-
Notifications
You must be signed in to change notification settings - Fork 67
/
Copy pathoutpaint.py
executable file
·318 lines (287 loc) · 12.2 KB
/
outpaint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
# https://github.com/Woolverine94/biniou
# outpaint.py
import gradio as gr
import os
import PIL
import cv2
import numpy as np
import torch
from diffusers import StableDiffusionInpaintPipeline, StableDiffusionXLInpaintPipeline
from compel import Compel, ReturnedEmbeddingsType
import random
from ressources.common import *
from ressources.gfpgan import *
import tomesd
from diffusers.schedulers import AysSchedules
device_label_outpaint, model_arch = detect_device()
device_outpaint = torch.device(device_label_outpaint)
# Gestion des modèles
model_path_outpaint = "./models/inpaint/"
model_path_outpaint_safety_checker = "./models/Stable_Diffusion/"
os.makedirs(model_path_outpaint, exist_ok=True)
os.makedirs(model_path_outpaint_safety_checker, exist_ok=True)
model_list_outpaint = []
for filename in os.listdir(model_path_outpaint):
f = os.path.join(model_path_outpaint, filename)
if os.path.isfile(f) and (filename.endswith('.ckpt') or filename.endswith('.safetensors')):
model_list_outpaint.append(f)
model_list_outpaint_builtin = [
"Uminosachi/realisticVisionV51_v51VAE-inpainting",
"diffusers/stable-diffusion-xl-1.0-inpainting-0.1",
"runwayml/stable-diffusion-inpainting",
"Lykon/dreamshaper-8-inpainting",
"Sanster/anything-4.0-inpainting",
]
for k in range(len(model_list_outpaint_builtin)):
model_list_outpaint.append(model_list_outpaint_builtin[k])
# Bouton Cancel
stop_outpaint = False
def initiate_stop_outpaint() :
global stop_outpaint
stop_outpaint = True
def check_outpaint(pipe, step_index, timestep, callback_kwargs) :
global stop_outpaint
if stop_outpaint == True :
print(">>>[outpaint 🖌️ ]: generation canceled by user")
stop_outpaint = False
pipe._interrupt = True
return callback_kwargs
def prepare_outpaint(img_outpaint, top, bottom, left, right) :
image = np.array(img_outpaint)
mask = np.zeros((image.shape[0], image.shape[1], 3), dtype = np.uint8)
top = int(top)
bottom = int(bottom)
left = int(left)
right = int(right)
image = cv2.copyMakeBorder(
image,
top,
bottom,
left,
right,
cv2.BORDER_CONSTANT,
None,
[255, 255, 255]
)
mask = cv2.copyMakeBorder(
mask,
top,
bottom,
left,
right,
cv2.BORDER_CONSTANT,
None,
[255, 255, 255]
)
return image, image, mask, mask
@metrics_decoration
def image_outpaint(
modelid_outpaint,
sampler_outpaint,
img_outpaint,
mask_outpaint,
rotation_img_outpaint,
prompt_outpaint,
negative_prompt_outpaint,
num_images_per_prompt_outpaint,
num_prompt_outpaint,
guidance_scale_outpaint,
denoising_strength_outpaint,
num_inference_step_outpaint,
height_outpaint,
width_outpaint,
seed_outpaint,
use_gfpgan_outpaint,
nsfw_filter,
tkme_outpaint,
clipskip_outpaint,
use_ays_outpaint,
progress_outpaint=gr.Progress(track_tqdm=True)
):
print(">>>[outpaint 🖌️ ]: starting module")
nsfw_filter_final, feat_ex = safety_checker_sd(model_path_outpaint_safety_checker, device_outpaint, nsfw_filter)
if clipskip_outpaint == 0:
clipskip_outpaint = None
if ("XL" in modelid_outpaint.upper()):
is_xl_outpaint: bool = True
else :
is_xl_outpaint: bool = False
if (num_inference_step_outpaint >= 10) and use_ays_outpaint:
if is_sdxl(modelid_outpaint):
sampling_schedule_outpaint = AysSchedules["StableDiffusionXLTimesteps"]
sampler_outpaint = "DPM++ SDE"
else:
