-
Notifications
You must be signed in to change notification settings - Fork 62
/
Copy pathprepare_adience.py
216 lines (172 loc) · 7.68 KB
/
prepare_adience.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import argparse
import os
from collections import defaultdict
from typing import Dict, List, Optional
import cv2
import pandas as pd
import tqdm
from mivolo.data.data_reader import PictureInfo, get_all_files
from mivolo.model.yolo_detector import Detector, PersonAndFaceResult
from preparation_utils import get_additional_bboxes, get_main_face, save_annotations
def read_adience_annotations(annotations_files):
annotations_per_image = {}
stat_per_fold = defaultdict(int)
cols = ["user_id", "original_image", "face_id", "age", "gender"]
for file in annotations_files:
fold_name = os.path.basename(file).split(".")[0]
df = pd.read_csv(file, sep="\t", usecols=cols)
for index, row in df.iterrows():
face_id, img_name, user_id = row["face_id"], row["original_image"], row["user_id"]
aligned_face_path = f"faces/{user_id}/coarse_tilt_aligned_face.{face_id}.{img_name}"
age, gender = row["age"], row["gender"]
gender = gender.upper() if isinstance(gender, str) and gender != "u" else None
age = age if isinstance(age, str) else None
annotations_per_image[aligned_face_path] = {"age": age, "gender": gender, "fold": fold_name}
stat_per_fold[fold_name] += 1
print(f"Per fold images: {stat_per_fold}")
return annotations_per_image
def read_data(images_dir, annotations_files, data_dir) -> List[PictureInfo]:
dataset_pictures: List[PictureInfo] = []
all_images = get_all_files(images_dir)
annotations_per_file = read_adience_annotations(annotations_files)
total, missed = 0, 0
stat_per_gender: Dict[str, int] = defaultdict(int)
missed_gender, missed_age, missed_gender_and_age = 0, 0, 0
stat_per_ages: Dict[str, int] = defaultdict(int)
# final age classes: '0;2', "4;6", "8;12", "15;20", "25;32", "38;43", "48;53", "60;100"
age_map = {
"2": "(0, 2)",
"3": "(0, 2)",
"13": "(8, 12)",
"(8, 23)": "(8, 12)",
"22": "(15, 20)",
"23": "(25, 32)",
"29": "(25, 32)",
"(27, 32)": "(25, 32)",
"32": "(25, 32)",
"34": "(25, 32)",
"35": "(25, 32)",
"36": "(38, 43)",
"(38, 42)": "(38, 43)",
"(38, 48)": "(38, 43)",
"42": "(38, 43)",
"45": "(38, 43)",
"46": "(48, 53)",
"55": "(48, 53)",
"56": "(48, 53)",
"57": "(60, 100)",
"58": "(60, 100)",
}
for image_path in all_images:
total += 1
relative_path = image_path.replace(f"{data_dir}/", "")
if relative_path not in annotations_per_file:
missed += 1
print("Can not find annotation for ", relative_path)
else:
annot = annotations_per_file[relative_path]
age, gender = annot["age"], annot["gender"]
if gender is None and age is not None:
missed_gender += 1
elif age is None and gender is not None:
missed_age += 1
elif gender is None and age is None:
missed_gender_and_age += 1
# skip such image
continue
if gender is not None:
stat_per_gender[gender] += 1
if age is not None:
age = age_map[age] if age in age_map else age
stat_per_ages[age] += 1
dataset_pictures.append(PictureInfo(image_path, age, gender))
print(f"Missed annots for images: {missed}/{total}")
print(f"Missed genders: {missed_gender}")
print(f"Missed ages: {missed_age}")
print(f"Missed ages and gender: {missed_gender_and_age}")
print(f"\nPer gender images: {stat_per_gender}")
ages = list(stat_per_ages.keys())
print(f"Per ages categories ({len(ages)} cats) :")
ages = sorted(ages, key=lambda x: int(x.split("(")[-1].split(",")[0].strip()))
for age in ages:
print(f"Age: {age} Count: {stat_per_ages[age]}")
return dataset_pictures
def main(faces_dir: str, annotations: List[str], data_dir: str, detector_cfg: dict = None):
"""
Generate a .txt annotation file with columns:
["img_name", "age", "gender",
"face_x0", "face_y0", "face_x1", "face_y1",
"person_x0", "person_y0", "person_x1", "person_y1"]
All person bboxes here will be set to [-1, -1, -1, -1]
If detector_cfg is set, for each face bbox will be refined using detector.
Also, other detected faces wil be written to txt file (needed for further preprocessing)
"""
# out directory for annotations
out_dir = os.path.join(data_dir, "annotations")
os.makedirs(out_dir, exist_ok=True)
# load annotations
images: List[PictureInfo] = read_data(faces_dir, annotations, data_dir)
if detector_cfg:
# detect faces with yolo detector
faces_not_found, images_with_other_faces = 0, 0
other_faces: List[PictureInfo] = []
detector_weights, device = detector_cfg["weights"], detector_cfg["device"]
detector = Detector(detector_weights, device, verbose=False, conf_thresh=0.1, iou_thresh=0.2)
for image_info in tqdm.tqdm(images, desc="Detecting faces: "):
cv_im = cv2.imread(image_info.image_path)
im_h, im_w = cv_im.shape[:2]
detected_objects: PersonAndFaceResult = detector.predict(cv_im)
main_bbox, other_bboxes_inds = get_main_face(detected_objects)
if main_bbox is None:
# use a full image as face bbox
faces_not_found += 1
image_info.bbox = [0, 0, im_w, im_h]
else:
image_info.bbox = main_bbox
if len(other_bboxes_inds):
images_with_other_faces += 1
additional_faces = get_additional_bboxes(detected_objects, other_bboxes_inds, image_info.image_path)
other_faces.extend(additional_faces)
print(f"Faces not detected: {faces_not_found}/{len(images)}")
print(f"Images with other faces: {images_with_other_faces}/{len(images)}")
print(f"Other faces: {len(other_faces)}")
images = images + other_faces
else:
# use a full image as face bbox
for image_info in tqdm.tqdm(images, desc="Collect face bboxes: "):
cv_im = cv2.imread(image_info.image_path)
im_h, im_w = cv_im.shape[:2]
image_info.bbox = [0, 0, im_w, im_h] # xyxy
save_annotations(images, faces_dir, out_file=os.path.join(out_dir, "adience_annotations.csv"))
def get_parser():
parser = argparse.ArgumentParser(description="Adience")
parser.add_argument(
"--dataset_path",
default="data/adience",
type=str,
required=True,
help="path to dataset with faces/ and fold_{i}_data.txt files",
)
parser.add_argument(
"--detector_weights", default=None, type=str, required=False, help="path to face and person detector"
)
parser.add_argument("--device", default="cuda:0", type=str, required=False, help="device to inference detector")
return parser
if __name__ == "__main__":
parser = get_parser()
args = parser.parse_args()
data_dir = args.dataset_path
faces_dir = os.path.join(data_dir, "faces")
if data_dir[-1] == "/":
data_dir = data_dir[:-1]
annotations = [
os.path.join(data_dir, "fold_0_data.txt"),
os.path.join(data_dir, "fold_1_data.txt"),
os.path.join(data_dir, "fold_2_data.txt"),
os.path.join(data_dir, "fold_3_data.txt"),
os.path.join(data_dir, "fold_4_data.txt"),
]
detector_cfg: Optional[Dict[str, str]] = None
if args.detector_weights is not None:
detector_cfg = {"weights": args.detector_weights, "device": "cuda:0"}
main(faces_dir, annotations, data_dir, detector_cfg)