y_in));
vector<cv::Vec2f> dst(1);
cv::undistortPoints(src, dst, K, dist_coeff);
x_out = dst[0](0); y_out = dst[0](1);
#endif
}
void cv::LocalizationSystem::load_matlab_calibration(const std::string& calib_file, cv::Mat& K, cv::Mat& dist_coeff)
{
std::ifstream file(calib_file.c_str());
if (!file) throw std::runtime_error("calibration file not found");
std::string line;
K = cv::Mat::eye(3, 3, CV_64FC1);
dist_coeff.create(5, 1, CV_64FC1);
dist_coeff = cv::Scalar(0);
while (std::getline(file, line)) {
std::string s;
std::istringstream istr(line);
istr >> s;
if (s == "fc") {
istr >> s >> s;
istr >> K.at<double>(0,0) >> s;
istr >> K.at<double>(1,1);
}
else if (s == "cc") {
istr >> s >> s >> K.at<double>(0,2);
istr >> s >> K.at<double>(1,2);
}
else if (s == "kc") {
istr >> s >> s;
int i = 0;
do {
istr >> dist_coeff.at<double>(i) >> s;
i++;
} while (s != "];");
}
}
}
void cv::LocalizationSystem::load_opencv_calibration(const std::string& calib_file, cv::Mat& K, cv::Mat& dist_coeff) {
cv::FileStorage file(calib_file, cv::FileStorage::READ);
if (!file.isOpened()) throw std::runtime_error("calibration file not found");
file["K"] >> K;
file["dist"] >> dist_coeff;
}
void cv::LocalizationSystem::precompute_undistort_map(void)
{
undistort_map.create(height, width, CV_32FC2);
for (int i = 0; i < height; i++) {
vector<cv::Vec2f> coords_in(width);
for (int j = 0; j < width; j++)
coords_in[j] = cv::Vec2f(j,i); // TODO: reverse y? add 0.5?
undistortPoints(coords_in, undistort_map.row(i), K, dist_coeff);
}
}