sampling_schedule_outpaint = AysSchedules["StableDiffusionTimesteps"]
sampler_outpaint = "Euler"
num_inference_step_outpaint = 10
else:
sampling_schedule_outpaint = None
if (is_xl_outpaint == True):
if modelid_outpaint[0:9] == "./models/" :
pipe_outpaint = StableDiffusionXLInpaintPipeline.from_single_file(
modelid_outpaint,
torch_dtype=model_arch,
use_safetensors=True,
# load_safety_checker=False if (nsfw_filter_final == None) else True,
local_files_only=True if offline_test() else None
# safety_checker=nsfw_filter_final,
# feature_extractor=feat_ex
)
else:
pipe_outpaint = StableDiffusionXLInpaintPipeline.from_pretrained(
modelid_outpaint,
cache_dir=model_path_outpaint,
torch_dtype=model_arch,
use_safetensors=True,
resume_download=True,
local_files_only=True if offline_test() else None
)
else:
if modelid_outpaint[0:9] == "./models/" :
pipe_outpaint = StableDiffusionInpaintPipeline.from_single_file(
modelid_outpaint,
torch_dtype=model_arch,
use_safetensors=True,
# load_safety_checker=False if (nsfw_filter_final == None) else True,
local_files_only=True if offline_test() else None
# safety_checker=nsfw_filter_final,
# feature_extractor=feat_ex
)
else:
pipe_outpaint = StableDiffusionInpaintPipeline.from_pretrained(
modelid_outpaint,
cache_dir=model_path_outpaint,
torch_dtype=model_arch,
use_safetensors=True,
safety_checker=nsfw_filter_final,
feature_extractor=feat_ex,
resume_download=True,
local_files_only=True if offline_test() else None
)
pipe_outpaint = schedulerer(pipe_outpaint, sampler_outpaint)
pipe_outpaint.enable_attention_slicing("max")
tomesd.apply_patch(pipe_outpaint, ratio=tkme_outpaint)
if device_label_outpaint == "cuda" :
pipe_outpaint.enable_sequential_cpu_offload()
else :
pipe_outpaint = pipe_outpaint.to(device_outpaint)
if seed_outpaint == 0:
random_seed = random.randrange(0, 10000000000, 1)
final_seed = random_seed
else:
final_seed = seed_outpaint
generator = []
for k in range(num_prompt_outpaint):
generator.append([torch.Generator(device_outpaint).manual_seed(final_seed + (k*num_images_per_prompt_outpaint) + l ) for l in range(num_images_per_prompt_outpaint)])
# angle_outpaint = 360 - rotation_img_outpaint
# img_outpaint["image"] = img_outpaint["image"].rotate(angle_outpaint, expand=True)
# dim_size = correct_size(width_outpaint, height_outpaint, 512)
# image_input = img_outpaint["image"].convert("RGB")
# mask_image_input = img_outpaint["mask"].convert("RGB")
# image_input = image_input.resize((dim_size[0],dim_size[1]))
# mask_image_input = mask_image_input.resize((dim_size[0],dim_size[1]))
# savename = f"outputs/mask.png"
# mask_image_input.save(savename)
image_input = img_outpaint.convert("RGB")
mask_image_input = mask_outpaint.convert("RGB")
dim_size = round_size(image_input)
savename_mask = f"outputs/mask.png"
mask_image_input.save(savename_mask)
# mask_image_input = PIL.Image.open(mask_outpaint)
# mask_image_input = image_input.convert("RGB")
prompt_outpaint = str(prompt_outpaint)
negative_prompt_outpaint = str(negative_prompt_outpaint)
if prompt_outpaint == "None":
prompt_outpaint = ""
if negative_prompt_outpaint == "None":
negative_prompt_outpaint = ""
if (is_xl_outpaint == True):
compel = Compel(
tokenizer=[pipe_outpaint.tokenizer, pipe_outpaint.tokenizer_2],
text_encoder=[pipe_outpaint.text_encoder, pipe_outpaint.text_encoder_2],
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
requires_pooled=[False, True],
device=device_outpaint,
)
conditioning, pooled = compel(prompt_outpaint)
