-
Notifications
You must be signed in to change notification settings - Fork 0
/
CartStemContactEnv.py
114 lines (91 loc) · 3.61 KB
/
CartStemContactEnv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
# -*- coding: utf-8 -*-
"""Specific environment for the gripper.
"""
__authors__ = ("emenager")
__contact__ = ("etienne.menager@ens-rennes.fr")
__version__ = "1.0.0"
__copyright__ = "(c) 2021, Inria"
__date__ = "Feb 3 2021"
import os
from sofagym.AbstractEnv import AbstractEnv
from sofagym.rpc_server import start_scene
from gym import spaces
import numpy as np
class CartStemContactEnv(AbstractEnv):
"""Sub-class of AbstractEnv, dedicated to the gripper scene.
See the class AbstractEnv for arguments and methods.
"""
#Setting a default configuration
path = os.path.dirname(os.path.abspath(__file__))
metadata = {'render.modes': ['human', 'rgb_array']}
DEFAULT_CONFIG = {"scene": "CartStemContact",
"deterministic": True,
"source": [0, -50, 10],
"target": [0, 0, 10],
"goalList": [[7, 0, 20]],
"start_node": None,
"scale_factor": 30,
"dt": 0.01,
"timer_limit": 30,
"timeout": 50,
"display_size": (1600, 800),
"render": 0,
"save_data": False,
"save_image": False,
"save_path": path + "/Results" + "/CartStemContact",
"planning": False,
"discrete": False,
"start_from_history": None,
"python_version": "python3.9",
"zFar": 4000,
"time_before_start": 0,
"seed": None,
"init_x": 5,
"cube_x": [-6, 6],
"max_move": 7.5,
}
def __init__(self, config = None):
super().__init__(config)
nb_actions = -1
low = np.array([-1]*1)
high = np.array([1]*1)
self.action_space = spaces.Box(low=low, high=high, shape=(1,), dtype='float32')
self.nb_actions = str(nb_actions)
dim_state = 8
low_coordinates = np.array([-1]*dim_state)
high_coordinates = np.array([1]*dim_state)
self.observation_space = spaces.Box(low_coordinates, high_coordinates,
dtype='float32')
def step(self, action):
return super().step(action)
def reset(self):
"""Reset simulation.
Note:
----
We launch a client to create the scene. The scene of the program is
client_<scene>Env.py.
"""
low_cube, high_cube = -6+ 2*np.random.random(), 6 - 2*np.random.random()
self.config.update({'cube_x': [low_cube, high_cube]})
self.config.update({'init_x': (low_cube + 3) + (high_cube-low_cube-3)*np.random.random()})
if np.random.random() > 0.5:
x_goal = low_cube + 3.5*np.random.random()
else:
x_goal = high_cube - 3.5*np.random.random()
self.config.update({'goalList': [[x_goal, 0, 20]]})
self.goalList = self.config["goalList"]
super().reset()
self.config.update({'max_move': max(abs(low_cube-1), high_cube+1)})
self.config.update({'goalPos': self.goal})
obs = start_scene(self.config, self.nb_actions)
return np.array(obs['observation'])
def get_available_actions(self):
"""Gives the actions available in the environment.
Parameters:
----------
None.
Returns:
-------
list of the action available in the environment.
"""
return self.action_space