neg_conditioning, neg_pooled = compel(negative_prompt_outpaint)
[conditioning, neg_conditioning] = compel.pad_conditioning_tensors_to_same_length([conditioning, neg_conditioning])
else:
compel = Compel(tokenizer=pipe_outpaint.tokenizer, text_encoder=pipe_outpaint.text_encoder, truncate_long_prompts=False, device=device_outpaint)
conditioning = compel.build_conditioning_tensor(prompt_outpaint)
neg_conditioning = compel.build_conditioning_tensor(negative_prompt_outpaint)
[conditioning, neg_conditioning] = compel.pad_conditioning_tensors_to_same_length([conditioning, neg_conditioning])
final_image = []
final_seed = []
for i in range (num_prompt_outpaint):
if (is_xl_outpaint == True):
image = pipe_outpaint(
image=image_input,
mask_image=mask_image_input,
prompt_embeds=conditioning,
pooled_prompt_embeds=pooled,
negative_prompt_embeds=neg_conditioning,
negative_pooled_prompt_embeds=neg_pooled,
num_images_per_prompt=num_images_per_prompt_outpaint,
guidance_scale=guidance_scale_outpaint,
strength=denoising_strength_outpaint,
width=dim_size[0],
height=dim_size[1],
num_inference_steps=num_inference_step_outpaint,
timesteps=sampling_schedule_outpaint,
generator=generator[i],
clip_skip=clipskip_outpaint,
callback_on_step_end=check_outpaint,
callback_on_step_end_tensor_inputs=['latents'],
).images
else:
image = pipe_outpaint(
image=image_input,
mask_image=mask_image_input,
prompt_embeds=conditioning,
negative_prompt_embeds=neg_conditioning,
num_images_per_prompt=num_images_per_prompt_outpaint,
guidance_scale=guidance_scale_outpaint,
strength=denoising_strength_outpaint,
width=dim_size[0],
height=dim_size[1],
num_inference_steps=num_inference_step_outpaint,
timesteps=sampling_schedule_outpaint,
generator=generator[i],
clip_skip=clipskip_outpaint,
callback_on_step_end=check_outpaint,
callback_on_step_end_tensor_inputs=['latents'],
).images
for j in range(len(image)):
if is_xl_outpaint or (modelid_outpaint[0:9] == "./models/"):
image[j] = safety_checker_sdxl(model_path_outpaint_safety_checker, image[j], nsfw_filter)
seed_id = random_seed + i*num_images_per_prompt_outpaint + j if (seed_outpaint == 0) else seed_outpaint + i*num_images_per_prompt_outpaint + j
savename = name_seeded_image(seed_id)
if use_gfpgan_outpaint == True :
image[j] = image_gfpgan_mini(image[j])
image[j].save(savename)
final_image.append(savename)
final_seed.append(seed_id)
print(f">>>[outpaint 🖌️ ]: generated {num_prompt_outpaint} batch(es) of {num_images_per_prompt_outpaint}")
reporting_outpaint = f">>>[outpaint 🖌️ ]: "+\
f"Settings : Model={modelid_outpaint} | "+\
f"Sampler={sampler_outpaint} | "+\
f"Steps={num_inference_step_outpaint} | "+\
f"CFG scale={guidance_scale_outpaint} | "+\
f"Size={dim_size[0]}x{dim_size[1]} | "+\
f"GFPGAN={use_gfpgan_outpaint} | "+\
f"Token merging={tkme_outpaint} | "+\
f"CLIP skip={clipskip_outpaint} | "+\
f"AYS={use_ays_outpaint} | "+\
f"nsfw_filter={bool(int(nsfw_filter))} | "+\
f"Denoising strength={denoising_strength_outpaint} | "+\
f"Prompt={prompt_outpaint} | "+\
f"Negative prompt={negative_prompt_outpaint} | "+\
f"Seed List="+ ', '.join([f"{final_seed[m]}" for m in range(len(final_seed))])
print(reporting_outpaint)
final_image.append(savename_mask)
exif_writer_png(reporting_outpaint, final_image)
del nsfw_filter_final, feat_ex, pipe_outpaint, generator, image_input, mask_image_input, image
clean_ram()
print(f">>>[outpaint 🖌️ ]: leaving module")
return final_image, final_image